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Abstract:We study a Dirichlet-type boundary value problem for a pseudodifferential equation driven by the
fractional Laplacian, proving the existence of three non-zero solutions.When the reaction term is sublinear at
infinity, we apply the second deformation theorem and spectral theory.When the reaction term is superlinear
at infinity, we apply the mountain pass theorem and Morse theory.
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1 Introduction
The present paper deals with the following Dirichlet-type boundary value problem for a nonlinear equation
driven by the fractional Laplacian:

{
(−∆)su = f(x, u) in Ω,

u = 0 in Ωc,
(1.1)

where Ω ⊆ ℝN (N > 1) is a bounded domain with a C2 boundary, Ωc = ℝN \ Ω, s ∈ (0, 1), and f : Ω × ℝ → ℝ
is a Carathéodory function. The fractional Laplacian operator is defined for any sufficiently smooth function
u : ℝN → ℝ and all x ∈ ℝN by

(−∆)su(x) = CN,s lim
ε→0+

∫
ℝN\Bε(x)

u(x) − u(y)
|x − y|N+2s

dy, (1.2)

where CN,s > 0 is a suitable normalization constant. Throughout the paper we will always assume CN,s = 1
(for a precise evaluation of CN,s, consistent with alternative definitions of the fractional Laplacian, see
[10, Remark 3.11]).

Fractional operators have gained increasing popularity in recent years. This is both due to the intrin-
sic mathematical interest of such subject and to the various applications that they allow. Indeed, nonlocal
pseudodifferential operators such as (−∆)s are naturally involved in continuum mechanics, population
dynamics, game theory and other phenomena, as the infinitesimal generators of Lévy-type stochastical
processes (see [12]).

Roughly speaking, the outstanding feature of operators like (−∆)s is nonlocality, i.e., the dependence of
(−∆)su(x) on the values of u(y)not only for y conveniently near to x, but for all y ∈ ℝN .While such nonlocality
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makes our operator particularly suitable to describe phenomena allowing “jumps”, it makes things delicate
in dealing with regularity, sign, and other typically local attributes of solutions. This is one reason why the
study of nonlinear equations involving (−∆)s (or closely related operators) started with the case in which
the domain isℝN , providing existence of solutions, regularity, a priori bounds and maximum principles (see
[10, 11], and [3] for some existence results). The natural functional setting for such study is provided by
fractional Sobolev spaces (see [17]).

On the other hand, nonlocality obviously produces some difficulties in finding an analogous to Dirichlet-
type boundary conditions on bounded domains. The standard formulation of the Dirichlet problem for
fractional equations in a bounded domain Ω was set in the series of papers [35–37], simply by requiring that
the solution u vanishes a.e. outside Ω. Our problem (1.1) follows such a standard.While interior regularity of
solutions of (1.1) can be handled just as in the unbounded case, boundary regularity and behavior of
solutions (e.g., the Hopf property) came forth as a serious difficulty, which was mostly overcome by means
of weighted Hölder-type function spaces (see [4, 22, 25, 34]).

Once provided with the appropriate functional formulation, problem (1.1) becomes variational, in the
sense that its weak solutions can be detected as critical points of a C1 energy functional φ, defined on a frac-
tional Sobolev space. So we can prove existence and multiplicity of such solutions by applying to φ several
abstract results of critical point theory, such as minimax principles (see [33]) and Morse theory (see [13]).
Some results of this type can be found, for instance, in [6, 14, 18, 26, 28, 30, 39].

In the present paper, we will employ much of the research accomplished so far in order to prove the
existence of three non-zero solutions for problem (1.1) (one positive, one negative, and the third with indef-
inite sign), when f(x, ⋅ ) has a subcritical growth and satisfies convenient conditions at zero and at infinity.
Precisely, we will consider the following two cases:
(a) If f(x, ⋅ ) is sublinear at infinity, and at most linear at zero, thenwe apply the second deformation theorem

and some spectral properties of (−∆)s (namely, a characterization of the second eigenvaluewhich, for the
local case, goes back to [16]).

(b) If f(x, ⋅ ) is superlinear at infinity, and satisfies a mild version of the Ambrosetti–Rabinowitz condition,
then we apply the mountain pass theorem and the Poincaré–Hopf identity based on the computation of
critical groups (thus proving a nonlocal analogous of the result of [38]).

In both cases, truncations of the energy functional φ will be an essential tool, so we will make use of a topo-
logical result established in [25], which relates local minimizers of the truncated and uncut functionals,
respectively.

Our work strongly relies on the joint application ofmutually independent results, andwe decided to priv-
ilege simplicity rather than generality. One possible generalization of our results is towards linear nonlocal
operators of the type

LKu(x) = lim
ε→0+

∫
ℝN\Bε(x)

u(x) − u(y)
K(x, y) dy,

where K : ℝN × ℝN → ℝ+ is a weight function exhibiting an asymptotic behavior similar to that of the stan-
dard weight |x − y|N+2s (see [35]). Another possible extension may deal with the fractional p-Laplacian,
namely the nonlinear nonlocal operator defined by

(−∆)spu(x) = 2 lim
ε→0+

∫
ℝN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+2s

dy,

where p ∈ (1,∞). Some existence and multiplicity results for fractional p-Laplacian problems, obtained
through critical point theory and Morse theory, can be found in [23]. Nevertheless, the methods used in the
present paper cannot be easily extended to (−∆)sp due to the lack of a complete boundary regularity theory
like that developed in [34] for (−∆)s (some results in this direction are proved in [24]).

The paper has the following structure: In Section 2 we recall the variational formulation of our problem
and some basic properties of solutions, together with some results from critical point theory. In Section 3 we
prove our multiplicity result for the sublinear case. And in Section 4 we deal with the superlinear case.
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2 Preliminary results
In this section we recall some results that will be used in our arguments.

2.1 Variational formulation and some properties of problem (1.1)

For all measurable functions u : ℝN → ℝ we set

[u]2s,2 = ∬
ℝN×ℝN

(u(x) − u(y))2

|x − y|N+2s
dx dy.

Then we define the fractional Sobolev space

Hs(ℝN) = {u ∈ L2(ℝN) : [u]s,2 < ∞}

(see [17]). We restrict ourselves to the subspace

Hs0(Ω) = {u ∈ Hs(ℝN) : u(x) = 0 for a.e. x ∈ Ωc},

which is a separableHilbert space under the norm ‖u‖ = [u]s,2 (see [35]).Wedenote byH−s(Ω) the topological
dual of Hs0(Ω) and by ⟨ ⋅ , ⋅ ⟩ the scalar product of Hs0(Ω) (or the duality pairing between H−s(Ω) and Hs0(Ω)).
In this connection we mention the following useful inequality, holding for all u ∈ Hs0(Ω):

∬
ℝN×ℝN

(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+2s

dx dy ⩽ −‖u−‖2, (2.1)

where u− stands for the negative part of u (see [25]). The critical exponent is defined as 2∗s = 2N
N−2s , and the

embedding Hs0(Ω) í→ Lp(Ω) is continuous and compact for all p ∈ [1, 2∗s ) (see [17, Lemma 8]). Moreover, we
introduce the positive order cone

Hs0(Ω)+ = {u ∈ Hs0(Ω) : u(x) ⩾ 0 for a.e. x ∈ Ω},

which has an empty interior with respect to the Hs0(Ω)-topology. The space H
s
0(Ω) provides the natural frame-

work for the study of problem (1.1).

Definition 2.1. A function u ∈ Hs0(Ω) is a (weak) solution of (1.1) if for all v ∈ H
s
0(Ω), we have

∬
ℝN×ℝN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy = ∫
Ω

f(x, u)v dx.

In all the forthcoming resultswewill assume the following subcritical growth condition on the nonlinearity f :
(H0) f : Ω × ℝ → ℝ is a Carathéodory mapping, satisfying

|f(x, t)| ⩽ a0(1 + |t|p−1) for a.e. x ∈ Ω and all t ∈ ℝ (a0 > 0, p ∈ (1, 2∗s )).

Under such assumption, we are able to extend to problem (1.1) some basic results holding for elliptic bound-
ary value problems, starting with a simple a priori bound.

Proposition 2.2 ([25, Theorem 3.2]). Let (H0) hold. Then there exists a continuous, nondecreasing function
M : ℝ+ → ℝ+ such that for every weak solution u ∈ Hs0(Ω) of (1.1) one has u ∈ L∞(Ω) and

‖u‖∞ ⩽ M(‖u‖2∗s ).

While solutions of fractional equations exhibit good interior regularity properties, they may have a singular
behavior on the boundary. So, instead of the usual space C1(Ω), they are better embedded in the following
weighted Hölder-type spaces: Set δ(x) = dist(x, Ωc) for all x ∈ ℝN and define

C0δ(Ω) = {u ∈ C0(Ω) : u
δs

∈ C0(Ω)}, Cαδ(Ω) = {u ∈ C0(Ω) : u
δs

∈ Cα(Ω)} (α ∈ (0, 1)),
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endowed with the norms

‖u‖0,δ =
""""""
u
δs

""""""∞, ‖u‖α,δ = ‖u‖0,δ + sup
x ̸=y

|u(x)/δs(x) − u(y)/δs(y)|
|x − y|α

,

respectively. For all 0 ⩽ α < β < 1 the embedding Cβδ(Ω) í→ Cαδ(Ω) is continuous and compact. In this case,
the positive cone C0δ(Ω)+ has a nonempty interior given by

int (C0δ(Ω)+) = {u ∈ C0δ(Ω) :
u(x)
δs(x)

> 0 for all x ∈ Ω}.

From Proposition 2.2 and [34, Theorem 1.2] we have the following global regularity result.

Proposition 2.3. Let (H0) hold. Then there exist α ∈ (0, min{s, 1 − s}) and C > 0 such that for all solutions
u ∈ Hs0(Ω) of (1.1) one has u ∈ Cαδ(Ω) and

‖u‖α,δ ⩽ C(1 + ‖u‖2∗s ).

We now turn to sign properties of solutions of (1.1). We begin with a weak maximum principle.

Proposition 2.4 ([25, Theorem 2.4]). Let (H0) hold and f(x, t) ⩾ 0 for a.e. x ∈ Ω and all t ∈ ℝ. If u ∈ Hs0(Ω) is
a solution of (1.1), then u is lower semicontinuous and u(x) ⩾ 0 for all x ∈ Ω.

Moreover, we have the following fractional Hopf lemma.

Proposition 2.5 ([22, Lemma 1.2]). Let (H0) hold and f(x, t) ⩾ −ct for a.e. x ∈ Ω and all t ∈ ℝ (c > 0). If
u ∈ Hs0(Ω)+ is a solution of (1.1), where u is lower semicontinuous, then either u(x) = 0 for all x ∈ Ω or
u ∈ int (C0δ(Ω)+).

Remark 2.6. In its original version from [22], the above Hopf lemma requires that u satisfies (−∆)su = f(x, u)
pointwisely in Ω, while we deal with weak solutions. In fact, any weak solution u of (1.1) has a higher
interior regularity than that displayed in Proposition 2.3, as u ∈ C1,β(Ω) for any β ∈ (max{0, 2s − 1}, 2s) (see
[34, Corollary 5.6]). Hence, also recalling that u = 0 in Ωc, one can see that the limit in (1.2) exists in ℝ and
the equation is satisfied pointwisely (see [24, Proposition 2.12]).

Now we introduce an energy functional for problem (1.1). For all (x, t) ∈ Ω × ℝ set

F(x, t) =
t

∫
0

f(x, τ) dτ,

and for all u ∈ Hs0(Ω) set

φ(u) = ‖u‖2

2 − ∫
Ω

F(x, u) dx. (2.2)

By the continuous embedding Hs0(Ω) í→ Lp(Ω), we have φ ∈ C1(Hs0(Ω)), and for all u, v ∈ H
s
0(Ω) we have

φ�(u)(v) = ∬
ℝN×ℝN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy − ∫
Ω

f(x, u)v dx.

So recalling Definition 2.1, we have that u is a solution of (1.1) if and only if φ�(u) = 0 in H−s(Ω). Among
critical points of φ, local minimizers play a preeminent role. We recall, in this connection, a useful topolog-
ical result relating such minimizers in the Hs0(Ω)-topology and in C0δ(Ω)-topology, respectively (a fractional
version of the classical result of [9]).

Proposition 2.7 ([25, Theorem 1.1]). Let (H0) hold, φ be defined as above, and u ∈ Hs0(Ω). Then the following
conditions are equivalent:
(i) There exists r > 0 such that φ(u + v) ⩾ φ(u) for all v ∈ Hs0(Ω), ‖v‖ ⩽ r.
(ii) There exists ρ > 0 such that φ(u + v) ⩾ φ(u) for all v ∈ Hs0(Ω) ∩ C

0
δ(Ω), ‖v‖0,δ ⩽ ρ.
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In the proof of our result we will need some spectral properties of (−∆)s. Let us consider the following eigen-
value problem:

{
(−∆)su = λu in Ω

u = 0 in Ωc.
(2.3)

Just as in the local case, we say that λ > 0 is an eigenvalue of (−∆)s if problem (2.3) has a non-zero solution
u ∈ Hs0(Ω), which is called a λ-eigenfunction. From the current literaturewehave rather complete information
about the first two eigenvalues of (−∆)s.

Proposition 2.8. The spectrum of (−∆)s consists of a nondecreasing sequence 0 < λ1s (Ω) < λ2s (Ω) ⩽ ⋅ ⋅ ⋅ of posi-
tive numbers, in particular:
(i) (See [36, Proposition 9]) The eigenvalue λ1s (Ω) is simple and the unique L2(Ω)-normalized eigenfunction is

û1 ∈ int (C0δ(Ω)+) such that ‖û1‖2 = 1, moreover λ1s (Ω) admits the variational characterization

λ1s (Ω) = inf
u∈Hs0(Ω)\{0}

‖u‖2

‖u‖22
.

(ii) (See [21, Proposition 2.8]) The eigenvalue λ2s (Ω) is the smallest eigenvalue in the interval (λ1s (Ω),∞), the
λ2s (Ω)-eigenfunctions are nodal, moreover λ2s (Ω) admits the variational characterization

λ2s (Ω) = inf
γ∈Γ1

max
t∈[0,1]

‖γ(t)‖2,

where
Γ1 = {γ ∈ C([0, 1], Hs0(Ω)) : γ(0) = û1, γ(1) = −û1, ‖γ(t)‖2 = 1 for all t ∈ [0, 1]}.

Note that (ii) above is a fractional version of a classical result of [16], and that Proposition 2.8 holds as well
for (−∆)sp (see [7, 20]). For further information about the spectra of (−∆)s and (−∆)sp see also [27, 31, 37].

2.2 Some recalls of critical point theory

Variationalmethods are basedonabstract critical point theory, and the latter includesmany results, depicting
the rich topology that nonlinear and nonconvex functionals may exhibit. We recall here some well-known
results which will be our major tools, mainly following [29] (see also [33]).

Let (X, ‖ ⋅ ‖) be a reflexive Banach space, (X∗, ‖ ⋅ ‖∗) be its topological dual, and φ ∈ C1(X) be a functional.
By K(φ) we denote the set of all critical points of φ, i.e., those points u ∈ X such that φ�(u) = 0 in X∗, while
for all c ∈ ℝ we set

Kc(φ) = {u ∈ K(φ) : φ(u) = c},

besides we set
φc = {u ∈ X : φ(u) ⩽ c}.

Most results require the following Cerami compactness condition (a weaker version of the Palais–Smale
condition):

{
Any sequence (un) in X, such that (φ(un)) is bounded inℝ and (1 + ‖un‖)φ(un) → 0 in X∗

admits a (strongly) convergent subsequence.
(C)

We recall a version of the mountain pass theorem (see [2, 32] for the original result).

Theorem 2.9 ([29, Theorem 5.40]). Let φ ∈ C1(X) satisfy (C), u0, u1 ∈ X, r ∈ (0, ‖u1 − u0‖) be such that

max{φ(u0), φ(u1)} < ηr := inf
‖u−u0‖=r

φ(u),

moreover, let
Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, c = inf

γ∈Γ
max
t∈[0,1]

φ(γ(t)).

Then c ⩾ ηr and Kc(φ) ̸= 0.
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We will also use the second deformation theorem.

Theorem 2.10 ([29, Theorem 5.34]). Let φ ∈ C1(X) satisfy (C), let a < b be real numbers such that Kc(φ) = 0
for all c ∈ (a, b) and Ka(φ) is a finite set. Then, there exists a continuous deformation

h : [0, 1] × (φb \ Kb(φ)) → (φb \ Kb(φ))

such that the following hold:
(i) h(0, u) = u, h(1, u) ∈ φa for all u ∈ (φb \ Kb(φ)),
(ii) h(t, u) = u for all (t, u) ∈ [0, 1] × φa,
(iii) t Ü→ φ(h(t, u)) is decreasing in [0, 1] for all u ∈ (φb \ Kb(φ)).

In particular, (i)–(ii) above mean that φa is a strong deformation retract of φb (see [29, Definition 5.33 (b)]).
Note that, if a is the global minimum of φ and is attained at a unique point u0 ∈ X, and there are no critical
levels of φ in (a, b), then by Theorem 2.10 the set φb \ Kb(φ) is contractible (see [29, Definition 6.22]).

We conclude this section by recalling some basic notions from Morse theory (see [5, 13] for details). Let
φ ∈ C1(X) satisfy (C) and u ∈ Kc(φ) (c ∈ ℝ) be an isolated critical point of φ, i.e., there exists a neighborhood
U ⊂ X of u such that K(φ) ∩ U = {u}. Then, for all integers k ⩾ 0 the k-th critical group of φ at u is defined as

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}), (2.4)

where Hk( ⋅ , ⋅ ) is the k-th (singular) homology group of a topological pair (see [29, Definition 6.9]). All these
groups are real linear spaces. Note that, by the excision property of homology groups, (2.4) is invariant with
respect to U. In particular, if u ∈ K(φ) is a strict local minimizer and an isolated critical point, then for all
k ⩾ 0 we have

Ck(φ, u) = δk,0ℝ, (2.5)

where δk,h is the Kronecker symbol (see [29, Example 6.45 (a)]). Critical groups describe the homology of
sublevel sets.

Proposition 2.11 ([29, Lemma 6.55]). Let φ ∈ C1(X) satisfy (C), let a < c < b be real numbers such that c is the
only critical value of φ in [a, b] and Kc(φ) is a finite set. Then for all k ∈ ℕ we have

Hk(φb , φa) = ⨁
u∈Kc(φ)

Ck(φ, u).

Now assume that
inf

u∈K(φ)
φ(u) =: c̄ > −∞.

Then we can as well define the k-th critical group of φ at infinity as

Ck(φ,∞) = Hk(X, φc), (2.6)

with c < c̄ (this definition is also invariant with respect to c). Critical groups at critical points and at infinity
are related by the Poincaré–Hopf formula (one of the Morse relations).

Theorem 2.12 ([29, Remark 6.58]). Let φ ∈ C1(X) satisfy (C), let a < b be real numbers such that the set

Kba(φ) = {u ∈ K(φ) : a ⩽ φ(u) ⩽ b}

is finite. Then
∞
∑
k=0

∑
u∈Kba (φ)

(−1)k dim(Ck(φ, u)) =
∞
∑
k=0

(−1)k dim(Ck(φ,∞)).

Notation

Throughout the paper, Br(x) will denote the open ball of radius r > 0 centered at x ∈ ℝN and C > 0 will be a
constant whose value may change from line to line.
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3 The sublinear case
In this section we prove the existence of three non-zero solutions of problem (1.1) when f(x, ⋅ ) is sublinear at
infinity, by means of the second deformation theorem and spectral theory. Precisely, we make on the nonlin-
earity of f the following assumptions:
(H1) f : Ω × ℝ → ℝ is a Carathéodory mapping, satisfying

(i) |f(x, t)| ⩽ a0(1 + |t|p−1) for a.e. x ∈ Ω and all t ∈ ℝ (a0 > 0, p ∈ (2, 2∗s )),
(ii) f(x, t)t ⩾ 0 for a.e. x ∈ Ω and all t ∈ ℝ,
(iii) lim sup|t|→∞ F(x, t)/t2 ≤ 0 uniformly for a.e. x ∈ Ω,
(iv) lim inft→0 F(x, t)/t2 ≥ β uniformly for a.e. x ∈ Ω (β > 0).

Example 3.1. Let a ∈ L∞(Ω) be a function such that a(x) ⩾ 2β > 0 for a.e. x ∈ Ω. For all (x, t) ∈ Ω × ℝ set

f(x, t) = a(x) sign(t) ln(1 + |t|).

Then f satisfies hypotheses (H1).

Clearly, by hypothesis (H1) (ii), problem (1.1) always has the zero solution. First we prove that, for β > 0 big
enough, problem (1.1) has two constant sign solutions.

Proposition 3.2. Let (H1) hold with β > λ1s (Ω)/2. Then problem (1.1) admits at least two non-zero solutions
u± ∈ ±int (C0δ(Ω)+).

Proof. We define φ as in (2.2). Besides, we introduce two truncated energy functionals by setting

φ±(u) =
‖u‖2

2 − ∫
Ω

F±(x, u) dx (3.1)

for all u ∈ Hs0(Ω), where for all (x, t) ∈ Ω × ℝ we have set

f±(x, t) = f(x, ±t±), F±(x, t) =
t

∫
0

f±(x, τ) dτ.

We focus on the functional φ+. Clearly, φ+ ∈ C1(Hs0(Ω)). We now prove that φ+ is coercive in Hs0(Ω), i.e.,

lim
‖u‖→∞

φ+(u) = ∞. (3.2)

Indeed, by hypotheses (H1) (i)–(iii), for all ε > 0 we can find Cε > 0 such that for a.e. x ∈ Ω and all t ∈ ℝ we
have

0 ⩽ F+(x, t) ⩽ Cε + εt2. (3.3)

By Proposition 2.8 (i) and (3.3), we have

φ+(u) ⩾
‖u‖2

2 − ∫
Ω

(Cε + εu2) dx ⩾ (
1
2 −

ε
λ1s (Ω)

)‖u‖2 − Cε|Ω|

for all u ∈ Hs0(Ω). If we choose ε < λ1s (Ω)/2, the latter tends to ∞ as ‖u‖ → ∞, so (3.2) follows. Moreover,
φ+ is sequentially weakly lower semicontinuous in Hs0(Ω). Indeed, let un ⇀ u in Hs0(Ω). Passing if necessary
to a subsequence, we may assume un → u in Lp(Ω) and un(x) → u(x) for a.e. x ∈ Ω, moreover, there exists
g ∈ Lp(Ω) such that |un(x)| ⩽ g(x) for a.e. x ∈ Ω and all n ∈ ℕ (see [8, Theorem 4.9]). Hence,

lim
n

∫
Ω

F+(x, un) dx = ∫
Ω

F+(x, u) dx.

Besides, by convexity we have

lim inf
n

‖un‖2

2 ⩾
‖u‖2

2 ,
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so

lim inf
n

φ+(un) ⩾ φ+(u).

Then we easily go back to the original sequence. Thus, there exists u+ ∈ Hs0(Ω) such that

φ+(u+) = inf
u∈Hs0(Ω)

φ+(u). (3.4)

In particular, u+ ∈ K(φ+). We note that u+ is a solution of the (1.1)-type problem

{
(−∆)su+ = f+(x, u+) in Ω,

u+ = 0 in Ωc.

By (H1) (ii) andProposition2.4wehave u+ ∈ Hs0(Ω)+. It remains toprove that u+ ̸= 0.Hereweuseour assump-
tion on β: let β� ∈ (0, β) be such that β� > λ1s (Ω)/2. By (H1) (iv), we can find σ > 0 such that F+(x, t) > β�t2 for
a.e. x ∈ Ω and all |t| ⩽ σ. Let û1 ∈ int (C0δ(Ω)+) be defined as in Proposition 2.8 (i), then for μ > 0 small enough
we have ‖μû1‖∞ ⩽ σ, hence

φ+(μû1) ⩽
‖μû1‖2

2 − ∫
Ω

β�(μû1)2 dx = μ2(12 −
β�

λ1s (Ω)
)‖û1‖2 < 0.

By (3.4) we have φ+(u+) < 0, hence u+ ̸= 0. By Proposition 2.5 we deduce u+ ∈ int (C0δ(Ω)+). Noting that
φ(u) = φ+(u) for all u ⩾ 0, we see that u+ is a local minimizer of φ in C0δ(Ω), hence by Proposition 2.7 a local
minimizer of φ in Hs0(Ω). In particular, u+ ∈ K(φ), hence u+ is a positive solution of (1.1).

Similarly, we find another local minimizer u− ∈ −int (C0δ(Ω)+) of φ, which turns out to be a negative solu-
tion of (1.1).

Now, taking β > 0 even bigger, we achieve a third non-zero solution.

Theorem 3.3. Let (H1) hold with β > λ2s (Ω)/2. Then problem (1.1) admits at least three non-zero solutions
u± ∈ ±int (C0δ(Ω)+), ũ ∈ C0δ(Ω) \ {0}.

Proof. First we note, arguing as in the proof of (3.2), that

lim
‖u‖→∞

φ(u) = ∞. (3.5)

Now we prove that φ satisfies (C) (which in this case is equivalent to the Palais–Smale condition). Let (un)
be a sequence in Hs0(Ω) such that |φ(un)| ⩽ C for all n ∈ ℕ and (1 + ‖un‖)φ�(un) → 0 in H−s(Ω). By (3.5), the
sequence (un) is bounded in Hs0(Ω). Hence, passing if necessary to a subsequence, we may assume un ⇀ u
in Hs0(Ω), un → u in Lp(Ω) and L1(Ω), and un(x) → u(x) for a.e. x ∈ Ω, with some u ∈ Hs0(Ω). Moreover, by
[8, Theorem 4.9] there exists g ∈ Lp(Ω) such that |un(x)| ⩽ g(x) for all n ∈ ℕ and a.e. x ∈ Ω. Using such rela-
tions along with (H1) (i), we have

‖un − u‖2 = ⟨un , un − u⟩ − ⟨u, un − u⟩

= φ�(un)(un − u) + ∫
Ω

f(x, un)(un − u) dx − ⟨u, un − u⟩

⩽ ‖φ�(un)‖∗‖un − u‖ + ∫
Ω

a0(1 + |un|p−1)|un − u| dx − ⟨u, un − u⟩

⩽ ‖φ�(un)‖∗‖un − u‖ + a0(‖un − u‖1 + ‖un‖
p−1
p ‖un − u‖p) − ⟨u, un − u⟩

for all n ∈ ℕ and the latter tends to 0 as n → ∞. Thus, un → u in Hs0(Ω).
By (H1) (ii) we have 0 ∈ K(φ), while fromProposition 3.2we know that u± ∈ K(φ) \ {0}.We aimat proving

the existence of a further critical point ũ ∈ Hs0(Ω). We argue by contradiction, assuming

K(φ) = {0, u+, u−}. (3.6)
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It is not restrictive to assume that φ(u+) ⩾ φ(u−) and that u+ is a strict local minimizer of φ, so we can find
r ∈ (0, ‖u+ − u−‖) such that φ(u) > φ(u+) for all u ∈ Hs0(Ω), 0 < ‖u − u+‖ ⩽ r. Moreover, we have

ηr := inf
‖u−u+‖=r

φ(u) > φ(u+). (3.7)

Otherwise, we could find a sequence (un) in Hs0(Ω) such that ‖un − u+‖ = r for all n ∈ ℕ, φ(un) → φ(u+)
and φ�(un) → 0 in H−s(Ω) (see [29, Corollary 5.12]). Then by (C) we would have un → ū in Hs0(Ω) for some
ū ∈ Hs0(Ω), ‖ū − u+‖ = r, hence in turn φ(ū) = φ(u+), which is a contradiction.

Now set
Γ = {γ ∈ C([0, 1], Hs0(Ω)) : γ(0) = u+, γ(1) = u−}, c = inf

γ∈Γ
max
t∈[0,1]

φ(γ(t)).

By Theorem 2.9 we have c ⩾ ηr and there exists ũ ∈ Kc(φ). By (3.7) we have ũ ̸= u±. So, (3.6) implies ũ = 0,
hence c = 0. To reach a contradiction, we will construct a path γ ∈ Γ such that

max
t∈[0,1]

φ(γ(t)) < 0, (3.8)

so that c < 0. Let β� ∈ (0, β), θ > 0 be such that

β� >
λ2s (Ω) + θ

2 . (3.9)

By (H1) (iv) there exists σ > 0 such that F(x, t) > β�t2 for a.e. x ∈ Ω and all |t| ⩽ σ. Besides, by Proposition
2.8 (ii) there exists γ1 ∈ Γ1 such that

max
t∈[0,1]

‖γ1(t)‖2 < λ2s (Ω) + θ. (3.10)

Since C∞0 (Ω) is dense in Hs0(Ω) (see [19, Theorem 2]), we can choose γ1(t) ∈ L∞(Ω) for all t ∈ [0, 1] and γ1
continuous with respect to the L∞(Ω)-topology. So, by choosing ε > 0 small enough, we have ‖εγ1(t)‖∞ ⩽ σ
for all t ∈ [0, 1]. Thus, by (3.10) and recalling that ‖γ1(t)‖2 = 1, we have for all t ∈ [0, 1] that

φ(εγ1(t)) ⩽
ε2‖γ1(t)‖2

2 − β�ε2‖γ1(t)‖22 < ε2(
λ2s (Ω) + θ

2 − β�),

and the latter is negative by (3.9). Then εγ1 is a continuous path joining εû1 and −εû1 such that

max
t∈[0,1]

φ(εγ1(t)) < 0. (3.11)

By (H1) (ii) and Proposition 2.4, it is easily seen that K(φ+) ⊆ K(φ). More precisely, by (3.6), we have
K(φ+) = {0, u+}. Set a = φ+(u+), b = 0. Then φa+ = {u+} and φ+ satisfies all assumptions of Theorem 2.10, so
there exists a continuous deformation h+ : [0, 1] × (φ0

+ \ {0}) → (φ0
+ \ {0}) such that

{{{
{{{
{

h+(0, u) = u, h+(1, u) = u+ for all u ∈ (φ0
+ \ {0}),

h+(t, u+) = u+ for all t ∈ [0, 1],

t Ü→ φ+(h+(t, u)) is decreasing for all u ∈ (φ0
+ \ {0}).

In particular, the set φ0
+ \ {0} turns out to be contractible. Set

γ+(t) = h+(t, εû1)

for all t ∈ [0, 1]. Then γ+ ∈ C([0, 1], Hs0(Ω)) is a path joining εû1 and u+, such that φ+(γ+(t)) < 0 for all
t ∈ [0, 1]. Note that φ(u) ⩽ φ+(u) for all u ∈ Hs0(Ω), indeed we have

φ+(u) − φ(u) = ∫
Ω

(F(x, u) − F+(x, u)) dx = ∫
{u<0}

F(x, u) dx,

and the latter is non-negative by (H1) (ii). So we have

max
t∈[0,1]

φ(γ+(t)) < 0. (3.12)
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Similarly, we construct a path γ− ∈ C([0, 1], Hs0(Ω)) joining −εû1 and u−, such that

max
t∈[0,1]

φ(γ−(t)) < 0. (3.13)

Concatenating γ+, εγ1, and γ− (with convenient changes of parameter) and considering (3.11)–(3.13), we
construct a path γ ∈ Γ satisfying (3.8), against (3.6) and the definition of the mountain pass level c.

So, we conclude that there exists a fourth critical point ũ ∈ K(φ) \ {0, u+, u−}, which turns out to be a
non-zero solution of (1.1), concluding the proof.

4 The superlinear case
In this section we prove the existence of three non-zero solutions of problem (1.1) when f(x, ⋅ ) is superlinear
at infinity. Following an idea first appeared in [38], we will apply the mountain pass theorem and Morse
theory. Precisely, we make the following assumptions on the nonlinearity f :
(H2) f : Ω × ℝ → ℝ is a Carathéodory mapping, satisfying

(i) |f(x, t)| ⩽ a0(1 + |t|p−1) for a.e. x ∈ Ω and all t ∈ ℝ (a0 > 0, p ∈ (2, 2∗s )),
(ii) f(x, t)t ⩽ 0 for a.e. x ∈ Ω and all t ∈ [−σ, σ] (σ > 0),
(iii) f(x, t)t ⩾ −c0t2 for a.e. x ∈ Ω and all t ∈ ℝ (c0 > 0),
(iv) lim|t|→∞ F(x, t)/t2 = ∞ uniformly for a.e. x ∈ Ω,
(v) lim inf|t|→∞(f(x, t)t − 2F(x, t))/|t|q > 0 uniformly for a.e. x ∈ Ω (q ∈ ( (p−2)N2s , 2∗s )).

Condition (H2) (v) is a mild version of the classical Ambrosetti–Rabinowitz condition (see [33]), and an easy
computation shows that we can always assume q < p in it. Such a condition was first introduced in [15].

Example 4.1. Let a, b ∈ L∞(Ω) be such that a(x) ⩾ α, b(x) ⩾ β for a.e. x ∈ Ω (α, β > 0), and set

f(x, t) = −a(x)t + b(x)|t|p−2t

for all (x, t) ∈ Ω × ℝ. Then f satisfieshypotheses (H2)with convenient a0, c0, σ, and q. This choice of f belongs
in the class of concave-convex nonlinearities, whose study (in the classical case s = 1) started with [1].

By hypothesis (H2) (ii), problem (1.1) admits the zero solution. We focus now on constant sign solutions.

Proposition 4.2. Let (H2) hold. Then (1.1) admits at least two non-zero solutions u± ∈ ±int (C0δ(Ω)+).

Proof. We define φ, φ± as in (2.2), (3.1). We focus mainly on φ+.
First we prove that φ+ satisfies (C). Let (un) be a sequence in Hs0(Ω) such that |φ+(un)| ⩽ C for all n ∈ ℕ

and (1 + ‖un‖)φ�
+(un) → 0 in H−s(Ω). Then we have

−‖un‖2 + ∫
Ω

f+(x, un)un dx ⩽ C,

‖un‖2 − 2∫
Ω

F+(x, un) dx ⩽ C

for all n ∈ ℕ, which imply
∫
Ω

(f+(x, un)un − 2F+(x, un)) dx ⩽ C. (4.1)

Clearly, (H2) (v) yields

lim
t→∞

f+(x, t)t − 2F+(x, t)
tq

> 0

uniformly for a.e. x ∈ Ω. So we can find β,M > 0 such that f+(x, t)t − 2F+(x, t) ⩾ βtq for a.e. x ∈ Ω and
all t > M. We claim that (un) is bounded in Lq(Ω). Indeed, for all n ∈ ℕ we have

‖un‖
q
q = ‖u+n‖

q
q + ‖u−n‖

q
q .
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By the previous inequality we have

β‖u+n‖
q
q = ∫

{0<un⩽M}

βuqn dx + ∫
{un>M}

βuqn dx

⩽ βMq|Ω| + ∫
{un>M}

(f+(x, un)un − 2F+(x, un)) dx

⩽ C + ∫
Ω

(f+(x, un)un − 2F+(x, un)) dx,

and the latter is bounded by (4.1). Besides, using (2.1) and recalling that f+(x, t)t− = 0 for all (x, t) ∈ Ω × ℝ,
we get

‖u−n‖2 ⩽ − ∬
ℝN×ℝn

(un(x) − un(y))(u−n(x) − u−n(y))
|x − y|N+2s

dx dy

= −φ�
+(un)(u−n)

⩽ ‖φ�
+(un)‖∗‖u−n‖,

which implies that ‖u−n‖ is bounded inℝ. By the continuous embeddingHs0(Ω) í→ Lq(Ω), this yields ‖u−n‖q→ 0
as n → ∞. So we deduce that ‖un‖q is bounded inℝ.

Using this fact, we want to show that (un) is bounded in Hs0(Ω) as well. Since q < p < 2∗s in our assump-
tions, we can find τ ∈ (0, 1) such that

1
p

=
1 − τ
q

+
τ
2∗s
.

By the interpolation inequality (see [8, p. 93]) and the continuous embedding Hs0(Ω) í→ L2∗s (Ω), we have

‖un‖p ⩽ ‖un‖1−τq ‖un‖τ2∗s ⩽ C‖un‖τ (4.2)

for all n ∈ ℕ. Again by (1 + ‖un‖)φ�
+(un) → 0 in H−s(un) and (H2) (i) we have

‖un‖2 ⩽ ∫
Ω

f+(x, un)un dx + C

⩽ ∫
Ω

a0(1 + |un|p−1)|un| dx + C

⩽ C(1 + ‖un‖1 + ‖un‖
p
p)

for all n ∈ ℕ. By (4.2) and the continuous embeddings Hs0(Ω) í→ L1(Ω), Lp(Ω) we see that

‖un‖2 ⩽ C(1 + ‖un‖ + ‖un‖pτ).

Since pτ < 2 we deduce that (un) is bounded in Hs0(Ω). Now we conclude as in the proof of Theorem 3.3.
Now we prove that φ+ is unbounded from below. Indeed, let û1 be defined as in Proposition 2.8 (i), and

recall that ‖û1‖2 = λ1s (Ω), ‖û1‖22 = 1. By (H2) (iv), given θ > λ1s (Ω)/2 we can findM > 0 such that F(x, t) ⩾ θt2
for a.e. x ∈ Ω and all |t| > M. For all μ > 0 we have

φ+(μû1) =
μ2‖û1‖2

2 − ∫
{μû1⩽M}

F+(x, μû1) dx − ∫
{μû1>M}

F+(x, μû1) dx

⩽
μ2λ1s (Ω)

2 − ∫
{μû1>M}

θμ2û21 dx + C

⩽ μ2(
λ1s (Ω)
2 − θ) + θM2|Ω| + C,
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and the latter goes to −∞ as μ → ∞. Thus,

lim
μ→∞

φ+(μû1) = −∞. (4.3)

We claim that 0 is a local minimizer for φ+. By (H2) (ii) we have F+(x, t) ⩽ 0 for a.e. x ∈ Ω and all |t| ⩽ σ. For
all u ∈ C0δ(Ω) with

‖u‖0,δ ⩽
σ

diam(Ω)s ,

we have ‖u‖∞ ⩽ σ, hence

φ+(u) ⩾
‖u‖2

2 ⩾ 0.

So, 0 is a local minimizer of φ+ in C0δ(Ω). By Proposition 2.7, 0 is as well a local minimizer of φ+ in Hs0(Ω). As
usual, it is not restrictive to assume that 0 is a strict local minimizer for φ+ and (reasoning as in the proof of
(3.7)) there exists r > 0 such that

η+r := inf
‖u‖=r

φ+(u) > 0. (4.4)

By (4.3) we can find μ > 0 such that ‖μû1‖ > r and φ+(μû1) < 0. Set

Γ+ = {γ ∈ C([0, 1], Hs0(Ω)) : γ(0) = 0, γ(1) = μû1}, c+ = inf
γ∈Γ+

max
t∈[0,1]

φ+(γ(t)).

By Theorem 2.9 we have c+ ⩾ η+r and there exists u+ ∈ Kc+ (φ+). From (4.4) we see that c+ > 0, hence u+ ̸= 0.
Testing φ�

+(u+) = 0 with (u+)− ∈ Hs0(Ω) and using (2.1), we get

−‖(u+)−‖2 ⩾ φ�
+(u+)((u+)−) = 0,

i.e., u+ ∈ Hs0(Ω)+ (note that Proposition 2.4 does not apply here). By (H2) (iii) we can apply Proposition 2.5
and deduce u+ ∈ int (C0δ(Ω)+), in particular, f+(x, u+) = f(x, u+) for a.e. x ∈Ω. Thus we conclude that u+ ∈ K(φ)
and it is a positive solution of (1.1).

A similar argument, applied to φ−, leads to the existence of a negative solution u− ∈ −int (C0δ(Ω)+) of
problem (1.1).

Using the critical groups, we can improve the conclusion of Proposition 4.2 under the same assumptions.

Theorem 4.3. Let (H2) hold. Then problem (1.1) admits at least three non-zero solutions u± ∈ ±int (C0δ(Ω)+),
ũ ∈ C0δ(Ω) \ {0}.

Proof. Reasoning as in the proof of Proposition 4.2 we see that φ, φ± satisfy (C), are unbounded from below
andhave a strict localminimumat 0.Moreover, we know that 0, u± ∈ K(φ).We aimat finding a further critical
point for φ. We argue by contradiction, assuming

K(φ) = {0, u+, u−}. (4.5)

In particular, all critical points of φ are isolated. Taking a < b inℝ such that all critical levels of φ lie in (a, b),
from Theorem 2.12 we have

∞
∑
k=0

(−1)k(dim Ck(φ, 0) + dim Ck(φ, u+) + dim Ck(φ, u−)) =
∞
∑
k=0

(−1)k dim Ck(φ,∞). (4.6)

Now we will compute all critical groups of φ both at its critical points and at infinity, then we will plug the
results into (4.6) to get a contradiction. In doing so, we will also need to compute some critical groups of φ±.

We begin with critical groups at infinity. For all integers k ⩾ 0 we have

Ck(φ,∞) = Ck(φ±,∞) = 0. (4.7)

We focus on φ (the argument for φ± is analogous). We recall from the proof of Proposition 4.2 that

min{φ(u+), φ(u−)} > φ(0) = 0.
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We denote the unit sphere in Hs0(Ω) by

S = {u ∈ Hs0(Ω) : ‖u‖ = 1}.

Reasoning as in the proof of (4.3) we see that for all u ∈ S we have

lim
μ→∞

φ(μu) = −∞.

Moreover, since φ is sequentially weakly lower semicontinuous in Hs0(Ω), we have

inf
‖u‖⩽1

φ(u) =: κ > −∞.

We claim that there exists c < κ such that for all v ∈ φ−1(c) we have

φ�(v)(v) < 0. (4.8)

Indeed, by (H2) (v) there exist β,M > 0 such that f(x, t)t − 2F(x, t) ⩾ β|t|q for a.e. x ∈ Ω and all |t| > M. Then,
using also (H2) (i), for all v ∈ φ−1(c) we have

φ�(v)(v) = ‖v‖2 − ∫
Ω

f(x, v)v dx

= 2φ(v) − ∫
Ω

(f(x, v)v − 2F(x, v)) dx

⩽ 2c − ∫
{|v|>M}

β|v|q dx + ∫
{|v|⩽M}

(a0(|v| + |v|p) + a0(|v| +
|v|p

p )) dx

⩽ 2c − β‖v‖qq + βMq|Ω| + C(M +Mp)|Ω|
⩽ 2c + CM ,

with a constant CM > 0 only depending on M. So, choosing

c < min{−CM2 , κ},

we get (4.8). Now we apply the implicit function theorem [29, Theorem 7.3] to the function (μ, u) Ü→ φ(μu)
defined in (1,∞) × S. By (4.8) we have for all (μ, u) ∈ (1,∞) × S with φ(μu) = c that

∂
∂μ
φ(μu) = φ�(μu)(μu)

μ
< 0,

hence there exists a continuous mapping ρ : S → (1,∞) such that for all (μ, u) ∈ (1,∞) × S we have

φ(μu)
{{{
{{{
{

> c if μ < ρ(u),
= c if μ = ρ(u),
< c if μ > ρ(u).

So we have
φc = {μu : u ∈ S, μ ∈ [ρ(u),∞)}.

Set also
E = {μu : u ∈ S, μ ⩾ 1}.

We can define a continuous deformation h : [0, 1] × E → E by setting

h(t, μu) =
{
{
{

(1 − t)μu + tρ(u)u if μ < ρ(u),
μu if μ ⩾ ρ(u)
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for all (t, μu) ∈ [0, 1] × E, so φc is a strong deformation retract of E. Besides, we define another continuous
deformation h̃ : [0, 1] × E → E by setting

h̃(t, μu) = (1 − t)μu + tu

for all (t, μu) ∈ [0, 1] × E, showing that S is also a strong deformation retract of E. By the choice of c, (2.6),
and [29, Corollary 6.15] we have for all k ⩾ 0 that

Ck(φ,∞) = Hk(Hs0(Ω), φ
c) = Hk(Hs0(Ω), E) = Hk(H

s
0(Ω), S),

and the latter is 0 by [29, Propositions 6.24, 6.25] (recall that S is contractible in itself, as dim Hs0(Ω) = ∞).
Thus we have (4.7).

We compute now the critical points at 0. For all k ⩾ 0 we have

Ck(φ, 0) = Ck(φ±, 0) = δk,0ℝ. (4.9)

Reasoning as in the proof of Proposition 4.2 and using (4.5), we see that 0 is a strict local minimizer of φ,
so (4.9) follows from (2.5) (the argument for φ± is analogous).

Finally, we compute the critical groups at u±. For all k ⩾ 0 we have

Ck(φ, u±) = δk,1ℝ. (4.10)

We consider u+ (the argument for u− is analogous). First we note that

Ck(φ, u+) = Ck(φ+, u+). (4.11)

Indeed, for all τ ∈ [0, 1] we define ψτ ∈ C1(Hs0(Ω)) by setting

ψτ(u) = (1 − τ)φ(u) + τφ+(u)

for all u ∈ Hs0(Ω). Clearly, we have u+ ∈ K(ψτ) for all τ ∈ [0, 1]. Moreover, u+ is an isolated critical point of ψτ
uniformly with respect to τ, as we shall prove arguing by contradiction. Assume that there exist sequences
(un) in Hs0(Ω) \ {u+}, (τn) in (0, 1) such that un → u+ in Hs0(Ω), τn → τ, and ψ�

τn (un) = 0 in H−s(Ω) for all
n ∈ ℕ. Then, for all n ∈ ℕ, un is a solution of the (1.1)-type problem

{
(−∆)sun = (1 − τn)f(x, un) + τn f+(x, un) in Ω,

un = 0 in Ωc,

with a reaction term satisfying (H0) uniformly (i.e., with a0, p independent of n). By Proposition 2.2 the
sequence (un) is bounded in L∞(Ω), and by Proposition 2.3 there exist α ∈ (0, 1), C > 0 such that for all
n ∈ ℕ we have un ∈ Cαδ(Ω) and ‖un‖α,δ ⩽ C.

By the compact embedding Cαδ(Ω) í→ C0δ(Ω), passing if necessary to a subsequence, we have un → u+
in C0δ(Ω), hence un ∈ int (C0δ(Ω)+) for all n ∈ ℕ large enough. This in turn implies that un is a solution of (1.1),
i.e., a critical point of φ different from 0 and u±, against (4.5).

So, by homotopy invariance of critical groups (see [13, Theorem 5.6]), we see that Ck(ψτ , u+) is indepen-
dent of τ ∈ [0, 1]. Noting that ψ0 = φ and ψ1 = φ+, we achieve (4.11).

By (4.11), we are reduced to computing Ck(φ+, u+). Recall that K(φ+) = {0, u+} and fix a, b ∈ ℝ such that

a < φ+(0) < b < φ+(u+).

Then set A = φa+, B = φb+. We have A ⊂ B and the following long sequence is exact due to [29, Proposi-
tion 6.14]:

⋅ ⋅ ⋅ Ú→ Hk(Hs0(Ω), A)
j∗Ú→ Hk(Hs0(Ω), B)

∂∗ÚÚ→ Hk−1(B, A)
i∗Ú→ Hk−1(Hs0(Ω), A) Ú→ ⋅ ⋅ ⋅ .

Here j∗, i∗ are the group homomorphisms induced by the inclusion mappings j : (Hs0(Ω), A) → (Hs0(Ω), B)
and i : (B, A) → (Hs0(Ω), A), respectively, and ∂∗ is the boundary homomorphism (see [29, Definition 6.9]).
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By Proposition 2.11 and (2.6) we have

Hk(Hs0(Ω), A) = Ck(φ+,∞), Hk(Hs0(Ω), B) = Ck(φ+, u+), Hk−1(B, A) = Ck−1(φ+, 0).

So, recalling (4.7), the exact sequence rephrases as

0 → Ck(φ+, u+) → Ck−1(φ+, 0) → 0,

which by (4.9) yields
Ck(φ+, u+) = δ(k−1),0ℝ = δk,1ℝ.

By (4.11), we get (4.10).
Plugging (4.7), (4.9), and (4.10) into (4.6), we have

∞
∑
k=0

(−1)k(δk,0 + 2δk,1) = 0,

namely −1 = 0, a contradiction. Therefore, (4.5) cannot hold, i.e., there exists a further critical point
ũ ∈ K(φ) \ {0, u+, u−}. By Proposition 2.3, we see that u ∈ C0δ(Ω) and it is a solution of (1.1).

Remark 4.4. Acomparison between Theorems 3.3 and 4.3 is now in order. Though formally the statements of
such results coincide, the underlying structure of the critical set K(φ) changes considerably in the two cases.
In the sublinear case we have two local minimizers u+, u− and a third non-zero critical point ũ, typically of
mountain pass type, while in the superlinear case we have twomountain pass-type points u+, u− and a third
non-zero critical point of undetermined nature ũ.

Funding: The second author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e
le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
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