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Abstract: We provide the proper definition of all the leading-twist (un)polarized gluon

transverse momentum dependent parton distribution functions (TMDPDFs), by consid-

ering the Higgs boson transverse momentum distribution in hadron-hadron collisions and

deriving the factorization theorem in terms of them. We show that the evolution of all

the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can

be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper

definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of

the unpolarized (fg1 ), linearly polarized (h⊥g1 ) and helicity (gg1L) gluon TMDPDFs, and

show that, as expected, they are free from rapidity divergences. As a byproduct, we ob-

tain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse

momentum. In particular, the coefficient of gg1L, which has never been calculated before,

constitutes a new and necessary ingredient for a reliable phenomenological extraction of this

quantity, for instance at RHIC or the future AFTER@LHC or Electron-Ion Collider. The

coefficients of fg1 and h⊥g1 have never been calculated in the present formalism, although

they could be obtained by carefully collecting and recasting previous results in the new

TMD formalism. We apply these results to analyze the contribution of linearly polarized

gluons at different scales, relevant, for instance, for the inclusive production of the Higgs

boson and the C-even pseudoscalar bottomonium state ηb. Applying our resummation

scheme we finally provide predictions for the Higgs boson qT -distribution at the LHC.
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1 Introduction

Observables sensitive to the transverse momentum of quarks and gluons inside a hadron

have a long theoretical and experimental history. They have proven to be valuable tools

to test the QCD dynamics at high-energy colliders, extending the information provided

by observables integrated over the intrinsic transverse momenta. At large transverse mo-

mentum these observables can be computed in perturbation theory, but if the transverse

momentum qT is much smaller than the probe of the hard reaction Q, then large logarithms

of their ratio appear and resummation becomes a must in order to obtain reliable results.

This issue was already addressed in the eighties by Collins, Soper and Sterman [1].

The main hadronic quantities in observables at qT � Q are the transverse momentum

dependent functions (TMDs), first considered by Ralston and Soper [2, 3] and by Collins
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and Soper [4, 5]. The TMDs represent, generally speaking, the probability of finding a

parton inside a hadron with a definite transverse momentum, i.e., TMD parton distribution

functions (TMDPDFs); or the probability that a quark or gluon fragments into a hadron

with a given transverse momentum (TMDFFs). They play an important role in the rich

phenomenology of azimuthal and spin asymmetries (see, e.g., [6, 7]).

After the pioneering works, much effort has been devoted to properly describe the po-

larization of the partons/hadrons, the universality of TMDs and other relevant properties.

However, the “naive” (old) definitions introduced in [4, 5] and considered in subsequent

works, suffer from undesired features preventing them from properly represent physical

hadronic quantities, such as uncancelled rapidity divergences. Recently Collins [8] and

Echevarria-Idilbi-Scimemi [9, 10] have revisited and updated the definition of quark TMDs,

making it consistent with a generic factorization theorem and free from the bad features.

Having at our disposal the proper definition for such quantities allows us to better deal

with physical processes where they appear and from which we want to extract sensible

information on the hadron structure. Thus, it is the goal of the present work to extend

those efforts to the gluon TMDs, relevant for instance in processes such as Higgs boson

and quarkonium production in hadron-hadron collisions.

In order to properly define all the leading-twist (un)polarized gluon TMDPDFs we con-

sider the Higgs boson transverse momentum distribution, generated mainly through the

gluon-gluon fusion process. Thus, gluon TMDPDFs will be the relevant hadronic quan-

tities necessary to build our observable. Inclusive Higgs boson production in unpolarized

hadron-hadron collisions, has received much attention, both in the context of standard

perturbative QCD (see, e.g., [11–19]) and soft-collinear effective theory (SCET) [20–23]

(see, e.g., [24–27]). TMD gluon correlators were also considered in [28, 29]. However none

of the previous works paid attention to the cancellation of rapidity divergences in a proper

definition of gluon TMDPDFs. In this paper we reconsider the Higgs qT -distribution in

hadron-hadron collisions, but with general polarizations, in order to obtain not only the

properly defined unpolarized gluon TMDPDF, but also the polarized ones, i.e., all the

leading-twist (un)polarized gluon TMDPDFs. Their proper definition is crucial in order

to be able to address different processes where they are relevant, such as quarkonium (see,

e.g., [30–32]) or heavy-quark pair production (see, e.g., [29, 33]), and perform consistent

phenomenological analyses.

In this work we pay special attention to three of the eight leading-twist gluon TMD-

PDFs, calculate them explicitly at next-to-leading order (NLO) and demonstrate that the

rapidity divergences cancel in their proper definitions. On one hand, the distributions of

unpolarized (fg1 ) and linearly polarized (h⊥g1 ) gluons inside an unpolarized hadron, and,

on the other hand, the gluon helicity TMDPDF (gg1L), which represents the distribution of

longitudinally polarized gluons inside a longitudinally polarized hadron. The calculation

not only supports the definitions introduced in this work, but also allows us to extract

valuable perturbative ingredients to resum large logarithms and better control their non-

perturbative parts, eventually improving our description of experimental data. We empha-

size that the calculation of gg1L is done for the first time, while for fg1 and h⊥g1 one could

combine previous results and then carefully recast them into the new TMD formalism.

– 2 –
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The evolution of the gluon TMDPDFs, as in the case of quark TMDs [34], turns

out to be universal, i.e., the same evolution kernel describes the evolution of any of the

leading-twist (un)polarized gluon TMDPDFs. It is interesting to contrast this finding with

the evolution of the parton distribution functions (PDFs) and double parton distributions

(DPDs) which have vastly different evolution depending on the polarization (see, e.g., [35]

for a direct comparison for DPDs). The currently known perturbative ingredients allow us

to use the evolution equations to resum the large logarithms up to next-to-next-to-leading-

logarithmic (NNLL) accuracy. Moreover, if we consider the perturbative coefficients of

the operator product expansion (OPE) of those TMDs at large transverse momentum, also

some parts of them turn out to be universal. Exploiting this feature, we introduce a further

step to resum the large logarithms that appear in the OPE coefficients, exponentiating the

double logarithms and improving the convergence of the resummation. Thus we provide a

general framework to deal with (un)polarized gluon TMDPDFs in different processes and

account for their perturbative and non-perturbative contributions.

Drawing attention to the distribution of linearly polarized gluons inside an unpolarized

hadron, several works have addressed their role at the LHC (see, e.g., [36–41]). In particu-

lar, in [41] the authors quantified their contribution in the context of the TMD formalism,

both for Higgs boson and C-even scalar quarkonium (χc0 and χb0) production. In the

present work we extend their efforts by implementing the currently known perturbative

ingredients to the full extent to perform the resummation at NNLL accuracy, providing

more accurate predictions and discussing their uncertainty.

The paper is organized as follows. In section 2 we apply the SCET machinery to derive

the factorization theorem for the Higgs qT -distribution in polarized hadron-hadron colli-

sions in terms of well-defined gluon TMDPDFs. In section 3 we discuss the QCD evolution

of all the leading-twist gluon TMDPDFs, which turns out to be driven by a universal evo-

lution kernel. Next, in section 4 we address the refactorization of TMDPDFs in terms of

collinear functions, which applies when the transverse momentum is in the perturbative

domain. In section 5 we consider the gluon helicity TMDPDF (gg1L), that accounts for

longitudinally polarized gluons inside a longitudinally polarized hadron, and perform a nu-

merical study of the function itself and the impact of evolution. In section 6 we analyze the

TMDPDFs that contribute in unpolarized hadron-hadron collisions, i.e., unpolarized and

linearly polarized gluons (fg1 and h⊥g1 respectively), and give some estimates of their relative

contributions at different scales. Then, in section 7 we study the Higgs boson transverse

momentum distribution, paying special attention to the role played by linearly polarized

gluons and the non-perturbative effects. Finally, conclusions are drawn in section 8.

2 Factorization theorem in terms of well-defined TMDPDFs

Below we derive the factorization theorem for the Higgs qT -distribution in polarized hadron-

hadron collisions, A(P, SA) +B(P̄ , SB)→ H(mH , qT ) +X, by performing a set of consec-

utive matchings between different effective field theories, relevant at each scale:

QCD(nf = 6)→ QCD(nf = 5)→ SCETqT → SCETΛQCD
.
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In the first step we integrate out the top quark mass, mt, to build an effective ggH coupling.

In the second matching we integrate out the mass of the Higgs boson, mH , and obtain a

factorized cross-section in terms of well-defined gluon TMDPDFs, which holds for qT �
mH . Those gluon TMDPDFs will be expressed in terms of fundamental hadronic matrix

elements. Finally, in the region ΛQCD � qT � mH , we can further refactorize the gluon

TMDPDFs in terms of the collinear gluon/quark PDFs, integrating out the large scale qT .

Before discussing the steps in the derivation of the factorization theorem, we introduce

the notation used through the paper. A generic vector vµ is decomposed as vµ = n̄ · v nµ2 +

n · v n̄µ2 + vµ⊥ = (n̄ · v, n · v,v⊥) = (v+, v−,v⊥), with n = (1, 0, 0, 1), n̄ = (1, 0, 0,−1),

n2 = n̄2 = 0 and n · n̄ = 2. We also use vT = |v⊥|, so that v2
⊥ = −v2

T < 0.

The production of the Higgs boson through gluon-gluon fusion is well approximated

by the effective local interaction [42–46]

Leff = Ct(m
2
t , µ)

H

v

αs(µ)

12π
Fµν,a F aµν , (2.1)

where αs(µ) is the QCD coupling at factorization scale µ, Fµν,a the gluon field strength

tensor, H is the Higgs field and v ≈ 246 GeV is the Higgs vacuum expectation value.

The explicit expressions for the Wilson coefficient Ct and its evolution can be found in

appendix E. Using the effective lagrangian just introduced, the differential cross section for

Higgs production is factorized as

dσ =
1

2s

(
αs(µ)

12πv

)2

C2
t (m2

t , µ)
d3q

(2π)32Eq

∫
d4y e−iq·y

×
∑
X

〈
PSA, P̄ SB

∣∣F aµνFµν,a(y) |X〉 〈X|F bαβFαβ,b(0)
∣∣PSA, P̄ SB〉 , (2.2)

where s = (P + P̄ )2. This expression manifests the first step in the matching procedure,

where we integrate out the large top quark mass through the perturbative coefficient Ct.

The nf = 5 effective QCD operator is next matched onto the SCET-qT one:

Fµν,a F aµν = −2q2CH(−q2, µ2) g⊥µνBµ,an⊥
(
S†nSn̄

)ab
Bν,bn̄⊥ , (2.3)

where q2 = m2
H and the B⊥µn(n̄) operators, which stand for gauge invariant gluon fields, are

given by

Bµn⊥ =
1

g

[
n̄ · PW †niD⊥µn Wn

]
= in̄αg

µ
⊥βW

†
nF

αβ
n Wn = in̄αg

µ
⊥βt

a(W†n)abFαβ,bn . (2.4)

The collinear and soft Wilson lines are path ordered exponentials

Wn(x) = P exp

[
ig

∫ 0

−∞
ds n̄ ·Aan(x+ n̄s)ta

]
,

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n ·Aas(x+ ns)ta

]
. (2.5)

Wilson lines with calligraphic typography are in the adjoint representation, i.e., the color

generators are given by (ta)bc = −ifabc. In order to guarantee gauge invariance among
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regular and singular gauges, transverse gauge links need to be added (as described in [47,

48]). In this work we stick to Feynman gauge for perturbative calculations, and thus

transverse gauge links do not play any role. The Wilson matching coefficient CH(−q2, µ),

which corresponds to the infrared finite part of the gluon form factor calculated in pure

dimensional regularization, is given at one-loop by

CH(−q2, µ) = 1 +
αsCA

4π

[
−ln2−q2 + i0

µ2
+
π2

6

]
. (2.6)

In appendix D we report our explicit NLO calculation, and appendix E gives the evolution

and higher order contributions. We anticipate here that for the phenomenological study

discussed in section 7 we perform the so-called “π-resummation”, which consists on choos-

ing the scale in the above coefficient as µ2 = −q2. In this way the convergence of the hard

part is improved. See [49, 50] for more details.

After some standard algebraic manipulations and a Taylor expansion in order to retain

the leading order contribution in qT /mH , the cross-section can be written as

dσ

dy d2q⊥
= 2σ0(µ)C2

t (m2
t , µ)H(mH , µ)(2π)2

∫
d2kn⊥d

2kn̄⊥d
2ks⊥δ

(2)(q⊥−kn⊥−kn̄⊥−ks⊥)

× J (0)µν
n (xA,kn⊥, SA;µ) J

(0)
n̄ µν(xB,kn̄⊥, SB;µ)S(ks⊥;µ) +O(qT /mH) , (2.7)

where H(m2
H , µ) = |CH(−q2, µ)|2, xA,B =

√
τ e±y, τ = (m2

H + q2
T )/s and y is the rapidity

of the produced Higgs boson. The Born-level cross section is

σ0(µ) =
m2
H α

2
s(µ)

72π(N2
c − 1)sv2

. (2.8)

The pure collinear matrix elements and the soft function are defined as

J (0)µν
n (xA,kn⊥, SA;µ)=

xAP
+

2

∫
dy−d2y⊥

(2π)3
e−i(

1
2
xAy

−P+−y⊥·kn⊥) (2.9)

×
∑
Xn

〈PSA|Bµ,a
n⊥(y−,y⊥) |Xn〉 〈Xn|Bν,a

n⊥(0) |PSA〉 ,

J
(0)µν
n̄ (xB,kn̄⊥, SB;µ)=

xBP̄
−

2

∫
dy+d2y⊥

(2π)3
e−i(

1
2
xBy

+P̄−−y⊥·kn̄⊥)

×
∑
Xn̄

〈
P̄SB

∣∣Bµ,a
n̄⊥(y+,y⊥) |Xn̄〉 〈Xn̄|Bν,a

n̄⊥(0)
∣∣P̄SB〉 ,

S(ks⊥;µ)=
1

N2
c −1

∑
Xs

∫
d2y⊥
(2π)2

eiy⊥·ks⊥〈0|
(
S†nSn̄

)ab
(y⊥)|Xs〉〈Xs|

(
S†n̄Sn

)ba
(0)|0〉.

Notice that, in order to avoid double counting, one needs to subtract the contribution

of soft momentum modes (the so-called “zero-bin” in the SCET nomenclature) from the

naively calculated collinear matrix elements, thus obtaining the “pure collinear” matrix

elements, denoted by the superscript (0) (see, e.g., [51] for more details). Note that in

eq. (2.7) we have applied the SCET machinery to decouple the collinear, anticollinear and

soft modes, removing the interactions between them from the Lagrangian [21]. Thus the
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factorization of any operator in SCET is straighforward, as well as the final states |X〉,
which can be written in the factorized form |X〉 = |Xn〉 ⊗ |Xn̄〉 ⊗ |Xs〉, describing the

collinear, anticollinear and soft states.

As shown in appendices A, B and C by performing an explicit NLO perturbative

calculation of unpolarized, linearly polarized and helicity gluon TMDPDFs, the collinear

and soft matrix elements defined above are individually ill-defined, since they contain

uncancelled rapidity divergences. We stress the fact that this issue is independent of the

particular regulator used. Thus, we need to combine them in a certain way to cancel

these divergences and obtain well-defined hadronic quantities. Based on the work done

in [9, 10, 34] for the quark case and using ηn(n̄) to label generic parameters that regulate

the rapidity divergences present in the (anti-)collinear and soft matrix elements, then the

TMDPDFs are defined as

G̃µνg/A(xA, b⊥, SA; ζA, µ) = J̃ (0)µν
n (xA, b⊥, SA;µ; ηn) S̃−(bT ;µ; ηn) ,

G̃µνg/B(xB, b⊥, SB; ζB, µ) = J̃
(0)µν
n̄ (xB, b⊥, SB;µ; ηn̄) S̃+(bT ;µ; ηn̄) , (2.10)

where ζA,B are auxiliary energy scales, the twiddle labels the functions in impact parameter

space (IPS) and we have split the soft function in rapidity space as

S̃(bT ;µ; ηn, ηn̄) = S̃− (bT ;µ; ηn) S̃+ (bT ;µ; ηn̄) . (2.11)

The soft function can be split to all orders in perturbation theory, regardless which partic-

ular regulator is used, following the same logic as in [10]. In that work this fundamental

property was proven for the soft function relevant for quark TMDs. The proof for the soft

function that appears in the gluon TMDs follows analogously, simply changing the color

representation from the fundamental to the adjoint. The arbitrariness in the choice of the

rapidity cutoff to split the soft function, which is not explicitly shown in eq. (2.11), man-

ifests itself as the appearance of the auxiliary energy scales ζA and ζB, which are bound

together by ζAζB = q4 = m4
H .

Resorting to the ∆-regulator for definiteness, the soft function is split as

S̃(bT ;m2
H , µ; ∆+,∆−) = S̃−

(
bT ; ζA, µ; ∆−

)
S̃+

(
bT ; ζB, µ; ∆+

)
,

S̃−
(
bT ; ζA, µ; ∆−

)
=

√
S̃

(
∆−

p+
, α

∆−

p̄−

)
,

S̃+

(
bT ; ζB, µ; ∆+

)
=

√
S̃

(
1

α

∆+

p+
,

∆+

p̄−

)
, (2.12)

where we have explicitly shown the dependence on the regulator parameters and ζA =

m2
H/α and ζB = αm2

H , with α an arbitrary boost invariant real parameter.

We point out that an explicit dependence on q2 = m2
H has been added as well in the

soft function. This is due to the use of the ∆-regulator, which induces such dependence, in

consistency with the fact that the soft function represents the cross-talking between the two

collinear sectors. On the contrary, pure collinear matrix elements do not have any remnant

information about the opposite collinear sector, and thus cannot depend on q2 = m2
H .

– 6 –
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Now, using eq. (2.12) the gluon TMDPDFs are defined as

G̃µνg/A(xA, b⊥, SA; ζA, µ; ∆−) = J̃ (0)µν
n (xA, b⊥, SA;µ; ∆−) S̃−(bT ; ζA, µ; ∆−) ,

G̃µνg/B(xB, b⊥, SB; ζB, µ; ∆+) = J̃
(0)µν
n̄ (xB, b⊥, SB;µ; ∆+) S̃+(bT ; ζB, µ; ∆+) . (2.13)

These hadronic quantities are free from rapidity divergences, i.e., they have well-behaved

evolution properties and can be extracted from experimental data.

As already mentioned, when one performs the perturbative calculations of the collinear

matrix elements, depending on the particular regulator that is used, the issue of double

counting the soft modes arises. In this case, one needs to subtract, on a diagram-by-diagram

basis, the soft limit of each collinear contribution (the “zero-bin”). With the ∆-regulator

one can show order by order in perturbation theory that the subtraction of the zero-bin

for each collinear matrix element is equivalent to divide it by the soft function:

J̃ (0)µν
n (xA, b⊥, SA;µ; ∆−) =

J̃µνn (xA, b⊥, SA;m2
H , µ

2; ∆−,∆+)

S̃(bT ;m2
H , µ; ∆+,∆−)

. (2.14)

The naively calculated collinear matrix elements, which do not have the label (0) anymore,

depend on the hard scale q2 = m2
H and the two regulator parameters ∆±, in contrast with

the pure collinear matrix elements. The latter should depend only on the regulator that

belongs to each collinear sector. The naive collinear matrix elements depend as well on the

spurious regulator for the other sector. Thus, for the particular case of this regulator we

can define the TMDPDFs as

G̃µνg/A(xA, b⊥, SA; ζA, µ; ∆−) = J̃µνn (xA, b⊥, SA;m2
H , µ; ∆−,∆+) S̃−1

+ (bT ; ζB, µ; ∆+) ,

G̃µνg/B(xB, b⊥, SB; ζB, µ; ∆+) = J̃µνn̄ (xB, b⊥, SB;m2
H , µ; ∆−,∆+) S̃−1

− (bT ; ζA, µ; ∆−) . (2.15)

Notice that the spurious regulator in the naive collinear matrix elements is now cancelled by

dividing them by the proper piece of the soft function, thus recovering the correct regulator

dependence in the TMDPDFs as in eq. (2.13).

It is worth emphasizing that the proper definition of TMDPDFs in eq. (2.10) is indepen-

dent of the particular regulator used. We have given their definition using the ∆-regulator,

although one could conveniently modify eq. (2.13) in order to use, for instance, the rapidity

regulator introduced in [52]. One could also follow the lines of [8], where no regulator is

used, i.e., the rapidity divergences among the collinear and soft matrix elements are can-

celled by combining (before integration) the integrands of the relevant Feynman diagrams

order by order in perturbation theory.

Now, we can write the cross-section for the Higgs qT -distribution in terms of well-

defined gluon TMDPDFs:

dσ

dy d2q⊥
= 2σ0(µ)C2

t (m2
t , µ)H(m2

H , µ)
1

(2π)2

∫
d2y⊥ e

iq⊥·y⊥

× G̃µνg/A(xA,y⊥, SA; ζA, µ) G̃g/B µν(xB,y⊥, SB; ζB, µ) +O(qT /mH) . (2.16)
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This factorized cross-section is valid for qT � mH . In the next section we discuss the refac-

torization of the TMDPDFs in terms of collinear functions when the transverse momentum

is a perturbative scale, i.e., when ΛQCD � qT � mH .

Before moving to the next factorization step, we first need to consider the dependence

on the hadron spin and separate the unpolarized (U), longitudinally polarized (L) and

transversely polarized (T) situations. In [53] the authors obtained the decomposition of

collinear correlators at leading-twist. We emphasize the fact that these correlators suffer

from rapidity divergences and thus cannot be considered well-defined hadronic quantities.

The decomposition, however, is not directly affected by this issue and follows equivalently.

Below, given the proper definition of gluon TMDPDFs in eq. (2.10), we extend the decom-

position of [53] and write

G
µν[U ]
g/A (xA,kn⊥) = −g

µν
⊥
2
fg1 (xA, knT ) +

1

2

(
gµν⊥ −

2kµn⊥k
ν
n⊥

k2
n⊥

)
h⊥g1 (xA, knT ) , (2.17)

G
µν[L]
g/A (xA,kn⊥) = −iε

µν
⊥
2
λ gg1L(xA, knT ) +

ε
kn⊥{µ
⊥ k

ν}
n⊥

2k2
n⊥

λh⊥g1L (xA, knT ) ,

G
µν[T ]
g/A (xA,kn⊥) = −gµν⊥

εkn⊥S⊥⊥
knT

f⊥g1T (xA, knT )− iεµν⊥
kn⊥ · S⊥
knT

gg1T (xA, knT )

+
ε
kn⊥{µ
⊥ k

ν}
n⊥

2k2
n⊥

kn⊥ ·S⊥
knT

h⊥g1T (xA, knT ) +
ε
kn⊥{µ
⊥ S

ν}
⊥ +ε

S⊥{µ
⊥ k

ν}
n⊥

4knT
hg1T (xA, knT ).

The functions fg1 , h⊥g1 , gg1L and gg1T are T -even, while the rest are T -odd. In sections 6

and 5 we will pay special attention to the functions fg1 , h⊥g1 and gg1L, calculating them

explicitly at NLO to show that they are free from rapidity divergences and to obtain the

necessary perturbative ingredients to perform the resummation of large logarithms. These

three functions are the only TMDPDFs which are matched onto leading twist collinear

matrix elements, i.e., the canonical PDFs.

The Wilson line structure in the operator definition of the TMDPDFs gives rise to

calculable process dependence. In the types of processes considered here, where two gluons

fuse into a color singlet, the Wilson lines are past pointing. In a process where color would

flow into the final state, also future pointing Wilson lines play a role. Functions with

different Wilson line structure differ by matrix elements containing intrinsically nonlocal

gluonic pole contributions [54–57]. Depending on the number of such gluonic poles being

odd or even, the functions are T-odd or T-even. The functions come with specific process-

dependent gluonic pole factors that can lead to a breaking of universality, in the simplest

cases giving rise to a sign change, such as the Sivers function having a different sign

in Drell-Yan and in deep-inelastic scattering (DIS) processes. Other functions, such as

h⊥g1 need to be written as a linear combination of two or even more functions, with the

coefficient in the linear combination depending on the Wilson lines and in turn on the

color flow in the process [58, 59]. However, for both the gluon-gluon fusion into a color

singlet considered here, as well as in the “gluon initiated DIS”, exactly the same linear

combination contributes to the cross section.
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Finally, we provide the equivalent of eq. (2.17) in IPS, since as we show next, the

evolution of TMDPDFs is done in that space. With the Fourier transform given by

G̃
µν[pol]
g/A (xA, b⊥) =

∫
d2kn⊥ e

ikn⊥·b⊥ G
µν[pol]
g/A (xA,kn⊥) , (2.18)

we have

G̃
µν[U ]
g/A (xA, b⊥) = −g

µν
⊥
2
f̃g1 (xA, bT ) +

1

2

(
gµν⊥ −

2bµ⊥b
ν
⊥

b2⊥

)
h̃
⊥g (2)
1 (xA, bT ) , (2.19)

G̃
µν[L]
g/A (xA, b⊥) = −iε

µν
⊥
2
λ g̃g1L(xA, bT ) +

ε
b⊥{µ
⊥ b

ν}
⊥

2b2⊥
λh
⊥g (2)
1L (xA, bT ) ,

G̃
µν[T ]
g/A (xA, b⊥) = −gµν⊥

εb⊥S⊥⊥
bT

f̃
⊥g (1)
1T (xA, bT )− iεµν⊥

b⊥ · S⊥
bT

g̃
g (1)
1T (xA, bT )

+
ε
b⊥{µ
⊥ b

ν}
⊥

2b2⊥

b⊥ · S⊥
bT

h̃
⊥g (2)
1T (xA, bT ) +

ε
b⊥{µ
⊥ S

ν}
⊥ + ε

S⊥{µ
⊥ b

ν}
⊥

4bT
h̃
g (1)
1T (xA, bT ) ,

where for a generic function f(kT ) we represent

f̃ (n)(bT ) = 2π(i)n
∫
dkTkT Jn(kT bT ) f(kT ) . (2.20)

Worth noting is that while Gµνg/A and G̃µνg/A are each others Fourier transforms, this does

not hold true for the individual gluon TMDs which have factors of kn⊥ (b⊥) in the decom-

position (e.g., h⊥g1 and h̃
g (1)
1T ).

3 Evolution of gluon TMDPDFs

The TMDPDFs defined in eq. (2.10) depend on two scales: the factorization scale µ and

the energy scale ζ (related to the rapidity cutoff used to separate the two TMDPDFs).

Thus, their evolution kernel is such that it connects these two scales between their initial

and final values. Below we derive first the part of the kernel that allows us to evolve the

TMDPDFs with respect to µ, and then the one that corresponds to ζ.

The evolution of (un)polarized gluon TMDPDFs in terms of the renormalization scale

µ is governed by the anomalous dimensions:

d

dlnµ
lnG̃

[pol]
g/A (xA, b⊥, SA; ζA, µ) ≡ γG

(
αs(µ), ln

ζA
µ2

)
,

d

dlnµ
lnG̃

[pol]
g/B (xB, b⊥, SB; ζB, µ) ≡ γG

(
αs(µ), ln

ζB
µ2

)
. (3.1)

The renormalization group (RG) equation applied to the factorized cross-section in

eq. (2.16) implies the following relation among the different anomalous dimensions:

2
β (αs(µ))

αs(µ)
+2γt (αs(µ))+γH

(
αs(µ), ln

m2
H

µ2

)
+γG

(
αs(µ), ln

ζA
µ2

)
+γG

(
αs(µ), ln

ζB
µ2

)
= 0 ,

(3.2)
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where the anomalous dimension of the coefficients H and Ct, γH and γt respectively, are

given in appendix E. Thus

γG

(
αs(µ), ln

ζA
µ2

)
= −ΓAcusp(αs(µ))ln

ζA
µ2
− γnc(αs(µ)) ,

γG

(
αs(µ), ln

ζB
µ2

)
= −ΓAcusp(αs(µ))ln

ζB
µ2
− γnc(αs(µ)) , (3.3)

where the non-cusp piece is

γnc(αs(µ)) = γg(αs(µ)) + γt(αs(µ)) +
β(αs(µ))

αs(µ)
. (3.4)

In the equation above γg is the non-cusp piece of the anomalous dimension of the hard

coefficient CH (see appendix E). It should be mentioned that the splitting of γH into the two

anomalous dimensions γG given in eq. (3.3) is unique following the restriction ζAζB = m4
H .

The coefficients of the perturbative expansions of Γcusp and γnc are known up to three

loops and they are collected in appendix E.

Now we focus our attention on the evolution in terms of the scale ζ. Following the

arguments in [10], one can show that the soft function relevant for gluon TMDs can to all

orders be written as

lnS̃ = Rs(bT ;µ) +Dg(bT ;µ) ln
∆+∆−

m2
Hµ

2
, (3.5)

with a function Rs, depending only on bT and µ, and Dg related to the cusp anomalous

dimension in the adjoint representation by

dDg

dlnµ
= ΓAcusp(αs(µ)) . (3.6)

Given eqs. (2.13) and (3.5), one obtains the following evolution equations in ζ:

d

dlnζA
lnG̃

[pol]
g/A (xA, b⊥, SA; ζA, µ) = −Dg(bT ;µ) ,

d

dlnζB
lnG̃

[pol]
g/B (xB, b⊥, SB; ζB, µ) = −Dg(bT ;µ) . (3.7)

Notice that the same Dg term drives the ζ evolution for all gluon TMDPDFs, since the soft

function that enters into their definition and gives the entire ζ evolution is spin-independent.

The coefficients of the perturbative expansion of the Dg term can be completely obtained

from the calculation of the soft function. If we write

Dg(bT ;µ) =

∞∑
n=1

dn(LT )

(
αs(µ)

4π

)n
, LT = ln

µ2b2T
4e−2γE

, (3.8)

then the first two coefficients are:

d1(LT ) =
ΓA0
2β0

(β0LT ) + d1(0) ,

d2(LT ) =
ΓA0
4β0

(β0LT )2 +

(
ΓA1
2β0

+ d1(0)

)
+ d2(0) . (3.9)
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The finite coefficients dn(0) cannot be determined by eq. (3.6), but, as already mentioned,

by a perturbative calculation of the soft function (or the cross-section in full QCD). The

coefficient d1(0) can be easily extracted from the NLO calculation of the soft function in

appendix A, and one gets d1(0) = 0. The coefficient d2(0) can be obtained from the soft

function relevant for DY or SIDIS processes [60] by using the Casimir scaling, i.e., rescaling

it by CA/CF (see also [26]):

d2(0) = CACA

(
404

27
− 14ζ3

)
−
(

112

27

)
CATFnf . (3.10)

At small bT the Dg term can be calculated perturbatively, but at large bT it has to be

modelled and extracted from experimental data. However, we can extend the fact that the

soft function is universal and spin-independent to this non-perturbative piece, and it can

therefore be used to parametrize the non-perturbative contribution to the evolution of all

(un)polarized TMDPDFs.

Regardless of how the non-perturbative contribution to the Dg term is parametrized,

we can perform the evolution of all leading-twist gluon TMDPDFs consistently up to NNLL

(given the currently known perturbative ingredients, i.e., γG and Dg):

G̃
[pol]
g/A (xA, b⊥, SA; ζA,f , µf ) = G̃

[pol]
g/A (xA, b⊥, SA; ζA,i, µi) R̃

g (bT ; ζA,i, µi, ζA,f , µf ) , (3.11)

where the evolution kernel R̃g is given by

R̃g
(
bT ; ζA,i, µi, ζA,f , µf

)
= exp

{∫ µf

µi

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA,f
µ̄2

)}(
ζA,f
ζA,i

)−Dg(bT ;µi)

. (3.12)

Solving analytically the evolution equation of the Dg term in the small bT region,

DR
g (bT ;µi) = Dg(bT ;µb) +

∫ µi

µb

dµ̄

µ̄
ΓAcusp , (3.13)

where µb = 2e−γE/bT is the natural scale of the Dg term, and implementing the running

of the strong coupling consistently with the resummation order, one obtains (see [60] for

quark TMDs)

DR
g (bT ;µi) = − ΓA0

2β0
ln(1−X) +

1

2

(
a

1−X

)[
−β1ΓA0

β2
0

(X + ln(1−X)) +
ΓA1
β0
X

]
+

1

2

(
a

1−X

)2 [
2d2(0) +

ΓA2
2β0

(X(2−X)) +
β1ΓA1
2β2

0

(X(X − 2)− 2ln(1−X))

+
β2ΓA0
2β2

0

X2 +
β2

1ΓA0
2β3

0

(ln2(1−X)−X2)

]
+O

((
a

1−X

)3
)
. (3.14)

In this result we have defined a = αs(µi)/(4π) and X = aβ0LT . The βi and ΓAi coefficients

are given in appendix E.

As a final remark, we emphasize the fact that the evolution kernel in eq. (3.12) is valid

only in the perturbative region of small bT . Λ−1
QCD, since the perturbative expression of

Dg (even its resummed version) breaks down at large bT [60, 61].
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4 Refactorization of TMDPDFs and resummation of large logarithms

As already anticipated, when the transverse momentum is perturbative, we can perform an

operator product expansion (OPE) of the TMDPDFs in terms of collinear functions, inte-

grating out the transverse momentum by means of Wilson coefficients. Depending on the

particular TMDPDF considered, the collinear functions that will describe its perturbative

small-bT region will be different, and also the relevant Wilson coefficients. However, the

part of the Wilson coefficients originating from the evolution, which is universal and spin-

independent, will be common for all TMDPDFs. Below we give the general expressions for

these OPEs, and in the next sections we explicitly calculate the coefficients for the relevant

TMDPDFs in the cases of an unpolarized and longitudinally polarized hadron.

For bT � Λ−1
QCD we can refactorize the (renormalized) gluon TMDPDFs of a hadron

A in terms of (renormalized) collinear quark/gluon distributions:

F̃g/A(xA, bT ; ζA, µ) =
∑

j=q,q̄,g

C̃g/j(xA, bT ; ζA, µ)⊗ fj/A(xA;µ) +O(bTΛQCD) . (4.1)

The convolution refers to momentum fraction x for TMDPDFs that are matched onto

twist-2 collinear functions (like fg1 ), while in the case of TMDPDFs that are matched onto

twist-3 functions (like the gluon Sivers function f⊥g1T ) it would represent a two-dimensional

convolution in the two momentum fractions of the collinear function. In the equation above

we have thus represented schematically the OPE of any TMDPDF, where F̃g/A stands for

any of the functions in eq. (2.19) and fj/A the adequate collinear functions in each case.

For example, we could consider the unpolarized gluon TMDPDF f̃g1 and match it onto the

unpolarized collinear gluon/quark PDFs, as shown in section 6; or we could consider the

Sivers function f̃
⊥g (1)
1T and match in onto gluon/quark twist-3 collinear functions [62]. The

coefficients C̃g/j are different for each TMDPDF.

The natural scale for the coefficients C̃g/j is µ ∼ 1/bT ∼ qT , which is the large scale that

we integrate out when we perform the OPE. Thus, we can choose to set the resummation

scale either in impact parameter space or in momentum space. In the following we discuss

these two approaches in more detail.

4.1 Resummation in impact parameter space

If we perform the resummation of large logarithms in impact parameter space then the

resummed TMDPDF is written as:

F̃Pert
g/A (xA, bT ; ζA, µ) = exp

{∫ µ

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA
µ̄2

)} (
ζA
ζ0

)−Dg(bT ;µ0)

×
∑

j=q,q̄,g

C̃g/j(xA, bT ; ζ0, µ0)⊗ fj/A(xA;µ0) , (4.2)

where ζ0 ∼ µ2
b and µ0 ∼ µb. The superscript Pert signifies that it is only the perturbative

part of the TMDPDFs,1 valid at small bT � 1/ΛQCD. Notice that the functions Dg

1We refer to the perturbative or non-perturbative nature of the transverse momentum (or impact pa-

rameter) dependence, leaving aside of course the non-perturbative collinear distributions, which are always

part of the OPE, both in the small and large bT regions.
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is universal and spin independent, and thus it is the same for any of the TMDPDFs in

eq. (2.19). On the contrary, as already mentioned, the coefficients C̃g/j are specific for each

TMDPDF, as are the collinear functions fj/A which generate the perturbative tail for each

TMDPDF at small bT .

So far we have addressed the TMDPDFs in the perturbative region. For large bT
we need to model them and extract them from experimental data. To do so, one could

implement a smooth cutoff that freezes the perturbative contribution slowly as bT gets

larger:

F̃g/A(xA, bT ; ζA, µ) = F̃Pert
g/A (xA, b̂T ; ζA, µ) F̃NP (xA, bT ; ζA) , (4.3)

where the cutoff prescription could be, for instance:

b̂T (bT ) = bc

(
1− e−(bT /bc)

n
)1/n

, (4.4)

with n an integer number and bc the parameter that determines the separation between

the perturbative and non-perturbative regions. For small bT the perturbative contribution

dominates, and gets frozen as we increase the bT , since b̂T → bc for large bT . The non-

perturbative model F̃NP is constrained to be 1 for bT = 0 and plays an increasingly

important role as we increase bT .

4.2 Resummation in momentum space

Instead of setting µ0 ∼ µb, in this case we keep it in momentum space. In this way we

avoid hitting the Landau pole in the strong coupling, and we write the TMDPDF as

F̃Pert
g/A (xA, bT ; ζA, µ) = exp

{∫ µ

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA
µ̄2

)} (
ζA
ζ0

)−Dg(bT ;µ0)

×
∑

j=q,q̄,g

C̃g/j(xA, bT ; ζ0, µ0)⊗ fj/A(xA;µ0) , (4.5)

where ζ0 = C2
ζµ

2
b and µ0 ∼ qT . We have kept explicitly the dependence on the real

parameter Cζ , which will be used later on to test the dependence of the results on the

rapidity scale, basically varying it between 1/2 and 2. This is because the way it enters in

the final resummed expression for the TMDPDF is subtle, contrary to the scale µ0, which

can be easily identified where it appears.

Now the coefficients C̃g/j contain large logarithms ln(µ0bT ) which are not minimized by

the choice µ0 ∼ qT (this was the case in the previous subsection, when choosing µ0 ∼ 1/bT ).

However we can further split them by using their RG-equation

d

dlnµ
C̃g/j

(
x, bT ;C2

ζµ
2
b , µ
)

=
(
ΓAcuspLT − γnc − ΓAcusplnC2

ζ

)
C̃g/j

(
x, bT ;C2

ζµ
2
b , µ
)

−
∑
i

∫ 1

x

dz

z
C̃g/i(z, bT ;C2

ζµ
2
b , µ)Pi/j(x/z) , (4.6)

– 13 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
8

where Pi/j(x/z) are the usual DGLAP splitting kernels, so that double logarithms can be

partially exponentiated (see [63] for the quark case):

C̃g/j
(
x, bT ;C2

ζµ
2
b , µ
)
≡ exp [hΓ(bT ;µ)− hγ(bT ;µ)] Ĩg/j(x, bT ;µ) , (4.7)

where

dhΓ

dlnµ
= ΓAcuspLT ,

dhγ
dlnµ

= γnc + ΓAcusplnC2
ζ . (4.8)

Choosing hΓ(γ)(bT ;µb) = 0, the first few coefficients for the perturbative expansions of

hΓ(γ) are:

hΓ(γ) =
∑
n

h
(n)
Γ(γ)

(αs
4π

)n
,

h
(1)
Γ =

1

4
L2
TΓA0 , h

(2)
Γ =

1

12

(
L3
TΓA0 β0 + 3L2

TΓA1
)
,

h
(3)
Γ =

1

24

(
L4
TΓA0 β

2
0 + 2L3

TΓA0 β1 + 4L3
TΓA1 β0 + 6L2

TΓA2
)
,

h(1)
γ =

γnc0 +ΓA0 lnC2
ζ

2β0
(β0LT ) , h(2)

γ =
γnc0 +ΓA0 lnC2

ζ

4β0
(β0LT )2+

(
γnc1 +ΓA1 lnC2

ζ

2β0

)
(β0LT ) ,

h(3)
γ =

γnc0 + ΓA0 lnC2
ζ

6β0
(β0LT )3 +

1

2

(
γnc1 + ΓA1 lnC2

ζ

β0
+

1

2

(γnc0 + ΓA0 lnC2
ζ )β1

β2
0

)
(β0LT )2

+
1

2

(
γnc2 + ΓA2 lnC2

ζ

β0

)
(β0LT ) . (4.9)

After the various steps we have performed, the OPE of gluon TMDPDFs can be re-

written as

F̃Pert
g/A (xA, bT ; ζA, µ)= exp

{∫ µ

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA
µ̄2

)}(
ζA
C2
ζµ

2
b

)−Dg(bT ;µ0)

ehΓ(bT ;µ0)−hγ(bT ;µ0)

×
∑

j=q,q̄,g

Ĩg/j(xA, bT ;µ0)⊗ fj/A(xA;µ0) . (4.10)

The functions Dg, hΓ and hγ above still contain large logarithms LT that need to be

resummed when αsLT is of order 1 (also the coefficients Ĩg/j). We have already calculated

the resummed expression for DR
g in the previous section, and following the same procedure

we can derive the resummed expressions for the terms hΓ(γ). Let us consider their evolution

equations, eq. (4.8):

hRΓ (bT ;µ) = hΓ(bT ;µb) +

∫ µ

µb

dµ̄

µ̄
ΓAcuspLT =

∫ αs(µ)

αs(µb)
dα′

ΓAcusp(α′)

β(α′)

∫ α′

αs(µb)

dα

β(α)
,

hRγ (bT ;µ) = hγ(bT ;µb) +

∫ µ

µb

dµ̄

µ̄

(
γnc + ΓAcusplnC2

ζ

)
=

∫ µ

µb

dµ̄

µ̄

(
γnc + ΓAcusplnC2

ζ

)
. (4.11)
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Notice that we have chosen hΓ(γ)(bT ;µb) = 0. By expanding the β-function and re-writing

αs(µb) in terms of αs(µ) at the proper order, as shown in [60] for the quark TMDPDFs

case, we can solve these equations and get

hRΓ (bT ;µ) =
ΓA0 (X − (X − 1)ln(1−X))

2asβ2
0

+
β1ΓA0

(
2X + ln2(1−X) + 2ln(1−X)

)
− 2β0ΓA1 (X + ln(1−X))

4β3
0

+
as

4β4
0(1−X)

(
β2

0ΓA2 X
2 − β0(β1ΓA1 (X(X + 2) + 2ln(1−X))

+β2ΓA0 ((X − 2)X + 2(X − 1)ln(1−X))) + β2
1ΓA0 (X + ln(1−X))2

)
, (4.12)

and

hRγ (bT ;µ) = −
γnc0 +ΓA0 lnC2

ζ

2β0
ln(1−X)+

1

2

(
as

1−X

)[
−
β1(γnc0 +ΓA0 lnC2

ζ )

β2
0

(X+ln(1−X))

+
γnc1 + ΓA1 lnC2

ζ

β0
X

]
+

1

2

(
as

1−X

)2
[
γnc2 + ΓA2 lnC2

ζ

2β0
(X(2−X))

+
β1(γnc1 + ΓA1 lnC2

ζ )

2β2
0

(X(X − 2)− 2ln(1−X))

+
β2(γnc0 + ΓA0 lnC2

ζ )

2β2
0

X2 +
β2

1(γnc0 + ΓA0 lnC2
ζ )

2β3
0

(ln2(1−X)−X2)

]
, (4.13)

where again as = αs/(4π) and X = asβ0LT .

The resummed expressions we have just found are valid only in the perturbative region

of small bT . With them, we can finally write the resummed TMDPDFs as:

F̃Pert
g/A (xA, bT ; ζA, µ) = exp

{∫ µ

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

ζA
µ̄2

)}(
ζA
C2
ζµ

2
b

)−DRg (bT ;µ0)

eh
R
Γ (bT ;µ0)−hRγ (bT ;µ0)

×
∑

j=q,q̄,g

Ĩg/j(xA, bT ;µ0)⊗ fj/A(xA;µ0) . (4.14)

Notice that the functions DR
g , hRΓ and hRγ are universal and spin independent, and thus

are the same for any of the TMDPDFs in eq. (2.19). On the contrary, the coefficients

Ĩg/j are specific for each TMDPDF, as are the collinear functions fj/A which generate the

perturbative tail for each TMDPDF at small bT .

Finally, in order to parametrize the non-perturbative contribution at large bT we over-

lap the perturbative expression in eq. (4.14) with a non-perturbative model and write

F̃g/A(xA, bT ; ζA, µ) = F̃Pert
g/A (xA, bT ; ζA, µ) F̃NP (xA, bT ; ζA) . (4.15)

The two functions, perturbative and non-perturbative, extend over the whole impact pa-

rameter space. However, their contributions should dominate in different regions. The

function F̃NP , the non-perturbative model, should be 1 for bT = 0, where the perturbative
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expression applies, and play an increasingly important role as bT gets larger. Moreover, it

should be such that it cancels the contribution that comes from the perturbative expression

F̃Pert
g/A in the large bT region, where it does not apply. In simple terms, there is no problem

with extending the perturbative expression to the whole bT -space, since the model is used

to correct for it in the non-perturbative region. This approach was used in [63] to perform

a global fit of Drell-Yan and Z-boson data and extract the unpolarized quark TMDPDFs.

As a final remark, we emphasize the fact that the non-perturbative model in this case is

not the same as in the previous subsection. They parametrize the non-perturbative region

in a different way, depending on what is the treatment of the perturbative contribution,

and thus they can be different.

5 Gluon helicity TMDPDF

The gluon helicity TMDPDF, gg1L, represents the distribution of longitudinally polarized

gluons inside a longitudinally polarized hadron. In appendix C we perform for the first

time an explicit NLO calculation of this quantity and show that, if defined as in eq. (2.10),

then the rapidity divergences cancel among the collinear and soft matrix elements. We also

perform a NLO calculation on the collinear gluon helicity PDF gj/A(x;µ), which we use to

extract the OPE Wilson coefficient of gluon helicity TMDPDF:

g̃
g/A
1L (xA, bT ; ζA, µ) =

∑
j=q,q̄,g

∫ 1

xA

dx̄

x̄
C̃gg/j(x̄, bT ; ζA, µ) gj/A(xA/x̄;µ) +O(bTΛQCD) , (5.1)

where the longitudinally polarized collinear quark and gluon PDFs are defined as

gq/A(x;µ) =
1

2

∫
dy−

2π
e−i

1
2
y−xP+ 〈PSA|

[
ξ̄nWn

]
(y−)

n̄/

2
γ5

[
W †nξn

]
(0) |PSA〉 ,

gg/A(x;µ) =
xP+

2
(iε⊥µν)

∫
dy−

2π
e−i

1
2
y−xP+ 〈PSA| Bµ,an⊥(y−)Bν,an⊥(0) |PSA〉 , (5.2)

with ξn(n̄) the (anti)collinear fermion field. The result of the coefficient is analogous to the

one for the unpolarized gluon TMDPDF, as we will show in next section, apart from the

DGLAP splitting kernel (similar result was found in the case of unpolarized and helicity

quark TMDPDFs in [64]). It reads

C̃gg/g =
αs
2π

[
CAδ(1− x)

(
−1

2
L2
T + LT ln

µ2

ζ
− π2

12

)
− LT

(
P∆g/∆g − δ(1− x)

β0

2

)]
,

C̃gg/q =
αs
2π

[
− LTP∆g/∆q + CFx

]
, (5.3)

where the one-loop DGLAP splitting kernels (collected for all polarizations in [65]) are

P∆g/∆g(x) = Pg/g(x)− 2CA
(1− x)3

x
,

Pg/g(x) = 2CA

[
x

(1− x)+
+

1− x
x

+ x(1− x)

]
+
β0

2
δ(1− x) ,

P∆g/∆q(x) = CF
1− (1− x)2

x
. (5.4)

– 16 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
8

ΓAcusp γnc Ĩg/j DR
g hRΓ hRγ C̃g/j Dg

LL α1
s α0

s α0
s α0

s α−1
s 0 α0

s α0
s

NLL α2
s α1

s α0
s α1

s α0
s α0

s α0
s α1

s

NNLL α3
s α2

s α1
s α2

s α1
s α1

s α1
s α2

s

Table 1. Perturbative orders in logarithmic resummations, both for for resummations in momen-

tum space and in impact parameter space.

In order to illustrate the QCD evolution of gluon helicity TMDPDF we choose the

resummation scale in impact parameter space. We also set µ2 = ζ = Q2, use the evolution

kernel in eq. (3.12) and separate the perturbative and non-perturbative contributions in a

smooth way as in eq. (4.3). Thus the gluon helicity TMDPDF is given by

g̃g1L(xA, bT ;Q2, Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)} (
Q2

ζ0

)−Dg(b̂T ;µ0)

(5.5)

×
∑

j=q,q̄,g

∫ 1

xA

dx̄

x̄
C̃gg/j(x̄, b̂T ; ζ0, µ0) gj/A(xA/x̄;µ0) F̃NPj/A (xA, bT ;Q) ,

where ζ0 ∼ µ2
0 ∼ µ2

b . For our numerical studies the b̂T prescription is

b̂T (bT ) = bc

(
1− e−(bT /bc)

2
)1/2

, bc = 1.5 GeV−1 , (5.6)

and we implement a simple non-perturbative model

F̃NPj/A (xA, bT ;Q) = exp
[
−b2T (λg + λQln(Q2/Q2

0))
]
, Q0 = 1 GeV . (5.7)

The parameters λg and λQ have never been extracted from experimental data, and thus

we can only guess their values and give predictions by varying them in a reasonable range.

What we know is that λQ is the same among all (un)polarized gluon TMDPDFs, because

it parametrizes the scale-dependent part of the non-perturbative model, which is related to

the large-bT tail of the universal Dg function. Notice that for simplicity we have neglected

any x dependences in the non-perturbative model.

The gluon helicity TMDPDF is shown in figure 1 at x = 0.01, Q = 20 GeV, with

the non-perturbative parameters bc = 1.5 GeV−1, λg = 0.3, λQ = 0.1. We use the latest

available parametrizations of collinear gluon and quark helicity PDFs [66] at NLO for our

numerical analysis. The running of the strong coupling is implemented at NNNLO with

the MSTW routine [67], with a variable flavor number scheme with mc = 1.4 GeV and

mb = 4.75 GeV. The input value for the strong coupling is set to αs(MZ) = 0.1185, and

we impose a lower cutoff for the running scale µ such that it never goes below 1 GeV. The

bands come from varying both the rapidity and the resummation scales by a factor of 2

around their default value, and keeping the largest variation for each point in kT . It is clear

that the theoretical uncertainty gets reduced as we increase the resummation accuracy by

including more perturbative ingredients, as schematically illustrated in table 1.
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Figure 1. The gluon helicity TMDPDF gg1L at Q = 20 GeV, x = 0.01 and with the non-perturbative

parameters chosen to be λg = 0.3 and λQ = 0.1. The bands come from varying independently both

the resummation scale µ0 and the rapidity scale ζ0 by a factor of 2 around their default value, and

taking the maximum variation.

In figure 2 we show the gluon helicity TMDPDF at x = 0.01, for different values of

the energy scale and the non-perturbative parameters, at NNLL accuracy. In order to be

consistent with the factorization theorem we have cut the curves so that the condition kT �
Q is fulfilled. As can be seen, the larger the scale, the wider is the distribution. Moreover,

the larger the value of the non-perturbative parameters, the smaller the helicity distribution

is at low transverse momentum. It is interesting to notice that choosing small and equal

non-perturbative parameters, gives a qualitatively different gluon helicity TMDPDF at low

scales, as in the upper-left panel.

These results have been obtained using the OPE coefficients that have been calculated

for the first time in the present work. They are an important perturbative ingredient that

will allow us to better fix the non-perturbative parameters with new measurements, that

could be performed at RHIC or at the future AFTER@LHC or EIC with longitudinally

polarized hadron beams.

6 Gluon TMDPDFs in an unpolarized hadron

As shown in eq. (2.19) there are two gluon distributions that contribute at leading-twist in

the case of an unpolarized hadron: the unpolarized (fg1 ) and the linearly polarized (h⊥g1 )

ones. The latter was introduced in [53] and implemented for the first time in the resumma-

tion of gluon-gluon fusion process in impact parameter space in [18, 19]. In appendices A

and B we perform an explicit NLO calculation of those distributions using their proper

definition in eq. (2.13), and we show that they are free from rapidity divergences when the

collinear and soft matrix elements are combined properly.

As described in the previous section for the gluon helicity TMDPDF, both fg1 and h⊥g1

in the small bT region can be factorized in terms of collinear functions, which in this case
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Figure 2. The gluon helicity TMDPDF gg1L at x = 0.01 for different values of the evolution scale

and the non-perturbative parameters, at
√
s = 8 TeV. All curves are given at NNLL accuracy.

are just the unpolarized collinear gluon/quark PDFs:

f̃
g/A
1 (xA, bT ; ζA, µ) =

∑
j=q,q̄,g

∫ 1

xA

dx̄

x̄
C̃fg/j(x̄, bT ; ζA, µ)fj/A(xA/x̄;µ)+O(bTΛQCD) ,

h̃
⊥g/A (2)
1 (xA, bT ; ζA, µ) =

∑
j=q,q̄,g

∫ 1

xA

dx̄

x̄
C̃hg/j(x̄, bT ; ζA, µ)fj/A(xA/x̄;µ)+O(bTΛQCD) , (6.1)

where the unpolarized collinear PDFs are defined as

fq/A(x;µ) =
1

2

∫
dy−

2π
e−i

1
2
y−xP+ 〈PSA|

[
ξ̄nWn

]
(y−)

n̄/

2

[
W †nξn

]
(0) |PSA〉 ,

fg/A(x;µ) =
xP+

2

∫
dy−

2π
e−i

1
2
y−xP+ 〈PSA| Bµ,an⊥(y−)Ban⊥µ(0) |PSA〉 . (6.2)

Note that the TMDPDFs for the unpolarized gluon and the linearly polarized gluon are

both matched onto the same PDF, but the first non-zero order of the matching coefficient

for the linearly polarized gluon is one order higher in αs than for the unpolarized gluon.
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In appendices A and B we obtain their matching coefficients at NLO by subtracting the

collinear PDFs at the same order. Moreover, in section 4 we have shown that the OPE

coefficients for TMDs can be further refactorized, and thus the previous OPEs can be

written, setting µ2 = ζ = Q2 and using the evolution kernel in eq. (3.12), as

f̃
g/A
1 (xA, bT ;Q2, Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)} (
Q2

ζ0

)−Dg(bT ;µ0)

(6.3)

×
∑

j=q,q̄,g

∫ 1

xA

dx̄

x̄
C̃fg/j(x̄, bT ; ζ0, µ0) fj/A(xA/x̄;µ0) +O(bTΛQCD) ,

h̃
⊥g/A (2)
1 (xA, bT ;Q2, Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)} (
Q2b2T

4e−2γE

)−Dg(bT ;µ0)

×
∑

j=q,q̄,g

∫ 1

xA

dx̄

x̄
C̃hg/j(x̄, bT ; ζ0, µ0) fj/A(xA/x̄;µ0) +O(bTΛQCD) .

The perturbative coefficients C̃f,hg/j are given in appendices A and B, the one-loop DGLAP

splitting kernel Pg/g is given in eq. (5.4) and

Pg/q(x) = CF
1 + (1− x)2

x
. (6.4)

The contribution of unpolarized and/or linearly polarized gluon distributions in unpo-

larized hadron-hadron collisions depends on the process under study and has been discussed

in several works [36, 38–41]. In this work we focus on the production of Higgs boson and

C-even pseudoscalar bottonium state ηb [30], since for the production of P -wave quarko-

nium states (like χb0) there are arguments that suggest a breaking of the factorization [68].

In the considered cases, Higgs boson and ηb production, both unpolarized and linearly

polarized distributions play a role, and thus one can investigate their relative contribution

to the cross-section. We use our results to quantify the contribution of linearly polarized

gluons, considering the following ratio:2

R(xA, xB, qT ;Q) =

∫
d2bT e

−iqT ·bT h̃
⊥g/A(2)
1 (xA, bT ;Q2, Q) h̃

⊥g/B(2)
1 (xB, bT ;Q2, Q)∫

d2bT e−iqT ·bT f̃
g/A
1 (xA, bT ;Q2, Q) f̃

g/B
1 (xB, bT ;Q2, Q)

, (6.5)

where the numerator and denominator are the two terms in the factorized cross section

which determine the relative contribution from linearly polarized and unpolarized gluons

to the cross section, for both Higgs boson and C-even pseudoscalar bottonium production.

In order to compute this quantity we will insert the TMDs as in eq. (6.3), choosing ζ0 ∼
µ2

0 ∼ µ2
b and using the b̂T prescription to separate the perturbative from non-perturbative

contributions as in eq. (5.6). The latter will be parametrized as:

F̃ f,NPj/A (xA, bT ;Q) = exp
[
−b2T (λf + λQln(Q2/Q2

0))
]
, Q0 = 1 GeV ,

F̃ h,NPj/A (xA, bT ;Q) = exp
[
−b2T (λh + λQln(Q2/Q2

0))
]
, Q0 = 1 GeV , (6.6)

2The moments of TMDPDFs, and in particular the second moment of h⊥g1 , are defined in eq. (2.20).
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Figure 3. Ratio R for different values of the non-perturbative parameters λf(h) and λQ, at the

relevant scales for Higgs boson and ηb production. The curves are calculated at NNLL accuracy

and for
√
s = 8 TeV. The bands come from varying independently both the resummation scale

µ0 and the rapidity scale ζ0 by a factor of 2 around their default value, and taking the maximum

variation. Notice the differences in scales on the vertical axes.

similar to the model used previously for the helicity TMDPDF. Notice that the parameter

λQ is the same for both functions, since the evolution is universal among all (un)polarized

TMDPDFs, that is, their scale-dependence is the same. Having precise estimates for this

ratio will help us predict the measurability of both unpolarized and linearly polarized gluon

distributions in a given process (or scale), which is the final goal. Using our resummation

scheme and the perturbative ingredients at the highest possible order we provide accurate

predictions for this quantity.

In figure 3 we show our results for the ratio R at the relevant scales for the trans-

verse momentum distributions of Higgs boson and ηb, all at NNLL accuracy. We used

the MSTW08nnlo set [67] and selected different values for the non-perturbative parame-

ters in order to check their impact on the result. The running of the strong coupling is

implemented at NNNLO with the MSTW routine, with a variable flavor number scheme

with mc = 1.4 GeV and mb = 4.75 GeV. The input value for the strong coupling is set to

– 21 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
8

αs(MZ) = 0.1185, and we impose a lower cutoff for the running scale µ such that it never

goes below 0.4 GeV. Comparing our results to the ones presented in [41], we have included

the contribution of quark PDFs to the collinear expansion of gluon TMDPDFs (through

C̃f,hg/q in eq. (6.3)) and also higher order perturbative ingredients, performing the resumma-

tion consistently at NNLL accuracy. The uncertainty bands also represent an improvement

with respect to the results in [41]: they allow us to better quantify what is the effect of

non-perturbative contributions relative to the scale uncertainty, and whether experimental

data can be used to determine the non-perturbative parameters or distinguish between

different models of the non-perturbative input. The bands are obtained by independently

varying the scales ζ0 and µ0 around their default value by a factor of 2, and plotting the

maximum uncertainty for each point in qT .

In order to estimate the impact on the ratio of the different non-perturbative param-

eters, we have chosen several values in a sensible range and selected some combinations in

limiting cases. First, the parameters should be positive, since the gluon distributions are

supposed to vanish at large bT . Second, given the values found for similar models in the

case of quark TMDPDFs (see, e.g., [69]), we have chosen a maximum value of 1. Finally,

since our goal is to estimate the contribution of linearly polarized gluons as compared to

unpolarized ones, we have chosen the following limiting cases:

(i) λQ = 0.01, λf = λh = 0.01. Small evolution parameter λQ and similar and small

parameters λf and λh.

(ii) λQ = 0.01, λf = 0.01, λh = 1. Small evolution parameter λQ and λh � λf .

(iii) λQ = 1, λf = λh = 0.01. Large evolution parameter λQ and similar and small

parameters λf and λh.

(iv) λQ = 1, λf = 0.01, λh = 1. Large evolution parameter λQ and λh � λf .

The outcome of the numerical study is clear: the lower the scale the more contribution

we have from linearly polarized gluons, although this contribution depends on the value of

the non-perturbative parameters, which will have to be fixed by fitting experimental data.

At the Higgs boson scale the effect of linearly polarized gluons is small, around 1-9%,

making it harder to extract their non-perturbative parameters from experimental data.

At lower scales, as in the production of ηb, their role is enhanced, from 10% up to 70%,

and thus experimental data can better determine them. However, it seems plausible that

their non-perturbative parameters could be fixed in the near future by properly combining

experimental data for different experiments and at different scales. Thus the framework

introduced in this paper, with the proper definition of gluon TMDPDFs and their QCD

evolution, will be crucial in order to consistently address different processes in terms of the

same hadronic quantities and properly extract their non-perturbative parameters.

7 Higgs boson qT -distribution

After analyzing the contribution of linearly polarized gluons for ηb and Higgs boson produc-

tion in unpolarized hadron-hadron collisions, we apply our results to provide some predic-
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tions for the Higgs boson transverse momentum distribution at the LHC. The cross-section

for this process can be easily obtained from eq. (2.16) if we consider unpolarized protons:

dσ

dy d2q⊥
= 2σ0(µ)C2

t (m2
t , µ)H(m2

H , µ)
1

(2π)2

∫
d2y⊥ e

iq⊥·y⊥

× 1

2

[
f̃
g/A
1 (xA, bT ; ζA, µ) f̃

g/B
1 (xB, bT ; ζB, µ)

+ h̃
⊥ g/A(2)
1 (xA, bT ; ζA, µ) h̃

⊥ g/B(2)
1 (xB, bT ; ζB, µ)

]
+O(qT /mH) . (7.1)

It is well-known that the evolution kernel suppresses the TMDPDFs at large bT , and

that this effect is enhanced the larger the relevant hard scale Q is, in this case mH [60] (see

also, e.g., the discussion in [70] in the context of the Collins-Soper-Sterman approach).

Therefore, the larger the Q the more insensitive is the resummed expression to non-

perturbative contributions at large bT . Based on this, we fix the resummation scale in

momentum space, µ0 = Q0 + qT (with Q0 = 2 GeV), and write

f̃
g/A
1 (xA, bT ;Q2, Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)}(
Q2

ζ0

)−DRg (bT ;µ0)

eh
R
Γ (bT ;µ0)−hRγ (bT ;µ0)

×
∑

j=q,q̄,g

∫ 1

xA

dx̄

x̄
Ĩfg/j(x̄, bT ;µ0) fj/A(xA/x̄;µ0) +O(bTΛQCD) ,

h̃
⊥g/A (2)
1 (xA, bT ;Q2, Q) = exp

{∫ Q

µ0

dµ̄

µ̄
γG

(
αs(µ̄), ln

Q2

µ̄2

)}(
Q2

ζ0

)−DRg (bT ;µ0)

eh
R
Γ (bT ;µ0)−hRγ (bT ;µ0)

×
∑

j=q,q̄,g

∫ 1

xA

dx̄

x̄
Ĩhg/j(x̄, bT ;µ0) fj/A(xA/x̄;µ0) +O(bTΛQCD) , (7.2)

where ζ0 ∼ µ2
b . The perturbative coefficients Ĩf(h) are derived from the results in appen-

dices A and B:

Ĩfg/g(x, bT ;µ) = δ(1− x) +
αs
2π

[
−Pg/gLT − CA

π2

12
δ(1− x)

]
,

Ĩfg/q(x, bT ;µ) =
αs
2π

[
−Pg/qLT + CFx

]
,

Ĩhg/g(x, bT ;µ) =
αs
2π

[
−2CA

1− x
x

]
,

Ĩhg/q(x, bT ;µ) =
αs
2π

[
−2CF

1− x
x

]
. (7.3)

We parametrize the TMDPDFs as in eq. (4.15), which allows us to exploit the pertur-

bative results without using any prescription, like the b̂T . This procedure was already used

in [63] to perform a global fit of Drell-Yan data, to obtain the non-perturbative parameters

of unpolarized quark TMDPDFs. Following the same procedure, and leaving some room

for small non-perturbative effects, we multiply the TMDPDFs in eq. (7.2) by the following

non-perturbative models:

F̃NP
f (x, bT ;Q) = e−βf bT ,

F̃NP
h (x, bT ;Q) = e−βhbT , (7.4)

where we have neglected the dependence on x and Q for simplicity.
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The resummation of large logarithms in the cross-section in eq. (7.1) is done by eval-

uating each perturbative coefficient at its natural scale and then evolving them up to a

common scale by using their relevant anomalous dimensions. For the TMDPDFs the re-

summation was already discussed before and led to eq. (7.2). The natural scale for the

coefficient Ct is µt ∼ mt, and its evolution is presented in appendix E. For CH(−q2, µ)

(remember that H = |CH |2) it was discussed in [50] that the choice µ2
H ∼ −m2

H leads to

a better convergence of the resummed expression, and thus we apply that procedure in

our numerical study, using the anomalous dimensions that appear in appendix E. At NLL

accuracy we take the coefficients at LO, and at NNLL accuracy at NLO, combined with

the TMDPDFs at the corresponding order given in table 1.

In figure 4 we show the Higgs boson transverse momentum distribution at
√
s =

8 TeV, for different values of the non-perturbative parameters and both at NLL and NNLL

accuracies. We have chosen βh = βf for simplicity, given that in the previous section we

showed that the impact of linearly polarized gluons at the Higgs boson scale is small. The

choices βf = βh = 0 and βf = βh = 1 give the most extreme scenarios, where the total

non-perturbative contribution of both functions is zero or large. We used the MSTW08nnlo

set [67] for the input PDFs. The running of the strong coupling is implemented at NNNLO

with the MSTW routine, with a variable flavor number scheme with mc = 1.4 GeV and

mb = 4.75 GeV. The input value for the strong coupling is set to αs(MZ) = 0.1185, and

we impose a lower cutoff for the running scale µ such that it never goes below Q0 = 2 GeV.

The bands come from varying both the resummation scale µ0 and the rapidity scale ζ0

by a factor of 2 around their default values, which gives a much larger contribution than

the variation of the scales µt and µH . The bands at NNLL get smaller than the ones at

NLL, but there is no overlap between them. This is because we have exponentiated the

rapidity scale dependence of the parameter Cζ through the resummed hRγ in eq. (4.13).

This exponentiation makes the cross-section at a given resummation order contain some

contributions of higher orders, and thus the NLL band, in particular, is smaller. At NNLL

this issue is much less relevant, as will be clear below when comparing with the prediction

with the resummation in impact parameter space.

If we compare the two panels in figure 4, we see that the impact of the non-perturbative

contribution leads to a significant change of the distribution. However the choice βf,h = 1 is

rather extreme, since the non-perturbative model in eq. (7.4), which is an exponential func-

tion, induces rather large corrections to the perturbative expression in the low bT region,

exactly where one would expect it to work better. Thus, given that the non-perturbative

parameters should probably be smaller, we conclude that the Higgs boson transverse mo-

mentum distribution is not very sensitive to those parameters. The same conclusion was

drawn in [26], where a Gaussian model was used to parametrize the non-perturbative con-

tributions, and which led to an almost negligible impact on the distribution. This is easy

to understand, since the Gaussian function in the low bT region is closer to 1 than the

exponential function and therefore has an even smaller impact.

Let us now turn our attention to figure 5, where we present a similar prediction to the

one already discussed, but with the resummation performed in impact parameter space.

We use here the same settings for the PDFs and the running of the strong coupling as
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Figure 4. Cross-section [pb/GeV] for different values of the non-perturbative parameters βf,h
and the resummation done in momentum space, with µ0 ∼ qT . We have

√
s = 8 TeV and mH =

125 GeV. The bands come from varying independently both the resummation scale µ0 and the

rapidity scale ζ0 by a factor of 2 around their default value, and taking the maximum variation.

in figure 4. The relevant resummed expressions for the unpolarized and linearly polarized

gluon distributions were given in eq. (6.3). As can be seen, the bands at NLL are now bigger

compared to the previous approach, and overlap with the NNLL bands. Again, comparing

the two panels in this figure we see that the effect of the explored non-perturbative param-

eters is rather small. Notice that the NNLL curves within the two approaches, in figures 4

and 5, are compatible, and consistent with the recent results found in [27].

Finally, in figure 6 we show the predictions for the distribution at
√
s = 13 TeV, at

NNLL accuracy and again for extreme values of the non-perturbative parameters, with

both resummation approaches. The cross-section is bigger than at
√
s = 8 TeV, but the

same conclusions regarding the sensitivity to the non-perturbative parameters apply: the

range in parameter variation shown in the left figure is rather large, and it seems unlikely

that experimental measurements of the Higgs qT distribution at the LHC will be precise

enough to fix the non-perturbative parameters of gluon TMDPDFs, apart from excluding

the most vivid parameter values.

8 Conclusions

Using the effective field theory methodology we have derived the factorization theorem for

the Higgs boson transverse momentum distribution in hadron-hadron collisions with general

polarizations, A(P, SA) + B(P̄ , SB) → H(mH , qT ) + X. By doing so, we have provided

the proper definition of all the leading-twist (un)polarized gluon TMDPDFs which could

contribute, adequately combining the relevant collinear and (part of) soft matrix elements

in order to cancel the spurious rapidity divergences. We have explicitly shown at NLO that,

as expected, those rapidity divergences cancel in the proper definition of gluon TMDPDFs

for three different distributions: unpolarized gluons in an unpolarized hadron (fg1 ), linearly

polarized gluons in an unpolarized hadron (h⊥g1 ) and longitudinally polarized gluons in a
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Figure 5. Cross-section [pb/GeV] for different values of the non-perturbative parameters λf,h,Q
and the resummation done in impact parameter space, with µ0 ∼ µb. We have

√
s = 8 TeV and

mH = 125 GeV. The bands come from varying independently both the resummation scale µ0 and

the rapidity scale ζ0 by a factor of 2 around their default value, and taking the maximum variation.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL√
s = 13 TeV

βf = βh = 0

βf = βh = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

d
σ
/
d
q T

qT [GeV]

NNLL

bc = 1.5 GeV−1

√
s = 13 TeV

λf = λh = λQ = 0

λf = λh = λQ = 0.5

Figure 6. Cross-section [pb/GeV] at
√
s = 13 TeV and NNLL accuracy for different values of the

non-perturbative parameters βf,h and λf,h,Q, depending on the resummation scheme used. On the

left plot the resummation is done in momentum space, while on the right plot it is done in impact

parameter space. The bands come from varying independently both the resummation scale µ0 and

the rapidity scale ζ0 by a factor of 2 around their default value, and taking the maximum variation.

longitudinally polarized hadron (gg1L). Having at our disposal the proper definition of gluon

TMDPDFs is crucial in order to consistently analyse different processes where they appear.

From the structure of the factorization theorem derived, we conclude that the evolu-

tion of all leading-twist (un)polarized gluon TMDPDFs is universal, i.e., the same evolution

kernel can be applied to evolve any of them. Moreover, given the currently known per-

turbative ingredients we have performed the resummation of large logarithms contained in

this evolution kernel up to NNLL accuracy.
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TMDPDFs are functions that contain perturbatively calculable information when the

transverse momentum is in the perturbative domain. In this work we have considered

all gluon TMDPDFs and discussed their operator product expansion in terms of collinear

functions. The OPE Wilson coefficients depend on the particular distribution but we have

shown that part of them is the same for all TMDPDFs. We have furthermore resummed

those universal pieces at NNLL accuracy, increasing our control over the perturbative

ingredients of the TMDPDFs. Moreover we have derived, for the first time, the NLO

Wilson coefficient for the gluon helicity TMDPDF gg1L, which will allow more accurate

phenomenological studies of this quantity in the future, e.g., at RHIC, AFTER@LHC or

EIC. We have also derived the OPE Wilson coefficients for fg1 and h⊥g1 in the framework

presented in this paper.

Using the obtained results we have performed a numerical study of the contribution of

linearly polarized gluons for the productions of ηb and Higgs boson in unpolarized hadron-

hadron collisions. The major conclusion is that the larger the relevant hard scale is, the

less sensitive is the observable to their non-perturbative contribution, and therefor harder

to extract. Thus one would need to combine low- and high-energy experimental data and

properly implement the QCD evolution of gluon TMDPDFs in order to extract it. On the

other hand, the fact that at large scales the transverse momentum distributions are less

sensitive to the non-perturbative parameters of the TMDPDFs allows us to obtain accurate

predictions even if currently there is no information on these parameters.

Finally we have provided some predictions for the Higgs boson transverse momentum

distribution at the LHC, both at
√
s = 8 TeV and

√
s = 13 TeV, using the formalism

presented in this paper, i.e., expressing it in terms of well-defined gluon TMDPDFs. We

have studied the impact of non-perturbative contributions on the distribution and have

shown that the sensitivity to them is very small.
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A OPE of fg
1 at NLO

In this appendix we present the calculation of the unpolarized gluon TMDPDFs at O(αs),

using dimensional regularization with the MS-scheme (µ2 → µ2eγE/(4π)) for ultra-violet

(UV) divergences and the ∆-regulator [9] for IR and rapidity divergences. We use the
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µ ν

(a) (b) (c) (d) (e)

Figure 7. One-loop diagrams that give non-zero contribution to the collinear matrix element Jµνn ,

which enters in the definition of the gluon TMDPDF G
µν[O]
g/A . Those diagrams correspond as well

to the collinear gluon PDF fg/A. Hermitian conjugates of diagrams (a), (b) and (d) are not shown.

Double lines stand for collinear Wilson lines. The blob in diagram (a) represents the WFR.

Keldysh formalism to perform the calculation (see, e.g., [73, 74]). Our first goal is to show

explicitly the cancellation of rapidity divergences in the properly defined gluon TMDPDFs

in eq. (2.13). On the other hand, we will extract the Wilson matching coefficients of the

TMDPDF onto its collinear counterparts, as they appear in eq. (6.1).

With the ∆-regulator, we write the poles of the gluon propagators that involve p or p̄

with a real and positive parameters ∆±,

−igµν
(p+ k)2 + i0

−→ −igµν
(p+ k)2 + i∆−

,

−igµν
(p̄+ k)2 + i0

−→ −igµν
(p̄+ k)2 + i∆+

, (A.1)

and for collinear and soft Wilson lines one has

1

k± ± i0 −→
1

k± ± iδ± . (A.2)

Now, given the fact that the soft and collinear matrix elements must reproduce the soft

and collinear limits of full QCD, they need to be regulated consistently, and thus δ± are

related with ∆± through the large components of the collinear fields,

δ+ =
∆+

p̄−
, δ− =

∆−

p+
. (A.3)

Note that ∆± (and hence δ±) are regulator parameters, and are set to zero unless they

regulate any divergence.

Let us now proceed with the partonic calculation, using eq. (2.15). If we consider a

hadron with definite helicity λ and take into account only the functions ff1 , h⊥g1 and gg1L
in eq. (2.17) we then have

Gµν(λ) = −g
µν
⊥
2
fg1 +

1

2

(
gµν⊥ −

2kµn⊥k
ν
n⊥

k2
nT

)
h⊥g1 − iλ

εµν⊥
2
gg1L . (A.4)
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Thus in order to pick up the different distributions we do:

fg1 =
1

d− 2
(−g⊥µν)

[
Gµν(+) +Gµν(−)

]
,

h⊥g1 =

(
gµν⊥ −

2kµn⊥k
ν
n⊥

k2
nT

)[
Gµν(+) +Gµν(−)

]
,

gg1L =
1

(d− 2)(d− 3)
(iε⊥µν)

[
Gµν(+)−Gµν(−)

]
, (A.5)

where we have used that

g⊥µνg
µν
⊥ = d− 2 ,

ε⊥µνε
µν
⊥ = (d− 2)(d− 3) . (A.6)

In this appendix we focus on the unpolarized gluon TMDPDF, but in the following ones

we calculate the linearly polarized and helicity gluon TMDPDFs.

At tree level the (naive) collinear matrix element is

J0 =
xp+

2

∫
dy−d2y⊥

(2π)3
e−i(

1
2
xy−p+−y⊥·kn⊥) (−gµν⊥ )

1

d− 2

∑
pols

εµ(p)ε∗ν(p) ei
1
2
y−p+

= δ(1− x)δ(2)(kn⊥) , (A.7)

where we have averaged over the gluon polarizations, projected with gµν⊥ to extract the

unpolarized TMDPDF (see eq. (A.5)) and used that3

εµ(p; +)ε∗ν(p; +) + εµ(p;−)ε∗ν(p;−) = −g⊥µν ,
εµ(p; +)ε∗ν(p; +)− εµ(p;−)ε∗ν(p;−) = −iε⊥µν . (A.8)

The Wave Function Renormalization (WFR) diagram 7a and its Hermitian conjugate

give

J
(7a)+(7a)∗

1 = δ(1−x)δ(2)(kn⊥)
1

d−2

∑
pols

εα(p)ε∗ν(p)(−g⊥νµ )
−i
p2

1

2

(
nf iΠ

αµ
q +iΠαµ

g +iΠαµ
G

)
+h.c.

=
αsCA

4π
δ(1− x)δ(2)(kn⊥)

[(
1

εUV
+ ln

µ2

∆−

)(
5

3
− 2

3

nf
CA

)
+

16

9
− 4

9

nf
CA

]
, (A.9)

where

iΠαµ
q = −2g2TFµ

2ε

∫
ddk

(2π)d
Tr [γµk/γα(p/− k/)]

[k2 + i0][(p− k)2 + i∆−]
,

iΠαµ
g =

1

2
g2CAµ

2ε

∫
ddk

(2π)d
[
− gµγ(p+ k)δ − gγδ(p− 2k)µ + gδµ(2p− k)γ

]
×
[
gαδ(2p− k)γ − gδγ(p− 2k)α − gαγ(p+ k)δ

] 1

[k2 + i0][(p− k)2 + i∆−]
,

Παµ
G = g2CAµ

2ε

∫
ddk

(2π)d
(p− k)µkα

[k2 + i0][(p− k)2 + i∆−]
. (A.10)

3One can easily prove these relations by considering the helicity polarization vectors ε± = 1√
2

(ε1 ± iε2),

where ε1 = (1, 0) and ε2 = (0, 1).
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All tadpole diagrams are identically 0, since n2 = n̄2 = 0 and they will not be consid-

ered any further. Diagram 7b and its Hermitian conjugate give

J
(7b)+(7b)∗

1 = −ig2CAδ(1−x)δ(2)(kn⊥)µ2ε

∫
ddk

(2π)d
2p++k+

[k+−iδ+][(p+k)2+i∆−][k2+i0]
+ h.c.

=
αsCA

2π
δ(1− x)δ(2)(kn⊥)

×
[

2

εUV
ln
δ+

p+
+

1

εUV
+ ln

µ2

∆−
+ 2ln

δ+

p+
ln
µ2

∆−
− ln2 δ

+

p+
+ 1− 7π2

12

]
. (A.11)

Diagram 7c gives

J
(7c)
1 = πCAg

2 1

d− 2
(−g⊥αν)µ2ε

×
∫

ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)δ(2)(k⊥ + kn⊥)

[(p− k)2 + i∆−][(p− k)2 − i∆−]
(−g⊥λσ)

×
(
−g⊥δρ +

n̄δk⊥ρ
k+ + iδ+

+
n̄ρk⊥δ

k+ − iδ+
− n̄δn̄ρk

2
⊥

(k+)2 + (δ+)2

)
×
[
gσβ⊥ −

(p− k)σ⊥n̄
β

p+ − k+

][
gλµ⊥ −

(p− k)λ⊥n̄
µ

p+ − k+

]
×
[
− gνβ(2p− k)ρ + g ρβ (p− 2k)ν + gρν(p+ k)β

]
×
[
gδµ(p− 2k)α − g αµ (2p− k)δ + gαδ(p+ k)µ

]
=
αsCA
π2

[
x

1− x +
(1− x)(1 + x2)

x

]
× (1− x)2

[(1− x)2 + (δ+/p+)2]

k2
nT

[k2
nT − i(1− x)∆−][k2

nT + i(1− x)∆−]
. (A.12)

Now we list the Fourier transforms of the previous results:

J̃0 = δ(1− x) , (A.13)

J̃
(7a)+(7a)∗

1 =
αsCA

4π
δ(1− x)

[(
1

εUV
+ ln

µ2

∆−

)(
5

3
− 2

3

nf
CA

)
+

16

9
− 4

9

nf
CA

]
, (A.14)

J̃
(7b)+(7b)∗

1 =
αsCA

2π
δ(1−x)

[
2

εUV
ln
δ+

p+
+

1

εUV
+ln

µ2

∆−
+2ln

δ+

p+
ln
µ2

∆−
−ln2 δ

+

p+
+1− 7π2

12

]
,

(A.15)

J̃
(7c)
1 =

αsCA
π

{[
x

(1− x)+
+

(1− x)(1 + x2)

x
− δ(1− x)ln

δ+

p+

](
−LT + ln

µ2

∆−

)
− (1−x)(1+x2)

x
ln(1−x)−

(
ln(1−x)

1−x

)
+

+
1

2

(
ln2 δ

+

p+
+
π2

12

)
δ(1−x)

}
, (A.16)

where LT = ln(µ2b2T e
2γE/4).

We have used the following identity in d = 2− 2ε to perform the Fourier transforms:∫
ddk⊥e

ik⊥·b⊥f(kT ) = b−dT (2π)
d
2

∫ ∞
0

dy y
d
2J d

2
−1(y) f

(
y

bT

)
, (A.17)
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(a) (b)

Figure 8. One-loop diagrams that give non-zero contribution to the soft function. Hermitian

conjugate of diagrams (a) and (b) are not shown. Double lines stand for soft Wilson lines.

with the particular result ∫
ddk⊥e

ik⊥·b⊥ k2
T

k4
T + Λ4

= π ln
4e−2γE

Λ2b2T
, (A.18)

when Λ→ 0. We have also used the following relations:

f(x)

[
1

(1−x)−iδ+/p+
+

1

(1−x)+iδ+/p+

]
=f(x)

[
2

(1−x)+
−2ln

δ+

p+
δ(1−x)

]
, (A.19)

f(x)

[
ln(1−x)

(1−x)−iδ+/p+
+

ln(1−x)

(1−x)+iδ+/p+

]
=f(x)

[
2

(
ln(1−x)

1−x

)
+

−
(

ln2 δ
+

p+
+
π2

12

)
δ(1−x)

]
,

where f(x) is any function regular at x→ 1.

Thus, in IPS, the collinear matrix element for the partonic channel of a gluon splitting

into a gluon is

J̃
g/g
1 =

αs
2π

[
δ(1− x)

(
β0

2εUV
+

2CA
εUV

ln
∆+

Q2

)
+ 2CAδ(1− x)LT ln

∆+

Q2
− LT

(
Pg/g − δ(1− x)

β0

2

)
+ ln

µ2

∆−
Pg/g − 2CAln(1− x)

(1− x)(1 + x2)

x
− 2CA

(
ln(1− x)

1− x

)
+

+ δ(1− x)

(
−π

2

2
CA +

17

9
CA −

2

9
nf

)]
. (A.20)

The mixed divergences in the result above ( 1
εUV

ln∆+) are rapidity divergences, which need

to be eliminated by combining it with the soft function as in eq. (2.15) in order to get a

well-defined TMDPDF.

Now we turn our attention to the soft function. Diagram 8a and its Hermitian conju-

gate give

S(8a)+(8a)∗ = −2ig2CAδ
(2)(ks⊥)µ2ε

∫
ddk

(2π)d
1

[k+ − iδ+][k− + iδ−][k2 + i0]
+ h.c.

= −αsCA
2π

δ(2)(ks⊥)

[
2

ε2
UV

− 2

εUV
ln
δ+δ−

µ2
+ ln2 δ

+δ−

µ2
+
π2

2

]
. (A.21)
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Diagram 8b and its Hermitian conjugate give

S(8b)+(8b)∗ = −4πg2CAµ
2ε

∫
ddk

(2π)d
δ(2)(k⊥ + ks⊥)δ(k2)θ(k+)

[k+ + iδ+][−k− + iδ−]
+ h.c.

= −αsCA
π2

1

k2
sT − δ+δ−

ln
δ+δ−

k2
sT

. (A.22)

Using the relation∫
ddk⊥e

ik⊥·b⊥f(kT ) = b−dT (2π)
d
2

∫ ∞
0

dy y
d
2J d

2
−1(y) f(y/bT ) (A.23)

and the particular result∫
ddk⊥e

ik⊥·b⊥ 1

k2
T − Λ2

ln
Λ2

k2
T

= π

(
−1

2
ln2 4e−2γE

Λ2b2T
− π2

3

)
(A.24)

when Λ → 0, we combine the virtual and real contributions to the soft function in IPS

to get

S̃1

(
∆−

p+
,

∆+

p̄−

)
=
αsCA

2π

[
− 2

ε2
UV

+
2

εUV
ln

∆−∆+

µ2Q2
+ L2

T + 2LT ln
∆−∆+

µ2Q2
+
π2

6

]
, (A.25)

where we have made the replacements δ+ = ∆+/p̄− and δ− = ∆−/p+.

Combining the collinear and soft matrix elements as in eq. (2.15) we get the unpolarized

TMDPDF in IPS for the g/g channel:

fg1g/g(x, bT ;µ, ζ) = δ(1− x) +

[
J̃
g/g
1 − 1

2
δ(1− x)S̃1

(
1

α

∆+

p+
,

∆+

p̄−

)]
= δ(1− x) +

αs
2π

{[
CA
ε2

UV

+
1

εUV

(
β0

2
+ CAln

µ2

ζ

)]
δ(1− x)

+ CA

(
−1

2
L2
T +LT ln

µ2

ζ
−π

2

12

)
δ(1−x)−LT

(
Pg/g−δ(1−x)

β0

2

)
+ ln

µ2

∆−
Pg/g − 2CAln(1− x)

(1− x)(1 + x2)

x
− 2CA

(
ln(1− x)

1− x

)
+

+ δ(1− x)

(
−π

2

2
CA +

17

9
CA −

2

9
nf

)}
. (A.26)

Notice that in this result the rapidity divergences have disappeared, and that we have

ended up with UV poles, which will give us the QCD evolution of this quantity, and a

single IR pole (parametrized by the ∆−), which is a manifestation of true long-distance

physics of QCD or confinement.

Finally we calculate the g/q channel, which corresponds to diagram 7e:

J
(7e)
1 = πCF g

2µ2ε

∫
ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)δ(2)(k⊥ + kn⊥)

[(p− k)2 + i∆−][(p− k)2 − i∆−]

× Tr
[
p/γβk/γα

](
gλα⊥ −

(p− k)λ⊥n̄
α

p+ − k+

)(
gρβ⊥ −

(p− k)ρ⊥n̄
β

p+ − k+

)
(−g⊥λρ)

=
αs
2π2
Pg/q

k2
nT

k4
nT + (1− x)2(∆−)2

. (A.27)
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In IPS we get

f̃g1g/q(x, bT ;µ, ζ) =
αs
2π
Pg/q

(
−LT + ln

µ2

∆−
− ln(1− x)

)
. (A.28)

This channel at this order does not have any rapidity divergences.

Next we calculate the collinear unpolarized gluon PDF, since our goal is to obtain the

OPE Wilson coefficient of the perturbative expansion of the unpolarized gluon TMDPDF

at large transverse momentum. Virtual diagrams are the same as for the unpolarized

gluon TMDPDF, apart from the δ(2)(kn⊥). The Wave Function Renormalization (WFR)

diagram 7a and its Hermitean conjugate give

f
g (7a)+(7a)∗

1 =
αsCA

4π
δ(1− x)

[(
1

εUV
+ ln

µ2

∆−

)(
5

3
− 2

3

nf
CA

)
+

16

9
− 4

9

nf
CA

]
. (A.29)

Diagram 7b and its Hermitian conjugate give

f
g (7b)+(7b)∗

1 =
αsCA

2π
δ(1−x)

[
2

εUV
ln
δ+

p+
+

1

εUV
+ln

µ2

∆−
+2ln

δ+

p+
ln
µ2

∆−
−ln2 δ

+

p+
+1− 7π2

12

]
.

(A.30)

Diagram 7c gives

f
g (7c)
1 = πCAg

2 1

d− 2
(−g⊥αν)µ2ε

∫
ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)

[(p− k)2 + i∆−][(p− k)2 − i∆−]
(−g⊥λσ)

×
(
−g⊥δρ +

n̄δk⊥ρ
k+ + iδ+

+
n̄ρk⊥δ

k+ − iδ+
− n̄δn̄ρk

2
⊥

(k+)2 + (δ+)2

)
×
[
gσ⊥β −

(p− k)σ⊥n̄β
p+ − k+

][
gλ⊥µ −

(p− k)λ⊥n̄µ
p+ − k+

]
×
[
− gνβ(2p− k)ρ + gβρ(p− 2k)ν + gρν(p+ k)β

]
×
[
gδµ(p− 2k)α − gµα(2p− k)δ + gαδ(p+ k)µ

]
=
αsCA
π

{[
x

(1− x)+
+

(1− x)(1 + x2)

x
− δ(1− x)ln

δ+

p+

](
1

εUV
+ ln

µ2

∆−

)
− (1−x)(1+x2)

x
ln(1−x)−

(
ln(1−x)

1−x

)
+

+
1

2

(
ln2 δ

+

p+
+
π2

12

)
δ(1−x)

}
. (A.31)

The unpolarized collinear gluon PDF in the g/g channel is then given by

fg1g/g(x;µ) = δ(1− x) +
αs
2π

[(
1

εUV
+ ln

µ2

∆−

)
Pg/g

− 2CAln(1− x)
(1− x)(1 + x2)

x
− 2CA

(
ln(1− x)

1− x

)
+

+ δ(1− x)

(
−π

2

2
CA +

17

9
CA −

2

9
nf

)]
. (A.32)

Notice that the single IR pole, which is parametrized by the logarithm of ∆−, is the true

collinear divergence of the PDF, remnant of QCD long-distance physics.
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We are ready now, given eq. (6.1), to extract the matching coefficient of the TMDPDF

onto the PDF in the g/g channel:

C̃fg/g = δ(1−x)+
αs
2π

[
CAδ(1−x)

(
−1

2
L2
T +LT ln

µ2

Q2
−π

2

12

)
−LT

(
Pg/g−δ(1−x)

β0

2

)]
. (A.33)

For the g/q channel the unpolarized collinear gluon PDF is given by

f
g (7e)
1g/q (x;µ) = πCF g

2

∫
µ2ε d

dk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)

[(p− k)2 + i∆−][(p− k)2 − i∆−]

× Tr
[
p/γβk/γα

](
gλα⊥ −

(p− k)λ⊥n̄
α

p+ − k+

)(
gρβ⊥ −

(p− k)ρ⊥n̄
β

p+ − k+

)
(−g⊥λρ)

=
αs
2π

[(
1

εUV
+ ln

µ2

∆−

)
Pg/q − Pg/qln(1− x)− CFx

]
, (A.34)

and thus the matching of the TMDPDF onto the PDF in the g/q channel is

C̃fg/q =
αs
2π

[
− LTPg/q + CFx

]
. (A.35)

B OPE of h⊥g
1 at NLO

The calculation in this appendix follows the same logic as in the previous one, so we limit

ourselves to provide the relevant results.

For the distribution of linearly polarized gluons inside an unpolarized hadron at NLO

only real diagrams contribute. In the g/g channel we have:

J
(7c)
1 = πCAg

2 1

d− 2
(−g⊥αν)µ2ε

∫
ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)δ(2)(k⊥ + kn⊥)

[(p− k)2 + i∆−][(p− k)2 − i∆−]

×
(
g⊥λσ −

2(p− k)⊥λ(p− k)⊥σ
(p− k)2

⊥

)
×
(
−g⊥δρ +

n̄δk⊥ρ
k+ + iδ+

+
n̄ρk⊥δ

k+ − iδ+
− n̄δn̄ρk

2
⊥

(k+)2 + (δ+)2

)
×
[
gσ⊥β −

(p− k)σ⊥n̄β
p+ − k+

][
gλ⊥µ −

(p− k)λ⊥n̄µ
p+ − k+

]
×
[
− gνβ(2p− k)ρ + gβρ(p− 2k)ν + gρν(p+ k)β

]
×
[
gδµ(p− 2k)α − gµα(2p− k)δ + gαδ(p+ k)µ

]
= −αsCA

π2

1− x
x

k2
nT

[k2
nT − i(1− x)∆−][k2

nT + i(1− x)∆−]
. (B.1)
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For the g/q channel we have:

J
(7e)
1 = πCF g

2µ2ε

∫
ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)δ(2)(k⊥ + kn⊥)

[(p− k)2 + i∆−][(p− k)2 − i∆−]

× Tr
[
p/γβk/γα

](
gλα⊥ −

(p−k)λ⊥n̄
α

p+−k+

)(
gρβ⊥ −

(p−k)ρ⊥n̄
β

p+−k+

)(
g⊥λρ−

2(p−k)⊥λ(p−k)⊥ρ
(p−k)2

⊥

)
= −αsCF

π2

1− x
x

k2
nT

[k2
nT − i(1− x)∆−][k2

nT + i(1− x)∆−]
. (B.2)

In order to go to IPS we do

h̃
⊥g (2)
1 (x, bT ) = −2π

∫
dknT knT J2(knT bT )h⊥g1 (x, knT ) , (B.3)

so then

h̃
⊥g (2)
1g/g =

αsCA
π

1− x
x

, (B.4)

and

h̃
⊥g (2)
1g/q =

αsCF
π

1− x
x

. (B.5)

Notice that at this perturbative order we do not find rapidity divergences.

The matchings of the linearly polarized gluon TMDPDF onto the collinear PDFs in

the g/g and g/q channels are then:

C̃hg/g =
αs
π
CA

1− x
x

,

C̃hg/q =
αs
π
CF

1− x
x

. (B.6)

Those results follow directly from the OPE of h̃
⊥g (2)
1 in terms of the collinear quark/gluon

PDFs, given that at LO the later are simply δ(1− x) while h̃
⊥g (2)
1 starts at order αs.

C OPE of gg
1L at NLO

Again the calculation in this appendix follows the same logic as in the previous ones, so

we limit ourselves to provide the relevant results.

At tree level the (naive) collinear matrix element is

J0 =
xp+

2

∫
dy−d2y⊥

(2π)3
e−i(

1
2
xy−p+−y⊥·kn⊥)

× (iεµν⊥ )

(d− 2)(d− 3)

[
εµ(p; +)ε∗ν(p; +)− εµ(p;−)ε∗ν(p;−)

]
ei

1
2
y−p+

= δ(1− x)δ(2)(kn⊥) . (C.1)
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The Wave Function Renormalization (WFR) diagram 7a and its Hermitean conjugate

give

J
(7a)+(7a)∗

1 = δ(1− x)δ(2)(kn⊥)

[
εα(p; +)ε∗ν(p; +)− εα(p;−)ε∗ν(p;−)

]
(d− 2)(d− 3)

× (iε⊥νµ )
−i
p2

1

2

(
nf iΠ

αµ
q + iΠαµ

g + iΠαµ
G

)
+ h.c.

=
αsCA

4π
δ(1−x)δ(2)(kn⊥)

[(
1

εUV
+ln

µ2

∆−

)(
5

3
− 2

3

nf
CA

)
+

16

9
− 4

9

nf
CA

]
. (C.2)

Diagram 7b and its Hermitean conjugate give

J
(7b)+(7b)∗

1 = −ig2CAδ(1−x)δ(2)(kn⊥)µ2ε

∫
ddk

(2π)d
2p+ + k+

[k+−iδ+][(p+k)2+i∆−][k2+i0]
+h.c. (C.3)

=
αsCA

2π
δ(1−x)δ(2)(kn⊥)

[
2

εUV
ln
δ+

p+
+

1

εUV
+ln

µ2

∆−
+2ln

δ+

p+
ln
µ2

∆−
−ln2 δ

+

p+
+1− 7π2

12

]
.

Diagram (7c) gives

J
(7c)
1 = πCAg

2

[
εα(p; +)ε∗ν(p; +)− εα(p;−)ε∗ν(p;−)

]
(d− 2)(d− 3)

µ2ε

×
∫

ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)δ(2)(k⊥ + kn⊥)

[(p− k)2 + i∆−][(p− k)2 − i∆−]
(iε⊥λσ)

×
(
−g⊥δρ +

n̄δk⊥ρ
k+ + iδ+

+
n̄ρk⊥δ

k+ − iδ+
− n̄δn̄ρk

2
⊥

(k+)2 + (δ+)2

)
×
[
gσ⊥β −

(p− k)σ⊥n̄β
p+ − k+

][
gλ⊥µ −

(p− k)λ⊥n̄µ
p+ − k+

]
×
[
− gνβ(2p− k)ρ + gβρ(p− 2k)ν + gρν(p+ k)β

]
×
[
gδµ(p− 2k)α − gµα(2p− k)δ + gαδ(p+ k)µ

]
=
αsCA
π2

[
x

1− x +
(1− x)(1 + x2)

x
− (1− x)3

x

]
(1− x)2

[(1− x)2 + (δ+/p+)2]

× k2
nT

[k2
nT − i(1− x)∆−][k2

nT + i(1− x)∆−]
. (C.4)

Diagram 7e is given the g/q channel:

J
(7e)
1 = πCF g

2µ2ε

∫
ddk

(2π)d
θ(k+)δ(k+ − (1− x)p+)δ(k2)δ(2)(k⊥ + kn⊥)

[(p− k)2 + i∆−][(p− k)2 − i∆−]

× Tr
[
− p/γ5γβk/γα

](
gλα⊥ −

(p− k)λ⊥n̄
α

p+ − k+

)(
gρβ⊥ −

(p− k)ρ⊥n̄
β

p+ − k+

)
(iε⊥λρ)

=
αs
2π2
P∆g/∆q(x)

k2
nT

k4
nT + (1− x)2(∆−)2

, (C.5)

where

P∆g/∆q(x) = CF
1− (1− x)2

x
. (C.6)
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Now we list the Fourier transform of the previous results:

J̃
(7a)+(7a)∗

1 =
αsCA

4π
δ(1− x)

[(
1

εUV
+ ln

µ2

∆−

)(
5

3
− 2

3

nf
CA

)
+

16

9
− 4

9

nf
CA

]
. (C.7)

J̃
(7b)+(7b)∗

1 =
αsCA

2π
δ(1−x)

[
2

εUV
ln
δ+

p+
+

1

εUV
+ln

µ2

∆−
+2ln

δ+

p+
ln
µ2

∆−
−ln2 δ

+

p+
+1− 7π2

12

]
.

(C.8)

J̃
(7c)
1 =

αsCA
π

{[
x

(1−x)+
+

(1−x)(1+x2)

x
− (1−x)3

x
−δ(1−x)ln

δ+

p+

](
−LT +ln

µ2

∆−

)
−
[

(1−x)(1+x2)

x
− (1− x)3

x

]
ln(1−x)

−
(

ln(1−x)

1−x

)
+

+
1

2

(
ln2 δ

+

p+
+
π2

12

)
δ(1−x)

}
. (C.9)

J̃
(7e)
1 =

αs
2π
P∆g/∆q(x)

(
ln
µ2

∆−
− LT − ln(1− x)

)
. (C.10)

Combining all the results, the collinear matrix element for the partonic channel of a

gluon splitting into a gluon is

J̃
g/g
1 =

αs
2π

[
δ(1− x)

(
β0

2εUV
+

2CA
εUV

ln
∆+

Q2

)
+ 2CAδ(1− x)LT ln

∆+

Q2
− LT

(
P∆g/∆g − δ(1− x)

β0

2

)
+ ln

µ2

∆−
P∆g/∆g − 2CA

[
(1− x)(1 + x2)

x
− (1− x)3

x

]
ln(1− x)− 2CA

(
ln(1− x)

1− x

)
+

+ δ(1− x)

(
−π

2

2
CA +

17

9
CA −

2

9
nf

)]
. (C.11)

The mixed divergences in the result above ( 1
εUV

ln∆+) are rapidity divergences, which need

to be eliminated by combining it with the soft function (from eq. (A.25)) as in eq. (2.15)

in order to get a well-defined TMDPDF. The result is

g̃g1Lg/g = δ(1− x) +

[
J̃
g/g
1 − 1

2
δ(1− x)S̃1

(
1

α

∆+

p+
,

∆+

p̄−

)]
(C.12)

= δ(1−x)+
αs
2π

{
δ(1−x)

[
CA
ε2

UV

+
1

εUV

(
β0

2
+CAln

µ2

ζ

)]
−LT

[
P∆g/∆g−

β0

2
δ(1−x)

]
+ CAδ(1−x)

(
−1

2
L2
T +LT ln

µ2

ζ
−π

2

12

)
δ(1−x)+P∆g/∆gln

µ2

∆
+δ(1−x)

[
17

9
CA−

2

9
nf

]
− 2CA

[
(1−x)(1+x2)

x
− (1−x)3

x

]
ln(1−x)−2CA

(
ln(1−x)

1−x

)
+

−CA
π2

2
δ(1−x)

}
.

Notice that the UV poles coincide with the unpolarized gluon TMDPDF in eq. (A.26), i.e.,

as expected, both have the same anomalous dimension.
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Next we calculate the collinear gluon helicity. Virtual diagrams are the same as for the

gluon helicity TMDPDF. The Wave Function Renormalization (WFR) diagram 7a and its

Hermitean conjugate give

g
g (7a)+(7a)∗

1L =
αsCA

4π
δ(1− x)

[(
1

εUV
+ ln

µ2

∆−

)(
5

3
− 2

3

nf
CA

)
+

16

9
− 4

9

nf
CA

]
. (C.13)

g
g (7b)+(7b)∗

1L =
αsCA

2π
δ(1−x)

[
2

εUV
ln
δ+

p+
+

1

εUV
+ln

µ2

∆−
+2ln

δ+

p+
ln
µ2

∆−
−ln2 δ

+

p+
+1− 7π2

12

]
.

(C.14)

g
g (7c)
1L =

αsCA
π

{[
x

(1−x)+
+

(1−x)(1+x2)

x
− (1−x)3

x
−δ(1−x)ln

δ+

p+

](
1

εUV
+ln

µ2

∆−

)
−
[

(1−x)(1+x2)

x
− (1−x)3

x

]
ln(1−x)−

(
ln(1−x)

1−x

)
+

+
1

2

(
ln2 δ

+

p+
+
π2

12

)
δ(1−x)

}
. (C.15)

The collinear gluon helicity PDF in the g/g channel is then

g
g/g
1L = δ(1− x) +

αs
2π

{
P∆g/∆g

(
1

εUV
+ ln

µ2

∆−

)
+ CAδ(1− x)

[
17

9
− 2

9

nf
CA

]
(C.16)

− 2CA

[
(1−x)(1+x2)

x
− (1−x)3

x

]
ln(1− x)− 2CA

(
ln(1−x)

1−x

)
+

− π2

2
δ(1−x)CA

}
.

The collinear gluon helicity PDF in the g/q channel is given by diagram 7e:

g
g (7e)
1L =

αs
2π

[(
1

εUV
+ ln

µ2

∆−

)
P∆g/∆q − P∆g/∆qln(1− x)− CFx

]
. (C.17)

Thus the matching of the gluon helicity TMDPDF onto the collinear gluon helicity

PDF in the (g/g) channel is

C̃gg/g = δ(1− x) +
αs
2π

[
CAδ(1− x)

(
−1

2
L2
T +LT ln

µ2

ζ
− π2

12

)
−LT

(
P∆g/∆g − δ(1−x)

β0

2

)]
.

(C.18)

The matching in the g/q channel is

C̃gg/q =
αs
2π

[
− LTP∆g/∆q + CFx

]
. (C.19)

D Hard part at NLO

In this appendix we report the explicit NLO calculation of the hard matching coefficient

CH in eq. (2.6), which accounts for the hard reaction in the gluon-gluon fusion to Higgs

boson process. For simplicity we will take ∆± = ∆. The tensor structure that appears in

the effective ggH vertex g(p) + g(k)→ H is:

gHµν(p, k) = (p · k)gµν − pνkµ . (D.1)
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(a) (b) (c) (d)

Figure 9. One-loop virtual diagrams for the Higgs production in full QCD. Hermitian conjugate

diagrams are not shown. The crossed diagram of (a) and the analogous one of (b) are not shown.

The results of the diagrams in figure 9 are, omitting a common prefactor δ(1−xA)δ(1−
xB)δ(2)(q⊥):

V (9a) =
−i2παsCA

(d− 2)(pp̄)2
µ2ε

∫
ddk

(2π)d
(D.2)

× (−gνTβ)(−gµTα)gHµν(p, p̄)gHρδ(p− k, p̄+ k)

×
[
gγδ(p̄+ 2k)β − gδβ(2p̄+ k)γ + gβγ(p̄− k)δ

]
×
[
−g αγ (p+ k)ρ + gαρ(2p− k)γ − gργ(p− 2k)α

]
× 1

[(p̄+ k)2 + i∆+] [(p− k)2 + i∆−] [k2 + i0]
+ h.c.

=
αsCA

4π

[
−ln2 i∆

Q2
+

13

12

(
1

εUV
+ln

µ2

Q2
+2+iπ

)
+

5

2

(
1

εUV
−ln
−i∆
µ2

+1

)
− 17

18

]
+h.c. ,

V (9b) =
−i2παsCA

(d− 2)(pp̄)2
µ2ε

∫
ddk

(2π)d

× (−gνTβ)(−gαµT )gHµν(p, p̄)
[
gβρ(p̄− p+ k)γ + gργ(p− 2k)β − gγβ(p̄− k)ρ

]
× [−gρα(2p− k)γ + gγα(p+ k)ρ + gγρ(p− 2k)α]

1

[(p− k)2 + i∆−] [k2 + i0]
+ h.c.

= −αsCA
4π

3

2

[
1

εUV
− ln
−i∆−
µ2

+ 1

]
+ h.c. , (D.3)

V (9c) = 0 , (D.4)

V (9d) =
i2παsCA

(d− 2)(pp̄)2
µ2ε

∫
ddk

(2π)d

× (−gνTβ)(−gµαT )gHµν(p, p̄)gHρδ(p− k, p̄+ k)
[
g βα g

δρ − gβρg δα − gβδg ρα + g βα g
δρ
]

× 1

[(p̄+ k)2 + i∆+] [(p− k)2 + i∆−]
+ h.c.

=
αsCA

2π

[
−13

12

(
1

εUV
+ ln

µ2

Q2
+ 2 + iπ

)
+

17

18

]
+ h.c. . (D.5)

Now, adding the contributions in full QCD (with nf = 5 flavors) we get:

VQCD =2V (9a)+2V (9a)+V (9c)+V (9d) =
αsCA

2π

[
2

εUV
−2ln

∆

µ2
−2ln2 ∆

Q2
+
π2

2
+2

]
. (D.6)
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We have twice the contribution of V (9a) because of the crossed diagram, and twice the

contribution of V (9b) because of the two possible diagrams. Notice that we have not included

the calculation of the WFR, because its results will be the same in QCD and in the effective

theory and thus will not contribute to the extraction of the hard coefficient.

From appendix A we already have the virtual part of the collinear matrix element in

SCET (we do not include the WFR and omitting the prefactor δ(1− xA)δ(2)(kn⊥)):

Jn =
αsCA

2π

[
1

εUV
+ ln

µ2

∆
+

2

εUV
ln

∆

Q2
− ln2 ∆

Q2
+ 2ln

∆

Q2
ln
µ2

∆
+ 1− 7π2

12

]
, (D.7)

where we have set ζA = Q2. Similarly, for the anti-collinear matrix element in SCET we

have (omitting the prefactor δ(1− xB)δ(2)(kn̄⊥)):

Jn̄ =
αsCA

2π

[
1

εUV
+ ln

µ2

∆
+

2

εUV
ln

∆

Q2
− ln2 ∆

Q2
+ 2ln

∆

Q2
ln
µ2

∆
+ 1− 7π2

12

]
, (D.8)

where we have set ζB = Q2. From appendix A we get the virtual part of the soft function

in SCET (omitting the prefactor δ(2)(ks⊥)):

S =
αsCA

2π

[
− 2

ε2
UV

+
4

εUV
ln

∆

Q2
− 2

εUV
ln
µ2

Q2
− ln2Q

2

µ2
+ 4ln

∆

Q2
ln
µ2

∆
− π2

2

]
. (D.9)

Finally, using eq. (2.7) and properly including all the deltas in the corresponding

prefactors, we obtain the hard coefficient by subtracting to the (renormalized) virtual

contribution in full QCD the (renormalized) virtual contributions of the collinear, anti-

collinear and soft matrix elements in SCET:

H(Q2, µ) = 1 +
[
VQCD − Jn − Jn̄ + S

]
renormalized

= 1 +
αsCA

2π

[
− ln2Q

2

µ2
+

7π2

6

]
, (D.10)

which coincides with the result given in eq. (2.6). Notice that we have added the soft

function instead of subtracting it, in order to compensate for the double counting of the

soft region between the naive (anti)collinear and soft matrix elements.

E Anomalous dimensions

The anomalous dimension of the top quark Wilson coefficient is given solely by the QCD

β-function,

γt(αs(µ)) =
dlnCt(m

2
t , µ)

dlnµ
= α2

s

d

dαs

β(αs(µ))

αs(µ)
. (E.1)

Thus we can write the evolution of the coefficient as

Ct(m
2
t , µ) =

β(αs(µ))/α2
s(µ)

β(αs(µ0))/α2
s(µ0)

Ct(m
2
t , µ0) . (E.2)
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The coefficient Ct is known up to NNNLO [75, 76]. At NNLO it is [77, 78]

Ct(m
2
t , µ) = 1 +

αs(µ)

4π
(5CA − 3CF )

+

(
αs(µ)

4π

)2 [27

2
C2
F +

(
11ln

m2
t

µ2
− 100

3

)
CFCA −

(
7ln

m2
t

µ2
− 1063

36

)
C2
A

− 4

3
CFTF −

5

6
CATF −

(
8ln

m2
t

µ2
+ 5

)
CFTFnf −

47

9
CATFnf

]
. (E.3)

The anomalous dimension of the hard part is given by

d

dlnµ
CH(−m2

H , µ) =

[
ΓAcusp(αs) ln

−m2
H

µ2
+ γg(αs)

]
CH(−m2

H , µ) (E.4)

and thus the evolution of the hard coefficient H = |CH |2 is driven by

γH = 2ΓAcusp(αs) ln
m2
H

µ2
+ 2γg(αs) . (E.5)

The two-loop expression for the Wilson coefficient C can be extracted from the results

of [79]. Writing its perturbative expansion as

CH(−m2
H , µ) = 1 +

∞∑
n=1

Cn(L)

(
αs(µ)

4π

)n
, (E.6)

where L = ln[(−m2
H)/µ2], the one- and two-loop coefficients are

C1(L) = CA

(
−L2 +

π2

6

)
,

C2(L) = C2
A

[
L4

2
+

11

9
L3 +

(
−67

9
+
π2

6

)
L2 +

(
80

27
− 11π2

9
− 2ζ3

)
L

+
5105

162
+

67π2

36
+
π4

72
− 143

9
ζ3

]
+ CFTFnf

(
4L− 67

3
+ 16ζ3

)
+ CATFnf

[
−4

9
L3 +

20

9
L2 +

(
104

27
+

4π2

9

)
L− 1832

81
− 5π2

9
− 92

9
ζ3

]
. (E.7)

The three-loop result can be extracted from [80–82].

Below we give the expressions for the anomalous dimensions and the QCD β-function

in the MS renormalization scheme. We use the following expansions:

ΓAcusp(αs) =
∞∑
n=1

ΓAn−1

(αs
4π

)n
, γg(αs) =

∞∑
n=1

γgn−1

(αs
4π

)n
, γnc(αs) =

∞∑
n=1

γncn−1

(αs
4π

)n
,

β(αs) = −2αs

∞∑
n=1

βn−1

(αs
4π

)n
. (E.8)

The cusp anomalous dimension in the adjoint representation can be obtained by multi-

plying that in the fundamental representation by CA/CF (at least up to three-loop order).
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The first three coefficients are

ΓA0 = 4CA ,

ΓA1 = 4CA

[(
67

9
− π2

3

)
CA −

20

9
TFnf

]
,

ΓA2 = 4CA

[
C2
A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CATFnf

(
−418

27
+

40π2

27
− 56

3
ζ3

)
+CFTFnf

(
−55

3
+ 16ζ3

)
− 16

27
T 2
Fn

2
f

]
. (E.9)

The first three coefficients of the anomalous dimension γg are [83, 84]

γg0 = 0 ,

γg1 = C2
A

(
−160

27
+

11π2

9
+ 4ζ3

)
+ CATFnf

(
−208

27
− 4π2

9

)
− 8CFTFnf ,

γg2 = C3
A

[
37045

729
+

6109π2

243
− 319π4

135
+

(
244

3
− 40π2

9

)
ζ3 − 32ζ5

]
+ C2

ATFnf

(
−167800

729
− 2396π2

243
+

164π4

135
+

1424

27
ζ3

)
+ CACFTFnf

(
1178

27
− 4π2

3
− 16π4

45
− 608

9
ζ3

)
+ 8C2

FTFnf

+ CAT
2
Fn

2
f

(
24520

729
+

80π2

81
− 448

27
ζ3

)
+

176

9
CFT

2
Fn

2
f . (E.10)

The first three coefficients of γnc are

γnc0 = −2β0 = −22

3
CA +

8

3
TFnf ,

γnc1 = 2C2
A

(
−692

27
+

11π2

18
+ 2ζ3

)
+ 2CATFnf

(
256

27
− 2π2

9

)
+ 8CFTFnf ,

γnc2 = 2C3
A

(
−97186

729
+

6109π2

486
− 319π4

270
+

122

3
ζ3 −

20π2

9
ζ3 − 16ζ5

)
+ 2C2

ATFnf

(
30715

729
− 1198π2

243
+

82π4

135
+

712

27
ζ3

)
+ 2CACFTFnf

(
2434

27
− 2π2

3
− 8π4

45
− 304

9
ζ3

)
− 4C2

FTFnf

+ 2CAT
2
Fn

2
f

(
−538

729
+

40π2

81
− 224

27
ζ3

)
− 88

9
CFT

2
Fn

2
f . (E.11)
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Finally, the coefficients for the QCD β-function are

β0 =
11

3
CA −

4

3
TFnf , (E.12)

β1 =
34

3
C2
A −

20

3
CATFnf − 4CFTFnf ,

β2 =
2857

54
C3
A +

(
2C2

F −
205

9
CFCA −

1415

27
C2
A

)
TFnf +

(
44

9
CF +

158

27
CA

)
T 2
Fn

2
f ,

β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf +

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f ,

where for β3 we have used Nc = 3 and TF = 1
2 .
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