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Abstract: Testing is a fundamental technique for system design and verification to ensure
security and reliability. However its application to discrete event systems modeled by unbounded
synchronized Petri nets is not straightforward because there exists no finite exact representation
for the infinite state space of these models. In this paper, we consider a special class of
synchronized Petri nets, called 1-place-unbounded, that contain a single unbounded place. We
show how a coverability graph that precisely describes the state space of such a model can be
constructed extending to synchronized nets a technique previously presented for place/transition
nets. In addition, this algorithm can also be used to verify whether a given synchronized Petri
net contains exactly a single unbounded place. Next, we show that any net belonging to this
special class can be converted into an equivalent weighted automaton. Based on this conversion,
we observe that the testing of 1-place-unbounded synchronized Petri nets can be approached
using the methods and results existing in the literature for the testing of weighted automata.
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1. INTRODUCTION

Testing is an indispensable part of system design and
implementation. Since Moore (1956) introduced the frame-
work of testing problems, a significant amount of work
has been done in this area. A survey of general principles
and methods related to testing of finite state machines
and model based checking can be found in (Lee and Yan-
nakakis, 1996) and (Sandberg, 2005), respectively. One
of the fundamental testing problems for discrete event
systems (DESs) is the identification of a final state, i.e.,
given a system whose current state is unknown, find an
input sequence that can drive it to a known state. Synchro-
nizing sequences (without output information) and homing
sequences (with output information) are two conventional
solutions to this problem and a comprehensive survey can
be found in (Sandberg, 2005). Most of the literature on
this topic uses as model finite state machines.

Petri net is a graphical and mathematical formalism that
has also been widely used to model DESs. However there
exist few works on the use of Petri nets for testing. The
problem of computing synchronizing sequences for Petri
nets with input events, called synchronized Petri nets
(SynPNs), was recently addressed. Pocci et al. (2014)
focused on bounded SynPNs and provided general algo-
rithm for computing synchronizing sequences based on the
reachability graph of a net, showing that for particular
classes of nets more efficient algorithms based on the net
structure exist. In a later work (Pocci et al., 2016) the same
authors extended the synchronization problem to classes

of unbounded nets, but the algorithm they proposed to
construct a modified coverability graph for unbounded
nets is not guaranteed to provide an exact description of
its behavior, and thus may not always be used to compute
synchronizing sequences. In particular using the modified
coverability graph (MCG) in (Pocci et al., 2016) there
may exist spurious markings (i.e., markings in the graph
that are not reachable in the net) or vanishing markings
(i.e., markings that are reachable in the net but are not
represented in the graph).

We are also interested in the analysis of unbounded
SynPNs with the long range goal of using them as models
for synchronization (and more generally testing) problems.
However the analysis of systems with an infinite state
space is a challenging problem. Recently, Doyen et al.
(2014) have investigated the synchronization problem for
weighted automata (WA). WA are a special class of infinite
state systems, whose state is defined by a finite location
and a quantitative weight (or energy) and whose behavior
may be subject to quantitative constraints on the energy
value. These authors have shown that the existence of
sequences synchronizing aWA to a known state with safety
conditions or to a known location with or without safety
condition is decidable. Motivated by this, we consider here
a particular class of SynPNs, called 1-place-unbounded
SynPNs, in which a single place can be unbounded. We
believe it is interesting to study this model because there
exists a clear parallelism between such a net and a WA: the
unbounded place can be regarded as the storage of system
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LSIS UMR 7296, France

∗∗ University of Cagliari, DIEE, Italy
e-mail:{changshun.wu, isabel.demongodin, alessandro.giua}@lsis.org

Abstract: Testing is a fundamental technique for system design and verification to ensure
security and reliability. However its application to discrete event systems modeled by unbounded
synchronized Petri nets is not straightforward because there exists no finite exact representation
for the infinite state space of these models. In this paper, we consider a special class of
synchronized Petri nets, called 1-place-unbounded, that contain a single unbounded place. We
show how a coverability graph that precisely describes the state space of such a model can be
constructed extending to synchronized nets a technique previously presented for place/transition
nets. In addition, this algorithm can also be used to verify whether a given synchronized Petri
net contains exactly a single unbounded place. Next, we show that any net belonging to this
special class can be converted into an equivalent weighted automaton. Based on this conversion,
we observe that the testing of 1-place-unbounded synchronized Petri nets can be approached
using the methods and results existing in the literature for the testing of weighted automata.

Keywords: Synchronized Petri nets; unbounded nets; coverability graph; weighted automata

1. INTRODUCTION

Testing is an indispensable part of system design and
implementation. Since Moore (1956) introduced the frame-
work of testing problems, a significant amount of work
has been done in this area. A survey of general principles
and methods related to testing of finite state machines
and model based checking can be found in (Lee and Yan-
nakakis, 1996) and (Sandberg, 2005), respectively. One
of the fundamental testing problems for discrete event
systems (DESs) is the identification of a final state, i.e.,
given a system whose current state is unknown, find an
input sequence that can drive it to a known state. Synchro-
nizing sequences (without output information) and homing
sequences (with output information) are two conventional
solutions to this problem and a comprehensive survey can
be found in (Sandberg, 2005). Most of the literature on
this topic uses as model finite state machines.

Petri net is a graphical and mathematical formalism that
has also been widely used to model DESs. However there
exist few works on the use of Petri nets for testing. The
problem of computing synchronizing sequences for Petri
nets with input events, called synchronized Petri nets
(SynPNs), was recently addressed. Pocci et al. (2014)
focused on bounded SynPNs and provided general algo-
rithm for computing synchronizing sequences based on the
reachability graph of a net, showing that for particular
classes of nets more efficient algorithms based on the net
structure exist. In a later work (Pocci et al., 2016) the same
authors extended the synchronization problem to classes

of unbounded nets, but the algorithm they proposed to
construct a modified coverability graph for unbounded
nets is not guaranteed to provide an exact description of
its behavior, and thus may not always be used to compute
synchronizing sequences. In particular using the modified
coverability graph (MCG) in (Pocci et al., 2016) there
may exist spurious markings (i.e., markings in the graph
that are not reachable in the net) or vanishing markings
(i.e., markings that are reachable in the net but are not
represented in the graph).

We are also interested in the analysis of unbounded
SynPNs with the long range goal of using them as models
for synchronization (and more generally testing) problems.
However the analysis of systems with an infinite state
space is a challenging problem. Recently, Doyen et al.
(2014) have investigated the synchronization problem for
weighted automata (WA). WA are a special class of infinite
state systems, whose state is defined by a finite location
and a quantitative weight (or energy) and whose behavior
may be subject to quantitative constraints on the energy
value. These authors have shown that the existence of
sequences synchronizing aWA to a known state with safety
conditions or to a known location with or without safety
condition is decidable. Motivated by this, we consider here
a particular class of SynPNs, called 1-place-unbounded
SynPNs, in which a single place can be unbounded. We
believe it is interesting to study this model because there
exists a clear parallelism between such a net and a WA: the
unbounded place can be regarded as the storage of system

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 13976

energy in a WA, while the markings of bounded places can
be regarded as the locations of a WA.

In this paper we present two original contributions. The
first contribution is a new algorithm for constructing a
finite graph called improved modified coverability graph
(IMCG) for 1-place-unbounded SynPNs by extending the
method presented in (Wang et al., 2010) for construct-
ing an improved reachability graph for 1-place-unbounded
place/transition nets. The IMCG allows one to exactly
determine all reachable markings of the given net and thus
provides an exact representation of its behavior. We point
out that the IMCG can also be used to determine whether
a SynPN is 1-place-unbounded. Our second contribution is
an algorithm for converting a 1-place-unbounded SynPN
into an equivalent WA. By this conversion, the synchro-
nization problem for 1-place-unbounded SynPNs can be
proved decidable thanks to the results in (Doyen et al.,
2014). Due to space constraints, no formal proof of the
correctness of the presented algorithms is given.

The paper is structured as follows. Section 2 presents the
basic formalism on synchronized Petri nets and weighted
automata. Section 3 focuses on developing the algorithms
for constructing a finite graph to represent the exact
behavior of a 1-place-unbounded SynPN. Section 4 shows
how it is possible to convert a synchronized Petri net into
an equivalent weighted automaton. Conclusion and future
works are summarized in the last section.

2. SYNCHRONIZED PETRI NETS AND WEIGHTED
AUTOMATA

In this section, we present the basic notions concerning
SynPNs and WA. Most of them are taken from (Pocci
et al., 2016) and (Doyen et al., 2014). For a comprehensive
introduction to Petri nets and weighted automata, see
(David and Alla, 2010; Droste et al., 2009).

2.1 Synchronized Petri nets

In the following, Z and N denote the set of integers and
nonnegative integers, respectively.

A place/transition net (PN) is a structure N=(P, T, Pre,
Post), where P is a set of m places, T is a set of n
transitions, Pre : P × T → N and Post : P × T → N
are the pre− and post− incidence matrixes that specify the
weights of directed arcs from places to transitions and vice
versa. C = Post−Pre is the incidence matrix. A marking
is a mapping M : P → N that assigns to each place of
a net a nonnegative integer. A marking is denoted by a
vector and the marking of a place is represented by M(p).
A marked PN 〈N,M0〉 is a net N with an initial marking
M0. A transition t is enabled at M iff M ≥ Pre(·, t)
and its firing yields the marking M ′ = M + C(·, t). The
set of all enabled transitions at M is denoted by ε(M).
We write M [σ〉 to denote that the sequence of transitions
σ = t1 · · · tk is enabled at M . Moreover M [σ〉M ′ denotes
the fact that the firing of σ fromM leads toM ′. A marking
M is said reachable in 〈N,M0〉 iff there exists a firing
sequence M0[σ〉M . The set of all markings reachable from
M0 defines the reachability set of 〈N,M0〉 and is denoted
R(N,M0). A place is k-bounded for a given k > 0 if
∀M ∈ R(N,M0), M(p) ≤ k. A marked PN 〈N,M0〉 is

said to be k− bounded if all places are k-bounded and the
marked PN is unbounded if �k ∈ N such that the net is
k-bounded. Notation Pb and Pu denote, respectively, the
set of bounded and unbounded places with Pb ∪ Pu = P
and Pb ∩ Pu = ∅. M ↑b and M ↑u are the projection of
the marking M onto the set of bounded places Pb and
unbounded places Pu, respectively, with M ↑b +M ↑u=
M . More precisely, M ↑b (pi) = M(pi) if pi ∈ Pb else
M ↑b (pi) = 0 and M ↑u (pi) = M(pi) if pi ∈ Pu else
M ↑u (pi) = 0. We denote •p and p• the preset and postset
of a place p, respectively: •p = {t ∈ T |Post(p, t) > 0} and
p• = {t ∈ T |Pre(p, t) > 0}. The set of input transitions
and the set of output transitions for a set of place P ′ are
respectively, defined as: •P ′ = {t ∈ T | (∃p ∈ P ′) t ∈• p}
and P ′• = {t ∈ T | (∃p ∈ P ′) t ∈ p•}.
A synchronized Petri net (SynPN) is a structure 〈N,E, f〉
such that: i) N is a PN; ii) E is an alphabet of input
events; iii) f : T → E is a labeling function that associates
with each transition t an input event f(t). A marked
synchronized PN 〈N,E, f,M0〉 is a SynPN with an initial
marking M0. We denote the set of transitions associated
with the input event e by: Te = {t ∈ T |f(t) = e} and
the set of enabled transitions associated with event e at
marking M as: εe(M) = Te ∩ ε(M). The evolution of a
synchronized net is driven by the occurrence of an input
event sequence that produces a set of transition firings. At
marking M , transition t ∈ T is fired only if:
1) transition t is enabled, i.e., t ∈ ε(M);
2) the event e = f(t) occurs.
Note that the occurrence of an input event e ∈ E at
marking M forces the simultaneous firing of all transitions
in εe(M) provided there are no conflicts among them. On
the contrary, the occurrence of an event e does not produce
the firing of a non enabled transition t ∈ Te.

Definition 1. (Deterministic synchronized PN) A marked
synchronized PN 〈N,E, f,M0〉 is said to be deterministic
if the following condition holds:

(∀M ∈ R(N,M0)) (∀e ∈ E), M ≥
∑

t∈εe(M)

Pre(·, t)

A sufficient structural condition to ensure determinism is
the following.

Assumption 1. Given a synchronized PN 〈N,E, f〉 we
assume there exist no place p such that t, t′ ∈ p• and
f(t) = f(t′).

In the rest of this paper, for the sake of simplicity, we
will focus on deterministic synchronized PNs that satisfy
Assumption 1. We point out, however, that for the class
of 1-place unbounded SynPNs considered in this paper,
the improved modified coverability graph we introduce in
Section 3.2 can be used to verify if the net is deterministic
(necessary and sufficient condition).

Definition 2. (Evolution of a deterministic synchronized
PN) In a deterministic synchronized PN, when an input
event e occurs at a marking M , all enabled transitions
associated with this event, εe(M) = Te ∩ ε(M), fire
simultaneously in a single step e|τ :

M [e|τ〉M ′, with τ = εe(M)

M ′ = M +
∑
t∈τ

(Post(·, t)− Pre(·, t))
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the contrary, the occurrence of an event e does not produce
the firing of a non enabled transition t ∈ Te.

Definition 1. (Deterministic synchronized PN) A marked
synchronized PN 〈N,E, f,M0〉 is said to be deterministic
if the following condition holds:

(∀M ∈ R(N,M0)) (∀e ∈ E), M ≥
∑

t∈εe(M)

Pre(·, t)

A sufficient structural condition to ensure determinism is
the following.

Assumption 1. Given a synchronized PN 〈N,E, f〉 we
assume there exist no place p such that t, t′ ∈ p• and
f(t) = f(t′).

In the rest of this paper, for the sake of simplicity, we
will focus on deterministic synchronized PNs that satisfy
Assumption 1. We point out, however, that for the class
of 1-place unbounded SynPNs considered in this paper,
the improved modified coverability graph we introduce in
Section 3.2 can be used to verify if the net is deterministic
(necessary and sufficient condition).

Definition 2. (Evolution of a deterministic synchronized
PN) In a deterministic synchronized PN, when an input
event e occurs at a marking M , all enabled transitions
associated with this event, εe(M) = Te ∩ ε(M), fire
simultaneously in a single step e|τ :

M [e|τ〉M ′, with τ = εe(M)

M ′ = M +
∑
t∈τ

(Post(·, t)− Pre(·, t))
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Fig. 1. A synchronized Petri net

Here M [e|τ〉M ′ denotes that the occurrence of the input
event e at M yields marking M ′ by the firing of τ .

Example 1. Consider the SynPN in Fig.1 satisfying As-
sumption 1, where P = {p1, p2, p3, p4}, T = {t1, t2, t3, t4},
E = {a, b}, f(t1) = f(t2) = f(t4) = a, and f(t3) = b. Let
M0 = [1 0 1 0]T be the initial marking. At M0, the sets of
enabled transitions are: εa(M0) = {t1} and εb(M0) = {t3}.
If b occurs at M0, step b|{t3} fires leading to the new
marking M1 = [1 0 1 3]T , i.e., M0[b|{t3}〉M1. If a occurs
at M1, step a|{t1, t4} fires leading to the new marking
M2 = [0 1 1 1]T , i.e., M1[a|{t1, t4}〉M2.

In the following, w is a finite sequence of input evens w =
ei1ei2 · · · eij while σ is the sequence of the corresponding
enabled transition sets σ = τ1τ2 · · · τj .
Definition 3. (Increasing input sequence) Consider a mark-
ed synchronized PN 〈N,E, f,M0〉. An input sequence w ∈
E∗ 1 is called increasing at marking M1 ∈ R(N,M0) if:{

M1[w|σ〉M2[w|σ〉M3[w|σ〉 · · ·
Mi � Mi+1 ∀i = 1, 2, . . .

In other words, an increasing input sequence applied
repetitively starting from M1, always produces the same
firing step sequence σ leading to a greater marking.

Proposition 1. (Pocci et al., 2016) Consider a synchro-
nized PN 〈N,E, f,M0〉 and a marking M . Let M ′ and
M ′′ be respectively the marking reached after a first
and a second application of input sequence w, i.e.,
M [w|σ〉M ′[w|σ′〉M ′′. Sequence w is an increasing input
sequence at M if the following three conditions hold:
C1) σ′ = σ;
C2) M � M ′ � M ′′;
C3) (∀p such that M ′(p) > M(p)) (∀t ∈ p•) M ′(p) ≥
Pre(p, t).

The above provides a sufficient condition for a sequence to
be increasing, because: i) Conditions C1 and C2 ensure
that the input sequence w is increasing; ii) Condition
C3 guarantees that the greater marking reached after
repeating w, will not enlarge the firing step, i.e., the firing
step will remain the same as before.

2.2 Weighted automata

A weighted automaton is an automaton endowed with an
energy level that is updated by the transition firing. In

1 Here E∗ is the set of all finite strings of elements of E.

a:2

a:-2

b:1 b:3

0 1

Fig. 2. A weighted automaton.

addition, the energy level must satisfy certain constraints
that depend on the automaton discrete location.

According to (Droste et al., 2009) and (Doyen et al., 2014),
a weighted automaton with safety conditions is a 7-tuple
A = 〈L,Σ,∆, I,Safe, 	0, ρ0〉, where L is a finite set of
locations; Σ is a finite alphabet; ∆ ⊆ L × Σ × Z × L is
a set of edges; I is a finite set of intervals with integer or
infinite endpoints; Safe : L → I is the safety condition
function which defines the energy scope of each location;
	0 ∈ L and ρ0 ∈ N are the initial location and the initial
energy, respectively. A state (	, ρ) is safe if and only if the
energy ρ belongs to the safety condition of Safe(	), i.e.,
ρ ∈ Safe(	).

We denote by 	
a:z−→ 	′, the occurrence of event a at

location 	 that moves the automaton to location 	′ and
updates the value of the energy from ρ to ρ′ such that
ρ′ = ρ + z. Let Θ be the state space of a weighted
automaton and a state θ = (	, ρ) ∈ Θ. For event a ∈ Σ, let
δ(θ, a) = {θ′ : ∃(	, a, z, l′) ∈ ∆}. For a sequence of events,
w ∈ Σ∗, we recursively define δ∗(θ, aw) = δ(δ(θ, a), w).

Example 2. Consider the weighted automaton in Fig.2,
where L = {	0, 	1}, Σ = {a, b}, I = {[0,+∞), [4,+∞)},
Safe(	0) = [0,+∞) and Safe(	1) = [4,+∞), 	0 is the
initial location and ρ0 = 0 is the initial energy level. Thus,
the initial state is θ0 = (	0, 0). At θ0, the occurrence of
event a is not feasible because it would lead to a state
(	1, 2) that does not respect the safety condition of 	1,
as 2 /∈ Safe(	1). If the initial state is θ′0 = (	0, 2), the
occurrence of event a would lead the system to new state
θ′1 = (	1, 4).

2.3 Synchronization on unbounded SynPNs and WA

Consider a system with unknown current state. We may
have partial information concerning the current state:
sometimes it is known to belong to a given set of states,
sometimes it may belong to the entire state space. A
synchronization problem consists in finding an input se-
quence that drives the system to a known state (and no
observation is required to solve this problem).

In the case of unbounded SynPNs, the synchronization
problem defined in (Pocci et al., 2016) consists in finding
an input sequence that drives the net system to a known
marking of the bounded places due to the impossibility
in the general case of identifying the exact marking of
unbounded places. Similarly, the two main synchronization
problems for WA with safety condition are synchroniza-
tion (find an input sequence to drive the system into a
known state) and location-synchronization (find an input
sequence to drive the system to a known location under
safety conditions or not).
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3. AN IMPROVED COVERABILITY GRAPH FOR
1-PLACE-UNBOUNDED SynPNs

As we know, it is easy to check whether a given
place/transition net is 1-place-unbounded because we just
construct the coverability graph by Karp and Miller (1969)
and verify that a single place has an ω component. On
the contrary, in the case of SynPNs there exist so far no
algorithm to check that: the modified coverability graph
proposed by Pocci et al. (2016) may contain vanishing
markings (i.e., markings that are reachable in the net but
are not represented in the graph) and thus may fail to
recognize a place as unbounded.

In this section, we introduce a new method to construct
a finite graph that will be used to accurately describe
the behavior of 1-place-unbounded SynPNs, a subclass of
SynPNs which have one and only one unbounded place.
Such a graph is called improved modified coverability graph
(IMCG) because it derives from the construction method
of Karp and Miller (1969), Wang et al. (2010) and Pocci
et al. (2016). First we recall the notion of ω-numbers from
(Wang, 1991), then we extend the method of Wang et al.
(2010) to SynPNs.

3.1 ω-number

Definition 4. (ω-number) Let n ∈ Z, k, q ∈ N, and 0 ≤
q < k. Then S = {(k · i + q)|i ∈ Z ∧ i ≥ n} is called an
ω-number, with k as its base, n the lower bound, and q
the remainder. An element in S is called an instance of
S, and the minimal instance is Smin = k · n + q. For the
sake of simplicity, we denote S = kωn + q. For instance,
S = 3ω0 +1 = {(3 · i+1)|i ≥ 0} = {1, 4, 7, · · · }, where the
base is 3, the lower bound is 0 and the remainder is 1.

An ω-number is a linear set of numbers, thus it contains
more information and is more expressive than the simple
symbol ω. Let Zω (Nω) denote the union of the set of all
integers (nonnegative integers) and the set of ω-numbers.
Now we introduce the addition and comparison rules on
Zω.

The addition rule is extended to the sum of an integer
number and an ω-number as follows: given an integer a and
an ω-number kωn+q, their sum is a+(kωn+q)=kωn+s+r,
where q + a = ks + r, s ∈ Z, 0 ≤ r < k. In simple
words, every element of the ω-number is increased by the
integer as a result. For example, 3 + (3ω0 + 1)={(3 +
(3 · i + 1)|i ≥ 0}= {(3 · i + 4)|i ≥ 0} ={(3 · i + 1)|i ≥
1}={4, 7, 10, · · · }=3ω1+1. Note that addition between ω-
number is not allowed.

The usual comparison rule between two integers can also
be extended to following case: given two ω-numbers x =
kωn + q, y = kωm + q with the same base and remainder
values, x ≤ y if n ≤ m; x = y if n = m. Note that for
each two comparable ω-numbers x and y, it can be easily
concluded that x ≤ y iff x ⊇ y.

Definition 5. (ω-vector): A m-dimension vector V =
[x1 x2 · · · xm]T is called an ω-vector if at least one of its
components is an ω-number, else it is an ordinary vector.

Naturally, an ω-vector is a set of vectors on Zm. One
can get an instance of ω-vector after assign an instance

to its components of ω-number. A special case is that
the minimal instance of an ω-vector is such that each ω-
number is assigned to its minimal instance. For instance,
V = [x1 x2 x3]

T = [1 2ω2 3]={[1 (2 · i) 3]T |i ≥ 2}.
Let V1 = [x1 x2 · · · xm]T , V2 = [y1 y2 · · · ym]T be
two ω-vectors and they have the kth component as their
ω-numbers. If xi ≤ yi for all 1 ≤ i ≤ m, then we say
V1 ≤ V2. If V1 ≤ V2 and xi = yi for all i : i �= k, then it
has V1 ⊇ V2.

Then addition rule can be also extended for ordinary
vector and ω-vector as follows: i) addition between two
ordinary vectors is defined in a traditional manner; ii) the
addition between an ordinary vector and an ω-vector is
performed by adding the numbers of the same coordinate
in the two vectors; iii) finally, the addition between two ω-
numbers is not allowed. As an example, given an ω-vector
V = [1 2ω2 3]T = {[1 (2 · i) 3]T |i ≥ 2}, V + [0 1 1]T =
{[1 (2 · i + 1) (3 + 1)]T |i ≥ 2} = {[1 (2 · i + 1) 4]T |i ≥ 2}
= [1 (2ω2 + 1) 4]T .

3.2 Improved Modified Coverability Graph

Before presenting the algorithm for constructing the IM-
CG of 1-place-unbounded synchronized PNs, several rele-
vant definitions must be introduced.

In an IMCG, there exist two types of markings. The first
type is an non-negative integer vector denoted by M I ; the
second type is an ω-vector denoted by Mω, an infinite
set of integer markings. Note that in the case of 1-place-
unbounded SynPNs, an ω-vector only contains a single
ω-number.

Note that an ω-vector is a set of integer markings, because
one or more of its components is an ω-number which
is a linear set containing an infinite number of integer
numbers, i.e., the numbers of tokens in the corresponding
unbounded place. Given an ω-vector Mω and a transition
t, it may be possible that some integer markings in Mω

can not enable t while some others can. Therefore, different
enabling conditions for a transition at an ω-vector should
be distinguished.

Consider a SynPN and one of its ω-vector Mω. A transi-
tion t is:

i) not enabled if there exists no marking in Mω that
enables t;

ii) totally enabled if all markings in Mω enable t;
iii) partially enabled if there exists at least one marking

in Mω that enables t and another one that does not
enable t.

When t is partially enabled at Mω, Mω can be partitioned
into two sets: Mω

dis,t a finite set of integer markings those
do not enable t and Mω

en,t an ω-vector, i.e, an infinite set
of markings, which enable t. Due to the fact that there is
only one unbounded place in the net and to Assumption
1, there exists at most one transition partially enabled at
an ω-vector.

Definition 6. (Generation of next markings after the
occurrence of an event) Consider a marked 1-place-
unbounded synchronized PN 〈N,E, f,M0〉, the occurrence
of input event e at current marking M yields a set of
markings Q in the following two cases:
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3. AN IMPROVED COVERABILITY GRAPH FOR
1-PLACE-UNBOUNDED SynPNs

As we know, it is easy to check whether a given
place/transition net is 1-place-unbounded because we just
construct the coverability graph by Karp and Miller (1969)
and verify that a single place has an ω component. On
the contrary, in the case of SynPNs there exist so far no
algorithm to check that: the modified coverability graph
proposed by Pocci et al. (2016) may contain vanishing
markings (i.e., markings that are reachable in the net but
are not represented in the graph) and thus may fail to
recognize a place as unbounded.

In this section, we introduce a new method to construct
a finite graph that will be used to accurately describe
the behavior of 1-place-unbounded SynPNs, a subclass of
SynPNs which have one and only one unbounded place.
Such a graph is called improved modified coverability graph
(IMCG) because it derives from the construction method
of Karp and Miller (1969), Wang et al. (2010) and Pocci
et al. (2016). First we recall the notion of ω-numbers from
(Wang, 1991), then we extend the method of Wang et al.
(2010) to SynPNs.

3.1 ω-number

Definition 4. (ω-number) Let n ∈ Z, k, q ∈ N, and 0 ≤
q < k. Then S = {(k · i + q)|i ∈ Z ∧ i ≥ n} is called an
ω-number, with k as its base, n the lower bound, and q
the remainder. An element in S is called an instance of
S, and the minimal instance is Smin = k · n + q. For the
sake of simplicity, we denote S = kωn + q. For instance,
S = 3ω0 +1 = {(3 · i+1)|i ≥ 0} = {1, 4, 7, · · · }, where the
base is 3, the lower bound is 0 and the remainder is 1.

An ω-number is a linear set of numbers, thus it contains
more information and is more expressive than the simple
symbol ω. Let Zω (Nω) denote the union of the set of all
integers (nonnegative integers) and the set of ω-numbers.
Now we introduce the addition and comparison rules on
Zω.

The addition rule is extended to the sum of an integer
number and an ω-number as follows: given an integer a and
an ω-number kωn+q, their sum is a+(kωn+q)=kωn+s+r,
where q + a = ks + r, s ∈ Z, 0 ≤ r < k. In simple
words, every element of the ω-number is increased by the
integer as a result. For example, 3 + (3ω0 + 1)={(3 +
(3 · i + 1)|i ≥ 0}= {(3 · i + 4)|i ≥ 0} ={(3 · i + 1)|i ≥
1}={4, 7, 10, · · · }=3ω1+1. Note that addition between ω-
number is not allowed.

The usual comparison rule between two integers can also
be extended to following case: given two ω-numbers x =
kωn + q, y = kωm + q with the same base and remainder
values, x ≤ y if n ≤ m; x = y if n = m. Note that for
each two comparable ω-numbers x and y, it can be easily
concluded that x ≤ y iff x ⊇ y.

Definition 5. (ω-vector): A m-dimension vector V =
[x1 x2 · · · xm]T is called an ω-vector if at least one of its
components is an ω-number, else it is an ordinary vector.

Naturally, an ω-vector is a set of vectors on Zm. One
can get an instance of ω-vector after assign an instance

to its components of ω-number. A special case is that
the minimal instance of an ω-vector is such that each ω-
number is assigned to its minimal instance. For instance,
V = [x1 x2 x3]

T = [1 2ω2 3]={[1 (2 · i) 3]T |i ≥ 2}.
Let V1 = [x1 x2 · · · xm]T , V2 = [y1 y2 · · · ym]T be
two ω-vectors and they have the kth component as their
ω-numbers. If xi ≤ yi for all 1 ≤ i ≤ m, then we say
V1 ≤ V2. If V1 ≤ V2 and xi = yi for all i : i �= k, then it
has V1 ⊇ V2.

Then addition rule can be also extended for ordinary
vector and ω-vector as follows: i) addition between two
ordinary vectors is defined in a traditional manner; ii) the
addition between an ordinary vector and an ω-vector is
performed by adding the numbers of the same coordinate
in the two vectors; iii) finally, the addition between two ω-
numbers is not allowed. As an example, given an ω-vector
V = [1 2ω2 3]T = {[1 (2 · i) 3]T |i ≥ 2}, V + [0 1 1]T =
{[1 (2 · i + 1) (3 + 1)]T |i ≥ 2} = {[1 (2 · i + 1) 4]T |i ≥ 2}
= [1 (2ω2 + 1) 4]T .

3.2 Improved Modified Coverability Graph

Before presenting the algorithm for constructing the IM-
CG of 1-place-unbounded synchronized PNs, several rele-
vant definitions must be introduced.

In an IMCG, there exist two types of markings. The first
type is an non-negative integer vector denoted by M I ; the
second type is an ω-vector denoted by Mω, an infinite
set of integer markings. Note that in the case of 1-place-
unbounded SynPNs, an ω-vector only contains a single
ω-number.

Note that an ω-vector is a set of integer markings, because
one or more of its components is an ω-number which
is a linear set containing an infinite number of integer
numbers, i.e., the numbers of tokens in the corresponding
unbounded place. Given an ω-vector Mω and a transition
t, it may be possible that some integer markings in Mω

can not enable t while some others can. Therefore, different
enabling conditions for a transition at an ω-vector should
be distinguished.

Consider a SynPN and one of its ω-vector Mω. A transi-
tion t is:

i) not enabled if there exists no marking in Mω that
enables t;

ii) totally enabled if all markings in Mω enable t;
iii) partially enabled if there exists at least one marking

in Mω that enables t and another one that does not
enable t.

When t is partially enabled at Mω, Mω can be partitioned
into two sets: Mω

dis,t a finite set of integer markings those
do not enable t and Mω

en,t an ω-vector, i.e, an infinite set
of markings, which enable t. Due to the fact that there is
only one unbounded place in the net and to Assumption
1, there exists at most one transition partially enabled at
an ω-vector.

Definition 6. (Generation of next markings after the
occurrence of an event) Consider a marked 1-place-
unbounded synchronized PN 〈N,E, f,M0〉, the occurrence
of input event e at current marking M yields a set of
markings Q in the following two cases:
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1) if ∀t ∈ εe(M) is totally enabled,Q={M+
∑

t∈εe(M)

C(·, t)},

2) if M = Mω and ∃t∗ ∈ εe(M) is partially en-
abled, Q={M I +

∑
t∈εe(MI)

C(·, t) | M I ∈ Mω
dis.,t∗} ∪

{Mω
en.,t∗ +

∑
t∈εe(Mω

en.,t∗ )

C(·, t)}.

Let q be a node of the tree. We use Mq and Mq(p) to
denote its marking and the marking of place p, respec-
tively. Before introducing the construction algorithm, the
following procedure, untitled duplication, allows a node to
be labeled as “new” or “duplicate”.

Procedure 1: Duplication check.
Input: a node q.
Output: q is duplicate or q is new.
If there exists already a node q̃ in the tree with Mq=Mq̃

or Mq � Mq̃, then tag it “duplicate”, Else tag it “new”.

In following procedure, notations “/” and “%” are, respec-
tively, used for quotient and remainder operators and “\”
is used to denote set difference.

Algorithm 1. IMC Tree construction for a 1-place-
unbounded deterministic SynPN.
Input: a deterministic marked SynPN 〈N,E, f,M0〉.
Output: a IMC Tree T (if the SynPN is 1-place unbound-
ed) or “This net has more than one unbounded place”.

1. Let Pu = ∅, Q = ∅ and label the root node q0 with the
initial marking M0 and tag it “new”.

2. While a node tagged “new” exists, do
2.1. Select a node q tagged “new”.
2.2. For all e ∈ E such that εe(Mq) �= ∅:
2.2.1. Generate the set of next markings Q, according

to def.6.
2.2.2. For each node q′ in Q, do
2.2.2.1. If Mq is an ω-marking and Mq′ is an integer

marking, then add “e|(εe(Mq)\t)” from q to
q′, where t is partially enabled at Mq, else
add an arc labeled e|εe(Mq) from q to q′.

2.2.2.2. Apply Duplication check for q′.
2.2.2.3. If q′ is “new”, then

(i) If there exists a node q̂ on the path from q0
to q′ such that q̂[w|σ〉q′ and w is an increasing
input sequence satisfying proposition 1, then
let Pu,new be the set of the places such that
Mq̂(p) < Mq′(p).
(ii) Pu = Pu ∪ Pu,new.
(iii) If |Pu| ≤ 1, then for p ∈ Pu, Mq′(p) =
kωn + r, where: k = Mq′(p) − Mq̂(p), n =
Mq′(p)/k, r = Mq′(p)%k. Else: return “This
net has more than one unbounded place”, go
to step 3.

2.3. Untag q and let Q = ∅.
3. End.

In the algorithm, only the node labeled “new” should
be analyzed. Step 1 initialize the root node of the tree.
Step 2 first selects a node q to analyze, then generates its
child nodes and determines which ones should be analyzed
tagging them with labels. If to a child node is assigned
label “duplicate”, it means that it is not needed to be
analyzed. The child nodes labeled “new” are checked to
identify if a place p becomes unbounded (see step 2.2.2.3.).

 [1  0 1 1]T

 [0  1 1 3ω0]
T

 [0  1 1 3ω0+2]T

 [1  0 1 3ω0+1]T

 [0  1 1 3ω0+1]T
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Fig. 3. The IMCG of the synchronized PN of Fig.1.

If there is a child node violating the criterion that the
number of unbounded places is at most one, the algorithm
terminates, else it updates the making of these child nodes
as ω-vectors and then finish analyzing node q. Step 2 is
repeated until no node in the tree needs to be analyzed.

The IMC graph (IMCG) is obtained from the IMC tree by
merging duplicate nodes with the corresponding untagged
node. We let IR(N,M0) denote the set of all markings
associated to nodes of the IMCG, either single integer
markings labeling a node or integer markings represented
by an ω-vector labeling a node.

The following results are presented without proof due to
lack of space.

Theorem 1. The improved modified coverability graph
constructed by algorithm 1 is finite.

Theorem 2. Given a synchronized Petri net 〈N,E, f,M0〉,
let R(N,M0) be the set of its reachable markings and
IR(N,M0) be the set of all the markings contained in
its improved modified coverability graph constructed by
Algorithm 1. We have R(N,M0) = IR(N,M0).

In other words, an improved modified coverability graph
constructed by Algorithm 1 contains exactly all its reach-
able markings.

Example 3. The improved modified coverability graph of
the SynPN in Fig.1 with M0 = [1 0 1 1]T , is shown in
Fig.3. Following the construction procedure is illustrated
by two cases:

1) Create a node q0 as the root node with marking
Mq0 = [1 0 1 1]T and tag it “new”. Consider even-
t b at node q0. Since εb(Mq0) is not empty set,
we generate the set Q of next nodes and compute
their markings after the occurrence of b at q0 by
definition 6. Given that Mq0 is an integer mark-
ing, Q = {Mq0 +

∑
t∈εb(Mq0

)

C(·, t)}= {[1 0 1 1]T +

[0 0 0 3]T }={[1 0 1 4]T }. For the only node q′ in
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Q, add the arc b|{t3} from q0 to q′ and then apply
Procedure 1: q′ is labeled “new”. Now we do the
ω-number check in step 2.2.2.3., we find that b is
an increasing sequence, k = Mq′(p4)-Mq0(p4) = 3,
n = Mq′/3 = 1, and r = Mq′%3 = 1. Now we update
Mq′ = [1 0 1 3ω1 + 1]T .

2) Select the node q with its marking Mq=[1 0 1 3ω0]
T .

For event a, it has εa(Mq) = {t1, t4} such that
t1 is totally enabled and t4 is partially enabled.
Then ω-vector Mq is split into two sets: Mq,dis,t4 =
{[1 0 1 0]T } andMq,en,t4 = [1 0 1 3ω1]

T . Therefore the
occurrence of a at q generates two possible behaviors:
step a|{t1} leads to [0 1 1 0]T from [1 0 1 0]T and step
a|{t1, t4} leads to [0 1 1 3ω0 + 1]T from [1 0 1 3ω1]

T .

4. CONVERSION OF SynPNs TO WA

In this section, we propose an algorithm to convert a
SynPN into an equivalent WA. Based on this conversion,
the synchronization problem for deterministic 1-place-
unbounded SynPNs can be addressed using the existing
results related to synchronization problems for WA. First
several notions and functions relevant to this conversion
algorithm are presented.

4.1 Intervals

For an interval, two functions, denoted min and max, are
defined respectively to extract its lower and upper bounds.
For example, consider interval I = [2, 5], min(I) = 2 and
max(I) = 5. Meanwhile for a group of distinct intervals
with indexes, function In : N × I → N is defined for a
non-negative integer to return the index of its belonging
interval. As a simple example, if we consider I = {I0 =
[0, 3], I1 = [4, 6], I2 = [7, 12], I3 = [13,+∞)}, then it
holds that In(5, I) = 1 and In(18, I) = 3.

Given an ordered set W = {w1, · · · , wk} of positive
integers, with wi < wj for 1 ≤ i < j ≤ k, function
Ξ defines a set of intervals Ξ(W ) = {I0, · · · , Ik}, where
I0 = [0, w1−1], I1 = [w1, w2−1], · · · , Ik−1 = [wk−1, wk−1]
and Ik = [wk,+∞). For instance, if W = {2}, function
Ξ(W ) defines two intervals: I0 = [0, 1] and I1 = [2, +∞).

4.2 Conversion of SynPNs to WA

In this subsection, we introduce an algorithm for con-
verting a deterministic SynPN with a single unbounded
place into a weighted automaton. We denote by pu and
M(pu), respectively, the single unbounded place and its
marking which will be modeled as the energy of the WA
because both of them can be changed after the occurrence
of an input event, in particular they are both nonnegative
integer numbers in our paper.

The weights on the arcs outgoing from place pu determine
a partition of the nonnegative set into different intervals
Ξ(W ) with ascending order W = {Pre(pu, t)|t ∈ p•u}.
These intervals will be used as the safety conditions of
converted WA. Note that the cardinality of the weight set
W is less than or equal to the cardinality of set p•u because
there may exist two or more output arcs of place pu, which
have the same weight.

A location � in a WA converted from a given SynPN is
labeled as (M�, x), where M� = M ↑b is the projection on
the bounded places of a marking of the Petri net and x is
the index of the energy interval to which the current value
of the energy (i.e., M(pu)) belongs, i.e., M(pu) ∈ Ix (an
interval in Ξ(W )). Note that a location in the converted
WA is determined not only by the marking of bounded
places but also by an energy interval. That means given
two nodes (M�, x) and (M�, y), if x �= y, they are two
different locations in the converted WA.

Moreover a location of the WA corresponds to a set of
integer markings which have the same set of enabled
transitions and the same marking of bounded places. We
use ε(�) to denote the set of enabled transitions at location
� and εe(�) to note the transitions in ε(�) but associated
with event e. Therefore the occurrence of e changes the
markings in � by the same vector

∑
t∈εe(�)

C(·, t). It is obvious

that the new markings of bounded places remain the same.
However the set of enabled transitions may be different,
thus we may need to create several locations and to add
the same arc “e|

∑
t∈εe(�)

C(pu, t)” to them.

Now we give the complete algorithm for converting a
1-place-unbounded SynPN into an equivalent WA. The
notion of equivalence will be discussed at the end of this
section.

Algorithm 2. Conversion of a SynPN into a WA.
Input: a deterministic SynPN 〈N,E, f,M0〉 with a single
unbounded place pu.
Output: a WA A = 〈L,Σ,∆, I, Safe, �0, ρ0〉.
1. Let Σ = E, ρ0 = M0(pu), L = ∅, and I = ∅.
2. Create I = Ξ(W ) with W = {Pre(pu, t)|t ∈ p•u}.
3. Create an initial node �0 labeled (M0 ↑b, v) and tag it

“new” where v = In(M0(pu), I). Let L = {�0} and
define Safe(�0) = Iv.

4. While a location tagged “new” exists do:
4.1. Select a location � = (M�, x) tagged “new”.
4.2. For all e ∈ E:
4.2.1. Let M ′(p) = M�(p)+

∑
t∈εe(�)

C(p, t) for all p ∈ Pb

be the new marking of bounded places by firing
all enabled t ∈ Te and ∆M(pu) =

∑
t∈εe(�)

C(pu, t)

be the energy difference.
4.2.2. Determine i = In(min(Ix) + ∆M(pu), I) and

j = In(max(Ix) + ∆M(pu), I).
4.2.3. For y from i to j:
4.2.3.1. Add a new location �′ and label it (M ′, y).
4.2.3.2. Add an arc labeled e : ∆M(pu) from � to �′.
4.2.3.3. If there exists already a location in L with

label (M ′, y), then tag �′ “duplicate”, else
tag it “new” and let L = L ∪ {�′} and define
Safe(�′) = Iy.

4.3. Untag node �.
5. End.

Theorem 3. The weighted automaton constructed by al-
gorithm 2 is finite.

Proof. Due to the finiteness of the markings of the
bounded places and of the energy intervals, their cartesian
product is finite. �
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verting a deterministic SynPN with a single unbounded
place into a weighted automaton. We denote by pu and
M(pu), respectively, the single unbounded place and its
marking which will be modeled as the energy of the WA
because both of them can be changed after the occurrence
of an input event, in particular they are both nonnegative
integer numbers in our paper.

The weights on the arcs outgoing from place pu determine
a partition of the nonnegative set into different intervals
Ξ(W ) with ascending order W = {Pre(pu, t)|t ∈ p•u}.
These intervals will be used as the safety conditions of
converted WA. Note that the cardinality of the weight set
W is less than or equal to the cardinality of set p•u because
there may exist two or more output arcs of place pu, which
have the same weight.

A location � in a WA converted from a given SynPN is
labeled as (M�, x), where M� = M ↑b is the projection on
the bounded places of a marking of the Petri net and x is
the index of the energy interval to which the current value
of the energy (i.e., M(pu)) belongs, i.e., M(pu) ∈ Ix (an
interval in Ξ(W )). Note that a location in the converted
WA is determined not only by the marking of bounded
places but also by an energy interval. That means given
two nodes (M�, x) and (M�, y), if x �= y, they are two
different locations in the converted WA.

Moreover a location of the WA corresponds to a set of
integer markings which have the same set of enabled
transitions and the same marking of bounded places. We
use ε(�) to denote the set of enabled transitions at location
� and εe(�) to note the transitions in ε(�) but associated
with event e. Therefore the occurrence of e changes the
markings in � by the same vector
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that the new markings of bounded places remain the same.
However the set of enabled transitions may be different,
thus we may need to create several locations and to add
the same arc “e|

∑
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C(pu, t)” to them.

Now we give the complete algorithm for converting a
1-place-unbounded SynPN into an equivalent WA. The
notion of equivalence will be discussed at the end of this
section.

Algorithm 2. Conversion of a SynPN into a WA.
Input: a deterministic SynPN 〈N,E, f,M0〉 with a single
unbounded place pu.
Output: a WA A = 〈L,Σ,∆, I, Safe, �0, ρ0〉.
1. Let Σ = E, ρ0 = M0(pu), L = ∅, and I = ∅.
2. Create I = Ξ(W ) with W = {Pre(pu, t)|t ∈ p•u}.
3. Create an initial node �0 labeled (M0 ↑b, v) and tag it

“new” where v = In(M0(pu), I). Let L = {�0} and
define Safe(�0) = Iv.

4. While a location tagged “new” exists do:
4.1. Select a location � = (M�, x) tagged “new”.
4.2. For all e ∈ E:
4.2.1. Let M ′(p) = M�(p)+

∑
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C(p, t) for all p ∈ Pb
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all enabled t ∈ Te and ∆M(pu) =
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be the energy difference.
4.2.2. Determine i = In(min(Ix) + ∆M(pu), I) and
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4.2.3.3. If there exists already a location in L with
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tag it “new” and let L = L ∪ {�′} and define
Safe(�′) = Iy.
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5. End.

Theorem 3. The weighted automaton constructed by al-
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Fig. 4. Weighted automaton from SynPN in Fig. 1.

Example 4. From previous section, we know that the
SynPN of Fig.1 is one place unbounded and p4 is the single
unbounded place. After applying the previous algorithm to
this SynPN with initial markingM0 = [1 0 1 0]T , we obtain
its corresponding weighted automaton given in Fig.4.

In the following example, we select some nodes to analyze
and show how this algorithm works.

• Σ = E = {a, b}, ρ0 = M0(p4) = 0, L = ∅, and I = ∅.
• Create energy intervals I = Ξ(W ) = {I0 = [0, 1], I1 =
[2,+∞)} with W = {2}.

• Create the initial node �0 = ([1 0 1]T , 0) and tag
it “new”, then define Safe(�0) = I0 and update
L = {�0}.

• Consider node �0 labeled “new”, the occurrence of
b at �0 increases the energy by 3 and reaches a
new marking M ′ = [1 0 1]T . Thus the new possible
bounds of the energy are minimum = 0 + 3 = 3 and
maximum = 1 + 3 = 4. Since both bounds are in
I1, we only create one node �1 = ([1 0 1]T , 1) tagging
it “new” and update L = {�0, �1}. Similarly we can
obtain node �2 = ([0 1 1]T , 0) reached from �0 by the
occurrence of a.

• Now we consider node �1. The occurrence of a gener-
ates the marking [0 1 1]T and brings possible bounds
minimum = 2− 2 = 0 ∈ I0 and maximum = +∞−
2 = +∞ ∈ I1. Therefore we link �1 with two nodes:
�2 = ([0 1 1]T , 0) and �3 = ([0 1 1]T , 1) with arcs
labeled by a : −2.

• Finally we obtain the WA with four locations as that
depicted in Fig.4.

The discussion of the equivalence of a SynPN and its
corresponding WA will end this section.

Given a 1-place-unbounded synchronized Petri net, PN
= 〈N,E, f,M0〉 with pu its unbounded place, let A be
the converted weighted automaton of PN , constructed by
Algorithm 2. Let R(N,M0) be the set of the reachable
markings of PN and Θ be the state space of A. We
define a one to one function γ : R(N,M0) → Θ as:
γ(M) = θ = (�, ρ) where ρ = M(pu) and � = (M ↑b, x)
with x = In(M(pu), I). The inverse of this function is
γ−1 : Θ → R(N,M0), γ−1(θ) = γ−1(�, ρ) = M with
M ↑b= M� for all p ∈ Pb and M(pu) = ρ.

For instance, given the initial making M0, we have
γ(M0) = θ0 = (�0, ρ0) and γ−1(θ0) = M0.

We can show that γ defines an equivalence between the
SynPN and the converted WA. In fact, consider M [e|τ〉M ′

and θ′ = δ(θ, e) with γ(M) = θ: we have θ′ = γ(M ′). This
can be checked by step 4 in Algorithm 2. Inductively, it
can be shown that if M0[w|σ〉M , then we have a state
θ = δ(θ0, w) in the converted WA and γ(M) = θ. In this
sense Algorithm 2 converts a 1-place-unbounded SynPN
into an equivalent WA.

5. CONCLUSION

In this paper we study the class of 1-place-unbounded
synchronized Petri nets and present two original contri-
butions. The first contribution is a tool for the analysis
of this class of nets, called improved modified coverability
graph. It can exactly represent the state space of the net
and can also be used to test if the net belongs to the
class. The second contribution consists in showing how a
synchronized Petri net can be converted into an equivalent
weighted automaton with safety conditions. Consequently
one can address the synchronization problems for this class
of synchronized Petri nets by referring to the methods
and results already existing for weighted automata. In
future, we will try to extend these results to derive effi-
cient computation algorithm for synchronizing and homing
sequences based on improved modified coverability graph
and equivalently converted weighted automata.
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