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Abstract 

We study a new routing problem arising in City Logistics. Given a ring connecting a set of urban distribution centers (UDCs) in 
the outskirts of a city, the problem consists in delivering goods from virtual gates located outside the city to the customers inside 
of it. Goods are transported from a gate to a UDC, then either go to another UDC before being delivered to customers or are 
directly shipped from the first UDC. The reverse process occurs for pick-up. Routes are performed by electric vans and may be 
open. The objective is to find a set of routes that visit each customer and to determine ring and gates-UDC flows so that the total 
transportation and routing cost is minimized. We solve this problem using a column generation-based heuristic, which is tested 
over a set of benchmark instances issued from a more strategic location-routing problem. 
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1. Introduction 

The Multi-commodity Ring Vehicle Routing Problem (MRVRP) studied in this paper can be considered as 
belonging to the family of the Multi-level VRPs. Differently from canonical VRPs where the vehicles that visit the 
final customers start from a central depot, in Multi-level VRPs goods are dispatched to intermediate depots before 
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reaching their final destination. The motivation to study such complex distribution systems comes mainly from real-
world traffic restrictions that prevent big trucks to enter the city center. This imposes transshipment or cross-docking 
operations outside the urban area, in order to load smaller vehicles to perform shipments to retailers. 

The MRVRP is derived of the so-called Multi-commodity Ring Location Routing Problem (MRLRP) studied in 
the framework of a research project called MODUM (see recent publication Gianessi et al. (2015)). The MRLRP is a 
strategic planning problem with a high degree of difficulty, due to several decision levels. It consists in locating 
Urban Distribution Centers (UDCs) around the city and connect them through a ring over which massive 
transportation flows circulate. These massive flows, that may use shuttles for example, are supposed to make it less 
costly to use the ring to go to the other side of the city. To estimate the cost of this system, not only the construction 
cost of UDCs and ring are considered, but also the transportation cost and the routing cost (both pick-up and delivery 
are considered). 

In the MRVRP, we skip the strategic location issue and consider only the transportation and routing aspects, i.e. 
the ring and distribution centers are already installed. All other aspects of the problem remain the same in every 
respect. We briefly describe them here; more details are given in the next section. Goods to be delivered arrive to a 
first UDC from gates, are possibly transported along the ring, and finally shipped using electric vans that can get into 
the city center; the reverse process occurs for pick-up. No time dependence is considered. Each delivery or pick-up 
demand is characterized by a quantity of goods, a customer and a gate. The attribute multicommodity in the problem 
name refers solely to the different gates. The retail shipments performed by electric vans have both maximum route 
length and maximum load limits. The fleet of vehicles is shared among UDCs and Self-service Parking Lots (SPLs) 
that are located inside the city. Service routes can be open, i.e. the start node of a route is not necessarily the end 
node. Hence a rebalancing policy is imposed to simplify repositioning. The objective is to ship every demand 
(delivery or pick-up) from its source to its destination, in such a way as to minimize the overall routing and flow 
transportation costs, while respecting UDC and ring arc capacities and the rebalancing constraints. Here, the term 
flow transportation refers to the circulation of goods from the gates to the ring (using trucks) and along the ring 
(possibly using larger trucks or railway shuttles), whereas routing refers to the delivery of goods from UDCs to 
customers, or to pick-up from customers to UDCs, using electric vans. 

This problem is not far from another Multi-level VRP, the Two-Echelon Vehicle Routing Problem (2E-VRP), in 
which goods are initially stored at a central warehouse, from where they are delivered to secondary-level logistic 
platforms or satellites which correspond to our UDCs. After being consolidated in second-level vehicles, products 
can finally be shipped to customers. Split delivery are forbidden at the second level, but allowed at the first level, 
therefore a UDC can receive the merchandise it has to deliver from many first-level vehicles. UDCs have a capacity 
that bounds the first-level deliveries. Second-level vehicles can only perform one service route and must return at the 
depot from where they started. In more general versions, other features can be taken into account, like multiple 
warehouses, possibility to deliver customers via first-level vehicles, possibility that second level vehicles perform 
more than one service trip, time dependent travel times, customer time windows, synchronization between first- and 
second-level. No ring structure has been studied so far for VRP, to our knowledge. The paper Crainic et al. (2009) 
studies a widely generalized version of a two-tier distribution structure in which many of these aspects are 
considered. Several heuristic approaches to the 2E-VRP can be found in the literature. In Crainic et al. (2008), a set 
of two-phase heuristics are proposed. The second-level subproblem is solved as a Multi-Depot VRP (MDVRP), or 
alternatively as a set of small VRPs after a clustering of the customers in order to assign them to UDCs. Then, the 
first level subproblem is solved as a common Capacitated VRP. In the second phase, a series of heuristics are used to 
improve the solution. In Crainic et al. (2011b), the problem is approached in a similar way. A greedy initial 
clustering heuristic is used to decompose the problem in as many Capacitated VRPs as the number of UDCs plus one, 
i.e. the first-level problem. Then, a local search (LS) step changes the customer-UDC assignment so as to improve 
the solution. Finally, a multi-start phase is applied for a given number of iterations: the current best solution is 
perturbed according to savings-inspired criteria, yielding either an infeasible solution, which is then repaired, or a 
feasible one. In the latter case, if the quality is promising, the solution in further improved by means of the customer-
UDC assignment improvement LS tool. To mention other heuristic algorithms, we refer the reader for instance to the 
Greedy Randomized Adaptive Search Procedure (GRASP) with path-relinking of Crainic et al. (2011a) or the 
Adaptive Large Neighborhood Search (ALNS) proposed in Cordeau et al. (2011). 
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The literature of exact methods is more scarce. Among the most recent works, the exact algorithm presented in 
Baldacci et al. (2013) decomposes the 2E-VRP into a set of MDVRP with additional constraints. Valid lower bounds 
are provided which allow to restrict the search. The algorithm achieves the best computational results to date. We 
also mention the Branch&Cut approach of Jepsen et al. (2013), the flow model and valid inequalities for the 2E-VRP 
presented in Gonzalez-Feliu et al. (2008), and the study on valid inequalities for the 2E-VRP of Masoero et al. 
(2009). Finally, we refer the reader to Gonzalez-Feliu (2011) for a recent survey on two-level distribution systems. 

The paper is structured as follows. Section 2 provides the problem statement of the MRVRP and a mixed-integer 
extended formulation which associates a binary variable with each possible route. Section 3 outlines the Column-
Generation-based approach to the MRVRP and the Dynamic Programming procedure for the Pricing Problem. 
Section 4 describes computational experiments on various instances issued from benchmark MRLRP instances of 
Gianessi et al. (2015). Finally, section 5 concludes the paper. 

2. Problem statement and extended formulation 

2.1. Notation 

The set of UDCs that compose the ring is noted  where UDCs are indexed according to their order on 
the ring. Each distribution center  is characterized by a cross-docking capacity . The quantity of goods sent 
on a link between two consecutive UDCs  on the ring cannot exceed a capacity . We denote as 

 the set of  ring links. 
In this problem, we only consider exchanges of goods between the city and other cities, and exclude exchanges 

within the city. The goods arrive to the city or leave the city via a set of gates denoted by . Gates are nodes of the 
transportation network outside the city such that all trucks that arrive to or leave the city necessarily transit through 
one of them (e.g. crossings of highways). Each gate can send (resp. receive) goods to (resp. from) no more than  
UDCs. A delivery (resp. pick-up) demand  is composed of a quantity of goods  to be delivered to (resp. collected 
from) a customer in the city from (resp. to) a gate . We denote by  and  the sets of delivery and pick-up 
demands. Inside the city, a set  of Self-service Parking Lots (SPLs) can be used to park the electric vans. For 
delivery, goods are transported from a gate to an UDC , then to another UDC  via the ring or stay at the 
same UDC , and are shipped to customers from UDC  with delivery routes using electric vans. These routes 
are open; they necessarily start at some UDC but can end at another UDC or a SPL. The set of all possible delivery 
routes is noted . Each route delivers a subset of demands and respects the vehicle capacity  and a maximum trip 
length . For pick-up it is the reverse process. A pick-up route starts at an UDC or a SPL, collects the demands of a 
subset of customers and arrives at an UDC. Then the load goes to a gate to leave the city, either directly from this 
UDC or from a second UDC on the ring. The set of all feasible pick-up routes is denoted by , and we note 

 the whole set of delivery or pick-up routes. The total load of a route  coming from or arriving to gate 
 is denoted by . Note that repositioning constraints impose that the number of vehicles arriving at each 

UDC and each SPL at the end of the day is approximately the same number as at the beginning of the day, more 
precisely it should remain within an interval  w.r.t. the initial number, for . For modeling the 
routing costs at the second-level, we need to define a routing graph  for delivery, and 

 for pick-up, where edge sets  and  represent the possible connections between nodes. The 
routing cost of going from a node  to a node  with an electric van is noted . Finally, we introduce some binary 
coefficients to characterize a route : 

  demand  is served by route ; 
  (resp. )  route  ends (resp. starts) at  ; 
  node  is visited just after node  in route ; 

and we note the cost of a route  (resp. ) as  (resp. ). 
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2.2. Decision variables 

The decision variables are the following: 

1. binary service variables  gate  exchanges goods with  ; 
2. binary second-level routing variables  route  is selected; 
3. first-level flow variables, which are all nonnegative and continuous: 

  = flow from gate  to site  ( -outflow); 
  = flow from site  to gate  ( -inflow); 
  = -outflow on the ring arc ; 
  = -inflow on the ring arc ; 
  = upper bound on the capacity occupied at  due to deliveries of ; 
  = upper bound on the capacity occupied at  due to pick-ups of . 

-outflows and -inflows are flows of commodity  for, respectively, delivery and pick-up purposes. They are 
identified by the  and  superscripts. 

2.3. MILP extended formulation 

The proposed model for the MRVRP is shown in Fig. 1. 
The objective function (1) takes into account the routing costs and the costs to transport flows of goods between 

gates and UDCs and along the ring. Constraints (2) and (3) ensure that for each  the total -outflow and -
inflow sum up to the overall delivery and pick-up demands in which  is involved. However, the flows that  
exchanges with each  is null if , as imposed by (4), and the number of UDCs a gate  can address is 
bounded to  by (5). Constraints (6) and (7) are flow balance equations on each  and for the -inflows and -
outflows of each commodity. Relations (8) assure that each demand is served by exactly one route . 
Constraints (9) are needed for rebalancing purposes. Constraints (10) impose the capacity bound of ring arcs, and the 
same do relations (11)–(13) w.r.t. the capacity of UDCs. 

3. A Column Generation-based heuristic for the MRVRP 

In this section we present a Column Generation approach based on the MILP model . This model is in 
the form of Gilmore and Gomory (see Gilmore and Gomory (1963)), as it contains a class of integer variables, the 
route variables , whose number  is exponential in the size of the problem instance. 
Therefore, it is hard even to find a solution to the LP relaxation of the integer problem. Column Generation (CG) 
approaches are known to be useful to compute the value of such LP relaxations. The original MILP model with the 
full column set  is called the Master Problem (MP). At each iteration of CG, we have a Restricted Master Problem 
(RMP) which is the original relaxed model restricted to a limited subset  of columns, that can thus be solved by the 
Simplex method. The variable (route ) with minimum reduced cost that enters the basis is computed implicitly, 
i.e. without enumerating all variables of . This can be done by solving a so-called Pricing Problem (PP) based 
on the values of the dual variables associated with the optimal solution of the RMP. This Pricing Problem, which we 
will later describe in detail, outputs the least reduced cost variable, hopefully in reasonable time. The column 
associated with this variable, or a subset of columns with negative reduced cost, is added to the RMP which is solved 
again. This process is reiterated until no column with negative reduced cost is found by the PP at some iteration. 
This guarantees to have solved to optimality the LP relaxation of the Master Problem. 

Column Generation represents one of the most investigated techniques of the last decades for large-size problems. 
The reader can refer to: Vanderbeck and Wolsey (2009), Lübbecke and Desrosiers (2002) or Feillet (2010), to have 
an exhaustive insight to the subject; du Merle et al. (1997), to be introduced to some known CG issues; Létocart et al. 
(2010), for an example of variable selection strategy. 

In this paper we use CG to yield a heuristic algorithm for the MRVRP. Solving the RMP does not require any 
particular technique, as the model  has a polynomial number of constraints and apart from  and  
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variables it has continuous variables only. Therefore, the description that follows of the implemented CG framework 
will revolve around the solving of the Pricing Problem. 

  ( )   

min 
 

 (1) 

s.t.   (2) 

   (3) 

   (4) 

   (5) 

   (6) 

   (7) 

   (8) 

   (9) 

   (10) 

   (11) 

   (12) 

   (13) 

   

Fig. 1. The proposed MILP model for the MRVRP. 

3.1. Computing the reduced cost of a route 

The first step is to determine the reduced cost of route variables, before deciding how to solve the PP. In the 
following we consider a delivery route . We omit to explain the reduced cost of a pick-up route, as it is 
similar. The reduced cost of the variable  associated with a route  is: 
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′ ′′  

Terms , , , ′  and ′′  are the values (in the current solution of the RMP) of the dual variables 
associated to the constraints in which  appears, namely: (8), (13), (6), and the two families of inequalities of (9). 
Each of such variables is multiplied by the coefficient of  in the related constraint and subtracted from . 

Finding a route with minimum reduced cost amounts to solve an Elementary Shortest Path Problem with 
Resource Constraints (ESPPRC) (because of the vehicle capacity and maximum length constraints) in a graph 
constructed from , where weights on arcs are simply modified as follows. The weight of arc  is set to 

 with  the commodity (gate) of demand , and  the start of the delivery route. The 
weight of arc  is ′ ′′ . If  is the end of the route, the weight of 
arc  is ′ ′′ . Then an arc with a zero cost connects each  to a dummy sink node, to 
compute shortest paths. We invert indices  and  for a pick-up route as it starts at an UDC or an SPL  and 
necessarily ends at some UDC . Since the reduced cost of a delivery route  depends on its starting UDC 

, we solve  Pricing Problems for delivery. Given , the PP associated with  is an ESPPRC 
looking for a minimum-weight (constrained) shortest path from  to the dummy sink node, where weights are 
computed as described above. For pick-up, the process is almost the same but solution routes are sought for 
backward, i.e. from the fixed UDC endpoint  towards the possible starting points in . A subset of  most 
negative reduced cost paths is added to the RMP. Hence, at each CG iteration we add up to  new route 
variables to the MP. 

3.2. Solving the Pricing Problem as an ESPPRC 

The ESPPRC on an oriented graph  consists in finding the shortest path from a source node to a 
destination node while taking into account the consumption of a set  of resources. With each resource 

 are associated both a consumption  for each arc  and an interval  of allowed values for the 
consumption level at each node  . Triangle inequality is assumed to hold for consumption terms , as it holds in 
the case of MRVRP. A path from the source node to the destination node is feasible if the level of each resource fits 
the corresponding interval for each of the visited nodes, or can be adapted to it. The time resource is the easiest to 
understand, the interval and the consumption level being, respectively, a time window and an arrival moment, which 
can be delayed up to the beginning of the window if needed. 

The ESPPRC is NP-hard in the strong sense (see Dror (1994)). The best-known algorithm to solve ESPPRC on 
instances with positive or negative arc costs is the one presented in Feillet et al. (2004). This algorithm is based on 
Dynamic Programming (DP) and implicitly enumerates all the possible paths from the source to each node  and 
associates a state, most often represented by means of a label , with each of such paths, in order to keep track of: 

 The consumption vector  , with  the consumption of resource  on ; 
 The cost  of the path; 
 The vector  and the number  of unreachable nodes, .  denotes that  

is unreachable for label  associated with a path, i.e. that either it has already been visited by the path, or its 
insertion as the next node in the path would violate at least one of the resource intervals. 

The aim of the unreachable nodes vector  is twofold: on one hand it ensures to generate only elementary paths, 
while on the other hand it helps preventing combinatorial explosion. To achieve this second purpose, the 
introduction of a dominance rule is needed. Given two labels ,  of a same node ,  is said to dominate  if: 

1.     2.     3.     4.  



233 Paolo Gianessi et al.  /  Transportation Research Procedia   12  ( 2016 )  227 – 238 

Condition 4 means that at least one of the state variables of  must be strictly less than that of ′. The redundant 
label variable  can help speed up the check of dominance condition 3. Dominated labels are discarded, since only 
nondominated partial paths can lead to optimal solutions, as the authors of Feillet et al. (2004) have shown. 

The above dominance check can be relaxed by simplifying or removing some of the conditions 1-3, for instance 
by removing condition 3, or by replacing it with  ′ , in order to further speed up the DP algorithm. However, 
the minor accuracy in the check leads to dismiss labels which would not be dominated by a full check, i.e. to 
possibly have subpaths of optimal paths discarded. Hence, relaxing the dominance rule results in a heuristic DP-
based algorithm for ESPPRC. In a Column Generation framework where the PP is an ESPPRC, using such a relaxed 
dominance rule can prevent some negative reduced cost variable to be found, ultimately leading to nonoptimal 
solutions of the (R)MP. 

The ESPPRC subproblem of the MRVRP accounts for two resources: load and length. In our implementation of 
the DP algorithm for ESPPRC, the condition 3 of the dominance check is replaced by the condition on the  
variables only, in order to allow a faster solving of the subproblem. When no more negative reduced cost variables 
can be found, a full dominance check is performed, to ensure the convergence of the CG to the optimal solution of 
the relaxed MP. 

3.3. A more in-depth view of the Dynamic Programming Algorithm to solve the Pricing Problem 

3.3.1. Completion bound 

In order to further restrain the combinatorial explosion, a completion bound method is used. When a new label is 
created, a lower bound on the cost to arrive to any of the possible ending points is added to its reduced cost: if the 
result is nonnegative, the label is discarded. The lower bound is given by a so-called q-path and is computed in a 
preprocessing phase by means of Dynamic Programming. q-paths, which are based on a state-space relaxation, have 
been widely used in the literature to compute dual bounds in the context of exact algorithms for the CVRP, like for 
instance in Christofides et al. (1981), which offers a detailed discussion on the subject. 

A q-path for the CVRP is a least cost path from the central depot to a customer , with a given total load 
, where  is the set of customers. Although not necessarily elementary, a q-

path is built in such a way as to avoid two-loops, which occur when one customer is visited twice and only one other 
customer is visited in between. We denote such a q-path as , and its cost as .  is the ordered set of all 
possible load values for a vehicle, and . Note that if customer demands are integer, then  and 
we have no more than  q-paths to keep track of. 

Suppose we have computed in a preprocessing phase the q-paths associated with each customer and each possible 
(feasible) load , . Given a label  associated with a partial path, let  be its last visited customer, and  
and  its cost and load. If routing costs are symmetric, a lower bound to the cost to complete the path associated with 
 is given by the least cost q-path  s.t. . Let: 

 

If ′ , label  is discarded as it cannot produce a negative reduced cost path. 
Another possible implementation of q-paths, which we used, defines  as the number of clients visited 

so far in the route, with ,  being the maximum number of customers that can be visited in the 
same route. This allows a further reduction in the number of q-paths per customer. 

The q-paths completion bound method is used only when the Pricing algorithm is invoked with a strong 
dominance level, i.e. when a full dominance check is performed. 

3.3.2. ng-paths 

Another technique that we have used is offered by ng-paths. An ng-path is a partial path  associated with a set 
Π  of nodes that would make it lose its property when added to it as next node. An ng-path is not necessarily 
simple, whereas an elementary path is always an ng-path. By replacing  with Π , the DP algorithm generates 
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ng-paths instead of elementary paths, though a small effort runtime tuning of the algorithm can make it generate ng-
path which are elementary. The effect is to dramatically reduce the number of partial paths from one of the sources 
to a customer node  and therefore to further limit the combinatorics in the label generation of the DP algorithm. 

ng-paths have been introduced in Baldacci et al. (2011) in the context of an exact method to solve both the CVRP 
and the VRP with Time Windows (VRPTW). They generalize q-paths in that their definition allows to forbid -loops, 
with . An ng-path is defined recursively as follows. Let us define a neighborhood  for each customer 

. Now let  be a path, not necessarily simple, that starts from one of the starting points and visits some clients. 
Let: 

  denote the last customer visited by , 
  be the subpath of  up to the predecessor of  , and 
 Π  be the set of all the customers in  (with the exception of ) that appear in the neighborhood of all the 

following customers. 

Then  is said to be an ng-path if  is an ng-path and Π . 
Let us make some important observations. Given an ng-path , Π  is the set of nodes that would make  lose 

its property when added to it as next visited customer. It is therefore, in a sense, a set of forbidden nodes. Even more 
important, since Π  can contain only nodes in , an elementary path is an ng-path by definition. 

A small example can help understand how ng-paths work. Let : we have  and 
. Suppose that , ,  and . We will have: 

  ,    ,    ,  Π  

and since  is elementary – hence an ng-path, and Π ,  is an ng-path. 
The example also shows that although a simple path is always an ng-path, the opposite is generally not true, 

unless . However, it is easy to see that by suitably choosing the node neighborhoods , ng-paths 
offer a very good approximation of elementariness. 

We have used ng-paths precisely to exploit this feature. In the DP algorithm to solve the ESPPRC, the state of a 
path  associated with a label  is given by the load , the cost , and the full vector of unreachable nodes: this 
means that for each pair  we can theoretically have  labels on a node. By replacing  with Π

, the same DP algorithm generates ng-paths, hence yielding Pareto-optimal ng-paths. The combinatorics is 
significantly reduced, as for each couple  we now have no more than  labels. Of course, the algorithm is 
prone to generate nonelementary ng-paths and is therefore no more valid for the ESPPRC, but a fine tuning of the 
neighborhood sets during its execution can hopefully make it converge to a set of optimal elementary paths. 

One could wonder whether this strategy leads to a heuristic Pricing Problem, which actually is not the case. 
Indeed, by using the neighborhood sets and ng-paths instead of the unreachable customers vector we are not relaxing 
the dominance check: we are performing a full check on the paths of a state-space relaxation. Hence, the resulting 
paths are not suboptimal: they are optimal w.r.t. a relaxed problem. Therefore, when the output path set is made of 
elementary paths only (possibly after correcting neighborhood at runtime), we have the optimal solution of the 
ESPPRC. 

3.4. A Column Generation-based heuristic algorithm 

The Column Generation procedure previously described gives rise to the CG-based heuristic algorithm CGHEUR. 
Basically, it consists of: 

1. Launching the CG process in order to determine the optimal solution of the linear relaxation of . In 
order to do so, the model is initialized with the set oc of all feasible one-customer routes: 
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oc  

This is required to avoid the infeasibility of the LP optimization in the initial stages of the CG, when only few 
columns have been generated and the RMP may lack routes to satisfy constraints (8); 

2. Restoring the integrality constraint and solving the last RMP via Branch&Bound. 

The results obtained with CGHEUR are presented in the next section. 

4. Computational experiments 

4.1. Instance set 

The MRVRP is, to the best of our knowledge, a new problem and no previously generated instances exist. The 
MRVRP instances that we used to conduct our computational experiments are therefore derived from a subset of the 
MRLRP instances of Gianessi et al. (2015) and their solutions. Given a MRLRP instance  and an optimal solution 

 to it, a MRVRP instance  is easily obtained by taking the ring of  as the ring of the  instance. This has two 
advantages. First, it ensures that  is feasible; second, it yields the optimal solution of  as a sub-solution of . 
This allows to evaluate the quality of a solution returned by a heuristic algorithm for the MRVRP as is the case with 
CGHEUR. More generally, if  is a feasible solution to , the derived instance  is assured to be feasible, and the 
value of the derived solution  of  is an upper bound to that of the optimal solution of . 

We considered a set of 30 MRLRP instances of Gianessi et al. (2015) of various sizes. In this paper, 8 collections 
of instances are defined: collections galwc01-03 of small-sized instances, galwc04-05 of medium-sized instances, 
and galwc06-08 of large-sized instances. The instances in a collection are divided into five scenarios: the scenario 0, 
which features an initial size of sets , , ,  and , and four more scenarios (denoted as 1 to 4) in which, one at a 
time, each of the aforementioned sets is enlarged with additional elements. D and P have always the same size. 
Moreover, each scenario accounts for four instances which differ in terms of ring construction and transportation 
costs. We took the L|L instances, i.e. those with the lowest ring costs, of each of the five scenarios (0...4) of the 
collections galwc01 to galwc06, thus obtaining the MRVRP instances p01-0...p01-4 to p06-4. The authors provide 
optimal solutions to the instances of collections galwc01-03. As said, this yields an optimal solution to the generated 
MRVRP instances. 

4.2. Analysis of numerical results 

We evaluate the quality of the final solution  of CGHEUR by comparing its value, denoted as , to the value  
of the optimal solution  when it is available, as it is the case of the small-sized instances p01-p03. The availability 
of the optimal solution allows to evaluate also the quality of the MILP formulation  by comparing  to 

, the linear lower bound at the root node, i.e. of the value of the fractional optimal solution of the last RMP. When 
the optimal solution is not known a priori, the quality of  can be evaluated by comparing  to . 

The tests have been run on an Intel Core i7-4770 3.4 GHz machine with 7.76 GB RAM, with a time limit of 
3600s for instances p01 to p05, and of 7200s for p06 instances. The execution of CGHEUR is never injected with any 
optimal solution or previously computed upper bound. The parameter  is always set to 50. 

Table 1 is the key to the results of our tests, which are presented in Tables 2 and 3. 
The results on the small-sized instances p01-p03, which feature up to 20 delivery and pick-up clients, show the 

effectiveness of the DP engine for the Pricing Problem, and in general of the Column Generation algorithm, as the 
gap  between the optimal solution and the linear lower bound at the root node is in most of the cases under 2%, 
with a very good average value of 1.13%. Moreover, the final route set delivered by the Column Generation, which 
form the last Restricted Master Problem, is very near to the set of optimal columns, as the average gap between the 
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solution of CGHEUR and the optimal solution is 0.20%. The total running time is in most of the cases under 10 
seconds, even though this is not surprising if we consider that the Branch&Bound tree has on average no more than 
2300 nodes. 

This is not the case for the medium-sized and large-size instances, for which the number  of nodes in the 
Branch&Bound tree grows up to some tens of thousands of nodes, and up to some millions for p06 instances. These 
instances prove therefore to be computationally challenging, as one could expect since the number of both delivery 
and pick-up clients grows up to 25-40 for p04-p05 instances and to 50-80 for p06 instances. However, even in these 
conditions CGHEUR performs very well. 

Table 1. Key of the results table. 

notation description 

Instance instance identifier 

, , , ,   number of gates, UDCs, SPLs, delivery demands, pick-up demands 

,   load and length limits on routes 

  maximum number of UDC that can be used by a gate 

  value of the optimal solution,  

  value of the final solution of CGHEUR,  

  value of the fractional optimal solution of the last RMP 

  gap of the final solution of CGHEUR w.r.t the optimal solution 

  gap of the optimal solution w.r.t. the fractional optimal solution of the last RMP 

  gap of the final solution of CGHEUR w.r.t the fractional optimal solution of the last RMP 

  total running time of CGHEUR, or gap still to close (in brackets) if the time limit has been exceeded 

  time to determine the final solution  

  number of nodes in the Branch&Bound tree 

Table 2. Results of CGHEUR on small-sized instances. 

Instance                

p01-0 
p01-1 
p01-2 
p01-3 
p01-4 
p02-0 
p02-1 
p02-2 
p02-3 
p02-4 
p03-0 
p03-1 
p03-2 
p03-3 
p03-4 

5 
5 
5 

10 
5 
5 
5 
5 

10 
5 
5 
5 
5 

10 
5 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

5 
5 

10 
5 
5 
5 
5 

10 
5 
5 
5 
5 

10 
5 
5 

15 
20 
15 
15 
15 
15 
20 
15 
15 
15 
15 
20 
15 
15 
15 

70 
70 
70 
70 
70 
70 
70 
70 
70 
70 

150 
150 
150 
150 
150 

50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
65 
65 
65 
65 
65 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

73562.5 
115634.4 

74360.9 
72779.7 
71221.0 
70571.2 

105226.0 
65164.7 
68669.8 
64692.7 
66931.4 
96495.8 
64311.0 
59398.1 
67168.8 

73562.5 
115634.4 

74360.9 
72779.7 
71188.0 
70313.2 

104832.0 
65029.3 
68669.8 
64203.5 
66931.4 
95423.4 
64311.0 
59355.1 
67168.8 

71860.2 
114469.0 

73756.1 
72185.8 
69128.7 
69024.3 

103123.0 
64550.3 
68140.0 
63143.7 
66931.4 
93691.8 
64311.0 
59143.4 
67153.2 

0.00 
0.00 
0.00 
0.00 
0.05 
0.37 
0.38 
0.21 
0.00 
0.76 
0.00 
1.12 
0.00 
0.07 
0.00 

2.37 
1.02 
0.82 
0.82 
2.98 
1.87 
1.66 
0.74 
0.78 
1.68 
0.00 
1.85 
0.00 
0.36 
0.02 

7.9 
2.1 
1.8 
2.3 

44.1 
7.1 
3.1 
1.8 
1.5 
3.6 
0.1 
4.1 
0.3 
0.3 
0.5 

0.8 
1.7 
1.3 
1.1 

26.5 
0.5 
1.3 
1.2 
0.5 
0.6 
0.1 
1.2 
0.1 
0.1 
0.1 

4404 
181 
304 
496 

19433 
4457 
1050 

579 
439 

1918 
1 

801 
1 
9 
3 

     average 0.20 1.13 5.4 2.5 2272 
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Table 3. Results of CGHEUR on medium- and large-sized instances. 

Instance              

p04-0 
p04-1 
p04-2 
p04-3 
p04-4 
p05-0 
p05-1 
p05-2 
p05-3 
p05-4 

5 
5 
5 

10 
5 
5 
5 
5 

10 
5 

3 
3 
3 
4 
3 
3 
3 
3 
3 
3 

5 
5 

10 
5 
5 
5 
5 

10 
5 
5 

25 
40 
25 
25 
25 
25 
40 
25 
25 
25 

70 
70 
70 
70 
70 
150 
150 
150 
150 
150 

60 
60 
60 
60 
60 
65 
65 
65 
65 
65 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

95813.7 
188120.4 

93681.6 
91045.0 
93804.8 
81867.0 

154343.5 
83928.1 
88886.4 
78175.3 

94553.0 
182656.0 

92822.5 
89672.6 
92571.9 
79788.8 

152528.0 
82038.1 
86512.2 
76598.5 

1.33 
2.99 
0.93 
1.53 
1.33 
2.60 
1.19 
2.30 
2.74 
2.06 

3.8 
597.8 

2.6 
6.8 
7.9 

119.1 
306.0 

90.6 
402.1 

25.4 

1.8 
30.7 

2.2 
4.0 
1.6 

22.0 
179.0 

11.3 
111.0 

3.9 

829 
221810 

348 
1264 
2569 

15485 
7693 

10636 
41608 

3007 

     average 1.90 156.2 36.8 30525 

p06-0 
p06-1 
p06-2 
p06-3 
p06-4 

5 
5 
5 

10 
5 

3 
3 
3 
3 
3 

10 
10 
15 
10 
10 

50 
80 
50 
50 
50 

70 
70 
70 
70 
70 

50 
50 
50 
50 
50 

2 
2 
2 
2 
2 

190864.0 
362547.0 
200318.0 
187289.0 
188581.0 

187840.0 
354465.0 
196461.0 
185704.0 
183757.0 

1.61 
2.28 
1.96 
0.85 
2.63 

(0.48%) 
(1.65%) 
(1.31%) 

810.5 
4645.5 

8.3 
7112.0 
1970.0 

118.0 
384.0 

2759291 
1252038 
1951381 

202057 
1193773 

     average 1.87 5411.2 1918.5 1471708 

 
Table 3, which reports the results on such instances, only features the gap  as the optimal solution is not 

available. Such gap is on average 1.9% after one hour for instances with up to 40 pick-up and delivery demands, and 
less than 1.9% after 7200s for instances with  between 50 and 80. This shows once more the effectiveness 
of the lower bound at the root node and ultimately of the MILP model . Note that the running time  is in 
general very good w.r.t. the problem size, even though in some cases the size of the Branch&Bound tree does not 
allow to close the gap within the time limit. However, for such cases (and in general for most of the instances), we 
note that in spite of some convergence difficulty, the time  required by CGHEUR to find its best solution is much 
lower than . This suggests that the time limit could be tightened even more without compromising –in most of the 
cases– the solution delivered by CGHEUR, thus increasing its average ratio between solution quality and runtime. 

5. Conclusion 

We presented the Multicommodity-Ring Vehicle Routing Problem (MRVRP), a problem that belongs to the 
family of Multi-level VRPs. The MRVRP is, as far as we are aware of, a new problem, which arises in City 
Logistics and concerns a freight distribution system based on a ring of Urban Distribution Centers (UDCs). In order 
to achieve environmental sustainability purposes, electric vans are used to visit final customers and shipment routes 
may be open so as to reduce empty miles. Unlike the Multicommodity-Ring Location Routing Problem (MRLRP) 
proposed in Gianessi et al. (2015) that tackles the strategic planning of the same distribution system, the MRVRP 
considers that the UDCs and the ring have already been installed and focuses on the tactical-operational decision-
making aspects. 

In this work, we proposed an extended formulation for the MRVRP and solved it with a heuristic algorithm, 
CGHEUR, based on Column Generation, in which the Pricing Problem is an Elementary Shortest Path Problem with 
Resource Constraints (ESPPRC) solved by means of Dynamic Programming. After solving the LP relaxation of the 
root node, CGHEUR finds the integer solution of the last Restricted Master Problem by Branch&Bound. The 
algorithm has been tested over a set of 30 instances issued from as many MRLRP benchmark instances. 

We believe that the achieved results are very promising and encourage further developments of the Column 
Generation approach by introducing branching rules in a Branch&Price framework. 
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