
Università degli Studi di Cagliari

DOTTORATO DI RICERCA

INGEGNERIA ELETTRONICA ED INFORMATICA

Modeling Neglected Functions of

Android Applications to Effectively

Detect Malware

Mansour Ahmadi

Settore scientifico disciplinare di afferenza

ING-INF/05: Sistemi di elaborazione delle informazioni

Advisor : Prof. Giorgio Giacinto

Ph.D. Coordinator : Prof. Fabio Roli

XXIX Cycle

March 2017

Ph.D. in Electronic and Computer Engineering

Dept. of Electrical and Electronic Engineering

University of Cagliari

Modeling Neglected Functions of

Android Applications to Effectively

Detect Malware

Mansour Ahmadi

Advisor : Prof. Giorgio Giacinto

Ph.D. Coordinator : Prof. Fabio Roli

XXIX Cycle

March 2017

Dedicated to my soulmate wife Farideh and my parents,

who supported and encouraged me to accomplish this work.

Abstract

With more than two million applications, Android market-

places require automatic and scalable methods to efficiently

vet apps for the absence of malicious threats. On the other

hand, Modern malware is designed by obfuscation charac-

teristics, which causes an enormous growth in the number

of malware samples. Classification of this huge number of

malware samples on the basis of their behaviors is essential

for the computer security community. Although there are a

quite good number classification techniques, it is usual that

sometimes researchers neglect modeling some parts of appli-

cations that might be misused by adversaries. In this thesis,

we aim to show how we can improve the accuracy of malware

classifiers by considering some neglected functions of An-

droid applications. To this end, first, we do a comprehensive

survey on Android security issues with a focus on applica-

tion analysis. Then, we modeled three important functions of

Android applications such as HTTP communication channel,

GCM communication channel, and code hiding techniques

(e.g., dynamic code loading) to outperform the existing clas-

sification techniques. We prove our claim by performing ex-

periments on a large set of Android applications and repre-

sent the power of wisely engineered features for having an

effective learning-based malware classification system.

Acknowledgment

Firstly, I would like to express my honest gratitude to my ad-

visor Prof. Giorgio Giacinto for his continuous support, mo-

tivation, and knowledge. His guidance helped me in all the

time of my Ph.D. study. Moreover, He let me to freely decide

and explore open issues in computer security that helped me

a lot to expand my mindset about the problems.

"I was so so lucky to be supervised by Giorgio and I could

not have imagined having a better mentor for my Ph.D."

Besides my advisor, I would like to thank Prof. Lorenzo

Cavallaro and Prof. Johannes Kinder for their insightful

comments and encouragement during my visiting period at

Royal Holloway, University of London. They provided me ac-

cess to their laboratory and research facilities which helped

me a lot to conduct a part of this research.

My special thanks also goes to my colleagues, Battista Big-

gio, Santanu Kumar Dash, Guillermo Suarez-Tangil for the

sleepless nights we were working together before deadlines,

and for all the fun we have had in the last three years. I would

also like to thank all of my labmates in PR A Lab and S2Lab

and my colleagues such as Davide Ariu, Davide Maiorca, Ig-

ino Corona, Bahram Lavi, Simone Porru, Ambra Demontis,

Paolo Russu, Matteo Mauri, Luca Piras, Carla Piras, and

Roberto Jordaney.

Last but not the least, I would like to thank whole of my

family members (my wife, parents, brothers, sisters, brother

in law, sister in law, and my wife’s family) and my friends

(true friends around me are not a few so it is a very long list

if I want to name them) for supporting me spiritually through-

out my Ph.D. and my life in general.

Contents

1 Introduction 1

1.1 Advent of Mobile Devices . 1

1.2 Security Issues of Mobile Devices . 2

1.3 Machine Learning for Malware Classification 4

1.4 Contribution . 6

2 Overview on Android Security 9

2.1 Introduction . 9

2.2 Android background . 10

2.2.1 Android OS . 10

2.2.2 Android Apps . 13

2.2.3 Android security features . 14

2.3 Android OS security challenges . 18

2.3.1 Privilege escalation . 18

2.3.2 Information Leakage . 20

2.3.3 Security policies and mechanisms 22

2.3.4 Android fragmentation . 28

2.4 Android Apps security challenges . 30

2.4.1 Secure coding . 30

2.4.2 Android Malware . 32

2.4.3 Android App analysis . 32

i

ii CONTENTS

2.4.4 Purposes of App analysis . 35

2.4.5 App layer access control . 42

2.4.6 Protection against App analysis 43

3 Clustering Android Malware Families by Http Traffic 45

3.1 Introduction . 45

3.2 Proposed System . 47

3.3 Experiments . 50

3.3.1 Dataset . 50

3.3.2 Evaluation of the proposed system 53

3.3.3 Experimental Results and Discussion 55

3.3.4 Comparisons with HTTP based clustering for traditional desktop

malware . 61

3.4 Comparison with Related Works . 62

3.5 Conclusions . 64

4 Detecting Misuse of Google Cloud Messaging in Android Badware 65

4.1 Introduction . 65

4.2 Background . 67

4.2.1 Google Cloud Messaging . 67

4.2.2 GCM Badware . 69

4.3 System Design . 71

4.3.1 Modeling GCM service . 72

4.3.2 Feature Extraction . 73

4.3.3 Classification . 75

4.4 Experimental Analysis . 77

4.4.1 Experimental Setup . 77

4.4.2 Results . 78

4.4.3 Discriminative Patterns . 81

4.5 Limitations . 82

CONTENTS iii

4.6 Comparison with Related works . 83

4.7 Conclusions and Future Work . 85

5 Fast and Accurate Classification of Obfuscated Android Malware 89

5.1 Introduction . 89

5.2 Obfuscation in Android . 90

5.3 Proposed System . 92

5.3.1 Feature Engineering . 92

5.3.2 Prevalence of Features . 93

5.3.3 Resource-centric Features . 95

5.3.4 Syntactic Features . 97

5.3.5 Choice of Learning Algorithm . 99

5.4 Experiments and Results . 100

5.4.1 Experimental Setup . 100

5.4.2 Ranking of Features . 102

5.4.3 Classification Results . 105

5.4.4 Obfuscation Evaluation . 106

5.4.5 Efficiency . 109

5.5 Comparison with Related Works . 110

5.6 Conclusion . 113

6 Concluding Remarks 115

Bibliography 117

List of Figures

1.1 New Mobile Malware Threat Statistics . 4

2.1 Android Architecture . 10

2.2 Timeline of Android Security features since 2011 15

2.3 Side channel attacks . 22

2.4 Classification of techniques for the analysis of Android Apps 33

3.1 Overview of our approach. 48

3.2 The average value of the cohesion indexes CI. 56

3.3 The percentage of pair of clusters with a separation index SI higher than 0.1. 56

3.4 The percentage of detection rate D.R. (%) obtained with different set of

signatures and different values of the radius, by only doing coarse-grained

clustering. 58

3.5 The percentage of detection rate D.R. (%) obtained with different set of

signatures and different values of the radius, by doing fine-grained clustering

in addition to coarse-grained clustering. 58

3.6 The percentage of false positive rate F.P.R. (%) obtained with different set of

signatures and different values of the radius, by only doing coarse-grained

clustering. 59

3.7 The percentage of false positive rate F.P.R. (%) obtained with different set of

signatures and different values of the radius, by doing fine-grained clustering

in addition to coarse-grained clustering. 59

iv

LIST OF FIGURES v

3.8 The total number of clusters (Num. clusters) for different values of the radius. 60

3.9 The total number of the Snort rules (Num. rules) obtained from the signatures

for different radius values. 61

4.1 Google Cloud Messaging Mechanism. 68

4.2 A part of Backdoor.AndroidOS.Maxit.a badware, which uses GCM for C&C. 70

4.3 Overview of our approach. 71

4.4 ROC curves of different classifiers. The best result was achieved by Extra

Tree classifier. 86

4.5 The realationship between the total number of flows in applications and the

classification score. 87

4.6 The figure shows 20 discriminative actions, which are among top selected

features. These actions are sink APIs in the data flows that are originated

from GCM services). e, d, v, i, w are log methods. 87

5.1 Overview of our approach. 93

5.2 Non-exhaustive map of extracted features. The left side shows syntactic

features derived from the source code of the app; the right side shows

resource-centric features derived from the assets of the app. 93

5.3 Ranking of features for malware detection: Figure 5.3a shows importance of

features by considering all features on MalGenome while Figure 5.3b shows

importance of features for the MalGenome obfuscated (PRAGuard) dataset. 103

5.4 Ranking of features for family identification. 104

5.5 Frequency distribution of running times for feature extraction, in seconds.

Most samples require less than six seconds to be analyzed. 110

List of Tables

2.1 Root Exploits . 19

2.2 Privacy leak protection mechanisms . 25

2.3 Access control systems against misuses . 25

2.4 Open source tools and services for Android App analysis 35

2.5 Comparison between App analysis techniques 40

3.1 Malware families used for the experimental assessment of the effectiveness

of the HTTP clustering procedure . 52

3.2 Number of benign requests generated by browsing web sites, and by Android

applications . 52

3.3 Comparison on Average (Standard deviation) for each statistical feature . . . 62

3.4 Comparison of different network analysis techniques for Android applications 64

4.1 GCM services lifecycle. 73

4.2 Classification results of extra tree after feature selection on a set of 1058

benign and 1044 malicious apps. 80

4.3 Features that contribute the most in misclassification. Minus/plus refers to

reduction/addition of a feature. 82

vi

LIST OF TABLES vii

5.1 Percentages of apps with given properties in the McAfee Goodware (McGW),

Malgenome (MgMW), Drebin malware, PRAGuard’s obfuscated Malgenome

(PgMW), Marvin Goodware (MvGW) and malware (MvMW) dataset. Note

that the summary shows the total number of apps after removing overlapping

samples. 96

5.2 Overview of chosen datasets for malware detection and family identification.

The set of experiments involving obfuscated samples is marked with an

asterisk(*). The holdout ratio shows the percentage of samples retained

for validation. For the case of Marvin and McAfee malware we retain the

splitting given by the authors, otherwise we use a random split. 101

5.3 Results for detection and family classification on unobfuscated malware

with and without Feature Selection (FS) for the Marvin, McAfee and Drebin

datasets. #F stands for number of features, ACC for Accuracy, F1 for F1-

Score, DR for the detection rate, and FPR for False Positive Rate. Best scores

for each setting are shown in bold. Although feature selection drastically

reduces the number of features, it mostly outperforms the full-feature setting. 106

5.4 Evaluation of classification on the McAfee Goodware (McGW), Malgenome

(MgMW), and PRAGuard (Malgenome obfuscated–PgMG) dataset with fea-

ture filtering and using hold-out validation (∗100% hold-out ratio, otherwise

we use the hold-out ration described in Table 5.2b). 109

5.5 Static analysis techniques on Android malware. Results are reported based

on the most representative setting. (Almost all of the systems have difficulty

against reflection as they are mostly based on API). The performance time

of different systems is subjected to specification of computing environments. 111

Chapter 1

Introduction

1.1 Advent of Mobile Devices

Nowadays, mobile devices are ubiquitous tools for everyday life. People use the same

device in different places and for different tasks, such as at work, and during physical

training, for leisure, and for issuing bank transaction. They login to different accounts

offering different services, and store on the device valuable information such as their

identity details, credit card credentials, health information [220]. The commonest mobile

devices are smartphones and tablets whose main difference is the screen size, that affects

the quantity of the information that can be displayed on the screen at once.1 Mobile

devices run operating systems that have been designed specifically for them, the most

popular being Android, iOS, Windows phone and Blackberry OS. Among them, Android

dominate the global smartphone market, with nearly 90% of the market share in the

second quarter of 2016 [152]. Net Apps’ data [188] shows that Android usage share,

68.54%, overtook iOS, with a share of 25.78%, in October of 2016. Many leading

device manufacturers like HTC, Sony, Samsung, LG, Motorola rely on the Android

operation system for its open source nature supported by the Open Handset Alliance
1http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-

statistics/

1

2 CHAPTER 1. INTRODUCTION

whose members comprises mobile operators, handset manufacturers, semiconductor

companies, software companies, and commercialization companies, with a strong role

played by Google.

The architecture of the Android OS differs significantly from typical desktop OSes in

terms of the design and execution of Apps. While desktop users can in principle install

any application without any constraint, this is not possible in Android because of the

permission model. In Android, each App has its own user account or user identification

(ID) with specified permissions and privileges, or group IDs, which is inherited from

the classic system-wide discretionary access control (DAC) employed by Linux. For

example, when an App is granted a permission (e.g., to use the built-in camera), then

the App is assigned to the corresponding camera group in Linux. No App by default has

permissions to perform any operation, but all Apps must explicitly request permissions

that must be granted by the user. Before Android version 6.0, in order for an application

to be correctly installed and then executed, the user must accept all the permissions

requested by the developer of the App, otherwise the installation process is canceled.

Since Android version 6.0, the user can grant selective permissions to the App. The

permissions are divided into fine-grained permissions, such as SMS (e.g., send, receive,

read), and coarse-grained permissions, such as Internet. The mechanism of permissions

is designed to provide increased security with respect to the access to data stored in the

device, or acquired by the sensors, but a bad management of permissions can allow Apps

to share data without the awareness of the users. In fact, Android isolates each App in

a sandbox, so that an App can’t access directly data managed by other Apps, and the

permission model can provide for mechanisms enabling inter communication among

Apps.

1.2 Security Issues of Mobile Devices

Although fame brings profit, it also attracts cybercriminals, that leverage on unseen

vulnerabilities that can be exploited in particular circumstances. The first Android

1.2. SECURITY ISSUES OF MOBILE DEVICES 3

vulnerability was reported by Common Vulnerabilities and Exposures (CVE) [86] in

2009 and since then, 630 vulnerabilities have been reported by CVE. Although Android

employs advanced techniques to protect Apps such as memory protection, and App’s

assets protection, the Android security architecture is still vulnerable to privacy violations,

root exploits, confused deputy attacks, and collusion attacks. Moreover, malicious Apps

is another major concern for security community. In addition to malicious Apps, threats

also arise form vulnerabilities in benign Apps, that can open a path to miscreants.

Whereas the architecture of Android is designed to enforce app protection, secure coding

best practices still plays an important role in preventing attacks. Inter-Component

Communication (ICC), Graphical User Interface (GUI), information leakage, and weak

permissions management are just some of the issues that may affect the security of the

user. Finally, security issues are also related to the portability of the device, that impose

constraints on the resources of the devices compared to desktop computers (e.g., screen

size, memory capacity, etc.), while providing additional functionalities (e.g., localization

services), but makes them more likely to be easily lost or stolen.

Android Malware

The majority of the security issues affecting Android systems can be attributed to third

party Apps rather than to the Android OS itself. Based on F-secure reports on mobile

threats [115], researchers found 277 new malware families, among which 275 specifically

target Android devices. As is shown in Figure 1.1, McAfee2 reported the significant

growth of mobile malware in the wild. This huge amount of mobile malware needs auto-

mated techniques to be analyzed, detected, and classified. Modern malware is designed

with mutation characteristics, namely polymorphism and metamorphism, which causes

an enormous growth in the number of variants of malware samples. Detection/Catego-

rization of malware samples on the basis of their behaviors is essential for the computer

security community, because they receive huge number of malware everyday, and the
2http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf

4 CHAPTER 1. INTRODUCTION

Figure 1.1: New Mobile Malware Threat Statistics

signature extraction process is usually based on malicious parts characterizing malware

families.

1.3 Machine Learning for Malware Classification

As I mentioned in section 1.2, automatic classification of applications is desired for

security community, and one of the tools that can facilitate the task for the community is

machine learning.

Desktop Malware Classification

Machine learning has been successfully applied for desktop malware classification. The

analysis of malicious programs is usually carried out by static techniques [185, 225, 277]

and dynamic techniques [38, 221, 260, 265]. Analyzers extract various characteristics

from the programs’ syntax and semantic such as operation codes [226] and function call

graph [151] from the disassembled code, and byte code n-grams [28, 246] from the hex

code, or different structural characteristics from the PE header, such as dependencies

between APIs [277] and DLLs [185]. Some other works [234] also explored the analysis

of metadata such as the number of bitmaps, the size of import and export address tables

besides the PE header’s content. The aforementioned content-based detection systems,

1.3. MACHINE LEARNING FOR MALWARE CLASSIFICATION 5

like those considering bytecode n-grams, APIs, and assembly instructions, are inherently

susceptible to false detection due to the fact of polymorphism and metamorphism. In

addition, these techniques are not appropriated in the case of malware samples that does

not contain any APIs, and also contains a few assembly instructions because of packing.

For malware classification, we proposed a learning-based system which uses different

malware characteristics to effectively assign malware samples to their corresponding fam-

ilies without doing any deobfuscation and unpacking process [39]. Although unpacking

may lead to the extraction of more valuable features if the packers are known, unpacking

is a costly task, and dealing with customized packers is even more challenging. Hence,

we aim to perform classification without the need to unpack the sample. In addition,

the system doesn’t need to be evaluated on any packed goodware, because the problem

of malware classification already assumes all of the samples to be malware. Finally,

as the work focuses on malware classification, we didn’t make any analysis of evasion

mechanisms employed to evade detection.

For each malware sample, we compute not only a set of content-based features by re-

lying on state-of-the-art mechanisms, but also we propose the extraction of powerful

complementary statistical features that reflects the structure of portable executable (PE)

files. The decision of not using more complex models like n-grams, sequences, bags or

graphs, allowed us to devise a simple, yet effective, and efficient malware classification

system. Moreover, we implemented an algorithm, inspired by the forward stepwise

feature selection algorithm [153], to combine the most relevant feature categories to

feed the classifier, and show the trade-off between the number of features and accuracy.

To better exploit both the richness of the available information, in the number of the

malware samples for training the classifier, and the number of features used to represent

the samples, we resorted to ensemble techniques such as bagging [164].

We evaluated our system on the data provided by Microsoft for their malware Chal-

lenge hosted at Kaggle3, and achieved 99.77% accuracy. The source code of our method
3https://www.kaggle.com/c/malware-classification

6 CHAPTER 1. INTRODUCTION

is available online4.

1.4 Contribution

The success of machine learning for desktop malware classification motivated us to extend

the mindset for Android malware. The first problem we look at is malware detection:

operators of app markets wish to automatically check submitted apps for malicious or

potentially harmful code to protect users. The second problem we are interested in

is family identification: an important step of forensic analysis of malicious apps is to

differentiate families of related or derived malware. Although there are many approaches

for Android malware detection/family identification, the main difference of our proposed

techniques in this thesis from the other proposed approaches for Android malware

classification, is that we tried to model those functionalities of Android applications that

can be misuesed in malware and no one has addressed it in the past. To this end, the

contributions of this thesis are listed as follows:

(i) First, I provide a comprehensive overview of the vulnerabilities affecting the An-

droid platforms and its users, the solutions devised so far to better highlight the

security issues in Android platform. I cover all the relevant Android security issues

emerged so far with a focus on Android application analysis, by organizing the

presentation according to an original perspective that is reflected by the organiza-

tion of the chapter. This perspective is further enriched by a number of original

figures and tables that summarize the most relevant facts, that provide a clearer

view of the Android Security landscape. (See Section 2)

(i i) Due to the importance of mobile malware, especially mobile botnets, we show

how it is possible to effectively group mobile botnets families by analyzing the

HTTP traffic they generate. To do so, we create malware clusters by looking at

specific statistical information that are related to the HTTP traffic. This approach
4https://github.com/ManSoSec/Microsoft-Malware-Challenge

1.4. CONTRIBUTION 7

also allows us to extract signatures with which it is possible to precisely detect

new malware that belong to the clustered families. Contrarily to x86 malware, we

show that using fine-grained HTTP structural features do not increase detection

performances. Finally, we point out how the HTTP information flow among mobile

bots contains more information when compared to the one generated by desktop

ones, allowing for a more precise detection of mobile threats (See Section 3).

(i i i) As far as the network traffic generated by malware can be encrypted by libraries

using SSL, our proposed approach in Section 3 based on HTTP traffic analysis

might not be effective. An example of these libraries is Google Cloud Messaging

(GCM). GCM is a widely-used and reliable mechanism that helps developers to

build more efficient Android applications; in particular, it enables sending push

notifications to an application only when new information is available for it on

its servers. For this reason, GCM is now used by more than 60% among the

most popular Android applications.5 On the other hand, such a mechanism is

also exploited by attackers to facilitate their malicious activities; e.g., to abuse

functionality of advertisement libraries in adware, or to command and control

bot clients. However, to our knowledge, the extent to which GCM is used in

malicious Android applications (badware, for short) has never been evaluated

before. Therefore, we do not only aim to investigate the aforementioned issue, but

also to show how traces of GCM flows in Android applications can be exploited

to improve Android badware detection. To this end, we first extend Flowdroid to

extract GCM flows from Android applications. Then, we embed those flows in a

vector space, and train different machine-learning algorithms to detect badware

that use GCM to perform malicious activities. We demonstrate that combining

different classifiers trained on the flows originated from GCM services allows us

to improve the detection rate up to 2.4%, while decreasing the false positive rate

by 1.9%, and, more interestingly, to correctly detect 14 never-before-seen badware
5http://www.zdnet.com/article/io-2013-more-than-half-of-apps-in-google-play-now-use-cloud-

messaging/

8 CHAPTER 1. INTRODUCTION

applications. (See Section 4)

(i v) Although the proposed technique in Section 4 achieved promising results, obfusca-

tion techniques like dynamic code loading or reflection can create a problem for

those systems based on flow-analysis as well as those that have successfully relied

on the extraction of lightweight syntactic features. Flow-analysis techniques are

usually time-consuming and using naive features can be evaded by obfuscation

techniques. To address the aforementioned challenge, we propose DroidSieve,

an Android malware classifier based on static analysis that is fast, accurate, and

resilient to obfuscation. For a given app, DroidSieve first decides whether the app

is malicious and, if so, classifies it as belonging to a family of related malware.

DroidSieve exploits obfuscation-invariant features and artifacts introduced by

obfuscation mechanisms used in malware. At the same time, these purely static

features are designed for processing at scale and can be extracted quickly. For

malware detection, we achieve up to 99.82% accuracy with zero false positives;

for family identification of obfuscated malware, we achieve 99.26% accuracy at a

fraction of the computational cost of state-of-the-art techniques. (See Section 5)

Chapter 2

Overview on Android Security

2.1 Introduction

All of the security issues mentioned in section 1.2 have stimulated the research commu-

nity, so that Android security rapidly became a hot topic in the past years. Studies on

Android security have started since 2008 [109,230], and since then, the number of papers

in this field had consistently grown. Recently, some papers reported some overviews

on the current state of the art on the security of mobile devices [50, 58, 106, 108, 118,

119, 122, 210, 257, 293]. Some of them focused on the threats models targeting mobile

devices, while others focused on vulnerabilities of a specific platform. This chapter

aims at providing a comprehensive overview of the vulnerabilities affecting the Android

platforms and its users, the solutions devised so far, and future research directions. As a

comparison with two recent surveys on the topic [119, 244], we cover all the relevant

Android security issues emerged so far, by organizing the presentation according to an

original perspective that is reflected by the organization of the chapter. This perspective

is further enriched by a number of original figures and tables that summarize the most

relevant facts, that provide a clearer view of the Android Security landscape. The rest of

this chapter is organized as follows: We first briefly present the architecture of Android

9

10 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

Apps : Native Android (Home, Phone, Browser, Contacts), Third party (Facebook, Angry birds)

App Framework : App managers (Activity, Window, Package), Content providers, View system

Libraries : Media Framework, SQLite, libc, SSL, WebKit Android Runtime : Dalvik VM, Core libs

Kernel : Binder driver, Hardware drivers (Camera, Display), Hardware management (Memory, Power)

Figure 2.1: Android Architecture

OS layers, the Android App components, and the Android security features. Then, the

security challenges related to the development of the Android OS are presented. We

review the different mechanisms that have been proposed to analyze Android Apps

afterwards. Furthermore, discusses the security threats related to the so-called Android

fragmentation, i.e., the coexistence of Android devices with different Android versions.

2.2 Android background

Before we start our discussion on the security challenges of Android based systems, let’s

briefly review the Android OS, frameworks and Apps features. In the following, each

component is described in detail.

2.2.1 Android OS

Android is a software stack for mobile devices and it is structured in several layers

as shown in Fig 2.1.1 The purpose of each layer is briefly described in the following

paragraphs. We report the few details that are needed to support the description of the

security issues of Android systems.
1https://developer.android.com/guide/platform/index.html

2.2. ANDROID BACKGROUND 11

Kernel Layer

Android is built on top of the Linux kernel which contains core services that manage the

device. It provides the permission architecture to restrict access to resources, supports

file and network I/O, memory and process management. It also provides Android to

communicate with low-level hardware components by supporting device drivers. In

addition to the above generic services, it also includes Android-specific components such

as power and memory management, because mobile devices have limited memory space,

and must optimize battery use. Android also use a custom implementation of IPC called

binder. The binder is a very efficient remote procedure call framework that allow fast

interactions between activity and service components securely and concurrently. The

binder is implemented as a device driver, and Apps use the ioctl system call to interact

with the binder, so that monitoring ioctl operations allows tracing the interaction of an

App with other elements outside of its sandbox.

Libraries Layer

Above the kernel layer, the library layer includes a variety of system (native) libraries

which are typically written in C and C++. These libraries handle the core performance

sensitive activities on the device as the surface manager library for updating the display,

the media framework Library for managing various audio and video formats, Webkit

for rendering and displaying web pages, SSL, SQLite, and other libraries. In addition,

Android has its own system C libraries, libc, which implements the standard Linux

system calls handling process and thread creation, mathematical computation, and

memory allocation.

Android Runtime

At the same level of the Libraries, the Android run-time is the Virtual Machine (VM)

for running Android Apps. The two main components of the Android runtime are the

core Java libraries, and the Dalvik virtual machine (DVM), recently substituted by the

12 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

Android RunTime (ART). In this chapter, we use the term DVM because most of the

works addressed it as DVM. Android Apps are written in the Java programming language.

Android provides a number of reusable Java libraries to make programming easier for

developers such as file I/O, concurrency, and web operations. After developers write their

Apps in Java, the source code is compiled by the Java compile to produce the bytecode.

Then the DX tool converts the Java bytecode to a single DEX bytecode file which is

named classes.dex. This file is packaged with other App resources and installed on

the device. The DVM is a custom VM (sandbox environment) that executes the code in

classes.dex. The reason of designing a custom VM is that it was specifically designed

to run in the resource constraint environment of mobile devices. Zygote is the first

instance of the DVM that is created at boot time, and, when an App is launched, a new

DVM instance is spawned by the Zygote process, so that each App has its own DVM

instance. Zygote owns all the core libraries, and hence all Apps share the libraries owned

by Zygote.

App Framework Layer

The App framework contains the reusable libraries that are emplyed by developers

as building blocks for their applications, such as common graphical elements, audio

multimedia management, etc. The package manager is a database that keeps track of

all of the Apps installed on the device. It checks the permissions and stores information

about the Apps. It also allows an App to contact other Apps, enable data sharing

among Apps, and let one App to request services from other Apps. It also contains the

resource manager which manages the resources of an App that are not modified by the

compilation process, such as strings, graphical elements, and layout files. The activity

manager coordinates the navigation between different activities of an App, while content

providers are databases that allow Apps to store and share information to other Apps.

The Framework Layer then comprises other App managers for all other functionalities

supported by mobile devices such as the window manager, the location manager and the

notification manager.

2.2. ANDROID BACKGROUND 13

App Layer

Android comes with a number of pre-installed Apps subdivided into two sets, i.e., a set of

Apps in common with all Android devices, and another set of Apps specifically designed

by the device manufacturer. Android standard Apps include the home screen, the web

browser, the phone dialer, Messages manager, Contacts Managers, etc. However, the

user can install and use third party Apps that perform the same tasks, as well as other

Apps performing various tasks, related to business, personal and entertainment purposes.

Apps can be purchased and downloaded by a number of App stores, the official one being

maintained by Google.

2.2.2 Android Apps

Android Apps are usually written in the Java language, and classes.dex contains the

bytecode of an App. The code contains one or more of Android’s App four fundamental

components, such as Activity, Service, ContentProvider and BroadcastReceiver. Compo-

nents communicate with each other in an App, and between different Apps through Inter

Component Communication (ICC) mechanisms. Android Apps are basically protected

against standard buffer overflow attacks due to the implicit bound checking implemented

by the Java language [83].

—Native code: Developers can also build Android components using C/C++ languages,

and the related code is called native code. The native code doesn’t run in the DVM, but it

is directly executed by the Linux kernel, thus directly accessing the kernel without using

the framework layer. Consequently, resources on Android need to be protected both at

the framework layer, and at the kernel layer. Since less than 10% of Apps use native code,

the analysis of native code provide evidence for detecting malware and exploits [140].

—Activity: Activities provide the App GUI to the user, and capture user’s interaction

through the interface. An App UI consists of one or many activities, depending on

the functionalities implemented by the developer, and only one of them runs in the

foreground. Each activity consists of different UI elements, such as Button, EditText,

14 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

CheckBox, etc.

—Service: Services have two main purposes. The first one is to perform long-duration

background operations for specific tasks such as playing music, synchronizing data with

cloud services, downloading large files from the Internet, etc. The second one is to

support interaction, and share data with other processes.

—BroadcastReceiver: BroadcastReceivers listen and respond to broadcast events from

the system. Events are represented by intents and then are broadcast.

—ContentProvider: ContentProviders define storage containers to share data across

the Apps. They also handle inter-process communications so Apps can exchange data

safely.

—Intent: In addition to the above main components, Intents are the other key com-

ponent for App cooperation. Intents are an abstract representation of operations to be

performed, and they are used to start activities, services or BroadcastReceivers.

—Android package: Android Apps, in addition to the bytecode, contain additional

elements such as the manifest file, bitmaps, layout definitions, user interface strings,

and libraries. The manifest file is a XML representation of contextual information

about the App that is used by Android to run the bytecode. These information include

the package name, components, permissions, and linked libraries.

2.2.3 Android security features

Google released Android 1.0 in September 2008. This version included some basic secu-

rity mechanisms such as discretionary access control (DAC), App sandbox, mandatory

access control (MAC) permission model, secure ICC, and App signing [111]. DAC is

used to control the access to files by process ownership. The sandboxing mechanism

isolates Apps from system resources, and from the execution environment of other App

running in the system. The permission mechanism protects sensitive interfaces, and also

enforces mandatory access control on ICC calls. Finally, all Android Apps are digitally

signed with a cryptographic signature to verify the origin of Apps, and to establish

trust relationships among them. The Android versions that followed included additional

2.2. ANDROID BACKGROUND 15

security features, while known vulnerabilities have been corrected. In addition, security

enhancement have been also included in the official Google Play market so that App

are added to the the market after passing some security checks like Google Bouncer.

The most recent report by Google [219] shows that less than 1% of all devices had a

Potentially Harmful App (PHA) installed and fewer than 0.15% of devices that download

only from Google Play had a PHA installed. The most relevant Android security features

are shown as a time-line in Fig 2.2.

2011 Feb

Use
r da

ta
en

cry
pti

on

Oct

ASLR
, K

ey
Cha

in

2012 Feb

Goo
gle

pla
y us

es

Bou
nc

er

Jun

Fo
rb

id
READ_L

OGS

pe
rm

iss
ion

Oct

App
ve

rifi
ca

tio
n se

rvi
ce

,

Con
tro

l o
f p

re
mium

SMS

2013 Apr

Upd
ate

fro
m

Goo
gle

Play

Jul

SELin
ux

Sup
po

rt,

App
Ops

Aug

And
ro

id
Dev

ice

Man
ag

er

2014 Jan

Res
tric

t a
cc

es
s to

SD

ca
rd

Oct

Smar
t L

oc
k,

Anti

br
ute

-fo
rce

, M
ult

ipl
e

us
er

s

2015 Mar

App
Rev

iew
Pro

ce
ss

Oct

Run
tim

e Per
miss

ion
s

2016 Oct

File
-b

as
ed

en
cry

pti
on

,

Upd
ate

d SELin
ux

,

Im
pr

ov
ed

ASLR

Figure 2.2: Timeline of Android Security features since 2011

February 2011: Data encryption has been an option since Android 3.0 [20]. Some

users are unaware of this feature, while other users avoids it because it slows down the

processing time of the device. The interesting issue is that cryptographic keys are not

stored on the device, so they can’t be shared with law enforcement agencies.

October 2011: Android includes many techniques to protect against exploitation of

memory corruption. One of the most important methods is Address Space Layout Ran-

16 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

domization (ASLR), that was included in Android 4.0 to protect from attacks based on

the knowledge of process layout in memory. [20]. Android 4.0 also includes a KeyChain

service [7] that provides a system-wide credential storage to access private keys and their

corresponding certificate chains.

February 2012: Google added a new security layer to the Google Play store called

Bouncer [133]. Google Bouncer provides automated scanning of Apps submitted to the

Play store for potentially malicious software. There is no detailed information by Google

on the internals, but some researchers dissected it by uploading an App to Google play,

and then establishing a connection between the App and a C&C server, getting some

information from it [192].

June 2012: READ_LOGS is a permission which is required for an App to be able to

read the logs. Apps can’t get this permission since Android 4.1, unless they are part of

the firmware because Log entries can contain the user’s private information [209, 252].

October 2012: Android 4.2 was released with an App verification service which utilizes

signature-based detection techniques which is not very effective against unknown mal-

ware [156]. Another feature in this version is a notification while an App attempts to

send premium SMS which might cause additional charges. User can choose whether to

allow or block the App to send messages, a very helpful feature because many malware

families steal money from the victims by sending premium SMS messages [293].

April 2013: Google changed the content policy for Google Play : "App downloaded

from Google Play may not modify, replace or update the binary code of your APK using

methods other than the update mechanism of Google Play" [137]. This policy improved

the overall security of Android because it increased the difficulty for an App to secretly

download a malicious software as it was an update.

July 2013: Android 4.3 was the first version of Android to fully include SELinux support,

contributed by the SE for Android project. Security-Enhanced Linux is a mandatory

access control system built into the Linux kernel to help enforce the permissions, and

to attempt to prevent privilege escalation attacks (i.e. an App tries to gain root access

on your device) [135, 176, 236] . A detailed permissions manager called App Ops was

2.2. ANDROID BACKGROUND 17

introduced in Android 4.3, that let you disable permissions [40]. Google removed this

privacy control in Android 4.4.2 and said "The feature had only ever been released by

accident and it was experimental. It could break some of the apps policed by it.".

August 2013: In December 2013, Google presented the Android Device Manager (ADM)

as an App to allow users to remotely locate their device or erase their data from the

device through a web interface. The App is available on the Google Play store and it

runs on Android version 2.3 and higher [134] .

January 2014: In Android 4.4.2, Apps can no longer write on any part of external

storage media like SD card [136]. Although SDFix App with root access can restore this

ability, apps are generally only allowed to write to a special, "App specific", folder on

the External SD card [190]. The only warning is that if you uninstall the App, everything

that is stored in the "App specific" folder will be deleted.

October 2014: Android 5 was released in October 2014 with some security improve-

ment [138] in many domains such as protection against memory-corruption vulnerabili-

ties, encryption, access control with SELinux, cryptography for HTTPS. In addition, it

provided a new feature, which is called Smart Lock, that allows devices to be unlocked

automatically when they are close to another trusted device or being used by someone

with a trusted face. Also starting with Android 5.0 [219], the user passwords are protected

against brute-force attacks, as well as providing multiple users was provided on phones

including a guest mode, which had been introduced on tablets in Android 4.2.

March 2015: Google decided to manually review submitted Apps to the Google

Play [139]. This new process involves a team of experts who are responsible for identify-

ing violations of Google’s developer policies earlier in the app lifecycle.

October 2015: The major security enhancement for Android in 2015 is enabling permis-

sions during runtime. After a number of research papers addressed finer-grain access

control mechanisms, Google finally announced in Google I/O 2015 that the next version

of Android, namely Android 6 (Android M), will officially come out with granular

permission control.

October 2016: Google enabled encryption at the file level, instead of encrypting the

18 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

entire storage area as a single unit, which can help to better isolate users’ profiles. In

addition, Google announced some improvements and updates for ASLR and SELinux

to make the system more reliable against attacks. All of these changes affect Android 7

(Android N).

2.3 Android OS security challenges

The Android kernel and the middleware layer offer to Apps the mechanisms to interact

with the other Apps on the same device, and with external services. It turns out that if a

vulnerability is found in these layers, it can cause critical issues and severe problems to

users. To date, the main security issues caused by misusing two security features of these

layers are privilege escalation and information leakage. In this section, we will detail the

vulnerabilities that may lead to privilege escalation and information leakage, and we will

also describe how Android can be protected from those potential threats.

2.3.1 Privilege escalation

The most dangerous Android vulnerability categories, according to the CVE score, are

code execution and gain privilege [86]. Attackers usually start by executing buffer over-

flow attacks to place their code, and finally escalate their privilege to get root shell. A

number of root exploits have been devised for the Android platform, and in Table 2.1 we

listed the Top 10 in terms of their popularity [16, 140, 150, 270]. Apps that exploit these

kernel layer vulnerabilities, pose the highest risk for the device as they gain superuser

privileges. All of the existing malware containing root exploits uses third-party native

code. Unfortunately, even the most recent versions of malware analyzers typically ignore

third-party native code because of its difficulty compared to system libraries or Java

code.

Another issue, is that of patching the vulnerabilities, as this task is up to the manufac-

turers that usually doesn’t provide updates and patches for all the handsets, although

Google regularly patches the vulnerabilities [79]: To provide a solution to this prob-

2.3. ANDROID OS SECURITY CHALLENGES 19

Table 2.1: Root Exploits

Year Name Target In Malware
2009 Asroot (Wunderbar) [113] Linux kernel [89]
2010 Exploid [114] init [90]
2010 RATC [3] ADB daemon
2011 GingerBreak [9] vold [93]
2011 ZimperLich [10] zygote
2011 Levitator [158] PowerVR driver [92] ×
2011 KillingInTheNameOf [5, 8] Ashmem [91] ×
2011 zergRush [102] libsysutils [94] ×
2012 Mempodroid [105] Linux kernel [95] ×
2014 Towelroot [150] Linux kernel [96]
2015 PingPongRoot [266] Linux kernel [97]

lem, PatchDroid has been proposed as a prevention-oriented system to distribute and

apply device-independent security patches for vulnerabilities in both native and managed

code [183]. Another tool aimed at detecting root exploit is PREC (Practical Root Exploit

Containment), a response-oriented system to dynamically identify system calls from

third-party native libraries, execute them within isolated threads to detect, and stop root

exploits with high accuracy and low false positive [148].

Permission escalation

Another kind of privilege escalation vulnerabilities is permission escalation that occurs

both in Apps and in the middleware layer. Permission escalation attacks are divided

into tow categories, namely confused deputy attacks, and collusion attacks. In confused

deputy attacks [146], which are also called transitive permission usage, a malicious

App try to communicate with other benign Apps to access critical resources without

any explicit request to the corresponding permissions. In fact, a malicious App can

use a benign application as a service to escalate their privileges, if the permissions

of the benign application have not been carefully configured. In the alternative case,

i.e., collusion attacks, two malicious Apps collaborate each other to integrate their

permissions and perform a malicious behavior [180]. These attacks can be traced back

20 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

to fundamental flaws in the Android sandbox model [66, 98, 118, 124, 180]. In fact, the

Android permission system does not support the identification of transitive requests or

collusion attacks.

[269] also showed that permission escalation may happen during the Android update

process. They reported a vulnerability in the package manager service of Android that

allows a malicious App to define a set of permissions in lower version of Android, and

wait until Android is updated to the new version, and benefit the permissions on the new

system. They could also contaminate data to steal sensitive information, cause denial of

service and replace some new system Apps during the update process.

2.3.2 Information Leakage

Information leakage is a vulnerability that may reveal sensitive data to adversaries thereby

leading to an attack. One of the Android services that was found to exhibit information

leakage problems was the Android logging service. If an App has set the permission

read_log permission, it can read some sensitive information such as Geographic location

and web requests in the logs [174]. Google removed this permission as we showed

in Section 2.2.3. Another important source of leakage is the screen of the device.

Screenmilker is an approach that captures screenshot on Android devices without any

privileges by exploiting a vulnerability in the ADB proxy [170]. The vulnerability grants

privileged capabilities to 3rd party Apps and it can be exploited by malicious Apps to

extract sensitive information from screenshots.

Side channel attacks

Side channel attacks refer to any attack based on the information flow within the An-

droid device hardware/software stack, that lead to information leakage. Some of these

information can be accessed from the Linux proc file system, or from the sensors. A

classification of this kind of attacks is shown in Fig 2.3. One of these attacks, Memento,

investigates the information leaks in Android that can be carried out by analyzing shared

2.3. ANDROID OS SECURITY CHALLENGES 21

memory usage data [154]. [290] is another approach that uses the proc files to exploit

public information like social networks background data to retrieve the identity or the

location of the users without requesting any special permissions. In a recent paper, it

was shown that it is possible to verify the state of the UI without needing the exact

values of the pixels of the screen [76]. They were able to hijack sensitive UI states to

steal private inputs such as passwords, pictures from the camera, and they also showed

how an attacker can monitor and analyze user behavior. They concluded that UI state

leakage is possible, and that an unprivileged App can track another App’s UI states

while it is running. They also show one example in which the the state of the Log-in UI

has been caught via shared-memory, CPU and network activity side channels. Finally,

they showed how the confidentiality and integrity of the GUI content can be broken. A

prominent example of that is the smudge attacks that allows understanding the visual

Android password pattern by observing the oily residues remaining on touchscreens after

a pattern is entered [54].

• Sensors Information Leakage

Smartphone sensors, the speakers and cameras are other channels that convey sensi-

tive information that can be exploited by attackers. Some people might think that some

sensors like the Accelerometer, the Gyroscope and the orientation sensors are not privacy

sensitive, but different works [197,272] showed that they can be turn out to be dangerous

channels. TouchLogger [71] is one of the major works showing how internal sensors

can be exploited by a keylogger software based on capturing rotations from motion

sensors. The keylogger could infer keystrokes with 71.5% accuracy. While the authors

didn’t evaluate the behavior on the whole keyboard, and they also didn’t verify if their

method is user and device Independent, in a following work [72], they also evaluated

soft-keyboard input on tablets and smartphones. Another approach was presented in

Gyrophone [181], where authors could extract the speech from Gyroscope sensors by

using signal processing and machine learning techniques. Soundcomber [229] is another

system that shows how a malicious App can exploit the speaker to learn the difference

22 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

Device hardware

Accelerometer Gyroscope CPU Memory

Speaker

Camera

ACCessory [197]

Tapprints [182]

Cai et al. [72]

Aviv et al. [55]

ACComplice [145]

Touchlogger [71]

TapLogger [272]

Gyrophone [181]

Chen et al. [76] Memento [154]

Soundcomber [229]

PlaceRaider [248]

Figure 2.3: Side channel attacks

between general chatter, and tone dialing, to effectively extract the phone numbers a

user calls. PlaceRaider [248] focuses on the camera, and constructs 3D models of

indoor environments by using the phone’s, camera, Accelerometer and Gyroscope. Cai

et al. [73] proposed a framework with several promising methods to defend against

sensory malware. Summing up, malicious applications can be designed to capture data

form smartphone sensors that can reveal a large number of information related to the

data captured by the sensors, and to the general behavior of the user. As far as just few

papers [73, 273] addressed this issue, proposing an ideal protection mechanism should

be considered.

2.3.3 Security policies and mechanisms

While Android has improved the basic security features over the years as described in

section 2.2.3, that prevents attacks that undermine the correct operations of the operating

system, nonetheless attacks can still be carried out using the same mechanisms used by

benign applications to communicate with each other, and with the outside world, Hence,

the research community is quite active in proposing additional security policies and

mechanisms for Android in both the middleware and the kernel layers. In this section,

2.3. ANDROID OS SECURITY CHALLENGES 23

we focus on security extensions in the kernel and the middleware layer.

Privacy leakage protection

Privacy leakage refers to a type of information leakage that involves the transmission of

sensitive data out of an Android phone. However, if the transmission is by user intention,

it does not necessarily translates into a privacy leakage, while in all other cases it is more

likely that a privacy leakage took place. One of the techniques used to detect privacy

leakages is by dynamic taint analysis, which tracks information dependencies from an

origin which is called taint source. Taint sources comprise sensors like GPS, information

databases such as the SMS archive, and the Device ID such as the IMEI. On the other

side, taint sinks refer to the interfaces that can be used for leaking privacy data, such as

the use of the network connection to send out sensitive data. There are several approaches

for taint analysis, that are usually categorized into different tracking categories such as

variable-level, method-level, message-level and file-level. Variable-level tracking refers

to storing and propagating taint tags on variables by modifying the DVM stack which

contains variables. Method-level tracking provides information about native method

invocation, while message-level tracking refers to tracking communications between apps

via IPC mechanisms. Finally, file-level tracking refers to tracking data communications

between apps and storage media.

TaintDroid [107] is the first and prominent example of dynamic taint analysis that tracks

data flows across the Apps and the Android OS. It modifies the DVM interpreter to

track variables, thus requiring an intensive instrumentation of the OS to get a good

performance. One of the main benefits of Taintdroid is tracking taints through reflective

method calls. The main shortcoming being code coverage in the case malicious Apps

understand that they are executing in an analyzing environment. Taintdroid can only

monitor data flows (explicit flows), while it can not monitor control flows (implicit

flows). In addition, it is implemented in the middleware layer, thus making impossible

to track native code. AppFence [149] and CleanOS [247] leverage Taintdroid to track

sensitive data for different purposes. AppFence aims at providing protection against

24 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

evicting sensitive data from the phone, while CleanOS aims at protecting users against

disclosure of private data in the case the phone is stolen. CleanOS encrypts phone’s data

when the phone is idle for a specified amount of time, and then sends the encryption key

to a trusted cloud service immediately. The main problem of CleanOS is that it can’t

prevent leakage through OS or I/O channels. D2Taint [143] and DataChest [295] are

other two extensions of TaintDroid. D2Taint tracks the information coming from Internet

sources, while DataChest tracks and protects unstructured data coming from users. We

summarized the proposed approaches in Table 2.2 where they have been sorted by the

date of publication. All of these approaches are implemented in the middleware layer.

The column labeled Tracking shows if the system performs dynamic taint analysis, and

it it labels the sensitive data, while the column labeled prevention shows if the system

aims to prevent privacy leakages, and the last column shows the main drawbacks of each

system.

Some other approaches have been proposed to limit untrusted Apps to access specific

sensitive data. Apex [187] enforces some rate limiting like the number of sent messages

during run-time, as well as enabling or disabling specific permissions during install-time.

Similar to Apex, MockDroid [59] and TISSA [297] allow users to better control the

fine-grained accesses to specific resources or permissions during runtime.

Access control mechanisms

There are different access control mechanisms to mitigate privilege escalation attacks

as shown in Table 2.3. Saint [196] is a mandatory access control solution that helps

developers to define policies and protect Apps from being exploited. Policies are checked

and stored at install-time, and they are enforced during run-time. App developers are

allowed to choose the more suitable App policy solution, and determine how their apps

can interact with the other Apps installed in the system and vice versa. As malicious

Apps that perform privilege escalation through root exploits can bypass the middleware

layer, and use the system resources (e.g. radio or services like SMS, Call) without

permissions, access control mechanisms are required at both the user-space and the

2.3. ANDROID OS SECURITY CHALLENGES 25

Table 2.2: Privacy leak protection mechanisms

Name Tracking Taint source Prevention
Response-oriented mechanisms

TaintDroid [107] 32 APIs (IMEI, Phone Number, Location) ×
Appfence∗ [149] 32 APIs (IMEI, Phone Number, Location)
CleanOS∗ [247] User-provided
D2Taint∗ [143] Internet ×
Vetdroid∗ [283] IMEI, Phone Number, Location, Network State ×
DataChest∗ [295] User-provided

Prevention-oriented mechanisms
Apex [187] × —
MockDroid [59] × —
TISSA [297] × —
Porscha [195] × —

∗ These systems leverage TaintDroid
− All of the systems are implemented in the middleware layer

Table 2.3: Access control systems against misuses

Implementation
Name

Middleware Kernel
Main Goal

IPC Inspection [124] Prevention of confused deputy attacks
Quire [104] Prevention of confused deputy attacks
XManDroid [65] Prevention of confused deputy and collision attacks
Sorbet [126] Prevention of confused deputy attacks
Saint [196] Finer-grained access control
CRePE [82] Defining context-related policies
Aquifer [184] Defining UI workflow policies
TrustDroid [67] Mandatory access control
SEAndroid [236] Mandatory access control
Flaskdroid [68] Mandatory access control
RGBDroid [200] Kernel-level privilege escalation mitigation
PREC [148] Kernel-level privilege escalation mitigation
L4Android [165] Virtualization against kernel-based attacks
AirBag [261] Application isolation against AOSP attacks

26 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

Kernel levels. XManDroid [65] and TrustDroid [67] add some additional enforcement

in the Kernel Layer by modifying the Mandatory Access Control framework in Linux.

SEAndroid [236] is another MAC framework by leveraging SELinux for Android kernel.

Afterward, Google introduced SELinux in Android 4.3 to mitigate the damages of root

escalation attacks. Bugiel et al. [68] proposed a policy-driven way for extending the

Android security architecture that works on both the Kernel and the Middleware layer.

They developed a policy language as an extension of SElinux enforcement language,

and presented a number of related use-cases. They developed an App called object

manager to instrument system components in the middleware layer and kernel resources

in the kernel layer. The object manager can assign security levels to objects, and enforce

fine-grain access control mechanisms on each object. In each layer, all of the policies

are stored on a security server where it manages the policy rules and contains the access

decision logic. They leverage SEAndroid kernel level modules for the kernel layer, and

extend this enforcement into components of the middleware layer such as the Services,

the Package Manager, and Content Provider such as Contacts Provider. They also

developed a user policy App to update policy rules. For example, it is possible to define

fine-grained access policies to limit the access of social network apps to selected fields

of contacts such as the email or the phone number. Differently from Prec, which was

discussed in section 2.3.1, RGBDroid [200] is another response-oriented system against

kernel-level privilege escalation attacks. It analyzes file access patterns on Android

platforms by hooking system calls. It uses a white list which sustains the list of programs

that can run with root privileges. It denies any resource access request by programs

which are not in the white list. It also uses a critical list that contains the list of system

layer resources that even a process with root privilege cannot modify. Quire [104] and

CRePE [82] are two approaches to mitigate permission escalation. L4Android [165]

and Cells [44] propose to increase the security by virtualization techniques, allowing

multiple virtual smartphones to run side-by-side on one single physical device. In a more

recent work, AirBag, supports a decoupled and isolated runtime environment based on

OS-level virtualization [261]. AirBag aims to protect the OS from malicious untrusted

2.3. ANDROID OS SECURITY CHALLENGES 27

Apps by decoupling an App Isolation Runtime (AIR) from the native Android runtime,

which contains Java and Native Libraries, DVM and App framework.

Embedded UI security

Embedding third-party UIs are common in Android apps for advertisement, and they can

be used for other purposes, such as embedding maps, camera preview, social network

follow buttons, etc. In Android, the UI composes of View and ViewGroup objects,

organized in a single view-tree structure. By default, Android does not provide secure UI

components isolation, and libraries run in the App’s context. However, in the UILayout-

Tree structure, you should care about both malicious child and parent elements. There are

many attacks target embedded UI such as input eavesdropping, and clickjacking. Some

works just focused on advertising libraries such as AdDroid [202] and AdSplit [235]

by isolating advertising libraries from host Apps, and some others vet embedded UIs

in general. For example, LayerCake [222] provides a modified version of Android that

securely support Inter-App embedded user interface. It allows an activity in one App to

securely embed an activity from another App. LayerCake relies on modifications of the

Activity Manager and the Window Manager to reach the goal. This approach consists

of three steps. 1) Separation of each embedded UI from its own process by modifying

the Activity Manager to expose a new UI element. It causes multiple activities to be in

the foreground, and also takes into account parent-child communication. This prevents

direct UI manipulation. 2) Windows (UI layout trees) must be separated, and nested UI

trees must not be created. This goal has been achieved by modifying the Window man-

ager. This prevents input eavesdropping and DoS attacks. 3) Some additional security

measures like preventing clickjacking, handling size conflicts (e.g. malicious App create

a very small or out of window camera preview), and preventing ancestor redirection (a

malicious App tries to open a new top-level activity) are also taken into account by this

module.

28 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

Other security mechanisms

• Misuse detection:

Kirin [110] is an extension of the Android middleware to protect users against misuses

by specifying additional access policies. Kirin denies App installation if the App

requests potential dangerous permissions patterns. It looks for hard-coded dangerous

combinations of permissions to warn the user about potential malware

• Memory protection systems:

ASLR is a protection system against memory attacks, and it has been recently imple-

mented in Android as we discussed in section 2.2.3. However, Lee at al. [166] showed

that the Zygote process creation model weakens the effectiveness of ASLR because

all App processes are created with largely identical memory layouts. They designed

different attacks that bypass the weakened ASLR, and execute attacks based on Return-

Oriented Programming (ROP) for Android. They also designed and implemented a

secure replacement of Zygote called Morula.

2.3.4 Android fragmentation

One of the most prominent security issue of Android is the so-called fragmentation, as dif-

ferent versions of Android, with different maturity levels in terms of the security features,

are currently in use. This phenomenon can either be seen as a feature that strengthens or

weakens the Android ecosystem. Android fragmentation refers to the variety of Android

platform versions currently used. At the time of writing, 22 official Android versions

are available, each version being usually customized by device manufacturers (18,796

distinct devices were reported in [70]). The customization process usually do not involve

the security features of Android, nonetheless vendor customization will inherently impact

the overall Android security assessment when, for example, their own drivers are written,

and standard Apps are customized. Another issue related to fragmentation and to vendor

dependencies, is the application of patches regularly released by Google. For many

2.3. ANDROID OS SECURITY CHALLENGES 29

devices, the manufacturer does not provide any update of the release, or they are applied

at a slower pace. On the other hand, iOS and BlackBerry OS does not suffer of this

issue, as the developer of the OS is the same as the manufacturer of the devices, so that

any update of the OS is notified to all the devices, and in a short time window the vast

majority of devices run the latest version of the OS.

SEFA [263] is one of the few approaches that investigate the security issues related to

Apps customization. They look at thousands lines of code from ten different Android

smartphones. They could verify their security flaws and determine each App’s resource

and permission usage, and their vulnerabilities. They perform provenance analysis to

classify each App of a factory Image (source files) into three categories such as apps

originating from the Android Open Source Project (AOSP), apps customized or written

by the vendor, and third-party apps that are simply bundled into the stock Image. Then,

they analyze permission usages of pre-loaded apps to identify overprivileged ones that

unnecessarily request more Android permissions than they actually use. And, finally,

they detect buggy apps that can be exploited to mount permission re-delegation attacks

or leak private information.

In the aspect of hardware customization, ADDICTED [291] is a system that compares the

protection level of drivers on customized phones to the corresponding version in Android.

They showed that there could be a security hazard if there is a difference between the

Android version and the customized version, so that an App which is not granted any root

privilege, nor the permission to access the considered device, can use the flaw to access

the device. For example, if camera device’s files are publicly readable, any App can read

it but in fact, it should be accessible only by camera group. At first, they developed a

system for the automatic identification of protected devices’ files, as it is not a trivial

task because the name of the files can be different from the standard name of the device

(e.g., a NFC device file is usually named /dev/pn544). So, they created a test runner

App, and monitor its behavior with respect to the use of the device files, the dynamic

analysis of its execution, and the use of system calls. After that, they could find out the

device nodes associated to each device. Finally, they compare the vendor’s customized

30 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

files permissions with the corresponding AOSP, and, if there is any difference between

permissions, it means that there is a security flaw.

2.4 Android Apps security challenges

Although Android has security features built into the operating system that significantly

reduce the frequency and impact of App security issues, there are a number of important

security issues that have to be taken into account during Apps development. On one

hand, in order to attain a thorough analysis of the App behavior, the effects of each

App instructions should be observed at the middleware and the Kernel layers. It should

be clear from the above discussion that the implementation of such an observation

mechanism would require modifications of the source code of the Android OS, that of

course would disrupt the integrity of the execution environment. Therefore, rather than

instrumentation, App behavior is usually captured either by static analysis, or by virtual

machine monitoring. In the following sections, we will address the issues related to

secure coding, and App analysis.

2.4.1 Secure coding

Android programming requires a deep knowledge of the security features of Android,

and the security implications of each App component [51]. First of all, the usage of

permissions should obey to the principle of least privilege. Furthermore, developers

should be aware of the available security capabilities in Android such as communications

via HTTPs, and cryptography APIs which can help their applications to be safer. On the

other hand, the Android components such as services, SQLite, and webviews have to be

used in a safe way. Moreover, developers should also consider using some abstractions

during coding to avoid propagation of mistakes in Apps from other developers. For

example, defining a logical security layer can lead to catch security flaws during compile

time rather than run-time. Thus, developers should take care of different kinds of

attacks such as data injection, information or capability leakage from other Apps. In the

2.4. ANDROID APPS SECURITY CHALLENGES 31

following, we overview some of the most relevant categories.

Data Injection: Apps or humans may provide malicious information for other apps.

One of the protection mechanisms by developers to mitigate the risk of processing false

information is checking the validity of input data. For example, it has been shown

that an App can receive a malicious link from other apps every time a piece of text is

pasted [117,282]. It has also been shown that Android Apps may suffer from well-known

attacks such as SQL injection.

Information leakage: An App may have access to other App’s data whereby can steal

data either from the storage area or from the memory level, either directly or indirectly

by an intermediate App. One of the issues that has been addressed since Android KitKat

is the use of SD card as saving location. On lower version of Android, SD card can be

used to store any type of data, thus making it possible to accidentally divulge sensitive

data. Since Android Kitkat, apps can no longer write on every parts of SD card, and

its use is limited to storing multimedia files and apps that does not manage sensitive

data. For example, Skype for Android stored sensitive user data without encryption in

Sqlite3 databases with weak permissions, thus allowing other local Apps to read user

IDs, contacts, phone numbers, date of birth, instant message logs, and other private

information [85]. Another example is divulging information through logcat, that has

been observed for the Facebook App [209].

Capability leakage: Each App can share data or capability outside of its sandbox through

IPCs, thus making it possible for malicious apps to escalate their capabilities through

this functionality. These issues in Android programming emerge as vulnerabilities of

the platform, as we discussed in section 2.3.1, if developers don’t carefully define some

policies to protect themselves against them. For instance, if an App has Internet access

and accepts intents with an url for benign purposes, some malicious apps ,which have no

internet permission, may exploit it to download their payload part. The simple solution

for these cases is either to validate the information and the sender of intents, or to check

if the caller has the specified permission or not.

Physical Access: Saving data privately is not a complete solution, as people that has

32 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

physical access to the device may exploit stored data with different kinds of attacks such

as rooting the device, or plugging in into a computer.

User mistakes: Other sources of attacks are similar to those against desktop computers,

such as phishing. Phishing can be more effective on mobile devices as the limited

screen size compared to desktop PCs makes it easier for a phishing website to mimic the

legitimate one. In addition, the space for the address bar in webview is very limited, and

very often it is hidden to the user thus making the detection difficult [123].

2.4.2 Android Malware

Mobile malware refers to any unwanted App that is used to perform an unauthorized

and harmful action on mobile devices. One of the main goals of mobile malware has

been to steal money from the user by issuing Calls and SMS to premium numbers. In

addition, mobile malware abuse permissions, manipulate data, and access sensitive data,

and then transmit them to the remote servers. They also exploit different vulnerabilities

such as App-level privilege escalation, as in confused deputy attacks, and kernel-level

vulnerabilities to gain root privileges. Multiple Android infection channels are exploited

by malware writers such as QR codes [161], downloads from the market, downloads

from the Internet, cross-platform malware that propagates from desktop clients to mobile

devices [173, 245], and SMS malware. Although several works addressed these issues,

as the number of Android malware is not decreasing, the effective analysis of Android

app for malware detection still remains an open problem [108, 223, 293].

2.4.3 Android App analysis

The main purpose of App analysis is assessing if it is benign or malicious. The anal-

ysis of benign Apps, i.e., Apps that do not perform malicious activities, may reveal

vulnerabilities that might be exploited for malicious activities, vulnerabilities caused by

developers that neglect to securely design and implement their Apps. These Apps are

usually referred to as Potential Harmful Applications (PHA). In this case, code review

2.4. ANDROID APPS SECURITY CHALLENGES 33

Extracted
Features

Network
Layer

Traffic
Statistics

HTTP
Header

App Layer Manifest

Permis-
sions

App
Compo-

nents Device
Compo-

nents

Intent
FiltersCodeAPI

CFG

FCG

String

Device
Level

Sensors

Speaker

OS Level System
Metadata

System
Calls

Figure 2.4: Classification of techniques for the analysis of Android Apps

and analysis is performed to discover unwanted vulnerabilities. On the other hand, when

the malicious nature of an App is detected, then it is assigned to one of the classes which

malware is usually categorized in. In order to understand each App, different kinds of

information can be extracted from App or System (see Figure 2.4). Some of the examples

are monitoring HTTP traffic in the network layer, considering system calls in the OS

level, monitoring sensors in the device level, and extracting various structures such as

Control Flow Graph (CFG) from the byte code in App layer.

Apps are analyzed according to a number of techniques that can be broadly subdivided

into two groups, namely, static analysis techniques, and dynamic analysis techniques.

Static analysis techniques comprise all techniques that do not execute Apps, neither on

real devices, nor in emulation environments. Thus, from the point of view of the tools

and equipment needed, static analysis can be carried out easier than dynamic analysis, as

the latter requires an appropriate execution environment in order to extract the behavior.

Static analysis collects behavior information from all the components of an Android

34 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

App, by analyzing the elements in the manifest file, and decompiling the Dalvik bytecode.

Soot [17], Dare [12, 193], and dex2jar [15] are some examples of decompilers for

converting the Dex format into java format. The major problem for static analysis

techniques is to cope with obfuscation (see Section 2.4.6) and packing techniques, that

are increasingly used by malware writers in order to prevent or mislead the extraction

of behavioral information through static analysis. The use of reflection mechanisms

to invoke functions, or the use of native-code libraries, are two examples of coding

approaches that may affect the correct and complete understanding of the behavior at

runtime.

On the other hand, dynamic analysis techniques collect behavioral information by

running the Apps. Two main approaches for dynamic analysis are followed, i.e., by

instrumentation, which requires modifications of the Android OS (see Section 2.3.3), or

by virtual machine monitoring techniques. One of the first dynamic analysis systems for

Android App that relied on virtual machine monitoring was the ARE system, which was

offered by the Honeynet project [6] for profiling Android Apps. The main advantage of

dynamic analysis systems is that they are resilient against obfuscation of the bytecode,

while they can be mislead by runtime behavior diversification if the App is designed to

exhibit different behaviors depending on the execution environment.

So, while in principle dynamic analysis can be less complex than static analysis as,

for example, the real sequence of system calls are collected, on the other hand, the tools

required to collect such a behavior might be more complex to be developed. In the case of

dynamic analysis by virtual machine monitoring, a two-step analysis is required. The first

step requires a deep understanding of the Android specific behaviors related to its phone

functions such as SMS, and CALL, while the second step requires the understanding of

the typical OS interactions, like opening a file or a socket. Opposite to instrumentation

techniques, whose presence can be detected by malware, VM-based analysis systems

are more transparent and can be hardly detected by malware. An overview of the online

services and offline tools that are available for static and dynamic analysis is reported in

Table 2.4.

2.4. ANDROID APPS SECURITY CHALLENGES 35

Table 2.4: Open source tools and services for Android App analysis

Analysis type Availability
Name

Static VM-based Instrument Web service Open source
Androguard [11]
Copperdroid [14]
Apktool [4]
FlowDroid [25]
Andrubis [21]
A5 [18, 19]
droidbox [24]
Mobile sandbox [27]
Taintdroid [32]
smali [30]
Dexter [23]
Droidscope [13]
virustotal [35]

As we mentioned before, there are two main purposes for App analysis, such as vulnera-

bility analysis and malware detection, that are described in the following section, and the

most noticeable App analysis techniques are compared in Table 2.5.

2.4.4 Purposes of App analysis

Vulnerability analysis

App vulnerabilities are identified as the number one security threat. Some developers

don’t have enough security knowledge, or they simply neglect to secure their App. For

example, FireEye [284] found that 68% of 1000 most-downloaded free Android Apps are

susceptible to MITM attacks based on SSL vulnerabilities. Hence, a lot of researchers

analyze Apps to find potential securities vulnerabilities. Google itself is committed to

this task via its App analyzer framework that analyze all Apps distributed through Google

Play, and also other Apps distributed by other markets as soon as they are installed on

Android devices [219]. MalloDroid [116] is one of the approaches that relies on static

analysis to find misuses in communications via SSL by Android Apps to find specific

36 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

programming errors. Android Apps vulnerabilities also include SQL injection, which is

one of the major vulnerabilities affecting web application. ContentScope [294] showed

that SQL injection attacks can be used to extract some private data from unprotected

Content Providers. Another threat for Android devices is related to advertisement

libraries, that are used mainly by free Apps. AdRisk [141] is a system specifically

designed to examine advertisement libraries by static analysis, to see if any sensitive

information is uploaded to remote advertisement servers, or if any untrusted code is

executed.

In addition of more general vulnerabilities like SSL and SQL injection, that are not

specific to Android Apps, there is a vast literature addressing Android specific threats.

In particular, it has been shown that vulnerabilities are not just related to individual

components, but many of them can be discovered and exploited through the analysis

of the interaction between Apps through the Inter-Component Communication (ICC)

mechanisms. Android ICCs are based on Intents and Intent Filters, and the components

that communicate are protected by some permissions. There are three main risks related

to the inter component communication models, as insufficiently protected components

may leak capabilities (e.g., a malicious component can exploit other components to send

SMS to premium-rate numbers), a malicious component can intercept intents, and steal

information that is hold by intents, and, finally, Apps can communicate to each other to

perform a malicious task, which is called App collision (e.g., if the malicious activity

requires GPS and Internet permissions, it can be performed by two Apps, let’s say App

A and App B, that work concurrently, App A having GPS permission, and App B having

Internet permission). As we explained in section 2.3.3, some systems [66, 104, 124]

have been devised to mitigate these problems by either checking IPC call chains, or by

monitoring the run-time communication between apps through a modification of the

Android OS. Besides of them, some other approaches based on static analysis have been

proposed to detect vulnerabilities. SEFA [263] is a tool that analyzes in-component,

cross-component, and cross-Apps vulnerabilities, while ComDroid [78] and Woodpecker

[142] focus on the detection of in-component vulnerabilities. CHEX [178] is one of

2.4. ANDROID APPS SECURITY CHALLENGES 37

the most sophisticated tools, as it analyses both in-component and cross-component

communications to detect component hijacking vulnerabilities. CHEX accomplishes this

task by tracking taints between externally accessible interfaces and sensitive sources or

sinks. Finally, Epicc [194] goes beyond ICC vulnerability detection, as it can also be

used for detecting Apps that may exploit a given vulnerability.

Permission Usage analysis

A number of studies and tools have been devoted to the analysis of the use of permissions.

Barrera et al. [57] studied the permission usage patterns of third party apps by applying

self-organizing maps. Stowaway [120] addressed the issue of overprivileged Apps,

i.e., those Apps that request permissions more than their necessities, and don’t follow

the principle of least privilege, by mapping Android APIs to their related permissions.

Overprivileged third party apps are also addressed by Vidas et al. [255] and PScout [52],

that provide different approaches to permission mappings. Whyper [199] and AutoCog

[214] are designed to bridge the gap between what user expects an App to do, and

what it really does. In particular, they assist the end users to understand permissions

using the available descriptions of each App. These systems automatically assess these

descriptions to understand why Apps use a specific permission by leveraging on natural

language processing techniques and machine learning.

Information flow analysis

As we discussed in section 2.3.3, one of the popular way to analyze Apps and detect

privacy leaks is by taint analysis. Dynamic taint analysis systems are particular resilient

to obfuscation attempts that leverage on the reflection mechanism, because they track all

function call when they are executed, no matter whether methods are invoked through

reflection or not. On the other hand, dynamic taint analysis approaches suffer from the

problem of code coverage, as they can only track the calls that are executed during the

analysis phase. This problem does not affect in principle static taint analysis techniques

because its aim is to cover all execution paths, the main problem in this case being code

38 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

obfuscation. Dynamic analysis can also be fooled by a malicious apps that can detect if

it is executed for analysis purposes.

It turns out that static and dynamic analysis can provide complementary information

for the analysis of the information flow. Static taint analysis is performed by SCanDroid

[128], LeakMiner [276], and AndroidLeaks [132]. One of the most recent works for

static taint analysis is FlowDroid [49], that has been also distributed under an open

source license. FlowDroid handle callbacks invoked by the Android framework through

the analysis of the App lifecycle, and it exhibits a low false alarm rate because context,

flow, field and object-sensitivity are considered. FlowDroid is configured to detect all

flows between a list of sources and a list of sinks inferred by their SuSi project [215],

which automatically detect sources and sinks from Android OS source code by machine

learning techniques. For example, if one of these tools finds a flow in an App between

a source like the getSimSerialNumber function, which returns the serial numbers of

the device SIM card, or the EditText function containing a password, and a sink like

sendTextMessage function, it means that this App can send the serial number of the SIM

card or the password via SMS.

Android sandboxes

In addition to Android OS instrumentation for dynamic analysis mentioned in sec-

tion 2.3.3, some other approaches monitor Apps during their execution time based on

virtualization [63,239,256]. For example, DroidScope [274] is a VM-based analysis plat-

form which runs the whole Android platform on the Qemu emulator [29] to reconstruct

both the OS and Dalvik level views of the system, such as the Memory and Register

read/write APIs, the Linux System calls, and the Dalvik APIs, like the interpret Java

object. Copperdroid [218] is another examples in this group, that claims high perfor-

mance and portability. It automatically reconstruct the behaviors of Android malware by

executing it in a Qemu environment. It monitors all system calls because the analysis is

carried out by leveraging on the binder protocol, and then the analysis of the system calls

is performed outside of the emulator, so that it is transparent to the malware that runs

2.4. ANDROID APPS SECURITY CHALLENGES 39

in the system. It can also extract additional behaviors by looking at the information in

the manifest file as the list of broadcast Receivers. Crowdroid [69] and Paranoid [211]

are other examples of dynamic analysis that run on the device causing a computational

overhead estimated in 20% . In particular, Crowdroid collects system calls on the device,

and sends the statistics to a centralized server. Paranoid runs a daemon on the phone

to collect behaviors and then it sends the behaviors to a cloud-based server. Finally,

NetworkProfiler [87] detects Android fingerprint by analyzing the real-world HTTP

traffic flowing thorough the cellular provider network.

Detection of repackaged Apps

App repackaging is a kind of attack performed by first altering a pre-existing legitimate

App to hide a malicious function, and then publishing the repackaged App in Google

Play with a similar name. Although the digital signature changes, the users usually are

not able to distinguish an official/legitimate App from malware, as the most frequent

repackaged Apps are games, utilities and porn Apps. DroidDream malware is such a

prominent example downloaded by 250K users in 2011 [175]. This kind of attacks can

be worse if the digital signature of the malware remains the same as the original one.

In 2013, The Bluebox Security research team discovered a vulnerability [64], Android

Master Key Exploit, in the Android security model which was patched by Google in

February 2013. The vulnerability allowed the attackers to inject malicious code into

legitimate apps without invalidating the digital signature, completely unnoticed by the

app store, the phone, or the end user. This serious Android vulnerability allowed an

attacker to hide code within a legitimate App, repackage the App, and then use the

existing permissions to perform sensitive functions through those apps.

To defend against this threat, DroidMOSS [289], DNADroid [84], and PiggyApp [288]

were developed for detecting repackaged Apps in the Android App market. DroidMOSS

leveraged on opcodes in the Dalvik byte code, while DNADroid used program depen-

dency graphs between methods, PiggyApp leveraged on a number of information as the

requested permissions, the Android API calls used, the involved intent types, the use

40 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

Table 2.5: Comparison between App analysis techniques

Name Type ICC NC Analyzed Data Auxiliary Tool
Information flow analysis

SCanDroid [128] S × FCG , ACO WALA
FlowDroid [49] S × × FCG ,LFC , ACO Soot, Dexpler, Heros
DidFail [162] S × C FG ,FCG ,LFC , ACO FlowDroid, Epicc
IccTA [167] S × C FG ,FCG ,LFC , ACO FlowDroid, Epicc

Vulnerability analysis
Woodpecker [142] S × C FG baksmali, Soot, WALA
CHEX [178] S × C FG DexLib
ComDroid [78] S × C FG Dedexer
Epicc [194] S × C FG ,FCG Dare, Soot, Heros
SEFA [263] S × PER, API ,FCG —
Fratantonio et al.’14 [208] S × × C FG AndroGaurd

Repackaged App Detection
PiggyApp [288] S × PER, API , AU T baksmali
DNADroid [84] S × × PDG baksmali
DroidMOSS [289] S × × OPC baksmali

Malware Detection
DroidMat [262] S × PER, ACO, API apktool
Drebin [48] S × PER, ACO, HCO, API ,ST R —
DroidMiner [275] S × FCG ,C FG , API —
DroidSIFT [280] S × ADG Soot, Epicc
Crowdroid [69] D SY C Strace

Anomaly Detection
pBMDS [268] D SY C Qtopia
Andromaly [232] D × × SMD, N ST —
STREAM [41] D × × SMD Emulator, Monkey
Shabtai et al.’14 [233] D N ST —

App monitoring sandbox
CopperDroid [218] D SY C QEMU, AndroGaurd
DroidScope [274] D API ,OPC QEMU

-Information extracted from Manifest file
ACO : App components, HCO : Hardware Components, PER : Permissions
-Information extracted from disassembled code
ADG : API dependency Graph, API : App Programming Interface, C FG : Control Flow
Graph
FCG : Function Call Graph, OPC : Opcode of Instructions, PDG : Program dependency
Graph
ST R : Strings, LFC : Lifecycles
-Information extracted from META-INF subdirectory
AU T : Authorship information
-Information extracted during run-time
N ST : Network Statistics, SY C : System calls, SMD : System metadata

2.4. ANDROID APPS SECURITY CHALLENGES 41

of native code or external classes, as well as the authorship information to discriminate

repackaged Apps from the original App in the Google market or third-party markets.

DroidRanger [296] was a further approach that combined both static and dynamic anal-

ysis to detect malicious Apps in the existing Android marketplaces. Vidas et al. [253]

showed that some alternative markets distribute repackaged Apps containing malware.

Their proposed approach, named Appintegrity, mitigated this situation with a simple

verification protocol. AppInk [287], on the other hand, prevented the repackaging of

legitimate Apps by including a transparently-embedded watermark when generating the

APK from the source code. Finally, DIVILAR is an approach based on a virtualization

based protection scheme to enable self-defense against App repackaging [286].

Anomaly detection

Anomaly-based malware detection systems refers to algorithms designed to detect An-

droid malware based on heuristic rules rather than signatures. Anomaly-based detection

is usually carried out in two phases: the training (or learning) phase, and the detec-

tion phase. The main advantage of anomaly-based detection systems is their ability to

generalize from known malware samples, and thus detect new malware samples. On

the other hand, their drawback is the potential generation of high false alarm rates. In

order to maximize the detection rate, while keeping low the rate of false alarms, one of

the most important issues is the extraction and selection of effective features that allow

discriminating malware and benign apps.

Teufl et al. [249] proposed a learning-based malware detection system based on the

metadata associated to each app within the Google play market, such as the permissions,

the ratings, and information about the developer. DroidMat [262] is one of the first static

analysis systems for Android malware detection based on the analysis of App packages

by machine learning techniques. It considers static information such as permissions,

components, Intents and API calls for characterizing the behavior of Android Apps. Then,

it applies the K-means clustering algorithm to categorize Android malware. Finally, it

uses the k-NN classification algorithm to classify the App as benign or malicious. Some

42 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

approaches [75, 203, 228] use machine learning techniques to automatically classify

apps as potentially malicious based on the permissions. In addition to permissions,

Drebin [48], DroidMiner [275] and DroidSIFT [280] extract more information through

static analysis such as, APIs usage, strings, the control flow graph, the API dependency

graph, and use these information as a set of features to distinguish malware from benign

Apps.

Static analysis approaches offer a partial view on the behavior of the system, as not all

the behaviors observed at runtime can be captured. Accordingly, a number of techniques,

which are just few, have been proposed that base of their analysis on features extracted at

runtime [99, 268, 278], thus the name is dynamic analysis. For example, Stream [41] is

a distributed App analysis tool that leverages on system metadata from battery, binder,

memory, network, and permissions to perform malware detection, while Andromaly and

some other similar techniques [186, 232, 233] perform Android malware detection by the

analysis of network traffic generated by the Apps.

2.4.5 App layer access control

The Inline Reference Monitor (IRM) [112] is a mechanism that has been proposed

to enable access control by adding a reference monitor to the App. With respect to

the access control mechanisms in the kernel layer, that we discussed in section 2.3.3,

the controls enforced by IRM don’t require context switches in the kernel, so it has a

lower performance overhead. Two examples of such solutions specifically developed for

Android systems are AppGuard [56], and Dr. Android and Mr. Hide [155]. Aurasium

[271] is another IRM solution that first repackage each App with an injected native

library. The repackaged App can then be installed on a user’s phone, so that any defined

policies can be enforced at runtime without altering the original App functionalities. This

mechanism can enable monitoring Internet connections, IPC binder communications,

and file system manipulations. The main deficiency of IRM solutions is that a malicious

App can detect the presence of an IRM, and can then bypass the system by native code

or Java reflection.

2.4. ANDROID APPS SECURITY CHALLENGES 43

2.4.6 Protection against App analysis

One common way to protect Apps against static analysis is through obfuscation mecha-

nisms. The term obfuscation refers to a number of techniques that makes App and its

textual data hard to understand. Software developers sometimes employ obfuscation tech-

niques because they want to protect their programs against reverse-engineering attempts.

ProGuard [42] is a built-in tool in the Android SDK that obfuscates and optimizes the

code by removing unused code, renaming classes, fields, and methods. This free tool

has a commercials companion, DexGuard [22], with the additional ability of performing

more sophisticated obfuscations than the ones included in ProGuard, such as native-code

and class encryption, emulator detection, and the use of reflection mechanisms for func-

tion calls. Malware coders have used obfuscation techniques to make their Apps more

difficult to analyze, and thus evade detection. DroidChameleon [217] showed that a large

fraction of commercial Android anti-malware products can be evaded through the use

of trivial obfuscation techniques. More recently [179] showed that current versions of

anti-malware products for Android are robust against trivial obfuscation mechanisms,

even if they are still vulnerable when sophisticated techniques are employed.

In addition to techniques aimed at mislead or evade detection by static analysis tools,

[207, 254] explored the possibility to fingerprint Android sandboxes to evade dynamic

analysis tools. They found that all Android sandboxes are susceptible to evasion as any

Android App can check for the presence of emulators by some heuristics. To defend

against these evasion attempts, Morpheus [157] has been proposed as a framework that

systematically discovers the execution of such heuristics to prevent malicious Apps from

bypassing emulator-based analysis. Recently, it has been shown that static analysis can

be completely circumvented, while dynamic analysis can be somewhat circumvented,

by hiding the malicious code through dynamic code loading techniques. This technique

works as follows. Apps can load a piece of code (e.g. downloaded from the Internet) dy-

namically at runtime without requesting any permissions. There are different approaches

such as loading JAR files, DEX files, Linux shared objects (Native code), or using code

44 CHAPTER 2. OVERVIEW ON ANDROID SECURITY

from other apps. The only verification mechanisms that are enforced on the external

code loaded by the Application are the App’s permissions. Consequently, malicious apps

can use this technique to circumvent offline analysis tools as the Verify Apps tool used

before an App is published in the Google Play market. On the other hand, benign apps

can use code-loading techniques for downloading updates, as well as advertisements,

so potentially causing dangerous vulnerabilities that allows code injection threats by

hijacking the HTTP connection [62]. One of the solutions proposed so far in the litera-

ture [208] consists in the verification and check against a whitelist of the piece of code

that is loaded, before it is executed.

Chapter 3

Clustering Android Malware

Families by Http Traffic

3.1 Introduction

A botnet is a network of compromised machines (bots) commanded and controlled by a

bot master for massive attacks such as dispatching unsolicited emails (SPAM), launching

Distributed Denial of Service (DDoS) attacks, and performing information theft. Botnets

leverage on different approaches such as encrypted HTTP protocol, fast-flux, and domain-

flux techniques to be resilient against detection. Botnets may rely on 2 types of command

and control (C&C) channels: (i) centralized C&C such as IRC and HTTP; (ii) distributed

C&C such as P2P. C&C traffic is hard to identify and to be blocked either at the network

level (e.g., by setting appropriate rules on a firewall) or at the DNS level (e.g., by domain

blacklisting).

As the source of the user-generated network traffic is moving from desktop computers

to mobile devices, mobile malware have become a serious concern that target in particular

the Android platform [238]. Android botnets [191] are malware families that take control

of Android devices in the same way as malware that are designed to set up a botnet of

45

46 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

desktop computers. Commands to mobile bots are sent through different channels such

as HTTP, SMS, and the Google Cloud Messaging (GCM) service. Although the Android

system itself and mobile anti malware products introduced many security policies and

techniques to protect Android devices against malware, mobile botnets are still on the

rise.

As large numbers of new mobile malware samples are collected on a daily basis,

new techniques are needed for a fast and accurate assessment of the family the malware

belongs to. We focus our analysis on malware samples that send and receive data using

the HTTP channel. We chose HTTP for our study as 70% of the generated network

traffic by Android apps is spread through this protocol [87]. In addition, most of the

web-based traffic generated by Android apps does not use the HTTPS protocol [259]. In

particular, more than 99% of Android botnets use the HTTP-based web traffic to receive

bot commands from their C&C servers.

In this chapter we show that mobile malware can be effectively clustered and detected on

the basis of statistics calculated on the HTTP traffic that is generated by the applications.

To do so, we leveraged on a previous work [205] that proposed a technique to cluster and

detect malware for desktop architectures. Results show that not only the same rationale

is still valid for mobile devices, but also that a simpler system can be used when dealing

with mobile malware.

In summary, this chapter aims to answer the following research questions:

RQ1 Can we use the HTTP network traffic generated by Android apps to detect malware

families?

RQ2 Which features extracted from the HTTP traffic are effective for clustering and

detecting Android malware?

RQ3 How well do the performances on Android malware compare to the ones on desktop

malware?

Accordingly to such questions, the contributions of the chapter are the following:

• We show that the analysis of the HTTP traffic is prominent for the detection of Android

3.2. PROPOSED SYSTEM 47

malware.

• We propose a malware detection system that is both efficient and effective, as it

leverages on seven statistical features that allow for reliably clustering Android

malware into families. From such cluster we extract signatures with which it is

possible to precisely detect malware belonging to the clustered families.

• The overall performances of the system for mobile malware clustering and detection

are better than the ones related to a similar system developed by some of the authors

for traditional malware [205]. The reason behind this behavior can be related to the

smaller variability in the statistics of the HTTP traffic, as HTTP communications

among apps are generally more limited when compared to desktop ones. In addi-

tion, mobile botnets have to control less functionalities and applications compared

to Desktop ones. In this way, the traffic generated by malware samples belonging

to the same family can be more easily separated from the traffic generated either

by benign applications or malicious applications belonging to different families.

The rest of this chapter is organized as follows:

The method used for the experimental evaluation is presented in Section 5.3. Section

3.3 shows the results of the experiments carried out on a significant dataset of Android

malware samples. Section 3.4 provides an overview of the closest state of the art

approached to ours, as well as comparing them with our work; Conclusions are drawn in

Section 3.5.

3.2 Proposed System

The architecture of the proposed system is depicted in Figure 3.1. The detail of data

gathering step expose in §3.3.1 while the clustering and the signature generation step is

discussed as follows.

We relied on an algorithm that has been proposed by some of the authors for clustering

malware that target traditional desktop systems [205], and tested if the proposed scheme

48 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

Gathering
Network
Traffic

CopperDroid
Anubis

TraceDroid
TCPDump

Apps with
Internet

Permission

Clustering

Coarse-grained
Birch

Fine-grained
Hierarchical

Signature
Extraction

Length
5,10,15

Final
Decision

Test Apps

PCAP Clusters Sigs

Figure 3.1: Overview of our approach.

was still valid for clustering Android malware on the basis of the HTTP traffic that

they generated. The algorithm adopts a multi-step clustering procedure to define the

clusters and generate the signatures for malware detection. The multi-step procedure

was proposed to speed-up the process, by first using statistical traffic features to perform

a coarse- grained clustering, and then by employing a set of structural features (i.e.,

features that take into account the content of each HTTP connection) to perform a fine-

grained clustering. Both the coarse-grained and fine-grained clustering procedures are

carried out by resorting to hierarchical clustering techniques, where data is aggregated in

nested clusters and the clustering process terminates when further aggregation merges

two distant clusters. In the following we will briefly recall these steps:

1. Coarse-grained Clustering: to perform this step, the BIRCH algorithm is em-

ployed [281]. The main goal of BIRCH is to perform approximate clustering of

arbitrarily large datasets with a guaranteed memory bound and with I/O access

costs that grow linearly with the size of the dataset. Whenever the clustering

process approaches the preset memory limit, the clustering algorithm will further

compress the dataset, thus producing a less fine-grained representation of the data

and thus resulting in fewer, larger clusters. The term coarse grained refers to the

use of simple statistical features extracted from the HTTP traffic to characterize

the connections. The seven features that have been used are the following:

f1 : the total number of HTTP requests

3.2. PROPOSED SYSTEM 49

f2 : the number of GET requests

f3 : the number of POST requests

f4 : the average length of the URLs

f5 : the average number of parameters in the request

f6 : the average amount of data sent by POST requests and

f7 : the average length of the response

The size of a cluster can be measured by its radius, whose value can be limited to

avoid generating too large clusters that might incorrectly group the connections.

After this process, the clusters that are obtained will contain HTTP connections

featuring similar statistical features. However, such connections might be related

to different malware families. For this reason, each cluster needs to be further

refined through a fine-grained clustering process, in order to further split the

coarse-grained clusters that might contain different families.

2. Fine-grained Clustering: To perform this step, a single-linkage hierarchical clus-

tering algorithm is used and the distance between HTTP requests is computed

according to the four parameters:

f1 : the request method used

f2 : the page

f3 : the set of parameters names

f4 : and the set of parameters values

The reader that is interested in a detailed description of the distance computation

employed at this step could check [206].

3. Signature Generation: Whereas clustering allows for grouping together malware

samples belonging to the same family, further information can be extracted by

the samples in the same cluster, leading to the generation of a signature that can

be used for detection. To this end, the Token-Subsequence algorithm described

in [189] can be used to extract a signature from each group of malware. These

50 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

signatures are then used by a network IDS to perform the detection of malicious

traffic generated by malware samples.

3.3 Experiments

This section represents the main contribution of our work, as we aim to assess if the

technique proposed for traditional desktop malware can be used to effectively cluster

Android malware. In particular, our experiments had three main goals:

• verifying if the HTTP traffic generated by Android malware can be used to reveal

the family they belong to;

• assessing which of the features that can be extracted from HTTP traffic are effective

for malware clustering;

• checking if the result of the clustering process allows for extracting malware

signatures that could be used by a NIDS.

In the following, we first describe the dataset used in the experiments and we present the

measures used to evaluate the results. Then, we report and discuss all the experimental

results that we attained.

3.3.1 Dataset

We gathered a large number of malicious Android applications to evaluate the effective-

ness of the clustering procedure, and a large number of benign Android applications

to evaluate the effectiveness of the signatures in terms of false positive rate. For the

malicious samples, we focused on Android malware families that were related to botnets.

We also analyzed malware families that delivered information to a remote server through

HTTP.

The samples were gathered from Malgenome [292], Contagio [201], Drebin [48]

and VirusTotal [35]. There were many malware families that interacted with their C&C

3.3. EXPERIMENTS 51

servers by HTTP, SMS messages, emails, etc. As the majority of malware families use the

HTTP protocol, we just considered the families that employ HTTP for their C&C channel.

For each sample, we extracted the HTTP information by using CopperDroid [14], or by

employing either Anubis [21] or TraceDroid [33] for the cases in which CopperDroid

could not generate network traffic. To retain the samples that actually generated network

traffic, we removed the ones that did not produce any valid HTTP communication due to

the unavailability of their C&C servers.

To avoid inaccuracies in assigning each malware sample to a family, we developed

a tool1 that automatically scans each sample using Virustotal, and creates a naming

convention based on the outputs of different anti-malware products. The list of the

considered malware families is shown in Table 3.1.
1https://github.com/ManSoSec/Auto-Malware-Labeling

52 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

Malware family # Samples Malware family # Samples

AndroRat 11 Fjcon 106

AVPass 1 Geinimi 24

BackFlash 2 GoldenEagle 2

BadNews 2 Lien 6

BaseBridge 112 NickiSpy 2

BgServ 45 Obad 1

Chulli 2 Plankton 119

DroidKungFu 86 RootSmart 25

Extension 69 Skullkey 1

FakeAngry 151 SMSpacem 5

FakePlay 8 Tracer 13

FakeTimer 13

Total 806

Table 3.1: Malware families used for the experimental assessment of the effectiveness of

the HTTP clustering procedure

Benign Dataset Number of requests

Web Browser 1102237

Android Apps 1037555

Total 2139792

Table 3.2: Number of benign requests generated by browsing web sites, and by Android

applications

There are two columns in Table 3.1. The Malware family column refers to the name

of the malware variant, and the related number shows the considered malware samples

3.3. EXPERIMENTS 53

for that variant.

In order to evaluate the false positive rate, we also collected a dataset of legitimate

traffic. We collected over 2×106 HTTP requests from October 2014 to December 2014.

Part of this traffic was achieved by sniffing the HTTP requests generated by crawling 173

most visited web sites (without considering search engines) in an Android emulator. The

other part of the benign dataset contains HTTP traffic generated by Android applications.

To generate such traffic, we performed two steps: (i) we collected applications that feature

the permission android.permission.INTERNET by crawling2 Google Play. We also

obtained the thirty top free applications in Google Play under different categories such as

Comics, Communication, News and Magazines, Shopping, Social, Sports, and Travel; (ii)

we emulated the execution of the Android applications by simulating a real user behavior

through the Android testing framework named Uiautomator [34]. Uiautomator lets users

test the application user interface (UI) efficiently, and we exploited it to automatically

interact with all of the elements in the applications’ layouts to generate HTTP traffic.

During the interaction, the network traffic is captured by the aid of the tcpdump tool,

which collected several Gigabytes of benign HTTP traffic. As shown in Table 3.2, both

the web browser procedure and the collection of HTTP traffic from benign applications

produced around one million requests.

We extracted the seven statistical features from HTTP requests and responses by

Jnetpcap [26] Java library. Because the values of the features are in different ranges, we

performed feature normalization by re-scaling feature values according to the following

equation:

x∗
i = xi −mi n(xi)

max(xi)−mi n(xi)
(3.1)

where the min and max are computed across the whole dataset.

3.3.2 Evaluation of the proposed system

To evaluate the performances of the system, the following measures have been used:
2https://github.com/egirault/googleplay-api

54 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

(A) Cohesion:

The cohesion of a cluster Ci measures the average similarity between two samples

in the cluster with a value between zero and one. It will be maximum (one) when

the malware samples in a cluster belong to the same family, i.e., when they share the

same label. The value zero, on the other hand, indicates that the malware samples

are from different families. Whereas the HTTP traffic is similar according to the

features employed, the labels of the samples are different. The average value has

been computed only for those clusters that contain at least two malware samples. In

fact, clusters containing just one malware sample have a cohesion equal to one by

definition, and including them would mistakenly bias the final result.

(B) Separation:

The separation between two clusters Ci and C j measures the average family label

distance between malware belonging to Ci and malware belonging to C j . This gives

us an indication about whether the malware samples in two different clusters belong

to different malware families or not. In order to understand how much the whole

of clusters are well separated, instead of calculating the average of the separation

between clusters, we calculate the percentage of the number of clusters that have a

separation above a threshold. The detailed definitions of the measures of cohesion

and separation can be found in [206].

(C) Detection rate:

The detection rate measures the percentage of malware that is detected by relying

on the signatures extracted by the clusters. The detection rate is calculated for each

value of the radius parameters that controls the number of generated clusters in the

BIRCH algorithm. The extracted signatures are then included in Snort, [31] which

is used to process network traces produced by malware samples and legitimate apps.

Then, the alerts are collected and the detection rate is calculated as follows:

D.R.(%) = Nmal w ar e

N
∗100 (3.2)

3.3. EXPERIMENTS 55

where Nmal w ar e is the number of samples for which Snort generates at least one

alert, and N is the total number of samples.

(D) False positive rate:

The false positive measures the percentages of false alerts that the IDS outputs

according to the signatures extracted from the clusters, and it is computed according

to the following formula:

F.P.(%) = Nal er t s

Nr equest s
∗100 (3.3)

where Nal er t s is the sum of all alerts and Nr equest s is the number of all the requests.

3.3.3 Experimental Results and Discussion

Cohesion vs. Separation

We carried out the experiments by running the complete two-step clustering algorithm.

First, we run BIRCH on the statistical features, and we applied the single-linkage

hierarchical algorithm to refine the clustering result of the first step. Then, we compared

these results with the ones obtained by running only the BIRCH algorithm on the

statistical features. The metrics used to compare the results are Cohesion and Separation.

We computed these two metrics for 16 values of the R parameter, i.e., the radius that

controls the number of clusters generated by BIRCH in the range from 10-7 to 100.

Surprisingly, we noticed that using the two-step algorithm leads to the same Cohesion

and Separation values that are obtained when using BIRCH stand-alone. Figure 3.2

shows the values of the average Cohesion of all clusters for different values of radius R

used in the experiments. Cohesion exhibits only small variations with different values

of the radius. In particular, the average Cohesion is around 0.95 for values of the radius

lower than 10-3, and it slightly decreases in the interval between 10-3 and 5×10-1. From

0.88, the average Cohesion increases again. Achieving high Cohesion means that the

malware inside each cluster are very similar to each other and therefore they are properly

clustered in the same family. However, we will see that this is not enough to produce

56 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

reliable malware signatures. Figure 3.3 shows the values of the Separation index. The

percentage of pairs of clusters with a separation index higher than 0.1 ranges from 84.01%

to 96.66%. Attaining high Separation values means that the clusters are better separated.

By examining the two figures, it turns out that the best trade-off between Cohesion and

Separation is for values of the radius between 0.5 and 1.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.7

0.75

0.8

0.85

0.9

0.95

1

Cohesion

Radius

C
I

Figure 3.2: The average value of the cohesion indexes CI.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

70

75

80

85

90

95

Separation

Radius

%
 o

f
S

I
>

 0
.1

Figure 3.3: The percentage of pair of clusters with a separation index SI higher than 0.1.

3.3. EXPERIMENTS 57

Detection Rate vs. False Positive Rate

To compute the detection rate and the false positive rate, we extracted the malware

signatures (which are a part of the request URL) from the clusters. In the experiments,

we extracted different signatures for three different values of the minimum (Min) length

of the signatures, i.e., 5, 10, and 15. Some examples are shown below :

Sig1: content:"POST"; distance:0; nocase; content:"/ad"; distance:0; nocase;

The above signature has length 3, which is not in none of Min 5, 10, and 15 categories.

Sig2: content:"POST"; distance:0; nocase; content:"/aar.do"; distance:0; nocase;

The above signature has length 7, which is in Min 5 category but not in 10 and 15

categories.

Sig3: content:"POST"; distance:0; nocase; content:"/api/proxy"; distance:0; nocase;

The above signature has length 10, which is in Min 5 and 10 categories but not in the

Min 15 category.

Sig4: content:"GET"; distance:0; nocase; content:"/adv/d?t=135782568"; distance:0;

nocase;

The above signature has length 18, which is in all of Min 5, 10, and 15 categories.

The detection rate calculated for the three different signature lengths and for the

values of the radius reported in the previous subsection are shown in Figure 3.4. The

values of the detection rate are quite high, and allow for precisely detecting the network

traffic generated by malicious applications. The false positive rate accounts for the

specificity of the signatures, and it is computed to evaluate the fraction of benign HTTP

requests that match with the signatures. The results are shown in Figure 3.6. Both the

detection and false positive rates do not improve if the two step clustering is employed

instead of the stand-alone BIRCH (see Figure 3.5 and Figure 3.7). Although achieving

lower Cohesion and higher number of rules in the range of 10−3 and 100 could lead

to producing more signatures with less integrity, it could significantly worsen the false

positive rate.

The appropriate set of signatures are those that allow attaining a high detection rate

and low false positives. To this end, we observe that the best values for the detection rate

58 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

(very close to 100%) were obtained by signatures with minimum length equal to five for

all values of the radius. However, if we take into account the corresponding values for

the false positive rate, it turns out that the best trade-off is reached when the radius = 0.9,

which allows to attain a false positive rate of around 7%.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

Detection Rate (%)

Radius

D
.R

.
(%

)

MIN−SIG−LEN=5

MIN−SIG−LEN=10

MIN−SIG−LEN=15

Figure 3.4: The percentage of detection rate D.R. (%) obtained with different set of

signatures and different values of the radius, by only doing coarse-grained clustering.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

Detection Rate (%)

Radius

D
.R

.
(%

)

MIN−SIG−LEN=5

MIN−SIG−LEN=10

MIN−SIG−LEN=15

Figure 3.5: The percentage of detection rate D.R. (%) obtained with different set of

signatures and different values of the radius, by doing fine-grained clustering in addition

to coarse-grained clustering.

3.3. EXPERIMENTS 59

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

40

False Positive Rate

Radius

F
.P

.R
.
(%

)

MIN−SIG−LEN=5

MIN−SIG−LEN=10

MIN−SIG−LEN=15

Figure 3.6: The percentage of false positive rate F.P.R. (%) obtained with different set of

signatures and different values of the radius, by only doing coarse-grained clustering.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

40

False Positive Rate

Radius

F
.P

.R
.
(%

)

MIN−SIG−LEN=5

MIN−SIG−LEN=10

MIN−SIG−LEN=15

Figure 3.7: The percentage of false positive rate F.P.R. (%) obtained with different set of

signatures and different values of the radius, by doing fine-grained clustering in addition

to coarse-grained clustering.

Number of Clusters and Number of Signatures

Although the efficiency of the detection system is important, the number of clusters

(Figure 3.8) and signatures (Figure 3.9) need to be evaluated. The number of clusters

60 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

is correlated to the value of the radius. If the radius is large, the number of clusters is

small, meaning that each cluster is likely to contain malware from different families. In

our experiments, the number of clusters for a radius value = 10-7 is 501, whereas the

number of clusters is 5 for radius = 0.9. As we mentioned, the Snort rules are based

on the signatures generated from the clusters, and they are correlated with the number

of signatures. A large number of clusters may translate into a redundant number of

signatures, as malware belonging to the same family may be grouped in different clusters.

Consequently, even if the detection rate does not vary, the false positive rate and the IDS

speed exhibit lower performances.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

Number of Clusters

Radius

N
u
m

.
C

lu
s
te

rs

Figure 3.8: The total number of clusters (Num. clusters) for different values of the radius.

3.3. EXPERIMENTS 61

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

250

300

Number of Rules

Radius

N
u
m

.
R

u
le

s

MIN−SIG−LEN=5

MIN−SIG−LEN=10

MIN−SIG−LEN=15

Figure 3.9: The total number of the Snort rules (Num. rules) obtained from the signatures

for different radius values.

3.3.4 Comparisons with HTTP based clustering for traditional

desktop malware

As Android has been largely adopted only recently compared to traditional desktop

systems, the number of available Android malware samples that generate malicious HTTP

traffic are fewer than the analogous desktop malware samples. In general, compared to

the work on traditional desktop malware [205], clustering Android malware samples

by HTTP traffic traces shows that: (i) the value of cohesion is higher, (ii) the value of

separation is lower, (iii) the detection rate is higher, (iv) and the false positive rate is

lower. Thus, grouping malware samples according to the generated HTTP traffic they

produce is effective not only to detect malware families, but also to produce effective

malware signatures. In order to show the basic motivation behind this behavior, we

computed the mean and the variance of each statistical feature for malware samples

belonging to both platforms. We show this comparison in Table 3.3.

Windows malware exhibit a higher mean value on features such as the number

of Get requests, and the length of sent and response data. Conversely, the number

of Post requests and parameters, and the length of URL are larger for the Android

malware. The limited capability of mobile devices compared to desktop PCs can be

62 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

Platform Get Post Url Param Sent Response

Windows 19.1(183.1) 1.1(10.3) 51.9(58.0) 1.4(3.3) 84.5(201.5) 81E+4(88E+5)
Android 3.8(6.1) 2.8(3.3) 87.9(98) 4.4(6.5) 73.7(97.0) 88E+2(15E+4)

Table 3.3: Comparison on Average (Standard deviation) for each statistical feature

the reason for the low interaction of mobile malware with their C&C servers. In other

words, desktop applications tend to produce multiple HTTP requests to perform an

action, and Android apps tend to produce one long HTTP request containing all the

information. Another possibility is that mobile botnets have to control less functionalities

and applications compared to Desktop ones. For example, the higher value of the average

Get requests for Desktop malware shows that such malware resort to more computational

resources to generate as many requests as possible. Consequently, they do not need

to create long URLs with different parameters. Conversely, as mobile devices have

limited computational capabilities, malicious applications are developed to keep the

number of requests as small as possible. Thus, they are forced to enrich their requests by

using a larger number of parameters. In addition, the analysis of the standard deviation

values allows for a better understanding of the diversity of requests. As an example, the

diversity of the number of requests and of the amount of transferred data is much higher

in Desktop malware compared to Android malware. This examples provide reasons for

the effectiveness of the clustering by just using the statistical traffic features, and for

the higher performances in malware detection for mobile devices compared to desktop

systems.

3.4 Comparison with Related Works

There are some proposed security mechanisms to analyze malicious Android app by

observing the network traffic they generate. In the following, we will briefly review some

of the mechanisms.

Andromaly [232] is a malware detection system that employs machine learning

3.4. COMPARISON WITH RELATED WORKS 63

and leverages information such as the CPU usage, active processes, and the amount of

transferred data through the network. In another work [233] by the same authors, the

analysis was focused on the network traffic generated by Android applications. The main

goal of this system was the identification of malicious attacks perpetrated by means of

repackaging. The authors showed that applications could be subdivided into a number of

categories according to the statistics of their transferred data. They also concluded that

deviations from specific normal behaviors could be classified as malicious activity.

Narudin et al. [186] proposed another detection approach based on both TCP and

HTTP protocols. They considered network traffic features such as some basic information

from the TCP header (e.g., the frame length), content based features such as the number

of HTTP requests, and time-/connection- based features such as the number of frames in

a specific time interval or connection. Another nearly similar detection approach [47] was

proposed by using a classification system, which is fed just with some time-/connection-

based features, and was tested on a small dataset containing 43 malware samples.

NetworkProfiler [87] is another approach that performs application analysis based on

the HTTP header. They generated fingerprints from the network usage of each app, and

they were able to use them to detect malicious activities by inspecting the traffic logs

produced by a network provider. Subsequently, the same authors resorted to network

traces to identify Android applications that use in-app advertisements [250]. Zarras et

al. [279] proposed a system that analyzes, among the others, the sequence of headers in

HTTP communications to detect malicious traffic generated by botnets. To this end, they

extract HTTP traffic generated from both desktop and mobile applications.

Apart from identifying coarse-grain behaviours such as the presence of maliciousness

in a network traffic flow, extracting finer-grain information from the device communica-

tions can be interesting for an adversary. Conti et al. [81] designed a system based on

network flows analysis and machine learning techniques to identify user actions such as

sending an email or posting a message on a friend’s wall in online social networks. Wu

et al. [264] proposed an approach based on extracting the characteristics of the app from

the HTTP traffic to detect repackaged applications on the Android markets.

64 CHAPTER 3. CLUSTERING ANDROID MALWARE FAMILIES BY HTTP TRAFFIC

Approach
Analyzed protocol

Purpose
TCP HTTP

Andromaly [232] Malware detection
NetworkProfiler [87] Android fingerprinting
Tongaonkar et al. [250] Identification of apps with ads
Shabtai et al. [233] Malware and Repackaging detection
Narudin et al. [186] Malware detection
Arora et al. [47] Malware detection
Conti et al. [81] Identification of user actions
Wu et al. [264] Detect repackaged apps
The method in this work Malware detection

*All the systems use machine learning techniques

Table 3.4: Comparison of different network analysis techniques for Android applications

Table 3.4 provides a summary of the aforementioned network-based analysis ap-

proaches, and compares them to the characteristics of the method that we employ in this

work. Our method is the first approach that extracts a few statistical features just from

the traffic HTTP header for the task of Android malware detection.

3.5 Conclusions

In this work, we performed an analysis of Android botnets that employ HTTP traffic for

their communications. By clustering the generated network traffic of different Android

malware with the usage of an algorithm originally developed for grouping desktop

malware, we showed that the samples belonging to the same malware family have similar

HTTP traffic statistics. Moreover, a small number of signatures can be extracted from

the clusters, allowing to achieve a good trade-off between the detection rate and the false

positive rate. The possible reason of this behavior can be related to the higher uniformity

of the HTTP traffic generated by Android bot clients compared to the traffic generated

by Desktop bot clients.

Chapter 4

Detecting Misuse of Google Cloud

Messaging in Android Badware

4.1 Introduction

Mobile applications are often developed as client interfaces for accessing services pro-

vided by remote servers. In this setting, one of the challenges for developers is to timely

notify mobile applications, i.e., the clients, on any event that updates the status of the

application; e.g., messaging applications like WhatsApp need to notify their clients when

they receive a new message. It is clearly computationally convenient that an application

is notified only when new information is available on its server (i.e., through a push

notification), rather than frequently checking if there is a new message (i.e., using a pull

technique).

One of the most used services that allows implementing push notifications for Android

applications is Google Cloud Messaging (GCM). Thanks to its efficiency and simplicity,

GCM has also attracted the attentions of attackers. In fact, there are preliminary evidences

of the use of this library in several unwanted applications like adware and bots, which

we generically refer to here as badware, based on the ENISA threat taxonomy [1].

65

66
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

One possible case of GCM misuse is when it is transitively used in adware as many

advertisement libraries (adlibrary) use GCM. There is a belief that this type of software

is not exactly badware, and the boundary between adware and free benign applications

using built-in adlibraries is rather blurred than clearly defined [48]. However, applications

displaying ads are often undesired, because they drain battery life, consume unnecessary

bandwidth, and can slow down the app [144, 212]. In addition, they may also exhibit

sophisticated malicious behaviors like rooting the device.1 In addition to being used

in adware, GCM exhibits a number of desirable properties for attackers, rather than

pull services like HTTP, to be engaged as a command and control (C&C) channel.

The potential misuse of GCM in botnets was reported by the security community in

2012 [285], but the first real variant of botnet exploiting GCM for C&C was reported by

Kaspersky in 2013 [160]. Less than a year later, another report by AndroTotal discussed

the interest of attackers to exploit GCM channels in a malicious manner [43]. We discuss

the GCM mechanism in more detail in Section 4.2, along with examples of how it can be

exploited in malicious Android applications.

The only existing way to thwart GCM-based attacks is blocking the app’s GCM

registration ID at the GCM servers. However, this requires one to first detect the badware

channel, and no solution to assess the degree of suspiciousness of GCM channels has been

developed yet. One possibility could be to monitor network traffic of GCM channels, and

detect anomalous behaviors. Although such a solution may enable detection of 0-day (i.e.,

never-before-seen) botnet channels while operating at the server side, GCM messages

might be encrypted to circumvent tracking and detection. This motivates our proposal

of a client-side solution, presented in Section 4.3, in which we model the functionality

of GCM regardless of the content of messages, to be effective also against message

encryption. In Section 4.4, we empirically show that characterizing GCM services is

useful to achieve a more accurate detection of bot clients, as well as unwanted adware.

Our results show that the detection rate can be increased up to 2.4%, while the false

positive rate can be decreased up to 1.9%.
1http://www.androidauthority.com/new-android-adware-nearly-impossible-to-remove-654197/

4.2. BACKGROUND 67

To summarize, this chapter provides the following two main contributions.

(i) We build a model of GCM communications to evaluate the extent to which this

popular mechanism is misused in Android applications. To this end, we provide a

flow analysis for GCM services to be able to automatically detect flows originated

from GCM entrypoints.

(i i) We show how the extracted flows from GCM services can help one to more

effectively detect badware using GCM, where GCM contributes in the realization

of the malicious activities. Our approach for badware detection is based on machine

learning and, in particular, on a multiple classifier system (MCS) architecture.

We conclude this work by discussing the closest related work (Section 4.6) and future

research directions (Section 4.7).

4.2 Background

To better understand the whole GCM mechanism and how this service can be misused by

an attacker, in this section we first discuss how GCM works, and then report an example

of a dissected GCM badware.

4.2.1 Google Cloud Messaging

Google announced Cloud-to-Device-Messaging (C2DM) system in Google I/O 2010 as

a push mechanism for Android applications. It gradually became more efficient and was

renamed to Google Cloud Messaging (GCM) in Google I/O 20122. The new version

of GCM has received a lot of improvement such as being cross-platform (support iOS

and Chrome) as well as having simplified APIs, and was re-branded to Firebase Cloud

Messaging (FCM) in Google I/O 2016. Based on reports presented in Google I/O 2016,

Google receives around 2 millions queries per second, and more than 1 million apps have

been registered by GCM.
2https://developers.google.com/android/c2dm/

68
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

App servers

App

GCM lib

Message
queue

GCM servers

Message
queue

3. Send Registeration Id
4. Send a message

5. GCM servers deliver the message

1. App requests registeration
2. GCM Servers send registeration Id

Figure 4.1: Google Cloud Messaging Mechanism.

Figure 4.1 shows how the whole mechanism works. First, the application needs to

register itself to the GCM servers. After it receives a registration ID from the GCM

servers, it sends the registration ID to its server for further communications. Whenever the

App server needs to notify its clients, it can send data up to 4KB to a specific registration

ID or a group of IDs through the GCM servers. When no Internet access is available on

the client device, the messages accumulate in a queue on the server, and synchronize

with the client device when it returns online. The connection protocol between App

servers and GCM servers can be either HTTP or XMPP3. GCM provides a set of APIs

for sending messages from servers to applications efficiently and reliably. These APIs

can be categorized into 4 classes: Registration, an application needs a registration ID to

communicate; Send, server can send messages to a particular device (registration ID);

Multi-cast, it is possible to send messages to thousands recipients with a single request;

Time to live, setting TTL on each request allows GCM to know when to expire a message.
3It is a persistent, asynchronous, and bidirectional connection.

4.2. BACKGROUND 69

4.2.2 GCM Badware

We describe the two possible cases of use of GCM in badware, namely, bot clients and

adware, to better motivate how modeling GCM services can be beneficial in a detection

system.

Botnet. Many Android bot clients use unencrypted channels like HTTP to accept

messages from command and control bot masters [46]. However, the bot masters can

also take advantage of secure popular public services for attacks. Three types of secure

services that are frequently exploited by Android bot clients are email over SSL, GCM,

and social networks (e.g., Twitter) [251]. By using these services, attackers can launch

C&C attacks in a secure way, which is not easily detectable by normal TCP and HTTP

traffic analysis. Furthermore, defenders cannot employ simple server blacklisting to

mitigate such threats, because the email or GCM servers are used for badware as well as

benign applications.

To better explain the misuse of GCM for C&C purposes, Figure 4.2 presents a part

of a decompiled Maxit backdoor sample 4. It shows that after the bot client receives a

GCM message, the content of the message is accessible through the Intent parameter of

onMessage method (step 1). Then, the data is retrieved from the Intent by getExtras

method and passed to Process_Message method which separates the command (step 2,

3) and executes consequent actions based on the command. After doing the action, the bot

client sends an SMS to the attacker through sendTextMessage (step 5), which is located

in SendSMSNow method (step 4). The SMS contains the received original GCM message,

a retrieved data from SharedPreferences (e.g., IMEI) and the package name, which are

split by “|". Since the attacker might receive many SMS messages, one probable answer

to why the bot client sends the original GCM message along with the other information

is to make the content of SMS easier for attacker to comprehend. It is obvious that

as the received GCM message goes directly to sendTextMessage, there is an explicit

data flow between the Intent parameter of onMessage in GCMIntentService and the
4Badware’s MD5: 157febb16d16e8bcb5ba6564a2f7d320

70
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

package com.mxmobile.mxfdgoldrate;

import

android.telephony.SmsManager;

...

public class GCMIntentService

extends GCMBaseIntentService

{

...

protected void

onMessage(Context

paramContext ,

1: Intent paramIntent)

{

...

Bundle localBundle =

paramIntent.getExtras ();

if (localBundle != null) {

2:

Process_Message(paramContext ,

paramIntent ,

localBundle.getString (" message "));

}

}

public void

SendSMSNow(String

paramString1 , String

paramString2 , Context

paramContext)

{

...

5:

SmsManager.getDefault ().sendTextMessage(

paramString1 , null , paramString2 ,

paramContext , null);

}

private void

Process_Message

(Context paramContext ,

Intent paramIntent ,

String paramString)

{

...

Object

localObject2 =

paramIntent.substring (8).trim().

split("\\|");

3: String cmd =

localObject2 [1]. trim();

...

(+) if

(cmd.equalsIgnoreCase("IMEI"))

{

Object

localObject4 =

paramContext.getSharedPreferences (...);

str3 =

((SharedPreferences)localObject4).

getString("user_imei_id"...);

localObject4 =

((SharedPreferences)localObject4).

getString("Package_Name"...);

...

4:

SendSMSNow (... , ... +

str3 + "|"

+

paramString

+ "|" +

(String)localObject4 ,

paramContext);

}

...

}

}

Figure 4.2: A part of Backdoor.AndroidOS.Maxit.a badware, which uses GCM for C&C.

sendTextMessage API. However, if the action is decided based on an if condition, the

flow would be implicit. For example, in (step +), if the command equals to IMEI, the

badware retrieves the identification number of the device from SharedPreferences so

that there is an implicit flow between onMessage and getSharedPreferences.

Adware. Opposite of the aforementioned deliberate misuse of GCM, it might happen

that GCM is exploited by badware indirectly. For instance, many adlibraries such as

Revmob, Airpush, Leadbolt, Domob and Cauly [2] use GCM to notify users whenever a

new advertisement has to be shown. As the purpose of adware is showing advertisement

to receive benefits, these adlibraries might be embedded in adware to display unwanted

ads when the user is online. As a result, GCM is unintentionally exploited as part of such

4.3. SYSTEM DESIGN 71

Modified
FlowDroid

Modelling
GCM

services

Sources:Entrypoints
Sinks:APIs

Apps with GCM
Permission

Pattern
Extraction

Classifier 1

Classifier 2

Classifier 3

Weighted
Mean

Gate
Clas-
sifier

Final
DecisionExplicit

Flows

Likelihood
+

Weight

Likelihood

non-

GCM

GCM

GCM+

non-

GCM

Figure 4.3: Overview of our approach.

malicious activities.

4.3 System Design

The architecture of the proposed system is depicted in Figure 4.3. First, we look into

Android applications requesting GCM permission. Second, Flowdroid is used to extract

the flows that are originated from GCM. As Flowdroid did not natively analyze GCM

flows, we adapted it in order to support GCM callbacks (§4.3.1). Third, the output of

Flowdroid is used to extract a number of features that describe the explicit flows. These

features are subdivided into two sets, namely GCM and non-GCM categories based

on the corresponding services (§4.3.2). Accordingly, a classification function can be

learnt by associating each flow to the type of applications it has been extracted from,

i.e., badware or goodware. Classification is performed in different ways to verify the

effectiveness of GCM features (§4.3.3). In the classification step, we build different

models where each model provides a likelihood (between 0 and 1) denoting the degree

of maliciousness of an app, which is subsequently thresholded to make the final decision

on whether the application is badware or not.

72
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

4.3.1 Modeling GCM service

GCM base classes were not supported in FlowDroid [49] because GCM is a part of

Google Play Services, and not of the Android Framework. Hence, in order to handle

data flows in GCM classes, lifecycles of GCM classes have to be modeled in FlowDroid.

Two common classes that have been employed in many applications in the past, are

GCMBaseIntentService and GCMListenerService. The FirebaseMessagingService

class has been introduced recently so it takes some time to be integrated in some appli-

cations. The GCMBaseIntentService class has been deprecated since September 2014,

but there are still a lot of applications that have implemented this class. The GCM classes

and methods are listed in Table 4.1. The methods are used for different purposes like

registration, error handling, and message reception. The application needs to declare

a GCMReceiver, which is a kind of BroadcastReceiver so that it delivers messages

to GCM base classes. Two important methods that are called during receiving mes-

sages are onMessage in the GCMBaseIntentService class, and onMessageReceived in

the GCMListenerService. Data flows from parameters of these services can represent

command-action behaviors.

To model lifecycles, FlowDroid builds a custom entry point. This entry point is

essentially a main() method that emulates the behavior of the Android operating system

and framework. As a consequence, the data flow tracker itself can process the app as a

standard Java program with a main() method, albeit it still uses the Android framework

through calls to library methods. In the basic version of FlowDroid, this dummy main

method contains calls the lifecycle methods of activities, services, content providers, and

broadcast receivers. Our extension adds calls to the specific methods of the GCM service

classes.

One could argue that the GCM base classes such as GCM Receiver are implemented

as normal classes inherited from BroadcastReceiver. Therefore, correctly modeling

broadcast receivers would be sufficient, because the implementation of GCMReceiver

already fully specifies how and when methods such as onMessageReceived are called.

4.3. SYSTEM DESIGN 73

Table 4.1: GCM services lifecycle.

Base Class Methods

GCMBaseIntentService

void onDeletedMessages(android.content.Context,int)
void onError(android.content.Context,java.lang.String)

void onMessage(android.content.Context,android.content.Intent)
void onRecoverableError(android.content.Context,java.lang.String)

void onRegistered(android.content.Context,java.lang.String)
void onUnregistered(android.content.Context,java.lang.String)

GCMListenerService &
FirebaseMessagingService

void onDeletedMessages()
void onMessageReceived(java.lang.String,android.os.Bundle)

void onMessageSent(java.lang.String)
void onSendError(java.lang.String,java.lang.String)

With this approach, the GCM framework would be treated as part of the app and would

be analyzed together with it. For performance reasons, we, however, chose a different

approach. We treat the GCM framework classes as black boxes and instead add explicit

models for their interfaces. In other words, we consider the GCM framework as a part of

the Android operating system and abstract away from it, effectively reducing the size

and complexity of the code to be analyzed.

4.3.2 Feature Extraction

Since FlowDroid supports detecting the desired flows, as a next step, proper sources and

sinks should be provided for, and then run on various applications to extract existing

flows. There are two possible ways that source of flows can be defined, i.e., parameters

of callbacks, and APIs that retrieve information. As far as we aim to understand what

actions are performed when the GCM callbacks are invoked, we consider callbacks

as sources in our evaluation to be able to show the power of flows originated from

GCM callbacks compared to the rest of Android callbacks. It is worth to mention that,

although considering source APIs can provide more information about the semantics of

applications, it makes the feature extraction step much slower so we avoided to use them

in the proposed system. For sinks, we consider all sink APIs proposed by SUSI [215],

which were extracted from Android 4.2 and contain 8,287 APIs.

74
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

After the flows are extracted by FlowDroid, they are mapped to a feature vector

in which features are flows and their values are the total number of each flow in an

application. In other words, we count how many flows there are between a specific pair

of source and sink. In flows, the sources are the parameters of callbacks and the sinks are

the name of APIs as well as their corresponding package. For example, in the sample in

Figure 4.2, there is an explicit flow (by following the red lines) in which the source is

android.content.Intent in onMessage method, and the sink is sendTextMessage in

SmsManager package. Therefore, the feature is in the following format:

onMessage(android.content.Intent) SmsManager.sendTextMessage

We name such features as “Complete Source/Sink" in the evaluation section(§4.4.2).

However, It is common that obfuscation techniques [179, 217] affect the name of some

callbacks. Simple method renaming is applied by ProGuard, a popular tool shipped with

the Android SDK. For example, we observe the fact in our experiments that onMessage

callback has different names such as “a" or “nybkaxzg" in some applications, but the

parameters type like android.content.Intent are intact. In addition, the sink might be

package specific like startActivity API from com.qihoo.psdk.app.QStatActivity

which is the name of an activity in an App. Therefore, we represented the flows to a

short format in which we just consider the parameters of callbacks from the sources and

API names from the sinks. Note that API method names are usually not affected by

obfuscation techniques. So, for the same above example, the feature is in the following

format:

android.content.Intent sendTextMessage

We call this type of features as “Abstract Source/Sink". Although the latter con-

sideration looks loosing some information (e.g., all of onError, onRegistered or

onUnregistered methods have java.lang.String parameter), we show that they

can achieve better result using a smaller number of features compare to “Complete

Source/Sink" representation. The underlying reason is that using a more compact (and

less noisy) feature representation typically mitigates the so-called problem of overfitting,

facilitating the task of learning an accurate classification function [61].

4.3. SYSTEM DESIGN 75

To evaluate the effectiveness of GCM features, we divide the features into two sets,

i.e., GCM and non-GCM. If a flow is originated from GCM callbacks, we consider it

as a GCM feature, otherwise, as a non-GCM feature. So the feature vector is made as

follows:

f vi =
# fi i f

(
fi ∈ e f

)
0 Other wi se

 (4.1)

Where f refers to a feature, i is the feature index, e f means the extracted features

from a sample, and # refers to the frequency of a feature. The equation 4.1 shows if a

sample contains a flow, we compute the number of times the flow exists and consider

it as the feature(flow) value, otherwise, we consider 0. The following matrix shows

an example of the final set of feature vectors, where each row is a feature vector for

a goodware/badware, and each column is the frequency of a feature. To separate the

features, we prefix them with “g" and “ng", which respectively refer to GCM and

non-GCM flows.

g _sr c1_snk1 ... ng _sr c2_snk1 ng _sr c3_snk4

B1 3 ... 1 0

B2 2 ... 4 1

...

G1 1 ... 0 0

...


4.3.3 Classification

Regarding the nature of the task at hand, binary classification algorithms are powerful

options to help us to discriminate badware from benign applications. Over the past years,

a large number of classification techniques have been proposed by the scientific com-

munity, and the choice of the most appropriate classifier for a given task is often guided

by previous experience in different domains, as well as by trial-and-error procedures.

However, some classifiers like SVM and ensemble decision trees (e.g., Random Forest

and Extra Trees [130]) have shown high performances in a variety of tasks [125].

76
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

To simplify the learning task and reduce the risk of overfitting, we exploit feature

selection to reduce the feature set size by removing irrelevant and noisy features from

our sets. In particular, as done in [39], we compute the so-called mean decrease impurity

score for each feature, and retain those features which have been assigned the highest

scores.5

We combine the obtained decisions of single models (see Fig. 4.3) using a multiple

classifier system (MCS) [163,204]. The underlying reason is that MCSs do not only often

improve classification accuracy with respect to the combined classifiers, but also provide

some degree of robustness against evasion attempts [60, 131]. One of the simplest and

widely-used MCS fusion rule is the weighted average:

Lc =
∑n

i=1

(
Wi ×Lci

)∑n
i=1 Wi

, (4.2)

where n is the number of single classifiers, L is the likelihood of each single classifier,

W is a weight assigned to a single classifier, and c refers to each class label. In this

approach, a specific weight is assigned to each single classifier output, usually based on

the performance of the classifier, and each weight is multiplied by the predicted class

likelihood obtained by the classifier. Finally, the class labels are assigned based on the

average of the achieved weighted likelihood. Another common MCS technique is passing

the likelihood of single models to a gate classifier to make the final decision, which we

call it two-tier classification technique. The gate classifier is thus trained in the same way

as the flow classifiers, but its input is a feature vector whose components are the output

likelihoods of the individual classifiers.

Overall, we build one classifier trained on the GCM features, one classifier trained

on the non-GCM features, and a third classifier where all the features, GCM and non-

GCM, are used. We observed a degree of complementarity among classifiers, as just

a portion of the misclassified samples by one of the classifiers, is misclassified by the

other classifiers, the rest of them being correctly classified by the other classifiers. Hence,

this motivates the fusion of classification decisions by MCS techniques to combine the
5Note that this technique is often referred to also as Gini impurity or information gain criterion.

4.4. EXPERIMENTAL ANALYSIS 77

prediction at the score level. This fusion makes the final decision unbiased between the

individual classifiers, which helps improving the final decision. Therefore, we combine

the predictions of single classifiers with the weighted mean and the two-tier techniques.

4.4 Experimental Analysis

In this section, we address the following research questions:

• How much discriminatory power do flows from GCM callback sources add to a

badware classifier in contrast to only using non-GCM sources (§4.4.2)?

• Is the approach able to predict never-before-seen badware (§4.4.2)?

Before addressing these questions, we discuss the data and the experimental settings

used in our evaluation (§4.4.1).

4.4.1 Experimental Setup

To evaluate our approach, we have collected more than 15,000 goodware and 15,000

badware apps from McAfee and VirusTotal6 sources. The McAfee dataset has been

released to the authors on the basis of a research agreement during the period from 2014

to 2016. However, all of the gathered samples are first seen by VirusTotal between 2011

and early 2016. Since this work focuses on analyzing the effects of modeling GCM data

flows on badware detection, we filter out all apps that do not use GCM. We consider

an app to use GCM if it uses the com.google.android.c2dm.permission.RECEIVE

permission. We found that slightly less than 10% of our initial set of apps use GCM

and were retained. However, checking whether the GCM permission is present is not

sufficient, because the app might be overprivileged [121]. Therefore, as a complementary

check, we discarded all those of applications that did not have at least one flow from a

GCM-related source, i.e., a parameter of a GCM callback method. To obtain the flows,
6http://www.virustotal.com

http://www.virustotal.com

78
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

we ran FlowDroid for up to 10 minutes per app on a server with 64 Intel Xeon E5-4560

processor cores running at 2.7 GHz and 1 TB of memory. Note that we limited the

maximum heap size allotted to FlowDroid to 250 GB. If the analysis did not complete

within this time budget, the app was discarded as well. With these constraints, 1,058

benign and 1,044 badware apps remained for further analysis. Based on the naming

convention7 by VirusTotal, half of the badware are adware, and the rest are trojan.

We evaluate our approach on this set of samples through a 10-fold cross validation, to

provide statistically-sound results. In this validation technique, samples are divided into

10 groups, called folds, with almost equal sizes. The prediction model is built using 9

folds, and then it is tested on the final remaining fold. The procedure is repeated 10 times

on different folds to be sure that each data point is evaluated exactly once. For the data

analysis, we used a laptop with a 2 GHz quad-core processor and 8GB of memory. The

whole data analysis code was written in Python, and the main employed helper library is

scikit-learn.8

Two metrics that are used for evaluating the performance of our approach are the

False Positive Rate (FPR) and the True Positive Rate (TPR). FPR is the percentage

of goodware samples misclassified as badware, while TPR is the fraction of correctly-

detected badware samples. A Receiver-Operating-Characteristic (ROC) curve reports

TPR against FPR for all possible decision thresholds.

4.4.2 Results

To better understand the effectiveness of our approach, we evaluate it on the set of

Android applications described in Section 4.4.1. To recap the overall approach, we

need three single classifiers to make three models on GCM flows, non-GCM flows and

the combination of GCM and non-GCM flows. As a first step to better motivate the

selection of single classifiers, we use all the three well-performed classifiers, namely

SVM, Random Forest and Extra Trees (§4.3.3) to make five models (three single models
7https://github.com/ManSoSec/Auto-Malware-Labeling
8http://www.scikit-learn.org

https://github.com/ManSoSec/Auto-Malware-Labeling
http://www.scikit-learn.org

4.4. EXPERIMENTAL ANALYSIS 79

plus two MCS models) to see which one provides a better performance. As a result,

Extra Trees achieved the higher area under ROC curve so that we select it as the main

classifier for the first step of classification (see Figure 4.4). As a consequent step, two

MCS techniques, namely weighted mean (MCS-WM) and two-tier (MCS-TT) (§4.3.3)

are applied to improve the performance. For the MCS-WM, based on the performance

of single classifiers, we assign weights of one, two and three to GCM, non-GCM and

the combination of GCM & non-GCM models respectively. For MCS-TT, the output of

single classifiers are passed to a gate classifier, which is SVM in our approach.

Our results are summarized in Table 4.2. To better discuss what we explained

in Section 4.3.2 about the feature representation, we provide two sets of evaluations

on “abstract source/sink" and “complete source/sink". In the “Measures" column, “#

Features" shows the number of features used for classification while the numbers in

parenthesis refer to the number of selected features. The value of each “FPR" is reported

both in terms of the percentage, and in terms of the total number of misclassified

goodware (in parenthesis). As is shown in the table, considering GCM-based flows alone

is not a proper replacement for a traditional data flow analysis based on non-GCM flows.

This is simply because GCM flows represent a small portion of the application behavior.

Nonetheless, reported results clearly show that adding GCM flows to the normal flow set

containing the non-GCM data flows can be helpful in detecting badware using GCM as

part of the malicious behavior. In fact, when we combine GCM features with non-GCM

features, they improve the performance, compared to when GCM features are ignored.

In the case in which the features (GCM and non-GCM) are stacked, FPR decreases

1% and TPR is improved about 2%. Moreover, the improvement is more observable

in the case of MCS-WM in which FPR and TPR respectively recover about 1.9% and

2.4%. In the case of MCS-TT, FPR decreases more, namely 2.2% while TPR has a small

improvement of 1.2%. While these numbers seem small, static analyses on Android

apps are usually performed on a very large scale, e.g., on complete app stores. If you

consider the Google Play Store which contains over 2 million applications, improving the

detection rate by 2.4% means that more than 24,000 new, previously undetected pieces of

80
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

badware are discovered. Lowering the FPR by 1.9% means that 19,000 applications less

are flagged as potentially malicious and, consequently, no longer need to be reviewed by

human security specialists. On this scale, our proposed improvements greatly improve

the state-of-the-art in Android app scanning.

Although there are still some misclassified samples (§4.4.2), we could successfully

detect some bot samples based on GCM channel that were not tagged as badware by

just relying on non-GCM flows. Last but not least, the results by the proposed “abstract

source/sink" features are preferable over “complete source/sink", because they need

to consider a significantly lower number of features and can thus be computed more

efficiently.

Table 4.2: Classification results of extra tree after feature selection on a set of 1058
benign and 1044 malicious apps.

Measures
Single Classifier on Flows Multiple Classifiers

GCM non-GCM non-GCM + GCM Weighted Mean Two-Tier
Abstract Source/Sink : Parameter API

Features 498 (74) 7,539 (1,162) 8,037 (1,215) - 6
TPR 89.37% 90.71% 92.72% 93.10% 91.95%
FPR 9.735%(103) 6.049%(64) 5.009%(53) 4.159%(44) 3.781%(40)

Complete Source/Sink : Method.Parameter Package.API
Features 3,322 (452) 36,219 (3,892) 39,541 (4,561) - 6

TPR 89.94% 91.19% 92.53% 93.10% 92.53%
FPR 11.437%(121) 6.805%(72) 5.482%(58) 4.537%(48) 3.686%(39)

Misclassified Samples

We focus here on the proposed MCS architecture, which achieved the best results, and

investigate some of the reasons behind its classification errors. As a first step, we checked

again the groundtruth labels of all samples by VirusTotal three month after we gathered

the last set of samples in our dataset and assigned a new groundtruth. In this way, we

built the model with the original groundtruth and then checked the class of misclassified

samples with the new groundtruth. Interestingly, we noticed that 4 out of 72 misclassified

badware were not labeled as malicious based on the new groundtruth. Moreover, 14

out of 44 misclassified goodware are labeled as badware based on the new groundtruth

4.4. EXPERIMENTAL ANALYSIS 81

where all of the 14 samples are labeled as adware. So based on the new groundtruth,

we classified 18 (4+14) unknown samples correctly. Among the rest of misclassified

badware, 32 of them are adware, and the rest are trojan. The misclassified benign samples

need further analysis as there might be some other 0-day badware among them because

there are many samples in our analysis from 2016. Another source of misclassification

can be the use of obfuscation techniques like dynamic code loading, multi-level reflection,

JavaScript and packing. We did not address those techniques in this work as the main

focus of this work is modeling GCM services as complementary features.

Furthermore, we explored the features that might contribute the most in the misclas-

sification by computing the median of the feature values in both the sets of correctly-

classified and misclassified samples. Some of the features with the highest difference in

the median between the two sets are summarized in Table 4.3. The table shows how the

classifier might be misled by reducing or adding a specific flow. To point out some of

the flows, the ones from GCM methods to notify and Log.v APIs have higher values

in the undetected badware and lower values in the misclassified goodware. It is worth

mentioning that the total number of flows alone cannot be representative of the class of

applications because both the goodware and badware with almost the same number of

flows are present in our dataset (see Figure 4.5). However, there are some goodware that

contain higher number of flows and the fact is observable in the figure in the range of

103 and 104.

4.4.3 Discriminative Patterns

To be more informative, it is worth describing some of the important GCM features that

contributed the most in the classification. Figure 4.6 shows the top 20 sink APIs that

are performed after a GCM message received in the device and the message in a way

passes to those APIs. Each of those APIs can reveal some useful information about an

action that might reveal a sign about a malicious activity. As an example, 25 badware

samples execute the sendTextMessage method based on the content of received GCM

messages while no goodware shows this dependency between a received GCM message

82
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

Table 4.3: Features that contribute the most in misclassification. Minus/plus refers to
reduction/addition of a feature.

+/- Feature
From correctly-classified goodware to false positives
+ non-GCM : android.content.Intent putExtra
+ non-GCM : android.os.Bundle putString
+ non-GCM : android.os.Bundle onCreate
- GCM : android.content.Context notify
- GCM : android.content.Context v

From true positives to undetected badware
+ GCM : android.content.Context notify
+ GCM : android.content.Context v
- non-GCM : android.os.Bundle onCreate
- non-GCM : android.content.Intent putExtra
- non-GCM : android.view.KeyEvent onKeyDown

and an outgoing text message. Other kinds of suspicious actions are openConnection

and setRequestMethod that exist in higher number of badware samples compared to

goodware. These patterns can model downloading payload or performing DDoS attacks

as the flow can show a command-and-control structure. The attacker sends a URL from

the control server to his bots using GCM and the bots then perform requests against the

received URL.

In adware, it is hard to say how each single pattern alone can divulge a malicious

activity as the same adlibrary, embedded in adware, can be used in goodware as well.

However, the experiments showed that combination of GCM features with others can

contribute in the detection of adware, as this links the presence of the adlibrary to other

facts about the application to provide more information about the context in which the

library is used.

4.5 Limitations

Considering that our approach is built on top of FlowDroid, our system inherits its

corresponding limitations. First, it has difficulty to track API calls that are employed by

4.6. COMPARISON WITH RELATED WORKS 83

reflection techniques. Second, it cannot follow flows to the native code as it is a flow

analysis system for Java. Third, dynamic code loading techniques should be another

issue as FlowDroid is a static analysis technique and an attacker can download a code

from internet as well as load a code from a local storage, and then load it during runtime.

Moreover, FlowDroid doesn’t handle inter component communications. While some

recent papers have partially addressed the aforementioned issues [167, 168, 213, 216],

there is a need to push forward handling these issues to the next stage.

Apart from static analysis limitations, there are possible evasion techniques against

machine learning like mimicry attacks. For example, if the detection system didn’t

consider the semantic, an attacker can simply inject some dead code to evade the detection

system [258]. Although we didn’t evaluate our approach against these kinds of attacks,

an adversary has to modify particular flows in application to evade our system, which is

not easy and needs a lot of efforts.

4.6 Comparison with Related works

As far as the main purpose of our approach is application analysis for badware detection,

we describe some prominent approaches in the application analysis area with a highlight

on those that focus on GCM and adlibraries.

Badware Analysis. There are also a quite good number of approaches that proposed

different static and dynamic analysis techniques for badware classification. They are

mostly based on machine learning while the difference derives from the feature extraction

step. Some of these approaches vet badware detection like Drebin [48], DroidAPIMiner

[36], MudFlow [53], AppAudit [267], while the others just concentrate on badware

family classification like DroidScribe [88] and Dendroid [243]. Moreover, there are some

systems that generalize their approach for both malware detection and classification such

as DroidMiner [275] and DroidSIFT [280]. Apart from the aforementioned systems

that consider badware in generic cases, there are also some researches that target some

specific kinds of badware like the one that provides a solution for detection of logic

84
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

bombs [127] in Android applications, or another one that extracts potentially suspicious

runtime values such as premium SMS numbers or blacklisted URLs [216] to thwart

evasion techniques.

Advertisement Libraries Analysis. On the evaluation of advertising libraries, there

are some approaches like AdDroid [202] and AdSplit [235] that contributed on isolating

advertising libraries from host applications (e.g., to create fault isolation). A common

way for adversary to monetize the adlibraries is to repackage free benign applications

with injected adlibraries, and then earn ad revenue as explained by Zhoe et. al [288].

They proposed an approach to decouple the core of applications from other modules

(e.g., adlibraries) based on program dependency graph to detect repackaged applications.

Another work [240] examines the effects on user privacy in thirteen popular Android ad

providers by reviewing their use of permissions.

GCM Services Analysis. There are just a few works that analyzed GCM services

for security objectives. The most prominent example is the one that reported some

vulnerabilities in GCM mechanism [169] by which an adversary can steal sensitive user

data of popular applications like Facebook, and command the devices. A following work,

called Seminal [77], provides an automation to find vulnerabilities in applications using

push notification services. Apart from vulnerability analysis, other researchers [285]

showed how attackers might exploit push notification services like GCM to create a

cloud-based push-styled mobile botnet. However, they didn’t propose any concrete anal-

ysis/defense solution except advising either monitoring the network traffic or verifying

the combination of GCM permission with others.

As an overall comparison with the previous approaches, opposite of the other works,

this paper aimed to model the behaviors of GCM services in Android applications

statically to more effectively discriminate badware from benign applications. Moreover,

based on the best of our knowledge, we are the first to use the MCS paradigm for Android

badware detection, which can help improving the performance of the single classifiers.

4.7. CONCLUSIONS AND FUTURE WORK 85

4.7 Conclusions and Future Work

In this chapter, we modeled Google Cloud Messaging in Android applications to be able

to detect flows from GCM services, which consequently helps analyzers to investigate

security issues related to these services automatically. Consideration of the GCM

services is important because of the advent of GCM in badware where GCM acts as a

C&C channel. To assure how much this consideration can be beneficial, we evaluated the

effect of data flows from GCM services for badware detection. Our results indicate that

GCM features help to more effectively discriminate badware using the GCM mechanism

from benign applications, compared to when they are ignored. The proposed approach

benefits from the MCS approach which was proved to be more resilient to evasion in

computer security, so we expect the same behavior. As a future plan, it is worth to

extend this work to support every kind of push services as they might be exploited more

extensively (e.g., Baidu Cloud Push service was abused in a badware9).

9http://b0n1.blogspot.co.uk/2015/03/remote-administration-trojan-using.html

86
CHAPTER 4. DETECTING MISUSE OF GOOGLE CLOUD MESSAGING IN ANDROID

BADWARE

0.0 0.05 0.1 0.15 0.2 0.25 0.3

FPR

0.7

0.75

0.8

0.85

0.9

0.95

1.0

T
P

R

Model

Gcm

Gcm & Non-Gcm

Mcs-Tt

Mcs-Wm

Non-Gcm

(a) ROC of Extra Trees

0.0 0.05 0.1 0.15 0.2 0.25 0.3
FPR

0.7

0.75

0.8

0.85

0.9

0.95

1.0

T
P

R

Model

Gcm

Gcm & Non-Gcm

Mcs-Tt

Mcs-Wm

Non-Gcm

(b) ROC of Random Forest

0.0 0.05 0.1 0.15 0.2 0.25 0.3

FPR

0.7

0.75

0.8

0.85

0.9

0.95

1.0

T
P

R

Model

Gcm

Gcm & Non-Gcm

Mcs-Tt

Mcs-Wm

Non-Gcm

(c) ROC of SVM

Figure 4.4: ROC curves of different classifiers. The best result was achieved by Extra
Tree classifier.

4.7. CONCLUSIONS AND FUTURE WORK 87

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows per application (log scale)

M
C

S
−

W
M

 c
la

s
s
if
ic

a
ti
o
n
 s

c
o
re

goodware

badware

decision threshold

Figure 4.5: The realationship between the total number of flows in applications and the
classification score.

pu
tS
tri
ng

se
tR
eq
ue
st
M
et
ho
d

se
tC
la
ss
N
am
e e

op
en
C
on
ne
ct
io
n d

pu
tE
xt
ra v

pu
t

se
tT
ex
tV
ie
w
Te
xt i w

no
tif
y

se
nd
Te
xt
M
es
sa
ge

w
rit
eO
bj
ec
t

w
rit
e

pu
tE
xt
ra
s

se
tA
ct
io
n

se
t

ad
d0

100

200

300

400

500

600

700
Benign
Malicious

Figure 4.6: The figure shows 20 discriminative actions, which are among top selected
features. These actions are sink APIs in the data flows that are originated from GCM
services). e, d, v, i, w are log methods.

Chapter 5

Fast and Accurate Classification of

Obfuscated Android Malware

5.1 Introduction

For both malware detection and family identification, we strongly prefer light-weight

and scalable methods to cope with the numbers of apps, both benign and malicious.

In general, static analysis techniques are computationally cheaper than emulation-

based dynamic analysis; unfortunately, many static analysis techniques are easily thwarted

by obfuscation, which is becoming increasingly common on Android [217]. Family

identification in particular also suffers from the widespread code reuse in malware, which

leads to different malware families sharing code and entire modules.

To address these challenges, we introduce DroidSieve, a system for malware classifi-

cation whose features are derived from a fast and scalable, yet accurate and obfuscation-

resilient static analysis of Android apps. DroidSieve relies on several features known

to be characteristic of Android malware, including API calls [36, 48, 275], code struc-

ture [243], permissions [283], and the set of invoked components [48]. In addition,

DroidSieve performs a novel deep inspection of the app to identify discriminating fea-

tures missed by existing techniques, including native components, obfuscation artifacts,

89

90
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

and features that are invariant under obfuscation. In particular, we make the following

contributions to the state of the art:

• We introduce a novel set of features for static detection of Android malware that

includes the use of embedded assets and native code; it is at the same time robust

and computationally inexpensive. We evaluate its robustness on a set of over

100K benign and malicious Android apps. For detection, we achieve up to 99.82%

accuracy with zero false positives. The same features allow family identification

with an accuracy of 99.26%.

• We analyze the relative importance of our features and demonstrate that artifacts

introduced by state-of-the-art obfuscation mechanisms provide high-quality fea-

tures for reliable detection and family identification. Moreover, we show that there

is a small set of features that perform consistently well regardless of whether they

are derived from obfuscated or plain malware.

The rest of this chapter is organized as follows: We first motivate our choice of

features by briefly reviewing obfuscation techniques in Android malware (§5.2). We

then describe our two main classes of features as well as employed learning algorithms

(§5.3) before presenting our experimental setup and results (§5.4). Finally, we review

related work (§5.5) and conclude (§5.6).

5.2 Obfuscation in Android

We now briefly review the state of the art in Android obfuscation as it motivates our work.

Thorough taxonomies of software obfuscations are available in the literature [80, 231].

String Obfuscation. Recent approaches to fingerprinting malware have made use of

string-based features such as permissions and apps/package names [36, 48, 171]. Some

strings, such as the declaration of application permissions, follow a strict syntax and must

appear in the clear; other strings, such as names and identifiers, can be easily randomized

or encrypted [74, 179].

5.2. OBFUSCATION IN ANDROID 91

Native Code. Native code is also frequently used to offload malicious functionality from

the main Dalvik executable (DEX) to dynamically linked libraries or other executables

(ELF files), which are then invoked at runtime.

Dynamic Code Loading. Native code and additional Dalvik bytecode can be loaded

from a library included in the app’s assets, from another app (collusion attack) or from

a remote system after being retrieved at runtime. In our experiments, we found many

examples of dynamic code loading, including cases where code was loaded from outside

of the app. However, the mere presence of dynamic code loading is not malicious in

itself, since many regular software frameworks employ this technique, which makes it

even more attractive to malware writers.

Code Hiding. Malware authors often proactively hide malicious components to make

the overall application look benign to cursory inspection [45]. For instance, the Ginger-

Master malware hides Bash scripts for its packaged root exploit under innocuous file

names such as install.png and gbfm.png in its resources [241]. Other malicious apps

go a step further and use a form of steganography, e.g., by hiding malicious code inside a

valid image file [242]. The app loads the image through a seemingly benign action but

uses a decoding algorithm to extract a malicious executable payload1.

Finally, Android malware can also hide its malicious payload in an APK file hosted

as a resource of the main app. When the app is executed, the user is lured into installing

the hidden APK and the system then dynamically loads the hidden component. In the

rest of this chapter, we refer to these apps as incognito apps. In a related scenario, the

update attack, the app just contains a component that downloads and executes a malicious

payload from an external server. Such attacks are hard to detect and mitigate as the

app misleads the user to grant the additional permissions while pretending to update

itself [208].

The aforementioned methods for code hiding can easily be combined with encryption
1A recent example is Android/TrojanDropper.Agent.EP (MD5:1f41ba0781d51751971ee705dfa307d2),

November 2015.
b0n1.blogspot.co.uk/2015/11/android-malware-drops-banker-from-png.html

b0n1.blogspot.co.uk/2015/11/android-malware-drops-banker-from-png.html

92
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

to further obfuscate the malicious payloads and decrypt them only at runtime [45]. While

encryption makes it harder to assess the component statically, its presence can be detected

by measuring the entropy of the component. However, encryption is also commonly

employed by benign apps, and during our experiments, we particularly found that many

benign apps were using encrypted strings.

Reflection. Reflection is a commonly used feature in various Java frameworks, but it

is also a notorious impediment to static analysis, since it may be infeasible to statically

determine which code is executed at runtime. As a consequence, malware writers have

long discovered reflection for obfuscating sensitive API calls and libraries [45]. In a

recent large-scale study, Lindorfer et al. [172] showed that the general use of reflection

among apps has increased significantly.

The state of obfuscation on Android has caught up with that on desktop systems,

and there are already automatic frameworks available for obfuscating Android app

components [74, 179, 217]. Hence, obfuscation now poses a serious challenge for

static malware analysis on Android and has to be addressed to achieve robust malware

classification.

5.3 Proposed System

The architecture of the proposed system is depicted in Figure 5.1. The detail of feature

engineering step is discussed in §5.3.1-§5.3.4, and the classification step is discussed in

§5.3.5.

5.3.1 Feature Engineering

We now introduce our proposed set of features for both malware detection and iden-

tification of malware families. Based on an analysis of existing malware (§5.3.2), we

identify two major classes: resource-centric features are derived from resources used

by the app (§5.3.3); syntactic features are derived from the code and metadata of the

5.3. PROPOSED SYSTEM 93

Feature
Engineering

Resource
centric

SyntacticVarious Apps

Classification

Malware
Detection

Malware
Family

Identification

Final
Decision

Feature
Vector Likelihood

Figure 5.1: Overview of our approach.

Extracted
Features

Syntactic

DEX-
based

APIs

API
Pack-
ages

Strings

Meta In-
formation

Activ-
ities

Broad-
cast
re-

ceivers

Content
Providers

Services

Intents
Permis-
sions

Intent
actions

Used
permis-
sions Advanced

evasion

Dy-
namic
code

loading

Reflec-
tion Cryptog-

raphy

Resource
centric

Certifi-
cates

Date &
Time

Detail

Nomen-
clature

Package
name

entropy Names
simi-

larities

Incognito
Apps

Em-
bedded
APIs Embed-

ded API
Pack-
ages

Em-
bedded
IntentsEm-

bedded
Permis-
sions

Incon-
sistency

assets
File mis-

match

Native
code

System
calls

Shared
libraries

Figure 5.2: Non-exhaustive map of extracted features. The left side shows syntactic
features derived from the source code of the app; the right side shows resource-centric
features derived from the assets of the app.

app (§5.3.4). A map relating classes of features is shown in Figure 5.2. We use both

binary and continuous features. The presence or absence of a particular trait, such as a

permission, is encoded as a binary feature; numeric properties, such as string lengths or

opcode frequency, are encoded as continuous features.

5.3.2 Prevalence of Features

Robust classification requires a diverse set of features. Features such as API calls are

highly relevant for classifying non-obfuscated malware but are susceptible to obfuscation.

94
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

The presence of obfuscations may indicate malware, but it is not by itself sufficient to

form judgment, since benign software can also use the same techniques for legitimate

purposes. Therefore, we propose to employ a portfolio of features that covers both

non-obfuscated and obfuscated malware.

As a first step towards selecting effective features, we measured the prevalence of

a wide range of features that could be effective at identifying both obfuscated and non-

obfuscated Android malware. We hypothesize that features centered around steganogra-

phy, where the sample hides its malicious payload in its assets, or inconsistent nomencla-

ture of components of an app by a careless malware developer are important features. To

test our hypothesis, we run an assessment on a collection of over 100,000 benign and

malicious samples from multiple sources. To put our findings in perspective, we also

select some features from published works on Android malware identification.

For benign samples, we obtained a dataset of clean apps vetted by McAfee (McGW).

For the malicious samples, we relied on two commonly used datasets: the Malgenome

Project (MgMW) [293] and the Drebin dataset [48]. We further extended our dataset with

the goodware (MvGW) and malware (MvMW) collected by Lindorfer et al. [171]. To

measure feature prevalence in obfuscated malware, we also include the recent PRAGuard

(PgMW) dataset [179]. The samples in PRAGuard were obtained by obfuscating the

samples of the MgMW dataset with techniques such as class and method renaming,

reflection, and class encryption, among others.

Table 5.1 summarizes the results of our investigation. We can observe that most of

the features are more prevalent in malware than in goodware. In particular, structural

and logical inconsistencies are between 5% and 35% more prevalent in malware. In

fact, the difference in prevalence of these features is comparable to well-understood

features such as permissions, sensitive API calls, and those related to SMS messaging.

Thus, inconsistencies are an important class of feature that have not been reported in the

literature so far.

Our work also identifies obfuscated malware. In view of this, we also looked for

prevalence of features that may hint at obfuscation in the form of reflection or the use

5.3. PROPOSED SYSTEM 95

of native code. In our study, McGW contained a prevalence higher than either MvGW

and most of the malware datasets. This is because McGW is a more recent dataset with

samples ranging from 2012 to 2016 and use advanced coding techniques while other

datasets with the exception of PgMW are from 2012 and 2013. One may wonder the

utility of including these features as a part of the classifier if they cannot be used to

classify modern samples. A key assumption that we make here is that the classification

model should evolve over time as pointed out recently in the literature [100]. Features that

are relevant today will naturally become irrelevant in the future and it is the responsibility

of malware analyst to purge obsolete features from the model while retraining. For our

experiments, we retain these features as we test our features over a large timespan.

The PgMW dataset deserve special mention as it highlights how standard forms

of obfuscation can confound the classification model. For the PgMW dataset, it can

be seen that some features that are common in malware can be easily obfuscated. For

example, methods that are crucial for the detection of malicious activities, such as

communications (SMS) or the access to sensitive information (getSimSerialNum.), have

been nearly eliminated in the obfuscated dataset. Therefore, relying on these features

alone when dealing with obfuscation is detrimental to malware analysis and detection.

These findings further reinforce our original suggestion of using a diverse portfolio of

features for resilient classification.

5.3.3 Resource-centric Features

We propose a set of new features extracted from the app’s resources stored in the APK.

An excerpt of the resource-based features that we use can be seen in Table 5.1.

The two main guiding criteria that we use for building the set of resource-based

features are structural inconsistencies and logical inconsistencies. Structural inconsis-

tencies refer to the artifacts left behind after hiding a malicious component. Logical

inconsistencies refer to the footprints typically left when repackaging a piece of malware

as part of a benign app.

96
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

Type Capability Goodware Malware Summary
McGW MvGW MgMW Drebin PgMW MvMW Goodware Malware

Logical
Inconsistencies

Main Activity 15.01% 8.85% 29.44% 18.71% 29.60% 8.23% 9.31% 13.13%
Service 43.44% 4.60% 72.62% 54.17% 74.29% 35.34% 7.51% 44.18%
Receiver 46.23% 13.57% 74.29% 56.06% 75.87% 36.60% 16.02% 45.66%

Structural
Inconsistencies

APK File Match 1.77% 0.07% 24.21% 6.51% 24.13% 2.23% 0.20% 5.18%
APK File Extension Mismatch 1.41% 0.02% 23.89% 6.28% 24.13% 2.22% 0.12% 5.10%
Image File Extension Mismatch 3.69% 1.48% 19.92% 8.22% 18.17% 1.44% 1.65% 4.82%

Sensitive
API

Package: SMS 5.63% 1.92% 20.79% 36.53% 0.00% 57.80% 2.20% 46.82%
TelephonyManager.getSimSerialNum. 9.24% 4.69% 50.63% 24.06% 0.08% 14.22% 5.03% 16.34%

Permissions
READ_CONTACTS 22.93% 6.26% 36.27% 23.29% 38.8% 17.20% 7.52% 20.71%
ACCESS_FINE_LOCATION 28.04% 16.40% 34.29% 30.04% 32.30% 15.53% 17.28% 21.38%

Obfuscation

Dynamic Code 32.22% 0.44% 19.60% 6.98% 0.00% 2.04% 2.83% 3.47%
Reflection 74.08% 39.37% 67.62% 56.04% 99.21% 40.14% 41.97% 49.50%
Native Code 49.61% 3.69% 54.13% 19.51% 0.16% 6.43% 7.14% 10.15%
Native Code without ELF 8.10% 0.58% 1.67% 0.70% 0.00% 0.52% 1.14% 0.54%

Total Number of samples 8,041 99,037 1,260 5,560 1,260 10,581 107,078 17,401
Total Number of families – – 49 179 49 – – –

Table 5.1: Percentages of apps with given properties in the McAfee Goodware (McGW),
Malgenome (MgMW), Drebin malware, PRAGuard’s obfuscated Malgenome (PgMW),
Marvin Goodware (MvGW) and malware (MvMW) dataset. Note that the summary
shows the total number of apps after removing overlapping samples.

Certificates. We check whether the times at which the app was signed and at which the

certificate was generated are similar. The intuition behind this feature is that automated

repackaging tools modify existing apps and sign them using auto-generated ad-hoc

certificates before distribution. Thus, if the date when the certificate was created is close

to the date on which the app was signed, it can reveal the use of an automated tool for

app repackaging. We mark apps where the time difference was below ten minutes. For

each certificate, we also build features from the timezone and the common name’s string

length, which allows to identify similar certificates generates by repackaging tools.

Nomenclature. For each of the components in the app, we verify whether the correct

package name is used as a prefix of the components in a package directory which is

the usual practice in most apps. If there is a mismatch, we treat it as a potential case of

tampering with the original contents of a benign app. Table 5.1 shows an overview of

the percentage of samples that exhibit such a mismatch. For each of the package names,

we also derive its length and its Shannon entropy, which help to identify automatically

generated names.

5.3. PROPOSED SYSTEM 97

Inconsistent Representations. We check whether the file extensions match the file

contents (as identified by the file header or a magic number) to allow highlighting apps

that try to hide shell scripts or ELF binaries as images or other resources. Table 5.1

shows that such inconsistencies are good indicators of malicious intent in some (e.g.,

Malgenome) but not all (e.g., Marvin) datasets, potentially owing to trends in malware

writing and repackaging tools.

Incognito Apps. In some cases the payload of a malicious app is in an APK that

is disguised among the assets of the host app. To capture this malicious payload,

we recursively extract both syntactic and resource centric features for any incognito

APK and DEX found within the app. We pigeonhole these features under a different

category in order to separate these statistics from the ones related to the host app. For

instance, permission.INTERNET counts the static number of accesses to the Internet,

while icg.permission.INTERNET does the same for the incognito app.

Native Code. We also scan the assets of the app to identify any native ELF files. The

files are parsed to extract features from the header and individual sections of the file. We

extract the number of entries in the program header, the program header size, and the

number and size of the section headers. From individual sections, we extract the flags of

the section to understand if they are W (writable), A (allocatable), X (executable), M

(mergeable), S (strings), etc. and use them as Boolean features. Within code sections, we

also look for instructions invoking critical system calls such as ioctl, which is used for

Android’s inter-procedural and inter-component communication.

5.3.4 Syntactic Features

We present our syntactic features; several of these, such as API calls [36] and permis-

sions [283], are already known to perform well with non-obfuscated malware. We don’t

claim novelty by including these features. Instead, we use them to build a classifier that

is robust against both well-known and modern malware which tends to be increasingly

obfuscated. To enrich the set of syntactic features, we propose some new features such

98
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

as explicit intents and additional ones mined from the meta-information. These are

discussed below. We reiterate here that a combination of diverse features is crucial for

robust detection of both plain and obfuscated malware. This is corroborated in Section

5.4.2 where important features come from diverse categories, yet they all rank highly in

relation to other features (see Figure 5.3 and 5.4).

DEX-based Features. We tag each method based on the libraries it invokes from the

Android Framework (method tag). These tags represent the class of APIs used by the

method and are encoded as binary features. We also scan the app for the presence

string variables in DEX files containing keywords we obtained from reverse engineering

malware from the Malgenome data set. For instance, su relates to executing code with

super user privileges; emulator and sdk suggest that the app checks for the presence of

an emulator.

Intents and Permissions. We parse the Manifest to identify all implicit intents that can

be receive from other apps. We also scan the code to identify any explicit intents, which

are used to start services within the same app. The count of individual intents is used as a

continuous feature for classification. We break down the set of intents into sub-categories

for further granularity: (i) intents containing the keywords android.net.*, which are

related to the connection manager; (ii) intents containing com.android.vending.* for

billing transactions; (iii) intents that target framework components (com.android.*);

(iv) all intent actions, beginning with android.intent.action.*; and (v), a catch-all

category for the reminder intents. Finally, we also extract the set of permissions declared

in the manifest of the app.

Meta-information. Apart from the specific type of permission used, we also count the

number of Android framework permissions and custom third-party permissions used by

the app. The number of times that a permission is used throughout the code is encoded

as a feature. Similarly, we count the number of activities, broadcast receivers, content

providers, services, and entry points of the app. Entry points are ways in which an app

can be invoked or executed.

5.3. PROPOSED SYSTEM 99

Evasion Techniques. We further look for techniques that are frequently used to con-

fuse analysis systems, i.e., native code, cryptographic libraries, or reflection. For exam-

ple, Ldalvik/system/DexClassLoader indicates dynamic code loading, Ljava/lang/

reflect/Method is required for invoking a method through reflection, and any access to

Ljavax/crypto is a sign for the use of cryptography. For native code invocations, we

count the number of times the Dalvik opcode 0x100 is present in the bytecode, which

corresponds to loading and executing native code.

5.3.5 Choice of Learning Algorithm

We implemented both malware detection and family identification in DroidSieve using

Extra Trees. As alternatives we considered one-vs-all Support Vector Machines (SVM),

Random Forests, and eXtreme Gradient Boost (XGBoost). In the past, SVM and Random

Forest have been successfully applied to malware detection [48, 237] and they have been

shown to have better performance than others after comparing them to 180 classifiers on

various datasets [125]. Ensemble tree-based classifiers perform well on many real world

settings, however. For example, Extra Tree [130] and Gradient Tree Boosting [147]

have been achieving great performance in most of recent “Kaggle” competitions [39] on

various domains, including malware classification2 or spam detection3.

We use feature selection to restrict the classifier to important discriminating features.

A feature is selected when the importance score assigned to the feature by the classifier

is higher than the mean of all the features’ scores. For decision trees, this importance is

computed from the mean decrease impurity (MDI) where a higher score implies a more

important feature.
2http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-

overfitting/
3http://mlwave.com/winning-2-kaggle-in-class-competitions-on-spam/

100
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

5.4 Experiments and Results

We implemented our proposed feature set in DroidSieve, a system for static detection

and family identification of Android malware. We begin our evaluation by describing

our experimental setup and evaluation metrics (§5.4.1). We then address the following

questions:

• Feature Engineering (§5.4.2): Which types of features are most effective for

regular and obfuscated malware?

• Classification of Standard Samples (§5.4.3): How effective is DroidSieve in

classifying non-obfuscated malware only, and how does it compare to other ap-

proaches that address the same problem?

• Classification of Obfuscated Samples (§5.4.4): How effective is DroidSieve

in classifying obfuscated malware or a mix of non-obfuscated and obfuscated

malware?

• Computational Efficiency (§5.4.5): Do the computational costs of using Droid-

Sieve allow its application at scale?

5.4.1 Experimental Setup

We mean to evaluate the choice of our features for two distinct problems:

Evaluation Categories. We evaluate DroidSieve along two dimensions, the classifica-

tion task and the type of dataset. The classification task is either (1) malware detection

among a set of malicious and benign samples or (2) family identification among a set of

samples known to be malicious. The type of dataset is either non-obfuscated, obfuscated,

or mixed. We use the datasets introduced in §5.3.2 and combinations thereof; details are

shown in Table 5.2a.

Evaluation Metrics. For evaluating the classification results, we use the detection rate

(DR), the false positive rate (FPR), the accuracy (ACC), and the F1-score (F1) which is

5.4. EXPERIMENTS AND RESULTS 101

ID Dataset Name Ground Truth #samples
— Drebin [48] Malware 5,560
MgMW MalGenome [293] Malware 1,260
PgMW PRAGuard * [179] Malware 1,260
McGW McAfee Goodware 8,041
McMW McAfee Malware 13,289
MvGW Marvin [171] Goodware 99,037
MvMW Marvin [171] Malware 10,581

(a) Dataset sources

Set Detection Family
Identification

1 {McAfee Goodware, Drebin} Drebin
2 {McAfee Goodware, MalGenome} MalGenome
3 {McAfee Goodware, PRAGuard*} PRAGuard*
4 {Marvin Goodware, Marvin Malware} –
5 {McAfee Goodware, McAfee Malware} –

Hold-out Ratio: 67% Training – 33% Testing
(b) Dataset combinations

Table 5.2: Overview of chosen datasets for malware detection and family identification.
The set of experiments involving obfuscated samples is marked with an asterisk(*). The
holdout ratio shows the percentage of samples retained for validation. For the case of
Marvin and McAfee malware we retain the splitting given by the authors, otherwise we
use a random split.

the harmonic mean of the precision and recall as quality metrics. Detection rate is the

correct number of predictions made over the set of malware, whereas accuracy reports

the number of correct predictions made after considering both goodware and malware.

We only use the detection rate for the case of malware detection and we report this

metric together with the false positive rate, i.e., the number of goodware samples wrongly

classified as malware divided by the total number of goodware samples in the dataset.

For assessing the performances of the proposed models, we use hold-out validation to

avoid overfitting [103]; samples used to fit the model are different from the ones used to

validate it. We retained one third of the samples for validation and trained the model on

the remaining two thirds of the data. For each sample that was retained, we ensured that

102
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

we trained on samples from the same category. For malware detection, a category for a

sample indicates whether it is benign or malicious. For family identification, a category

indicates the name of family. Consequently, we do not have a case of testing on samples

from unseen families or categories; this would be an instance of zero-shot learning [198],

a problem we consider out of scope for this thesis.

5.4.2 Ranking of Features

We now analyze the quality of our features, ranking them when used on unobfuscated

and obfuscated datasets. We expect features that are easily obfuscated to decrease in

importance, whereas features that are invariant under obfuscation should remain stable.

We pass the feature vectors for our samples to the Extra Tree algorithm and rank

them by mean decrease impurity [177]. As decision trees split the dataset by considering

one feature at a time, it is easy to measure how much impurity is introduced in the

classification by choosing a particular feature. Note that these rankings are informative

and do not dictate our choice of features in all sets of experiments in §5.4.3 and §5.4.4.

For classification, DroidSieve uses automatic feature ranking and chooses the top

features for the respective training set.

For malware detection, we passed all samples in McGW + MgMW and McGW +

PgMW through the Extra Tree classifier. Figure 5.3a and Figure 5.3b depict the top 30

features for these cases, respectively. In the case of McGW + MgMW, these 30 features

account for the top 40% features, while in the case of McGW + PgMW these features

account for the top 36% features. We repeated a similar experiment for the case of family

identification and the top features for samples from MgMW and PgMW are presented

in Figure 5.4a and Figure 5.4b, respectively. They denote the top 26% and the top 43%

most important features for identifying Android malware families from MgMW and

PgMW, respectively.

For both plain and obfuscated malware, it may be seen from Figures 5.3a and

5.3b that permissions (prepended with PER) play an important role in the detection

process. Permissions are hard to obfuscate as scrambling them would break the Android

5.4. EXPERIMENTS AND RESULTS 103

intent(SIG_STR)
intent(BATTERY_CHANGED_ACTION)

elf(shstrndx.15)
PER(READ_SMS)

PER(WRITE_SMS)
elf(sh_flags.AMS)
PER(SEND_SMS)

API(TelephonyManager:getSubscriberId)
API(SmsManager:sendTextMessage)

icg.intent(INPUT_METHOD_CHANGED)
icg.intent(USER_PRESENT)

Stat(cert_diff.1)
icg.intent(CONNECTIVITY_CHANGE)

icg.intent(SMS_RECEIVED)
icg.intent(ACTION_POWER_CONNECTED)

PER(RECEIVE_SMS)
Stat(cert_diff.2)

PER(INSTALL_PACKAGES)
API(PackageManager:getInstalledPackages)

PER(WRITE_APN_SETTINGS)
PER(PHONE_STATE)

Stat(cert_diff.0)
PER(READ_PHONE_STATE)

string(su)
package(ANDROID)

used.PER(READ_PHONE_STATE)
file(ELF)

API(TelephonyManager:getSimSerialNumber)
API(TelephonyManager:getLine1Number)

icg.API(TelephonyManager:getSubscriberId)

0.082

0.069

0.031

0.029

0.021

0.018

0.015

0.014

0.014

0.013

0.012

0.012

0.011

0.011

0.01

0.01

0.009

0.008

0.008

0.008

0.008

0.008

0.007

0.007

0.007

0.007

0.007

0.007

0.006

0.006

(a) Non-obfuscated malware.

Stat(cert_diff.1)
intent(SIG_STR)

intent(BATTERY_CHANGED_ACTION)
elf(shstrndx.15)

PER(READ_SMS)
Stat(reflection)

elf(sh_flags.AMS)
PER(SEND_SMS)

PER(WRITE_SMS)
icg.intent(INPUT_METHOD_CHANGED)

icg.intent(CONNECTIVITY_CHANGE)
icg.intent(USER_PRESENT)

icg.intent(ACTION_POWER_CONNECTED)
PER(RECEIVE_SMS)

icg.intent(SMS_RECEIVED)
PER(INSTALL_PACKAGES)

package(ANDROID)
PER(WRITE_APN_SETTINGS)

package(APP)
icg.intent(BOOT_COMPLETED)

PER(READ_PHONE_STATE)
intent(PHONE_STATE)

package(CONTENT)
package(NET)

Stat(num_intent_const_android_intent)
package(OS)

package(UTIL)
PER(INTERNET)

package(VIEW)
intent(SMS_RECEIVED)

0.181

0.067

0.057

0.03

0.028

0.025

0.018

0.016

0.015

0.011

0.01

0.01

0.01

0.01

0.009

0.009

0.009

0.009

0.009

0.008

0.008

0.007

0.007

0.007

0.006

0.006

0.006

0.006

0.005

0.005

(b) Obfuscated malware.

Figure 5.3: Ranking of features for malware detection: Figure 5.3a shows importance of
features by considering all features on MalGenome while Figure 5.3b shows importance
of features for the MalGenome obfuscated (PRAGuard) dataset.

programming model. Alongside permissions, novel syntactic features such as used-

permissions (prepended with used.PER) also rank highly. These features derived after

scanning the code to understand what permissions are being used and how often.

Apart from syntactic features, there are many resource-centric features which also

rank highly. In particular, features derived from assets such as ELF files (prepended

with elf) as well as intents, and API calls from incognito apps (prepended with icg) rank

highly when detecting plain malware samples as shown in Figure 5.3a.

The high-ranked features for malware detection is similar for both plain and ob-

104
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

intent(BATTERY_CHANGED_ACTION)
elf(shstrndx.15)

intent(SIG_STR)
API(ActivityMngr:getMemoryInfo)

used.PER(CHANGE_WIFI_STATE)
intent(PICK_WIFI_WORK)

PER(CHANGE_WIFI_STATE)
intent(UMS_DISCONNECTED)

API(Process:myPid)
API(Process:killProcess)

file(ELF)
intent(MEDIA_NOFS)

intent(UMS_CONNECTED)
string(su)

icg.intent(UMS_DISCONNECTED)
API(Intent:setDataAndType)

elf(symbols_shared_libraries.memcpy)
file(Java)

PER(INSTALL_PACKAGES)
intent(PHONE_STATE)

Stat(num_intent_action_android_net)
icg.API(TelephonyManager:getDeviceId)

string(emulator)
PER(WRITE_HISTORY_BOOKMARKS)

intent(NEW_OUTGOING_CALL)
package(DALVIK_SYSTEM)

elf(sh_flags.AMS)
API(PackageMngr:getInstalledPckgs)

PER(ACCESS_GPS)
PER(ACCESS_LOCATION)

0.024

0.023

0.02

0.018

0.017

0.013

0.012

0.011

0.01

0.01

0.01

0.01

0.01

0.009

0.009

0.009

0.009

0.008

0.008

0.008

0.008

0.008

0.008

0.008

0.008

0.008

0.007

0.007

0.007

0.007

(a) Non-obfuscated malware.

intent(BATTERY_CHANGED_ACTION)
elf(shstrndx.15)

intent(SIG_STR)
PER(CHANGE_WIFI_STATE)

file(Java)
file(ELF)

PER(RECEIVE_BOOT_COMPLETED)
elf(sh_flags.AMS)

Stat(PackageMismatchService)
intent(PHONE_STATE)

PER(INSTALL_PACKAGES)
Stat(PackageMismatchReceiver)

icg.intent(UMS_DISCONNECTED)
intent(MEDIA_NOFS)

icg.intent(UMS_CONNECTED)
PER(SEND_SMS)

PER(ACCESS_GPS)
PER(WRITE_HISTORY_BOOKMARKS)

PER(RECEIVE_SMS)
intent(UMS_CONNECTED)

icg.intent(PICK_WIFI_WORK)
PER(ACCESS_LOCATION)

intent(UMS_DISCONNECTED)
icg.intent(MEDIA_NOFS)

PER(ACCESS_WIFI_STATE)
icg.API(Context:getFilesDir)

intent(NEW_OUTGOING_CALL)
icg.package(DALVIK_SYSTEM)

elf(sh_flags.A)
PER(MOUNT_UNMOUNT_FILESYSTEMS)

0.035

0.031

0.03

0.024

0.02

0.018

0.016

0.015

0.013

0.013

0.013

0.012

0.012

0.012

0.012

0.012

0.012

0.012

0.011

0.011

0.011

0.01

0.01

0.01

0.009

0.009

0.009

0.009

0.009

0.009

(b) Obfuscated malware.

Figure 5.4: Ranking of features for family identification.

fuscated apps. A noticeable difference in the case of obfuscated malware is that the

top-ranked feature is Stat(cert_diff.1). which is derived from the certificate of the app.

It checks whether the time difference between the date when the certificate was issued

and time when the app was signed is within a day. A temporal proximity means that the

app was signed during a time when the malware developer piggybacked the app with

malicious code. This is a common practice which signals that the malware developer

may be using automated tools to repackage the app.

The ranking of features for classifying malware into families for plain and obfuscated

malware is shown in Figures 5.4a and 5.4b, respectively. The high-ranked features in both

5.4. EXPERIMENTS AND RESULTS 105

cases are similar to those observed in the case of classification except for two noticeable

differences. Firstly, incognito features are not as important for classifying malware into

families as they are for malware detection. This is understandable as incognito apps are

a means to achieve a malicious action but they do not characterize what malicious action

is carried out or how it is carried out. Secondly, we can see that features derived from the

file type of the assets (prepended with file) and those related to logical inconsistencies

(features such as Stat(PackageMismatchService) and Stat(PackageMismatchReceiver))

are highly ranked. This could point to the fact that the app is repackaged using an attack

vector that is specific to a given family.

5.4.3 Classification Results

In this section we evaluate the effectiveness of DroidSieve in classifying unobfuscated

malware, to allow a comparison against approaches from the literature. To not put

DroidSieve at a disadvantage, we therefore start with a feature set that includes all

features, including those that are susceptible to obfuscation.

As datasets, We first evaluate on detection of malware samples where we use the

dataset obtained by combining malicious samples from the Drebin dataset with the

Goodware set as shown in Table 5.2b. Note that we only report results for the Drebin

dataset here because it includes all MalGenome samples and is both larger and more

recent.

Malware Detection. The table shows that in our best scenario we are able to identify if

a given app is malicious or benign with accuracy of 99.64% for the case of Drebin, and

99.82% for MvGW. The breakdown of the accuracy shows a detection rate of 99.44%

for Drebin, with 0.226% of false positives. Similarly, the detection rate for MvGW is

98.42% with only 0.008% of false positives. For the case of Drebin we obtained slightly

higher detection rate with respect to MvGW. However, the false positive rate is better in

the case of MvGW. In fact, in this case the number of goodware classified as malware

is negligible (2 out of 25493). In most cases, the performance is improved with feature

106
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

Type Classifier #F ACC(%) F1(%) DR(%) FPR(%)

Malware
Detection

Drebin + McGW
Extra Trees 22,584 99.64 99.64 99.44 0.226

Extra Trees + FS 859 99.57 99.57 99.39 0.302
MvGW + MvMW

Extra Trees 26,396 99.72 99.72 97.58 0.012
Extra Trees + FS 634 99.82 99.81 98.42 0.008

Family
Identification

Drebin (108 families)
Extra Trees 2,564 97.68 97.31 – –

Extra Trees + FS 320 98.12 97.84 – –

Table 5.3: Results for detection and family classification on unobfuscated malware
with and without Feature Selection (FS) for the Marvin, McAfee and Drebin datasets.
#F stands for number of features, ACC for Accuracy, F1 for F1-Score, DR for the
detection rate, and FPR for False Positive Rate. Best scores for each setting are shown in
bold. Although feature selection drastically reduces the number of features, it mostly
outperforms the full-feature setting.

selection. It allows to drastically reduce the complexity of the feature space, e.g., from

over 20,000 features to less than 1,000. This means that we are able to reduce redundant

or irrelevant features and improve the performance of classification.

Family Identification. After detection, DroidSieve is also able to determine if the

given malware belongs to a known family. Our experiments on the Drebin dataset

show that Extra Trees achieve an accuracy of 97.68% when considering all 2,564 the

features (see Table 5.2b). Interestingly, keeping the top 320 most informative features

increases the accuracy to 98.12% while adding features that are not unimportant can hurt

classification accuracy [224].

5.4.4 Obfuscation Evaluation

We now evaluate the effectiveness of our system against obfuscated malware and against

a mix of obfuscated and unobfuscated malware, as it would be encountered in an actual

deployment. In particular, we ran three sets of experiments for both malware detection

and family identification. The three cases are based on scenarios where the training

5.4. EXPERIMENTS AND RESULTS 107

and/or testing samples are obfuscated. Note that our original dataset consists of samples

from the Goodware set and samples from the MalGenome project. For each malware

sample, we obtain the corresponding obfuscated sample from the PRAGuard project.

Detection of Obfuscated Malware. Our training sets for malware detection are as

follows:

1. McGW + MgGW: We train on samples from the Goodware and MalGenome data

sets only to show a baseline classification without obfuscation.

2. McGW + PgMW: We train on the obfuscated malware samples from PRAGuard

and include the Goodware.

3. McGW + MgMW + PgMW: We train on both the original and obfuscated ver-

sions of the malware obtained from MalGenome and PRAGuard, respectively,

together with the Goodware.

We chose our test cases for the trained model to highlight that the choice of our

features performs consistently well regardless of whether we train on the obfuscated

samples or on the original ones. In the first experiment on detecting malware, we retained

33% of samples from PgMW and McGW and trained with the rest. With the retained

samples, we obtained accuracies of 100% for the McGW samples (0% false positives)

and 99.02% for the PgMW samples. We repeated the experiment with the non-obfuscated

set of samples (MgGW + McGW) and obtained similar accuracy values.

To further validate our features and trained models, we also tested on malware

samples from a dataset that is different from the one used for training (i.e., 100% hold-

out). First, we trained on all MgMW + McGW samples, and tested on PgMW samples.

Then, we trained on all PgMW + McGW samples, and tested on MgMW samples. For

these two experiments, our accuracy was 92.38% and 96.11% respectively. As a final

experiment to validate our features for detection, we also performed a hold-out validation

of the 33% of the dataset on all samples i.e. McGW + MgMW + PgMW and obtained

an accuracy of 99.71%. A summary of our results for the detection task can be found

108
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

in Table 5.4. These results show that our features are effective at distinguishing benign

and malicious samples, a task made more difficult by many obfuscation techniques also

having valid use cases in benign software (see Table 5.1).

To compare our performance with recent approaches, we use Drebin framework [48]

to extract features from MgMW, McGW and PgMW datasets. We trained on all MgMW

+ McGW samples and tested on the obfuscated set of samples (i.e.: PgMW) using the

same classification algorithm (Random Forest) used by DroidSieve. The detection rate

obtained with Drebin’s feature engineering is 0%. Note that our framework reported

92.38% on this experiment. We repeated the same experiment by training over the

original set of malware samples collected by Drebin and testing again on PgMW. The

feature set of Drebin in this setting is of 101,055 features while ours is of 22,584. After

applying feature selection, Drebin retained 13,602 while we retained 859 informative

features. For this experiment, the features used by the Drebin framework reported a

detection rate of 11% while our framework reported 100%. Among the most important

features used by Drebin were different strings such as URLs which are a soft target for

obfuscation. Contrarily, our framework retained several logical inconsistencies (e.g.:

PackageMissmatchIntentConsts and PackageMissmatchService), other resource-centric

features (e.g.: PackageNameEntropy), ELF features and other statistical features (such

as the number of third party permissions found).

Identification of Obfuscated Families. We now demonstrate the effectiveness of our

features for identifying the classes each malware sample belongs to. Our training sets for

the identification of malware families are as follows:

1. MgMW: We train on samples from MalGenome only.

2. PgMW: We train on the obfuscated malware samples from PRAGuard.

3. MgMW + PgMW: We train on both the original and obfuscated versions of the

malware obtained from MalGenome and PRAGuard respectively.

5.4. EXPERIMENTS AND RESULTS 109

Malware Detection Family Identification
Test Test

Training McGW MgMW PgMW Training MgMW PgMW
MgMW + McGW 100.00 99.02 92.38∗ MgMW 97.79 97.94∗

PgMW + McGW 100.00 96.11∗ 99.02 PgMW 97.86∗ 99.26
MgMW + PgGW + McGW 99.71 MgMW + PgMW 99.15

Table 5.4: Evaluation of classification on the McAfee Goodware (McGW), Malgenome
(MgMW), and PRAGuard (Malgenome obfuscated–PgMG) dataset with feature filtering
and using hold-out validation (∗100% hold-out ratio, otherwise we use the hold-out
ration described in Table 5.2b).

By following the same settings as in the previous experiments, for each dataset we

retained 33% of the samples from each family, when that dataset was used for both

training and testing. A summary of our results on family identification can also be

found in Table 5.4. The accuracy after training on MgMW samples was 97.79% and the

accuracy after training on PgMW was 99.26%. Additionally, we also applied 100% hold-

out validation between MgMW and PgMW showing accuracies of 97.94% and 97.86%

respectively. It is worth noting here that training on obfuscated malware enables our

classifier to perform better. On the contrary, when obfuscated samples are not included

in the training set, the resulting model is not able to prioritize all features needed to

perform higher than 97.79%. Finally, we tested the trained models on a combination of

both obfuscated and non-obfuscated samples (MgMW + PgMW) and obtained an overall

accuracy of 99.15%.

5.4.5 Efficiency

A main design point for DroidSieve was to allow computationally inexpensive feature

extraction. Figure 5.5 shows the runtimes for feature extraction on the Marvin dataset,

which contains more than 100,000 samples. The median lies at just 2.53 seconds for

processing one sample on a single core (Intel Xeon E5-2697 v3 @ 2.60GHz). The overall

time for feature extraction on the Marvin dataset took less than 8 hours when executed in

parallel on 40 cores.

110
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

Other approaches that have been proposed and shown effective for obfuscation-

resilient Android malware detection are based on analyzing information flow [53, 129].

However, information flow analysis requires running times that are several orders of

magnitude above those seen in DroidSieve’s feature extraction. In particular, when

attempting to process the 5,560 samples of the Drebin dataset with FlowDroid [49], we

were only able to finish half the dataset within three days. Hence, we believe DroidSieve

to be better suited for deployment of obfuscation-resilient detection at scale.

5.5 Comparison with Related Works

We now give an overview of the most relevant Android malware detection and classifica-

tion techniques (see Table 5.5 for a summary), and compare their characteristics with our

system.

Malware Detection. Several systems perform Android malware detection, i.e., perform

binary classification [36, 48]. DroidAPIMiner [36] is a detection system based on

features generated at API level. Drebin [48] is a lightweight detection method that uses

static analysis to gather the most important characteristics of Android applications such

as permissions, API calls, and network addresses declared in clear text. It uses machine

learning (Support Vector Machines) to detect whether a given sample is malicious or

benign. DroidSIFT [280] builds contextual API dependency graphs that provide an

abstracted view of the possible behaviors of malware and employs machine learning and

0 2 4 6 8 10 12 14

Figure 5.5: Frequency distribution of running times for feature extraction, in seconds.
Most samples require less than six seconds to be analyzed.

5.5. COMPARISON WITH RELATED WORKS 111

Year Method
Type

Feature # Malware DR/FP(%) ACC(%) Time(s) EnvironmentDet Class

2014 Dendroid [243] − 3 CFG 1,247 − 94 −
2014 DroidAPIMiner [36] 3 − API,PKG,PAR 3,987 99/2.2 − 15 Core i5,6G RAM
2014 DroidMiner [275] 3 3 CG,API 2,466 95.3/0.4 92 19.8 −
2014 Drebin [48] 3 − PER,STR,API,INT 5,560 94.0/1.0 − 0.75 Core 2 Duo, 4G RAM
2014 DroidSIFT [280] 3 3 API-F 2,200 98.0/5.15 93 175.8 Xeon, 128G RAM
2014 DroidLegacy [101] 3 3 API 1,052 93.0/3.0 98 − −
2015 AppAudit [267] 3 − API-F 1,005 99.3/0.61 − 0.6 Core i7, 8G RAM
2015 MudFlow [53] 3 − API-F 10,552 90.1/18.7 − − −
2015 Marvin [171] 3 − PER, INT, ST, PN 15,741 98.24/0.0 − − −
2015 RevealDroid [129] 3 3 PER,API,API-F,INT,PKG 9,054 98.2/18.7 93 95.2 8-Core, 64G RAM
2016 DroidScribe [88] − 3 SYSC, BIND, FILE, NET 5,246 − 94 − −
2016 Madam [227] 3 − SYSC, API, PER, SMS, USR 2,800 96/0.2 − − −
Ours DroidSieve 3 3 As described in §5.3.1 16,141 99.3/0.0 99 2.5 40-Core Xeon, 378G RAM

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER:

Requested Permissions, CFG: Control Flow Graph, STR: Embedded strings, PKG: Package information of API, ST:

Statistical features, PN: Package names, SYSC: System calls, BIND: Binder transactions, FILE: Filesystem

Transactions, NET: Network Transactions, USR: User Activity, SMS: SMS Monitoring

Table 5.5: Static analysis techniques on Android malware. Results are reported based
on the most representative setting. (Almost all of the systems have difficulty against
reflection as they are mostly based on API). The performance time of different systems
is subjected to specification of computing environments.

graph similarity to detect malicious applications. MudFlow [53] and AppAudit [267],

Ahmadi et al. [37], however, leverage the analysis of flows between APIs to detect

malware.

The main weakness of semantics-based static analysis is that it generally shows

poor performance against encryption, reflection, native code, and other cross-platform

code such as HTML5. These drawbacks motivate dynamic analysis and hybrid ap-

proaches [171, 227]. Marvin [171] shows how the combination of static and dynamic

analysis can improve the detection rate as well as reducing the number of false positives.

It uses a number of statically extracted features and combines them with additional

dynamically extracted features, overall more than 490,000. Moreover, it leverages ma-

chine learning to detect malware as well as providing a risk score associated with a

given unknown sample. Madam [227] proposed a host-based malware detection system

that analyzed features at four levels: kernel, application, user and package. It derived

features such as system calls, sensitive API calls and SMS through dynamic analysis

while complementing these with statically derived features such as permissions, the app’s

metadata and market information.

112
CHAPTER 5. FAST AND ACCURATE CLASSIFICATION OF OBFUSCATED ANDROID

MALWARE

Malware Family Classification. In addition to malware detection systems, a number

of methods have been proposed just for classification [88, 243] and others [275, 280]

evaluated the features used by their detection system for classification. DroidLegacy [101]

is a system using API signature similarity to detect and classify malware. Dendroid [243]

proposed an approach based on text mining to automatically classify malware samples

and analyze families based on the control flow structures found in them. Similarly,

RevealDroid [129] aims at identifying Android malware families. Their approach uses

information flow analysis and sensitive API flow tracking built on top of two machine

learning classifiers, i.e., C4.5 and 1NN. DroidScribe [88] used a purely dynamic approach

to malware classification and classified malware into families by observing system calls,

Android ICC through the Binder protocol and file/network transactions made by the

app. To classify apps that could not be satisfactorily stimulated during dynamic analysis,

DroidScribe built on a statistical evaluation framework of the underline machine learning

approach [159] to properly trigger a set-based classification scheme that identified the

top matching families for a malware sample, given a desired statistical confidence level.

Discussion. We summarize the most prominent static analysis approaches for Android

malware analysis tailored to either detection or classification in Table 5.5. The column

Type shows whether a system was mainly proposed for detection or classification. The

Feature column shows the extracted attributes from malware. # Malware is the total

number of malware considered for evaluation. DR/FP refers to the detection rate and

false positive rate of a detection system, and ACC shows the accuracy of the system when

it is applied for malware family classification. Time shows the average required time for

analysis of every application.

Systems like DroidMiner, DroidAPIMiner and Drebin are mainly based on APIs, which

are inherently vulnerable to reflection. API-flow based approaches like RevealDroid,

AppAudit, MudFlow, and DroidSIFT are more precise and consider features related to

the semantics of application, but they are still vulnerable to reflection. Furthermore,

flow extraction is expensive unless done in the manner of AppAudit where efficiency is

derived from incomplete flow coverage.

5.6. CONCLUSION 113

In contrast, our system is robust against obfuscation techniques like reflection and

encryption while still being computationally efficient. Additionally, while past studies

focus on a smaller set of behaviors, our method encompasses a larger set of characteristics

and behaviors to distinguish goodware from malware and to identify Android malware

families more effectively.

Finally, Roy et al. [224] discuss design choices for evaluating detection systems.

Going forward, we plan on taking their important lessons into account. As of now, the

focus in DroidSieve lies decidedly on comparing our novel feature engineering for

potentially obfuscated malware against existing results in their published settings.

5.6 Conclusion

In this chapter, we have presented a fast, scalable, and accurate system for Android mal-

ware detection and family identification based on lightweight static analysis. DroidSieve

uses deep inspection of Android malware to build effective and robust features suitable

for computational learning. This is key in scenarios where security analysts require

intelligent instruments to automate detection and further analysis of Android malware.

We have introduced a novel set of characteristics and showed the importance of

systematic feature engineering to achieve a diversified and large range of features that

can adjust to different malware. Our findings show that static analysis for Android can

succeed even when confronted with obfuscation techniques such as reflection, encryption

and dynamically-loaded native code. While fundamental changes in characteristics of

malware remain a largely open problem, we showed that DroidSieve remains resilient

against state-of-the-art obfuscation techniques which can be used to quickly derive new

and syntactically different malware variants.

Chapter 6

Concluding Remarks

In this thesis, we focused on modeling the functions of Android applications that can be

misused by attackers and the security community has neglected addressing that attributes

of applications. Hence, we targeted three different parts of Android applications and

showed how they can help to improve the effectiveness of an Android classification

system. First, we proposed a detection system based on extracting signatures from

HTTP traffic of Android applications and represented the effectiveness of the system

compared to when the approach is used for desktop programs. Second, due to the affect

of encryption on HTTP traffic by auxiliary libraries, the first approach approach might

not be effectively apply to all kinds of Applications like those applications that use GCM

to communicate with servers. So we proposed a static approach to better detect those

applications that misuse GCM channel. Third, as static analysis approaches can be misled

by obfuscation techniques, we addressed modeling obfuscation behaviors of applications

to improve the influence of classification systems. All of the proposed techniques in this

thesis aim to show how the effective feature engineering based on an understanding of

applications functions, which are potential to be exploited by adversary, can help the

improvement of learning-based systems.

115

Bibliography

[1] Enisa threat taxonomy. http://goo.gl/ATLpcA.

[2] Mobile advertisement platforms. http://www.mobyaffiliates.com/mobile-

advertising-networks/.

[3] Droid2, 2010.

[4] android-apktool: A tool for reengineering android apk files. https://code.google.com/

p/android-apktool/, 2010–2014.

[5] adb trickery #2, 2011.

[6] Android reverse engineering (a.r.e.) virtual machine. https://www.honeynet.org/node/

783, 2011.

[7] Keychain. http://developer.android.com/reference/android/security/

KeyChain.html, 2011.

[8] Root for android, 2011.

[9] yummy yummy, gingerbreak!, 2011.

[10] Zimperlich sources, 2011.

[11] androguard - reverse engineering, malware and goodware analysis of android applications

... and more. https://code.google.com/p/androguard/, 2011–2013.

[12] Dare: Dalvik retargeting. http://siis.cse.psu.edu/dare/, 2012.

117

http://goo.gl/ATLpcA
http://www.mobyaffiliates.com/mobile-advertising-networks/
http://www.mobyaffiliates.com/mobile-advertising-networks/
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://www.honeynet.org/node/783
https://www.honeynet.org/node/783
http://developer.android.com/reference/android/security/KeyChain.html
http://developer.android.com/reference/android/security/KeyChain.html
https://code.google.com/p/androguard/
http://siis.cse.psu.edu/dare/

118 BIBLIOGRAPHY

[13] Droidscope. https://code.google.com/p/decaf-platform/wiki/DroidScope,

2012.

[14] copperdroid. http://copperdroid.isg.rhul.ac.uk/copperdroid/, 2013.

[15] dex2jar: Tools to work with android .dex and java .class files. https://code.google.

com/p/dex2jar/, 2013.

[16] Root exploits, August 2013.

[17] Soot - a java optimization framework. https://github.com/StevenArzt/soot, 2013.

[18] A5 online service. http://dogo.ece.cmu.edu/a5/, 2014.

[19] A5 source code. https://github.com/tvidas/a5, 2014.

[20] Android security overview. https://source.android.com/devices/tech/security/,

2014.

[21] anubis - malware analysis for unknown binaries. https://anubis.iseclab.org/, 2014.

[22] Dexguard | guardsquare. http://www.saikoa.com/dexguard, 2014.

[23] Dexter. http://dexter.dexlabs.org/, 2014.

[24] droidbox - android application sandbox. https://code.google.com/p/droidbox/,

2014.

[25] Flowdroid - secure software engineering. https://github.com/secure-software-

engineering/soot-infoflow-android/wiki, 2014.

[26] jnetpcap opensource | protocol analysis sdk. http://jnetpcap.com/, 2014.

[27] Mobile sandbox (ng). http://mobilesandbox.org/, 2014.

[28] Novel active learning methods for enhanced {PC} malware detection in windows {OS}.

Expert Systems with Applications, 41(13):5843 – 5857, 2014.

[29] Qemu: open source processor emulator. http://wiki.qemu.org/Main_Page, 2014.

https://code.google.com/p/decaf-platform/wiki/DroidScope
http://copperdroid.isg.rhul.ac.uk/copperdroid/
https://code.google.com/p/dex2jar/
https://code.google.com/p/dex2jar/
https://github.com/StevenArzt/soot
http://dogo.ece.cmu.edu/a5/
https://github.com/tvidas/a5
https://source.android.com/devices/tech/security/
https://anubis.iseclab.org/
http://www.saikoa.com/dexguard
http://dexter.dexlabs.org/
https://code.google.com/p/droidbox/
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
http://jnetpcap.com/
http://mobilesandbox.org/
http://wiki.qemu.org/Main_Page

BIBLIOGRAPHY 119

[30] smali - an assembler/disassembler for android’s dex format. https://code.google.com/

p/smali/, 2014.

[31] Snort - open source network intrusion prevention system. https://www.snort.org,

2014.

[32] Taintdroid - realtime privacy monitoring on smartphones. http://appanalysis.org/

index.html, 2014.

[33] Tracedroid - free online dynamic android app nalysis. http://tracedroid.few.vu.nl,

2014.

[34] Uiautomator - android framework.

http://developer.android.com/tools/help/uiautomator/index.html, 2014.

[35] Virustotal - free online virus, malware and url scanner. https://www.virustotal.com/,

2014.

[36] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-Level Features

for Robust Malware Detection in Android, pages 86–103. 2013.

[37] Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, and Giorgio Giacinto.

Detecting misuse of google cloud messaging in android badware. In Proceedings of the

6th Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’16,

pages 103–112, New York, NY, USA, 2016. ACM.

[38] Mansour Ahmadi, Ashkan Sami, Hossein Rahimi, and Babak Yadegari. Malware detection

by behavioural sequential patterns. Computer Fraud & Security, 2013(8):11 – 19, 2013.

[39] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and Giorgio

Giacinto. Novel feature extraction, selection and fusion for effective malware family

classification. In Conference on Data and Application Security and Privacy (CODASPY),

pages 183–194, 2016.

[40] Ron Amadeo. App ops: Android 4.3’s hidden app permission manager, control permissions

for individual apps!, August 2013.

https://code.google.com/p/smali/
https://code.google.com/p/smali/
https://www.snort.org
http://appanalysis.org/index.html
http://appanalysis.org/index.html
http://tracedroid.few.vu.nl
http://developer.android.com/tools/help/uiautomator/index.html
https://www.virustotal.com/

120 BIBLIOGRAPHY

[41] Brandon Amos, Hamilton Turner, and Jules White. Applying machine learning classifiers

to dynamic android malware detection at scale. In Wireless Communications and Mobile

Computing Conference (IWCMC), 2013 9th International, pages 1666–1671, July 2013.

[42] Android. Proguard, 2014.

[43] AndroTotal. (another) android trojan scheme using google cloud messag-

ing. http://blog.andrototal.org/post/89637972097/another-android-trojan-

scheme-using-google-cloud, jun 2014.

[44] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh.

Cells: A virtual mobile smartphone architecture. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, SOSP ’11, pages 173–187, New York, NY,

USA, 2011. ACM.

[45] Axelle Apvrille and Ruchna Nigam. Obfuscation in android malware, and how to fight

back. Virus Bulletin, pages 1–10, 2014.

[46] Marco Aresu, Davide Ariu, Mansour Ahmadi, Davide Maiorca, and Giorgio Giacinto.

Clustering android malware families by http traffic. In Malicious and Unwanted Software

(MALWARE), pages 128–135, Oct 2015.

[47] Anshul Arora, Shree Garg, and Sateesh K. Peddoju. Malware detection using network

traffic analysis in android based mobile devices. In Next Generation Mobile Apps, Services

and Technologies (NGMAST), 2014 Eighth International Conference on, pages 66–71,

Sept 2014.

[48] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, Konrad Rieck, and

Siemens. Drebin: Efficient and explainable detection of android malware in your pocket.

In Proceedings of the ISOC Network and Distributed System Security Symposium (NDSS),

San Diego, CA, February 2014.

[49] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise

context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In

http://blog.andrototal.org/post/89637972097/another-android-trojan-scheme-using-google-cloud
http://blog.andrototal.org/post/89637972097/another-android-trojan-scheme-using-google-cloud

BIBLIOGRAPHY 121

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI’14, pages 259–269, New York, NY, USA, 2014. ACM.

[50] N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostiainen, Elena

Reshetova, and Ahmad-Reza Sadeghi. Mobile Platform Security, volume 4 of Synthesis

Lectures on Information Security, Privacy, and Trust. Morgan & Claypool, December

2013.

[51] Japan Smartphone Security Association. Android Application Secure Design/Secure

Coding Guidebook. June 2014.

[52] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: Analyzing

the android permission specification. In Proceedings of the 2012 ACM Conference on

Computer and Communications Security, CCS ’12, pages 217–228, 2012.

[53] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt,

Siegfried Rasthofer, and Eric Bodden. Mining apps for abnormal usage of sensitive data.

In 37th International Conference on Software Engineering (ICSE), 2015.

[54] Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith.

Smudge attacks on smartphone touch screens. In Proceedings of the 4th USENIX Con-

ference on Offensive Technologies, WOOT’10, pages 1–7, Berkeley, CA, USA, 2010.

USENIX Association.

[55] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. Practicality of

accelerometer side channels on smartphones. In Proceedings of the 28th Annual Computer

Security Applications Conference, ACSAC ’12, pages 41–50, New York, NY, USA, 2012.

ACM.

[56] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von

Styp-Rekowsky. Appguard - enforcing user requirements on android apps. In Nir Piterman

and ScottA. Smolka, editors, Tools and Algorithms for the Construction and Analysis of

Systems, volume 7795 of Lecture Notes in Computer Science, pages 543–548. Springer

Berlin Heidelberg, 2013.

122 BIBLIOGRAPHY

[57] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A method-

ology for empirical analysis of permission-based security models and its application to

android. In Proceedings of the 17th ACM Conference on Computer and Communications

Security, CCS ’10, pages 73–84, New York, NY, USA, 2010. ACM.

[58] Michael Becher, Felix C. Freiling, Johannes Hoffmann, Thorsten Holz, Sebastian Uellen-

beck, and Christopher Wolf. Mobile security catching up? revealing the nuts and bolts of

the security of mobile devices. In Proceedings of the 2011 IEEE Symposium on Security

and Privacy, SP’11, pages 96–111, Washington, DC, USA, 2011. IEEE Computer Society.

[59] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mockdroid:

Trading privacy for application functionality on smartphones. In Proceedings of the 12th

Workshop on Mobile Computing Systems and Applications, HotMobile ’11, pages 49–54,

New York, NY, USA, 2011. ACM.

[60] Battista Biggio, Giorgio Fumera, and Fabio Roli. Multiple classifier systems for robust

classifier design in adversarial environments. Int. Journal of Machine Learning and

Cybernetics, 1(1):27–41, 2010.

[61] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 1 edition, October 2007.

[62] Bitdefender. Clueful detects vulnerable applovin/vulna apps, July 2013.

[63] Thomas Blasing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, and

Sahin Albayrak. An android application sandbox system for suspicious software detection.

In Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on,

pages 55–62, Oct 2010.

[64] bluebox. Android master key exploit - uncovering android master key, July 2013.

[65] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza

Sadeghi. Xmandroid: A new android evolution to mitigate privilege escalation attacks.

Technical Report TR-2011-04, Technische Universitat Darmstadt, Apr 2011.

BIBLIOGRAPHY 123

[66] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi,

and Bhargava Shastry. Towards taming privilege-escalation attacks on Android. In 19th

Annual Network & Distributed System Security Symposium (NDSS’12), Feb 2012.

[67] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza Sadeghi,

and Bhargava Shastry. Practical and lightweight domain isolation on android. In Pro-

ceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile

Devices, SPSM ’11, pages 51–62, New York, NY, USA, 2011. ACM.

[68] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. Flexible and fine-grained

mandatory access control on android for diverse security and privacy policies. In Presented

as part of the 22nd USENIX Security Symposium (USENIX Security 13), pages 131–146,

Washington, D.C., 2013. USENIX.

[69] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-based

malware detection system for android. In Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, pages 15–26, New

York, NY, USA, 2011. ACM.

[70] businessinsider. A scary graphic for android users, August 2014.

[71] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen from

smartphone motion. In Proceedings of the 6th USENIX Conference on Hot Topics in

Security, HotSec’11, pages 9–9, Berkeley, CA, USA, 2011. USENIX Association.

[72] Liang Cai and Hao Chen. On the practicality of motion based keystroke inference attack.

In Proceedings of the 5th International Conference on Trust and Trustworthy Computing,

TRUST’12, pages 273–290, Berlin, Heidelberg, 2012. Springer-Verlag.

[73] Liang Cai, Sridhar Machiraju, and Hao Chen. Defending against sensor-sniffing attacks

on mobile phones. In Proceedings of the 1st ACM Workshop on Networking, Systems, and

Applications for Mobile Handhelds, MobiHeld ’09, pages 31–36, New York, NY, USA,

2009. ACM.

124 BIBLIOGRAPHY

[74] Zhenquan Cai and Roland H.C. Yap. Inferring the detection logic and evaluating the

effectiveness of android anti-virus apps. In ACM Conference on Data and Application

Security and Privacy (CODASPY), pages 172–182, 2016.

[75] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck. Mast: Triage

for market-scale mobile malware analysis. In Proceedings of the Sixth ACM Conference

on Security and Privacy in Wireless and Mobile Networks, WiSec ’13, pages 13–24, New

York, NY, USA, 2013. ACM.

[76] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. Peeking into your app without

actually seeing it: Ui state inference and novel android attacks. In 23rd USENIX Security

Symposium (USENIX Security 14), pages 1037–1052, San Diego, CA, August 2014.

USENIX Association.

[77] Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui Han. Perplexed

messengers from the cloud: Automated security analysis of push-messaging integrations.

In Computer and Communications Security (CCS), pages 1260–1272, 2015.

[78] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-

application communication in android. In Proceedings of the 9th International Conference

on Mobile Systems, Applications, and Services, MobiSys’11, pages 239–252, New York,

NY, USA, 2011. ACM.

[79] CIO. X-ray app identifies android vulnerabilities but doesn’t fix them, August 2012.

[80] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating

transformations. Technical Report TR148, Department of Computer Science, University

of Auckland, 1997.

[81] Mauro Conti, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. Can’t you

hear me knocking: Identification of user actions on android apps via traffic analysis. Fifth

ACM Conference on Data and Application Security and Privacy (CODASPY), 2015.

[82] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: Context-related policy en-

forcement for android. In Proceedings of the 13th International Conference on Information

Security, ISC’10, pages 331–345, Berlin, Heidelberg, 2011. Springer-Verlag.

BIBLIOGRAPHY 125

[83] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer

overflows: attacks and defenses for the vulnerability of the decade. In DARPA Information

Survivability Conference and Exposition, 2000. DISCEX ’00. Proceedings, volume 2,

pages 119–129 vol.2, 2000.

[84] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: Detecting cloned

applications on android markets. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,

Computer Security - ESORICS 2012, volume 7459 of Lecture Notes in Computer Science,

pages 37–54. Springer Berlin Heidelberg, 2012.

[85] CVE. Cve-2011-1717, May 2011.

[86] CVE. Android vulnerability statistics, November 2016.

[87] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song. Net-

workprofiler: Towards automatic fingerprinting of android apps. In INFOCOM, pages

809–817. IEEE, 2013.

[88] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly Tam, Man-

sour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro. Droidscribe: Classifying android

malware based on runtime behavior. In Mobile Security Technologies (MoST), 2016.

[89] National Vulnerability Database. Cve-2009-2692, August 2009.

[90] National Vulnerability Database. Cve-2010-1185, March 2010.

[91] National Vulnerability Database. Cve-2011-1149, March 2011.

[92] National Vulnerability Database. Cve-2011-1350, March 2011.

[93] National Vulnerability Database. Cve-2011-1823, April 2011.

[94] National Vulnerability Database. Cve-2011-3874, October 2011.

[95] National Vulnerability Database. Cve-2012-0056, January 2012.

[96] National Vulnerability Database. Cve-2014-3153, June 2014.

[97] National Vulnerability Database. Cve-2015-3636, May 2015.

126 BIBLIOGRAPHY

[98] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Privilege

escalation attacks on android. In Proceedings of the 13th International Conference on

Information Security, ISC’10, pages 346–360, Berlin, Heidelberg, 2011. Springer-Verlag.

[99] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha

Sethumadhavan, and Salvatore Stolfo. On the feasibility of online malware detection with

performance counters. In Proceedings of the 40th Annual International Symposium on

Computer Architecture, ISCA ’13, pages 559–570, New York, NY, USA, 2013. ACM.

[100] Amit Deo, Santanu Kumar Dash, Guillermo Suarez-Tangil, Vladimir Vovk, and Lorenzo

Cavallaro. Prescience: Probabilistic guidance on the retraining conundrum for malware

detection. In ACM Workshop on Artificial Intelligence and Security (AISec), 2016.

[101] Luke Deshotels, Vivek Notani, and Arun Lakhotia. DroidLegacy: Automated familial

classification of Android malware. In ACM SIGPLAN on Program Protection and Reverse

Engineering Workshop (PPREW), 2014.

[102] Revolutionary dev team. zergrush android 2.2 / 2.3 local root, 2011.

[103] Tom Dietterich. Overfitting and undercomputing in machine learning. ACM Computing

Surveys (CSUR), 27(3):326–327, September 1995.

[104] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. Quire:

Lightweight provenance for smart phone operating systems. In Proceedings of the 20th

USENIX Conference on Security, SEC’11, pages 23–23, Berkeley, CA, USA, 2011.

USENIX Association.

[105] Jason A. Donenfeld. Mempodroid exploit, January 2012.

[106] William Enck. Defending users against smartphone apps: Techniques and future directions.

In Proceedings of the 7th International Conference on Information Systems Security,

ICISS’11, pages 49–70, Berlin, Heidelberg, 2011. Springer-Verlag.

[107] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick

McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking system for

realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX Conference

BIBLIOGRAPHY 127

on Operating Systems Design and Implementation, OSDI’10, pages 1–6, Berkeley, CA,

USA, 2010. USENIX Association.

[108] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of

android application security. In Proceedings of the 20th USENIX Conference on Security,

SEC’11, pages 21–21, Berkeley, CA, USA, 2011.

[109] William Enck, Machigar Ongtang, and Patrick Mcdaniel. Mitigating android software

misuse before it happens. Technical report, The Pennsylvania State University, 2008.

[110] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone

application certification. In Proceedings of the 16th ACM Conference on Computer and

Communications Security, CCS’09, pages 235–245, New York, NY, USA, 2009. ACM.

[111] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding android security.

Security Privacy, IEEE, 7(1):50–57, Jan 2009.

[112] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.

PhD thesis, Ithaca, NY, USA, 2004. AAI3114521.

[113] exploit db. Linux kernel 2.x - sock_sendpage() local root exploit (android edition), August

2009.

[114] exploit db. Android 1.x/2.x - local root exploit, July 2010.

[115] f secure. Mobile threat report q1 2014, 2014.

[116] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and

Matthew Smith. Why eve and mallory love android: An analysis of android ssl (in)security.

In Proceedings of the 2012 ACM Conference on Computer and Communications Security,

CCS ’12, pages 50–61, New York, NY, USA, 2012. ACM.

[117] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew Smith.

Hey, you, get off of my clipboard. In Ahmad-Reza Sadeghi, editor, Financial Cryptography

and Data Security, volume 7859 of Lecture Notes in Computer Science, pages 144–161.

Springer Berlin Heidelberg, 2013.

128 BIBLIOGRAPHY

[118] Zheran Fang, Weili Han, and Yingjiu Li. Permission based android security: Issues and

countermeasures. Computers & Security, 43(0):205 – 218, 2014.

[119] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro

Conti, and Muttukrishnan Rajarajan. Android security: A survey of issues, malware

penetration and defenses. Communications Surveys Tutorials, IEEE, PP(99):1–1, 2015.

[120] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android

permissions demystified. In Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM.

[121] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android

permissions demystified. In Computer and Communications Security (CCS), pages 627–

638, 2011.

[122] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner.

A survey of mobile malware in the wild. In Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, pages 3–14, New

York, NY, USA, 2011. ACM.

[123] Adrienne Porter Felt and David Wagner. Phishing on mobile devices. In In W2SP, 2011.

[124] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika

Chin. Permission re-delegation: Attacks and defenses. In Proceedings of the 20th USENIX

Conference on Security, SEC’11, pages 22–22, Berkeley, CA, USA, 2011. USENIX

Association.

[125] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we

need hundreds of classifiers to solve real world classification problems? The Journal of

Machine Learning Research (JMLR), 15(1):3133–3181, January 2014.

[126] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. Modeling and enhancing

android’s permission system. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,

Computer Security - ESORICS 2012, volume 7459 of Lecture Notes in Computer Science,

pages 1–18. Springer Berlin Heidelberg, 2012.

BIBLIOGRAPHY 129

[127] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher

Kruegel, and Giovanni Vigna. TriggerScope: Towards Detecting Logic Bombs in Android

Apps. In Security and Privacy (SP), May 2016.

[128] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. Scandroid: Automated security

certification of android applications. Technical Report CS-TR-4991, Department of

Computer Science, University of Maryland, College Park, November 2009.

[129] Joshua Garcia, Mahmoud Hammad, Bahman Pedrood, Ali Bagheri-Khaligh, and Sam

Malek. Obfuscation-resilient, efficient, and accurate detection and family identification of

android malware. Technical report, Dept. of Computer Science, George Mason University,

2015.

[130] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine

Learning, 63(1):3–42, 2006.

[131] Giorgio Giacinto, Fabio Roli, and Luca Didaci. Fusion of multiple classifiers for intrusion

detection in computer networks. Pattern Recogn. Lett., 24(12):1795–1803, August 2003.

[132] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks: Auto-

matically detecting potential privacy leaks in android applications on a large scale. In

Proceedings of the 5th International Conference on Trust and Trustworthy Computing,

TRUST’12, pages 291–307, Berlin, Heidelberg, 2012. Springer-Verlag.

[133] Google. Android and security, February 2012.

[134] Google. Android device manager, August 2013.

[135] Google. Seforandroid, July 2013.

[136] Google. Multiple external storage devices, January 2014.

[137] Google. Program policies google play for developers, June 2014.

[138] Google. Security enhancements in android 5.0, October 2014.

[139] Google. Creating better user experiences on google play, March 2015.

130 BIBLIOGRAPHY

[140] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. Riskranker:

Scalable and accurate zero-day android malware detection. In Proceedings of the 10th

International Conference on Mobile Systems, Applications, and Services, MobiSys ’12,

pages 281–294, New York, NY, USA, 2012. ACM.

[141] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe exposure

analysis of mobile in-app advertisements. In Proceedings of the Fifth ACM Conference on

Security and Privacy in Wireless and Mobile Networks, WISEC ’12, pages 101–112, New

York, NY, USA, 2012. ACM.

[142] Michael C. Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of

capability leaks in stock android smartphones. In 19th Annual Network and Distributed

System Security Symposium, NDSS, San Diego, California, USA, February 2012. The

Internet Society.

[143] Boxuan Gu, Xinfeng Li, Gang Li, A.C. Champion, Zhezhe Chen, Feng Qin, and Dong

Xuan. D2taint: Differentiated and dynamic information flow tracking on smartphones for

numerous data sources. In INFOCOM, 2013 Proceedings IEEE, pages 791–799, April

2013.

[144] Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan, and William G. J. Halfond. Truth

in advertising: The hidden cost of mobile ads for software developers. In Int. Conf. on

Software Engineering (ICSE), pages 100–110, 2015.

[145] Jun Han, E. Owusu, L.T. Nguyen, A. Perrig, and J. Zhang. Accomplice: Location

inference using accelerometers on smartphones. In Communication Systems and Networks

(COMSNETS), 2012 Fourth International Conference on, pages 1–9, Jan 2012.

[146] Norm Hardy. The confused deputy: (or why capabilities might have been invented).

SIGOPS Oper. Syst. Rev., 22(4):36–38, oct 1988.

[147] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical

learning: data mining, inference, and prediction: with 200 full-color illustrations. New

York: Springer-Verlag, 2 edition, 2009.

BIBLIOGRAPHY 131

[148] Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. Prec: Practical root

exploit containment for android devices. In Proceedings of the 4th ACM Conference on

Data and Application Security and Privacy, CODASPY ’14, pages 187–198, New York,

NY, USA, 2014. ACM.

[149] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.

These aren’t the droids you’re looking for: Retrofitting android to protect data from

imperious applications. In Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS ’11, pages 639–652, New York, NY, USA, 2011. ACM.

[150] George Hotz. Towelroot, June 2014.

[151] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale malware indexing using function-

call graphs. In Proceedings of the 16th ACM Conference on Computer and Communica-

tions Security, CCS ’09, pages 611–620, New York, NY, USA, 2009. ACM.

[152] IDC. Smartphone os market share, q2 2016, 2016.

[153] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to

Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated,

2014.

[154] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from process footprints.

In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages

143–157, Washington, DC, USA, 2012. IEEE Computer Society.

[155] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy,

Jeffrey S. Foster, and Todd Millstein. Dr. android and mr. hide: Fine-grained permissions

in android applications. In Proceedings of the Second ACM Workshop on Security and

Privacy in Smartphones and Mobile Devices, SPSM ’12, pages 3–14, New York, NY, USA,

2012. ACM.

[156] Xuxian Jiang. An evaluation of the application (app) verification service in android 4.2,

2012.

132 BIBLIOGRAPHY

[157] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus: Automatically

generating heuristics to detect android emulators. In Proceedings of the 30th Annual

Computer Security Applications Conference, ACSAC ’14, pages 216–225, New York, NY,

USA, 2014. ACM.

[158] Jon Oberheide Jon Larimer. levitator exploit, March 2011.

[159] Roberto Jordaney, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro.

Misleading Metrics: On Evaluating Machine Learning for Malware with Confidence.

Technical Report 2016-1, Royal Holloway, University of London, 2016.

[160] Kaspersky. Gcm in malicious attachments. https://securelist.com/blog/mobile/

57471/gcm-in-malicious-attachments/, August 2013.

[161] Amin Kharraz, Engin Kirda, William Robertson, Davide Balzarotti, and Aurelien Francil-

lon. Optical delusions: A study of malicious qr codes in the wild. In Dependable Systems

and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on, pages

192–203, June 2014.

[162] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android taint flow

analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop

on the State of the Art in Java Program Analysis, SOAP’14, pages 1–6, New York, NY,

USA, 2014. ACM.

[163] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John

Wiley and Sons, Inc., second edition, 2014.

[164] Ludmila I. Kuncheva. Ensemble Methods, pages 186–229. John Wiley & Sons, Inc., 2014.

[165] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and Michael

Peter. L4android: A generic operating system framework for secure smartphones. In

Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile

Devices, SPSM ’11, pages 39–50, New York, NY, USA, 2011. ACM.

[166] Byoungyoung Lee, Long Lu, Tielei Wang, Taesoo Kim, and Wenke Lee. From zygote to

morula: Fortifying weakened aslr on android. In Proceedings of the 2014 IEEE Symposium

https://securelist.com/blog/mobile/57471/gcm-in-malicious-attachments/
https://securelist.com/blog/mobile/57471/gcm-in-malicious-attachments/

BIBLIOGRAPHY 133

on Security and Privacy, SP ’14, pages 424–439, Washington, DC, USA, 2014. IEEE

Computer Society.

[167] Li Li, Alexandre Bartel, Tegawende F Bissyande, Jacques Klein, Yves Le Traon, Steven

Arzt, Rasthofer Siegfried, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. Iccta:

Detecting inter-component privacy leaks in android apps. In Proceedings of the 37th

International Conference on Software Engineering (ICSE 2015), 2015.

[168] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. Reflection-aware

static analysis of android apps. In Automated Software Engineering, Demo Track (ASE),

2016.

[169] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed, XiaoFeng

Wang, and Xinhui Han. Mayhem in the push clouds: Understanding and mitigating

security hazards in mobile push-messaging services. In Computer and Communications

Security (CCS), pages 978–989, 2014.

[170] Chia-Chi Lin, Hongyang Li, Xiaoyong Zhou, and XiaoFeng Wang. Screenmilker: How to

milk your android screen for secrets. Network and Distributed System Security (NDSS)

Symposium 2014, 2014.

[171] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. Marvin: Efficient

and comprehensive mobile app classification through static and dynamic analysis. In Pro-

ceedings of the 39th Annual International Computers, Software & Applications Conference

(COMPSAC), volume 2, pages 422–433, July 2015.

[172] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratantonio,

Victor van der Veen, and Christian Platzer. Andrubis-1,000,000 apps later: A view on

current android malware behaviors. In 3rd International Workshop on Building Analysis

Datasets and Gathering Experience Returns for Security (BADGERS), 2014.

[173] Martina Lindorfer, Matthias Neumayr, Juan Caballero, and Christian Platzer. Poster:

Cross-platform malware: write once, infect everywhere. In Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security, CCS ’13, pages

1425–1428, New York, NY, USA, 2013. ACM.

134 BIBLIOGRAPHY

[174] Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These aren’t the permissions

you are looking for. In DEF CON 18,, 2010.

[175] lookout. Lookout mobile threat report, August 2011.

[176] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into

the linux operating system. In Proceedings of the FREENIX Track: 2001 USENIX Annual

Technical Conference, pages 29–42, Berkeley, CA, USA, 2001. USENIX Association.

[177] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. Understanding variable

importances in forests of randomized trees. In Advances in Neural Information Processing

Systems (NIPS), pages 431–439, 2013.

[178] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically vetting

android apps for component hijacking vulnerabilities. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS’12, pages 229–240, New

York, NY, USA, 2012. ACM.

[179] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. Stealth

attacks: An extended insight into the obfuscation effects on android malware. Computers

& Security, 51(0):16 – 31, 2015.

[180] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. Analysis of

the communication between colluding applications on modern smartphones. In Proceed-

ings of the 28th Annual Computer Security Applications Conference, ACSAC ’12, pages

51–60, New York, NY, USA, 2012. ACM.

[181] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Recognizing speech from

gyroscope signals. In 23rd USENIX Security Symposium (USENIX Security 14), pages

1053–1067, San Diego, CA, Aug 2014.

[182] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy Choud-

hury. Tapprints: Your finger taps have fingerprints. In Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages 323–336,

New York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 135

[183] Collin Mulliner, Jon Oberheide, William Robertson, and Engin Kirda. Patchdroid: Scalable

third-party security patches for android devices. In Proceedings of the 29th Annual

Computer Security Applications Conference, ACSAC ’13, pages 259–268, New York, NY,

USA, 2013. ACM.

[184] Adwait Nadkarni and William Enck. Preventing accidental data disclosure in modern

operating systems. In Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security, CCS ’13, pages 1029–1042, New York, NY, USA, 2013. ACM.

[185] Masoud Narouei, MansourAhmadi, Giorgio Giacinto, Hassan Takabi, and Ashkan Sami.

Dllminer: Structural mining for malware detection. Security and Communication Networks,

2015.

[186] FairuzAmalina Narudin, Ali Feizollah, NorBadrul Anuar, and Abdullah Gani. Evaluation

of machine learning classifiers for mobile malware detection. Soft Computing, pages 1–15,

2014.

[187] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending android permis-

sion model and enforcement with user-defined runtime constraints. In Proceedings of the

5th ACM Symposium on Information, Computer and Communications Security, ASIACCS

’10, pages 328–332, New York, NY, USA, 2010. ACM.

[188] Netapp. Mobile/tablet top operating system share trend, Oct 2016.

[189] James Newsome, Brad Karp, and Dawn Xiaodong Song. Polygraph: Automatically

generating signatures for polymorphic worms. In 2005 IEEE Symposium on Security and

Privacy (S&P 2005), 8-11 May 2005, Oakland, CA, USA, pages 226–241, 2005.

[190] NextApp. Sdfix: Kitkat writable microsd, 2014.

[191] Ruchna Nigam. A timeline of mobile botnets. Virus Bulletin, March 2015.

[192] Jon Oberheide and Charlie Miller. Dissecting the android bouncer. In SummerCon,

Brooklyn, NY, USA, June 2012.

[193] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting android applications to

java bytecode. In Proceedings of the ACM SIGSOFT 20th International Symposium on

136 BIBLIOGRAPHY

the Foundations of Software Engineering, FSE ’12, pages 6:1–6:11, New York, NY, USA,

2012. ACM.

[194] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques

Klein, and Yves Le Traon. Effective inter-component communication mapping in android:

An essential step towards holistic security analysis. In Presented as part of the 22nd

USENIX Security Symposium (USENIX Security 13), pages 543–558, Washington, D.C.,

2013. USENIX.

[195] Machigar Ongtang, Kevin Butler, and Patrick McDaniel. Porscha: Policy oriented secure

content handling in android. In Proceedings of the 26th Annual Computer Security

Applications Conference, ACSAC ’10, pages 221–230, New York, NY, USA, 2010. ACM.

[196] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. Seman-

tically rich application-centric security in android. In Proceedings of the 2009 Annual

Computer Security Applications Conference, ACSAC’09, pages 340–349, Washington,

DC, USA, 2009. IEEE Computer Society.

[197] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. Accessory:

Password inference using accelerometers on smartphones. In Proceedings of the Twelfth

Workshop on Mobile Computing Systems & Applications, HotMobile ’12, pages

9:1–9:6, New York, NY, USA, 2012. ACM.

[198] Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-shot

learning with semantic output codes. In Advances in neural information processing systems

(NIPS), pages 1410–1418, 2009.

[199] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper: Towards

automating risk assessment of mobile applications. In Presented as part of the 22nd

USENIX Security Symposium (USENIX Security 13), pages 527–542, Washington, D.C.,

2013. USENIX.

[200] Yeongung Park, ChoongHyun Lee, Chanhee Lee, JiHyeog Lim, Sangchul Han, Minkyu

Park, and Seong-Je Cho. Rgbdroid: A novel response-based approach to android privi-

lege escalation attacks. In Proceedings of the 5th USENIX Conference on Large-Scale

BIBLIOGRAPHY 137

Exploits and Emergent Threats, LEET’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX

Association.

[201] M. Parkour. Contagio mobile - mobile malware mini dump. http:///contagiominidump.

blogspot.it/, 2012.

[202] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid: Privilege

separation for applications and advertisers in android. In Symp. on Information, Computer

and Communications Security (ASIACCS), pages 71–72, 2012.

[203] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju, Cristina

Nita-Rotaru, and Ian Molloy. Using probabilistic generative models for ranking risks of

android apps. In Proceedings of the 2012 ACM Conference on Computer and Communica-

tions Security, CCS ’12, pages 241–252, New York, NY, USA, 2012. ACM.

[204] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee. Mcpad:

A multiple classifier system for accurate payload-based anomaly detection. Comput. Netw.,

53(6):864–881, April 2009.

[205] Roberto Perdisci, Davide Ariu, and Giorgio Giacinto. Scalable fine-grained behavioral

clustering of http-based malware. Computer Networks, 57(2):487–500, 2013.

[206] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of http-based

malware and signature generation using malicious network traces. In Proceedings of the

7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10,

pages 26–26, Berkeley, CA, USA, 2010. USENIX Association.

[207] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and

Sotiris Ioannidis. Rage against the virtual machine: Hindering dynamic analysis of android

malware. In Proceedings of the Seventh European Workshop on System Security, EuroSec

’14, pages 5:1–5:6, New York, NY, USA, 2014. ACM.

[208] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Gio-

vanni Vigna. Execute this! analyzing unsafe and malicious dynamic code loading in

android applications. In Proceedings of the ISOC Network and Distributed System Security

Symposium (NDSS), San Diego, CA, February 2014.

http:///contagiominidump.blogspot.it/
http:///contagiominidump.blogspot.it/

138 BIBLIOGRAPHY

[209] David Poll. Discovering a major security hole in facebook’s android sdk, April 2012.

[210] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A survey on security

for mobile devices. Communications Surveys Tutorials, IEEE, 15(1):446–471, January

2013.

[211] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Paranoid

android: Versatile protection for smartphones. In Proceedings of the 26th Annual Computer

Security Applications Conference, ACSAC ’10, pages 347–356, New York, NY, USA,

2010. ACM.

[212] Irena Prochkova, Varun Singh, and Jukka K. Nurminen. Energy cost of advertisements

in mobile games on the android platform. In Int. Conf. on Next Generation Mobile

Applications, Services and Technologies, pages 147–152, Sept 2012.

[213] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin T. S. Chan. On tracking information

flows through jni in android applications. In Dependable Systems and Networks (DSN),

pages 180–191, 2014.

[214] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen.

Autocog: Measuring the description-to-permission fidelity in android applications. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’14, pages 1354–1365, New York, NY, USA, 2014. ACM.

[215] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach for

classifying and categorizing android sources and sinks. In Network and Distributed System

Security Symposium (NDSS), February 2014.

[216] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting

runtime values in android applications that feature anti-analysis techniques. Network and

Distributed System Security (NDSS), 2016.

[217] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: Evaluating android

anti-malware against transformation attacks. In Proceedings of the 8th ACM SIGSAC

Symposium on Information, Computer and Communications Security, ASIA CCS ’13,

pages 329–334, New York, NY, USA, 2013. ACM.

BIBLIOGRAPHY 139

[218] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-centric analysis

and stimulation technique to automatically reconstruct android malware behaviors. In

Proceedings of the 6th European Workshop on System Security (EUROSEC), Prague,

Czech Republic, April 2013.

[219] Google report. Android security, 2014 year in review, 2015.

[220] reuters. Your medical record is worth more to hackers than your credit card, 2014.

[221] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Dussel, and Pavel Laskov. Learn-

ing and classification of malware behavior. In Proceedings of the 5th International Confer-

ence on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA ’08,

pages 108–125, Berlin, Heidelberg, 2008. Springer-Verlag.

[222] Franziska Roesner and Tadayoshi Kohno. Securing embedded user interfaces: Android

and beyond. In Presented as part of the 22nd USENIX Security Symposium (USENIX

Security 13), pages 97–112, Washington, D.C., 2013. USENIX.

[223] Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. Appprofiler: A flexible method of

exposing privacy-related behavior in android applications to end users. In Proceedings of

the Third ACM Conference on Data and Application Security and Privacy, CODASPY

’13, pages 221–232, New York, NY, USA, 2013. ACM.

[224] Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon, Doina Caragea, Xinming Ou,

Venkatesh Prasad Ranganath, Hongmin Li, and Nicolais Guevara. Experimental study with

real-world data for android app security analysis using machine learning. In Proceedings

of the 31st Annual Computer Security Applications Conference, pages 81–90. ACM, 2015.

[225] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar Hashemi, and Ali

Hamze. Malware detection based on mining api calls. In Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ’10, pages 1020–1025, New York, NY, USA,

2010. ACM.

[226] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G. Bringas. Opcode sequences

as representation of executables for data-mining-based unknown malware detection. Infor-

mation Sciences, 231(0):64 – 82, 2013. Data Mining for Information Security.

140 BIBLIOGRAPHY

[227] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. Madam:

Effective and efficient behavior-based android malware detection and prevention. IEEE

Transactions on Dependable and Secure Computing, PP(99):1–1, 2016.

[228] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-Rotaru,

and Ian Molloy. Android permissions: A perspective combining risks and benefits. In

Proceedings of the 17th ACM Symposium on Access Control Models and Technologies,

SACMAT ’12, pages 13–22, New York, NY, USA, 2012. ACM.

[229] Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapadia, , and Xi-

aoFeng Wang. Soundcomber: A stealthy and context-aware sound trojan for smartphones.

In Proceedings of the 18th Annual Network and Distributed System Security Symposium

(NDSS’11), page 1733, 2011.

[230] Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Jan Clausen, Kamer A. Yuksel, Osman

Kiraz, Seyit A. Camtepe, and Sahin Albayrak. Enhancing security of linux-based android

devices. In 15th International Linux Kongress, Hamburg, Germany, October 2008.

[231] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and

Edgar Weippl. Protecting software through obfuscation: Can it keep pace with progress in

code analysis? ACM Computing Surveys, 49(1), April 2016.

[232] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. "andromaly":

A behavioral malware detection framework for android devices. J. Intell. Inf. Syst.,

38(1):161–190, February 2012.

[233] Asaf Shabtai, Lena Tenenboim-Chekina, Dudu Mimran, Lior Rokach, Bracha Shapira,

and Yuval Elovici. Mobile malware detection through analysis of deviations in application

network behavior. Computers & Security, 43(0):1 – 18, 2014.

[234] M.Zubair Shafiq, S.Momina Tabish, Fauzan Mirza, and Muddassar Farooq. Pe-miner:

Mining structural information to detect malicious executables in realtime. In Engin Kirda,

Somesh Jha, and Davide Balzarotti, editors, Recent Advances in Intrusion Detection,

volume 5758 of Lecture Notes in Computer Science, pages 121–141. Springer Berlin

Heidelberg, 2009.

BIBLIOGRAPHY 141

[235] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. Adsplit: Separating smartphone

advertising from applications. In USENIX Conference on Security Symposium, pages

28–28, 2012.

[236] Stephen Smalley and Robert Craig. Security enhanced (se) android: Bringing flexible mac

to android. In 20th Annual Network and Distributed System Security Symposium (NDSS),

San Diego, California, USA, February 2013.

[237] Charles Smutz and Angelos Stavrou. Malicious pdf detection using metadata and structural

features. In 28th Annual Computer Security Applications Conference (ACSAC), pages

239–248, New York, NY, USA, 2012. ACM.

[238] Sophos. Security threat report, 2014.

[239] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes

Hoffmann. Mobile-sandbox: Having a deeper look into android applications. In Pro-

ceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages

1808–1815, New York, NY, USA, 2013. ACM.

[240] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Investigating

user privacy in android ad libraries. In Mobile Security Technologies (MoST), 2012.

[241] Guillermo Suarez-Tangil, Juan Tapiador, Flavio Lombardi, and Roberto Di Pietro. Alter-

droid: Differential fault analysis of obfuscated smartphone malware. 2016.

[242] Guillermo Suarez-Tangil, Juan E Tapiador, and Pedro Peris-Lopez. Stegomalware: Playing

hide and seek with malicious components in smartphone apps. In 10th International

Conference on Information Security and Cryptology (Inscrypt), pages 496–515. Springer,

December 2014.

[243] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Jorge Blasco. Dendroid:

A text mining approach to analyzing and classifying code structures in android malware

families. Expert Systems with Applications, 41(1):1104–1117, 2014.

[244] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. Securing android: A

survey, taxonomy, and challenges. ACM Comput. Surv., 47(4):58:1–58:45, May 2015.

142 BIBLIOGRAPHY

[245] symantec. Windows malware attempts to infect android devices, January 2014.

[246] S. Momina Tabish, M. Zubair Shafiq, and Muddassar Farooq. Malware detection using

statistical analysis of byte-level file content. In Proceedings of the ACM SIGKDD Workshop

on CyberSecurity and Intelligence Informatics, CSI-KDD ’09, pages 23–31, New York,

NY, USA, 2009. ACM.

[247] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu, and

Nikhil Sarda. Cleanos: Limiting mobile data exposure with idle eviction. In Proceedings of

the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12,

pages 77–91, Berkeley, CA, USA, 2012. USENIX Association.

[248] Robert Templeman, Zahid Rahman, David Crandall, and Apu Kapadia. PlaceRaider:

Virtual theft in physical spaces with smartphones. In Proceedings of The 20th Annual

Network and Distributed System Security Symposium (NDSS), February 2013.

[249] Peter Teufl, Michaela Ferk, Andreas Fitzek, Daniel Hein, Stefan Kraxberger, and Clemens

Orthacker. Malware detection by applying knowledge discovery processes to application

metadata on the android market (google play). Security and Communication Networks,

2013.

[250] Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song. Understanding mobile

app usage patterns using in-app advertisements. In Matthew Roughan and Rocky Chang,

editors, Passive and Active Measurement, volume 7799 of Lecture Notes in Computer

Science, pages 63–72. Springer Berlin Heidelberg, 2013.

[251] Trendmicro. Android malware use ssl for evasion. http://blog.trendmicro.com/

trendlabs-security-intelligence/android-malware-use-ssl-for-evasion/,

Sep 2014.

[252] US-CERT/NIST. Vulnerability summary for cve-2014-1484, february 2014.

[253] Timothy Vidas and Nicolas Christin. Sweetening android lemon markets: Measuring

and combating malware in application marketplaces. In Proceedings of the Third ACM

Conference on Data and Application Security and Privacy, CODASPY ’13, pages 197–208,

New York, NY, USA, 2013. ACM.

http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-use-ssl-for-evasion/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-malware-use-ssl-for-evasion/

BIBLIOGRAPHY 143

[254] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox

detection. In Proceedings of the 9th ACM Symposium on Information, Computer and

Communications Security, ASIA CCS ’14, pages 447–458, New York, NY, USA, 2014.

ACM.

[255] Timothy Vidas, Nicolas Christin, and Lorrie Faith Cranor. Curbing Android permission

creep. In Proceedings of the Web 2.0 Security and Privacy 2011 workshop (W2SP 2011),

Oakland, CA, May 2011.

[256] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick Tague.

A5: Automated analysis of adversarial android applications. In Proceedings of the 4th

ACM Workshop on Security and Privacy in Smartphones & Mobile Devices, SPSM

’14, pages 39–50, New York, NY, USA, 2014. ACM.

[257] Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your droid are belong to us:

A survey of current android attacks. In Proceedings of the 5th USENIX Conference on

Offensive Technologies, WOOT’11, pages 10–10, Berkeley, CA, USA, 2011. USENIX

Association.

[258] Nedim Šrndic and Pavel Laskov. Practical evasion of a learning-based classifier: A case

study. In Security and Privacy (SP), pages 197–211, 2014.

[259] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Profiledroid: Multi-

layer profiling of android applications. In Proceedings of the 18th Annual International

Conference on Mobile Computing and Networking, Mobicom ’12, pages 137–148, New

York, NY, USA, 2012. ACM.

[260] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic malware

analysis using cwsandbox. Security Privacy, IEEE, 5(2):32–39, March 2007.

[261] Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang. Airbag: Boosting

smartphone resistance to malware infection. In Proceedings of the 21th Annual Network

and Distributed System Security Symposium (NDSS ’14), February 2011.

144 BIBLIOGRAPHY

[262] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. Droidmat:

Android malware detection through manifest and api calls tracing. In Information Security

(Asia JCIS), 2012 Seventh Asia Joint Conference on, pages 62–69, Aug 2012.

[263] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact of

vendor customizations on android security. In ACM SIGSAC Conference on Computer &

Communications Security, CCS’13, pages 623–634, New York, NY, USA, 2013. ACM.

[264] Xueping Wu, Dafang Zhang, Xin Su, and WenWei Li. Detect repackaged android applica-

tion based on http traffic similarity. Security and Communication Networks, pages n/a–n/a,

2015.

[265] Tobias Wüchner, Martín Ochoa, and Alexander Pretschner. Malware detection with

quantitative data flow graphs. In Proceedings of the 9th ACM Symposium on Information,

Computer and Communications Security, ASIA CCS ’14, pages 271–282, New York, NY,

USA, 2014. ACM.

[266] XDA. Pingpongroot, May 2015.

[267] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. Effective real-time

android application auditing. In Security and Privacy (SP), pages 899–914, May 2015.

[268] Liang Xie, Xinwen Zhang, Jean-Pierre Seifert, and Sencun Zhu. pbmds: A behavior-

based malware detection system for cellphone devices. In Proceedings of the Third ACM

Conference on Wireless Network Security, WiSec’10, pages 37–48, New York, NY, USA,

2010. ACM.

[269] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. Upgrading your

android, elevating my malware: Privilege escalation through mobile os updating. In

Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P), SAN JOSE,

CA, USA, May 2014.

[270] xray. Android vulnerabilities, 2014.

BIBLIOGRAPHY 145

[271] Rubin Xu, Hassen Saïdi, and Ross Anderson. Aurasium: Practical policy enforcement

for android applications. In Proceedings of the 21st USENIX Conference on Security

Symposium, Security’12, pages 27–27, Berkeley, CA, USA, 2012. USENIX Association.

[272] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on smartphone

touchscreens using on-board motion sensors. In Proceedings of the Fifth ACM Conference

on Security and Privacy in Wireless and Mobile Networks, WISEC ’12, pages 113–124,

New York, NY, USA, 2012. ACM.

[273] Zhi Xu and Sencun Zhu. Semadroid: A privacy-aware sensor management framework

for smartphones. In Proceedings of the 5th ACM Conference on Data and Application

Security and Privacy, CODASPY ’15, pages 61–72, New York, NY, USA, 2015. ACM.

[274] Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis. In Proceedings of the 21st USENIX

Conference on Security Symposium, Security’12, pages 29–29, Berkeley, CA, USA, 2012.

USENIX Association.

[275] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. Droid-

miner: Automated mining and characterization of fine-grained malicious behaviors in

android applications. In 19th European Symposium on Research in Computer Security

(ESORICS’14), Lecture Notes in Computer Science, Wroclaw, Poland, 2014. Springer

Berlin Heidelberg.

[276] Zhemin Yang and Min Yang. Leakminer: Detect information leakage on android with static

taint analysis. In Proceedings of the 2012 Third World Congress on Software Engineering,

WCSE ’12, pages 101–104, Washington, DC, USA, 2012. IEEE Computer Society.

[277] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. An intelligent

pe-malware detection system based on association mining. Journal in Computer Virology,

4(4):323–334, 2008.

[278] Suleiman Y. Yerima, Sakir Sezer, Gavin McWilliams, and Igor Muttik. A new android

malware detection approach using bayesian classification. In Proceedings of the 2013 IEEE

146 BIBLIOGRAPHY

27th International Conference on Advanced Information Networking and Applications,

AINA ’13, pages 121–128, Washington, DC, USA, 2013. IEEE Computer Society.

[279] Apostolis Zarras, Antonis Papadogiannakis, Robert Gawlik, and Thorsten Holz. Automated

generation of models for fast and precise detection of http-based malware. In 2014 Twelfth

Annual International Conference on Privacy, Security and Trust (PST), pages 249–256,

July 2014.

[280] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware android malware

classification using weighted contextual api dependency graphs. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security, CCS ’14,

pages 1105–1116, New York, NY, USA, 2014. ACM.

[281] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient data clustering

method for very large databases. In Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996., pages

103–114, 1996.

[282] Xiao Zhang and Wenliang Du. Attacks on android clipboard. In Sven Dietrich, editor,

Detection of Intrusions and Malware, and Vulnerability Assessment, volume 8550 of

Lecture Notes in Computer Science, pages 72–91. Springer International Publishing, 2014.

[283] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X. Sean

Wang, and Binyu Zang. Vetting undesirable behaviors in android apps with permission

use analysis. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, CCS ’13, pages 611–622, New York, NY, USA, 2013. ACM.

[284] Yulong Zhang. Ssl vulnerabilities: Who listens when android applications talk?, August

2014.

[285] Shuang Zhao, Patrick P. C. Lee, John C. S. Lui, Xiaohong Guan, Xiaobo Ma, and Jing Tao.

Cloud-based push-styled mobile botnets: A case study of exploiting the cloud to device

messaging service. In Comp. Sec. Applications Conf. (ACSAC), pages 119–128, 2012.

[286] Wu Zhou, Zhi Wang, Yajin Zhou, and Xuxian Jiang. Divilar: Diversifying intermediate

language for anti-repackaging on android platform. In Proceedings of the 4th ACM

BIBLIOGRAPHY 147

Conference on Data and Application Security and Privacy, CODASPY ’14, pages 199–

210, New York, NY, USA, 2014. ACM.

[287] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. Appink: Watermarking android apps

for repackaging deterrence. In Proceedings of the 8th ACM SIGSAC Symposium on

Information, Computer and Communications Security, ASIA CCS ’13, pages 1–12, New

York, NY, USA, 2013. ACM.

[288] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast, scalable

detection of "piggybacked" mobile applications. In Proceedings of the Third ACM Confer-

ence on Data and Application Security and Privacy, CODASPY’13, pages 185–196, New

York, NY, USA, 2013. ACM.

[289] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged smartphone

applications in third-party android marketplaces. In Proceedings of the Second ACM

Conference on Data and Application Security and Privacy, CODASPY’12, pages 317–326,

New York, NY, USA, 2012. ACM.

[290] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui Pan,

XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt. Identity, location, disease and

more: Inferring your secrets from android public resources. In Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, pages

1017–1028, New York, NY, USA, 2013. ACM.

[291] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and Xiaofeng Wang.

The peril of fragmentation: Security hazards in android device driver customizations. In

Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P), SAN JOSE,

CA, USA, May 2014.

[292] Yajin Zhou and Xuxian Jiang. Android malware genome project. http://www.

malgenomeproject.org, 2012.

[293] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution.

In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages

95–109, Washington, DC, USA, 2012. IEEE Computer Society.

http://www.malgenomeproject.org
http://www.malgenomeproject.org

148 BIBLIOGRAPHY

[294] Yajin Zhou and Xuxian Jiang. Detecting passive content leaks and pollution in android

applications. In 20th Annual Network and Distributed System Security Symposium, NDSS,

San Diego, California, USA, Feb 2013.

[295] Yajin Zhou, Kapil Singh, and Xuxian Jiang. Owner-centric protection of unstructured data

on smartphones. In Thorsten Holz and Sotiris Ioannidis, editors, Trust and Trustworthy

Computing, volume 8564 of Lecture Notes in Computer Science, pages 55–73. Springer

International Publishing, 2014.

[296] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:

Detecting malicious apps in official and alternative Android markets. In Proceedings of

the 19th Annual Network & Distributed System Security Symposium, February 2012.

[297] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. Taming information-

stealing smartphone applications (on android). In Proceedings of the 4th International

Conference on Trust and Trustworthy Computing, TRUST’11, pages 93–107, Berlin,

Heidelberg, 2011. Springer-Verlag.

Publications Related to the Thesis

My contributions to the following papers are either partial or complete. I don’t use

percentage to avoid any misunderstanding for the rest of co-authors as a paper is not just

the sum of contributions.

Minor Indication in this thesis

1. DLLMiner: Structural Mining for Malware Detection.

Masoud Narouei, Mansour Ahmadi, Giorgio Giacinto, Hassan Takabi, Ashkan

Sami

April 2015, Security and Communication Networks, Wiley (See Section 1.3)

My Contribution: Idea Proposal, Data Gathering, Doing Experiments, Writing

2. Novel Feature Extraction, Selection and Fusion for Effective Malware Family

Classification

Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov and Mikhail Trofimov,

Giorgio Giacinto

March 2016, 6th ACM Conference on Data and Applications Security and Privacy

(CODASPY), New Orleans, USA (See Section 1.3)

My Contribution: Idea Proposal, Data Gathering, Implementation, Doing Experi-

ments, Writing

149

150 BIBLIOGRAPHY

3. DROIDSCRIBE: Classifying Android Malware based on Runtime Behavior

Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly Tam,

Mansour Ahmadi, Johannes Kinder and Lorenzo Cavallaro

May 2016, Mobile Security Technologies (MoST), in conjunction with the IEEE

S&P, San Jose, CA, USA (See Section 5.5)

My Contribution: Implementation, Doing Experiments

The most relevant ones to this thesis

4. Clustering Android Malware Families by Http Traffic.

Marco Aresu, Davide Ariu, Mansour Ahmadi, Davide Maiorca, Giorgio Giacinto

October 2015, 10th IEEE International Conference on Malicious and Unwanted

Software (MALCON) Puerto Rico, USA (See Chapter 3)

My Contribution: Data Gathering, Writing

5. Detecting Misuse of Google Cloud Messaging in Android Badware

Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, Giorgio Giacinto

October 2016, Security and Privacy in Smartphones and Mobile Devices (SPSM),

in conjunction with the ACM CCS, Vienna, Austria (See Chapter 4)

My Contribution: Idea Proposal, Data Gathering, Implementation, Doing Experi-

ments, Writing

6. DroidSieve: Fast and Accurate Classification of Obfuscated Android Malware

Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes

Kinder, Giorgio Giacinto, Lorenzo Cavallaro

Submitted to CODASPY’17 (See Chapter 5)

My Contribution: Idea Proposal, Data Gathering, Implementation, Doing Experi-

ments, Writing

	Introduction
	Advent of Mobile Devices
	Security Issues of Mobile Devices
	Machine Learning for Malware Classification
	Contribution

	Overview on Android Security
	Introduction
	Android background
	Android OS
	Android Apps
	Android security features

	Android OS security challenges
	Privilege escalation
	Information Leakage
	Security policies and mechanisms
	Android fragmentation

	Android Apps security challenges
	Secure coding
	Android Malware
	Android App analysis
	Purposes of App analysis
	App layer access control
	Protection against App analysis

	Clustering Android Malware Families by Http Traffic
	Introduction
	Proposed System
	Experiments
	Dataset
	Evaluation of the proposed system
	Experimental Results and Discussion
	Comparisons with HTTP based clustering for traditional desktop malware

	Comparison with Related Works
	Conclusions

	Detecting Misuse of Google Cloud Messaging in Android Badware
	Introduction
	Background
	Google Cloud Messaging
	GCM Badware

	System Design
	Modeling GCM service
	Feature Extraction
	Classification

	Experimental Analysis
	Experimental Setup
	Results
	Discriminative Patterns

	Limitations
	Comparison with Related works
	Conclusions and Future Work

	Fast and Accurate Classification of Obfuscated Android Malware
	Introduction
	Obfuscation in Android
	Proposed System
	Feature Engineering
	Prevalence of Features
	Resource-centric Features
	Syntactic Features
	Choice of Learning Algorithm

	Experiments and Results
	Experimental Setup
	Ranking of Features
	Classification Results
	Obfuscation Evaluation
	Efficiency

	Comparison with Related Works
	Conclusion

	Concluding Remarks
	Bibliography

