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Abstract 

In this paper, we aim to assess how the quality of the institutional environment – identified according to the level 

of corruption perceived in a country – may affect the access to credit for micro, small, and medium-sized 

enterprises (MSMEs). Based on a sample of 68,115 observations – drawn from the ECB-SAFE survey – related 

to MSMEs chartered in 11 euro area countries, we investigate whether the level of corruption affects their 
demand for bank loans during the period 2009–2014.  

Overall, we find that the degree of corruption seems to play a role in the applications for bank loans when small 

firms are under investigation. Interestingly, results highlight that small businesses chartered in highly corrupt 

countries face a greater probability of self-restraint regarding their loan applications (about 7.4%) than small 

firms located in low-corruption economies (around 6%). The results are robust to various model specifications 

and econometric methodologies. Our findings suggest that anti-corruption policies and measures enhancing 

transparency in the economy may be crucial in reducing the negative spillovers generated by a low-quality 
institutional environment on the access to credit by small firms. 

Keywords: credit access, bank loans, MSMEs, corruption 
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1. Introduction  

Bank credit is a crucial financing tool for the development of micro, small, and medium-sized enterprises 

(MSMEs), given their difficulties in easily entering the equity markets (Ayadi and Gadi 2013; Kremp and 

Sevestre 2013; Vermoesen, Deloof, and Laveren 2013). However, the access to bank credit is not as easy as one 

might think. Specifically, MSMEs often come into trouble when they have to provide good collateral for the loan 

officers (Cowan, Drexler, and Yañez 2015; Öztürk and Mrkaic 2014; Vos et al. 2007). Additionally, in times of 

crisis – like the one that recently occurred in Europe – liquidity shortages and credit restrictions have further 

weakened the access to bank loans for MSMEs (Popov and Van Horen 2015; Popov and Udell 2012). This is not 

inconsequential, given that MSMEs are important drivers of the European economy. Indeed, they represent 99% 

of nonfinancial firms in the European Union (EU), provide jobs for more than 91 million people (67% of 
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employment in the EU), and generate about 60% of the total added value of the entire Union (EIF, 2016). 

Apart from the firm financial features and the economic context in which they operate, the quality of the 
institutional environment may play an important role in affecting the credit market in many regards.  

While a vast branch of the empirical literature has shown that the efficiency of institutions, the enforcement of 

legal rights – i.e., creditor rights protection and judicial enforcement (La Porta et al. 1997; Qian and Strahan 

2007; Djankov et al. 2008; Moro, Maresch, and Ferrando 2016; Galli, Mascia, and Rossi 2017) – and the 

competitiveness of the bank market (Cavalluzzo, Cavalluzzo, and Wolken 2002) play a role in the credit market, 

thereby affecting MSMEs’ loan applications, scarce attention has been devoted in literature to the relation 

between corruption and firms financing. This is particularly unfortunate given that corruption is considered one 
of the major obstacles to economic growth.

2
 

To the best of our knowledge, the literature still lacks of empirical contributions regarding the effect that 

corruption has on the access to bank credit by MSMEs. To fill this gap, the present study aims at assessing how 

the level of corruption may affect the MSMEs access to bank credit. Specifically we assume that corruption will 

modify the firms’ expectations about their bank financing and the level of trust required in the bank-firm 
relationship. Consequently, the hypothesis under investigation is the following: 

H1: In a more corrupt institutional context, MSMEs face a higher probability to self-refrain from applying to 
bank loan anticipating more difficulties in the bank-firm relationship, than larger firms.  

To test our hypothesis we employ two different specifications. First we estimate the probability to self-refrain for 

MSMEs, compared to larger firms, by controlling for alternative measures of corruption, as well as for a large set 

of firm-level characteristics and macro firm-invariant indicators. Second, we consider only the discouraged 

borrowers (i.e., those that do not apply to bank loan for fear of rejection), and we study the relationship between 

corruption and MSMEs by interacting the variable “small” firms with corruption measures. Finally, to 

corroborate our results and to control for the selection bias we propose several econometric strategies 
(multinomial logit, logit and Heckman models). 

Our empirical analysis is based on a sample of 68,115 observations – drawn from the ECB Survey on the Access 

to Finance of Enterprises (SAFE) – related to MSMEs chartered in 11 euro area countries during the period 
2009–2014 (i.e., from the first to the twelfth wave of the survey).  

Our results, robust to different specifications and empirical techniques, show that the quality of the institutional 

environment, proxied by the level of corruption, matters in affecting the micro and small firms’ applications for 
bank loans.  

The rest of paper is organized as follows. In Section 2, we briefly report the related literature. Section 3 

illustrates the data and the methodology. In Section 4, we discuss the steps of our empirical strategy and 
comment on the results. Section 5 draws some conclusions. 

2. Related Literature 

Corruption, defined as the abuse by a public officer of his/her power to obtain a private gain (Rose-Ackerman 

1975), is a complex and severe phenomenon that is differently spread in industrialized, emerging and developing 

countries. Most of the economic literature and institutional reports consider corruption as a major obstacle to 

social development and economic growth – namely, the so-called hypothesis of “sand in the wheels” (see, among 

others, Myrdal 1989; Andvig and Moene 1990; Shleifer and Vishny 1993; Mauro 1995; Keefer and Knack 1997; 

Hall and Jones 1999; La Porta et al. 1999; Li, Xu, and Zou 2000; Gyimah-Brempong 2002; Tanzi and Davoodi 

2002; Kaufmann 2005; Blackburn and Sarmah 2008; World Bank 2007; World Bank various years).
3
 According 

to this hypothesis, corruption acts as a barrier to competition, reduces the incentives to invest both domestically 

and from abroad, misallocates public resources negatively affecting the efficiency of public investments (Mauro 

1998; Tanzi and Davoodi 1998; Gupta et al. 2001), and lowers the level of trust in the institutions (Hunt 2005; 

Hunt and Laszlo 2005). As a consequence, corruption generates harmful effects on both the social development 
and the economic growth of a country.  

                                                 
2
For a recent survey, see Dimant and Tosato (2017). 

3
On the contrary, another strand of literature develops the so-called “grease the wheels” hypothesis arguing that 

corruption represents the market response to the inefficiencies of the public sector. This literature empirically 

predicts a non-linear relation between corruption and economic growth at low levels of corruption incidence (see, 
among others, Lui 1985; Klitgaard 1988; Acemoglu and Verdier 1998; Shleifer and Vishny 1993). 
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Most importantly to our purpose, corruption negatively affects the business environment, diminishing the level 

of horizontal and vertical trust and producing uncertainty. Some papers (e.g., Bhagwati 1982; Campos, Estrin, 

and Proto 2010; Svensson 2003) have emphasized that in a highly corrupt environment, bribes represent a barrier 

to entry especially for MSMEs, because the scarcity of their financial resources, the lower bargaining power, and 

the difficulty in accessing bank credit make it very difficult for them to refuse the payment of bribes. In o ther 

words, the burden per output is obviously greater for MSMEs than for the large companies and multinationals 
(Gbetnkom 2012; Seker and Yang 2012). 

With respect to this issue, a related strand of the literature focuses on the role of social capital in the credit 

market that supposedly stimulates the opposite mechanisms. By increasing the level of trust and reducing the 

asymmetric information characterizing credit contracts, social capital improves the credit conditions for firms – 

thereby easing their access to bank loans (Uzzi 1999; Guiso, Sapienza, and Zingales 2004; Moro and Fink 2013; 

Mistrulli and Vacca 2014) – and facilitates the collection of soft information, which in turn reduces adverse 
selection and moral hazard phenomena.  

3. Data and Methodology 

3.1 Data Description 

Most of the data that we use in the paper comes from the SAFE, which is jointly run by the European Central 

Bank (ECB) and the European Commission (EC) and has been conducted every six months since 2009 with the 

aim of collecting economic and financial information about European MSMEs. Each wave of the survey is 

addressed to a randomly selected sample of nonfinancial enterprises from the Dun & Bradstreet business register; 
firms in agriculture, public administration, and financial services, however, are deliberately excluded.  

We conduct our tests on a subsample of enterprises chartered in the 11 largest euro area economies (i.e., Austria, 

Belgium, France, Finland, Germany, Greece, Italy, Ireland, the Netherlands, Portugal, and Spain), where the 

differences in the micro and macroeconomic features, as well as in the socio-institutional environment, are 
relevant.  

All the macrodata that we employ as control variables in our regressions are retrieved from different sources (i.e., 
Heritage Foundation, Worldwide Governance Indicators, OECD, ECB Data Warehouse, World Bank). 

Therefore, our sample consists of 68,115 firm observations and is stratified by country, firm size, and activity. 

Table 1.a shows the distribution of our observations by country, with France, Germany, Spain, and Italy 

exhibiting the highest sample representativeness. Table 1.b, on the other hand, displays the distribution of our 
sample observations by firm size. 

Table 1. a. Observations by Country 

 Observations 

Country Name      Freq.       % 

Austria 4,101 6.02 

Belgium 4,075 5.98 

Finland 3,787 5.56 

France 9,991 14.67 

Germany 9,950 14.61 

Greece 4,088 6.00 

Ireland 3,708 5.44 

Italy 9,930 14.58 

Netherlands 4,239 6.22 

Portugal 4,288 6.30 

Spain 9,958 14.62 

Total 68,115 100.00 
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Table 1. b. Observations by Firm Size 

 Observations 

Firm Size Freq. % 

Micro (up to 9 employees) 22,921 33.65 

Small (between 10 and 49 employees) 22,730 33.37 

Medium (between 50 and 249 employees) 17,287 25.38 

Large (more than 250 employees) 5,177 7.60 

Total 68,115 100.00 

3.2 Dependent and Key Variables 

In order to assess whether corruption affects the access to bank credit of small firms, we employ question “q7a_a” 

of the survey as a dependent variable. In particular, the question is aimed at detecting whether a firm applied for 
bank loans, and if not, the reasons why it did not. More specifically, the question is:  

[With regards to bank loans], “could you please indicate whether you: (1) applied for any over the past 6 

months; (2) did not apply because you thought you would be rejected; (3) did not apply because you had 
sufficient internal funds; or (4) did not apply for other reasons” 

The values from 1 to 4, outlined in parentheses, represent the way each respondent’s answe rs were coded. 

In the second stage of our investigation, we employ a dummy called Fear as a dependent variable. This dummy is 

generated by utilizing information from answer (2) of the above-mentioned question q7a_a – hence taking a value 
of one when an enterprise did not apply for fear of rejection, and zero when a firm did not apply for other reasons. 

Then we identify two key variables for our analyses, namely the size of the firm and the country’s level of 

corruption. The former is measured with a dummy (Small) that is equal to one when a firm has fewer than 50 

employees, and zero otherwise. As regards the latter, it is worth noting that the literature recognizes a variety of 

measures that proxy for corruption: perception-based indicators, experience-based indicators, and objective 

measures such as the number of corruption-related trials or cases (Gutmann, Padovano, and Voigt 2014). In this 

paper, we decide to employ two alternatively comparable survey measures, namely Freedom from corruption 

(drawn from the Heritage Foundation) – whose score is primarily derived from Transparency International’s 

Corruption Perception Index (CPI) – and Control of corruption (Worldwide Governance Indicators), which are 
both available for all the countries of our sample and on a yearly basis. 

With regards to firm size, Figure 1 reports the percentage of small firms in our sample, by country. Interestingly, 
we note that in Belgium, Finland, Greece, and Ireland small firms cover more than 75% of all firm observations. 

Figure 2 and Figure 3, on the other hand, show the average value of the two corruption indicators employed in 

our analyses, by country. For the sake of clarity, please note that the higher (lower) the value shown for each 
indicator, the lower (higher) the level of corruption in that country. 

 
Figure 1. Percentage of Small Firms by Country 

AT = Austria, BE = Belgium, DE = Germany, ES = Spain, FI = Finland, FR = France,  
GR = Greece, IE = Ireland, IT = Italy, NL = The Netherlands, PT = Portugal. 
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Figure 2. Freedom from Corruption by Country 

AT = Austria, BE = Belgium, DE = Germany, ES = Spain, FI = Finland, FR = France,  
GR = Greece, IE = Ireland, IT = Italy, NL = The Netherlands, PT = Portugal. 

 

Figure 3. Control of Corruption by Country 

AT = Austria, BE = Belgium, DE = Germany, ES = Spain, FI = Finland, FR = France,  
GR = Greece, IE = Ireland, IT = Italy, NL = The Netherlands, PT = Portugal. 

Finally, Figure 4 depicts a picture of the level of corruption in the euro area through the use of a map. More 

specifically, based on the “Freedom from corruption” indicator, we assign different colors to the countries in our 

sample according to their perceived degree of corruption. In particular, we employ the following scale of colors 

to highlight the territories from the most to the least corrupt ones: red, orange, yellow, light green, and dark green. 

For instance, countries in red (i.e., Greece and Italy) represent the most corrupt economies. In contrast, areas in 
dark green (i.e., Finland and the Netherlands) are the least corrupt ones. 
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Figure 4. Map Depicting the Degree of Corruption in our Sample 

Source = Map customized by the authors, according to the degree of corruption provided by the Heritage 
Foundation. 

3.3 Econometric Strategy and Control Variables 

For testing our hypothesis [H1], we model the probability of applying for bank loan for the i-th firm with the 
following specification [1]: 

Pi (applying for loans) = f (small firms, corruption, firm controls, macro controls, country, wave)  [1] 

Small firms and corruption are the key variables in our model. The vector “firm controls” include both standard 

firm characteristics, such as age (very recent, recent and old), sector (construction, manufacturing, wholesale) 

and financial firm controls, such as changes (up and down) in leverage, in capital, in profitability, and in credit 

history of the i-th firm. The macro controls include GDP growth, the Herfindahl Index (HI) of bank 

concentration, Non-performing loans over gross loans (NPL ratio), and a dummy that captures the expansionary 

monetary policy phase that followed the Outright Monetary Transaction (OMT) announcement by the ECB. 
Finally, we use country and time dummies as additional controls. 
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Table 2. Summary Statistics 

 
Observations Mean Median St. Dev. p1 p99 

Dependent variables       

q7a_a 68,115 2.626 3.000 1.094 1.000 4.000 

Fear 50,096 0.083 0.000 0.276 0.000 1.000 

Key variables       

Small 68,115 0.670 1.000 0.470 0.000 1.000 

Freedom from corruption 68,115 67.588 69.000 15.489 34.000 94.000 

Control of corruption 68,115 1.187 1.420 0.712 –0.250 2.220 

Country-level controls 
GDP Growth 

 
68,115 

 
–0.620 

 
0.050 

 
2.934 

 
–8.200 

 
5.050 

Concentration 68,115 0.088 0.060 0.077 0.021 0.370 

NPL 68,115 7.101 4.295 6.254 0.500 31.899 

OMT 68,115 0.437 0.000 0.496 0.000 1.000 

Firm-level controls       

Profit up 68,115 0.238 0.000 0.426 0.000 1.000 

Profit down 68,115 0.472 0.000 0.499 0.000 1.000 

Credit up 68,115 0.204 0.000 0.403 0.000 1.000 

Credit down 68,115 0.142 0.000 0.349 0.000 1.000 

Capital up 68,115 0.243 0.000 0.429 0.000 1.000 

Capital down 68,115 0.204 0.000 0.403 0.000 1.000 

Leverage up 68,115 0.207 0.000 0.405 0.000 1.000 

Leverage down 68,115 0.276 0.000 0.447 0.000 1.000 

Demand up 68,031 0.191 0.000 0.393 0.000 1.000 

Demand down 68,031 0.131 0.000 0.337 0.000 1.000 

Very recent 68,115 0.020 0.000 0.139 0.000 1.000 

Recent 68,115 0.069 0.000 0.253 0.000 1.000 

Old 68,115 0.128 0.000 0.334 0.000 1.000 

Construction 68,115 0.100 0.000 0.300 0.000 1.000 

Manufacturing 68,115 0.255 0.000 0.436 0.000 1.000 

Wholesale/Retail 68,115 0.337 0.000 0.473 0.000 1.000 

We perform our analysis in three steps. First we estimate equation [1] by employing a multinomial logit model as 

in Demirguc-Kunt, Klapper, and Singer (2013) and Badoer and James (2016), because: i) our dependent variable 

is a discrete one, given that it takes more than two outcomes and the outcomes have no natural ordering (see 

description in Section 3.2); ii) it is suitable for the use of continuous variables and multiple categorical variables 
as regressors. 

Second, we test model [1] by employing our Fear dummy (which captures the discouraged borrowers) as a 

dependent variable through the use of logit models, and further corroborate our findings with a series of 

robustness checks that we carry out via Heckman selection models. Additionally, to study the relation between 

the discouraged MSMEs and corruption, we interact the dummy Small (which captures small firms) with the two 
alternative measures of corruption. 

Finally, we repeat our multinomial logit estimations by splitting the sample into low- and high-corruption 

countries in order to check whether the behavior of small firms changes according to the level of a country’s 
corruption. 

All regressions include time and country dummies. Calibrated weights are employed to adjust the sample to be 

representative of the population (as in Ferrando, Popov, and Udell 2017). Standard errors are corrected for 
heteroskedasticity, and clustered at the country-level, to remove possible bias in the estimations. 

Table 2 shows the summary statistics of the variables employed in our analysis. Table A1 in the Appendix, 
meanwhile, provides descriptions of variables and sources. 

4. Empirical Results 

4.1 Multinomial Logit Models – Full Sample 

The empirical results of our estimations regarding the likelihood that small firms will apply for bank loans are 

presented in Table 3. Following the assumptions of the multinomial logit methodology, here we set the fi rst 

answer to question q7a_a (i.e., “applied”) as our base outcome. Panel A (B) reports the estimate of model [1] 

when controlling for corruption as proxied by Freedom from corruption (Control of corruption). Estimated 
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marginal effects are reported in brackets. 

Overall, we see that – after having controlled for a wide set of firm characteristics – small firms are about 6.5% 

more likely than their larger counterparts to refrain from applying for bank loans due to fear of rejection 

(Column 2). Interestingly, we also note that the two proxies for corruption show a negative and significant 

coefficient – thereby signaling that a lower level of corruption in a country translates into a lower probability of 

refraining from applying for fear of rejection. In other words, our result anticipates that the share of discouraged 

borrowers should be lower when the quality of the economic environment is higher (i.e., when the degree of 
corruption is low). 

Table 3. Bank Loan Applications: Multinomial Logit Model 

 (1) (2) (3) (4) 

 Applied Did_not_apply 
_fear 

Did_not_apply 
_suff 

Did_not_apply 
_other 

Panel A     

Small (base) 1.034*** 0.363*** 0.528*** 

  (0.08) (0.08) (0.07) 

  [0.064]   

Freedom from 
Corruption 

 –0.079** –0.025*** –0.009 

 (0.03) (0.01) (0.01) 

SAFE Controls YES YES YES YES 

Observations 68,115 68,115 68,115 68,115 

Pseudo R-squared 0.0752 0.0752 0.0752 0.0752 

Panel B     

Small (base) 1.031*** 0.361*** 0.527*** 

  (0.08) (0.08) (0.07) 

  [0.065]   

Control of Corruption  –1.764* –0.746*** –0.893** 

  (0.96) (0.22) (0.35) 

SAFE Controls YES YES YES YES 

Observations 68,115 68,115 68,115 68,115 

Pseudo R-squared 0.0749 0.0749 0.0749 0.0749 

Note: This table shows regression results of the multinomial logit model regarding the likelihood that small firms 

do not apply for bank loans. The dependent variable –as described in Section 3.2 – equals 1/2/3/4 if a firm 

applied/did not apply because of possible rejection/did not apply because of sufficient internal funds/did not 

apply for other reasons during the past six months, respectively. Small is a dummy that equals one if the firm has 

fewer than 50 employees, and zero otherwise. Regressions control for Freedom from corruption (Control of 

corruption) in Panel A (B). Though not showing, both specifications include a wide set of firm-level 

characteristics. See Table A1 in the Appendix for all variable definitions and sources. All regressions use 

sampling weights that adjust the sample to be representative of the population. Additionally, all regressions 

include time and country dummies. Heteroskedasticity-robust standard errors, clustered at the country level, 

appear in parentheses. Estimated marginal effects are reported in brackets. *** indicates significance at the 1% 
level, ** at the 5% level, and * at the 10% level. 

4.2 Logit Models – Fear of Rejection 

As a second step of our investigation, we test our hypothesis by employing logit models and we further 

corroborate our findings through a series of robustness checks carried out via Heckman selection models. More 

specifically, to estimate equation [1] we now employ the dummy Fear (already described in Section 3.2) as a 
dependent variable. 

Results are reported in Table 4 and Table 5, where we employ Freedom from corruption and Control of 

corruption as proxies for corruption, respectively. Moreover, the regressions displayed in both Table 4 and Table 

5 vary, among the different columns, because of the progressive inclusion of the country-level controls (Column 

2), and the interaction term with the proxy of corruption (Column 3). The inclusion of the latter is aimed at 

reducing concerns that the self-refrain behavior of the small firms is rather driven by their structural and 
financial characteristics than by the discouragement effect of corruption. 
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Table 4. Logit Model – with Freedom from Corruption 

 (1) (2) (3) 

 Fear Fear Fear 

Small 0.632*** 0.634*** 0.081 

 (0.09) (0.09) (0.30) 

Freedom from Corruption –0.067** –0.049 –0.055 

 (0.03) (0.04) (0.04) 

Small x Freedom from Corruption   0.008** 

   (0.00) 

GDP Growth  0.081 0.081 

  (0.06) (0.06) 

Concentration  –13.519* –13.551* 

  (7.98) (7.98) 

NPL  0.081*** 0.081*** 

  (0.03) (0.03) 

OMT  –0.507*** –0.505*** 

  (0.16) (0.16) 

SAFE Controls YES YES YES 

Observations 50,096 50,096 50,096 

Pseudo R-squared 0.0984 0.101 0.102 

Note: This table shows regression results of the logit model regarding the likelihood that small firms do not 

apply for bank loans for fear of rejection. The dependent variable (Fear) – as described in Section 3.2– is a 

dummy that equals one if a firm did not apply because of possible rejection, and zero otherwise. Small is a 

dummy that equals one if the firm has fewer than 50 employees, and zero otherwise. Though not showing, all the 

models include a wide set of firm-level characteristics. See Table A1 in the Appendix for all variable definitions 

and sources. All regressions use sampling weights that adjust the sample to be representative of the population. 

Additionally, all regressions include time and country dummies. Heteroskedasticity-robust standard errors, 

clustered at the country level, appear in parentheses. *** indicates significance at the 1% level, ** at the 5% 
level, and * at the 10% level. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Marginal Effect of Small Firms Not Applying for Fear of Rejection for Different Levels of Corruption 
(as proxied by Freedom from Corruption) 

The results from Table 4 highlight that – in line with the findings previously obtained with the multilogit analysis 

– small firms refrain from applying for bank loans for fear of rejection, as they anticipate a negative response 

from the lender. The variable Freedom from corruption presents a negative and significant sign suggesting that, 

when the level of corruption is lower, firms may experience a lower probability of self-restraint. Interestingly, the 

interaction between size and corruption shows a positive and significant sign. For this reason, we decide to plot 

the probability that a small firm does not apply for fear of rejection, for different levels of corruption (see Figure 
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5). Figure 5 shows that the higher the freedom from corruption (i.e., the lower the corruption), the lower the 

probability that small firms will not apply for a bank loan for fear of seeing their application rejected. Put 
another way, the lower the corruption, the lower the share of discouraged borrowers. 

We now try to corroborate our findings by employing a different proxy of corruption, namely Control of 

corruption. The results, reported in Table 5, are consistent with those presented in Table 4. Namely, we find that 

small firms refrain from applying for bank loans, and we also see that corruption influences their financing 
strategy. 

Table 5. Logit Model – with Control of Corruption 

 (1) (2) (3) 

 Fear Fear Fear 

Small 0.627*** 0.633*** 0.409*** 

 (0.09) (0.09) (0.13) 

Control of Corruption –0.998 –0.664 –0.798 

 (1.04) (0.70) (0.69) 

Small x Control of Corruption   0.176** 

   (0.08) 

GDP Growth  0.057 0.056 

  (0.04) (0.04) 

Concentration  –12.582 –12.622 

  (8.67) (8.68) 

NPL  0.106*** 0.106*** 

  (0.04) (0.04) 

OMT  –0.591*** –0.589*** 

  (0.15) (0.15) 

SAFE Controls YES YES YES 

Observations 50,096 50,096 50,096 

Pseudo R-squared 0.0964 0.101 0.101 

Note: This table shows regression results of the logit model regarding the likelihood that small firms do not 

apply for bank loans for fear of rejection. The dependent variable (Fear) is a dummy that equals one if a firm did 

not apply because of possible rejection, and zero otherwise. Small is a dummy that equals one if the firm has 

fewer than 50 employees, and zero otherwise. Though not showing, all the models include a wide set of 

firm-level characteristics. See Table A1 in the Appendix for all variable definitions and sources. All regressions 

use sampling weights that adjust the sample to be representative of the population. Additionally, all regressions 

include time and country dummies. Heteroskedasticity-robust standard errors, clustered at the country level, 
appear in parentheses. *** indicates significance at the 1% level, ** at the 5% level, and * at the 10% level. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Marginal Effect of Small Firms Not Applying for Fear of Rejection for Different Levels of Corruption 
(as proxied by Control of Corruption) 

As for the marginal effects, Figure 6 plots the probability that a small firm does not apply for fear of rejection, 
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for different levels of corruption (as proxied by Control of corruption). The results – in this case too – show that 
the lower the degree of corruption, the lower the fear of rejection experienced by small firms. 

4.3 Robustness Checks: Heckman Selection Models 

In this section we present further robustness checks. Because the tests in Section 4.2 (i.e., logit models) have 

been conducted on a sample of firms that did not apply for bank loans (thereby excluding those who applied), 

one might raise concerns that our results are affected by a sample selection bias. To overcome this potential 

criticism, we re-estimate our models following the Heckman (1979) approach, which requires us to specify a 

selection equation that includes a set of variables affecting the possibility of observing the phenomenon but not 
the outcome itself. The results are displayed in Table 6 and Table 7 and corroborate our previous findings. 

Table 6. Heckman Selection Model – with Freedom from Corruption 

 (1) (2) (3) 

 Fear Fear Fear 

Regression equation    

Small 0.027*** 0.027*** 0.003 

 (0.00) (0.00) (0.01) 

Freedom from Corruption –0.003*** –0.001* –0.001** 

 (0.00) (0.00) (0.00) 

Small x Freedom from Corruption   0.000** 

   (0.00) 

GDP Growth  0.001 0.001 

  (0.00) (0.00) 

Concentration  –0.437*** –0.433*** 

  (0.13) (0.13) 

NPL  0.005*** 0.005*** 

  (0.00) (0.00) 

OMT  –0.029*** –0.029*** 

  (0.01) (0.01) 

SAFE Controls YES YES YES 

Selection equation    

Demand up –1.364*** –1.364*** –1.364*** 

 (0.01) (0.01) (0.01) 

Lambda (Mills ratio) 0.216*** 0.214*** 0.214*** 

 (0.01) (0.01) (0.01) 

Observations 72,372 72,372 72,372 

Prob> chi2 0 0 0 

Note: This table shows regression results of the Heckman selection model regarding the likelihood that small 

firms do not apply for bank loans for fear of rejection. The dependent variable (Fear) is a dummy that equals one 

if a firm did not apply because of possible rejection, and zero otherwise. Small is a dummy that equals one if the 

firm has fewer than 50 employees, and zero otherwise. Though not showing, all the models include a wide set of 

firm-level characteristics. See Table A1 in the Appendix for all variable definitions and sources. All regressions 

use sampling weights that adjust the sample to be representative of the population. Additionally, all regressions 

include time and country dummies. Heteroskedasticity-robust standard errors, clustered at the country level, 
appear in parentheses. *** indicates significance at the 1% level, ** at the 5% level, and * at the 10% level. 
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Table 7. Heckman Selection Model – with Control of Corruption 

 (1) (2) (3) 

 Fear Fear Fear 

Regression equation    

Small 0.027*** 0.027*** 0.017*** 

 (0.00) (0.00) (0.01) 

Control of Corruption –0.042** –0.019 –0.025 

 (0.02) (0.02) (0.02) 

Small x Control of Corruption   0.008** 

   (0.00) 

GDP Growth  0.001 0.001 

  (0.00) (0.00) 

Concentration  –0.363*** –0.362*** 

  (0.12) (0.12) 

NPL  0.005*** 0.005*** 

  (0.00) (0.00) 

OMT  –0.030*** –0.030*** 

  (0.01) (0.01) 

SAFE Controls YES YES YES 

Selection equation    

Demand up –1.364*** –1.364*** –1.364*** 

 (0.01) (0.01) (0.01) 

Lambda (Mills ratio) 0.216*** 0.214*** 0.214*** 

 (0.01) (0.01) (0.01) 

Observations 72,372 72,372 72,372 

Prob> chi2 0 0 0 

Note: This table shows regression results of the Heckman selection model regarding the likelihood that small 

firms do not apply for bank loans for fear of rejection. The dependent variable (Fear) is a dummy that equals one 

if a firm did not apply because of possible rejection, and zero otherwise. Small is a dummy that equals one if the 

firm has fewer than 50 employees, and zero otherwise. Though not showing, all the models include a wide set of 

firm-level characteristics. See Table A1 in the Appendix for all variable definitions and sources. All regressions 

use sampling weights that adjust the sample to be representative of the population. Additionally, all regressions 

include time and country dummies. Heteroskedasticity-robust standard errors, clustered at the country level, 
appear in parentheses. *** indicates significance at the 1% level, ** at the 5% level, and * at the 10% level.  

4.4 Further Analysis: Multinomial Logit Models – Sample Split by Corruption 

In this section we discuss the results obtained when estimating our equation [1] for two subsamples that we get 

by splitting the initial data set into low- and high-corruption countries. Indeed, after having calculated the mean 

level of Freedom from corruption across the full sample, we are able to build two distinct clusters that 

distinguish the low-corruption countries (observations above the mean) from the high-corruption ones 
(observations below the mean).

4
 The results of our estimations are tabulated in Table 8. 

 

 

 

 

 

 

 

 

 

                                                 
4
For the sake of clarity, the high-corruption countries are Greece, Italy, Portugal, and Spain. The low-corruption 

nations are Austria, Belgium, Finland, France, Germany, Ireland, and the Netherlands. In this regard, see Figure 
4 that shows the degree of freedom from corruption by country. 
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Table 8. Bank Loan Applications – Multinomial Logit Model – Sample Split by Corruption 

 (1) (2) (3) (4) 

 Applied Did_not_apply 
_fear 

Did_not_apply 
_suff 

Did_not_apply 
_other 

Panel A: Low corruption    

Small (base) 1.061*** 0.333** 0.543*** 

  (0.09) (0.13) (0.12) 

  [0.062]   

SAFE Controls YES YES YES YES 

Observations 36,907 36,907 36,907 36,907 

Pseudo R-squared 0.0677 0.0677 0.0677 0.0677 

Panel B: High corruption    

Small (base) 0.947*** 0.461*** 0.574*** 

  (0.17) (0.03) (0.06) 

  [0.074]   

SAFE Controls YES YES YES YES 

Observations 25,739 25,739 25,739 25,739 

Pseudo R-squared 0.0713 0.0713 0.0713 0.0713 

Note: This table shows regression results of the multinomial logit model regarding the likelihood that small firms 

do not apply for bank loans. The dependent variable –as described in Section 3.2 – equals 1/2/3/4 if a firm 

applied/did not apply because of possible rejection/did not apply because of sufficient internal funds/did not 

apply for other reasons during the past six months, respectively. Small is a dummy that equals one if the firm has 

fewer than 50 employees, and zero otherwise. Table A (B) reports regressions on a subsample of firms chartered 

in low- (high-) corruption countries. Though not showing, both specifications include a wide set of firm-level 

characteristics. See Table A1 in the Appendix for all variable definitions and sources. All regressions use 

sampling weights that adjust the sample to be representative of the population. Additionally, all regressions 

include time and country dummies. Heteroskedasticity-robust standard errors, clustered at the country level, 

appear in parentheses. Estimated marginal effects are reported in brackets. *** indicates significance at the 1% 
level, ** at the 5% level, and * at the 10% level. 

More specifically, Table 8 presents the coefficients and the marginal effects of our key variable small firms 

(Small) in the economies characterized by lower (Panel A) and higher (Panel B) levels of corruption. In both 

cases, the results in Column 2 confirm the evidence previously found in the overall sample – namely, small firms 

(in both regional clusters) are more likely not to apply for fear of rejection than larger enterprises. In particular, 

small firms are 7.4% (6.2%) more likely than their larger peers to refrain from applying for a bank loan for fear 
of rejection in high- (low-) corruption economies. 

5. Conclusions 

The global financial crisis worsened the conditions of access to the credit market for enterprises in Europe. 

Therefore, improving access to bank credit, especially for MSMEs, becomes important to safeguard the survival 

and development of their businesses. In this paper, we have attempted to assess how the level of corruption – 

combined with several economic and financial features – affected the access to credit for MSMEs during our 
observed period. 

Specifically, our research hypothesis aims at testing whether a more corrupt environment affects MSMEs’ 

expectations on the bank-firm relationship and in turn the probability to self-refrain from applying to bank loans 

more than larger firms. This may be the case because MSMEs anticipate more difficulties in having access to 
credit. 

We employ different specifications. First we estimate the probability of self restraint for MSMEs, compared to 

larger firms, after controlling for alternative measures of corruption, as well as for a set of macro firm-invariant 

indicators and standard and financial micro features. Second, we focus on the phenomenon of the discouraged 

borrowers assessing how the level of corruption might affect their demand for credit. Additionally, in order to 

limit the source of bias between small firms, credit access and corruption, we interact small firms with the 

corruption measures. Finally, to corroborate our results and avoid the selection bias, we propose several 
econometric strategies and different subsamples of observations. 

Overall, our results show that the level of corruption seems to affect the behavior of small firms in the credit 
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market since they are more likely to refrain – especially in high-corruption countries – from applying for bank 

loans than their larger peers. Interestingly, results indicate that small firms chartered in high-corruption 

economies are more likely to refrain from applying for loans (more than 7.4%) than small firms located in 
low-corruption ones (about 6.2%).  

Results turn to be robust to different specifications and econometric methodologies. Nevertheless, we are aware 

that – although we have tried our best to limit the presence of bias in our estimates – given the qualitative nature 

of the SAFE dataset, missing information might still play a role in explaining the relationship between bank 

access, small firms and the level of corruption. Our results seem to suggest that policymakers should intervene in 

most corrupt countries in order to limit the aforementioned negative spillovers and to support the access to bank 
credit for small firms. 
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APPENDIX A 

Table A1. Variable descriptions and sources 

Variables Description Source 

Dependent 
variables 

  

Bank loans 
application 

Variable that equals one/two/three/four if a firm applied/did not apply because of 
possible rejection/did not apply because of sufficient internal funds/did not apply for 
other reasons during the past six months, respectively. 

ECB: SAFE 

Fear Variable that equals one if a firm did not apply for a bank loan because of possible 
rejection during the past six months. 

ECB: SAFE 

Key variables   

Small firms Dummy variable that equals one if the firm has fewer than 50 employees. ECB: SAFE 

Country-level 
controls 

  

Freedom  
from corruption 

The higher the level of corruption, the lower the level of overall economic freedom 
and the lower a country’s score. 

Heritage 
Foundation 

Control  
of corruption 

The higher the level of corruption, the lower a country’s score. World Bank: 
WGI 

GDP Growth The annual growth rate of real GDP based on averages of quarterly data for each 
survey round. 

OECD 

Concentration The Herfindahl index (HI) of total assets concentration (for the banking sector). ECB: Data 
Warehouse 

NPL The ratio of bank nonperforming loans to total gross loans. World Bank 

OMT Dummy variable that equals one from the year of announcement (2012) of the 
Outright Monetary Transactions (OMT) program. 

Our 
calculation 

Firm-level 
controls 

  

Profit up Dummy variable that equals one if a firm experienced an increase of the net income 
after taxes in the past six months. 

ECB: SAFE 

Profit down Dummy variable that equals one if a firm experienced a decrease of the net income 
after taxes in the past six months. 

ECB: SAFE 

Creditworthiness 
up 

Dummy variable that equals one if the firm’s credit history improved in the past six 
months. 

ECB: SAFE 

Creditworthiness 
down 

Dummy variable that equals one if the firm’s credit history worsened in the past s ix 
months. 

ECB: SAFE 

Capital up Dummy variable that equals one if a firm’s own capital has improved in the past six 
months. 

ECB: SAFE 

Capital down Dummy variable that equals one if a firm’s own capital has deteriorated in the past 
six months. 

ECB: SAFE 

Leverage up Dummy variable that equals one if a firm experienced an increase in the 
debt-to-assets ratio in the past six months. 

ECB: SAFE 

Leverage down Dummy variable that equals one if a firm experienced a decrease in the debt-to-assets 
ratio in the past six months. 

ECB: SAFE 

Demand up Dummy variable that equals one if a firm’s needs for a bank loan increased in the past 
six months. 

ECB: SAFE 

Demand down Dummy variable that equals one if a firm’s needs for a bank loan decreased in the 
past six months. 

ECB: SAFE 

Very recent Dummy variable that equals one if the firm is less than 2 years old. ECB: SAFE 

Recent Dummy variable that equals one if the firm is between 2 and 5 years old. ECB: SAFE 

Old Dummy variable that equals one if the firm is between 5 and 10 years old. ECB: SAFE 

Construction Dummy variable that equals one if the firm’s main activity is construction. ECB: SAFE 

Manufacturing Dummy variable that equals one if the firm’s main activity is manufacturing. ECB: SAFE 

Wholesale/Retail Dummy variable that equals one if the firm’s main activity is wholesale or retail 
trade. 

ECB: SAFE 
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