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ABSTRACT

Plenoptic cameras are devices designed for sampling the light
field entering their main lens. The raw information captured
by the sensor can then be processed for rendering views
at different focal distance or from different perspective. A
plenoptic camera generates images with high resolution and
high redundant information if compared with a conventional
camera having resolution equal to that of a light field rendered
view. A light field compression architecture designed for
coding views obtained from unfocused plenoptic images is
proposed in this paper. The intent of this proposal is to provide
a lossy compression tool enabling access to group of light
field views. The experimental analysis aims at exploring the
performance of the proposed method. The obtained results
show that the proposed flexible ordering approach can provide
advanced control to the user device in selecting the set of views
that are effectively required for a given rendering application.
Keywords: Light field imaging, Lenslet coding, Plenoptic
coding, Light field coding

INTRODUCTION

Plenoptic cameras are digital photo cameras designed for
capturing the intensity and directional information of the
light field in a scene. The capturing process makes use of a
microlens array and is also known as integral imaging. Light
field data is composed of several micro pictures corresponding
to the information captured by a single microlens. Light field
data processing is required to render the final images. The
main applications are the representation of the original scene
at different focus and perspective.
Light fields applications are very data intensive if compared
with classical digital images at the same resolution considering
that each pixel conveys not only the colour information but
also the directional information of the sampled light field [1],
[2], [3].
Ongoing research activities are exploring the problem of light
field compression for the development of novel tools for an
efficient storage and transmission of light field data [4], [5].
The reconstruction of a regular image from a raw light field
image is accomplished in several processing steps. A prelimi-
nary and fundamental step is an accurate signal calibration [6].
A second step is the reconstruction of a 3D model of the light

field from the calibrated raw image [7], [8]. The final step is
to render a view from the 3D model of the light field [9]. High
storage capacity is typically required for storing raw light field
data. Hence, novel data coding architectures and algorithms are
required for improving data compression performances. The
study of the statistical properties of images captured by a light
field camera is of fundamental importance for the research and
development of light field compression algorithms.
In literature, the problem of sampling and compression of light
fields is addressed in different ways. Light field compression
can be implemented exploiting the knowledge of geometrical
information of a scene together with the camera position for
modelling the plenoptic function [10].
Other approaches are based on the compression of multiview
data. A planar layer representation is adopted, where each
layer correspond to the same depth of the scene. A 3D wavelet
transform is then applied to uncorrelate the information reduc-
ing the entropy of the information.
Reordering the light field information before subsequent pro-
cessing can result in improved compression performance.
Nevertheless, this aspect deserves further investigation [11],
[12] to identify the best reordering techniques.
Another approach to light field coding is based on non
standard coding architectures exploiting light field partitioning
in cluster minimizing the differential pulse-code modulation
(DPCM) entropy before a dictionary based entropy encoder is
applied [13].
A system for capturing, rendering and compression of the
plenoptic data is also presented in [14]. The results show that
there is high correlation in the data of a plenoptic image.
Moreover, standard coding approaches are not always able
to properly detect such correlation and hence are not able to
achieve optimal performance.
A scalable coding scheme for focused plenoptic images is
proposed in [15] where a lossy coding is based on sparse set
and disparity. Standard coding architecture have been explored
for addressing the problem of lossy compression of plenoptic
images [16], [17] evaluating the final quality using objective
methods [18], . A set of calibrated images representing a
static scene from different viewpoints can be encoded by
reconstructing the 3D geometry of the scene, generating a map
of view-dependent textures, and finally encoding the textures



maps are encoded by set partitioning in hierarchical trees
(SPIHT) [19].
Locally linear embedding and self-similarity compensated pre-
diction are proposed in [20], [21], [22] as preprocessing tools
for light field compression exploiting HEVC coding tools.
Other techniques are based on displacement intra prediction
applied to both focused and unfocused images [23], [24].
User interaction is often required before completing a 3D
reconstruction.
In 2014, the JPEG standardization committee launched an new
activity named JPEG PLENO aiming at devising a standard
framework for the representation and exchange of new imag-
ing modalities such as light field, point-cloud and holographic
imaging.
The main contribution of this paper is the proposal of an
architecture for flexible ordering light field views into groups
of views to be encoded and independently accessed by a user
device.
The paper is organized as follows. Section summarizes the
main concepts of light field images. The proposed architecture
is described in Section . The quality evaluation procedure is
described in Section . Section summarizes the experimental
results. Section draws the conclusion of the paper.

LIGHT FIELD IMAGING OVERVIEW

A light field describes the radiance of the light rays at every
point in space from every direction. Light field signals are
captured by sampling the radiance with an array of cameras
or with a single camera with a microlens array, named light
field camera. The two capturing techniques differs in the field
of view size which is wide when capturing with an array
of cameras, and is narrow when capturing with a light field
camera.
A light field is a function that describes the intensity and the
direction information of light rays in every point in space. A
subset of the light field can be captured and sampled with a
light field camera (a.k.a. plenoptic camera).
A conventional model for a light field camera is shown in
Fig. 1. The camera is composed by a main lens (Fig. 1(a)), a
rectangular array of lenslets (Fig. 1(b)), and a digital sensor
for sampling the light rays (Fig. 1(c)). A light ray enters the
photo camera in a point (u, v), then hits the microlens array in
a point (s, t) and is captured and sampled by the photosensor
in a point (y, x).
The light field is denoted as

L (u, v, s, t) (1)

where (u, v) and (s, t) are the parameters describing the
direction of the light ray and L is the intensity of the light
ray.
The digital light field sampled by the photo sensor is denoted
as

LF (i, j, k, l) (2)

where 1 ≤ i ≤ M , 1 ≤ j ≤ M , 1 ≤ k ≤ P , 1 ≤ l ≤ Q.
M ×M are the different light ray directions that have been
captured (i.e. the number of views), P × Q if the resolution
of each view. A 2D representation of the stack of 2D images
is obtained with the following transformation

I ′(y′, x′) = LF
(
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The main light field computational imaging applications that
have been developed so far provide the means for refocusing
a picture and for changing the perspective of the image. This
section presents a brief description of these applications.
Refocusing consist in processing the light field in order to
render images at a given focal point. The theoretical aspects
are discussed in detail in [25].
Eq. 4 defines the reconstruction of a focused image controlled
by the parameter α. When α = 1 the focus of the final image
is at the light field camera focus plane, When α < 0 the final
image is focusing in proximity of the camera, when α→ 0 the
camera is focusing to infinity. A visual example of rendering
light field at different focal point is shown in Fig. 2. Fig. 2(a)-
(e) shows the result for α = 0.2, α = 0.6, α = 1.0, α = −0.6,
and α = −0.2, respectively.
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Perspective change consists in processing the light field in
order to render images at a given viewpoint. Eq. 5 defines
the reconstruction of perspective changed images controlled
by the parameters u0, v0.

P (y′, x′) = L (u0, v0, y
′, x′) , (5)

where (u0, v0) are the coordinates of the virtual aperture point
on the main lens of the plenoptic camera. The position of this
point controls the viewpoint of the final image, (u0, v0) =
(M/2,M/2) correspond to the central view.

PROPOSED ARCHITECTURE

The proposed architecture is shown in Fig. 4 and Fig. 5. The
pre-processing module receives light field data (LFV, light
field views) and parameters as input. An example of input
parameters is shown in Fig. 6. The parameters (PS, parameter
set) are represented using JavaScript Object Notation (JSON).
The light field data is a set of views obtained as described in
Section . The parameters describe the partitioning scheme to
be applied for clustering the views in independent coding sets
(GOV, group of views).
Additional parameters are used for selecting encoding tools
and coding parameters (CS, coding set). For example, the



(a) (b) (c)

Fig. 1: Conceptual model for a light field camera. (a) Main lens; (b) Rectangular microlens array; (c) Digital photosensor.

(a) α = 0.2 (b) α = 0.6 (c) α = 1.0 (d) α = −0.6 (e) α = −0.2

Fig. 2: Example of refocusing an image for different values of α.

(a) (u0, v0) = (2, 2) (b) (u0, v0) = (7, 7) (c) (u0, v0) = (11, 11) (d) (u0, v0) = (13, 13)

Fig. 3: Example of changing the perspective of an image for different values of (u0, v0). A diagonal parallax from the top-left
to the bottom-right can be noted observing the relative movement of the edge of the table with respect to the car.

Fig. 4: Encoding architecture.

parameters in Fig. 6 are used for selecting HEVC as coding
tool (”encoder”:”hevc”) with a quantization parameter 12
(”qp”:12).
The encoder module compresses each GOV according to
the set of coding parameters. The encoded GOV are then

multiplexed together with the PS and the CS. The final stream
is then saved in the storage block. When a client makes a
request for a content, the server sends to PS information to
the client. The client can then make different requests for
each GOV that is needed by the rendering application. The



Fig. 5: Decoding architecture.

remainder of this section describes the internal architecture of
each module.
The inputs of the pre-processing block are a file containing
the light field data ordered in M different views and a file
containing the parameters needed for describing the properties
of the light field data and for describing how this views must
be partitioned before encoding. The pre-processing generates
different GOV that are separately sent to the encoder.
The encoder block selects the coding tool to be applied to
the input views, according to the information provided in the
coding parameters.
The main purposes of the multiplexer is to merge the encoded
GOV, the PS, and the CS in a single container file.
The light field stream are finally stored in the storage block
in order to be available for subsequent requests from the light
field server.
The light field server instantiates a service listening to in-
coming call for a given light field file. The first answer to a
request is the PS scheme. Then the client can decide to make
additional requests for extracting each of the available GOV.
The decoder receives the decoding parameters and a GOV
form the controller block. Decodes the views in the GOV and
sends the output to the composer block.
The composer block reconstructs the light field from the
available GOV.
The renderer processes the light field views for the final
presentation on the client display. The type of processing
performed by the renderer depends by the final application.
Possible rendering processes, such as refocusing of perspective
change, have been discussed in Section III.

QUALITY EVALUATION

This section discusses the procedure for the quality evaluation
of the lossy compressed light fields. The analysis focuses on
the quality of the reconstructed images with respect to the
corresponding reference images.
The objective quality evaluation of the decompressed light
field views is performed using the peak signal-to-noise ratio
(PSNR) metric and the (SSIM ) structural similarity index.

{
” i d ” : 100001 ,
”name ” : ” Bikes ” ,
” v iesw ” : 15 ,
” v i e s h ” : 15 ,
” wid th ” : 625 ,
” h e i g h t ” : 434 ,
” c o l o r I n p u t ” : ” rgb24 ” ,
” c o l o r T r a n s f o r m ” : ” yuv420 ” ,
” e n c o d e r ” : ” hevc ” ,
” qp ” : 12 ,
” gops ” : [{ ” g i d ” : 1 ,

” v iews ” : [ 1 1 3 , 81 , 83 , 85 ,
115 , 145 , 143 , 141 , 111]

} ,{ ” g i d ” : 2 ,
” v iews ” : [ 5 1 , 53 , 55 , 87 ,

117 , 147 , 175 , 173 , 171 ,
139 , 109 , 79]

} ]
}

Fig. 6: JSON coding parameters.

The RGB light field is converted into the YUV light field using
the following transformation matrix (ITU-T Rec. 709):

Y = 0.212600 ∗R + 0.715200 ∗ G + 0.072200 ∗B
U = −0.114572 ∗R − 0.385428 ∗ G + 0.500000 ∗B .
V = 0.500000 ∗R − 0.454153 ∗ G − 0.045847 ∗B

(6)

The PSNR measures are defined as

PSNR(s, d, c) = 10log10
(2b − 1)2

MSE(s, d)
(7)

MSE(s, d) =
1

3(M − 2)2PQ
·

·
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M−1∑
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P∑
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Q∑
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(s (i, j, k, l, c)− d (i, j, k, l, c))2
(8)



Fig. 7: Rate-distortion curves showing PSNRY (dB) vs
bitrate (bpp) for light field Bikes.

Fig. 8: Rate-distortion curves showing SSIMY (dB) vs
bitrate (bpp) for light field Bikes.

where s is the reference signal (i.e. the uncompressed light
field LF ), d is the signal to be evaluated (i.e. the decompressed
light field), b is the bit depth of the samples, and c is the
chroma channel (c = 1 denotes the Y channel, c = 2 denotes
the U channel, and c = 3 denotes the V channel).
The PSNR computed on the luminance channel is defined as

PSNRY (s, d) = PSNR(s, d, 1) (9)

The SSIM measures the similarity between two images. The
SSIM considers the image degradation as perceived change
in structural information and results in an index value between
0 and 1.
When reference and target images have no structural simi-
larities then SSIM = 0. When reference and target are the
same image then SSIM = 1. The mathematical description,
additional information, and the algorithm of the SSIM are
presented in [26].

EXPERIMENTAL ANALYSIS

The light field images used for the experimental analysis have
been selected from a publicly available dataset [27].
The use case that has been considered for experimenting the
proposed architecture considers a partitioning of the light field

Fig. 9: Rate-distortion curves showing PSNRY (dB) vs
bitrate (bpp) for light field Danger de Mort.

Fig. 10: Rate-distortion curves showing SSIMY (dB) vs
bitrate (bpp) for light field Danger de Mort.

data into a group of views arranging the light field views as
a sub-sampled spiral view starting from the central view (the
GOV is composed of 37 views). This GOV is dubbed base
layer in the remainder of this section.
The GOV is encoded with HEVC at different quantization
parameter values (qp=0,18,28,32,36,40; qp=0 corresponds to
the highest quality).
The reference architecture is the encoding of the whole
light field arranged in spiral order starting from the central
view [11].
The experiments on the use case aim at evaluating the coding
gain that can be achieved introducing the proposed flexible
view ordering method.
The rate-distortion results for two light fields are shown in
Figs. 7-10. As expected, the PSNR of the base layer is higher
than the PSNR of the corresponding views extracted from the
reference frame. The SSIM shows similar results confirming
the higher quality of the views.
Table 1 shows the Bjontegaard PSNR difference (BD-PSNR
column) and bitrate reduction (Rate column). The average
PSNR difference is 3.98dB, while the average bitrate reduc-
tion is −67%.



Table 1: BD-PSNR gain and bitrate reduction of the base layer
with respect to the reference algorithm.

.

Light Field Name BD-PSNR Rate
Bike 3.99 -68%

Danger de Mort 4.00 -66%
Flowers 3.92 -65%

Stone Pillars Outside 3.94 -69%
Fountain & Vincent 2 4.05 -67%

Friends 2 3.97 -65%

CONCLUSIONS

This paper proposed an architecture for organizing light field
information in group of views that can be flexibly organized
for supporting light field applications requiring a subset of the
light field information for rendering a given scene. The group
of views are encoded using HEVC standard and are stored
and made available for extraction upon request from a user
device to a light field server. The proposed architecture has
been experimented considering a use case where a base layer
containing a set of a spiral-ordered views is needed by the user
device. Obtained results have shown that high PSNR (40dB)
and SSIM (0.95) are achieved at low bit-rates (0.6bpp).
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