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Abstract

This work focuses on the problem of task allocation among mobile objects that
aim to collaborate in the execution of IoT (Internet of Things) applications. We
consider 3GPP Proximity Services (ProSe) that enable Device to Device (D2D)
communications for direct interaction among IoT objects. We first define the
framework where devices willing to cooperate: i) discover and join a cluster
of objects to take part to the IoT ProSe service; ii) compete with the other
objects in the cluster when a request for a service is sent to the cluster from
the IoT application server. We then focus on two important problems. The
first problem is the decision about which node should win the competition, for
which we propose a game-theory based approach to find a solution maximizing
objects’ utility functions. The second problem is the computation of the optimal
size of devices’ clusters within a cell by maximizing the signal quality across
the cell. Experimental results provide insights on the strategy performance.
By appropriately setting working parameters, it is possible to improve system
reliability up to 21%, and system lifetime up to 68%.

Keywords: D2D, Internet of Things, Game Theory

1. Introduction

LTE (Long Term Evolution) based D2D (device-to-device) communication
is considered as a promising solution for many short/long range communication
services in 4G and 5G networks [1] [2]. This allows for the creation of D2D clus-
ters [3], which can be defined as cellular communication groups that implement
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Proximity Services (ProSe) without (or with small) intervention of the central
e-NodeB (eNB). Those groups can communicate internally using D2D-Direct
mode, whereas externally they can do it by using D2D-Assisted by eNB.

For several IoT (Internet of Things) application scenarios, D2D communi-
cations represent a good opportunity. Objects in the IoT can collaborate in the
provisioning of a cooperative activity locally, when served by the same eNB.
Indeed, objects that are close to each other may be capable of performing sim-
ilar tasks (e.g., sensing the temperature in a given location) and may need to
collaborate to decide which of them should perform the task or may collaborate
to provide a more accurate value acquired by more sensors. This collaboration
can leverage the D2D communication scenario so that a local cluster is created
among these objects in a dynamic way and they can decide which one should
be assigned to a given task. We assume that each group has a cluster head
(CH), which can be either auto-elected or elected by the other nodes in the
group. Downstream communication can happen through the CH or directly
from the eNB. Upstream communication and inter-cluster communication has
to go through the CH.

Indeed, this is our scenario for task allocation in the IoT where different
objects opportunistically can take part to task groups and coordinate with the
other members for the provisioning of services to applications running on top
of the IoT. The contributions of this paper are the following:

• We present the framework exploiting D2D communications for task allo-
cation in the IoT, which we call IoT ProSe. Accordingly, objects willing
to collaborate in the implementation of IoT applications may create new
clusters or join existing ones. Then, they collaborate with the other peers
in the cluster to provide local services.

• We analyze the problem of task allocation within a cluster, where objects
capable of performing the same tasks compete to get relevant remuner-
ations (based on a utility function). Task allocation is assessed taking
into account both node reliability and lifetime. To this, we propose a
game-theory based approach where objects find a solution towards the
maximization of their own utility.

• We evaluate the impact of the number and size of clusters on the commu-
nication interference in a cell and we provide a solution to optimize the
setting.

• We perform extensive simulations which are focused on the evaluation
of the energy consumption, provided reliability and distribution of tasks
among all the available nodes.

The rest of the paper is organized as follows. In Section 2, we present the
background in 3GPP ProSe services and past works in task allocation in the
IoT. In Section 3, we present the proposed framework IoT ProSe. In Section
4 we present the game theory based approach for task allocation, whereas in
Section 5, we address the issue of optimizing the number and size of clusters
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of objects. Then in Section 6, we present the experimental results. Finally,
conclusions are drawn.

2. Work Background

2.1. The 3GPP ProSe services

3GPP started the Proximity Services (ProSe) either for direct communica-
tion or public safety applications [1] [2]. As a result, LTE based D2D communi-
cation is considered as a promising solution for many short range communication
services in 4G and 5G networks. IoT is one of the promising emerging tech-
nologies that can be integrated in the ProSe applications. Integrating IoT as
a service in cellular architectures will add some exchanges for D2D discovery
procedure proposed by 3GPP. Moreover, it will extend the benefits of universal
LTE architecture facilities (i.e. reliability, quality and security) to IoT applica-
tions and platforms. In this work we focus on the ProSe direct communication
mode [1], which has three techniques: one-to-one, one-to-many or ProSe UE-to-
network relaying. We will detail in Section 3.3 this stage for the one-to-many
use case.

According to D2D-4G Proximity Services’ use cases classifications [1] [4], the
commercial and social ProSe(s) are imposed as an important category. D2D
clustering communications had been proposed in order to avoid interferences
in cellular networks due to the services expected on D2D. It can also enhance
the eNB throughput by distributing separate groups constructed based on the
proposed 3GPP ProSe type. In our previous works [5] [6], we handled the D2D
clustering in terms of the Intelligent Transportation System (ITS) ProSe. The
proposed architecture is called Cellular Vehicular Network (CVN) and aims at
extending the V2V networks using D2D aspects to enhance the covering range,
accelerate data dissemination or data aggregation, and also improve the overall
throughput for eNB in such emergency applications.

ProSe services have a good business model in the IoT. Task allocation op-
timization in IoT devices formed by D2D groups is an incentive solution for
improving ProSe based IoT architecture. Notwithstanding the importance of
coordinating IoT objects in the deployment of distributed applications and the
potentialities of the ProSe services, this issue has not been addressed in the
past.

2.2. Past works in task allocation in IoT

The problem of task allocation consists in finding the optimal task executor
among several available providers. This problem has been extensively studied in
the Wireless Sensor Network (WSN) field [7], where a big effort has been put into
resource allocation to extend WSN lifetime. In [8], a centralized task allocation
algorithm is proposed, which assumes that a single node has a complete updated
view of the status of all the nodes in the wireless network. This study focuses
on the reduction of the overall energy consumption into a heterogeneous WSN,
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with attention to nodes’ residual energy. In [9] the same problem is analyzed
taking into account also task execution time.

In the IoT, the problem is different as it happens that objects frequently join
and leave the network as they are switched off/on by the owner depending on her
personal needs; the objects’ connectivity is also often not very reliable so that
they disappear from the network and leave the community of IoT objects; addi-
tionally, they also move so that their geographical position varies and the task
they are able to perform changes. This scenario entails the situation in which
objects that in a given area may perform a task of interest for IoT applications
may change over the time and there is the need for a dynamic coordination of
objects in a given area to decide which one should perform the task of interest.
Most of the existing studies on resource allocation for IoT are focused on IoT
service provisioning, such as in [10] and [11]. In these studies, the aim is to
find and allocate the resources that enable service execution. Only a few works
in the literature try to find the optimal resource allocation associated with the
lowest impact of the application assigned to the network. This is the case for
instance of papers [12] [13], where a distributed optimization protocol, based on
consensus algorithm [14], addresses the problem of resource allocation and man-
agement. Still the authors in this work assume that the objects are connected
through short-range communication technologies. Additionally, no remunera-
tion is considered to be given to the objects that finally provide the requested
service. In this respect, we are proposing a new approach in the present paper:
the use of the 3GPP ProSe service for the connectivity between objects and the
presence of a remuneration for the sensors providing the service.

2.3. Clustering Methods Background

The state of the art in clustering focuses on different architectures for ad-
hoc wireless sensor networks, which can be centralized, distributed and hybrid
[15]. The centralized one represents the current status for 4G network devices
controlled by the eNB as a central node for the whole cluster. While this ar-
chitecture can suffer from the interference generated by many devices covered
by the same cell, it can be extended to be a distributed clustering that selects
some CHs to enable the communication from other devices to and from eNB.
Those CHs are linked to eNB through direct communications (one hop). The
hybrid architecture can exploit previous methodologies to control the usage of
the upstream and downstream link traffic to and from eNB. The measures that
are typically used to drive the cluster creation can be parametric (such as costs
related to probability functions in terms of transmission power and interfer-
ence/distances D2D & cellular communications) and non-parametric (based on
heuristic, such as mobility patterns similarities and density distribution of D2D
users).

In the current developments of emerging technologies like IoT and D2D, the
massive number of IoT devices that can use D2D-4G communication technol-
ogy will bring heavy burden to eNB for assisted communications. So, creating
clusters of devices can ameliorate the overall performance for eNB and reduce
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the interference across the communication range. Moreover, the D2D can im-
prove the overall spectrum efficiency across the covering range [16]. Different
D2D clustering schemes have been studied in [17]. In this work, the authors
supposed three alternatives for grouping the D2D devices; CH dependent, CH
independent and threshold-based signal quality. The main idea behind those
algorithms is to form the clusters that enable the devices to discover relevant
peers in their coverage to construct the D2D connections.

The work in [18] introduced a clustering algorithm for enhancing the overall
network survivability. Through this algorithm, the CH is selected with some
redundancy backup CHs for failure recovery using probability models. Authors
in [19] proposed a contextualized approach for D2D clustering to include social
aspects besides separation distance as physical parameter. The work proposed
in [20] used stochastic modeling tools to measure the performance of engaged
D2D communication in proximity services. Moreover, they focused on the op-
timal number of D2D links that should be simultaneously activated in each
cluster. Recently, the work proposed in [21] made use of a good opportunistic
model to optimize the D2D cluster size in order to maximize the number of
active cooperative D2D users. In the same context, we are proposing in this
paper a mathematical approach for optimizing the D2D clusters’ size in terms
of separation distances and interference levels.

3. Proposed Framework

In this section, we firstly describe the reference scenario for the cooperation
of objects taking part to the deployment of IoT applications and the proposed
IoT ProSe solution. We then present the relevant architecture and the group
discovery process that is implemented by each object to take part in a cluster.

3.1. Reference Scenario

One of the greatest potentialities expected by IoT deployments is the oppor-
tunistic collaborative sensing of devices. It is the scenario where nodes allow
their sensors to be remotely tasked on someone else behalf, collecting and re-
porting sensor data on a best-effort basis when the conditions permit. In this
way, sensors capabilities can be exploited by other users other than by the object
owner for the benefit of the collaborative communities.

In the depicted scenario, it frequently happens that some nodes perform the
same sensing operation, such as the measurement of the traffic on the same
street, the measurement of the humidity and/or the temperature in a room, the
detection of moving objects/persons in a given environment, the monitoring of
the luminosity in a public square. Accordingly, groups of nodes are identified,
namely, task clusters, where each member performs similar and replaceable
tasks. To understand the meaning of task cluster, suppose, for example, that
the network is performing a temperature sensing in a specific area: only those
nodes that are equipped with a temperature sensor and that are deployed within
that area are included in the task cluster related to this task.

5



We assume that the IoT applications are running somewhere in the cloud
in an Application Server (AS) and that they frequently need information and
services related to the physical world that can be provided by the IoT objects,
as sketched in Fig. 1. In order not to burden central ASs with the duty of
tracking and recording all the available nodes in each task cluster, we foreseen
the self-creation of this node clusters with the presence of a cluster head (the
already mentioned CH) that locally coordinates the activities within the group
and manage the communication with the IoT platform(s) in the cloud to connect
with the applications requiring specific tasks/operations.

Figure 1: Reference scenario with the application server and cluster of objects.

3.2. IoT ProSe Solution

To address the needs of the previously depicted reference scenario, we pro-
pose the exploitation of the 3GPP ProSe Service without the need to deploy a
dedicated IoT platform infrastructure. Accordingly, objects willing to cooperate
in the provisioning of IoT services take part in the creation of ProSe clusters,
bringing to the IoT ProSe solution.

In the current developments of emerging applications, the massive number
of IoT devices with cellar communication technologies will bring a heavy burden
to eNBs. So, creating clusters of devices can improve the overall performance
for eNBs and reduce the interference across the whole communication range.
This benefit is in addition to the reduction in the workload at the AS to keep
track of each single available object, as described in the previous subsection.

Whenever the IoT AS requests some data, this request is forwarded to the
relevant CH(s), which then triggers the distributed task allocation algorithm
within the members of the cluster to decide which nodes will address this request.
Once the allocation task procedures within each cluster are terminated, then the
CH forwards the resulting bid to the AS, that then decides from which cluster
to buy the service.

Fig. 2 depicts our Cellular IoT (CIoT) architecture, which integrates the
ProSe service of IoT with the Evolved Packet Core (EPC) plane components
(i.e., MME, HSS, S-GW and P-GW). IoT services and applications can benefit
from this D2D facility. Our architecture relies on the D2D as detailed hereafter,
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Figure 2: Cellular IoT ProSe Architecture

to announce the service (bidding process), to manage subscribers (bidders) and
to collect the periodic local information and transfer it to the querying server.

3.3. Group discovery process in IoT ProSe

In the ProSe discovery procedure in [1], a ProSe-enabled UE (User Equip-
ment) can be in the Announcing mode, the Monitoring mode or both. In the
Announcing mode, presence information including a ProSe App Code is broad-
cast by the device to all nodes in its coverage range to announce a specific ProSe
service. In the Monitoring mode, a device monitors information from a specific
ProSe service using a ProSe mask: upon the reception of a ProSe App Code
announced by an Announcing ProSe UE, the Monitoring ProSe UE performs
a matching report procedure in which it checks if the received code matches
with the mask that it is monitoring. In the CIoT architecture, we assume that
initially all IoT ProSe UEs are configured in the Monitoring mode with a global
IoT ProSe mask. This ProSe mask is common to all IoT services and allows
all CIoT Monitoring nodes to communicate with all CIoT Announcing nodes
independently of the used ProSe application.

Cellular communications are based on the allocation of physical resource
blocks (PRBs) corresponding to groups of wireless symbols (including OFDM).
This applies to normal communication and on the complete D2D process (dis-
covery and communication). The 3GPP Discovery Model [1] involves one UE
announcing “as I am here”. The other nodes will be in monitoring mode to join
this CH. The sequence diagram in Fig. 3 explains the discovery phase for all
nodes and the resources assigned for the CHs (Announcing mode nodes). Step 0:
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this is the initialization phase for 4G network asking authentication and autho-
rization based on the smart card-USIM information. Step 1: the UE configura-
tion for IoT ProSe application launches the specific service. Step 2: the UE CH
sends the ProSe Discovery Service Request specific to our scenario, asking for
service authorization and resource allocation using the required App ID and its
IMSI information. Step 3: the integrated IoT Prose with MME will check the
ProSe App ID against the registered list in its database. Step 4: if access con-
trol is ok, the ProSe Authorization Procedure will start between a server called
MME and the ProSe Function in the UE according to the 3GPP standard [1].
Step 5: after the authorization, the MME will generate the ProSe App Code
for this proximity service applying required filtration and service masking. Step
6: the ProSe Discovery Service Response answers with App code and Timers.
Also, it will define the IoT service type defined by the IoT ProSe entity. Step
7: the UE sets the configuration parameters defined by the previous message
acting as D2D Monitoring or Announcing modes. Step 8: the Radio Resource
Controller assigns the PRB for discovery process by the eNB. Step 9: the dis-
covery process starts. Step 10: CHs are in the announcing mode and all other
nodes will be in monitoring mode. Who will be acting as CH is defined by the
eNB as discussed in Section 5.

Figure 3: Discovery phase for Cellular IoT ProSe Architecture

After the allocation of ProSe discovery radio resources PRBs, ProSe Moni-
toring devices that enter the coverage area of an eNB will receive information
of all the available ProSe CHs in their communication range. They receive the
PRBs that are used for direct communication and the IoT bidding process can
start normally. The CH forwards the local information to the querying server.

In the next section, Section 4, we describe how the task assignment is ex-
ecuted in a single cluster. In the following section, Section 5, we then analyze
the problem of selecting the CH and the identification of the most optimal size
of the clusters.
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4. Task Assignment

Once the task clusters are formed, each one handles the assignment of the
tasks to each node within, whenever a relevant request arrives at the CH from
the AS. Let us then assume that the number of nodes in the cluster is N (ex-
cluded the CH). The task assignment procedure is aimed at deciding in which
order the objects in the group will be inquired by the CH to perform the sensing
and send the relevant output whenever requested by the AS. The result of this
procedure is then a vector V with the indexes of the nodes in order of priority:

V = {v1, ..., vN} (1)

where xv1 is the node with the highest priority and xvN is the one with
lowest priority.

The task assignment algorithm usually starts when the CH advertises an
offer for task k with a remuneration rk (expressed in coins per second) and a
frequency qk (frequency of performing the required sensing task). Following the
advertisement phase, each node xi interested in the task sends a bid bk,i (which
should be lower than rk). This bid is then used by the CH to generate vector
V, which is then broadcast to all the nodes in the cluster. It results by ordering
the nodes according to the bid and to the reliability of the node. Specifically,
the following index is computed

Yk,i = bk,i − wkRk,i (2)

where Rk,i is the reliability level assigned to node i to complete task k. The
priority vector V is then created putting in increasing order the values Yk,i, i.e.
the node with the highest priority is the one with the lowest Yk,i. Note that wk
is a weighting factor selected by the CH per task on the basis of the importance
of the money with respect to the reliability of the provided service. When a
sensing task has to be performed, the CH queries the nodes according to the
priorities and then a number of cycles are waited till one node provides the
response according to the priorities in V. Each node xi provides its bid taking
into account:

• The gain it can get from this bid;

• The cost in terms of energy consumption, which affects its lifetime.

The object utility can be expressed as follows:

H(bk,i) = Ψ(bk,i)(bk,i + αuek,i) (3)

where Ψ(.) is the probability to win the competition, uek,i is the cost associated
with the use of the battery and α is a (negative) parameter that weights the
energy cost with respect to the gain. Let us consider that each object generates
a bid independently from the task k and to associate the variable b to the generic
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bid of any object in the community of objects in the cluster whatever the task
k and that this variable is distributed according to pdf f(.) and cdf F (.), then

Ψ(bk,i) = (1− F (bk,i))
N−1

(4)

We may assume that f(.) is a distribution which is estimated dynamically by the
cluster nodes and whose average µ and variance σ values are computed by the
objects themselves from past observations. This assumption will be discussed
during the experiments. As to uek,i, it depends on the battery energy Ei at
the moment of receiving this advertisement and on the frequency qi−k at the
which the object is executing other sensing functions. Let us assume that for
the same sensing task any object consumes the same amount of energy ek; then
the lifetimes without and with the new task are the following:

Li−k =
Ei

ekqi−k
(5)

Li+k =
Ei

ek(qi−k + qk)
(6)

The cost uek,i can be expressed in terms of ratio between the reduced lifetime
(in case the competition is won) and the current lifetime:

uek,i =
Li+k
Li−k

=
qi−k

qi−k + qk
(7)

uek,i expresses the amount of battery life (in time units) the object is devoting
to task k for any time unit of its life.

4.1. Node reliability

The reliability of a mobile node i for a given task k depends on two compo-
nents: data accuracy that it can provide for the required task Ai,k, and node’s
trustworthiness, which is its reputation Ti

Rk,i = γ · Ak,i + (1− γ) · Ti (8)

where γ is a weight that can be adaptively modified based on the required rela-
tion between data accuracy and node reputation. Data accuracy only depends
on the capability of node i to fulfill task k’s requirements, regardless of its past
behavior. On the other hand, node’s trustworthiness does not depend on the
task demanded by the CH, but it only depends on the number of times that the
node has been able to provide reliable data before.

Data accuracy for node i and task k relies upon task’s requirements. The
task requirements that mainly influence the provided data accuracy are: node lo-
cation with respect to the required location (which is influenced by node speed);
timeliness of provided data with respect to the required timeliness. Thus, mo-
tivated in part by [22], data accuracy can be estimated as

Ak,i = exp (−∆ (pi, p
req
k )) + exp (−∆ (ti, t

req
k )) (9)
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where ∆(·) is the distance between two positions or two time instants, pi is node
i’s position, preqk is the position required for data resulting from task k, ti is the
time instant when node i is in position pi, and treqk is the time instant at which
data is required for task k. Since we are referring to a mobile node, its position
will change after its reply to the CH. Therefore, its location is estimated based
on the speed at which it is moving, and by the direction it is going towards.

As far as node’s trustworthiness is concerned, it does not depend on the task
to be assigned, but it only depends on the maliciousness of the node. To evaluate
it, the CH observes the quality of the service obtained from the nodes each time
they are requested to. Specifically, the following factors are considered: the
node computational complexity Ci, how often the node provided a response Mi,
how close the accuracy was to the expected one Bk,i, and the number of past
observed transactions Ni. The trustworthiness level is then computed as follows

Ti =
Ci

1 + log(Ni + 1)
+

log(Ni + 1)

1 + log(Ni + 1)

(
Mi +

∑
k Bk,i

Ni

)
(10)

where all the parameters are in the range 0–1, except Ni. Note that when no
past observations have been collected, the trust is equal to the node complexity,
which is a static characteristic of the object and does not vary over the time. The
rationale is that we expect a smart object to have more capabilities to cheat with
respect to a “dummy” object, leading to riskier transactions. Accordingly, the
lower the complexity the higher Ci. As the number of transactions increases, the
other two elements gain more importance. Mi

Ni
measures directly the frequency

of responses received whenever i has been queried, so that it is equal to 1 if
a response has always been given. Bi,k measures the difference between the
expected and real accuracy observed in the past and is computed as follows

Bk,i = Aobsk,i − Aestk,i (11)

where Aobsk,i is the observed accuracy and Aestk,i is the estimated one according
to (9). Note that other solutions can be adopted in case the proposed system
can inter-operate with other IoT platforms and systems. For instance, the trust
management algorithms proposed in [23] could be used by the proposed system,
so that the CH won’t need to compute the trust of each object but could just
query the existing external services.

4.2. A Game-Theory Solution

This section describes and formulates the problem of objects’ task assign-
ment as a mathematical model using game theory. Let N be the total number
of objects sharing the tasks provided by node CH. Each object i can propose a
bid noted by bk,i for a task k. Furthermore, a reliability level Rk,i is associated
to node i to complete task k, so that the priority index Yk,i can be computed
according to (2).

The objective of object i consists of maximizing its own utility function given
by (3), and at the same time each object j such that j 6= i is also maximizing
its utility function. The problem to consider in this section consists to find the
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rational amount bk,i for each object i involved in the same game, leading to
maximize its utility function. To win the game, each object i should propose a
bid bk,i such that its priority index Yk,i is the smallest one.

The central or main goal of this section is to find the rational value of the
bid to be proposed to win the task when maximizing a utility function. This is
a non-cooperative game, where each object is interested in optimizing its utility
function, and this can be modeled as a Nash game [24].

By solving the Nash game, we obtain the Nash Equilibrium Point (NEP) in
which each object has no incentive to deviate unilaterally from the NEP (see
definition of the NEP in [24]).

Proposition 4.1. There exists a Nash Equilibrium Point b∗k,i for the described
game. It is given by the equation:

F (b∗k,i) = 1 + C0

(
b∗k,i + α

qi−k
qi−k + qk

)−1/(N−1)
(12)

Proof. Recall that (Ψ(bk,i)) is the probability to win the task by the ob-
ject/player i when proposing a bid bk,i. Let Yk,i be a random variable following
a given probability density function, and for each player j, we also associate a
random variable noted by Yk,j following the same density function as i. Then,
for a player i, winning the task k consists to propose the value of bk,i that cor-
responds to the smallest value of Yk,i. In other words, to win the task k, player
i should propose the following action/bid:

bk,i = wkRk,i + min{Yk,1, Yk,2, . . . , Yk,N} (13)

Thus, to characterize the value of Ψ(bk,i) for an object i, we have:

Ψ(bk,i) = P (Yk,j > Yk,i,∀j 6= i) (14)

Assuming the distributions are identically independent, we find:

Ψ(bk,i) =P (bk,1 − wkRk,1 > bk,i − wkRk,i)× . . .
× P (bk,N − wkRk,N > bk,i − wkRk,i)P (bk,N > bk,i)

(15)

Ψ(bk,i) = (1− P (bk,1 − wkRk,1 ≤ bk,i − wkRk,i))× . . .
× (1− P (bk,N − wkRk,N ≤ bk,i − wkRk,i))

(16)

This leads to obtain:

Ψ(bk,i) = (1− F (bk,i − wkRk,i))N−1 (17)

where F (bk,i−wkRk,i) = P (Yk,j ≤ Yk,i) is the cumulative distribution function
(i.e. cdf) of the random variable Yk,i.

Using the result of (17), one can give an explicit formula of (3) as follows:

U(bk,i) =
[
(1− F (bk,i − wkRk,i))N−1

] [
bk,i + α

qi−k
qi−k + qk

]
(18)
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To find the Nash Equilibrium Point of this game, we investigate solutions
of the derivative of the utility function given by (18). This leads to finding the
rational bid allowing to win the task k.

∂H(bk,i)

∂bk,i
= 0 (19)

This is equivalent to write:[
(1− F (bk,i − wkRk,i))N−2

]
(1−N)F ′(bk,i − wkRk,i)×

×
(
bk,i + α

qi−k
qi−k + qk

)
+
[
(1− F (bk,i − wkRk,i))N−1

]
= 0

(20)

By simplifying (20), we obtain:

(1− F (bk,i − wkRk,i))(N−2) × [(1−N)F ′(bk,i − wkRk,i)(
bk,i + α

qi−k
qi−k + qk

)
+ (1− F (bk,i − wkRk,i))

]
= 0

(21)

This means that we will consider two cases:

1. F (bk,i − wkRk,i) = 1 or,

2. (N − 1)F ′(bk,i − wkRk,i)
(
bk,i + α qi−k

qi−k+qk

)
+ F (bk,i − wkRk,i) = 1

In the following, we solve the second case, which is more general than the
first one. In other words, the first case is included in the second case. Thus we
solve a differential equation of first order, and the result is given by:

F (bk,i − wkRk,i) = 1 + C0

(
bk,i + α

qi−k
qi−k + qk

)−1/(N−1)
(22)

where C0 ∈ R. If C0 = 0, then we find the result of case 1.

For sake of clarity, we give in the following a simple example, in which we
suppose Yk,i has an exponential density function of parameter λ. We write
Yk,i∼ Exp(λ). Then we have:

F (bk,i − wkRk,i) = 1− e−λ(bk,i−wkRk,i) (23)

To find the NEP of this example, we use the result (20) as follows:

(1−N)
∂
(
1− e−λ(bk,i−wkRk,i)

)
∂bk,i

(
bk,i + α

qi−k
qi−k + qk

)
+

+
(

1−
(

1− e−λ(bk,i−wkRk,i)
))

= 0

(24)

Finally, to find the NEP of this example, we simply solve the following
equation, (using mathematical tools (Matlab [25] for example)):
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(1−N)
(
λe−λ(bk,i−wkRk,i)

)(
bk,i + α

qi−k
qi−k + qk

)
+

+
(
e−λ(bk,i−wkRk,i)

)
= 0

(25)

To find numerical values of the Nash Equilibrium Point of the considered
game and for any cumulative distribution function, one can iteratively solve the
equation (12) using mathematical tools (see [25]).

5. Selection of the CHs and optimal cluster size

We now focus on the problem of selecting the CHs and the optimal cluster
size. To this, we assume that the CHs are the nodes who subscribed to act
the role of (IoT ProSe) executing tasks. They will hence be transferred to
Announcing mode, while all the other nodes will remain under Monitoring mode
to join the announcer for a specific IoT service. In the following, we discuss the
selection of the CH and the importance of the cluster size, for which we propose
an optimization algorithm.

5.1. D2D Cluster Head Election

Upon the validation of an IoT-ProSe device authorized for a specific
ProSe App ID, the ProSe-MME executes a CH selection algorithm. The main
purpose of the CH algorithm is to select the minimum number of ProSe-CHs
in order to optimize and maximize the throughput usage in the Radio Access
Network (RAN). After the election of ProSe-CHs by the CIoT core network and
the allocation of ProSe discovery radio resources, ProSe Monitoring devices that
enter the coverage area of an eNB will receive information of all the available
ProSe-CHs in their communication range. The ProSe Gateway selection phase
consists of the selection of the best ProSe-CH nodes, by the monitoring nodes.
The CH acts as a gateway for uplink data transmission from the devices to the
infrastructure network (i.e. to the IoT AS). In other words, a ProSe gateway
selection consists of learning the best path to the ProSe-CH that depends on
the architecture. We have two use cases architectures as follows:

Single-hop. Single-hop means all nodes have direct connections with the CH.
In this topology, all nodes in the cluster have symmetric connections to the
CIoT platform through one hop to the MME-ProSe IoT through their CH. The
service creation can be detailed as follows: (1) the CH node will start the group
discovery either using 3GPP direct discovery or centralized discovery based on
the operators vision for the proposed ProSe, (2) the CH sets the ProSe server
with eNB, (3) if the discovery process is initiated by the CH, all the other
nodes remain in monitor mode in order to join this Group (example: node Ni
is listening to the discovery broadcast messages by CH so as to join this ProSe)
as shown in Fig. 1.
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Multi-hop. Here, some nodes have to relay their direct connections to other
nodes before reaching a CH. In this case, there are no sufficient resources to
relay the communications directly to the CHs but through intermediate nodes,
as shown in Fig. 4. So, the connections for all nodes are asymmetric and the
intermediate nodes can gain more score as their participation is weighted by
other nodes. With the inverse direction of data flow from AS to Nodes, the
CH motivated by the AS can assign tasks to do by the joined nodes based on
some incentives and agreements between all participants, taking into account:
(1) uniform lifetime, (2) the assigned task frequency, (3) energy optimization,
(4) sub-groups formation in case of heterogeneous objects (like objects with
[ZigBee, Bluetooth: BLE or WLAN-Direct] with 4G communications).

Figure 4: Multi-hop cluster for some nodes Ni to join a D2D CH through a relay node to the
CH and then to eNB and IoT-AS.

5.2. D2D Cluster Size

The cluster size is considered as an important issue in the optimization. The
larger the number of participants in the cluster, the more radio interference
arises. So, optimizing the cluster size can improve the overall performance
of the group. The Signal-to-Interference-plus Noise Ratio (SINR) information
for all objects can be used as the main criteria for constructing small or big
cluster sizes. Since the D2D clusters are isolated, performance is supposed to
be good and protected from interference. The same could be done with eNB
communication. The D2D clustering targets and issues can be summarized as
follows.

1. Impacts from D2D clustering: (a) Reduce eNB signaling for D2D com-
munications, (b) Reduce the D2D cluster size that will reduce the internal in-
terference inside the cluster and the overall global interference across the cell,
(c) For inter-cluster communications, it will be through eNB (i.e. best choice
of each group CH that will reduce the transmitted power and D2D-Assisted
interference across the cell).
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2. Transmission power issues in D2D clustering: (a) Use Assisted-D2D
(D2D-A) when the device power to eNB communication is lower than the re-
quired power for Direct-D2D (D2D-D) communication (i.e. for two D2D devices
communicating through eNB when Power-cell is lower than Power-D2D) (b) Use
D2D-D over D2D-A when Power-cell (PC) is lower than Power-D2D (PD).

3. Distance issues in D2D clustering: (a) When the distance (di) between
two devices is large, then use D2D-A in order to reduce the interference, distance
to eNB is (dA). (b) When the distance is small (nodes are very close), then use
D2D-D to reduce the interference, distance for D2D-D (dD).

The next subsection proposes an optimization for the cluster size that takes
into account the aforementioned impacts and issues.

5.3. D2D Cluster Size Self-Optimization

In D2D-LTE communication, eNB links for many D2D services can lead
to much interference across the cell. So, in order to reduce this interference,
D2D-clusters can improve the performance of D2D-ProSe services. This means
that, without clustering, this eNB-D2D links will be interfered by the simul-
taneous D2D devices unless reducing the number of devices communicating to
same receivers, which are the CHs. In this optimization, the SINR is the main
criteria used for clusters formation. The power efficiency can be measured by
the received SINR that is required to achieve reliable communication with a
specified bandwidth efficiency in the presence of channel impairments [26]. The
eNB is the responsible for this through the ProSe-IoT entity attached to the
CIOT architecture. Fig. 5 depicts the system model for the SINR optimization
over eNB cell self-organized with two type of SINR links (Devices to CH and
CH to eNB) as follows.

• SINR general equation for connection i:

SINRi =
Pi

Iri +N
(26)

where (Pi) represents the power measured for the received signals relative
to distance (di) (i.e. the average Received Energy for the signal), N
indicates the background noise coefficient (i.e. the Noise Power), and
Iri represents the received interference on same connection.

• The SINR for one cluster consisting of β nodes, is the sum of the signals
emitted in the cluster area as written as follows

β∑
i=1

Pi
dαii

N +
∑
j 6=i

Pi
dαij

(27)

where α is the connection path loss exponent that describes the influence
of the transmission medium.
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Figure 5: System model for D2D cluster size optimization based on two links interference as
D2D-CH: β links for each cluster and CH-eNB: m links all over the cell.

• For m clusters (i.e. the total number of nodes covered by an eNB), the
total SINR will be:

SINRtot =

m∑
c=1

β∑
i=1

Pi
dαii

N +
∑
j 6=i

Pi
dαij

(28)

• So, after clustering, the objective is to maximize the total SINR (SINRtot)
by clusters formation (i.e. minimize the interference) which can be repre-
sented by the following optimization

maxSINRtot =

m∑
c=1

β∑
i=1

Pi
dαii

N + Si(m)− Pi
dαii

(29)

Where

Si(m) =

β∑
j=1

Pi
dαij

= Pi

U
m∑
j=1

1

dαij
(30)

Where: U represents the number of all active D2D devices (nodes) inside
the cell, m represents the number of clusters while β represents the cluster size.
So, the objective function can be more simplified by the following sequences

maxSINRtot = Z =

m∑
c=1

U
m∑
i=1

Pi
dαii

N +
∑
j=1,j 6=i

Pi
dαij

(31)

Then:

=

m∑
c=1

U
m∑
i=1

Pi
dαii

N + Si(m)− Pi
dαii

(32)
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=

U
m∑
i=1

mPi
(N + Si(m))dαii − Pi

(33)

=
mP1

(N + S1(m))dα11 − P1
+

mP2

(N + S2(m))dα22 − P2
+

+ . . .+
mP U

m

(N + S U
m

(m))dαU
m
U
m

− P U
m

(34)

Now for optimizing Z:
∂Z

∂m
= 0 (35)

That can lead to:

P1 [(N + S1(m)) dα11 − P1]−mP1[dα11S
′
1(m)]

[(N + S1(m))dα11 − P1]2
+ . . .+

P U
m

[(
N + S U

m
(m)

)
dαU
m

− P U
m

]
−mP U

m
[dαU
m

S′U
m

(m)]

[(N + S U
m

(m))dαU
m

− P U
m

]2
= 0 (36)

U
m∑
i=1

dαii[Si(m)−mS′i(m) +N ]− Pi = 0 (37)

Note that (∀i, 1
dij

= Dj) then:

Si(m) = Pi

U
m∑
j=1

Dα
j = Pi

U
m∑
j=1

Dα = Pi
U

m
Dα (38)

And:

S′i(m) =
−UPiDα

m2
(39)

By substituting Si(m) and S′i(m) in (37):

U
m∑
i=1

dαii

[
UPiD

α

m
− UPiD

α

m
+N

]
− Pi = 0 (40)

Solving (40) leads to the following result:

m =
UN

Dα
∑ U

m
i=1 Pi

(41)

To find the optimal number of clusters m∗, we proceed as follows.
We note that

T U
m

=

U
m∑
i=1

Pi (42)
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Then, it is clear that

T U
m+1 =

U
m+1∑
i=1

Pi (43)

According to (42) and (43), we have:

T U
m+1

T U
m

=

∑ U
m+1
i=1 Pi∑ U
m
i=1 Pi

(44)

Now, suppose that we ordered the powers P as follows Pi ≥ Pi+1. Thus, we
have:

T U
m+1

T U
m

=

∑ U
m+1
i=1 Pi∑ U
m
i=1 Pi

=

∑ U
m
i=1 Pi + P U

m+1∑ U
m
i=1 Pi

= 1 +
P U
m+1∑ U
m
i=1 Pi

(45)

By considering the defined order, we let

P U
m+1∑ U
m
i=1 Pi

= ε (46)

where 1 > ε > 0. We deduce that:

T U
m+1

T U
m

= 1 + ε (47)

We generalize the formula (47), to finally obtain:

T U
m

= (1 + ε)
U
m−1 T1 = (1 + ε)

U
m−1 P (48)

where P can be the average power value, for instance.

Now, starting from (48), we replace this result in formula (41), and we find:

m =
UN

Dα (1 + ε)
U
m−1 P

(49)

Using the following Taylor development:

(1 + ε)
U
m−1 = 1 +

(
U

m
− 1

)
ε+ o(ε) (50)

We replace the result of (50) in (49), we obtain

m =
UN

DαP
[
1 +

(
U
m − 1

)
ε
] (51)

By solving equation (51), we find the optimal cluster size (m∗) given by:

m∗ =
UN(1+ε)
DαP − Uε

1− ε
(52)
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6. Simulations

6.1. Performance of the Task Allocation Algorithm

The performance has been analyzed through simulations run within the Mat-
lab environment [25]. The parameter values used in the simulations are listed
in Table 1. The 640 scenarios that have been considered consist of 10 nodes
placed randomly in an area of 10x10 m2, supposing that they change their posi-
tion randomly at each assignment of a new task. All these nodes represent the
members of a single cluster and are those that start the competition to win the
assignment of the task. For the analysis of the performance, it is not necessary
to know exactly which one of these nodes acts as the CH. Each scenario differs
with respect to the others in terms of initial nodes position and initial status
of the battery energy of the nodes. It is important to note that no additional
traffic is handled by the devices; accordingly, the performance results shown in
this analysis are related only to the tasks assigned with the proposed algorithm.
Node initial residual energy Ei was set to 2 J, while initial task frequency qi−k
was set to a value in the range [0, 20] Hz. The γ weight parameter was set to 0.5.
With reference to the trustworthiness (see (10)), node computational complex-
ity Ci was set to a random value in the range [0, 1]. We observed the algorithm’s
behavior for 100 tasks, which were allocated one at a time. Their characteristic
parameters qk and ek were initialized to random values in the range [0, 10] Hz
and mJ and kept constant during the whole simulation. We considered a normal
distribution function, which µ and σ parameters were initialized to those of a
standard normal distribution (µ = 0 and σ = 1). At each step of the algorithm,
they are set according to the mean and standard deviation of the winning bid
values. The trustworthiness value is computed at each step of the algorithm
for each node, as well. We define ∆ as the lowest possible difference between
the sum ((Mi)|k+1 +

∑
k+1Bk+1,i) computed after the (k+ 1)-th task has been

assigned and ((Mi)|k+
∑
k Bk,i) computed after the k-th task has been assigned

((Mi)|k+1 +
∑
k+1Bk+1,i)− ((Mi)|k +

∑
k Bk,i) ≥ ∆ (53)

The sum ((Mi)|k + Bk,i) is set randomly according to ∆, at each step of the
algorithm.

As an explanatory example, Fig. 6 shows how the values of Yk,i index, bid,
reliability and lifetime change at each step of the algorithm, i.e. each time a new
task needs to be allocated, for w = 1, α = −1 and ∆ = 100%. Note that the
case ∆ = 100% corresponds to the case where, at each step, each node surely
provides a response with an accuracy corresponding to the expected one. A
different color is assigned to each of the 10 nodes. In Figs. 6(a), 6(b) and 6(c),
the thicker line represents the corresponding value for the winning node. The
thicker line in Fig. 6(d) represents the minimum lifetime, i.e. the system lifetime
for the considered scenario. By definition, the node that wins the competition
is the one that gives the bid corresponding to the lowest Yk,i index value. Since
w and α have comparable values, it is possible to note a trade-off between
reliability of the winning node and lifetime. In fact, Fig. 6(c) shows that it is
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Table 1: Simulation parameters

Parameter Value Parameter Value

# scenarios 640 Init. µ 0
# nodes 10 Init. σ 1
Area 10x10 m2 Ci [0, 1]
# tasks 100 ∆ {100%, 75%, 50%, 25%}
Ei 2 J γ 0.5
qi−k [0, 20] Hz α {0,−1,−5,−10}
qk [0, 10] Hz w {0, 1, 5, 10}
ek [0, 10] mJ

not always the most reliable node that wins the competition, most likely because
its lifetime is not high enough to bear a new task. This is confirmed by Fig. 6(d),
where towards the end of the simulation nodes tend to converge to the same
lifetime. Fluctuations of the Yk,i index and the bid from one step to the other
are mainly due to the fact that many of the parameters that intervene in the
algorithm are set randomly, and thus they can vary considerably for different
tasks. However, it can be observed that values follow the same trends, as they
are influenced by the value qk of the required frequency for task k, which is
equal for all the nodes. Also, note that these fluctuations tend to decrease as
the number of considered tasks increases; this is due to the fact that µ, σ and
the trustworthiness value for each node (which affects Rk,i) gradually converge
to a value that reflects the overall behavior of the system.

Figs. 7, 8, 9 and 10 show average simulation results for different scenarios,
for different values of the weight parameters α and w, and of the ∆ parameter
related to node reliability: α = {0,−1,−5,−10}, w = {0, 1, 5, 10} and ∆ =
{100%, 75%, 50%, 25%}. Recall from Section 4 that α is a negative parameter
that weighs the energy cost, i.e. the higher the absolute value of α, the higher
the weight that energy cost has on the bid outcome; w is a positive parameter
that weights the reliability, i.e. the higher the value of w, the higher the weight
that reliability has on the bid outcome.

The average bid values of the nodes that won the competition, evaluated at
each step, are shown in Fig. 7 for different values of w and |α|, i.e. the absolute
value of α. Note that, for each value of w, curves remain almost constant as
long as w ≥ |α|. As soon as w < |α|, curves get steeper and bid values increase
rapidly. We can conclude that the average bid value is mostly affected by the
highest between w and |α| values. Average bid values are not compared for
different values of ∆ because results were very similar, as it is possible to deduce
from confidence intervals. This implies that there is no correlation between the
reliability expected from a node, which depends on ∆, and the bid value of the
winning node.

Fig. 8 shows how the average normalized reliability changes for different
values of ∆, when the ratio w/|α| changes. By correctly setting w and |α| values,
reliability can improve up to 21% with respect to the case where only lifetime
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Figure 6: Example of the evolution of Zk,i index, bk,i, Rk,i and node lifetime at each step of
the algorithm, for w = 1, α = −1 and ∆ = 100%
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Figure 7: Average bid evaluated at each step of the algorithm, for different values of w and
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23



0 0.1 0.2 0.5 1 2 5 10 ∞

w/|α| value

2

4

6

8

A
ve

ra
g

e 
m

in
 li

fe
ti

m
e 

[m
in

]

∆=100%
∆=75%
∆=50%
∆=25%

Figure 9: Average minimum lifetime of the system, evaluated at the end of the simulations,
for different values of the ratio w/|α|, compared for different values of ∆
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Figure 10: Average node lifetime evaluated at the end of the simulations, for different values
of the ratio w/|α|, compared for different values of ∆

is considered (w = 0). Since ∆ is directly related to node’s trustworthiness,
i.e. to the probability that a node that won the competition actually gave
a response and this response accuracy corresponds to the expected one, as a
consequence it affects nodes’ reliability. For this reason, the average reliability
increases when ∆ is higher, especially for higher values of w, i.e. when reliability
weighs more on the algorithm. It is interesting to note that, for low values
of ∆ (∆ = {50%, 25%}), the average reliability is sometimes higher when it
is not considered in the competition. This is consistent with the fact that
if, in a system, nodes’ trustworthiness is low, even the node with the highest
trustworthiness is not sufficiently reliable, and thus it may result in a lower
reliability than choosing it randomly. In this case, if ∆ is not too low (e.g.
∆ = 50%), in order to have good reliability it can be either chosen to set a
higher w, at the expenses of higher bids and lower lifetime values, or set it to
0. If ∆ is lower than 50%, reliability is not ensured even for high values of w,
so a better solution would be setting it to 0.
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It can be observed that, according with the behavior that is expected by
the algorithm, the minimum lifetime observed at the end of the simulations (see
Figure 9) increases as the ratio w/|α| decreases. System’s lifetime increases up
to 68% with respect to the case where only reliability is considered in the utility
optimization process (α = 0). In fact, for higher values of w with respect to
|α|, the energy consumption component weighs less on the utility function, and
therefore it is considered less important than the reliability component. This is
particularly accentuated for higher values of ∆, for which the competition will
reward more often the node with the highest trustworthiness, thus leading to a
more rapid decrease of its lifetime with respect to other nodes. This is confirmed
by Figure 10, which shows the average lifetime observed at the end of the sim-
ulations for all the nodes that were involved in the competitions. Note that the
approach proposed in this paper aims to increase the system’s lifetime by dis-
tributing the workload among all the nodes that participate in the competitions.
Thus, the average lifetime is lower when the lifetime component weighs more
(i.e. lower values of w/|α|), because the workload is appropriately distributed
among all the nodes. This is confirmed by the higher values of minimum lifetime
reported. On the other hand, when the weight of the lifetime component de-
creases with respect to that of the reliability component, the most reliable nodes
will be those that will be chosen more often to undertake most of the workload,
and this results in lower minimum lifetime values and higher average lifetime
values determined by the nodes that seldom win the competition. Reminding
that trustworthiness values depend on the number of transactions already oc-
curred, this effect is especially emphasized for higher values of ∆: since nodes
are, on average, more reliable, the nodes that won the first competitions quickly
increase their trustworthiness values with respect to the other nodes, and thus
they are more likely to win the following competitions as well.

As a final performance evaluation, the proposed approach has been compared
with other similar algorithms existing in the literature. Figure 11 shows a
comparison of the total cost paid by the CH for an increasing number of 35 to
65 tasks. The total cost is calculated as the overall sum of the bids for different
values of w and α, and is compared with the results obtained in [27] for the
Greedy Algorithm (GA) and the Local Ratio Based Algorithm (LRBA), which
is an auction-based algorithm for task allocation in crowdsensing. Compared
to the other approaches, the proposed algorithm enables to choose whether to
reward nodes more, or to spend the lowest amount possible, depending on the
objective of the auction. As confirmed by the graph, by appropriately setting
the w and α values, the total bid cost is consistently higher or lower than those
obtained using GA or LRBA.

Finally, node lifetime has been compared in Figure 12 with other static and
lifetime-extending mechanisms for IoT systems, namely:

• C : a static task allocation where all the tasks are assigned to the CH;

• CO : a centralized task allocation for energy consumption maximization
proposed in [8];
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• DLMA: a distributed task allocation for lifetime maximization proposed
in [28];

• TAN : a distributed task allocation based on game theory, which finds a
tradeoff between node energy consumption and task execution time [29].
This tradeoff is adjusted thanks to some weight parameters, which in
Figure 12 are summarized by parameter θ. This parameter is proportional
to the weight given to the lifetime-related component of the algorithm, and
in inverse proportion with the one related to the task execution time, i.e.
1/θ ∝ w/|α|.

The graph shows that, when the reliability weight w is much lower than the
lifetime weight α, the proposed algorithm outperforms all the other approaches,
with the exception of the centralized optimal one. This is because in the cen-
tralized allocation case, the algorithm is aware of all the tasks to be assigned at
the same time, and not in order of arrival as it is in the other cases. Results get
lower only when the reliability component prevails on the lifetime component,
i.e. when w is higher than α. Note that, among the compared approaches, TAN
is the most similar to the proposed one. In fact, it is based on game theory, and
it is a multiobjective algorithm with one component related to lifetime and one
related to the task execution time. As explained above, 1/θ ∝ w/|α|, therefore
results obtained for θ = 0 are comparable to those obtained for w/|α| =∞, and
results obtained for θ =∞ are comparable to those obtained for w/|α| = 0.

6.2. Analysis of the Optimal Cluster Size

In this section, we analyze the optimal cluster size according to the presented
optimization algorithm. The performance has been analyzed through numerical
simulations run within the Matlab environment [25]. To do this we consider a
single cell interference scenario: a single eNB with U active users, m D2D task
clusters, and α equal to either 2 or 3. The D2D distance has been considered
in the range between 10 and 50 meters and for average sensitivity for powerful
mobile devices the power Pi has been taken in the range between +20 and
−40 dBm. The numerical values used in our performance evaluation considered
the proximity aspect in radio part as proposed in 3GPP specifications [30] and
[31]. Moreover, for energy efficiency in LTE D2D aspect, we followed the work
proposed in [32] for machine to machine communication. Finally, for the power
value levels, we assumed the models presented in [33] for power thresholds in
dBm. Table II summarizes the input parameters used in cluster size calculations
and links them to their proposed references.

The proposed cluster size optimization algorithm in terms of optimizing m
will also optimize the CHs selection as each cluster has one CH. Moreover, this
algorithm can be integrated into the ProSe MME EPC plane as described in
Fig. 2 for CIOT architecture.

The results are shown in Figs. 13-15, which demonstrate that whatever the
number of active users in the cell, there is no need for clustering in the case of α
equal to 2, which means low noise levels. Especially for large scale networks, as
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Figure 13: Small scale of D2D cluster size optimization based on two links interference as α
equal 2 or 3 for different number of U inside the cell.

Figure 14: Medium scale of D2D cluster size optimization based on two links interference as
α equal 2 or 3 for different number of U inside the cell.
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Figure 15: Large scale of D2D cluster size optimization based on two links interference as α
equal 2 or 3 for different number of U inside the cell.

considered in Fig. 15, there is a chance for clustering for U equal to 1000 and
the same value of α. This is expected as the number of users is large. But, in
the case of α equal to 3, which means more interference added by increasing the
path loss that will impose more power signaling, clustering is mandatory. As
shown in the three figures, increasing the number of users brings to an increase
in the number of the optimal cluster size m.

6.3. Comparative Analysis of the Optimal Cluster Size

This section provides a brief comparison study to clustering techniques well-
known in the state of the art, on which our optimization for cluster size calcu-

Table 2: Cluster Size Simulation parameters

Parameters Values References
Number of active users (U) 20 to 1000 Follow [34]
D2D Separation distance (d) From 10 to 50 m Proposed
Number of eNB One 3GPP [30] [31]
Cell radius 1 km Proposed
Path-loss exponent range (α) 2 or 3 Follow [21] [32]
Power threshold range (P ) +20 to -40 dBm Follow [32]
Noise (N) 0.01 MW 3GPP [31]
Epsilon range From 0 to 1 Proposed
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lation for one cell is based. The comparative study is mainly focused on the
cluster size, the number of generated clusters and the interference aspects as
these are important for our optimization approach. The following statements
provide a comparison of our solution with respect to other five different cluster-
ing architectures when considering the mentioned features.

1. One-hop cluster: the number of generated clusters equals the number of
CHs with less interference level through inter-clusters communications.
Also, the network state points to full coverage by eNBs. The relevant
work proposed in [21] analyzes this architecture through numerical results
for D2D active users between 10 to 1000, while our approach achieves it
through large scale network sizes and higher path loss as shown in Fig. 13

2. Centralized cluster: it selects one cluster controlled by an eNB with more
interference due to large number of active D2D devices. Here, the same
network condition for full coverage by eNB is considered. It is clear from
our clustering approach results given in Figs. 13 and 14 for small scale
size and lower path loss while this achievement occurred for [21] with a
number of active D2D users lower than 10.

3. Other three architectures (multi-hop, distributed or hybrid): all subject
to partial coverage of network devices by eNB. The interference level can
be increased or decreased based on the number of generated clusters and
the percentage of coverage devices. Neither our approach nor the work in
[21] treated those use cases. We restricted our work to assisted-eNB D2D
communication following 3GPP recommendations.

As a conclusion, the work in [21] built their simulation and numerical results
based on caching content popularity to affect D2D cluster size optimization. So,
if we neglect this parameter (i.e. put the content popularity equals zero as our
approach is a mathematical generic approximation for optimal cluster size),
then the optimal cluster size can be compared. Actually, we adopted the same
number of active D2D users (order of tens till 1000) and obtained closer results
for optimal cluster size. The advantage of our algorithm over the literature
one is that we vary the path-loss and the average distance between users more,
which mainly affects the interference levels and the optimal cluster size as it is
shown in Figs. 13, 14 and 15.

7. Conclusions

In this paper, we proposed an IoT-D2D framework for task allocation. It
manages the interactions among a group of D2D objects controlled by a CH.
With respect to traditional D2D architectures, our approach aims to extend the
communication range and improve the Quality of Service. A bidding process is
presented. An IoT AS forwards its requests to the CH. It proposes an initial
reward amount for the service. Cluster nodes are informed by the D2D process
of the task request and start bidding. We also address the problem of the
election of the CH and find the optimal size of the clusters.

30



The proposed game is evaluated and compared for different scenarios, with
different trustworthiness levels of the nodes. Through the simulation results, it
is possible to conclude that, in order to keep the average bid values low, w and
|α| values, which respectively weigh reliability and energy cost on the utility
function, should be set to low values. Furthermore, their value should be set
taking into account that reliability can improve up to 21% when decreasing |α|
up to 0, while the system lifetime can improve up to 68% when decreasing w
up to 0. Nevertheless, it should be kept in mind that, for systems which nodes
are, on average, not trustworthy, even increasing the ratio w/|α| may not lead
to reliability results that are better than the case with w = 0.
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