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Characterization of magnetic nanoparticles
from Magnetospirillum Gryphiswaldense as
potential theranostics tools

T. Orlando""'b*’r S. Mannucci€, E. Fantechid,G Conti‘,S Tambalo®, A. BusatoS,
C. Innocenti?, L. Ghin®, R. Bassi®, P. Arosio’, F. Orsml,C Sangregorlog
M. Corti®, M. F. Casula P. Marzola A. Lasaalfarl and A. Sbarbatic

We investigated the theranostic properties of magnetosomes (MNs) extracted from magnetotactic bacteria, promis-
ing for nanomedicine applications. Besides a physico-chemical characterization, their potentiality as mediators for
magnetic fluid hyperthermia and contrast agents for magnetic resonance imaging, both in vitro and in vivo, are here
singled out. The MNs, constituted by magnetite nanocrystals arranged in chains, show a superparamagnetic behav-
iour and a clear evidence of Verwey transition, as signature of magnetite presence. The phospholipid membrane
provides a good protection against oxidation and the MNs oxidation state is stable over months. Using an alternate
magnetic field, the specific absorption rate was measured, resulting among the highest reported in literature. The
MRI contrast efficiency was evaluated by means of the acquisition of complete NMRD profiles. The transverse
relaxivity resulted as high as the one of a former commercial contrast agent. The MNs were inoculated into an animal
model of tumour and their presence was detected by magnetic resonance images two weeks after the injection in
the tumour mass. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decade, several magnetic particles having a

Theranostics is an innovative method combining diagnosis and
therapy which is expected to have a relevant impact in the fight
against cancer. By eliminating the clinical multi-step procedures,
theranostics could reduce the delays among diagnosis and
therapy. The use of nanoparticles properly labelled to recognize
tumour cells might allow the simultaneous imaging and the
effective local treatment of diseases (1). Among the different types
of nanoparticles, iron oxide nanoparticles are considered to be
promising candidates as effective tools for cancer theranostics
due to their superparamagnetic behaviour combined to their
relatively low toxicity (2-4).
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maghemite or magnetite core have been proposed for
biomedical applications. They can be used as contrast agents
for magnetic resonance imaging (MRI) (5), mediators for
magnetic fluid hyperthermia (MFH) (6), and carriers for drug
delivery (7). Even if some of them have good performances in
two or more of these tasks, none of them is, to our knowledge,
at the clinical stage as theranostic agent.

In addition to synthetic iron oxide nanoparticles, the use of
magnetosomes (MNs) in biomedicine has also been recently
proposed (8,9). These nanostructures, constituted by pure
magnetite particles arranged in chains and surrounded by a
phospholipid membrane (10,11), are naturally synthesized by
magnetotactic bacteria under specific environmental conditions.
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Furthermore, MNs exhibit a great hyperthermic efficiency both
in vitro and in vivo. For these reasons, MNs were considered as
thermotherapy agent.

In this work, we present the use of magnetosomes as theranostic
toolforcombinedcancerdetectionbymagneticresonanceimaging
andtreatmentthrough magneticfluid hyperthermia.The structural
and magnetic properties, the hyperthermic efficiency and the
relaxometry profiles of MNs extracted from Magnetospirillum
Gryphiswaldense bacteria have been investigated. In particular, we
showthattheMNsactaseffectivehyperthermiamediatorswhenex-
posedtoalternatingmagneticfieldsofanamplitude of 17kA/mand
frequency 183 kHz,andasMRInegativecontrastagentsattheclinical
fields0.2 Tand 1.5 Tbothinvitroandinvivo(8,12-14).TheMRIcontrast
efficiency has been established by collecting, for thefirst time to our
knowledge, the complete NMR-dispersion profiles of longitudinal
andtransverserelaxivities.

2. MATERIALS AND METHODS

2.1. Magnetospirillum Gryphiswaldense culture and MNs
purification

Magnetospirillum Gryphiswaldense strain MSR-1, purchased from
Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH (Leibniz-Institut DSMZ, Braunschweig, Germany), was
cultured as described in Ref. 11. MNs were extracted and purified
according to methods published by Griinberg (15,16). Briefly, M.
Gryphiswaldense (10g) bacteria were suspended in 50mL of
50 mM HEPES-4 mM EDTA (pH 7.4) and disrupted using French-
press. Non lysated materials were removed by centrifugation at
680 g for 5 min. The obtained lysate was passed through a magnetic
separation column (MACS, MiltenyiBiotec) and finally MNs were
eluted with 10 mM HEPES (pH 7.4) buffer. MNs were centrifuged at
28 00009 for 12h at 4°C and the obtained pellet was incubated
with 10 mM HEPES for 16 h at 4°C to allow for solubilization. After
purification, MNs were lyophilized and irradiated with y-rays.

2.2, Chemical, structural, and morphological
characterization

The crystal structure of the MNs extracted from Magnetospirillum
Gryphiswaldense was studied by recording the X-ray diffraction
(XRD) pattern within the range of 10 °-90 ° (29) using Cu Ka
radiation on a Panalytical Empyrean diffractometer equipped
with a focusing mirror on the incident beam and an X'Celerator
linear detector. The scans were acquired in Bragg-Brentano
geometry with a graphite monochromator on the diffracted
beam. The magnetosomes were deposited on a silicon low back-
ground sample holder and air dried prior to measurement collec-
tion. The average crystallite size was calculated by applying the
Scherrer formula (17), from the peak full width at half maximum
(FWHM) corrected for instrumental broadening as determined
on a standard LaBg sample. Phase identification was performed
according to the Powder Diffraction Files (PDF) crystallographic
database (18).

Transmission electron microscopy (TEM) images were recorded
on a Hitachi H-7000 Microscope (Hitachi Group, Tokyo, Japan),
operating at 125kV, equipped with a tungsten thermionic elec-
tron source and with a AMT DVC (Thorlabs, Newton, New Jersey,
USA) (2048x2048 pixel) Charge-Coupled Device (CCD) Camera.
Prior to observation, the samples were dropped on a carbon-
coated copper grid and air-dried. Chemical composition was

determined by inductively coupled plasma atomic emission spec-
trometry (ICP-AES) using a Varian Liberty 200 spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA). Typical solutions for
the analysis of Fe content were prepared by dissolving about
0.5 mg of magnetosome powder in 10 mL of a 1:1 mixture of con-
centrated HNO3z/HCl and diluting up to 50 mL. Thermal gravimetry
(TG) and differential thermal analysis (DTA) were carried out using
a Mettler-Toledo TG/SDTA 851 (Mettler-Toledo, Greifensee, Switzer-
land) in the range 25-1000°C under oxygen flow (heating
rate = 10 °C/min, flow rate =50 mL/min).

2.3. Magnetic characterization

The magnetic properties of extracted MNs were investigated using
a Quantum Design MPMS SQUID magnetometer (Quantum Design,
San Diego, CA, USA) operating in the temperature range 2 K+ 300K
with an applied field up to 5 Tesla. Measurements were performed
on freeze-dried powder samples hosted in a polytetrafluoroethylene
(PTFE) sample holder. The recorded magnetic moments were nor-
malized for the effective amount of iron obtained by ICP analysis
and the magnetization values are reported in terms of Am?/kg of
iron. Zero Field Cooled-Field Cooled (ZFC/FC) curves were obtained
by measuring the temperature dependence of the magnetization
after cooling the sample in presence (FC) or in absence (ZFC) of
applied magnetic field.

2.4. Hyperthermic characterization

The hyperthermic properties of the extracted MNs were investi-
gated through calorimetric measurements. The experimental
set-up, composed by a 6 kW Fives Celes® power supply (Fives,
Lautenbach, France), a water-cooled induction coil and a series
of variable capacitors (420 nF - 4.8 nF), is able to produce an
alternate magnetic field with variable frequency v in the range
of 50-400 kHz and with field amplitude up to 19.1 kA/m. The field
parameters used in this work (183 kHz, 17.0 kA/m) were chosen in
order to operate within the physiological limit, i.e. Hv < 5°10° Am’
s, beyond which living tissues damages have been observed
(12). A screw cap vial containing a magnetosomes dispersion in
agarose gel at 0.25% w/w, so that the iron concentration was
0.017% w/w, was placed in the middle of the induction coil. The
polystyrene sample holder was placed in a glass container
thermostatized by circulating ethylene glycol, in order to keep
the system at 37 °C. The temperature kinetics curve, i.e. tempera-
ture as a function of time, of the sample was recorded by an
optical fiber thermometer connected to a digital temperature
recorder (Fotemp®) (Optocon AG, Dresden, Germany) during
the whole exposition to alternate magnetic field. The specific
absorption rate (SAR) value was evaluated using the formula
SAR=(ZimiCpi/Mue) - (AT/AL), where AT is the temperature in-
crease in the time interval At, mye. is the total mass of metal,
m; is the mass of the i-species and C,; is the corresponding
specific heat. The sum is extended to all the species in the
sample, i.e. water, agarose and inorganic components. The two last
contributions are found negligible with respect to that of water.
Due to the low concentration of agarose, the specific heat of the
gel was assumed to be equal to the one of water. The measure-
ments were performed in non adiabatic conditions and the AT/At
values were evaluated from the initial slope (t — 0) of the tempera-
ture kinetic curves, considering a At much shorter than the time
constant of the thermalization circuit.
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2.5. Relaxivity measurements

Longitudinal and transverse nuclear relaxation times, T; and T,
respectively, were measured in both aqueous solution and aga-
rose gel dispersion (0.25% w/w) over a wide range of frequency
(10 kHz - 60 MHz). The NMR signal detection and generation was
obtained with a Stelar Smartracer fast-field-cycling relaxometer
(Stelar, Mede, Italy) in the range 10 kHz - 10 MHz and with a Stelar
Spinmaster spectrometer in the range 10 MHz - 60 MHz. Satura-
tion Recovery and Carr Purcell Meiboom Gill (CPMG) pulse se-
quences were used for T; and T, measurements, respectively.
In order to have a quantitative estimation of the efficiency as
MRI contrast agent, the nuclear relaxivities were calculated as

)/C[Fe] where i=1, 2, and Cig is the

millimolar concentration of iron ions.

1 1

follows: r; = <

Timeas  Timatrix

2.6. Contrast agent efficiency

Longitudinal and transversal relaxivities were measured in agarose
gel phantoms (0.25%) containing different amounts of MNs using
a Bruker Tomograph (Bruker, Karlsruhe, Germany) equipped with a
4.7T, 33 cm bore horizontal magnet (Oxford Ltd., Oxford, UK). T,
values were measured by a Multi Slice Multi Echo (MSME) sequence
with TR=3000ms, TE=45ms, N echoes=16, FOV=3.5x3.5cm?,
MTX = 128/128, Slice Thickness =2.00 mm, N slice=3.

For in vivo tests, nude homozygote male mice (Harlan Laboratories,
Udine, Italy) were kept under standard environmental conditions
(temperature, humidity, 12h/12h light/dark cycle, with water and
food ad libitum) under veterinarian assistance. Animals handling and
surgery were performed following a protocol approved by the Animal
Care and Use Committee of the University of Verona (CIRSAL), and by
the Italian Ministry of Health, in strict adherence to the European Com-
munities Council (86/609/EEC) directives, minimizing the number of
animals used and avoiding their suffering. For tumour implantation,
human glioblastoma-astrocytoma i.e. epithelial-like cell line (U87MG)
purchased by ATCC (Manassas, VA, USA), were cultured in Eagle’s

z (@)
=2
=
g
B \
=
s\| |
2
NN
L |
T T e e -
2 kil 40 il &0 o L] @D
29
e ()

®
100 nm

Sa0e%8
;
2

Minimum Essential Medium (EMEM) with 10% of Fetal Bovine Serum
(FBS), 1% of a mix of penicillin/streptomycin 1:1 and 1% of
L-glutamine 200mM, in 25cm? plates and incubated at 37°C in
humidified air with 5% CO,. Media and L-glutamine were purchased
by Sigma-Aldrich (Saint Louis, Missouri, USA), while serum and antibi-
otic mix were acquired by GIBCO (Thermo Fisher Scientific, Waltham,
Massachusetts, USA). When at confluence, cells were treated with
trypsin-EDTA 1% GIBCO (Thermo Fisher Scientificc, Waltham,
Massachusetts, USA), harvested and centrifuged at 1200rpm for
5 min. The supernatant was discarded and the cellular pellet was resus-
pended in 1 mL of complete medium, placed in 75 cm? plates and in-
cubated at 37 °C and 5% of CO, until 80% confluence was detectable.

One million U87MG cells, resuspended in 200 uL of sterile
phosphate buffered saline (PBS), were subcutaneously injected
in the right flank of anesthetized mice. 30 days after inoculation
of tumour cells, mice were monitored by MRI to measure the
tumour size; when tumour volume reached about 100 pL,
1 mg of MNs diluted in 100 uL of PBS were injected directly into
the tumour mass using an intradermal needle (21G).

For in vivo imaging, animals were anesthetized by 1%
isofluorane inhalation in a mixture of oxygen and nitrogen. An-
imals were placed in prone position over a heated bed and
inserted into a 3.5 cm i.d. birdcage rf. coil. T, and T,* weighted
images were acquired to detect the tumour and the presence
of MNs. T, weighted images were acquired using a RARE 3D
sequence with TR=1200ms, TEe¢=47.5ms, FOV =5x2.5x2.5 cm?,
NEX=1, MTX=256/128/32, Slice Thickness=0.78 mm. T,*
weighted images were acquired using a FLASH sequence with
TR=400ms, TE=4.4ms, flip angle=10°, FOV=5x2.5cm, NEX=2,
MTX =256/128, NSLICES =8, Slice Thickness =2 mm.

3. RESULTS AND DISCUSSION

The structure and morphology of the MNs extracted from
Magnetospirillum Gryphiswaldense was investigated by XRD and
TEM. The X-ray diffraction pattern, reported in Figure 1a, can

(b)

Figure 1. X-ray diffraction pattern (a) and representative Transmission electron microscopy image (b) MNs extracted from Magnetospirillum
Gryphiswaldense. A closer inspection of a magnetic nanoparticle chain as obtained by TEM under bright field (c) and dark field (d) imaging is also reported.
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be ascribed to a single crystalline phase with a spinel stucture
which is consistent with the occurrence of magnetite FesO,
phase (PDF card 19-629). However, it should be pointed out
that the occurrence of the fully oxidized iron oxide spinel phase,
i.e. maghemite, cannot be ruled out based only on diffraction
data (19). Peak broadening suggests the occurrence of a nano-
crystalline phase, and in particular the average crystallite domain
size as calculated from pattern profile analysis is 33 nm.

TEM investigation indicates the presence of cubic- and cubo-
octahedral- shaped nanoparticles with a chain-like arrangement
(Figure 1b). Comparison of the same area under bright (Figure 1c)
and dark field mode (Figure 1d), where iso-oriented crystalline
domains appear as bright contrast on a dark background,
confirms that the nanoparticles are nanocrystalline and, in
particular, that the particles are single crystals. A statistical
analysis of the size over around 200 nanoparticles indicates that
the largest size of the nanocrystals is peaked at 40nm and
ranges from 16 to 54 nm, as shown in Figure 2.

The field dependence of the magnetization is reported in
Figure 3 both at 2.5K and at 300 K. At low temperature, an open
hysteresis loop is observed (see inset of Figure 3). The coercive
field, uoHc is 42.8 mT, consistent with the literature values
reported for magnetosomes (20) and synthetic iron oxide
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Figure 2. Size distribution obtained from TEM images. Due to the cubic

and cubo-octahedral shape of the crystals, the maximum visible size was
considered for each particle.

150

uH (T)

Figure 3. M vs. H curves of magnetosomes measured at 2.5 K (open cir-
cles) and 300K (full circles). The magnification of both curves at low fields
is reported in the inset.

nanocubes of similar size (6). A small coercivity (2 mT) is also
observed at room temperature. Similar values were reported
in (13). The reduced remanent magnetization is Mg = %—Z = 0.45,

close to the one expected for a set of uniaxial nanoparticles whose
axis is isotropically orientated (i.e. Mg=0.5). An open hysteresis
loop with reduced coercivity (uoHc =2.1 mT) is observed also at
300K (Figure 3). Both curves are well saturated at high fields,
being the saturation magnetizations Ms=139 and 126 A-m?/kgre
(corresponding to Ms=99 and 89 A-m? per kilogram of magnetite)
at 2.5 and 300K, respectively. Such values are very close to those
of bulk magnetite (95 and 128 Am?/kg (21,22), for low and room
temperatures, respectively), confirming the high crystallinity of the
sample.

Figure 4 shows the ZFC/FC magnetization curves for the MNs
extracted from Magnetospirillum Gryphiswaldense. A discontinu-
ity in the curves acquired at different fields can be clearly
observed around 105K: this could be an evidence for the
Verwey transition (23,24), a crystallographic phase transition
in metal oxides, which is expected to occur around 120K for
bulk magnetite in stoichiometric composition (Fe,03) (25,26).
This attribution is confirmed by the fact that its position is inde-
pendent from the applied external magnetic field (Figure 4a). It
should be noted that in bulk magnetite the transition occurs
at ca. 120K. However, a shift to lower temperature is often
observed for nanometric particles, and is attributed to struc-
tural disorder and cation deficiency (24,26-28). On the other
hand, the Verwey transition is generally not observed for small
iron oxide NPs with mean size lower than 10-20 nm (29), due to
their oxidation, facilitated by the large surface to volume ratio.
For this reason, most of the time small NPs are composed
by a mixture of iron oxides (magnetite/maghemite). A so clear
evidence of the Verwey transition confirms that our sample
is composed by magnetite NPs with average crystalline size of
the order of that observed in the TEM analysis size (42+9nm)
(15). Furthermore, the stability of the oxide phase was proved:
indeed, as reported in Figure 4b, the Verwey transition is still
clearly visible even after three months of storage of freeze-dried
MNs at 4°C in normal atmosphere. Most likely this is due to the
phospholipid membrane that covers completely the magnetite
crystals and prevents the contact with the air.

The blocking temperature Tz of the system, identifiable with the
contact point between the ZFC curve and the FC one measured at
low field, is above 300K, as shown in the inset of Figure 4b.
Considering the TEM average particle, Tp is expected to be much
larger than the investigated temperature range (30).

The hyperthermic efficiency of extracted MNs was evaluated
by recording the temperature kinetic curves of MNs dispersed
in agarose gel and exposed to an alternate magnetic field of
17 kA/m and 183 kHz in amplitude and frequency, respectively.
The kinetic curve, reported in Figure 5, shows that, despite the
very low concentration of iron oxide (0.017% w/w), the tempera-
ture of the sample rises of about 5°C in 5 minutes of exposition
to the alternate magnetic field. This corresponds to a specific
absorption rate (SAR) of 482.7 + 50.8 W/g per mass of iron, a value
that is among the highest reported in the literature (12,13,31,32).

The NMR longitudinal and transverse relaxivity results as a
function of frequency are displayed in Figure 6, in comparison
to those of Endorem, a former commercial ‘negative’ contrast
agent. Both water and agarose gel dispersions were investigated.
After some minutes, some reversible sedimentation phenomena
were observed for MNs in water dispersion, but this issue did not
compromise the NMR measurements, due to the fast measuring
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Figure 4. a) ZFC/FC curves collected at different magnetic fields for freeze-dried. b) ZFC/FC at 500 Oe collected for the same sample before and after a
three months storage period at 4 °C. The signature of the Vervey transition is still evident, proving the good quality of the phospholipid membrane as
shelter. Inset: ZFC/FC curves at 50 Oe: from here the blocking temperature is estimated to be above 300 K.

183 kHz, 17 kA/m -

0 100 200 300 400

Figure 5. Temperature kinetics of the dispersion of MNs in agarose gel,
exposed to an alternate magnetic field (183 kHz, 17 kA/m). The measure-
ments were performed starting from body temperature (37 °C). The black
arrows indicate the switch on and off of the magnetic field.

times (tens of seconds). The gel dispersion allows keeping
the MNs fixed in the matrix, but also limits the mobility of
the surrounding protons. Although MNs are composed by
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superparamagnetic crystals, the behaviour of the longitudinal
relaxivity r; as a function of frequency is different from the
NMR profile typical of iron oxide nanoparticles, in which a low
frequency plateau, a maximum around 10 MHz and a monotonic
decrease of r; at high frequency can be seen. On the contrary,
MNs exhibit a monotonic decrease of r; as a function of
frequency. This behaviour is independent from the dispersion
matrix (water or agarose gel) and it is probably related to the
MNs morphology and chain arrangement. For agarose dispersed
MNs, the transverse relaxivity appears almost flat in the range of
frequency 10-60 MHz. The quite low value is possibly due to the
limited mobility of both the protons in the MNs surrounding and
of the MNs themselves, which decreases the dephasing effect of
the local magnetic field. On the other hand, the r, behaviour of
MNs dispersed in water shows some frequency dependence.
Remarkably, the r, values for MNs dispersed in water are higher
than the ones of Endorem. As a consequence, MNs could be
effectively used as negative contrast agent in magnetic reso-
nance imaging.

The potential of MNs as MRI contrast agent was investigated
in vitro and in vivo at 47T with the Bruker tomograph, corre-
sponding to the frequency v=200 MHz for the proton. Magnetic
resonance images of agarose gel phantoms containing different

180
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Figure 6. NMR dispersion profiles: (a) longitudinal relaxivity r7 and (b) transverse relaxivity r2 as a function of proton Larmor frequency for MNs dis-
persed in agarose gel (open circles) and in water (solid circles). The contribution of the matrix to the relaxation was considered in both cases. The
relaxometry values of a former commercial contrast agent, i.e. Endorem, are shown for comparison purpose. The experimental error takes into account
all the experimental procedures and was quantified as 8% of the absolute value.
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Figure 7.

In vitro and in vivo contrast efficiency of MNs as MRI agents. (a) T2-weighted image of phantoms at different MNs concentrations (the values

are reported in mM of iron). The iron content in our MNs samples determined by atomic absorption spectroscopy was 0.167 w/w. T2-weighted images

of tumor tissue before (b) and 24 h after (c) MNs injection.

Figure 8. Time evolution of MNs signal in vivo. T2-weighted images of tumor (

2 weeks after the injection.

amounts of MNs are reported in Figure 7a. As expected, the
signal intensity clearly depends on the MNs concentration.
Quantitative measurements of T; and T, values for different
MNs concentrations at 4.7T allowed the determination of
the transverse relaxivity r,=204+2s' mM . The great dif-
ference between r, at 60 MHz and the one at 200 MHz is
due to the echo time commonly available in MRI scanners,
which is too long to avoid the contribution of the proton dif-
fusion. However, this measurement being a common practice,
some observation can be done. In particular, for this field
value the transverse relaxivity of MNs in agarose gel is higher
than the one of Endorem (r,=94.8s"' mM~') (33) and compa-
rable to other similar iron based contrast agents (e.g. Resovist,
r,=151.0s"' mM™") (34). The observed high transverse relaxivity,
as well as the high r,/r; ratio, strongly confirms that the MNs
could be efficient superparamagnetic contrast agents for MR,
also at higher fields.

This was experimentally confirmed by the in vivo T,-weighted
images. Images of U87MG xenografted mice acquired before
and after injection of 1 mg of MNs diluted in 200 uL of PBS into
the tumour mass are shown in Figure 7b and c. Thanks to the
high transverse relaxivity, the presence of MNs is well detectable
as a dark region. Furthermore, we investigated the evolution
of the signal as a function of the time (see Figure 8): as one
can see, the MNs remain detectable even after two weeks
(Figure 8d).

4. CONCLUSIONS

In this work several techniques have been used to characterize
magnetosomes naturally produced by the magnetotactic
bacteria Magnetospirillum gryphiswaldence. From structural
analysis, we verified that their magnetic cores are composed
by magnetite single crystals arranged in chains and coated with

a) before the MNs injection, (b) 1 hour after, (c) 1 week after and (d)

a phospholipid membrane. The oxide phase is stable over
months thanks to the shielding effect of the membrane. This
was confirmed by the magnetic measurements, which showed
an evident Verwey transition around 105 K. Due to the particles
size, the blocking temperature is above 300 K.

The great potentiality of MNs as mediators for magnetic fluid
hyperthermia was verified: the specific absorption rate (SAR)
obtained after the application of an alternate magnetic field is
482.7 W/g, among the highest reported in literature. The NMRD
profiles, acquired for MNs dispersed both in agarose gel and
water, demonstrated good contrast efficiency as negative MRI
contrast agents compared to Endorem, a former clinical con-
trast agent. An animal model of tumour was used for in vivo
MRI tests. The high contrast efficiency allows to easily identify
the region where the magnetosomes were injected, even after
two weeks.

These results, together with the ones previously achieved
(15), state how magnetosomes can represent a good platform
to develop a multifunctional nanostructured material suitable
for theranostics. Indeed, the possibility to combine the thera-
peutic effect of the released heat along with a higher contrast
in MRI images is extremely interesting: this would allow
monitoring the distribution of the particles in the tumour tissue
and, at the same time, to have an immediate check of the
hyperthermic treatment efficacy, through tumour volume
measurements.
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