
	 	 	
	

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

INGEGNERIA ELETTRONICA ED INFORMATICA

XXIX Ciclo

CLACSOON: CARPOOLING IN URBAN AREAS

Settore scientifico disciplinare di afferenza

ING-‐‑INF/03 Telecomunicazioni

Presentata da: Matteo Mallus

Coordinatore Dottorato Prof. Fabio Roli

Tutor Prof. Maurizio Murroni

Esame finale anno accademico 2015 – 2016

Tesi discussa nella sessione d’esame marzo – aprile 2017

Contents

1 Introduction 3

1.1 Objectives . 4

1.2 Approach and Proposed Innovation . 5

1.2.1 Contribution in joint works . 7

1.3 Thesis Structure . 7

2 State of Art in Carpooling 9

2.1 The major elements of carpooling . 11

2.2 Static solutions . 12

2.2.1 Static carpooling Applications . 12

2.2.2 A case study: BlaBlaCar . 13

2.3 Dynamic Ridesharing . 14

2.3.1 Dynamic Ridesharing applications . 14

2.3.2 A case study: Lyft . 15

2.3.3 Research efforts . 16

2.4 Open issues . 19

3 The CLACSOON Solution 21

3.1 Features and requirements . 21

3.2 Architecture . 22

3.2.1 Functional levels . 25

3.3 Adopted Technologies . 26

3.4 The mobile application . 28

3.4.1 Registration and Login . 28

3.4.2 Ride offers an ride requests pubblication 31

3.4.3 Matching Notification . 31

3.4.4 Shared ride agreement . 33

3.4.5 Check-in and Check out . 33

4 The Route Matching Algorithm 35

i

ii CONTENTS

4.1 Scenario . 36

4.2 Temporal Matching . 39

4.3 Geographical Matching . 39

4.4 Cost Function . 42

5 Case study in the Cagliari urban area 45

5.1 Emulation Setup . 46

5.1.1 Setup . 47

5.1.2 Run . 49

5.1.3 Evaluation . 50

5.2 Experimental Results . 50

5.2.1 Passenger success rate . 50

5.2.2 Driver success rate . 51

5.2.3 Passenger waiting time . 52

5.2.4 Total system wide CO2 saved . 53

5.3 Performance Comparison . 54

6 Dynamic Involvement of Real World Objects in the IoT 57

6.1 The role of Virtual Objects in the IoT . 58

6.2 Reference Scenario and Problem Statement . 60

6.3 The Resource Allocation Model . 62

6.3.1 Resource Model . 62

6.3.2 Consensus-Based Resource Allocation Optimisation 64

6.3.3 Resource Allocation Optimisation Algorithm 65

6.3.4 Convergence Time and Steady-State Accuracy 66

6.4 The Proposed IoT System . 67

6.5 Experiments . 69

7 Conclusion and future works 75

Bibliography 77

List of Figures

2.1 Lyft . 16

3.1 Functional blocks description . 23

3.2 Functional levels of system architecture . 27

3.3 CLACSOON’s activity diagram . 29

3.4 CLACSOON Android: Registration and Login . 30

3.5 CLACSOON Android: Request and Offer insertion 30

3.6 CLACSOON Android: Matching Notification . 32

3.7 CLACSOON Android: Shared Ride Agreement . 34

4.1 Temporal matching example . 39

4.2 Geographical matching: graphical representation 40

5.1 The area for the case study . 48

5.2 Average travel duration within the selected area . 48

5.3 Passenger success rate . 51

5.4 Driver success rate . 52

5.5 Passenger waiting time . 53

5.6 Total System-wide CO2 savings . 54

5.7 Comparison with the “DUMMY” matching algorithm 55

6.1 The reference IoT cloud architecture . 61

6.2 VO Information Model used. Solid border boxes correspond to elements included

in the iCore VO Information Model. Dashed border boxes are new elements in-

troduced by the proposed architecture . 62

6.3 . 66

6.4 Example plot for algorithm convergence . 70

6.5 Average values of network lifetime when the number of tasks increases, for a num-

ber of available nodes equal to 3 (star marker), 6 (circle marker) and 9 (triangle

marker). Results are shown for different reference frequency values for each task . 71

iii

iv LIST OF FIGURES

6.6 Average values of network lifetime when the number of nodes increases, for a

number of assigned tasks equal to 3 (star marker), 6 (circle marker) and 9 (triangle

marker). Results are shown for different reference frequency values for each task . 72

6.7 Average values of convergence time . 73

List of Tables

5.1 Values of parameters varied during experiment . 47

6.1 Energy consumption values per task’s single execution 70

v

LIST OF TABLES 1

Abstract

The research presented in this thesis focuses on ICT technologies for urban mobil-

ity, with particular attention to the study, design and the development of applications

for dynamic carpooling services in smart cities. The work has been done within the PhD

programme in apprenticeship, during the development of the CLACSOON project while

working for the startup company GreenShare SRL.

Nowadays, the development of a Smart City represents an approved way to improve

the quality of life in the urban context. The sustainable transport is a key service for a

smart city, and carpooling solutions have gained more and more popularity in the last

years. This thesis mainly focuses on the challenges of a real-time carpooling service. A

lot of effort has been made on the design and the development of a Cloud-Mobile Dy-

namic Ridesharing platform named “CLACSOON”. The proposed solution is an appli-

cation that automatizes the arrangement of the shared ride, automatically notifying the

presence of suitable travel companions and suggesting the pick-up points and the meet-

ing times. The pick-up and drop-off point are computed by a route matching algorithm

that aim to introduce two novel features for a ridesharing application. The former is

the partial ridesharing, according to which the riders can walk to reach the driver along

his/her route when driving to the destination. The latter consists in the possibility to

share the ride when the driver has already started the ride by modeling the mobility to

reach the driver destination. To evaluate performances of the service and the Quality

of Experience (QoE) provided to the users, an emulation system has been implemented

to evaluate the performance of the CLACSOON platform. The performances, expressed

in terms of Key Performance Indicators (KPI), show that introducing these features in

a route matching algorithm leads to a substantial performances improvement; more-

over, the results can be considered to evaluate the requirements to build a successful

urban carpooling service. Additionally, the carpoolers’ cars, with the coming of the IoT,

could be seen as a formidable sensor platform. Since one of the aspects of smart cities

is the optimal use of the resources, the information coming from these sensors can be

processed and analyzed to improve the efficiency and quality of the urban services and

to support smart transportation and sustainable mobility. In this context, Machine to

Machine (M2M) and Device to Device (D2D) communications play an important role.

Starting from this vision, a distributed algorithm for the task allocation and assignment,

which can be executed by a group of real IoT devices, has been developed with the aim

of maximizing the lifetime of groups of nodes involved while ensuring the fulfillment of

the requested Quality of Information (QoI) requirement. In the field of infomobility and

support of the urban mobility, it could be run in real devices on the vehicles .

Chapter 1

Introduction

In the last decades, the Smart City paradigm is emerging as a way to improve the quality of

life in the urban context, while mitigating the problems generated by the population increase

[1]. In future Smart Cities, the quality of life will be mostly determined by the availability

of sustainable and environmental-friendly mobility services. Nowadays a fully sustainable

transport model is not available indeed , and cities all over the world are facing the challenge

of reducing greenhouse gas emissions and air pollution that results from the vehicular traffic

congestion. Sustainable transport is a broad subject, because a transportation mean can be

seen as sustainable in a social, or environmental, or climate sense.[2]. Nowadays the major-

ity of the trips is made with the use of personal cars: the daily urban mobility that is made

from individuals going to work leads to relevant problems, starting from the congestion of

the urban roads, to the car occupancy of the parking, as well as the pollution generated from

the use of the personal cars. The growing sense of responsibility in respect of the environ-

ment is contributing in determining the decreasing of the use of the car as a primary mode of

transit, in favour of alternative and sustainable modes. Different alternative transport modes

had been implemented for reducing the air pollution: in particular, public transport services

have received a great attention in this respect. Public transport infrastructure is for sure one

of the best solutions to face the challenge of the vehicular traffic congestion, but still many

people prefer the use of the personal car (or other personal transportation means) over pub-

lic transportation. A report by the US Environmental Protection Agency revealed that light-

duty vehicles are the source of nearly 25% of the country’s greenhouse gas emissions [3].

Consequently, tuning down this significant source of emissions is crucial. Carpooling has

been a widely accepted concept to implement Intelligent Transport Systems (ITS) in Smart

Cities and to reduce the gas emissions caused by the use of the personal car. Carpooling

(also known as ride-sharing or covoiturage), consist of the sharing of rides so that more than

one person travels in a private car. Due to the fact that more than one person travel with the

same private vehicle, carpooling reduces each single person’s travel costs such as fuel costs,

3

4 CHAPTER 1. INTRODUCTION

tolls, and the stress of driving. [4] Carpooling is often encouraged by public administrations,

especially during periods of high air pollution.

Thanks to the recent advancements in the Information and Communication Technol-

ogy sector, carpooling is having a bootstrap in the last years. This have been made possible

thanks to the diffusion of web platforms that allows passengers and drivers to meet each

other and to make an arrangement for a shared ride, for scheduled trips as well as for trips

arranged on the fly. Such services have recently became popular in the form of smartphone

and tablet applications, made available for the contemporary mobile devices. Nowadays

the most widespread implementations of ridesharing services rely on a ”static” Carpooling

approach: the carpoolers post the request and the offers several hours in advance for a fu-

ture transportation need. Although the most popular carpooling services have implemented

their service in the form of a smarphone application, the more wide-used solutions on the

market still don’t take full advantage of the potential provided by mobile devices. More in

depth, the advantages of the mobile devices can be used to allow the users to schedule one-

time arranged trips on the fly, whenever they want, whenever they are. This particular form

of carpooling is relatively new and it is called "Real Time Ridesharing". Real-time rideshar-

ing (also known as dynamic ridesharing) is a service where an automated process employed

by a ride-share provider matches up drivers and riders on a very short notice [5], which

can range from a few minutes to a few hours before departure time. Dynamic Rideshar-

ing highly relies on recent technologies, such as smartphones, Global Positioning System

(GPS) devices, third-party payment gateways and social networks. Early real-time rideshar-

ing projects started several years ago, but they faced obstacles such as the lack of convenient,

efficient, high diffused means of communication.

Dynamic ridesharing clearly brings several advantages over the static ridesharing ap-

proach [6], but it requires an higher critical mass of users in order for the system to work;

otherwise it would be difficult to reach adequate success rate in finding a travel mate, with a

consequent desertion of the service by the users.

The research activity developed during these three years focused on ICT technologies

for urban mobility, with particular attention to the study, design and the development of

applications for dynamic carpooling services in smart cities.

1.1 Objectives

GreeenShare SRL, an academic spin-off of the University of Cagliari, is developing an ef-

ficient dynamic ridesharing application. GreenShare is intended to offer services for the

sustainable mobility in the sector of mobile applications. Its leading project is named CLAC-

SOON, which is a dynamic ridesharing platform that aims to overcome the main limitations

of the current dynamic ridesharing services. This project has been conceived in the 2012

1.2. APPROACH AND PROPOSED INNOVATION 5

by a group of researches of the Multimedia & Communications Laboratory (MCLab) of the

University of Cagliari, which mainly operates in the field of the Internet of Things.

The work in this Thesis has been made within the PhD programme in apprenticeship,

during the development of the CLACSOON project at GreenShare SRL. The PhD program in

apprenticeship allowed the author of this thesis to be hired by GreenShare SRL with an ap-

prenticeship contract, and to be jointly enrolled in the PhD programme, in order to develop

the CLACSOON project while supervised by both the University of Cagliari and GreenShare.

The thesis mainly focuses on the challenge of implementing an efficient real-time car-

pooling service. With this aim, the following works have been done:

• the design and the development of the CLACSOON platform, with particular empha-

sis on the design of the system architecture and the development of both the mobile

application and the backend of the service, with the aim of automatizing the arrange-

ment of the shared rides

• the design and the development of an efficient route matching algorithm for a dy-

namic ridesharing provider, with the aim to overcome some limitations of the current

ridesharing applications, to improve the quality of the route matches

• the analysis of the performances of the proposed service, as well as the Quality of Expe-

rience (QoE) provided to the users, by testing the platform in a simulated smart urban

scenario, against the characteristics of the population

• the implementation of a distributed algorithm for the task allocation and assignment,

with the aim of maximizing the lifetime of groups of IoT devices. This algorithm can

run on real devices, to perform sensing tasks while ensuring the fulfillment of the re-

quested Quality of Information (QoI) requirements

1.2 Approach and Proposed Innovation

During the work made within the scope of this Thesis, the very first preliminary step con-

sisted of the collecting and the analyzing of the system requirements. The development

of the CLACSOON platform then started with the realization of the main requirements, ex-

pressed and documented through mockups and flow diagrams to describe application flow.

After a preliminary design and planning phase, the development phase started. During this

phase, a project and a development iterative approach has been followed. As before men-

tioned, the development consisted of the realization of both the client-side and the backend-

side of the system. After a first development cycle, the Android CLACSOON platform was re-

leased in the first of October 2014. The publication of a first beta release allowed CLACSOON

to achieve a some thousand of users, from which a precious feedback have been obtained.

6 CHAPTER 1. INTRODUCTION

This feedback allowed us to undertake an User-centered design (UCD) life-cycle, with the

aim to improve the platform to make it more pleasant from the user point of view.

Nowadays the service has been designed and implemented and it is publicly available.

Since the current population of CLACSOON users was limited, we were interested in analyz-

ing the performance of the service with different population characteristics, which cannot be

controlled in real scenarios. Therefore, an emulation system has been developed to evaluate

the Quality of Experience (QoE) provided to the users. The performance has been analyzed

and expressed in terms of the following Key Performance Indicators (KPI): the passenger suc-

cess rate, the driver success rate, the passenger waiting time and the total system-wide CO2

saved.

The system with the major design choices have been presented in [7]. In this work, the

evaluation of some Key Performance Indicators (KPI) for the carpooling service has been

studied in terms of passenger success rate and the driver success rate, varying also the time

distribution of the service requests.

In the work [8] the study is more in-depth and in addition to the aforementioned KPIs,

also the passenger waiting time and the total system-wide CO2 saved have been evaluated

against the time distribution of trips (within a fixed time window), and the timeout (T) which

is the maximum time that a user can wait before he decides to retire his/her offer of a ride

or his/her request for a ride. The result allowed extracting important information about the

challenges to be addressed for successful deployments of a real-time carpooling service.

With the aim of improving the quality of the matches, a successive work focused on the

improvement of the CLACSOON’s matching algorithm, introducing two novel features: the

partial ridesharing mode and a method for estimating the varying position of the driver’s

vehicle in an urban context. Since the partial ridesharing mode avoids the driver to take a

detour when possible, the aim of this feature is to lead an increment in the total system-

wide CO2 savings. On the other hand, by modeling the position of the driver’s vehicle on the

basis of his/her destination, only the remaining part of the route that a driver has to travel

is considered when evaluating the matching: this feature enables the possibility for shared

rides to be agreed on the fly after the starting of the driver’s trip, when a rider happens to be

close to the remaining part of a driver’s route. This work is described in the [9].

In addiction, thanks to the coming of the IoT paradigm the carpoolers’ vehicles, which

may or may not be involved in a shared ride, can represent a good sensor platform. Since

one of the aspects of smart cities is the optimal use of the resources, the information com-

ing from these sensors can be processed and analyzed to improve the efficiency and quality

of the urban services and to support smart transportation and sustainable mobility. In this

context, Machine to Machine (M2M) and Device to Device (D2D) communications play an

important role. Starting from this vision, the author contributed to the development of a

distributed algorithm for the task allocation and assignment, which can be executed by a

group of real IoT devices. The result of this work, in the field of infomobility and support of

1.3. THESIS STRUCTURE 7

the urban mobility, could be run in real devices on the vehicles, to perform tasks such as the

sensing of the speeds and temperature in a given geographical area. These devices can per-

form the same task required by the applications, allowing for a flexible and dynamic binding

of the requested services with the physical IoT devices. It is based on a consensus approach,

which maximizes the lifetime of groups of nodes involved and ensures the fulfillment of the

requested Quality of Information (QoI) requirements. Experiments have been conducted

with real devices, and this work is described in [10].

1.2.1 Contribution in joint works

In the scope of this thesis, the author provides the following contributions:

• the design and the development of the CLACSOON platform ([7]), for what regards the

architectural design and the related major choices; the design and implementation of

the Android mobile application, the backend of the service and the REST APIs

• the design and the development of the route matching algorithm ([9]) and its novel

features

• the design and implementation of the emulation system, the data collection and the

analysis of the performances and QoE of the service ([7], [8], [9])

• the development and testing, on Arduino devices, of the distributed algorithm for the

task allocation and assignment ([10])

1.3 Thesis Structure

In the Chapter 2 the Carpooling and the Dynamic Ridesharing will be further explained, and

the most widespread carpooling solutions will be depicted. In the Chapter 3 the CLAC-

SOON platform with the major design choices is presented. The chapter 4 focuses on the

improvement of the CLACSOON’s matching algorithm, introducing two novel features: par-

tial ridesharing, according to which the riders can walk to reach the driver along his/her

route when driving to the destination; possibility to share the ride when the driver has al-

ready started the ride by modeling the mobility to reach the driver destination. The chapter

5 presents the study on the performances and the Quality of Experience (QoE) provided to

the users, in which the CLACSOON’s matching algorithm is tested and simulated in a smart

urban scenario . Then in the chapter 6 the development and testing, on Arduino devices, of

the distributed algorithm for the task allocation and assignment is described.

Conclusions and future works are drawn in the chapter 7.

Chapter 2

State of Art in Carpooling

Vehicular traffic congestion is one of the main problems of most of our cities and towns [11]:

it degrades the quality of life, leading to a wide set of social, economic and environmental

impacts. It calls for a great effort in studying and deploying innovative and ambitious urban

transport modes to reach a less car-dependent life-style, which is one of the main causes of

urban traffic congestion. Nowadays a fully sustainable transport model has not been con-

ceived yet, and cities all over the world are facing the challenge of reducing greenhouse gas

emissions and air pollution that results from the vehicular traffic congestion. The integra-

tion of different transport modes (known ad Multimodal transport, or combined transport)

is even more required in urban areas. The particular vehicles used for the transport, the

source of energy and the infrastructure used to implement the transport play a critical role

for the evaluation of the social, environmental and climate impact [12]. Public transport in-

frastructure is for sure one of the best solutions to face the challenge of the vehicular traffic

congestion, but is shows some drawbacks:

• generally a technical ("hard") intervention on a transportation structure in a city is

exceptionally expensive

• public transport systems usually serve a fixed geographic route and a fixed schedule,

i.e. there is no flexibility in a public transport mode

Therefore, many people prefer the use of the personal car (or other personal transporta-

tion means) over public transportation.

In the context of sustainable transport, carpooling solutions have gained more and more

popularity in the last years. Carpooling (also known as ride-sharing), is the sharing of car

journeys so that more than one person travels in a private car[4], therefore it combines the

flexibility of private cars with the cheapness of public transport systems.

The sharing of a car journey can be mainly done trough two main different modes:

9

10 CHAPTER 2. STATE OF ART IN CARPOOLING

• A group of people that use to travel in the same path can share the seats in their own

personal cars, interchanging the driver

• A driver can share his or her car’s spare seats, and the riders can contribute to the cost

of the fuel, that is they refund the driver’s expanses

The first practice is common between user that use to travel within the same path (com-

mon origin and destination) and the same schedule, and then they spontaneously arrange

the details of the shared ride. The second one is a mode that is also suitable for occasional

commuters.

Carpooling clearly brings a wide range of positive impacts:

• for a driver, it means reducing travel costs

• for a rider, it represents a flexible - and generally cheaper - alternative to public trans-

portation

• for the environment, it means reducing air pollution

• for cities, it means reducing the traffic congestion and the needing for parking spaces

The reallocation of the trip-related shared costs between drivers (which share their per-

sonal car) and passengers, should be made in a way that results in a cost reduction for both,

but in a way that implies that the driver can not earn money, but he can only receive a re-

imbursement for the expenses. Carpooling is having a bootstrap in the last years, and this

have been made possible thanks to the diffusion of web platforms that allows passengers and

drivers to meet each other and to make an arrangement for a shared ride, for scheduled trips

as well as for trips arranged on the fly. Such services have recently became popular in the

form of smartphone and tablet applications, for the contemporary mobile devices. These

devices have the peculiarity of allowing users to access the Internet wherever they happen

to be; furthermore these devices generally rely on the availability of a set of sensors which

provide important context-aware information.

A carpooling smartphone-based application is coordinated by a network mechanism

which is able to connect together riders and driver that are willing to travel along similar

paths.

Thanks to the information provided by such a network, ride offers or requests are able to

reach a wider amount of users, that is the probability to find a travel companion is higher.

The information provided by this type of applications to its users allow to decline the usual

diffidence of the users to share their car with strangers. This situation used to represent one

of the major stumbling blocks for the carpooling diffusion across the world.

However in reality, most of current carpooling systems or applications are not functioned

well as the expected.

2.1. THE MAJOR ELEMENTS OF CARPOOLING 11

2.1 The major elements of carpooling

The matching between ride offers and requests has both temporal and positional factors.

In the literature, Furuhata et al. [13] well classified the positional and temporal elements of

carpooling. This classification can be summarized as follows:

1 an identical ridesharing happens when the departure and the destination pickup points

of the rider coincide with the departure and the destination of the driver

2 an inclusive ridesharing happens when the the departure and the destination pickup

points are on the original driver’s route, but the shared ride covers only a part of the

driver’s original route

3 a partial ridesharing happens when the pickup and drop-off points are on the driver’s

original route, but they don’t coincide with the departure or the destination of the rider

4 a detour ridesharing happens when the driver has to take a deviation in order to reach

the rider’s pickup points

As stated in [13], the partial ridesharing and detour ridesharing modes are currently not

facilitated by ridesharing agencies. The partial ridesharing is particularly important for this

thesis, and it will be taken into account in the implementation of the matching algorithm,

which will be covered in depth in chapter 4.

The main temporal element of carpooling is the desired departure time of drivers and

riders. This parameter plays a vital role in the determination of the matching between users,

because the matching between offers and requests is not only related to the geographical

distance between the users’ routes, but it is also related with the scheduling of pick-up and

drop-off times. Another important temporal parameter is the time flexibility [14] associated

with departure times, which represents the amount of time that users are willing to wait (or

to anticipate) the departure time.

For the identical ridesharing pattern is easy to find a schedule for the pick-up and drop-

off times; but for the others ridesharing patterns the determination of the meeting times

is more difficult because it requires the estimation of the arrival time to the pickup points.

Therefore, another important temporal element to be taken into account while calculating

the matching between riders and drivers on a temporal basis is the estimation of the travel

duration.

Current carpooling agencies and operators have focused on two types of shared rides

[13]:

• long distance trips, typically occasional trips. These trips are the target of the Static

Carpooling, which will be covered in section 2.2

12 CHAPTER 2. STATE OF ART IN CARPOOLING

• commute trips, i.e. recurring trips between two locations, typically house and work-

place

Another new segment is ad-hoc trips, whose details are typically arranged in an auto-

mated way, on the fly. This particular type of trips is the target of Dynamic Ridesharing,

which will be covered in section 2.3

2.2 Static solutions

Carpooling applications allow users to register new accounts, specify the desired departure

and destination locations, the desired departure time and, optionally, the desired time flex-

ibility. Carpooling applications usually rely on third-party social networks (eg. Facebook)

to improve the trustworthiness between users, and also to enable a sense of social partic-

ipation. Furthermore, carpooling applications usually implement rating mechanisms that

allows users to release a feedback about each other for a particular trip: this mechanism

has the purpose of improving the trustworthiness between carpoolers. The sharing of the

trip expenses can be made via cash or via automated payment mechanism. These mecha-

nism allows riders to reimburse drivers with an amount of money related to the length of the

shared ride.

2.2.1 Static carpooling Applications

Nowadays the most widespread implementations of ridesharing services rely on a ”static”

approach: the users can post the requests and the offers several hours in advance for a future

transportation need, and shared rides have to be arranged before the trip starts. Typically the

static carpooling approach does not contemplates the possibility of unexpected changes of

schedule or other details of the shared ride.

Such a system typically rely on matching lists, generally based on common origin-destination

matching; drivers and riders are expected to spontaneously contact one another with the

purpose of arranging the details of a shared ride and then to make an agreement. The details

to be agreed include at least the specification of the pick-up and the drop-off points of a rider

and the desired meeting time, as well as the the amount of the cost sharing, or the possibility

to bring a luggage.

Static Carpooling performs well for long-distance scheduled trips, but it does not per-

form well in an urban context, when users typically have an improvised need. At the mo-

ment of writing, a famous example of a static carpooling application in europe is BlaBlacar

[15].

2.2. STATIC SOLUTIONS 13

2.2.2 A case study: BlaBlaCar

This section provides an explaination Static Carpooling process by explicating the process of

BlaBlaCar [15], a software company that currently offers a static ridesharing application for

Internet-enabled mobile phones and also for desktop browsers.

At the time of writing BlaBlaCar is the world’s largest long-distance ridesharing commu-

nity, with more than 25 million members across 22 countries. [16]

BlaBlaCar connects drivers that are willing to drive with passengers that need to find a

ride. These users usually organize shared rides between two different cities and then share

the cost of the journey. The users must register to the platform and then create their profile

which includes user’s interestes, profile accountability, related social network profiles as well

as rating and reviews by other users. The service is accessible via web, mobile and also via

apps for iOS and Android[16]. As others static ridesharing projects are, BlaBlacar is designed

to be suitable for long-distance travel arrangements, for drivers that are looking to fill empty

seats during long journeys that they have planned to take. Users can offer a ride as a driver

or search for a ride as a rider. The application lets the users specify the departure and desti-

nation cities by typing its names or by selecting pre-defined locations such as home or work.

With a GPS-enabled phone, users can set their current location as the departure or as the

destination of the trip, and optionally they can add one or more waypoints. A driver’s and

a rider’s journeys are matched if they have in common the same stop (origin, destination,

or waypoints). The application lets user specify the desired departure times, and drivers can

specify a desired amount for the reimbursement. Users can then, searching from a matching

lists, choose the travel companion that best match is preferences: origin, destination and de-

parture time If the shared ride is agreed, the driver picks up the rider at the agreed time and

location. The costs are split between participants, and users can make the payment through

their phones, via PayPal.

One drawbacks of a similar approach is that it does not allow a truly ad-hoc trip arrange-

ment:

• users are matched via origin-destination pairs (or waypoints), therefore only the iden-

tical ridesharing mode is taken into account

• the shared rides has to be arranged in advance, preferably from some hours till a few

days

• drivers cannot pick-up riders en-route during the trip: journeys are matched if they

have in common the same stops

14 CHAPTER 2. STATE OF ART IN CARPOOLING

2.3 Dynamic Ridesharing

On the other hand, dynamic ridesharing is a relatively new type of carpooling which is more

suitable in the urban context: it is a system where an automated process employed by a ride-

share provider matches up drivers and riders on a very short notice [5], which can range

from a few minutes to a few hours before the departure time. Dynamic Ridesharing is the

most recent class of ridesharing. Dynamic ridesharing clearly brings several advantages over

the static ridesharing approach. On the technical side, Information and communication

technologies play a vital role in enabling the dynamic ridesharing.

2.3.1 Dynamic Ridesharing applications

The deployment of a Dynamic Ridesharing service typically relies on the following recent

technologies [17] :

• Mobile devices (smartphones) for riders and drivers, which represents the user inter-

face to the service and allow the arrangement of a shared ride in mobility

• GPS devices (usually integrated into the smartphones) to track the drivers’ route and to

determine the position of riders

• Social networks to improve the trustworthiness between riders and drivers

• Constant Network Connectivity The need of making an arrangement for a shared ride

on a very short notice requires that users’ smartphones have to be constantly con-

nected to the Internet. [18]. Nowadays, many multinational telecommunications com-

panies are facilitating constant mobile network connectivity.

The aforementioned technologies are the key enablers of the Dynamic Ridesharing. Early

real-time ridesharing projects started several years ago, but they faced the lack of these

means of communication.

These elements are coordinated through a network service, which can instantaneously

handle the driver payments and match rides using opportune optimization algorithms. Agatz

[14] listed the following most important features of the Dynamic Ridesharing:

• Dynamic i.e. the shared rides can be arranged on a short notice

• Independent drivers are not part of an organization, but they are autonomous entities

• Cost-sharing dynamic ridesharing leads to cost savings for both riders and drivers

• Non-recurring trips are the main target of the Dynamic Ridesharing. While traditional

carpooling generally requires the shared rides to be committed several hours in ad-

vance, or to be arranged as recurring trips (for example between colleagues which

2.3. DYNAMIC RIDESHARING 15

daily travel to work), dynamic carpooling generally is more suitable for on-demand,

spontaneous, shared rides which can be arranged just a few minutes in advance.

• Prearranged the shared ride is arranged in advance, i.e. when drivers and riders are

not on the same location

• Automated matching allows users to arrange the details of shared rides in an autom-

atized way, so that it requires a minimal effort from the participants. Users are not

required to manually search for suitable travel companions: a system matches up rid-

ers and drivers and then communicates the matches to the participants.

The idea of dynamic ridesharing is not very recent and several initiatives have been tried

in the past in the field of business, for example by Flinc (www.flinc.org), Carma Carpooling

(www.gocarma.com) and Commutr (www.getcommutr.com), Lyft (www.lyft.com).

2.3.2 A case study: Lyft

Lyft is an American Dynamic Ridesharing agency based in San Francisco, launched the 2012

by Logan Green and John Zimmer [19]. The system was launched as a service of Zimride

as an on-demand ridesharing network for shorter trips within cities. Lyft now operates in a

large number of cities, including San Francisco, Los Angeles, and New York City. To use the

Lyft appication, users must download the Android or the iOS application from the store, and

then they can sign up, enter a phone number and choose a method of payment[20].

Using Lyft, a passenger who wants to ride can search for a nearby driver from an interac-

tive map.

Once the shared ride is arranged, the rider can consult the driver’s data: name, rating,

profile picture and the type of car. Riders are picked up by drivers at their current location.

The costs of a shared ride are the split between participants, and the users can make the

payment through their phones, via PayPal.

The tenet of Lyft’s platform is establishing trust among its users [19]: drivers are rated by

passengers and only the highest-rated drivers are allowed to share their spare seats. More-

over, all drivers have to follow a screening processes[20]: criminal background check, vehicle

standards checks and zero-tolerance for drugs and alcohol.

One potential drawback of this platform is that riders can only be picked up by drivers

at their current location, therefore the partial ridesharing mode is not taken into account by

the matching algorithm. Moreover, riders can only requests rides to the nearby drivers, i.e.

the driver’s route seems not to be taken into account when evaluating the matching.

16 CHAPTER 2. STATE OF ART IN CARPOOLING

Figure 2.1: Lyft

2.3.3 Research efforts

Dynamic ridesharing clearly brings several advantages over the static ridesharing approach:

because of its potential, also several research efforts have been done in the last few years. In

spite of the amount of these efforts, the problem of matching ride requests and ride offers in

large scale remains challenging. Several matching agencies tried different approaches, but

what constitutes the best procedure is still a matter of debate [13].

Carpooling provides people a better way to make use of the spare seats on a personal

car, and thus saving travel-related expenses by sharing the travel cost. Private Ridesharing

agencies usually operates for profit, therefore, when these agencies implement an electronic

payment mechanism, riders are able to reimburse the cost of the shared ride throughout this

system. Therefore these agencies can take advantages by charging a fixed percentage of the

reimbursement of the driver, and thus these agencies has the same objective of drivers: to

save the largest amount of costs. Both private and public ridesharing agencies has also an

2.3. DYNAMIC RIDESHARING 17

environmental objective, such as the reduction of pollution and congestion. Reducing travel

costs is also the objective of riders.

Supposing that the most of ridesharing users would drive their own car if a matching have

not been found by the ridesharing provider [21], it can been stated that the objectives of the

objective of the service and the objective of the users are related. Given these objectives,

the ridesharing matching problem in literature has been often modeled as an optimization

problem [22], [13].

Commonly used objectives in literature are:

• to minimize the total travel distance traveled by users. When calculating the total dis-

tance, the travel distance shared by two or more users in the same car at the same time

is considered only once

• to maximize the total cost savings, which is equivalent to the objective of minimizing

the total distance traveled by users, or maximizing the total CO2 saved.

• to maximize the number of served passengers, i.e. to maximize the success rate.

• to minimize the users’ waiting time, i.e. the time that the users have to wait before

finding a travel companion

Many studies in literature (but also many implementations of ridesharing providers) typi-

cally consider travel costs as proportional to shared route, which cost has to be shared be-

tween riders and drivers. Note that, while considering the cost savings, also the cost of the

detour that a driver has to take in order to reach up the pickup points has should be taken

into account. With this consideration, a shared ride leads to CO2 savings only if the length of

the driver’s detour is less or equal to the length of the shared ride.

The main technical challenge is the complexity of the optimization problem and the

matching process itself, along with the complexity of accurately modeling of the carpool-

ers behavior. On the practical side, one of the main challenges that the dynamic ridesharing

has to face regards the critical mass issue [23], which is generally faced by the carpooling,

and particularly by dynamic ridesharing in its startup phase, when typically it is very diffi-

cult to achieve a critical mass of users in order for the service to achieve an high value for the

matching success rate. This challenge is also related to the quality of experience perceived

by the users, which depends on factors such as safety, social discomfort, and time flexibility.

In [24] a ride-sharing concept for short distance travel within metropolitan areas is designed

as a multiagent system to handle spontaneous ridesharing requests of prospective passen-

gers with transport opportunities available on short call. [25] illustrate WiSafeCa (Wireless

Traffic Safety Network Between Cars), a Eureka/Celtic founded European project that con-

sists in researching and prototyping efficient car-to-car and car-to-infrastructure networking

mechanisms striving to reduce accidents and traffic congestion. In the scope of the project,

18 CHAPTER 2. STATE OF ART IN CARPOOLING

a dynamic ridesharing system was designed, in order to serve real time transport requests. In

[26] is considered the problem of matching drivers and riders for a dynamic ridesharing sce-

nario, presenting a simulation study based on travel demand data for the city of Atlanta. The

matching problem is described as the minimization of the total system-wide vehicle miles

incurred by users, and their individual travel costs. The simulation results indicated that the

use of sophisticated optimization methods based on a rolling horizon approach substan-

tially improve the performance of ride-sharing systems over a greedy matching algorithm. In

the definition of their study, an important assumption is that a driver could make only one

pickup and one delivery: this constraint makes the problem easier to solve, but it prevents

the driver from serving some riders even if they are on his desired route. Another important

assumption for the study was that a shared ride must be agreed before the starting of the

driver’s trip; moreover, the dynamics of the positions and the speeds of all the shared vehi-

cles are omitted.In [27] is addressed the dynamic ridematching problem with time windows,

optimizing a multicriteria objective function. Extending the work proposed by Agatz, they

propose a genetic and insertion heuristic algorithm for solving the optimization problem,

also considering the multiple ride problem (i.e., more than one rider for a single driver). The

problem is represented using a maximum-weight bipartite matching model and the opti-

mization software CPLEX is used to solve it. In [28] the proposed ridesharing system con-

siders the interactions between drivers, riders and the system manager using a model based

on mixed continuous-integer linear programming to maximize the performance of dynamic

ridesharing systems. The dynamics of the positions and the speeds of all the shared vehicles

are omitted for simplicity, and it assumed that users can meet only at a priori fixed delivery

stations, such as near bus stops, intersections, the corners of squares. The performance of

the proposed model has been analyzed through a simulation based on the modeling frame-

work for discrete event systems (DES). In [29] the authors describes a former implementa-

tion of the agent-based travel demand model mobiTopp, with the aim of realizing a realistic

model for ridesharing as an agent-based travel demand model. The model has the limi-

tation that it currently supports only end-to-end ridesharing, i.e. only matching between

origin-destination zones.

Sharing a ride can also lead to some side effects[30]: for drivers, making a detour to reach

up the riders’ pick-up and drop-off points could represent to a waste of time and money

when these points are not close to the driver’s route, since that behavior increases the total

miles traveled by the driver. This drawback is generally minor compared to the total CO2

savings related to the sharing of the ride, but it points out some fields of improvement for

ridesharing systems. For example this side effect can be mitigated by a carpooling system

that evaluates only the pick up point on the driver’s route.

Recently the report Commuting in America 2013 [31] shown that ridesharing has contin-

uosly declined in the last years, reaching the 12.2% in 2000 and the 9.7% in 2010, while in

1980 the percentage was 19.7%[32]. This decreasing indicates that the recent improvements

2.4. OPEN ISSUES 19

brought by ridesharing matching agencies has not been successful in changing the users’

inclination over the transport mode[13].

2.4 Open issues

The dynamic ridesharing clearly brings several advantages over the static ridesharing ap-

proach, but it has the drawback of requiring a critical mass of users in order for the system to

work. Otherwise it would be difficult to reach adequate success rate in finding a travel mate,

with a consequent desertion of the service by the users.

As it resulted from the previous review, many works in literature have focused on the opti-

mization problem. Despite of the amount of the research efforts, current dynamic rideshar-

ing agencies do not seem to adopt a trip planning policy that globally maximizes the num-

ber of shared rides [13]. This choice is likely due to the fact that most of the matching op-

timization studies in literature propose an optimization algorithm whose result have to be

accepted by all the users in order for the system to work. In other words, it is presumed that

each rider would accept to travel with a specific driver specified by the matching algorithm.

This situation is not plausible in reality, and therefore it can not be applied to route match-

ing algorithms adopted by real matching agencies. A lot of efforts have been made to study

the optimization problem, but only few have worked on the modeling of the driver mobil-

ity to find better matches. Additionally, several works in literature proposed a simplified

model for ridesharing to make the optimization problem easier to be addressed. One com-

mon assumption is that a shared ride must be agreed before the starting of the driver’s trip.

Nonetheless, the partial ridesharing mode is not currently facilitated by matching agencies

[13] and, at the best of my knowledge, its benefits have not been investigated in literature

yet.

Based on these considerations, the novel carpooling solution for dynamic ridesharing ser-

vicess proposed in this thesis and named CLACSOON has been implemented and deployed

for real usage. The CLACSOON’s route matching algorithm includes the partial ridesharing

mode. In this way, the driver is avoided to take a detour whenever possible, therefore it leads

to an increment in the total system-wide CO2 savings. Clearly, it calls for the riders to walk

to reach the driver along his/her route when driving to the destination. Additionally, by in-

troducing the modeling of the position of the driver’s vehicle, only the remaining part of the

route that a driver has to travel is considered when evaluating the matching. Therefore this

approach enables the possibility for shared rides to be agreed on the fly after the starting of

the driver’s trip, when a rider happens to be close to the remaining part of a driver’s route.

This approach leads to an increment in the amount of the number of total shared rides. To

evaluate the impact on the performance of the system changing the population characteris-

tics, an emulation system has been designed and deployed to generate increasing numbers

of users that interact with the CLACSOON platform, and extensive trials have been imple-

20 CHAPTER 2. STATE OF ART IN CARPOOLING

mented to analyze some performance indicators varying the characteristics of the popula-

tion in the city of Cagliari (Italy). In particular, the passenger success rate, the driver success

rate and the total system-wide CO2 saved have been evaluated with respect to the character-

istics of the population. The results shows that introducing the aforementioned features in

a route matching algorithm leads to a substantial performance improvement.

The proposed work is described in the next chapters.

Chapter 3

The CLACSOON Solution

The following sections provide a brief overview of CLACSOON, focusing on the architec-

tural design, the development phase and the results of both the client side (Android and iOS

mobile applications) and the backend side (with the Java EE platform) of the system. CLAC-

SOON is a dynamic ridesharing system that automatizes the interaction process, avoiding

the time-consuming anticipated trip planning which derives from the needing of manually

establishing the pickup points and the details of a shared ride. Moreover, the service intro-

duces the following two novel features:

• partial ridesharing, according to which the riders can walk to reach the driver along

his/her route when driving to the destination

• possibility to arrange a shared ride when the driver has already started the ride by mod-

eling the mobility to reach the driver destination. This feature enables drivers to pick

up riders on the fly, if the pick-up point is close to the remaining route points.

The platform is currently working and it is available for the major mobile operating sys-

tems.

3.1 Features and requirements

The most important CLACSOON’s features can be listed as the following:

1. registration and accounting to allow the user to access the service and manage his/her

account. Each user has a profile in which various information is stored, such as name,

age, type of car, received feedback.

2. offers and requests insertion through this feature each user can insert an offer or re-

quest a ride. Each ride is identified by a departure point, an arrival point and a search

radius representing the maximum deviation from the scheduled trip.

21

22 CHAPTER 3. THE CLACSOON SOLUTION

3. route matching evaluation to match requests and offers on the basis of the geograph-

ical and temporal constraints. This feature is a key point for this work and it will be

explained in depth in the chapter 4

4. matching notification to notify - in real time - the user when a matching is found. The

details of this information will be explained in the next sections

5. travel cost estimation to estimate an amount for the cost sharing between users, based

on the length of the shared ride

6. shared ride management, to arrange the details of a shared ride, both on a short notice

or several hours in advance,

7. a check-in and a check-out mechanism to automatize the reimbursement

8. rating mechanism (feedback) to establish trustworthiness between users

9. travel cost sharing through a credit mechanism

10. CO2 savings estimation based on the length of the shared ride and the number of

riders in a car

Additional nonfunctional requirements could be listed as:

• Scalability and Capacity the system should be capable of handling a growing amount

of network traffic, in order to accommodate a growing amount of riders or drivers dur-

ing the pick loads. These peak loads are surely related to the users habits as well as to

climate, environmental and other factors.

• Usability The system must be easy to use both for riders and drivers. The applica-

tion must have a good user experience for users who likely will be using the service in

mobility.

A detailed description of the key features will be given in the following sections.

3.2 Architecture

This section provides a description of the whole architecture of the CLACSOON system. In

typical urban real-time carpooling scenario it frequently happens that users have an im-

provised need and so the trip is not previously scheduled. Accordingly to this scenario, the

system architecture needs to realize a system that simplifies and automatizes the provision-

ing of the carpooling processes. The automation of the system is a very important tile to

improve the QoE (Quality of Experience) and to create an incisive user persuasion strategy.

3.2. ARCHITECTURE 23

Figure 3.1: Functional blocks description

All the aforementioned features require an interaction between the CLACSOON mobile

application (which has the role of the client) an the CLACSOON backend. A detailed descrip-

tion of the key features will be given in the following sections.

The figure 3.1 depicts the architecture of the CLACSOON system. Regarding the back-end

side of the system, it is developed completely in the cloud, to offer good reliability consider-

ing the high number of expected connections and then to provide a good scalability feature

[33]. Third party services (i.e. Facebook API, Direction API, etc.) are used to build the pro-

posed service.

As already mentioned, the system follows the paradigm mobile-cloud. Fig. 3.1 shows the

major components:

• The mobile client (Android and iOS) allows the user to access the carpooling service

in mobility. Its sensors (e.g. GPS) are used to simplify the access of the service and to

enhance the user experience [34]. For all communications toward the server, the JSON

format is used.

• The cloud application server is the core of the system. It enables the access of users,

24 CHAPTER 3. THE CLACSOON SOLUTION

processes all requests and offers of rides and calculates the matching between requests

and offers. In the implementation of CLACSOON the technology chosen is GoogleAp-

pEngine and its tools for cloud solution.

• The database has the task of storing all the data useful for the service: user profile,

ride offers, ride requests, etc.

• The Facebook APIs are used to simplify the process of registration by offering a quick

and easy service to authenticate the user. Using the facebook social graph the aim is to

increase the social participation of users.

• The direction and location services are used to evaluate the route between the two

points (departure and arrival points) chosen by the user for its ride. These services are

used also for the geocoding of address, that is the conversion of text in coordinates.

• The push notification services are used to enable the push notification toward smart-

phones. This feature is a milestone to obtain the real-time requirement [35].

• The sensors on board the information coming from these sensors can be processed

and analyzed to improve user experience of the service, as well as to improve the effi-

ciency and quality of the urban services in the context of a smart city

To further understand the operating principles of the system it is helpful to give a defini-

tion of the communications interfaces between the system’s elements, referring to the figure

3.1

1. The interaction between the server and the mobile application is made via RESTful

APIs, thus the services are represented by URIs

2. the server is connected to the database trough a JDBC connector

3. the mobile application and the server can interact with the Facebook social network

trough REST APIs. This is done with the use of the Facebook SDK

4. The interaction between the mobile application and the Directions and Location ser-

vices is made of RESTful APIs

5. The interaction between the Android application and the GCM service is made via the

Google Play Services application within the Android device

6. The interaction between the iOS application and the APNS service is made via the Ap-

ple Notification Center Service (ANCS) within the iOS device

7. the server can send push notifications to Android and iOS devices trough GCM and

APNS via RESTful APIs

3.2. ARCHITECTURE 25

The system has to be used by users in mobility, so the access of the system has to be

guaranteed by mobile devices. Accordingly, the design of the system architecture considers

this facility and the front-end layer is projected for a mobile device.

The driver offering a ride can use his/her mobile device connecting it with the car equipped

with on board sensors. The connection between user’s device and vehicle creates a vehicu-

lar sensor network (VSN) [36]. A VSN is a kind of network in which sensors equipped in the

vehicle, providing widespread connectivity among mobile users [37]. Sensors in a vehicle

can be of different types, as discussed in [38], which provides a classification based on the

scope of each sensor. In most cases they are installed in the vehicles to support comfort in

their usage and support the deployment of easy to use applications for drivers. The com-

ing of IoT paradigm has transformed the car in a formidable sensor platform that absorbes

information from the environment and feeds it to the drivers to assist him/her [39].

On the client side, the mobile application has been deployed both for the Google’s An-

droid and the Apple’s iOS platiforms. On the other side, the server is responsible to handle all

the operations necessary to enable the service: it’s in charge of serving the requests from the

client, it deals with the offers and requests to evaluate the matching, it manages and storage

the user’s data.

Therefore, for what regards the interaction between the client and the server, the HTTP

protocol has been chosen: the client can send to the server HTTP requests as GET and POST

requests. After the receiving of a request form the client, the server executes the request

and returns a response to the client. These response have to be represented according to an

encoding scheme that has to be conveniently chosen.

Also the JavaScript Object Notation (JSON) format has been chosen, which is a text-based

object representation format, as the data-interchange format for all the communications.

This format is a lightweight data-interchange format, which is language independent, "self-

describing".

3.2.1 Functional levels

Fig. 3.2 shows the overall architecture of the platform through three main functional levels:

• the lower level is made up of the sensors which generate the flow of data used by the

system

• the mid-level is the core level and it is totally deployed in the cloud, it interact directly

with the data acquisition level and presentation layer

• the higher level is the application level in which user-oriented services are deployed.

26 CHAPTER 3. THE CLACSOON SOLUTION

The data acquisition level holds all sensors involved in the system. Each sensor can be

directly connected on the internet to communicate acquired data or it can use a gateway (i.e.

smartphone’s user) to communicate its sensing data.

The core of the system is located in the cloud. This level is composed by various entities

which have different assignments. The Data Handler may intervene when there is the need

to process data from a source that is in another layer. For example, data coming from sen-

sors could be strings, number or boolean: they have to be processed to extract interesting

values that can be used by other entities inside the same layer. To maintain an open and in-

teroperable architecture, also an entity that manages external services interfaces is inserted.

By this interface the system can communicate with external services, for example Google

cloud messaging to enable a push notification services or Facebook social graph to enable

some social accounting services. The most important entity in this layer is the matching

engine. This entity processes the data received by the data handlers and calculates if there

is a matching between an offer and a request of a ride. The last entity in this layer is the

accounting, which manages the access and the registration of the users.

At the top of the architecture, the last layer is the application level. This layer interfaces

directly with the user to present the data generated by the system and to acquire data in-

serted by the user. In the case studied this level is implemented by a mobile app for smart-

phone.

Following the presented architecture, the resulting system is designed to scale, to inter-

operate with other external services and to be modular.

3.3 Adopted Technologies

This section describes the technologies adopted for the development of the system’s mobile

application and the backend. The backend side of the CLACSOON system has been deployed

completely in the cloud to offer good reliability considering the high number of expected

connections and then to provide a good scalability feature [33].

Also other third-party services (i.e. Facebook API, Direction API, etc.) are used to build

the proposed service:

• Google Cloud Messaging to achieve the real time feature. A key requirement for the

service is the capability of receiving real time updates: this is required for enabling the

real-time matching notification. For example, when a rider requests a ride to a driver,

the request message must be sent and delivered in a short time. In this context, it can

be assumed that this requirement is satisfied when, after the request has been sent, a

related message is received within a few seconds.

• Facebook API Allows the users to speed-up the sign-up process as well as to enable a

sense of social participation

3.3. ADOPTED TECHNOLOGIES 27

GPS, SENSORS, RFID DATA ACQUISITION

CLOUD

4G, LTE

SENSOR DATA
HANDLER

MATCHING
ENGINE

ACCOUNTING

MOBILE APP

4G, LTE

EXTERNAL
SERVICES

INTERFACES

PRESENTATION

USER DATA
HANDLER

DB

EXTERNAL DATA
HANDLER

Figure 3.2: Functional levels of system architecture

• The Google Directions API is chosen to be the Directions and locations provider. This

service is used to calculate the driver’s path, on the basis of the rider’s desired depar-

ture and destination points and a driver’s desired travel path. In order to perform the

calculation of the route matching, the carpooling platform relies on this information.

Furthermore, the following frameworks have been used during the development of the

backend:

• Java Platform, Enterprise Edition (Java EE) is a widely used computing platform for

enterprise software written in Java, which provides tools for deploying and running

large-scale, multi-tiered, scalable, reliable, and secure network applications. The de-

sign of the CLACSOON’s backend components has been made following the Model

View Controller pattern (MVC).

• Spring framework At the time of writing Spring is one of the most popular application

development frameworks for enterprise application development in Java. By using the

Spring Framework, millions of developers around the world develop high performing,

testable, and reusable Java code.

28 CHAPTER 3. THE CLACSOON SOLUTION

• Hibernate ORM (H8) is an object-relational mapping framework for the Java language.

By mapping the application’s business objects to the corresponding database’s table, it

therefore helps developers to work with databases

• Google App Engine for Java SDK is an essential tool for developing, deploying and

managing Java applications within the Google App Engine infrastructure. Therefore

Google App Engine is suitable for developers who wants to run large web applications

without the needs of constantly take care of the traffic level and providing a way of

scaling. It also allows companies to avoid upfront infrastructure costs (e.g., purchas-

ing servers). As well, it enables organizations to focus on their core businesses instead

of spending time and money on computer infrastructure. Thanks to the cloud com-

puting, the CLACSOON backend can scale up as computing needs increase and then

scale down again as demands decrease.

• Google Cloud SQL Google Cloud SQL is a database service within the Google’s infras-

tructure that makes it easy to manage MySQL relational databases on the Google Cloud

Platform.

3.4 The mobile application

This section depicts the main features of the current implementation of the CLACSOON An-

droid mobile application. An analogous implementation has been made for the Apple iOS

platform. A brief description of the application’s workflow can be given trough the UML lan-

guage, with the activity diagram depicted in figure 3.3. Each point will be described in detail

in the following subsections.

3.4.1 Registration and Login

The first screen of the application is the Login form (Fig. 3.4.a). Through this screen the user

can choose between the following options:

• register a new accont - the user is redirected to the screen in Fig. 3.5.b, to complete

the registration by manually entering the information of his/her account. After the

registration, it is possible to access to the application’s home by making a sign-up with

the user’s credential or with the sign-in with a Facebook account

• sign-in with a CLACSOON account - This feature allows membership Signup and Lo-

gin via the user’s email and password

• sign-in with a Facebook account (Social sign-in) - This feature allows membership

Signup and Login via Social Network Credentials.

3.4. THE MOBILE APPLICATION 29

Figure 3.3: CLACSOON’s activity diagram

30 CHAPTER 3. THE CLACSOON SOLUTION

Figure 3.4: CLACSOON Android: Registration and Login

Figure 3.5: CLACSOON Android: Request and Offer insertion

3.4. THE MOBILE APPLICATION 31

3.4.2 Ride offers an ride requests pubblication

Once logged in, the user is redirected to the Home Screen (Fig. 3.5.a).

The home screen displays the recent users in the device’s surroundings on an interactive

map. The user can choose to offer or request a ride by clicking respectively on the ”thumb"

icon or in the ”car" icon. This feature is implemented on the screen in (Fig. 3.5.a). The

ride offers and requests publication feature is a core feature of the project. The users, by

specifying their trip details, are able to indicate:

• the desired departure time: it could range from some minutes before the departure, to

several days in advance. Users are also allowed to create recurring trips

• desired departure and arrival locations: they can be entered both textually (using the

reverse geocoding feature provided by Google Maps) or by specifying the coordinates

with the help of a dedicated map within the mobile application. In the case a user want

to start moving form his current location, he can set the starting position with the help

of the GPS or other geolocation providers.

• in the case the user is a driver, along with the departure and destination locations,

he/she has to specify a route he wants to take by choosing it from a list of alternatives,

which are supplied by the Directions and Locations Provider

In addiction, users can set the following advanced options:

• for riders, the maximum distance they could walk to reach the suggested pickup point

• for drivers, the maximum detour they are willing to take for reaching up a suggested

pickup point

• for both drivers and riders, the maximum time flexibility

The role of these parameters will be made clear in the chapter 4. Once a new travel is

submitted to the system, the route matching algorithm (chapter. 4) evaluates the matching

between rides, according to the aforementioned options.

3.4.3 Matching Notification

After submitting the details of a ride offer or a ride request, the user is redirected to the screen

3.6.a).

The user can then search for suitable trip announcements which are compatible with

his or her desired route. When a user searches for potential trip companions for a specified

trip, the mobile application generates a matching request to the backend. The backend then

executes the route matching algorithm which output results in a matching list containing all

32 CHAPTER 3. THE CLACSOON SOLUTION

Figure 3.6: CLACSOON Android: Matching Notification

the trips (and their related users). All the items of this list have to satisfy the temporal and

positional constraints that will be described in detail in the chapter 4. The information of the

matching includes: the pick-up point (where the ride can start), the drop-off point (where

the ride can finish) and the expected driver arrival time.

A list of the potential travel companions is ordered by the value of a cost function for the

shared ride. Each user can accept or refuse the notification.

The information regarding the matching can be consulted on a map 3.6.a) or either in

textual form with a list 3.6.b). The application updates the information about the matching

after the following events:

1. scheduled update at a fixed interval of time

2. automatic update when a particular trigger happens

3. update after an explicit request from the user

The point 1) and 3) can be adopted in a situation in which the application is in fore-

ground, so the user can force an update or the application can refresh the information at a

fixed interval of time. The second point refers to a situation in which the application have

been closed or it is running in background: that is useful when a certain happening has to be

notified to the user even if he is not using the application. For example, that’s the case when

3.4. THE MOBILE APPLICATION 33

an user A sends a ride request to an user B while the user B is not using the application:

thus the request has to be notified to the user B with a push notification, and the matching

information have to be updated.

3.4.4 Shared ride agreement

After the receiving of the information contained in the matching list, the user can consult

the details of the potential travel companions (Fig. 3.7.a), and then he can choose a suitable

travel companion which best matches his preferences (Fig. 3.7.b)).

When a user identifies a suitable travel companion, he can send him a ride request or

a ride offer. The real time feature of CLACSOON requires that ride offers or ride request

must be received within a short time; this feature is enabled by the push notification. On the

other side, the receiver mobile application alerts the user that he just received a new offer or

request for a ride. The information provided in this step also includes:

• the suggested pick-up and drop-off points, which have been calculated by the match-

ing algorithm in the previous step

• the estimated meeting time, which is an estimation based on the travel speed estima-

tion, provided by the Directions Provider

• public user-related information such as name, age, interests, mutual friends within

social networks

The application also provides a messaging system, which allows the users to further in-

teract and to refine the details of the shared ride before confirming the agreement. The re-

ceiver user, after he read this information, can accept or decline the offer or the request (Fig.

3.7.b).

3.4.5 Check-in and Check out

After a shared ride is agreed, users have to meet each other in the suggested pickup point.

To notify the system that the shared ride has actually began, the users have to register the

meeting with a check-in procedure. This operation has two main purposes:

• increase the safety of the users, because the meeting is certified

• automatize the reimbursement procedures between users. For sake of brevity, this

feature is not further explained in this thesis

To certify the meeting, every user receives a secret code: before the beginning of the

shared ride, the users have to mutually-exchange their codes, which have to by typed within

34 CHAPTER 3. THE CLACSOON SOLUTION

Figure 3.7: CLACSOON Android: Shared Ride Agreement

the check-in screen of the CLACSOON’s mobile application. Also the conclusion of the ride

has to be notified by the users with a similar check-out procedure. At the end of the shared

ride, after the check-out has been done, the user are asked to give a feedback of their trip

experience, i.e. a reciprocal evaluation between the two users which consists of a short mes-

sage and an evaluation from a minimum of 1 to a maximum of 5 stars. Every feedback, along

with the average of all feedbacks, is displayed in the public profile of the user who received

the feedback.

Chapter 4

The Route Matching Algorithm

The previous chapter briefly described the CLACSOON platform, introducing the design

choices that have been made in the design phase of both the client side and the backend side.

The proposed solution is an application that automatizes the arrangement of the shared

ride, automatically notifying the presence of suitable travel companions and suggesting the

pick-up points and the meeting times. As stated in the previous chapter, the route match-

ing algorithm has a key role for a dynamic ridesharing application. This chapter describes

the implementation of the CLACSOON’s route matching algorithm and its design choices.

As it resulted from the section 2.4, many works in literature have focused on the optimiza-

tion problem, but only few have worked on the modeling of the driver mobility to find better

matches. Additionally, several works proposed a simplified model for ridesharing to make

the optimization problem easier to be addressed. One common assumption in literature is

that a shared ride must be agreed before the starting of the driver’s trip. Furthermore, the

partial ridesharing mode is not currently facilitated by matching agencies [13] and, at the

best of my knowledge, its benefits have not been investigated in literature yet.

A former implementation of the CLACSOON’s route matching algorithm didn’t take into

account the aforementioned considerations. This chapter describes the latest implemen-

tation of the route matching algorithm, that contemplates the partial ridesharing mode and

proposes a method for estimating the varying position of the driver’s vehicle in an urban con-

text. The partial ridesharing mode avoids the driver to take a detour when possible, therefore

it leads to an increment in the total system-wide CO2 savings. By modeling the position of

the driver’s vehicle, only the remaining part of the route that a driver has to travel is consid-

ered when evaluating the matching: this approach enables the possibility for shared rides to

be agreed on the fly after the starting of the driver’s trip, when a rider happens to be close to

the remaining part of a driver’s route. This approach leads to an increment in the amount of

total shared rides.

35

36 CHAPTER 4. THE ROUTE MATCHING ALGORITHM

4.1 Scenario

During the design of the matching algorithm, we considered a scenario in which the back-

end receives all the trip announcements for each participant. Recall that the service relies

on the availability of a Directions Provider, which provides the information concerning the

route between a departure and a destination location. This information includes travel di-

rections, estimated path length, estimated travel time and the expected average travel speed,

related to the type of roads, which may or may not depend on the historical average speed

data over certain time periods. The proposed platform relies on the Google Maps Directions

API[40] which is a service that provides directions between locations using HTTP requests.

Nowadays such a service is provided by many agencies, and valid alternative is Bing Map

[41], which calculates and display directions and routes on a Map with Direction API module

or with Bing Map Rest Services. Several alternatives can also be used for those ride-sharing

providers who opt for a self-hosted Direction Provider: a great example is The Open Source

Routing Machine [42], which is a high performance routing engine written in C++ designed

to run on OpenStreetMap data.

While specifying the details of the journey, as shown in section 3.4.2, a rider and driver

request includes the desired departure and arrival locations. Each ride offer or request also

includes a timeout which has to be intended as the maximum time the user is willing to wait

before finding a mate. Furthermore, each announcement includes a search radius, which

has to be intended as the maximum detour that the driver is willing to make from his/her

original route or the maximum distance the rider is willing to walk to reach the pickup point.

With this information, the route matching algorithm automatically establishes shared rides

over time, matching potential drivers with riders.

For the purpose of describing the route matching algorithm, we assume that at a given

time t :

• D is the set of drivers;

• P is the set of riders;

• U = D ∪P is the whole population of the dynamic ridesharing system;

• t DEP
d , t DEP

p are the desired departure time for a driver d and a rider p, respectively;

• Rd is the search radius of the driver d ,∀d ∈ D , indicating the maximum detour from

his/her scheduled trip that the driver is willing to travel;

• Rp is the search radius of the rider p,∀p ∈ P , indicating the maximum distance the

rider is willing to walk to reach a pickup point.

Furthermore, we assume that:

4.1. SCENARIO 37

• ~Dd , ~Dp are the coordinates of the desired departure location for the driver d and rider

p, respectively;

• ~Ad , ~Ap are the coordinates of the desired arrival location for the driver d and the rider

p, respectively;

• ~αd is the desired route for a driver d, which connects ~Dd to ~Ad . This information is

provided by the Directions Provider and is encoded in a matrix of two columns where

each row corresponds to a point in the path;

• τd is the estimated travel duration of ~αd , provided by the Directions Provider;

• Vd is the average theoretical speed for ~αd , provided by the Directions Provider;

• sd (t) is the number of spare seats for a driver d at the time t , and sd (0) is the initial

vehicle capacity.

The problem of finding the matching between drivers and riders can be formulated as

described in the following. The matching algorithm has to satisfy the following common

constraints:

1. The total number of riders in a vehicle must not exceed the number of spare seats

specified by the driver;

2. The entire commuting route must start at the departure and end at the destination

locations specified by the driver;

3. Each rider must be picked up before he/she can be dropped off. This constraint seems

obvious, but it must be made explicit in a carpool matching algorithm.

4. The maximum distance that a rider p has to walk for reaching the pickup point cannot

exceed the search radius Rp ;

5. The maximum detour that a driver d has to take respect to his/her route, for picking

up a rider, cannot exceed the search radius Rd ;

6. The rider and the driver can wait to find a matched mate for a shared ride at most the

timeout Tp and Td , respectively.

The constraints from 1 to 3 are usual for a commute process [43], while the constraints

from 4 to 6 are specific for the proposed dynamic ridesharing system.

As mentioned previously, the potential route of a driver is encoded with a polyline ~αd ,

which is a matrix with two columns where each row represents the coordinate of each point

in the polyline. Accordingly

38 CHAPTER 4. THE ROUTE MATCHING ALGORITHM

~αd =∪n−1
i=0 ~αdi (4.1)

where i indexes the points in the route and ~αd0 = ~Dd and ~αdn−1 = ~Ad . The number of

points in this matrix (n) is clearly variable and depends on the departure and arrival points,

as well as on the route solution proposed by direction providers.

The proposed service is implemented in a way to require the minimal intervention from

the users to maximize usability but at the same time giving him/her the freedom to chose

among a possible list of mates. Therefore, this service finds all the matches and notifies the

user with a list of suitable travel companions. The proposed matching algorithm works as

follows: the algorithm first searches for one (or more) suitable matching and then, when the

matching is found, the arrangement of the shared ride is proposed to the participants. The

driver and the rider then can accept or refuse it. In most studies, the objective of the match-

ing algorithm is the maximizing of the system-wide miles saved, the maximizing of the suc-

cess rate (the percentage of satisfied drivers and riders), or the minimizing the waiting time

of drivers and riders. Clearly, these objectives partially conflict each other. Depending on the

policy of the ridesharing provider, one (or a combination) of the aforementioned objectives

are selected for the implementation of the matching algorithm. In the proposed solution a

weighting of the length of the shared trip and needed detour has been considered. The pro-

posed Route Matching Algorithm relies on the following three sequential functions that are

executed:

• Temporal Matching: for each new user (either a rider or driver), the system evaluates

whether the time constraint is satisfied for each possible travel companions, given the

timeout T , the driver’s travel duration, and the current shared rides allocation, but

without considering any geographical constraint;

• Geographical Matching: it is the evaluation of the matching between a driver and a

rider on the basis of the distance from their paths. This step is performed for each pair

(d , p) of drivers and riders that satisfied the previous matching. This step also takes

into account the theoretical future position of the driver’s vehicle, from the beginning

till the end of his/her ride.

• Cost Function Evaluation: it evaluates the cost Cd ,p for a shared ride between each

driver d and rider p that satisfied both the Temporal Matching and the Geographical

Matching constraints.

The details of these steps will be explained in detail in the following sections.

The list of possible travel companions is then ordered by the value of the cost Cd ,p . This

result represents the output of the CLACSOON’s matching algorithm. This list is then pro-

posed to riders and drivers , as shown in section 3.4.4.

4.2. TEMPORAL MATCHING 39

4.2 Temporal Matching

For the temporal matching it is necessary to consider the effect of the timeout (Td and Tp),

which is the maximum time the user is willing to wait to find a mate and after this amount

of time the ride request is considered to be expired. For the drivers it is also important to

consider the estimated travel duration τd , as after this amount of time the ride offer is con-

sidered to be over. In case the rider starts the ride after the driver, then the following two

conditions must be verified:

t DEP
d ≤ t DEP

p ≤ (t DEP
d +Td) (4.2)

t DEP
d ≤ t DEP

p ≤ (t DEP
d +τd) (4.3)

which check that the rider arrives before the driver timeout and before the ending of

his/her trip.

Differently, in case the driver starts the ride after the rider, the following condition must

be verified:

t DEP
p ≤ (t DEP

d) ≤ (t DEP
p +Tp) (4.4)

which check that the driver arrives before the rider timeout.

Figure 4.1: Temporal matching example

Each pair (d ,r) that satisfies this step is then evaluated in cascade by the Geographical

Matching Algorithm.

4.3 Geographical Matching

Each pair (d , p) that satisfies the Temporal Matching constraints is evaluated by the Geo-

graphical Matching Algorithm. For this purpose, we propose a method for estimating the

driver’s position at the time t on the basis of his/her destination. Modeling the position of

the driver’s vehicle enables for sharing rides even after the starting of the driver’s trip. As

40 CHAPTER 4. THE ROUTE MATCHING ALGORITHM

mentioned before, ~αd is the desired route for a driver d, which connects the point ~Dd = ~αd0

with the point ~Ad = ~αdn−1 (section 4.2).

Recall that n is the number of segments in the polyline. Assuming that τdi is the travel

duration between the point i and the point i +1, the total travel duration τd can be decom-

posed as the sum of the travel duration of each single segment of the route:

τd =
n−1∑
i=0

τdi (4.5)

For simplicity it can be assumed that

τdi =
τd

n
,∀i ∈ (0, ...,n −1) (4.6)

We then choose to estimate the driver position at the time t = t DEP
d +∆t as the point of

the route with index Kd (t)

Kd (t) = b∆t

τd
c · (n −1) if t DEP

d ≤ t ≤ (t DEP
d +τd) (4.7)

Given that the constraints discussed in the section 4.2 have just been satisfied, note that

this equation has to be considered in the range t DEP
d ≤ t ≤ (t DEP

d +τd), i.e. the position of

the driver is considered to be undefined before the beginning of the ride and after the ride is

over.

The remaining part of the path that a driver d has to travel at a time t can then be ex-

pressed as

~βd (t) =∪n−1
i=Kd (t)~αdi (4.8)

Figure 4.2: Geographical matching: graphical representation

Accordingly, ~βd (t) is a subset of ~αd which does not contain the points with index i <
Kd (t) that the driver d should has passed by at time t . In other words, ~βd (t) represents the

part of the route that theoretically the driver has to travel after the time t . When evaluating

the matching at the time t between the offer d and a request p only the remaining route

4.3. GEOGRAPHICAL MATCHING 41

points ~βd (t) are considered, against the departure ~Dp and destination ~Ap points of the rider:

this feature enables drivers to pick up riders on the fly, if the pickup point is close to the

remaining route points in ~βd (t). This situation is depicted in Fig. 4.2. For the purpose of

describing the Geographical Matching Constraints, assume that:

• ∆depd ,p (t) is the minimum distance between the set of route points in ~βd (t) and the

rider’s departure ~Ap ;

• ∆d std ,p (t) is the minimum distance between the set of route points in ~βd (t) and the

rider’s destination ~Dp ;

•
~

β
dep
d (t) and ~βd st

d (t) are the two points on the driver’s route with the minimum distance

from ~Dp and ~Ap , respectively. These points represent the pick-up points on the driver’s

route.

A first constraint for the matching to be found is that the index of the point ~βd st
d (t) has to

be greater than the index of
~

β
dep
d (t), so that the rider must be picked up before he/she can

be dropped off.

To take the partial ridesharing mode into account, when the search radius Rp specified

by a rider allows him/her to reach a departure pickup point on the driver’s route, the system

places the pickup point on the point
~

β
dep
d (t). A similar method is used for the evaluation

of the destination pickup point ~βd st
d (t). In this way, this setting avoids the driver to take a

detour when possible, and thus it is expected that it leads to an increasing of the total system-

wide CO2 savings. Depending on the values of the rider’s and the driver’s search radius, the

matching algorithm assigns the departure pickup point ~Pdep (t) and the destination drop-off

point ~Pdest (t) with the following method:

~
P dep

d ,p (t) =

~

β
dep
d (t) 0 ≤∆depd ,p (t) ≤ Rp

~Dp Rp <∆depd ,p (t) < Rd

↑ ∆depd ,p (t) > Rd

(4.9)

~P d st
d ,p (t) =

~βdest
d (t) 0 ≤∆d std ,p (t) ≤ Rp

~Ap Rp <∆d std ,p (t) < Rd

↑ ∆d std ,p (t) > Rd

(4.10)

The three conditions in both the previous equations have been derived from the follow-

ing motivations:

Condition 1) if the search radius of the rider Rp is greater or equal to the distance∆depd ,p (t)

between his/her departure and the driver’s route, the matching algorithm specifies the

location
~

β
dep
d (t) to be the departure pickup point.

42 CHAPTER 4. THE ROUTE MATCHING ALGORITHM

Condition 2) if the search radius of the rider Rp is lower than the distance ∆depd ,p (t) , but

the search radius of the driver Rd is greater or equal to the distance ∆depd ,p (t) the

pickup point is assigned to be on the rider’s departure point Dp

Condition 3) if both Conditions 1) and 2) are not satisfied, a pickup point does not exist, an

then a matching between p and d does not exist.

An analogous approach is followed in calculating the drop-off point.

The total driver’s deviation1 from his original path can be expressed as

devp,d (t) = w D
d ,p ·∆depd ,p (t)+w A

d ,p ·∆d std ,p (t) (4.11)

where w D
d ,p is a binary variable set to one if Pdep ≡ Dp , i.e. if a detour from the driver’s

original path is needed. Likewise, w A
d ,p is a binary variable set to one if Pdest ≡ Ap and set to

zero otherwise. The last constraint to be satisfied is that the total detour that a driver should

take in order to reach the pick-up and drop-off points can not be higher than the distance

∆kmp,d covered by the shared route, i.e. the shared ride provides positive cost savings. If

this constraint is not satisfied, there wouldn’t be a benefit for the driver to take the detour in

order to share the ride.

devp,d (t) ≤∆kmp,d (4.12)

If both Pdest (t) and Pdep (t) are defined, the matching is assumed to be found.

4.4 Cost Function

For the pairs of offers and requests (d , p) which satisfies the temporal and geographical con-

straints, the value of a cost function Cd ,p (t) for a shared ride is evaluated. It takes into ac-

count the following two elements: ∆kmp,d , which is the length of the shared ride; devp,d ,

which is the length of the needed detour.

The cost function is defined as:

Cd ,p (t) = f (devp,d (t),∆kmp,d) =Θ ·devp,d (t)−Ψ ·∆kmp,d (4.13)

Where Θ,Ψ are tuning parameters that respectively determines the importance of the

detour from the original path and with respect to the travel share. Accordingly, a list of suit-

able travel companions is ordered, which are associated with:

• the departure pickup point Pdep (t)

• the destination pickup point Pdest (t)

• the cost Cd ,p (t)

1for simplicity, the deviation has been considered to be in a straight line

4.4. COST FUNCTION 43

The list of suitable travel companions for a user represents the output of the CLACSOON’s

matching algorithm. The user is then left with the option to select the best mates by using

the mobile applications, according to his/her personal interests (section 3.4.4). In the next

chapter on the performance evaluation, it will be assumed that the user always select the

mate corresponding to the lowest cost function.

Chapter 5

Case study in the Cagliari urban

area

The previous part of the thesis faced the challenges related to the design and the develop-

ment of a Dynamic Carpooling platform. In particular, the implementation of the CLAC-

SOON platform, along with its route matching algorithm have been described.

This chapter presents the case study that has been conducted in order to analyze the

performance of the proposed matching algorithm in urban areas, along with the Quality of

Experience (QoE) provided to the users. For this purpose, an emulation system has been de-

veloped, as the current population of CLACSOON users is limited and because we were inter-

ested in analyzing the performance with different population characteristics, which cannot

be controlled in real scenarios.

A real area have been considered to emulate the mobility patterns in real urban condi-

tions, including real roads in the city and real paths between any departure and destination

(e.g. pedestrian zone, one-way roads, limited traffic zones). Three Key Performance Indica-

tors have been analyzed: the number of shared rides, the waiting time to find a ride and the

average total system-wide CO2 savings.

In a preliminary work [7] the system with the major design choices has been presented.

The performances have been evaluated in terms of passenger success rate and driver success

rate, by varying the time distribution of the service requests.

In the paper [8] the study is more in-depth and in addition to the aforementioned KPIs,

also the passenger waiting time and the total system-wide CO2 savings saved have been eval-

uated, against the time distribution of trips (within a fixed time window), and the timeout (T)

which is the maximum time that a user can wait before he decides to retire his/her offer of a

ride or his/her request for a ride.

The paper [9] presented the improved version of the route matching algorithm, intro-

ducing the features described in chapter 4, and analogous experiments have been made to

45

46 CHAPTER 5. CASE STUDY IN THE CAGLIARI URBAN AREA

evaluate the performances of the system service. For sake of clarity, in the following sections

only the results from the latest study are presented.

The following sections describe the emulation system, present the experimental setup,

analyze the achieved performance results, and provide a comparison with alternative ap-

proaches.

5.1 Emulation Setup

This section provides an accurate description of the experimental setup and the emulation

system. The place selected to be the emulation scenario is the city of Cagliari, which is an

Italian municipality with nearly 150.000 inhabitants, with a metropolitan area (including the

surrounding 15 municipalities) of more than 420,000 inhabitants [44]. Considering a real

area it is possible to emulate the mobility patterns in real urban conditions, including real

roads in the city and real paths between any departure and destination (e.g. pedestrian zone,

one-way roads, limited traffic zones). An agent-based emulator has been implemented to

generate the ride offers and requests on behalf of real users, evaluate the matching between

them and emulate the sharing of rides. The emulator is implemented in Java and it is based

on the core of the CLACSOON platform (indeed the matching is exactly the service in pro-

duction but executed in the emulation environment). In the experiments several scenarios

have been run, each one characterized by a combination of parameter settings as explained

in the following. Three Key Performance Indicators have been analyzed: the number of

shared rides, the waiting time to find a ride and the average total system-wide CO2 savings.

In the following, we describe the processes we followed for the Configuration, Setup, Run

and Evaluation phases in our experiments.

Configuration

During the Configuration step, a list of scenarios is generated: each scenario represents the

configuration of a population. During the experiments some parameters of the population

have been changed to evaluate the effects on the KPIs; these parameters are listed in Table

5.1. The performed experiments have been conducted by selecting an area of interest in the

city of Cagliari (39.23,9.14) and with an area (A) of about 64 kmq, which is where the users

can operate. This area is of interest for this study since the majority of the CLACSOON’S users

mainly operates inside this boundary. Furthermore, this area is representative of medium-

small cities with numerous residential areas, commercial sites, factories and historic neigh-

borhoods within its metropolitan boundaries. Fig. 5.1 shows the area selected for this case

study where the area of interest is delimited by a black line. Each run lasts for S hours during

which a total of N users act as either passenger or driver. When evaluating the performance

of the system with respect to the spatial cl acsooner s density, both the population density

5.1. EMULATION SETUP 47

(Nk) and the ratio between the number of drivers and the number of passengers (Ld /Lp)

have been varied. As shown in the table, N ranges from 600 to 2500, which correspond to a

different population density given the size of the reference geographical area, and the ratio

Ld /Lp ranges from 1/8 to 8. In the performed emulations, we also refer to the timeout T , that

ranges from 1 to 30 minutes. For simplicity, we assume the same timeout T for each rider

and each driver.

System parameters
Time window S 4 hours

Total users N from 600 to 2500
Population percentage Nk from 10 to 40 users/kmq

Number of drivers Ld Ld /Lp from 1/8 to 8
Number of passengers Lp

Temporal rate of ride offers fd from 10 to 600 users/hour
Temporal rate of ride requests fp

Timeout T From 1 min to 30 min
Search radius of passengers Rp 300 m

Search radius of drivers Rd 1/10 of the travel length
Cost function tuning parameters Ψ,Θ Ψ/Θ= 1

Table 5.1: Values of parameters varied during experiment

Each scenario represents a combination of the parameters listed in Table 5.1. To perform

the simulations proposed in this case study, the KPIs have been evaluated for 3 sizes of the

population N , 8 levels for the ratio Lp /Ld and 8 values for the timeout T , for a total of 192

scenarios.

5.1.1 Setup

The Setup step consists of the generation of each member of the population for a single Run.

During this step, the total population N is divided into Ld drivers and Lp passengers. The

emulator assigns each user a departure and a destination locations chosen randomly and

uniformly within the selected area, with the following two constraints:

• both locations falls into a street

• it is actually possible to travel from departure to destination, i.e. a path exists between

the departure and the destination locations.

At each user it is also assigned the shortest path between the departure and destination

points, which is calculated by the Directions Provider.

Generating random paths within this area leads to an average travel duration of approx-

imately 13 minutes with a standard deviation of approximately 6 minutes (fig. 5.2). The

48 CHAPTER 5. CASE STUDY IN THE CAGLIARI URBAN AREA

Figure 5.1: The area for the case study

0 10 20 30 40 50
path duration [min]

0

100

200

300

400

500

#
 n

u
m

b
e
r

o
f

p
a
th

s

Figure 5.2: Average travel duration within the selected area

5.1. EMULATION SETUP 49

emulator also assigns, for each driver and each rider, the desired departure time t DEP
u . The

time interval between two successive departure times is set to have an exponential distribu-

tion within the time window S. Each run lasts for a fixed time window S. If we consider this

period and a given number of drivers Ld and a number of riders Lp , we obtain an expected

time interval between offers µd and an expected time interval between requests µp :
µd = S

Ld

µp = S

Lp

(5.1)

5.1.2 Run

Once the population’s details have been set, the Run step is executed. Each Run for a given

scenario has to be repeated for 20 cycles, in order to reduce the width of the confidence

interval. In particular, we checked the 95% confidence interval for one of the most important

KPI, i.e., the passenger success rate whose results are shown in Fig. 5.3, and we checked that

it was very small for so that we almost had no overlaps among the curves. Specifically, it was

lower than 0.01, which was very low. The emulator models a situation in which an user u

joins to the population at his desired departure time t dep
u : this step simulates the publication

of a trip offer or request trough the CLACSOON mobile application. Strictly after the user u

joins the population, the matching algorithm is evaluated between the user u and the set

of complementary users (if the user is a driver the matching is evaluated against a set of

riders, and vice versa). If no matching is found, the user is given a time of τu to be contacted

by another user. When a new rider joins to the population, a set of offers that satisfy the

constraints specified by the Temporal Matching is retrieved from the database. These offers

are then evaluated by the Geographical Matching algorithm. If one or more offers satisfy the

Geographical Matching, the value of the Cost Function is evaluated for these offers, and the

ride is agreed with the offer which leads to the less cost. Moreover,the number of empty seats

for the offer is reduced by one and the ride request is marked as busy, i.e. it won’t be possible

for other drivers to give a lift for this request. On the other side, when a new driver joins to the

population, the list of the existing ride requests is retrieved from the database. Those rides

have to satisfy the constraint of not being busy, i.e. the ride request is not yet committed to

another driver. If the aforementioned constraint is satisfied, then the matching between the

offer and the request is evaluated by the Temporal Matching and the Geographical Matching

algorithm. If a matching is found, the shared ride is considered to be agreed, the ride request

is marked as busy and the spare seats for the ride offer are decremented by one.

50 CHAPTER 5. CASE STUDY IN THE CAGLIARI URBAN AREA

5.1.3 Evaluation

After the end of a Run, the following Key Performance Indicators are computed:

• Passenger waiting time i.e. the average of the time that the riders that found a match-

ing had to wait before finding that matching

• Passenger success rate the percentage of riders that found a ride

• Driver success rate the percentage of drivers that shared a ride

• Total System-wide CO2 saved the sum of the estimation of the CO2 saved for each

shared ride, based on the distance that the riders should have traveled alone if the

shared ride was not agreed

The results of the emulations from this case study have been computed as an average of

the KPIs obtained from 20 runs for each scenario. As mentioned before in the section 5.1 a

total numbero of 192 scenarios has been executed, leading to a total number of about 4000

runs.

5.2 Experimental Results

The performances, in relation with the time distribution of the service utilization, have been

evaluated varying the rate of ride offers (fd) and the rate of ride requests(fp). The perfor-

mance has also been evaluated in relation with the maximum waiting time of the users T .

Figs. from 5.3 to 5.6 shows the results according to the mentioned KPIs varying the pa-

rameters with the values indicated in Table 5.1.

5.2.1 Passenger success rate

Fig. 5.3 shows the passenger success rate, which is the percentage of passengers that find a

ride. This chart shows the trend of this indicator in relation with the timeout, for three levels

of the ratio Ld /Lp and three levels of the population N .

The first highlighted trend is that the success rate increases with the population, which

is something expected since if the spatial density of users is low, the probability to have a

matching is small as well. The growth in relation with the timeout is significant until the

value of T is around 15 minutes; after this value any further increase in the timeout doesn’t

have a big impact. This is due to the fact that the random paths generated in the selected

area results in an average travel length of 13 minutes. This value of T is comparable to the

bus transit frequency within the city of Cagliari, then it can be states that this amount of time

is likely to be acceptable for riders. Considering a threshold in the success rate of 80%, it can

be seen that this threshold can be achieved with a balance between the numbers of drivers

5.2. EXPERIMENTAL RESULTS 51

40 users/kmq

20 users/kmq
10 users/kmq

0 5 10 15 20 25 30
timeout [min]

0.0

0.2

0.4

0.6

0.8

1.0

p
a
ss
e
n
g
e
r
su

cc
e
ss
 r
a
te

Ld/Lp = 1/4 Ld/Lp = 1 Ld/Lp = 4

Figure 5.3: Passenger success rate

and of passengers (i.e., Ld /Lp = 1) if the later have the patience to wait for up to 13min in

case the cl acsooner density is of 40 users/kmq. Otherwise, if the percentage of drivers is

high to have a ratio Ld /Lp = 4, then the passengers would have to wait only 6 min. This

result tells us that depending on the patience of the customers a different marketing actions

should be followed to reach the needed percentage of drivers in the cl acsooner population.

5.2.2 Driver success rate

Fig. 5.4 shows the driver success rate. The first highlighted trend is that the success rate

increases when the population increase and when the ratio Ld /Lp decreases (i.e., the longer

the number of riders request a ride, the higher the driver success rate).

The Figs. 5.3 and 5.4 show that, with the same population level, the rider success rate is

higher than the driver success rate. This difference is related to the different nature of these

two agents: a single driver could give a ride to more than one passenger. This situation is

more likely to happen if the number of drivers is higher than the number of riders and when

the number of users is high.Moreover, an increase in the timeout always leads to an increase

in the success rate for riders, but for drivers this effect is limited: the driver success rate in-

52 CHAPTER 5. CASE STUDY IN THE CAGLIARI URBAN AREA

40 users/kmq

20 users/kmq
10 users/kmq

0 5 10 15 20 25 30
timeout [min]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
ri
v
e
r
su

cc
e
ss
 r
a
te

Ld/Lp = 1/4 Ld/Lp = 1 Ld/Lp = 4

Figure 5.4: Driver success rate

creases slowly after 15 minutes. This is due to the fact that the random paths generated in

the selected area results in an average travel length of 13 minutes. The emulator models a sit-

uation in which riders insert their trip when they arrive in the desired pickup point and then

they can wait for a matching at most until their waiting time reaches the timeout. Drivers, as

opposite to riders, insert their trip when they are ready to start the trip and they could obtain

a matching at most until their trip is over. So, a further increase in the timeout doesn’t lead

to a big benefit for drivers. Moreover, when Ld becomes higher than Lp and for a high level

of population, there is another important trend. The system results unbalanced in favour of

the riders, so most of them can find a ride. The remaining drivers have low probability to

find a passenger, because the majority of passengers have just agreed to take a ride from a

driver.

5.2.3 Passenger waiting time

Fig. 5.5 shows the rider’s average waiting time needed to find a ride. The trend is linear and

decreases when the number of drivers increases. If the ratio Ld /Lp is high (i.e., more drivers

than riders are in the system) the waiting time is low and vice versa. In case there are more

5.2. EXPERIMENTAL RESULTS 53

40 users/kmq

20 users/kmq
10 users/kmq

0 5 10 15 20 25 30
timeout [min]

0

2

4

6

8

10

12

p
a
ss
e
n
g
e
r
w
a
it
in
g
 t
im

e
 [
m
in
]

Ld/Lp = 1/4 Ld/Lp = 1 Ld/Lp = 4

Figure 5.5: Passenger waiting time

drivers than riders and then there are many offers, the probability to find a ride becomes

quickly high . So, if the number of driver is higher or equal than the number of passengers,

the waiting time increases slowly.

This figure doesn’t consider the waiting time of rides that haven’t found a ride (in fact, a

waiting time for these rides is undefined), so this figure has to be considered in conjunction

with the fig. 5.3.

5.2.4 Total system wide CO2 saved

The average success rate and the waiting time represent the performance from the single

trip point of view. By collecting the travel length of each shared ride, the global system CO2

saved has been computed. The result is shown in Fig. 5.6. This chart shows the trend of this

indicator in relation with the the ratio Ld /Lp , for three levels of the population N and for

three levels of the timeout T . It’s important to note that the CO2 saved is a KPI that describes

the performance of the whole system.

The CO2 saved is estimated as the product between the total travel shared (evaluated in

km) and the average CO2 emitted by a car (140 grams of CO2 per km) [45] . Since this pa-

54 CHAPTER 5. CASE STUDY IN THE CAGLIARI URBAN AREA

40 users/kmq

20 users/kmq
10 users/kmq

10-1 100 101

Ld/Lp

0

100

200

300

400

500

600

700

800

900

C
O
2
 s
a
v
e
d
 [
kg

]
timeout = 5 min timeout=10 min timeout=20 min

Figure 5.6: Total System-wide CO2 savings

rameter is assumed to be proportional to the shared travel length, it is also representative of

the total cost savings generated by the carpooling system. The curve reaches the maximum

value when the number of riders is close to the number of drivers, that is when the system is

balanced. It increases when the timeout increases as well as when the population increases.

Assuming the aforementioned value of CO2 emitted per km, the value of emission savings

can be computed in the time window S used in the simulation. It is notable that with a

timeout value of 10 minutes and for Lp ≈ Ld the emission savings in this scenario are about

80 kg for 10 users/kmq, 250 kg for 20 users/kmq and 720 kg for 40 users/kmq. It is clear that

the trend is not linear but follows an exponential increase with respect to the population.

5.3 Performance Comparison

Following the approach done in [22], to assess the value of the CLACSOON’s matching al-

gorithm, in this section its performance have been compared with those of an alternative

matching algorithm I have developed (following named “DUMMY”), which presents the two

following simplifications with respect to the CLACSOON’s matching algorithm:

5.3. PERFORMANCE COMPARISON 55

• when a matching is found the pickup and the drop-off points are assigned to be the

rider’s desired departure (~Dp) and destination (~Ap) points, respectively

• a driver cannot accept requests after his/her trip started: each shared ride must be

agreed before the starting of the driver’s trip, and the dynamics of the positions and

the speeds of the vehicles are not taken into account

0 5 10 15 20 25 30
timeout [min]

0
1
2
3
4
5
6
7
8

ri
d
e
r
w
a
it
in
g
 t
im
e
 [
m
in
] a) Passenger waiting time

0 5 10 15 20 25 30
timeout [min]

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

d
ri
v
e
r
su

cc
e
ss

 r
a
te

b) Driver success Rate

0 5 10 15 20 25 30
timeout [min]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p
a
ss
e
n
g
e
r
su

cc
e
ss
 r
a
te c) Passenger success Rate

10-1 100 101

Ld/Lp

100
200
300
400
500
600
700
800

C
O
2
 [
kg
]

d) CO2 saved

DUMMY CLACSOON

Figure 5.7: Comparison with the “DUMMY” matching algorithm

Note that the DUMMY algorithm does not only contemplate the Identical Ridesharing

(i.e. when the departure have to be the same for riders and drivers). Indeed, the DUMMY

matching algorithm also contemplates the presence of intermediate meeting points that

can: i) be on the original route of the driver, ii) be not on the way of an original route of the

driver, so that a detour would be needed to reach up the pick-up and drop-off points. The dif-

ference with the CLACSOON algorithm is that, when rider’s desired departure and destina-

tion locations are not on the way of the driver’s original route, the driver should have to take

a detour to reach up the rider’s departure and destination points. Therefore the DUMMY

56 CHAPTER 5. CASE STUDY IN THE CAGLIARI URBAN AREA

matching algorithm does not contemplate the partial ridesharing mode and prevents drivers

from picking up riders on the fly, even if the pickup points result on the driver’s route.

This comparison is intended to specifically evaluate advantages of the proposed algo-

rithm.

The following results shows the comparison of the indicators for a population density

of 40 users/kmq. In the following, if not explicitly stated otherwise, the simulation environ-

ment parameters are equal to those listed in Table 5.1. Fig. 5.7 clearly demonstrates that the

CLACSOON matching algorithm performed better than the DUMMY matching algorithm

in terms of all the Key Performances Indicators that have been computed. Fig. 1.a) to 1.c)

shows the computed results in relation with the the timeout T and for Ld /Lp = 1, i.e. the

number of riders is set to be equal to the number of drivers. For instance, for a Timeout of

10 minutes, the CLACSOON matching algorithm leads to a decrease in the waiting time of

around 55% and an increase in the driver and passenger success rates of around 4% and 10%,

respectively. However, note that the relative advantage for the success rate, decreases with

the timeout for both drivers and riders. Fig. 5.7.d) shows the total system-wide CO2 saved

for a timeout of 10 minutes, in relation with the ratio Ld /Lp . It is notable that, for Lp = Ld

the CLACSOON algorithm leads to an increase (+21%) of the CO2 saved, which corresponds

to 120kg of CO2 emission savings over the value computed for the DUMMY matching algo-

rithm. For the selected scenario, the overall CO2 that riders would have emitted if each one

had driven his/her car (estimated on the total length of their desired route) is estimated to

be approximately 1150kg, so a participation rate of 40 users/kmq leads to the 64% of emis-

sion savings for the CLACSOON matching algorithm and the 54% of emission savings for the

DUMMY algorithm.

Therefore the achieved results demonstrate that the CLACSOON matching algorithm

performs better than the DUMMY matching algorithm in terms of all the Key Performances

Indicators that have been computed: the success rate, the waiting time to find a travel com-

panion and the CO2 emission savings.

Chapter 6

Dynamic Involvement of Real World

Objects in the IoT

In the previous chapters we faced with the issues of a dynamic ridesharing service in an ur-

ban scenario. This type of service is considered as one of the approved ways, in the field

of smart mobility, to mitigate the problems generated by the population increase, while im-

proving the quality of life in the smart city context. Thanks to the coming of the IoT paradigm

the carpoolers’ vehicles, which may or may not be involved in a shared ride, can represent a

good sensor platform (section 3.2). Since one of the aspects of smart cities is the optimal use

of the resources, the information coming from sensors integrated with real-time monitoring

systems can be processed and analyzed to make certain adjustments as per the need, to im-

prove the efficiency, quality, performances and resource consumption of the urban services.

A great example for a smart city is Santander: this Spanish city is one of the smartest cities in

the world, thanks to the use of the Internet of Things (IoT) [46] . The city is embedded with

more than 12,000 sensors [47], installed and deployed both at static locations (streetlights,

facades, bus stops) as well as on-board of mobile public vehicles (including buses, taxis and

police cars [48]), to retrieve environmental parameters associated to determined parts of the

city, such as the air pollution levels and traffic conditions. These technologies also provide

an opportunity to collect the information about urban mobility, in the form of participatory

sensing [49] [50].

Within the carpooling scenario presented before, the sensing devices could be installed

on-board of the driver’s vehicles to acquire information from the surrounding ambient and

to cooperate with other devices to achieve a common application goal. This is the case for

instance of different cars that are moving in a given urban area that is affected by different

congestion points and that can share the knowledge about the status of the roads so that

they can better find the route that minimizes the driver objects, typically expressed in terms

of expected time to reach the destination. They can also share information about the park-

57

58 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

ing lots occupancy so as to reduce the time needed to park the car. Another situation is the

one in which devices that are located in the same geographical area share the knowledge

about the temperature so that the IoT applications can benefit from a more accurate view of

this physical magnitude. In this context, Machine to Machine (M2M) and Device to Device

(D2D) communications play an important role. To design a service of this type, the problem

of the limited resources for the IoT nodes must be taken into account. Following this consid-

erations, in [10] we presented a study of a distributed algorithm for the task allocation and

assignment, which can be executed by a group of real IoT devices. It is based on a consensus

approach, with the aim of maximize the lifetime of groups of nodes involved and ensures the

fulfillment of the requested Quality of Information (QoI) requirements. In the next sections

an overview of the basic concepts of the IoT will be given, and then the proposal is explained

in detail.

6.1 The role of Virtual Objects in the IoT

The last few years have been involved by the technological revolution represented by the In-

ternet of Things (IoT) [46]. The IoT paradigm relies on the interconnection of devices with

different capabilities such as sensors, actuators, Radio Frequency Identification (RFID) tags,

smart objects (e.g. smartphones), and servers, within the same heterogeneous network. The

aim is to enable the network objects to dynamically cooperate and make their resources

available, in order to execute complex applications and services. Nowadays, this high at-

tention on the IoT topic stimulates industry and research to invest a lot of resources in this

emerging field, consequently IoT is became a hot research topic, as demonstrated by the

increasing attention and the large worldwide investments devoted to it.

In the Internet of Things (IoT) vision, even the most common and simple object is ex-

pected to acquire information from the surrounding ambient and to cooperate with other

objects to achieve a common application goal, fulfilling the expected quality requirements.

This is also fostered by the widespread adoption of cloud computing technologies to aug-

ment capabilities of simple and cheap devices to take part to the deployment of complex ap-

plications [57], especially through the introduction of the Virtual Object (VO) [58] concept,

which is the digital counterpart of a physical entity[59]. According to [60], the physical com-

ponents of an object can be abstracted and made available as virtual resources, inheriting

all their functionalities, characteristics and acquired information. Virtualisation allows the

higher layers of the IoT architecture to:

i) interface with devices;

i) provide devices with the required commands, adapted to their native communication

protocol;

6.1. THE ROLE OF VIRTUAL OBJECTS IN THE IOT 59

i) monitor their activities and connection capabilities.

In the depicted scenario, it may happen that a group of devices have in common the ca-

pability to perform the same tasks (e.g., sensing the quality of the air in a given geographical

area), which entails for a procedure to decide about their involvement when an application

requires the execution of this task. This procedure is typically implemented by the VOs, fol-

lowing either a centralized or decentralized approach. According to the former, the proce-

dure runs in the cloud, which needs to be constantly updated about the status of the objects.

According to the latter, the devices directly interact each other and agree on the best solution

without the involvement of the central platform.

In the past few years, many well-known IoT middleware architectures based on virtual-

isation of real objects have been proposed [58]. The management and resource allocation

of these objects is usually committed to the power of cloud computing, which ensures high

reliability, scalability and autonomy to provide ubiquitous access

However, reaching the cloud to manage network nodes is not always a good solution,

especially for real-time applications, nor is it a convenient solution in terms of energy con-

sumption.

This issue is partially solved in [61], where fog computing is used to virtualise real world

object characteristics and resources, and to allocate application tasks to them, forming a

decentralized computing infrastructure in which the resources are distributed between the

data sources and the cloud.

Resource allocation has been extensively studied in Wireless Sensor Networks (WSNs),

particularly with reference to network lifetime. In [62] a distributed task allocation that fo-

cuses on the reduction of the overall energy consumption and task execution time into a het-

erogeneous WSN is proposed, with attention to nodes’ residual energy. A similar approach is

studied in [63], where a distributed algorithm based on particle swarm optimization is pro-

posed. Since the main criticality of wireless networks is their lifetime, all these algorithms

mainly focus on maximizing this resource. Nevertheless, IoT nodes have more heteroge-

neous characteristics and capabilities, included residual memory, processing capacity and

throughput.

As far as IoT networks are concerned, distributed resource allocation is an open issue.

Most of the existing studies on resource allocation for IoT are focused on IoT service provi-

sioning, such as in [64] and [65]. In these studies, the aim is to allocate the resources that

enable service execution. However, they do not focus on finding the best configuration that

corresponds to an optimal resource allocation. None of the works found in the literature

tries to find the optimal resource allocation associated to the lowest impact of the applica-

tion assigned to the network. Additionally, QoI is not taken into account [66].

60 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

6.2 Reference Scenario and Problem Statement

The following sections focus on the decentralized approach and propose a consensus-based

sensing allocation algorithm, which has a twofold objective:

i) considering Quality of Information (QoI) constraints in the process of allocating tasks to

the IoT objects, so that the fulfillment of application requirements is ensured;

i) optimizing the use of resources of the underlying IoT system by maximizing the lifetime

of the group of devices involved.

In the following we refer to the Cloud-based IoT model that relies on virtualization tech-

nologies [67] and includes three levels, as shown in Figure 6.1. A Real World Object (RWO)

is a device that has the ability to observe the real world phenomena and to perform mea-

surements or operate on other objects. The Virtual Object [58] is its digital representation

and guides its involvement in the implementation of the deployed IoT applications, by pro-

viding a description of the RWO, with also semantic enrichment. It also supports discovery

and mash up of services, improving the objects energy management efficiency, as well as

addressing heterogeneity and scalability issues. Each VO is instantiated with a template that

should match the type of RWO it is associated to (e.g., smartphone model, embedded de-

vice type, temperature sensor). Depending on the RWO capabilities and use-cases, the VO

processes are run in the cloud, gateway or RWO physical devices. Scenarios where the VO

functionalities are distributed among these locations are also possible. The Service Level re-

ceives user application requests and maps them dynamically to the appropriate VOs, which

take in charge their accomplishment by involving the relevant RWOs.

These deployment processes need to take into consideration the applications’ QoI. QoI is

the characterisation, in terms of some salient attributes represented in the form of metadata,

of the goodness of the data collected, processed and flowing through a network [68]. QoI

concerns the information that meets a specific user’s need at a specific time, place, physical

location, and social setting. Some examples of QoI requirements are data sampling rate,

precision, and provenance [69].

An important component of this architecture is the information model, which is imple-

mented by the VO template and encodes all the information that is used for their appropriate

involvement in the IoT application deployment and delivery. A great effort in the definition

of the information model has been done by the iCore FP7 project [70].

However, in this work there is the need to extend this model in order to take into ac-

count the mobility of objects, their temporal features and their characteristics of QoI. This

enhancement is meant to improve the VO search, discovery and selection processes that

enable the tasks assignment to the most appropriate VOs, with a QoI-oriented perspective.

Figure 6.2 shows the new elements in dashed border boxes:

6.2. REFERENCE SCENARIO AND PROBLEM STATEMENT 61

CLOUD

SERVICE

LEVEL

VO

LEVEL

RWO

Figure 6.1: The reference IoT cloud architecture

• Temporal features: The use of the temporal features, both in terms of date and time

range, allows to know the activity phases of a device associated with its VO. Knowing

the date and time in which a mobile device is located in a given place, helps the asso-

ciation process among ICT and non- ICT object. It also ensures the ability to know in

advance when a particular resource is available, when it is possible to refer to it, and

how long it has not been updated.

• QoI Parameters: The information model, on which the selection processes are based,

includes a field dedicated solely to the QoI parameters. The values in this field are

named uniquely based on their characteristics. In addition, it introduces their de-

scriptive aspects, that allow their identification. The parameters stored in this field

will therefore be examined in the selection phase and allow an optimised choice of the

resources to use.

• Indoor location: It is particularly useful in cases of closed environments. This could

be an element that enhances the scalability of the system. It permits to the model to

be used not only in large-scale distributed environments (metropolitan areas or neigh-

borhoods), but also in small size environments and internal locations (such as build-

ings or structures in which a geo-localization of the nodes is not enough).

When a new application has to be deployed, the service layer sends a request to the VO

level to search, among the available VO instances, those that are able to perform the relevant

tasks based on the appropriate templates and other parameters (e.g., position, ownership).

To this the information model becomes vital to implement an effective search function. As

a result, for each requested task k, a group of VOs capable of performing it are identified. At

this point there is the need to decide how they should contribute to the execution of this task

while considering the required QoI level. The decentralized approach which is followed in

this proposal has the advantage of being able to better follow the changes of RWOs status.

62 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

VIRTUAL OBJECT

ICT-OBJECT

GEOLOCATION

NON-ICT OBJECT

INDOOR LOCATION

TEMPORAL FEATURE

DATE RANGE TIME RANGE

QoI PARAMETERS

VO FUNCTION & PARAMETERS

I/O PARAMETERS

OWNER

Figure 6.2: VO Information Model used. Solid border boxes correspond to elements included
in the iCore VO Information Model. Dashed border boxes are new elements introduced by
the proposed architecture

This is possible when the VO task allocation functionalities are implemented in the RWO or

gateways, in case they do not have the sufficient computing power and the fog/edge com-

puting technologies are used [71]. This also requires the RWOs in the group for task k and

the gateway (if needed) to form a connected group relying on short-range communication

technologies. In the following we consider that the target QoI level is a required execution

frequency F r e f
k . However, the proposed solution can be generalized to other QoI require-

ments.

6.3 The Resource Allocation Model

6.3.1 Resource Model

This section provides a description on the main resources that represent an issue for IoT

systems: object lifetime, storage capacity, processor and data throughput.

Lifetime

As defined in [72], the lifetime of a node is defined as the time until it depletes its battery.

Applying this to this case, the lifetime of the node associated to VO i at time t is

τ
l f tm
i (t) = E r es

i (t)∑
k E c

i k · fi k (t)
(6.1)

where E r es
i (t) is its residual energy, E c

i k is the energy consumed by the RWO associated to VO

i to perform task k, and fi k (t) is the frequency at which VO i performs task k. This means

that the lifetime of a node depends on the frequency at which the tasks assigned to it are

performed.

6.3. THE RESOURCE ALLOCATION MODEL 63

Storage capacity

The storage capacity of a node decreases according to the frequency at which data are stored

in it, and to the amount of data stored. Analogously to the definition of node lifetime, the

storage capacity depletion time of the node associated to VO i is defined as

τstor
i (t) = M r es

i (t)∑
k Dk · fi k

(6.2)

with M r es
i (t) residual memory expressed in bits, and Dk amount of data to be stored for task

k. Note that residual memory can change over time, not only because of its usage, but also

because its stored data can be moved to another location.

Processor

The time needed to perform a task is in inverse proportion to the processing speed of the

node that is performing it, and in direct proportion to the number of instructions required

by the task. Calling t exec
i k the time needed by the node associated to VO i to perform task k,

it can be stated that

t exec
i k = N i nstr

k

Spr oc
i

(6.3)

where N i nstr
k is the number of instructions that need to be processed to perform task k, and

Spr oc
i is the processing speed for the node associated to VO i . If task k is performed at a

frequency fi k (t), this means that the processor of the node associated to VO i will be busy

for a ratio of time equivalent to

θ
pr oc
i k (t) = t exec

i k · fi k (t) (6.4)

Generalising for all the tasks performed by i , the total processor occupancy is defined as

Θ
pr oc
i (t) =∑

k
t exec

i k · fi k (t) (6.5)

which is the ratio of time for which the processor is busy, considering all the tasks.

Bandwidth

Analogously to the analysis made for the processor occupancy, and considering that the

bandwidth needed by the node associated to VO i to transmit the output data for task k

is proportional to the Dk bits of data to transmit and to the frequency fi k (t) at which they

are transmitted, the bandwidth occupancy is defined as

ΘBW
i (t) =

∑
k Dk · fi k (t)

B tot
i

(6.6)

where B tot
i is the available bandwidth for i .

64 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

6.3.2 Consensus-Based Resource Allocation Optimisation

The resource optimisation strategy proposed in this section relies on a consensus-based al-

gorithm where VOs decide the amount of resources to allocate to a task, according to the

constraints requested by the higher layers.

The Equation that describes the use of a resource by VO i can be generalized as

Θi (t) =∑
k
αi k · fi k (t), with αi k (t) =

E c
i k /E r es

i (t) ifΘi (t) = 1/τl f tm
i (t)

Dk /M r es
i (t) ifΘi (t) = 1/τstor

i (t)

t exec
i k ifΘi (t) =Θpr oc

i (t)

Dk /B tot
i ifΘi (t) =ΘBW

i (t)

(6.7)

From the analysis carried out in the previous Section, it is evident that optimising the use

of the resources belonging to the nodes involved in the system entails adjusting the use that

VOs make of them, so that nodes are not overloaded. In other words, the frequency at which

each node performs the tasks assigned to it needs to be adjusted so that the effort put by each

node to contribute to the execution of tasks needed by the system is equally shared among

all of them. This means that, taken two VOs i and j that received an activation request for

task k, at time tc when the algorithm converges,Θi (tc) =Θ j (tc). Therefore∑
k
αi k (tc) fi k (tc) =∑

k
α j k (tc) f j k (tc) (6.8)

Defining the total amount of resource usage contributions with the exception of task k

as δi k (t) =∑
l 6=k αi l (t) · fi l (t), it follows that

f j k (tc) = αi k (tc)

α j k (tc)
· fi k (tc)+ δi k (tc)−δ j k (tc)

α j k (tc)
(6.9)

According to accuracy constraints provided by the higher layers, the collaborative com-

pletion of a task is required to be performed at a reference frequency F r e f
k =∑

j f j k (tc). Using

Equation 6.9 in this identity, after some simple computations and multiplying and dividing

by the number Nk of VOs involved in task k, we obtain

αi k (tc) · fi k (tc) = ϕ̄k

β̄k (tc)
+ γ̄k (tc)

β̄k (tc)
−δi k (tc) (6.10)

with

ϕ̄k = F r e f
k

Nk

β̄k (tc) = 1

Nk
·∑

j

1

α j k (tc)

γ̄k (tc) = 1

Nk
·∑

j

δ j k (tc)

α j k (tc)

6.3. THE RESOURCE ALLOCATION MODEL 65

It is easy to notice that they represent mean values evaluated over all the VOs that are able

to perform task k. This fact, along with the consideration that nodes that are assigned to the

same task are usually located close to each other, and thus they can communicate directly

without passing through the cloud, leads to the conclusion that their value can be estimated

in a distributed way using an average consensus algorithm.

It is supposed to have a system where nodes may not be connected during the whole con-

vergence process. For this reason, in this section the consensus algorithm proposed in [73],

which is robust against topology changes, is used. Since variations of α and δ are negligible

over the time needed by the algorithm to converge (as it will be clarified in the experiments),

in the following they are considered to be constant and their dependence from time is omit-

ted. Nevertheless, if substantial variations of them are experienced, the algorithm needs to

start again.

6.3.3 Resource Allocation Optimisation Algorithm

As soon as VO i receives an activation request for task k from the VO layer, it verifies if it is

able to satisfy the minimum level of QoI required by the higher levels. If it is not, it sets fi k to 0

and informs the VO layer about it. Otherwise, it initialises its local valuesϕi k =ϕ0
i k , βi k =β0

i k

and γi k = γ0
i k . As far as ϕi k is concerned, only one VO receives the reference frequency F r e f

k

from the VO layer, and sets ϕ0
i k to it. The other VOs set it to 0. The initial local values are set

as follows:

ϕ0
i k =

F r e f
k if F r e f

k is given

0 otherwise

β0
i k = 1

αi k
γ0

i k = δi k

αi k

(6.11)

and starts the consensus with its neighbours. Whenever VO i receives an update from one

of its neighbours j , it computes the following updates:

ϕ+
i k =ϕi k −λϕ1

∑
j

(ϕi k −ϕ j k)−λϕ2
∑

j
sgn(ϕi k −ϕ j k) (6.12a)

β+
i k =βi k −λβ1

∑
j

(βi k −β j k)−λβ2
∑

j
sgn(βi k −β j k) (6.12b)

γ+i k = γi k −λγ1
∑

j
(γi k −γ j k)−λγ2

∑
j

sgn(γi k −γ j k) (6.12c)

Θ+
i = ϕ+

i k +γ+i k

β+
i k

f +
i k = 1

αi k
· (Θ+

i −δi k
)

(6.12d)

where λϕ1 , λβ1 , λγ1 , λϕ2 , λβ2 , and λ
γ
2 are tuning parameters that affect the convergence time

and steady-state accuracy [73], and that will be better explained in the following Subsection.

If f +
i k > 0 and if its value has changed after the update, the VO sends the updated value of

ϕ+
i k , β+

i k and γ+i k to its neighbours. It may happen that f +
i k ≤ 0. In this case, the VO cannot

66 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

Figure 6.3: .

participate into executing task k. Therefore, it sets fi k to 0 and informs its neighbours, which

restart the consensus process. The algorithm can be considered converged when fi k does

not change after the updates.

6.3.4 Convergence Time and Steady-State Accuracy

The proposed consensus protocol represents a discrete-time application of the finite-time

discontinuous average-based consensus algorithm discussed respectively in [74] for a net-

work of connected continuous time integrators and in [75] for networks of perturbed, and

possibly switching, spanned–tree topologies. It follows that, as long as the stability of the

linear part of the problem in (6.12) is preserved, the convergent properties discussed in [74]

and [75] are in force. Thus, from Lemma 3 of [76] and Theorem 1 of [75], it is straightforward

to derive that

0 ≤λϕ1 ,λβ1 ,λγ1 ≤ 1

maxi |Ni | (6.13)

where |Ni | denotes the number of neighbours of node i . Note that Equation (6.13) derives

straightforward from considerations on discrete-time consensus and Perron matrices, which

however go beyond the scope of this research. Further details can be found in [76][77]. If

condition (6.13) holds, then the results of Theorem 1 of [75] are directly applicable for the

characterization of the convergence properties of the discrete-time collective multi-agent

dynamic in Equation (6.12).

Thus, following Assumption 1 of [74], let ε and T , with ε ≤ T be two positive constants,

where T defines the length of a receding horizon time interval I (t) = (t , t +T), and, ε is the

total length of the subinterval S(t) ≤ I (t) given by the union of the subintervals during which

the network is connected (see Figure 6.3 for a graphical explanation of the interval I(t) and

S(t)), it results that, for the problem in (6.12), consensus will be reached in finite time if

λ
ϕ
2 ,λβ2 ,λγ2 ≥ 2 · T

ε
+µ2 (6.14)

with µ 6= 0. If condition (6.14) holds, the convergence is reached with accuracy Γ after, at

most, a transient time tr that is proportional to the maximum deviation of the agents’ states

at the start-up (i.e., when t=0) of the algorithms

6.4. THE PROPOSED IOT SYSTEM 67

tr ≤
(

T

εµ2

)
·max

i , j
|x0

i −x0
j |

Γ= 2 · (T −ε)+ξ
(6.15)

where ξ > 0 is an arbitrary infinitesimally small parameter, and x0
i , x0

j are the initial values

for VOs i and j of the generic consensus variables, that in our case are those specified by

Equation (6.11).

Supposing that T = ε, i.e. the VOs are always connected during the consensus process:

tr ≤
(

1

µ2

)
·max

i , j
|x0

i −x0
j |

Γ= ξ
(6.16)

6.4 The Proposed IoT System

In this section the whole IoT resource allocation system proposed in this chapter is de-

scribed. Algorithm 1 provides the pseudo-code for the whole process. As soon as the ser-

vice level receives a request for a task, it translates it into computer language, generating the

query Qk , which is sent to the VO level. Based on Qk , the VO level finds the VO Informa-

tion Model that best fits the characteristics required by Qk . The VO level than starts a search

for the set Sk of VO instances that correspond to the required VO Information Model, i.e.

the set of VOs that can respond to the query. Then, the VO level selects one of the VOs to

whom forwarding the request, i.e. the candidate VO V O0. Since the candidate VO has to per-

form some additional operations with respect to the other VOs, the VO level tries to choose

the one that is likely to have more resources. For this reason, if in Sk there is at least one

VO that is located in the cloud, the candidate VO is chosen randomly among them; other-

wise, if there is at least one VO that is located in an intermediate gateway, the candidate VO

is chosen to be the one located in the closest gateway; if all the VOs are located remotely,

the candidate VO is chosen to be the closest one. The VO level sends to the candidate VO a

message Mk , including the reference frequency, the set of VOs, the resource to be optimally

allocated and the time interval Tk during which the task has to be continuously performed:

Mk = {F r e f
k ,Sk ,r esour ce,Tk }.

After receiving the request from the VO level, the candidate VO has to choose whether

or not the consensus algorithm is convenient to be started. Indeed, since the consensus

process requires a certain amount of resources, before proceeding with it, it is important

to evaluate if it is convenient to the system, i.e. if the amount of resources saved thanks to

consensus is higher than the amount of resources needed to reach a consensus. It is trivial

1Note that it is not necessary that nodes in Sk are directly connected: it is sufficient that their VOs are
connected (either physically or logically) by a limited number of hops

68 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

Algorithm 1 Resource allocation process: pseudo-code

1: The service level receives a request for task k

2: The service level translates the task request into query Qk

3: The service level sends Qk to the VO level

4: The VO level finds the appropriate VO Information Model to respond to Qk

5: The VO level finds the set Sk of VOs corresponding to the required VO Information Model

6: if at least one VO ∈Sk is in the cloud then

7: Set it as V O0

8: else if at least one VO ∈Sk is in an intermediate gateway then

9: Set the VO in the closest intermediate gateway as V O0

10: else

11: Set the closest VO as V O0

12: end if

13: The VO level sends message Mk to V O0

14: V O0 evaluates Equation (6.18)

15: if Equation (6.18) is false then

16: V O0 assigns fi k = F r e f
k /|Sk |, ∀i ∈Sk

17: else

18: V O0 sends the activation request and initialization message for task k to the nodes in Sk
1

19: for each i ∈Sk do

20: if An initialization message is received then

21: Initialize ϕi k , βi k and γi k values according to Equation (6.11)

22: end if

23: if An update message is received then

24: Compute ϕ+
i k , β+

i k , γ+i k and f +
i k values according to Equation (6.12)

25: if f +
i k >0 then

26: if f +
i k 6= fi k then

27: i sends ϕ+
i k , β+

i k and γ+i k values to all j ∈Ni

28: end if

29: else

30: i sets fi k = 0 and sends an initialization message to all j ∈Ni

31: end if

32: end if

33: end for

34: end if

6.5. EXPERIMENTS 69

to demonstrate that, if Tk = ∞, i.e. task k’s duration is not specified by the request, the

consensus execution is always convenient. If Tk is limited, the candidate VO has to evaluate

how much the consensus algorithm costs in terms of resources, with respect to the requested

task.

We callαcons
i the amount of resource consumed to perform a single step of the consensus

algorithm, i.e. the value ofαi k computed according to Equation (6.7) not considering a single

execution of task k, but a single execution of a step of the consensus algorithm. Let N
step

be the average number of steps required by consensus to converge. Performing consensus is

convenient if the following condition is satisfied:

αcons
i ·N

step ¿αi k · fi k ·Tk (6.17)

Approximating fi k with F r e f
k /|Sk | , where |Sk | is the number of VOs in Sk , it is possible to

approximate the condition above as follows

αcons
i <αi k ·

F r e f
k

Sk
· Tk

Λ ·N
step (6.18)

where Λ is an arbitrarily high design parameter. Considering, for example, 10 VOs, αcons
i =

αi k , F r e f
k = 0.1 Hz, Λ = 20 and N

step = 7 (which, as shown in Section 6.5, is a reasonable

value), the condition in (6.18) is met for Tk > 3.8 hour. If the amount of saved resources is

not expected to be sufficient, the process is not started at all, and frequencies are assigned

to the nodes in Sk according to a static assignment, e.g. they are set to F r e f
k /|Sk | for each

node. Otherwise, the algorithm described in Section 6.3.3 is started.

6.5 Experiments

The proposed algorithm has been implemented to run in the Arduino Mega 2560 [78] device,

whose microcontroller is an ATmega 2560. The local network was created through XBee S1

802.15.4 modules, by Digi International [79]. These modules use the IEEE 802.15.4 network-

ing protocol for fast point-to-multipoint or peer-to-peer networking. The XBee modules are

ideal for low-power and low-cost applications. The XBee modules have been connected to

Arduino via serial port, using Xbee USB serial adapters by DF Robot [80]. Tests were per-

formed considering up to 10 real devices participating in the optimisation process for the

allocation of up to 10 tasks.

Tasks are supposed to have different complexities are assigned to nodes one at a time.

Nodes have a residual energy ranging from 2 to 3 kJ. It has also been supposed to know the

energy consumption value associated to each task at each node. According to it, energy

consumption values for a single execution of each task are assigned randomly to the nodes

in the ranges defined in Table 6.1. As a term for comparison, typical energy consumption

values to transmit data using XBee modules are ∼ 0.3 mJ/byte [79][81], while approximately

70 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

Task ID Task 1 Task 2 Task 3 Task 4 Task 5
E c

i k value [mJ] 6.82÷12.27 7.50÷13.49 9.70÷17.46 5.11÷9.20

Task ID Task 6 Task 7 Task 8 Task 9 Task 10
E c

i k value [mJ] 6.51÷11.71 8.49÷15.28 9.13÷16.43 5.68÷10.23 9.07÷16.33

Table 6.1: Energy consumption values per task’s single execution

0 5 10 15 20
50

100

150

200

250

300

350

Step Number

D
e

v
ic

e
 L

if
e

ti
m

e
 [

k
s

e
c

] TASK 1
TASK 2

TASK 3

TASK 4 TASK 5

Figure 6.4: Example plot for algorithm convergence

7 µJ are needed, on a typical board, to execute a simple application such as the average of

five numbers [82].

Figure 6.4 shows in an explanatory example how 3 devices reach consensus for 5 different

tasks. Each line style is associated to a different device. Whenever a new task is activated, the

devices that can perform that task initiate the consensus process. The initialisation instants

correspond to the peaks in the Figures, and are marked by the respective label. It is possible

to see how, for each task, the convergence is reached in just a few steps. On average, the

algorithm takes only less than 7 steps per task to converge. For each task activation, the

lifetime values of the 3 devices converge, as the frequency of execution is distributed in an

optimised manner to reach the reference frequency. In the example, task 4 can be performed

by only 2 devices out of 3. Thus, only 2 devices take charge of the workload related to task 4,

and their lifetime value converges toward a lower value than that of the other device. After

the algorithm has run for task 4, it could be run again for the tasks whose frequency has

already been assigned, in order for the devices to equally redistribute the workload and reach

the same lifetime value again.

Nevertheless, we believe that the benefit introduced by this process would not be enough,

especially considering that the following tasks will have the same result of making the de-

vices converge to the same lifetime. Indeed, in the example, once the fifth task is activated,

frequencies are divided one more time and devices reach the same lifetime value again.

To evaluate the performance of the algorithm, the three different approaches have been

compared:

6.5. EXPERIMENTS 71

1 2 3 4 5 6 7 8 9 10

Number of tasks

10

20

30

40

50

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=1

1 2 3 4 5 6 7 8 9 10

Number of tasks

0

20

40

60

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=2

1 2 3 4 5 6 7 8 9 10

Number of tasks

0

20

40

60

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=3

1 2 3 4 5 6 7 8 9 10

Number of tasks

0

20

40

60

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=4

N=3, minE N=3, eqF N=3, optτ N=6, minE N=6, eqF N=6, optτ N=9, minE N=9, eqF N=9, optτ

Figure 6.5: Average values of network lifetime when the number of tasks increases, for a
number of available nodes equal to 3 (star marker), 6 (circle marker) and 9 (triangle marker).
Results are shown for different reference frequency values for each task

• network lifetime achieved using the proposed algorithm (indicated with label optτ);

• network lifetime when each task is entirely assigned to the node with the lowest energy

consumption value related to that task (label minE);

• network lifetime when the task’s reference frequency F r e f
k equally divided by the num-

ber of devices available to run it (label eqF).

Figures 6.5 and 6.6 show the average network lifetime and related confidence interval,

using the three different approaches, for different numbers of assigned tasks and nodes (in-

dicated respectively with labels K and N). The graphs show that the optimal resource allo-

cation algorithm always outperforms the other approaches, especially with respect to minE.

The gap is particularly evident when the amount of available resources is higher than that

of required resources, i.e. when the number of nodes is high, or when the number of as-

signed tasks and reference frequency are low. This is motivated by the fact that, with the

non-optimized solutions, if the number of tasks is lower than the number of involved nodes,

the probability to have an unfair distribution of energy among nodes is higher with respect

to that of a high number of tasks. Therefore, the higher the amount of available resources,

72 CHAPTER 6. DYNAMIC INVOLVEMENT OF REAL WORLD OBJECTS IN THE IOT

2 3 4 5 6 7 8 9 10

Number of nodes

10

20

30

40

50

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=1

2 3 4 5 6 7 8 9 10

Number of nodes

0

10

20

30

40

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=2

2 3 4 5 6 7 8 9 10

Number of nodes

0

10

20

30

40

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=3

2 3 4 5 6 7 8 9 10

Number of nodes

0

10

20

30

M
e

a
n

 l
if

e
ti

m
e

 [
h

o
u

r]

F
ref

k
=4

K=3, minE K=3, eqF K=3, optτ K=6, minE K=6, eqF K=6, optτ K=9, minE K=9, eqF K=9, optτ

Figure 6.6: Average values of network lifetime when the number of nodes increases, for a
number of assigned tasks equal to 3 (star marker), 6 (circle marker) and 9 (triangle marker).
Results are shown for different reference frequency values for each task

the better the behaviour of the resource allocation algorithm. The lifetime improvement of

the optimal resource allocation algorithm goes from 12% to 60.3% for the minE approach,

and from 6.5% to 20.8% for the eqF approach.

The behaviour of the algorithm was also evaluated from the time performance point of

view. The convergence times measured during the testing phase and related confidence in-

terval are shown in Figure 6.7 as a function of the number of tasks to be assigned. It goes

from 440 msec when only 2 tasks are assigned to 2.14 sec when 10 tasks are assigned, with

an average convergence time of 214 msec per task.

6.5. EXPERIMENTS 73

1 2 3 4 5 6 7 8 9 10

Number of tasks

0

500

1000

1500

2000

2500

C
o

n
v

e
rg

e
n

c
e

 t
im

e
 [

m
s

e
c

]

Figure 6.7: Average values of convergence time

Chapter 7

Conclusion and future works

This thesis focused on ICT technologies for urban mobility, with particular attention to the

study, design and the development of applications for dynamic carpooling services in smart

cities.

In the chapter 3 it has been provided an overview of the design and the implementation

of the CLACSOON project: the service implements a carpooling application that automatizes

the arrangement of the shared ride, automatically notifying the presence of suitable travel

companions and suggesting the pick-up and drop-off points and the meeting times.

A first beta version of the CLACSOON’s Android application has been deployed in the

2014. The mobile application was released to a restricted group of users, the betatesters,

and the results we obtained allowed us to improve the application from the user-experience

point of view, with an user-centered design lifecycle. Nowadays the service has been de-

signed and implemented and it is publicly available for the Android and the iOS platforms.

In the chapter 4, we have proposed a novel implementation of a route matching al-

gorithm. This algorithm contemplates the partial ridesharing mode: the implementation

avoids the driver to take a detour when possible, resulting in an higher value for the total

system-wide CO2 savings. Moreover, the matching algorithm includes a method for model-

ing off-line the position of the driver’s vehicle in an urban context, enabling the possibility

for shared rides to be agreed after the starting of the driver’s trip.

An emulation system (chapter 5) has been implemented to analyze the performances of

the matching algorithm and to investigate the Quality of Experience provided to the users

by the service, respect to the characteristics of the population. Experiments have been con-

ducted considering a real urban area, to emulate the mobility patterns in urban conditions

taking into account the real paths between any departure and destination (e.g. pedestrian

zone, one-way roads, limited traffic zones).

The results allowed to identify the relationships between all the KPIs (the passenger suc-

cess rate, the driver success rate, the passenger waiting time and the total system-wide CO2

75

76 CHAPTER 7. CONCLUSION AND FUTURE WORKS

saved) and the characteristics of the population (spatial distribution of users, percentage of

drivers and passengers, temporal distribution of requests and offers).

The achieved results show that introducing the aforementioned features in the CLAC-

SOON matching algorithm leads to a substantial performance improvement in terms of all

the KPIs, leading to an increase (+21% for a population of 40users/kmq) of the CO2 saved .

Another relevant result is that, depending on the ratio between drivers and riders, the ser-

vice achieves the higher level of performances when the number of drivers is close or equal

to the number of riders. The trend of the KPIs suggest that, depending on the character-

istics of the population, different campaigns or strategies could be followed to achieve the

desired level of performances. The results presented in this thesis could be considered when

designing a strategy to build a successful carpooling service in a smart city.

Starting from the vision that carpoolers’ cars can be seen as a formidable sensor platform,

in the chapter 6 the problem of task allocation in a typical IoT scenario has been analysed.

The use of Virtual Objects has been proposed to control and manage the heterogeneous

resource-constrained objects that characterize the IoT, and a consensus-based algorithm

has been proposed to distribute the workload between these objects in a fair way. Exper-

iments have been conducted with real devices, and the results shown that the use of the

consensus approach lead to an improvement of devices’ lifetime of more than 20% using up

to 10 devices, with respect to a uniform distribution of tasks. The results from this work, in

the field of infomobility and support of the urban mobility, could be run in real devices on

the vehicles, to perform tasks such as the sensing of traffic conditions, noise or the quality of

the roads.

The study done so far has led to the acquisition of the expertise required to widen the

research about the applications for dynamic carpooling services and, more in general, about

the ICT technologies for urban mobility. In this respect, future works could be focused on

the use of even more real scenarios to study the performance of the proposed carpooling

service: for example, the generation of ride offers and ride requests according to the real

data of the urban mobility in the city of Cagliari. The proposed service could also be tested

in real situation involving a community of volunteers to validate the synthetic results. Future

works could also be focused on the development of new algorithms to manage the resources

of the IoT objects, on the basis of the quality and the trustworthiness of the acquired data, in

order to achieve better quality of information.

Bibliography

[1] Hafedh Chourabi et al. “Understanding smart cities: An integrative framework”. In:

System Science (HICSS), 2012 45th Hawaii International Conference on. IEEE. 2012,

pp. 2289–2297.

[2] Wikipedia. “Sustainable transport”. In: Wikipedia (Aug. 2016). URL: https : / / en .
wikipedia.org/wiki/Sustainable_transport.

[3] EPA U. “US Transportation Sector Greenhouse Gas Emissions: 1990–2011”. In: Office

of Transportation and Air Quality EPA-420-F-13-033a (2013).

[4] Wikipedia. “Carpooling”. In: Wikipedia (Aug. 2016). URL: https://en.wikipedia.
org/wiki/Carpool.

[5] N Agatz et al. The Value of Optimization in Dynamic Ride-Sharing: a Simulation Study

in Metro Atlanta, Research paper, Erasmus Research Institute of Management (ERIM),

Report No. Tech. rep. ERS-2010-034-LIS. 2010, Retrieved from: http://hdl. handle. net/1765/20456.

[6] Stiglic Mitja and Agatz. “The benefits of meeting points in ride-sharing systems”. In:

Transportation Research Part B: Methodological 82 (2015), pp. 36–53.

[7] Matteo Mallus et al. “Carpooling in Urban Areas: A Real-Time Service Case-Study”.

In: Internet of Things. IoT Infrastructures: Second International Summit, IoT 360° 2015,

Rome, Italy, October 27-29, 2015. Revised Selected Papers, Part I. Cham: Springer Inter-

national Publishing, 2016, pp. 157–166. ISBN: 978-3-319-47063-4. DOI: 10.1007/978-
3-319-47063-4_14. URL: http://dx.doi.org/10.1007/978-3-319-47063-4_14.

[8] Matteo Mallus et al. “A persuasive real-time carpooling service in a smart city: a case-

study to measure the advantages in urban area”. Manuscript accepted for publication.

2016.

[9] Matteo Mallus et al. “Dynamic Carpooling in Urban Areas: Design and Experimenta-

tion with a Multi-Objective Route Matching Algorithm”. In: Sustainability 9.2 (2017),

p. 254.

77

https://en.wikipedia.org/wiki/Sustainable_transport
https://en.wikipedia.org/wiki/Sustainable_transport
https://en.wikipedia.org/wiki/Carpool
https://en.wikipedia.org/wiki/Carpool
http://dx.doi.org/10.1007/978-3-319-47063-4_14
http://dx.doi.org/10.1007/978-3-319-47063-4_14
http://dx.doi.org/10.1007/978-3-319-47063-4_14

78 BIBLIOGRAPHY

[10] Virginia Pilloni, Luigi Atzori, and Matteo Mallus. “Dynamic Involvement of Real World

Objects in the IoT: A Consensus-Based Cooperation Approach”. In: Sensors 17.3 (2017),

p. 484.

[11] EU Commission et al. “Green paper, towards a new culture for urban mobility”. In:

European Union, Brussels (2007).

[12] Mihyeon Jeon, Christy, Amekudzi, et al. “Addressing sustainability in transportation

systems: definitions, indicators, and metrics”. In: Journal of infrastructure systems 11.1

(2005), pp. 31–50.

[13] Masabumi Furuhata et al. “Ridesharing: The state-of-the-art and future directions”.

In: Transportation Research Part B: Methodological 57 (2013), pp. 28–46.

[14] Niels Agatz, Alan L. Ererab, et al. “Dynamic Ride-Sharing: a Simulation Study in Metro

Atlanta”. In: 19th International Symposium on Transportation and Traffic Theory (2011),

pp. 532–550.

[15] Blablacar. Blablacar ridesharing. [Online; accessed 30-July-2015]. URL: https://www.
blablacar.it/.

[16] Wikipedia. Blablacar. [Online; accessed 01-Sept-2016]. URL: https://en.wikipedia.
org/wiki/BlaBlaCar.

[17] B Akshay et al. “Carpool „up-Real Time Carpooling using GPS”. In: Proceedings of Na-

tional Conference on New Horizons IT (NCNHIT). 2013, pp. 126–128.

[18] Andrew Amey, John Attanucci, and Rabi Mishalani. “Real-time ridesharing: oppor-

tunities and challenges in using mobile phone technology to improve rideshare ser-

vices”. In: Transportation Research Record: Journal of the Transportation Research Board

2217 (2011), pp. 103–110.

[19] Wikipedia. Lyft — Wikipedia, The Free Encyclopedia. [Online; accessed 13-December-

2016]. 2016. URL: https://en.wikipedia.org/w/index.php?title=Lyft&oldid=
754506168.

[20] Lyft.com. Lyft - safety. [Online; accessed 13-December-2016]. 2016. URL: https://
www.lyft.com/safety.

[21] Niels Agatz et al. “Sustainable passenger transportation: Dynamic ride-sharing”. In:

(2010).

[22] Niels Agatz et al. “Optimization for dynamic ride-sharing: A review”. In: European

Journal of Operational Research 223.2 (2012), pp. 295–303.

[23] DynamicRidesharing.org. Dynamic Ridesharing - Critical mass. [Online; accessed 13-

December-2016]. 2016. URL: http://dynamicridesharing.org/critical_mass.
php.

https://www.blablacar.it/
https://www.blablacar.it/
https://en.wikipedia.org/wiki/BlaBlaCar
https://en.wikipedia.org/wiki/BlaBlaCar
https://en.wikipedia.org/w/index.php?title=Lyft&oldid=754506168
https://en.wikipedia.org/w/index.php?title=Lyft&oldid=754506168
https://www.lyft.com/safety
https://www.lyft.com/safety
http://dynamicridesharing.org/critical_mass.php
http://dynamicridesharing.org/critical_mass.php

BIBLIOGRAPHY 79

[24] Xin Xing et al. “Smize: a spontaneous ride-sharing system for individual urban transit”.

In: (2009), pp. 165–176.

[25] Gérald Arnould et al. “A transport based clearing system for dynamic carpooling busi-

ness services”. In: ITS Telecommunications (ITST), 2011 11th International Conference

on. IEEE. 2011, pp. 527–533.

[26] Niels AH Agatz et al. “Dynamic ride-sharing: A simulation study in metro Atlanta”. In:

Transportation Research Part B: Methodological 45.9 (2011), pp. 1450–1464.

[27] Wesam Mohamed Herbawi and Michael Weber. “A genetic and insertion heuristic al-

gorithm for solving the dynamic ridematching problem with time windows”. In: Pro-

ceedings of the 14th annual conference on Genetic and evolutionary computation. ACM.

2012, pp. 385–392.

[28] A Di Febbraro, E Gattorna, and N Sacco. “Optimization of dynamic ridesharing sys-

tems”. In: Transportation Research Record: Journal of the Transportation Research Board

2359 (2013), pp. 44–50.

[29] Nicolai Mallig and Peter Vortisch. “Modeling Car Passenger Trips in mobiTopp”. In:

Procedia Computer Science 52 (2015), pp. 938–943.

[30] Sisinnio Concas and Philip Winters. “Impact of carpooling on trip-chaining behavior

and emission reductions”. In: Transportation Research Record: Journal of the Trans-

portation Research Board (2007).

[31] AASHTO. “Commuting in America 2013: The National Report on Commuting Patterns

and Trends”. In: American Association of State Highway and Transportation Officials

(AASHTO) (2014).

[32] Erik Ferguson. “The rise and fall of the American carpool: 1970–1990”. In: Transporta-

tion 24.4 (1997), pp. 349–376. ISSN: 1572-9435. DOI: 10.1023/A:1004928012320. URL:

http://dx.doi.org/10.1023/A:1004928012320.

[33] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. “Mobile cloud computing: A

survey”. In: Future Generation Computer Systems 29.1 (2013), pp. 84–106.

[34] Guanling Chen, David Kotz, et al. A survey of context-aware mobile computing research.

Tech. rep. Technical Report TR2000-381, Dept. of Computer Science, Dartmouth Col-

lege, 2000.

[35] Ivana Podnar, Manfred Hauswirth, and Mehdi Jazayeri. “Mobile push: Delivering con-

tent to mobile users”. In: Distributed Computing Systems Workshops, 2002. Proceed-

ings. 22nd International Conference on. IEEE. 2002, pp. 563–568.

[36] Deyun Gao et al. “Wireless vehicular sensor and ad hoc networks 2015”. In: Interna-

tional Journal of Distributed Sensor Networks 2015 (2015).

http://dx.doi.org/10.1023/A:1004928012320
http://dx.doi.org/10.1023/A:1004928012320

80 BIBLIOGRAPHY

[37] Xiaolan Tang et al. “Integrated extensible simulation platform for vehicular sensor net-

works in smart cities”. In: International Journal of Distributed Sensor Networks 2012

(2012).

[38] Sherin Abdelhamid, Hossam S Hassanein, and Glen Takahara. “Vehicle as a mobile

sensor”. In: Procedia Computer Science 34 (2014), pp. 286–295.

[39] Mario Gerla et al. “Internet of vehicles: From intelligent grid to autonomous cars and

vehicular clouds”. In: Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE.

2014, pp. 241–246.

[40] Google Developers. Google Directions API. [Online; accessed 30-November-2016]. 2016.

URL: https://developers.google.com/maps/documentation/directions/.

[41] Microsoft. Bing Maps for Enterprise. [Online; accessed 30-November-2016]. 2016. URL:

https://www.microsoft.com/maps/choose-your-bing-maps-API.aspx.

[42] Dennis Luxen and Christian Vetter. “Real-time routing with OpenStreetMap data”. In:

Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Ge-

ographic Information Systems. GIS ’11. Chicago, Illinois: ACM, 2011, pp. 513–516. ISBN:

978-1-4503-1031-4. DOI: 10.1145/2093973.2094062. URL: http://doi.acm.org/
10.1145/2093973.2094062.

[43] Xia Jizhe et al. “A New Model for a Carpool Matching Service”. In: PLoS ONE 10(6):

e0129257. doi:10.1371/journal. pone.0129257 (6) (2015).

[44] Wikipedia. Cagliari — Wikipedia, The Free Encyclopedia. [Online; accessed 30-July-

2015]. 2015. URL: https://en.wikipedia.org/w/index.php?title=Cagliari&
oldid=671950070.

[45] Feng An and Amanda Sauer. “Comparison of passenger vehicle fuel economy and

greenhouse gas emission standards around the world”. In: Pew Center on Global Cli-

mate Change 25 (2004).

[46] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The internet of things: A survey”.

In: Computer networks 54.15 (2010), pp. 2787–2805.

[47] Governing. Santander: The Smartest Smart City. [Online; accessed 13-December-2016].

2016. URL: http://www.governing.com/topics/urban/gov-santander-spain-
smart-city.html.

[48] Santander. Smart Santander. [Online; accessed 13-December-2016]. 2016. URL: http:
/ / www . smartsantander . eu / index . php / testbeds / item / 132 - santander -
summary.

[49] Jeffrey A Burke et al. “Participatory sensing”. In: Center for Embedded Network Sensing

(2006).

https://developers.google.com/maps/documentation/directions/
https://www.microsoft.com/maps/choose-your-bing-maps-API.aspx
http://dx.doi.org/10.1145/2093973.2094062
http://doi.acm.org/10.1145/2093973.2094062
http://doi.acm.org/10.1145/2093973.2094062
https://en.wikipedia.org/w/index.php?title=Cagliari&oldid=671950070
https://en.wikipedia.org/w/index.php?title=Cagliari&oldid=671950070
http://www.governing.com/topics/urban/gov-santander-spain-smart-city.html
http://www.governing.com/topics/urban/gov-santander-spain-smart-city.html
http://www.smartsantander.eu/index.php/testbeds/item/132-santander-summary
http://www.smartsantander.eu/index.php/testbeds/item/132-santander-summary
http://www.smartsantander.eu/index.php/testbeds/item/132-santander-summary

BIBLIOGRAPHY 81

[50] Xiao-Feng Xie and Zun-Jing Wang. “An empirical study of combining participatory

and physical sensing to better understand and improve urban mobility networks”. In:

Transportation Research Board 94th Annual Meeting. 15-3238. 2015.

[51] Amirhossein Ghanbari, Óscar Álvarez, Jan Markendahl, et al. “Internet of Things: re-

definition of Business Models for the next generation of Telecom services”. In: 26th

European Regional ITS Conference, Madrid 2015. 127142. International Telecommuni-

cations Society (ITS). 2015.

[52] Geng Wu et al. “M2M: From mobile to embedded internet”. In: Communications Mag-

azine, IEEE 49.4 (2011), pp. 36–43.

[53] Michele Nitti et al. “On adding the social dimension to the internet of vehicles: Friend-

ship and middleware”. In: Communications and Networking (BlackSeaCom), 2014 IEEE

International Black Sea Conference on. IEEE. 2014, pp. 134–138.

[54] Vicente Milanés et al. “An intelligent V2I-based traffic management system”. In: Intel-

ligent Transportation Systems, IEEE Transactions on 13.1 (2012), pp. 49–58.

[55] Jaume Barceló et al. “Microscopic traffic simulation: A tool for the design, analysis and

evaluation of intelligent transport systems”. In: Journal of Intelligent and Robotic Sys-

tems 41.2-3 (2005), pp. 173–203.

[56] Urban ITS Expert Group. Intelligent Transport Systems for Urban Areas. [Online; ac-

cessed 30-July-2015]. 2015. URL: http://ec.europa.eu/transport/themes/its/
road/action_plan/its_for_urban_areas_en.

[57] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural elements,

and future directions”. In: Future Generation Computer Systems 29.7 (2013), pp. 1645–

1660.

[58] Michele Nitti et al. “The Virtual Object as a Major Element of the Internet of Things: a

Survey”. In: IEEE Communications Surveys & Tutorials 18.2 (2015), pp. 1228–1240.

[59] J Pacual-Espada et al. “Virtual objects on the Internet of things”. In: International Jour-

nal of Interactive Multimedia and Artificial Intelligence 1.4 (2011).

[60] Vivek Kumar Sehgal, Anubhav Patrick, and Lucky Rajpoot. “A comparative study of cy-

ber physical cloud, cloud of sensors and internet of things: Their ideology, similarities

and differences”. In: Advance Computing Conference (IACC), 2014 IEEE International.

IEEE. 2014, pp. 708–716.

[61] I. Farris et al. “Federated edge-assisted mobile clouds for service provisioning in het-

erogeneous IoT environments”. In: 2015, pp. 591–596.

[62] Virginia Pilloni et al. “TAN: a distributed algorithm for dynamic task assignment in

WSNs”. In: Sensors Journal, IEEE 14.4 (2014), pp. 1266–1279.

http://ec.europa.eu/transport/themes/its/road/action_plan/its_for_urban_areas_en
http://ec.europa.eu/transport/themes/its/road/action_plan/its_for_urban_areas_en

82 BIBLIOGRAPHY

[63] Yan Shen and Hui Ju. “Energy-Efficient Task Assignment Based on Entropy Theory and

Particle Swarm Optimization Algorithm for Wireless Sensor Networks”. In: Green Com-

puting and Communications (GreenCom), 2011 IEEE/ACM International Conference

on. IEEE. 2011, pp. 120 –123.

[64] Dominique Guinard et al. “From the internet of things to the web of things: Resource-

oriented architecture and best practices”. In: Architecting the Internet of Things. Springer,

2011, pp. 97–129.

[65] Bilhanan Silverajan and Jarmo Harju. “Developing network software and communica-

tions protocols towards the internet of things”. In: Proceedings of the Fourth Interna-

tional ICST Conference on COMmunication System softWAre and middlewaRE. ACM.

2009, p. 9.

[66] Giuseppe Colistra, Virginia Pilloni, and Luigi Atzori. “The problem of task allocation in

the Internet of Things and the consensus-based approach”. In: Computer Networks 73

(2014), pp. 98–111.

[67] Panagiotis Vlacheas et al. “Enabling smart cities through a cognitive management frame-

work for the internet of things”. In: Communications Magazine, IEEE 51.6 (2013), pp. 102–

111.

[68] Chatschik Bisdikian, Lance M Kaplan, and Mani B Srivastava. “On the quality and

value of information in sensor networks”. In: ACM Transactions on Sensor Networks

(TOSN) 9.4 (2013), p. 48.

[69] Wei Wang et al. “A comprehensive ontology for knowledge representation in the in-

ternet of things”. In: Trust, Security and Privacy in Computing and Communications

(TrustCom), 2012 IEEE 11th International Conference on. IEEE. 2012, pp. 1793–1798.

[70] iCore Project. iCore: Empowering IoT through Cognitive Tecnologies. 2015. URL: http:
//www.iot-icore.eu/about-icore.

[71] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In: Proceed-

ings of the first edition of the MCC workshop on Mobile cloud computing. ACM. 2012,

pp. 13–16.

[72] YoungSang Yun et al. “Distributed algorithm for lifetime maximization in a delay-tolerant

wireless sensor network with a mobile sink”. In: Mobile Computing, IEEE Transactions

on 12.10 (2013), pp. 1920–1930.

[73] Alessandro Pilloni et al. “Recent advances in sliding-mode based consensus strate-

gies”. In: Variable Structure Systems (VSS), 2014 13th International Workshop on. IEEE.

2014, pp. 1–6.

http://www.iot-icore.eu/about-icore
http://www.iot-icore.eu/about-icore

BIBLIOGRAPHY 83

[74] Mauro Franceschelli et al. “Finite-time consensus with disturbance attenuation for

directed switching network topologies by discontinuous local interactions”. In: 52nd

IEEE Conference on Decision and Control. IEEE. 2013, pp. 2611–2616.

[75] Fangcui Jiang and Long Wang. “Finite-time weighted average consensus with respect

to a monotonic function and its application”. In: Systems & Control Letters 60.9 (2011),

pp. 718–725.

[76] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. “Consensus and cooperation in

networked multi-agent systems”. In: Proceedings of the IEEE 95.1 (2007), pp. 215–233.

[77] Chris Godsil and Gordon F Royle. Algebraic graph theory. Vol. 207. Springer Science &

Business Media, 2013.

[78] Arduino. Arduino Mega 2560. 2015. URL: https://www.arduino.cc/en/Main/
ArduinoBoardMega2560.

[79] Digi International® Inc. Xbee S1. 2015. URL: http://www.digi.com/products/
xbee-rf-solutions/modules/xbee-series1-module.

[80] DF Robot. Xbee S1. 2015. URL: http://www.dfrobot.com/index.php?route=
product/product&product_id=72.

[81] Ming Liu et al. “An energy-aware routing protocol in wireless sensor networks”. In:

Sensors 9.1 (2009), pp. 445–462.

[82] Antônio Dâmaso et al. “Evaluating the power consumption of wireless sensor network

applications using models”. In: Sensors 13.3 (2013), pp. 3473–3500.

https://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
http://www.digi.com/products/xbee-rf-solutions/modules/xbee-series1-module
http://www.digi.com/products/xbee-rf-solutions/modules/xbee-series1-module
http://www.dfrobot.com/index.php?route=product/product&product_id=72
http://www.dfrobot.com/index.php?route=product/product&product_id=72

List of Publications Related to the

Thesis

Published papers

Journal papers

• Mallus M, Colistra G, Atzori L, Murroni M, Pilloni V. “Dynamic Carpooling in Urban Areas: De-

sign and Experimentation with a Multi-Objective Route Matching Algorithm”. Sustainability.

2017; 9(2):254 (Relation to Chapter 4 and 5)

• Pilloni V, Atzori L, Mallus M. “Dynamic Involvement of Real World Objects in the IoT: A Consensus-

Based Cooperation Approach”. Sensors. 2017; 17(3):484 (Relation to Chapter 6)

Conference papers

• Matteo Mallus et al. “Carpooling in Urban Areas: A Real-Time Service Case-Study”. In: Inter-

net of Things. IoT Infrastructures: Second International Summit, IoT 360° 2015, Rome, Italy,

October 27-29, 2015. Revised Selected Papers, Part I. Cham: Springer International Publishing,

2016, pp. 157–166. ISBN: 978-3-319-47063-4 (Relation to Chapter 3)

• Matteo Mallus et al. “A persuasive real-time carpooling service in a smart city: a case-study to

measure the advantages in urban area”. In: ICIN 2017 - Innovations in Clouds, Internet and

Networks 7-9 March 2017 - Manuscript accepted for publication. 2016 (Relation to Chapter 3

and 5)

85

	Introduction
	Objectives
	Approach and Proposed Innovation
	Contribution in joint works

	Thesis Structure

	State of Art in Carpooling
	The major elements of carpooling
	Static solutions
	Static carpooling Applications
	A case study: BlaBlaCar

	Dynamic Ridesharing
	Dynamic Ridesharing applications
	A case study: Lyft
	Research efforts

	Open issues

	The CLACSOON Solution
	Features and requirements
	Architecture
	Functional levels

	Adopted Technologies
	The mobile application
	Registration and Login
	Ride offers an ride requests pubblication
	Matching Notification
	Shared ride agreement
	Check-in and Check out

	The Route Matching Algorithm
	Scenario
	Temporal Matching
	Geographical Matching
	Cost Function

	Case study in the Cagliari urban area
	Emulation Setup
	Setup
	Run
	Evaluation

	Experimental Results
	Passenger success rate
	Driver success rate
	Passenger waiting time
	Total system wide CO2 saved

	Performance Comparison

	Dynamic Involvement of Real World Objects in the IoT
	The role of Virtual Objects in the IoT
	Reference Scenario and Problem Statement
	The Resource Allocation Model
	Resource Model
	Consensus-Based Resource Allocation Optimisation
	Resource Allocation Optimisation Algorithm
	Convergence Time and Steady-State Accuracy

	The Proposed IoT System
	Experiments

	Conclusion and future works
	Bibliography

