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1 Introduction

Processes in hadron collisions where two partons from each hadron take part in separate

partonic subprocesses, double parton scattering (DPS), contribute to several final states

of interest at the LHC. DPS is a relevant background to precise Higgs boson coupling

measurements and searches for new physics [1–4]. The theory for DPS is still fragmentary,

but major improvements have been made over the last couple of years moving towards a

reliable description within perturbative QCD [5–8]. Despite this development there are

still several important questions which have to be worked out.

For sufficiently inclusive cross sections DPS is formally a power suppressed contribu-

tion, but in certain regions of phase space double and single parton scattering contribute

at the same power [9]. Even for inclusive cross sections, DPS can in specific situations

compete with single parton scattering — for example when the single parton scattering is

suppressed by multiple small coupling constants. DPS is increasingly relevant at higher

collider energies, and will hence be further enhanced when the LHC restarts to collide

protons at larger center of mass energies. The reason is the rapid increase of the density

of partons with energy and towards smaller x-fractions.

DPS signals have been measured at the LHC by both ATLAS [10] and CMS [11] in

the W -boson plus dijet final state. Of particular interest for our present study is the LHCb

measurements of double open-charm production [12], in final states such as D0D0. Among

the most promising channels for a clean separation of double from single parton scattering

are the production of two same sign W -bosons and double open charm quarks [13–19].

In fact, studies have shown that for double open-charm production in the kinematical

region of the LHCb measurement, double parton scattering dominates over single parton

scattering [17].

– 1 –



J
H
E
P
0
4
(
2
0
1
5
)
0
3
4

DPS cross sections are factorized into two hard partonic subprocesses and two double

parton distributions (DPDs). Only little is known about the size of the DPDs. They have

been studied in a variety of quark models [20–23], including correlations between the two

partons inside the same proton. The correlations have generally been found to be sizable.

An open question in double parton scattering is the effects of quantum-number correlations.

These include correlations between the spins, colors, flavors and fermion numbers of the

partons [5, 9, 24, 25]. Upper limits on the DPDs describing quantum-number correlations

have been derived [24, 26]. For polarized DPDs these limits have further been shown to

hold under radiative corrections from the leading-order double DGLAP evolution up to

higher scales.

In particular the spin correlations (described by polarized DPDs) have direct relations

to the directions of the final state particles, and thus have the potential to change both

the sizes of the DPS cross sections and the distributions of the produced particles. For

example, azimuthal modulations have been found for double vector boson production [27].

The effects of the quantum correlations on DPS cross sections have been calculated [5, 27]

but so far no numerical results at the cross section level have been obtained. Through

studies of the scale evolution of the DPDs, limits on the degree of polarization and thereby

its possible effect on DPS cross sections at different scales were set in [26].

In this paper we examine the effect that polarization in DPS can have on the double

cc̄ production in kinematic regions resembling those of the LHCb D0D0 measurement [12].

Several studies of this process already exist in the literature, but so far all have neglected

the possibility of spin correlations. We demonstrate for the first time the quantitative

impact of polarization on any DPS cross section. We want to stress already here, that

our study aims at examining how large the effects of polarization in DPS can be. The

actual size of the effects depend on the undetermined polarized DPDs — which due to

their non-perturbative nature would have to be extracted from measurements.

The structure of the paper is as follows: in section 2 we discuss some basics of DPS

with focus on polarization, introduce the different polarized and unpolarized double gluon

distributions and discuss their scale evolution. In section 3 we present the analytical

results for the cross section calculation including all possible polarizations of two gluons

in an unpolarized proton. In section 4 we discuss the models for the DPDs which we use

in order to obtain numerical results — which we present and compare to LHCb data in

section 5. We summarize our findings and discuss their implications in section 6.

2 Double gluon distributions

Under the assumption of factorization, as illustrated in figure 1, the DPS cross section can

be expressed schematically as

dσ
∏2

i=1 dxidx̄i

∣

∣

∣

∣

∣

DPS

=
1

C
σ̂1σ̂2

∫

d2y F (x1, x2,y)F̄ (x̄1, x̄2,y) , (2.1)

where σ̂i represents hard subprocess i and C is a combinatorial factor equal to two (one) if

the final states of the two subprocesses are (not) identical. F (F̄ ) labels the double parton
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Figure 1. Gluon induced double parton scattering. The green fields represents the two DPDs while

the blue and red fields represent the first and second hard interaction. xi (x̄i) are the longitudinal

momentum fractions of the partons from the proton with momentum p (p̄). y and 0 are the

transverse positions of the first and second hard interaction.

distribution of the proton with momentum p (p̄). The DPDs depend on the longitudinal

momentum fractions of the two partons xi (x̄i) and their transverse separation y. No

complete proof for factorization in DPS exists, but several important ingredients have

been established [5, 9]. The cross section expression (2.1) is schematic as the labels for

the different flavors, colors, fermion numbers and spins of the four partons are implicit.

The possibility of interference between the two hard interactions, and correlations between

the two partons inside each proton renders this structure significantly more complicated

in DPS than for the case with only one hard interaction. Of particular interest for our

purposes are the correlations between the spins of two gluons, and those between the spins

and the transverse separation, which lead to polarized gluon DPDs.

For the DPDs describing two gluons in an unpolarized right-moving proton we write [9]

Fa1a2(x1, x2,y) = 2p+(x1p
+)−1 (x2p

+)−1

∫

dz−1
2π

dz−2
2π

dy− ei(x1
z−
1
+x

2
z−
2
)p+

× 〈p| Oa2(0, z2)Oa1(y, z1) |p〉 . (2.2)

We use light-cone coordinates v± = (v0 ± v3)/
√
2, bold font to denote the transverse

component v = (v1, v2) of any four-vector v and vT = |v|. The operators expressed in

terms of the gluon field strength tensor read

Oai(y, zi) = Πjj′

ai
G+j′

(

y − 1
2zi

)

G+j
(

y + 1
2zi

)

∣

∣

∣

z+
i
=y+=0, z

i
=0

, (2.3)

with projections

Πjj′

g = δjj
′

, Πjj′

∆g = iǫjj
′

, [Πkk′

δg ]jj
′

= τ jj
′,kk′ (2.4)

onto unpolarized gluons (g), longitudinally polarized gluons (∆g) and linearly polarized

gluons (δg). The tensor

τ jj
′,kk′ = 1

2

(

δjkδj
′k′ + δjk

′

δj
′k − δjj

′

δkk
′)

(2.5)

satisfies τ jj
′,kk′τkk

′, ll′ = τ jj
′, ll′ and is symmetric and traceless in each of the index pairs

(jj′) and (kk′).
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A decomposition of the nonzero distributions for two gluons in terms of real-valued

scalar functions has been given in [26]

Fgg(x1, x2,y) = fgg(x1, x2,y) ,

F∆g∆g(x1, x2,y) = f∆g∆g(x1, x2,y) ,

F jj′

gδg(x1, x2,y) = τ jj
′,yyM2fgδg(x1, x2,y) ,

F jj′

δgg(x1, x2,y) = τ jj
′,yyM2fδgg(x1, x2,y) ,

F jj′,kk′

δgδg (x1, x2,y) =
1
2 τ

jj′, kk′fδgδg(x1, x2,y)

+
(

τ jj
′,yỹτkk

′,yỹ − τ jj
′,yyτkk

′,yy
)

M4f t
δgδg(x1, x2,y) , (2.6)

where M is the proton mass and ỹ
j = ǫjj

′

y
j′ . The notation where vectors y or ỹ appear

as an index of τ denote contraction, i.e. τ jj
′,yy = τ jj

′,kk′
y
k
y
k′ etc. The distributions of

longitudinally polarized gluons carry open transverse indices j, j′, k, k′ = {1, 2} correspond-

ing to the polarization vectors of the gluons which are contracted with the partonic cross

sections.

The double parton distribution fgg represents the probability of finding two gluons

with momentum fractions x1 and x2 at a transverse separation y. The distribution of

longitudinally polarized gluons f∆g∆g describe the difference in probability between finding

the two gluons with their helicities aligned rather than anti-aligned, while linearly polarized

gluons are described by helicity interference distributions, see for example [26, 28] in the

context of DPS.

2.1 Evolution of the double gluon distributions

The scale evolution of the DPDs is governed by a generalization of the DGLAP evolution

equations. Two versions exist in the literature: one homogenous equation describing two

independent branchings of the two partons, and another including the splitting of a parent

parton into the two partons which subsequently undergo hard scatterings [29–33]. Which

one is the correct one for describing DPS is still under debate [6, 9, 34–42]. The contribution

from the splitting term was investigated in [15] for double cc̄ production and was seen to

give a sizable contribution to the cross section, but also that the perturbative splitting

preferred to take place early on — and evolve as two separate branches for most of the

evolution range. Including such a term in our study could naturally lead to an enhancement

of the effect of the polarization and we will return to this discussion in section 6. In the

following we will make use of the homogeneous version, under the assumption that the

physics of the single parton splitting contribution can be treated separately.

The evolution equation for the unpolarized double gluon distribution then reads

dfgg(x1, x2,y;µ)

d lnµ2
=

αs

2π

∑

a=g,q,q̄

[Pga ⊗1 fag + Pga ⊗2 fga] , (2.7)
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where

Pab( . )⊗1 fbc( . , x2,y;µ) =

∫ 1−x2

x1

du1
u1

Pab

(

x1
u1

)

fbc(u1, x2,y;µ) ,

Pab( . )⊗2 fcb(x1, . ,y;µ) =

∫ 1−x1

x2

du2
u2

Pab

(

x2
u2

)

fbc(x1, u2,y;µ) (2.8)

are convolutions in the first and second argument of the DPDs with the leading-order

splitting kernels Pab known from DGLAP evolution of single-parton distributions. Polarized

DPDs follow equivalent evolution equations with the splitting kernels replaced by their

polarized analogues. A more thorough discussion of the evolution of the polarized DPDs

and expressions for all splitting kernels are given in [26]. The evolution of the unpolarized

gluon distribution leads to a violent increase at low momentum fractions, in particular at

low scales where the QCD coupling constant is large. This is due to the 1/x behavior of

the unpolarized splitting kernel in the limit where x tends to zero. The splitting kernel

for a longitudinally polarized gluon on the other hand approaches a constant in this limit,

while the one for linearly polarized gluons goes as x. The polarized distributions therefore

do not experience this rapid increase and evolution will suppress the relevance of polarized

gluons — in particular the linearly polarized ones. The rate at which this suppression takes

effect leads to the expectation that at large scales (and not too large x) polarized gluons

can be neglected in phenomenological calculations of DPS cross sections [43]. However, for

double cc̄ production the scales are low and there is only little room for evolution. This

motivates the study of the effects of polarization in this process, and could, when confronted

with experimental results, lead to the first measurements of, or limits on, polarization

effects in DPS.

3 Double cc̄ cross sections

We next present the analytic results of the cross section calculation, dividing the results

into contributions from the different polarizations. The non-zero results come from gluons

which are unpolarized, longitudinally polarized, mixed unpolarized – linearly polarized and

purely linearly polarized.

Following experimental conventions, we present our results in the center-of-mass (CM)

frame of the two protons, with ẑ-axis along the proton with momentum p and x̂-axis as

pointing towards the centre of the LHC ring. With this choice of x̂-axis, without reference

to any direction defined by the process itself, any azimuthal dependence must show up

as differences between the azimuthal angles describing the transverse directions of the

final state particles. Double cc̄ production in the kinematic region of interest is, to good

approximation, initiated by gluons (see e.g. [17]). Therefore we limit ourselves to the

partonic subprocesses of figure 2, where the cc̄ systems are produced by s-channel gluons

or t-channel (u-chanel) charm quarks.
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Figure 2. Leading order Feynman diagrams contributing to each of the two partonic subprocesses.

The cross section contribution from unpolarized gluons reads

dσ(gg)(gg)

dy1dy2d2p1d
2p2

=
1

2

(

8π2α2
s

Nc

N2
c − 1

)2 ∫

dx1dx2

2
∏

i=1

1

16π2ŝ2i

2xix̄i
2xi − xT ieyi

× (1−z1)
2+z21−1/N2

c

(1− z1)z1

[

(1−z21)
2 + z21 + 4z1(1−z1)

(

1− m2

m2
T1

) m2

m2
T1

]

× (1−z2)
2+ z22 − 1/N2

c

(1− z2)z2

[

(1−z22)
2 + z22 + 4z2(1− z2)

(

1− m2

m2
T2

)

m2

m2
T2

]

×
∫

d2yfgg(x1, x2,y)f̄gg(x̄1, x̄2,y) , (3.1)

where yi and pi are the rapidity and transverse momentum of the charm quark produced

in interaction i = 1, 2. The variables in the cross section are given by

zi =
m2 − t̂i

ŝi
= −xT i

2x̄i
e−yi , x̄i =

xixT ie
−yi

2xi − xT ieyi
, xT i =

2mT i√
s

, mT i =
√

p
2
i +m2. (3.2)

ŝi and t̂i are the usual Mandelstam variables of the partonic cross section i. s is the center

of mass energy of the proton collision, m is the charm mass and yi is the rapidity of the

charm quark from interaction i.

For gluons with longitudinal polarization the cross section is

dσ(∆g∆g)(∆g∆g)

dy1dy2d2p1d
2p2

=
1

2

(

8π2α2
s

Nc

N2
c − 1

)2 ∫

dx1dx2

2
∏

i=1

1

16π2ŝ2i

2xix̄i
2xi − xT ieyi

× (1− z1)
2 + z21 − 1/N2

c

(1− z1)z1

(

1− 2m2

m2
T1

)

[

(1− z1)
2 + z21

]

× (1− z2)
2 + z22 − 1/N2

c

(1− z2)z2

(

1− 2m2

m2
T2

)

[

(1− z2)
2 + z22

]

×
∫

d2yf∆g∆g(x1, x2,y)f̄∆g∆g(x̄1, x̄2,y). (3.3)

Worth noticing is that differences in the partonic cross section between longitudinally and

unpolarized gluons are suppressed by m2/m2
T i. For transverse momenta of the outgoing

charm quarks above a few GeV, this suppression is strong and already at pT i = 3GeV

we have m2/m2
T i = 0.16. This tells us that differences in the distributions of the final

state charm quarks produced at large pT between longitudinally polarized and unpolarized

gluons will to good approximation originate in differences between fgg and f∆g∆g.
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Unpolarized mixed with linearly polarized gluons give the cross section

dσ(δgg)(gδg)

dy1dy2d2p1d
2p2

=

(

8π2α2
s

Nc

N2
c − 1

)2 ∫

dx1dx2

2
∏

i=1

1

16π2ŝ2i

2xix̄i
2xi − xT ieyi

×
(

(1− z1)
2 + z21 − 1/N2

c

) m2

m2
T1

(

1− m2

m2
T1

)

×
(

(1− z2)
2 + z22 − 1/N2

c

) m2

m2
T2

(

1− m2

m2
T2

)

× cos(2∆φ)

∫

d2y y
4M4fδgg(x1, x2,y)f̄gδg(x̄1, x̄2,y), (3.4)

and the same result for the case when the linear and unpolarized gluons are interchanged,

i.e. with g ↔ δg. ∆φ = φ1 − φ2, where φi is the azimuthal angle of the outgoing c-quark

from hard interaction i. The cos(2∆φ) dependence is an effect of the difference in helicity

between the amplitude and conjugate amplitude for the linearly polarized gluons. This term

gives rise to the same kind of modulation in the azimuthal angle as observed by LHCb in the

D0D0 final state [12]. However, in our leading order cross section, the whole contribution

for the mixed linear-unpolarized gluons is suppressed by m2/m2
T i for each of the two hard

subprocesses. This suppression gives low analyzing power, and indicates already at this

level that the contribution should be small. The suppression arises in the terms where

there is an helicity flip in the hard cross section. For zero quark masses these terms in the

partonic cross section tend to zero. The nonzero charm mass allows for a nonzero result

of the mixed un- and linearly-polarized gluons, but only at the price of the suppression

factor. This has previously been discussed in the context of heavy quark production with

transverse momentum dependent parton distributions [44]. It is however interesting to

note that the suppression could be lifted if the gluons were given a transverse momentum,

for example by radiating off a gluon. The next-to-leading-order (NLO) correction to the

cross section is expected to be large [17], and a large NLO contribution in combination

with a lifting of the suppression have the potential to result in a large enhancement of this

contribution. We will return to this point in the discussion of section 6.

The cross section for gluons with linear polarization is

dσ(δgδg)(δgδg)

dy1dy2d2p1d
2p2

=
1

4

(

8π2α2
s

Nc

N2
c − 1

)2 ∫

dx1dx2

2
∏

i=1

1

16π2ŝ2i

2xix̄i
2xi − xT ieyi

×
(

(1− z1)
2 + z21 − 1/N2

c

) (

(1− z2)
2 + z22 − 1/N2

c

)

×
[

(

1− m2

m2
T1

)2(

1− m2

m2
T2

)2

cos(4∆φ) +
m8

m4
T1m

4
T2

]

×
∫

d2yfδgδg(x1, x2,y)f̄δgδg(x̄1, x̄2,y). (3.5)

The pure linearly polarized contribution to the cross section has a cos(4∆φ) dependent

part and a ∆φ independent part. The ∆φ independent term comes with a double helicity

flip in the two hard cross sections and is heavily suppressed. Notice that the f t
δgδg term

– 7 –
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in (2.6) does not contribute. This is because it results in a dependence on the angle

between the directions of the outgoing charm quarks and the direction y between the two

hard subprocesses, which vanishes upon integration over y.

4 Simple model for DPDs

In order to obtain numerical results we need an initial ansatz for the DPDs at some low

starting scale. We decompose the unpolarized DPDs into two single parton distributions

and a y dependent function assumed to be universal and xi independent

fgg(x1, x2,y;Q0) = fg(x1, Q0)fg(x2;Q0)G(y). (4.1)

This is an ansatz commonly used for DPS phenomenology but its validity is questionable

and in some kinematic regions wrong. The easiest way to see this is in the region of large

xi. Momentum conservations forces x1+x2 ≤ 1 on the left side of (4.1), but the right hand

side does, as it stands, not respect this constraint and gives nonzero values as long as both

momentum fractions individually are below 1. A way to reinstate this limit is to multiply

the ansatz with the factor (1 − x1 − x2) to some positive power, however for the charm

production the contribution of the large xi region is negligible and we apply a strict cutoff

at the kinematic limit. Despite its limitations, the ansatz provides a useful starting point

for DPS studies and we use it as input for the unpolarized DPDs at some low starting scale.

These input distributions will then be evolved to higher scales with the double DGLAP

equations. The numerical results will only be given in terms of ratios of cross sections,

in which the y dependence cancels. For unpolarized distributions, the difference between

separately evolving the two parton distribution functions (PDFs) or evolving the DPD with

the factorized initial ansatz is small, except in the large xi region [43].

For polarized distributions, which describe the correlation between the spin of the two

partons, it does not make sense to decompose it into polarized single parton distributions

— which describe the correlation between the spin of one parton and the spin of the proton.

Instead we use the positivity bounds in [26] to set upper limits on the sizes of the polarized

distributions in terms of the unpolarized. We are interested in examining the maximal

effects possible from the different polarizations and therefore saturate the bounds for each

polarized DPD independently. This results in the relations

f∆g∆g(x1, x2,y;Q0) = fgg(x1, x2,y;Q0),

fgδg(x1, x2,y;Q0) = y
2M2fgg(x1, x2,y;Q0),

fδgδg(x1, x2,y;Q0) = y
4M4fgg(x1, x2,y;Q0) (4.2)

at the initial scale Q0, which we will refer to as the max-scenario.

Polarized single parton distributions (PDFs) are smaller than allowed by the corre-

sponding positivity bounds (the Soffer bounds) [45]. Though this could be the case also

for the polarized DPDs, we want to emphasize that the physics is different, and there is

a priori little reason to assume that inter-parton correlations are the same or similar to

parton-proton correlations.
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If the bounds are fulfilled at an initial scale they will remain valid at all larger scales,

but typically be violated at lower scales. We therefore choose to saturate the bounds at

some low Q0, and use the double DGLAP evolution (2.7) with polarized splitting kernels

to obtain the polarized DPDs at higher scales. A larger Q0 gives less room for evolution

and therefore less suppression of the polarized contribution to the cross section. Q0 should

be chosen such that one is in a regime where perturbative QCD is expected to give sensible

results. For the usual PDFs, the starting scale is often chosen somewhere around 1-2GeV,

and several of the leading order distributions go negative when evolved backwards to scales

below 1GeV. Another issue is the large uncertainty even for the distribution of a single

unpolarized gluon at small scales and momentum fractions. The smaller values we take for

the initial scale the larger this uncertainty is, and we would like to stay at a scale where we

can compare between different sets of single parton distributions. We use this as a guidance

in choosing starting scales at which to saturate our polarized bounds, and conclude that

a choice somewhere between 1 and 2GeV is reasonable. We investigate the impact of this

choice by varying the input scale between the two values.

For input PDFs we will use the leading-order GJR distributions [46]. At these scales

there are still large differences between different PDF sets, and we have investigated how

they influence our results by switching to the MSTW2008lo distributions [47]. There are

clear differences, especially with Q0 = 1GeV, but the differences are smaller than those

obtained by changing from Q0 = 1GeV to Q0 = 2GeV. As a rule of thumb, the MSTW

distributions give smaller polarization than the GJR distributions — see [43] for more

details on the effects of changing between different sets of PDFs. We use the values of αs

and the charm mass m used in the PDF sets for concistency.

In addition, we examine the effect of changing our modeling of the polarized DPDs.

Instead of taking the maximal allowed polarization, we can create a model built on ratios

of splitting kernels describing the branching of a parent parton into the two gluons which

subsequently undergo hard scatterings. For the longitudinally polarized DPD this results in

f∆g∆g =
Tg→∆g∆g

Tg→gg
fgg =

zz′(2− zz′)

z2 + z′2 + z2z′2
fgg (4.3)

where z = x1/(x1+x2) and z′ = 1−z. This model, which we will call the splitting-scenario,

has been described in more detail in [43], which gives a complete list of expressions for the

different DPDs. We will only display results obtained in this model for longitudinally

polarized gluons.

5 Numerical results and comparison with data

We next turn to the numerical evaluation of the cross section in the kinematic regions

probed by the double open-charm measurement by the LHCb Collaboration [12]. The two

charm quarks are required to have a transverse momentum in the region 3 ≤ pT i ≤ 12GeV

and rapidities in the range 2 ≤ yi ≤ 4, at
√
s = 7TeV. The phase-space of the two anticharm

quarks is integrated over, without experimental cuts, since they remain undetected.
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Figure 3. Normalized cross section vs the transverse momentum of one of the charm quarks at

µ = 2m (left) and µ = mT (right). Overlaid are the LHCb D0D0 data [12]. The lower panels show

the relative size of the polarized contribution in the max-scenario.

The DPD evolution equations are evaluated by the code described in [32], which has

been modified to suit our purposes as described in [43]. The main modifications are the use

of the homogeneous evolution equations and the incorporation of the polarized splitting

kernels for the evolution of the polarized DPDs, listed in appendix A of [26]. We generated

gridfiles for the DPDs in the range 10−6 ≤ xi ≤ 1 with 240 gridpoints in each direction,

and 60 points in lnµ2 in the range Q2
0 < µ2 < 2× 106GeV. The phase-space integrations

were performed numerically.

Care must be taken when comparing the data to the results of our calculation. While

the calculation produces two pairs of charm-anticharm quarks, out of which only the two

charm quarks are measured, the data is for D0D0. Simply interpreting the variables of

the charm quarks as those of the final state mesons neglects the effects from hadroniza-

tion/fragmentation. The assumption that the direction of the charm quark is approxi-

mately equal to that of the D0 is commonly made [18]. For the effect on the absolute size

of the transverse momenta, the approximation is less accurate, but charm fragmentation

functions typically peak around rather large z values [48, 49]. However this approximation

on the normalized cross section is not likely to change the spectrum at the level of preci-

sion we are interested in here. Normalizing the results to the total cross section cancels the

effects on the absolute size, such as the branching ratio of c → D0. Our primary purpose is

not to make exact predictions for the D0D0 cross section, but rather to examine the effects

that polarization has on double charm production.

Figure 3 shows the dependence of the normalized cross section on the transverse mo-

mentum of one of the two charm quarks, pT , as well as the ratio of the polarized over

unpolarized contribution. The left panel shows the results with the scale choice of µ = 2m
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Figure 4. Same as in figure 3, but for the cross section differential in the rapidity difference ∆y

between the two charm quarks.

and the right with µ = mT , where

mT =
mT1 +mT2

2
(5.1)

is the average transverse mass of the two charm quarks. For both cases, we make visible

the dependence of the result on the choice of input scale by displaying the results for

Q0 = 1GeV and Q0 = 2GeV, as discussed in section 4. The two lower panels show the

relative size of the polarized contribution compared to the unpolarized. The cross section

result in figure 3 reproduces the data reasonably well. The shape of the cross section only

has a tiny dependence on the choice of Q0, whilst the contribution from the polarized

distributions changes with Q0. Likewise, there is little difference in the shape of the cross

section with the two scale choices, but the polarized contribution is larger for µ = 2m than

for µ = mT . This is expected since the latter choice allows for a larger evolution range and

thus a stronger enhancement of the unpolarized over the polarized DPDs. With µ = mT

the suppression due to evolution also increases with the pT , since increasing pT increases

mT , counteracting the enhancement of the polarized contribution from the partonic cross

sections. The relative size of the polarized contribution does have a small dependence on

pT with µ = 2m, but is rather flat for µ = mT . For Q0 = 1GeV and µ = mT the polarized

contribution is small, and therefore give results similar to what would be obtained by taking

the extreme assumption that all polarized distributions are zero.

Figure 4 shows the dependence of the normalized cross section on the rapidity difference

between the charm quarks. The cross section results are stable under variations of the scales

and nicely reproduce the shape of the data. The two input scales have a strong impact

on the size of the polarized contributions. The relative polarized contribution displays no

dependence on the rapidity difference. With µ = 2m the ratio of polarized over unpolarized

– 11 –



J
H
E
P
0
4
(
2
0
1
5
)
0
3
4

10−4

10−3

10−2

10−1

100

4 6 8 10 12 14 16 18 20

d
ln
σ
/
d
M

c
c

µ = 2m

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16 18 20

R

Mcc [GeV]

Q0 = 2 GeV
Q0 = 1 GeV

10−4

10−3

10−2

10−1

100

4 6 8 10 12 14 16 18 20

d
ln
σ
/
d
M

c
c

µ = mT

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16 18 20

R

Mcc [GeV]

Q0 = 2 GeV
Q0 = 1 GeV

Figure 5. Same as in figure 3, but for the cross section differential in the invariant mass of the two

charm quarks Mcc.

is 30% for Q0 = 2GeV and around 4% for Q0 = 1GeV. Changing to µ = mT decreases

the ratio to about half, 15% for Q0 = 2GeV and 2% for Q0 = 1GeV.

The cross section dependence on the invariant mass of the two charm quarks, Mcc, is

shown in figure 5. As in the previous figures, the data is rather well reproduced by the

double charm cross section calculation. The polarized contribution has some dependence

on Mcc with µ = 2m and thus a small impact on the shape of the cross section, but this

effect disappears for µ = mT . With the lower input scale the polarized contribution is a

few percent. With the larger Q0 the polarized gluon contribution is 30% of the unpolarized

at small Mcc and increases up to 50% at large Mcc for µ = 2m, while µ = mT gives a ratio

just above 10% in the entire Mcc range.

An intriguing aspect of the D0D0 results is the azimuthal correlation between the two

mesons. This correlation differs from that observed between meson final states with an

equal number of charm quarks and anti-quarks, such as D0D̄0 and D±D∓ [12], which are

dominated by single parton scattering. The angular modulation in D0D0 resembles that

of a cos 2∆φ dependence, which is naturally produced by the DPS cross section involving a

mixture of unpolarized and linearly polarized gluons. In our LO calculation, the polarized

contribution can still be sizable as demonstrated in figure 6, but the large contribution

originates from the longitudinally polarized gluons and is thus independent of ∆φ.

Instead of the maximal polarization model for the DPDs, we can use the splitting

model — where the ratios of the perturbative splittings of an unpolarized parent parton

into two (unpolarized or polarized) partons are the basis of the relations between the

different DPDs as explained in section 4. This scenario has a smaller polarization, but

different xi dependences of the unpolarized compared to polarized DPDs — which could

show up as shape differences in the rapidity spectrum. Figure 7 shows the cross section as
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the two charm quarks.

0

0.1

0.2

0.3

0 0.5 1 1.5 2

d
ln
σ
/
d
|∆

y
| µ = 2m

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

R

|∆y|

Q0 = 2 GeV

Figure 7. Normalized cross section in the splitting-scenario vs the difference of rapidity between

the two charm quarks at µ = 2m. Overlaid are the LHCb D0D0 data [12]. The lower panel shows

the relative size of the polarized contribution.

a function of the rapidity difference, with the polarized DPDs from the splitting model for

Q0 = 2GeV and µ = 2m. The size of the polarized cross section is reduced in the splitting

scenario to about 5–10%, with some dependence on the rapidity difference.

Extending the kinematic region to examine in particular the effects of going down to-

wards lower values of pT , figure 8 shows the cross section dependence on pT in the kinematic
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Figure 8. Normalized cross section vs the transverse momentum of one of the charm quarks in

the extended region down to pTi = 1GeV, at µ = 2m (left) and µ = mT (right). The lower panels

show the relative size of the polarized contribution in the max-scenario.

range 1 ≤ pT i ≤ 12GeV. This decreases the size of the polarized contribution, which is

not surprising since the longitudinally polarized cross section in (3.3) has a (1−2m/mT i)

factor for each of the two partonic processes, which decreases when going to smaller pT i.

Although the polarization in this region is rather small, the effect on the shape of the

cross section is interesting. In figure 9 we show the double differential cross section, in

pT1 and pT2. We see a strong pT i dependence of the polarized contribution in combination

with a large absolute size, which starts at 0% for pT i = 1GeV and goes up to 60% of the

unpolarized for pT i approaching 12GeV, with µ = 2m and Q0 = 2GeV. The results with

µ = mT have less polarization, with a maximal ratio reduced to about 10%. Some of the

pT i dependence remains but most of it is at pT i values below 3GeV. A precise measurement

of this double differential cross section could be able to distinguish some of the different

scenarios, and either see first indications of or set first limits on the longitudinally polar-

ized gluons in DPS. In particular if it is possible to extend the measured region down to

lower transverse momenta. Investigating the dependence of the relative size of the mixed

unpolarized – linearly polarized gluons on the lower limit of transverse momenta we ex-

pect a rather large increase in the relative size (compared to the cross section contribution

without azimuthal dependence). This is also visible in figure 10, where the relative size

of the mixed contribution is increased by almost an order of magnitude when extending

the kinematic region down to pT i = 1GeV. The amplitude is still small compared to the

angular modulation in the data, but it is another indication that allowing for a non-zero

transverse momentum of the initial gluons, through for example NLO correction, could

lead to significant enhancements.

– 14 –



J
H
E
P
0
4
(
2
0
1
5
)
0
3
4

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

2 4 6 8 10 12

d
ln
σ
/
d
p
T
1
d
p
T
2

µ = 2m

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

R

pT1 (pT2 = pT1) [GeV]

Q0 = 2 GeV
Q0 = 1 GeV

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

2 4 6 8 10 12

d
ln
σ
/
d
p
T
1
d
p
T
2

µ = mT

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

R

pT1 (pT2 = pT1) [GeV]

Q0 = 2 GeV
Q0 = 1 GeV

Figure 9. Normalized double differential cross section vs the transverse momentum of the two

charm quarks in the extended region down to pTi = 1GeV, at µ = 2m (left) and µ = mT (right).

The lower panels show the relative size of the polarized contribution in the max-scenario.
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Figure 10. Normalized cross section vs the azimuthal angle between the two charm quarks, at

µ = 2m, with kinematic region extended down to pTi = 1GeV.

5.1 Predictions at
√
s = 13 TeV

In this section we show predictions at a hadronic center of mass energy of 13TeV. The

results are generally very similar to those at
√
s = 7TeV, and we will therefore keep the

discussion rather brief. Figure 11 (first row) displays the normalized cross section as a

function of the pT of one of the two quarks. The change in CM energy as compared to

figure 3 flattens the cross section slightly and leads to a small decrease of the polarization.

The second row of figure 11 shows the cross section results as a function of the rapidity

difference ∆y. The change in CM energy has no visible impact on the shape of the cross

section, and only leads to a small decrease of the polarized contribution. This small decrease
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Figure 11. Collisions at
√
s = 13TeV in the max-scenario. Top: normalized cross section vs the

transverse momentum of one of the charm quarks with µ = 2m (left) and µ = mT (right). The lower

panels show the relative size R of the polarized contribution. Bottom: normalized cross section vs

the rapidity difference ∆y between the two charm quarks with µ = 2m (left) and µ = mT (right)

and relative size R of the polarized contribution.

of the polarization as well as the small, if any, changes to the shape of the cross section is

observed also for the dependence on Mcc and ∆φ, as shown in figure 12.

In the extended pT i region for the double differential cross section, the results have

large polarization with a strong dependence on the transverse momentum at µ = 2m and

Q0 = 2GeV, as shown in figure 13. The contribution of the polarization decreases, as does

the shape dependence, when going to µ = mT .
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Figure 12. Collisions at
√
s = 13TeV in the max-scenario. Top: normalized cross section vs the

invariant mass of the two charm quarks with µ = 2m (left) and µ = mT (right). The lower panels

show the relative size R of the polarized contribution. Bottom: normalized cross section vs the

azimuthal angle between the two charm quarks ∆φ between the two charm quarks with µ = 2m

(left) and µ = mT (right) and relative size R of the polarized contribution.

6 Conclusions

We have investigated the effects of polarization in the double open-charm cross section,

when the two charm quarks are produced in the kinematic region probed in the D0D0

measurement by the LHCb Collaboration [12]. Polarization can give sizable effects on the

magnitude of the cross section, reaching up above 50% of the unpolarized contribution in

certain kinematic regions. The size strongly depends on the choices made when modeling
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Figure 13. Collisions at
√
s = 13TeV in the max-scenario. Normalized double differential cross

section vs the pT of the two charm quarks, with µ = 2m (left) and µ = mT (right), in the extended

region down to pTi = 1GeV.

the polarized double gluon distributions and on the large uncertainties for the single gluon

distributions at the relevant low scales and small momentum fractions. We have presented

the results obtained with
√
s equal to both 7 and 13TeV. The change of energy scale only

has minor impact on the shape of the DPS cross section results as well as the relative size

of the polarized contributions.

The shapes of the polarized contributions to the cross section are in most variables

quite similar to the unpolarized results. In these cases it is difficult to disentangle the

polarized contribution from other contributions in the DPS cross section, such as a single

parton splitting and color interference contributions. We therefore identify variables and

kinematic regions where the polarization does introduce some shape dependence. The most

prominent shape dependence is found for the cross section double differential in the pT of

the two charm quarks, where the polarized contribution can vary with pT from 0 up to

60% of the unpolarized.

We compare the results of our calculation with the measurement of D0D0 mesons by

the LHCb [12]. For most distributions, the leading order calculation reproduces the ex-

perimental data rather well. The data cannot discriminate between the different models

for the polarized DPDs as the polarization does not introduce any strong shape changes.

The exception is the dependence on the azimuthal angle between the two mesons, which

exhibits an approximate cos 2∆φ modulation. Polarized double parton scattering naturally

produces such a modulation in the combination of linearly polarized and unpolarized glu-

ons. However, the leading order DPS cross section for this term is too small to reproduce

the modulation in the data. In order to reproduce the ∆φ data, the DPDs for one unpo-

larized and one linearly polarized gluon (fgδg and fδgg) would have to violate the positivity
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bounds by at least a factor of 10. It is possible, however, that the size of this term changes

drastically when including higher orders. Higher order effects for the process are expected

to be large [17]. Such large NLO corrections, in combination with an expectation that the

higher order corrections will lift the strong suppression of the mixed (unpolarized – linearly

polarized) contribution present at tree level, can lead to a significant enhancement of the

amplitude of the azimuthal modulation. Unfortunately, the theoretical formalism for the

description of DPS needs to be further developed to reach a state where higher order effects

can be systematically included.

In the double differential cross section, looking at the pT of both of the charm quarks,

the longitudinal polarization can have a larger impact on both the size and shape. Mea-

surements of this double differential cross section could therefore give first experimental

indications of, or limits on, the effects of polarization in double parton scattering.

We have used the homogeneous double DGLAP evolution equations, which do not

include any single parton splitting term. The effect of the single parton splitting on the

unpolarized DPS cross section was studied in [15]. Including it also for the polarized terms

of the DPS cross section could further enhance the effects of polarization. In addition,

we have employed an ansatz which splits the unpolarized gluon DPD in two single gluon

PDFs and a factor depending only on the transverse distance between the two partons.

This approach, common in DPS studies, is useful as a first approximation of the gluon

DPD, but neglects several effects. These include correlations between kinematical variables

and the color of the two gluons. The cross section ratios which we present, are likely to

be more stable to such corrections than the absolute size of the cross section. However,

further phenomenological as well as experimental studies are required to better constrain

these effects.
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