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Abstract 

Process analysis and monitoring has become essential in industry to 

ensure improvement of the process performances and to maintain a 

specific product quality. To this aim, spectroscopy represents an 

innovative tool that allows to overcome the issues encountered with 

conventional analytical techniques (e.g. gas chromatography), since it is 

fast and non-destructive and can give information about the chemical state 

of the process in real time. Nevertheless, due to the huge amount of 

information present in the collected data, the interpretation and 

information extraction is not a straightforward task. For this purpose, 

multivariate techniques significantly aid the treatment of the data and 

allow to infer information about the system analyzed. 

In this thesis, four systems are investigated by means of spectroscopy to 

show the variety of problems that may arise when dealing with complex 

and highly informative data coming from different spectroscopic 

techniques. To this aim, different multivariate techniques are explored and 

their potentialities and limitations are shown: (i) Strategies based on 

Principal Component Analysis and Partial Least Squares Regression are 

suggested for an improved and more robust quality monitoring of liquid 

commercial detergents; (ii) Moving Window Principal Component 

Analysis is proposed for the monitoring of an evolving process like the 

crystallization of an Active Pharmaceutical Ingredient in order to detect 

the nucleation; (iii) Time Window Statistical Total Correlation 

Spectroscopy combined with Multivariate Curve Resolution are proposed 

to investigate the setting reaction of a cementing material; (iv) 

Multivariate Curve Resolution is employed to infer information from 

hyperspectral data about the dissolution of a surfactants paste. 

Therefore, multivariate techniques applied to spectroscopic data 

demonstrate capable of achieving the following results: 

a) in case of commercial detergents, they correctly classify 

observations that do not agree with the reference conditions. 

Moreover, the approach proposed is able to assess when the 
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estimation of the compounds concentration cannot be considered 

accurate, this scenario may occur when the deviations of one 

compound is not taken into account during model calibration; 

b) for the crystallization of the pharmaceutical ingredient, the 

nucleation is accurately detected; 

c) spectra and concentration of the compounds involved in the 

setting reaction of a cementing material are estimated and time 

evolution of the process can be tracked; 

d) the dissolution rate of the surfactants present in the paste is 

estimated. 

As a result, multivariate methods applied to spectroscopic data reveal 

essential to treat data and aid process understanding and monitoring.



Sommario  3  

 

Sommario 

L’analisi e il monitoraggio di processo sono diventati di fondamentale 

importanza per garantire le prestazioni del processo e mantenere la qualità 

del prodotto. A tal scopo, la spettroscopia rappresenta uno strumento 

innovativo che permette di superare le problematiche che si incontrano 

con le tecniche analitiche convenzionali (per esempio, la gas 

cromatografia), poichè è veloce e non distruttiva e può fornire 

informazioni sullo stato chimico del processo in tempo reale. Tuttavia, a 

causa della grande quantità di informazioni presenti nelle misure raccolte, 

l’interpretazione e l’estrazione di informazione non è un compito 

semplice. A tal proposito, le tecniche multivariate agevolano 

significativamente il trattamento dei dati e permettono di inferire 

informazioni sul sistema analizzato. 

In questa tesi, quattro sistemi sono indagati mediante misure 

spettroscopiche per mostrare la varietà di problemi che possono sorgere 

quando si trattano dati complessi e altamente informativi provenienti da 

differenti tecniche spettroscopiche. Per questo motivo, sono state esplorate 

differenti tecniche multivariate e sono mostrate le loro potenzialità e 

limitazioni: (i) si suggeriscono strategie basate sulla Principal Component 

Analysis e Partial Least Squares Regression per un migliore e più robusto 

monitoraggio di qualità dei detergenti commerciali liquidi; (ii) la Moving 

Window Principal Component Analysis è proposta per il monitoraggio di 

processi che si evolvono come la cristallizzazione di un Ingrediente 

Farmaceutico Attivo per identificare la nucleazione; (iii) la Time Window 

Statistical Total Correlation Spectroscopy insieme alla Multivariate Curve 

Resolution sono proposte per indagare la reazione di formazione di un 

materiale cementizio; (iv) la Multivariate Curve Resolution è utilizzata 

per ottenere informazioni sulla dissoluzione nello spazio e nel tempo di 

una pasta costituita da tensioattivi a partire da dati iperspettrali . 

Perciò, le tecniche multivariate applicate a dati spettroscopici si 

dimostrano capaci di raggiungere i seguenti risultati: 

a) Nel caso di detergenti commerciali, le osservazioni che non 

rispecchiano le condizioni di riferimento sono classificate 

correttamente. Inoltre, l’approccio proposto identifica quando la 
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stima della concentrazione dei composti non può essere 

considerata accurata; 

b) Riguardo la cristallizzazione dell’ingrediente farmaceutico, la 

nucleazione è stata individuata in modo accurato; 

c) Gli spettri e la concentrazione dei composti coinvolti nella 

reazione di presa di un materiale cementizio sono stati stimati e 

l’evoluzione temporale del processo può essere seguita; 

d) La velocità di dissoluzione dei tensioattivi presenti nella pasta è 

stata valutata. 

Di conseguenza, i metodi multivariati implementati su misure 

spettroscopiche si rivelano essenziali per trattare i dati e agevolare la 

comprensione e il monitoraggio di processo. 
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Chapter 1  

Introduction 

This introductory Chapter illustrates the motivations that lead to the 

development of this Thesis. The outline of the Thesis is also presented, 

describing the content of each Chapter. Finally, conference and journal 

papers derived from the present work are listed. 
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1.1 Motivations 

The improvement of the process performances and the fulfillment of 

specific product quality have become relevant issues to address in industry 

nowadays. To this aim, process analysis and monitoring can ensure the 

detection of deviations from the reference conditions, the identification of 

the corresponding cause during a process and a clear understanding of the 

process occurring. Particularly, product quality represents a key factor for 

the manufacturer to maintain competitiveness in the market. The purpose 

is not only to satisfy the customer needs, but also to comply to safety and 

environmental regulations at a minimum cost. The conventional approach 

to assess product quality in industry consists of collecting samples at the 

completion of the process and testing them in a Quality Control laboratory 

with off-line conventional analytical techniques (e.g. chromatography) 

that can be destructive and time consuming. Although this procedure 

ensures a high level of product quality, in case the product does not meet 

certain specifications, it has to be reprocessed, implying an increase of 

cost, time waste and perhaps losses of high-value products. On the other 

hand, on-line monitoring of the quality attributes during production 

process would allow a prompt intervention and improvement of the 

process performances and maintenance. This leads to reduction of product 

waste, improvement to product quality, reduction of byproducts, energy 

saving, that finally results in cost reduction. Traditionally, online process 

monitoring is carried out by monitoring process variables like 

temperature, pressure, that does not always ensure to meet the target 

quality of the product. On the other hand, conventional analytical 

techniques are not always a feasible solution for on-line quality 

monitoring, since they introduce time delay in the control system 

response.  

 

To this aim, spectroscopy represents an innovative, fast and non-invasive 

analytical technique that give chemical information about the sample 

being analyzed and its composition (Kourti, 2006). It can be used to 

estimate compounds concentration in a product, for process 

understanding, transient processes monitoring and to infer information of 

the kinetic and dynamics of the phenomena investigated, it is suitable for 

on-line monitoring of process and product quality. Indeed, it provides 
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information about the chemical state of a process, that cannot be always 

obtained through process variables like temperature, pressure etc. The 

advantage is the significantly reduced sampling time and no need of 

physical sampling of the process (Gurden et al., 2002).  

Nevertheless, since hundreds of spectra implying thousands of spectral 

variables can be measured during an experiment (or during a process), the 

interpretation and the extraction of useful information from collected data 

through traditional univariate methods is not always straightforward. In 

the following, the principles underlying these methods and the possible 

drawbacks will be illustrated. 

 

Typical techniques such as inverse calibration and peak integration are the 

most common procedures employed to estimate the concentration of 

compounds present in the sample from spectroscopic data (Brereton, 

2000). They consist of monitoring one or a finite number of intensities 

that are characteristic of the compounds investigated (or integrating area 

under peaks of interest).  

However, these approaches cannot be always employed because it implies 

that the main compounds are all known a-priori. In fact, tens or hundreds 

of unknowns may be present in samples, whereas sometimes our interest 

is mainly focused on the quantification of a few of them. On the other 

hand, it is not always feasible to design samples (standards) for all the 

potential components present in real samples. Moreover, since univariate 

methods imply that each peak (intensity) corresponds to only one 

component, their implementation is not possible when peak overlap 

occurs, and this issue may lead to serious estimation errors. As a final 

remark, the integration of single peaks in a manual fashion, can be a very 

time consuming task.  

Furthermore, when an evolving system is investigated, spectra can reflect 

the phenomena dynamics (e.g. chemical reaction evolution). In order to 

extract kinetic information, univariate methods are frequently used but the 

number of the components involved is not always known in advance. For 

example, unknown intermediate and final species could form. In 

particular, detection of intermediate species implies the inspection of all 

the spectra collected during the experiment. This task might reveal to be 

very time consuming and not always feasible. 
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The integration of the process (physical state) and spectroscopic (chemical 

state) measurements can improve the performances of process monitoring 

(Wong et al., 2008). Traditionally, in order to assess whether the process 

is under control, univariate classical control charts such as the Shewhart 

chart (Shewhart, 1931), the CUSUM plot (Woodward & Goldsmith, 1964) 

and the EWMA chart (Hunter, 1986) are employed. Process variables 

(temperature, pressure) and their control limits are reported. However, 

when the number of variables to monitor is relevant (hundreds or even 

thousands), this approach could lead to hundreds or more control charts, 

that are not easy to manage. In addition, when few underlying events are 

driving a process, all the process variables are simply different 

manifestations of these events and they may be highly correlated and 

univariate control charts can give misleading outcomes, since they do not 

take into account the possible correlation between variables (MacGregor 

& Kourti, 1995).  

Therefore, in order to ensure an effective process monitoring and to 

correctly treat spectral data, proper mathematical methods are required. 

Multivariate techniques represent a powerful tool to reveal hidden or 

relevant information when dealing with highly informative and complex 

data. The use of multivariate statistical methods for the analysis of 

analytical data is also indicated as chemometrics (Wold, 1995). They 

exploit the correlation between variables and are able to find patterns and 

structures among the data not otherwise possible. Hence, they allow to 

overcome the issues that one may encounter with univariate method 

(control charts, peak tracking or integration), since they are capable of 

detecting deviation from normal behavior also in case of highly correlated 

variables and are definitely suitable for on-line process monitoring and 

kinetic modeling. Although they are not exempt from issues, their 

potentialities allow to explore and combine their features to improve data 

treatment and overcome their limits. 

1.2 Thesis outline 

This Ph.D Thesis deals with development of approaches based on 

multivariate techniques to use for spectroscopic data treatment and 

improve process analysis and monitoring. Particularly, different four 



Chapter 1. Introduction  9  

 

 

systems are considered such as liquid commercial detergents, an Active 

Pharmaceutical Ingredient, a dish paste and a cementing material. The 

variety of the systems represents an overview of the possible issues that 

may arise during data treatment and it shows how the multivariate 

techniques can flexible and useful tools to extract information from 

spectroscopic data and overcome the problems met with the Univariate 

Technique approaches.   

Table 1 summarizes the case studies investigated and the spectroscopic 

techniques employed in this thesis. 

A summary of this Thesis is shown in the following list, where a brief 

description of each Chapter is given. 

 

Chapter 2 describes in detail the multivariate techniques typically used for 

process analysis and monitoring. 

Chapter 3 gives an overview of the main contributions of this thesis to the 

state of art. 

Chapter 4 deals with the on-line monitoring of commercial liquid 

detergent mass production. 

Chapter 5 illustrates the approaches proposed for the in-line monitoring of 

cooling crystallization of an Active Pharmaceutical Ingredient 

(Isonicotinamide).  

Chapter 6 investigates the dissolution of a dish paste. 

Chapter 7 is focused on methods to help the understanding of the setting 

reaction of a ceramic material. 

Chapter 8 summarizes the main conclusions of the present work. 
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System investigated Aim 
Spectroscopic 

technique 

Commercial 

detergents 
Quality control Infrared 

Active 

Pharmaceutical 

Ingredient 

Crystallization 

monitoring 
In situ Infrared 

Cementing material 
Reaction 

monitoring 

In situ X-ray Powder 

Diffraction 

Surfactants paste 
Dissolution 

investigation 

Confocal Raman 

Microscopy 

Table 1 – Overview of the case studies investigated and the spectroscopic techniques 

employed in this thesis.  

1.3 Conference Papers and publications in 
Journals 

Some of the work present in this Thesis has been presented in 

international congresses and published or submitted in international 

journal papers.  

 
Conference papers 

Taris A., Grosso M., Zonfrilli F., Guida V. (2015). Quality control of 

industrial detergents through infra-red spectroscopy measurements 

coupled with partial least square regression. Chemical Engineering 

Transactions, 43, 1549-1554. ICheaP-12 International Conference, 

Milan (Italy). 

Taris A., Grosso M., Viani A., Brundu M., Guida V. (2015). Reaction 

monitoring of cementing materials through multivariate techniques 

applied to time-resolved synchrotron X-ray diffraction data. Chemical 

Engineering Transactions, 43, 895-900. ICheaP-12 International 

Conference, Milan (Italy). 

Taris A., Grosso M., Brundu M., Guida V., Viani A. (2015). Reaction 

Monitoring of Cementing Materials through Multivariate Techniques 

Applied to In Situ Synchrotron X-Ray Diffraction Data. Computer 

Aided Chemical Engineering, 37, 1535-1540. ESCAPE25, 

Copenhagen (Denmark). 
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Taris A., Grosso M., Zonfrilli F., Guida V. (2014). Statistical control of 

commercial detergents production through Fourier Transform Infra-

Red spectroscopy. Computer Aided Chemical Engineering, 33, 601-

606. ESCAPE24, Budapest (Hungary). 

Taris A., Grosso M., Viani A., Brundu M., Guida V. (2015). Combined 

Multivariate Techniques for Improved Reaction Monitoring Applied to 

In Situ X-Ray Diffraction Data. Scandinavian Symposium on 

Chemometrics, Pula (Italy). 

Journal papers 

Hansen T. B., Taris A., Rong B-G, Grosso M., Qu H. (2016). 

Polymorphic behavior of isonicotinamide in cooling crystallization 

from various solvents. Journal of Crystal Growth, 450, 81–90. 

Taris A., Grosso M., Brundu M., Guida V., Viani A. Application of 

combined multivariate techniques for the description of time-resolved 

powder X-ray diffraction data. Accepted for publication in Journal of 

Applied Crystallography. 

 
Taris A., Hansen T. B., Rong B-G, Grosso M., Qu H. Statistical process 

monitoring of cooling crystallization through Moving Window PCA 

and contribution plots applied to in situ infrared data. Submitted to 

Organic Process Research & Development. 
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Chapter 2  

Multivariate techniques - State of art  

This Chapter describes the multivariate techniques usually employed to 

analyze and extract information from multivariate data for process 

analysis and monitoring.  
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Multivariate techniques can be used when several measurements 

(variables) are collected for each sample or observation. The linear ones 

exploit the linear relationship between variables and can be employed for 

on-line process monitoring and kinetic modeling. 

2.1 Data representation 

The experimental data can be arranged in a matrix X(I×J), where I are the 

number of observations and the i-th row (i = 1, … I) of the matrix 

represents the experimental spectrum x(1×J) collected along the different J 

spectral variables (wavenumbers, diffraction angles 2θ, etc.), as shown in 

Equation (1). The element xij is the value of the j-th variable measured for 

i-th observation (i=1,…, I; j =1,…, J). 

 

�
(�×�)

= �

x11 x12
… x1J

x21 x22
… x2J

⋮
xI1

⋮
xI2

⋱ ⋮
… xIJ

� (1) 

2.2 Data pre-processing  

The experimental data matrix is usually pre-processed before the 

implementation of multivariate techniques (Zeaiter & Rutledge, 2009).  

2.2.1 Baseline correction and smoothing 

Since the experimental measurements can be noisy and the baseline can 

drift during the experiment, smoothing and baseline correction of spectra 

can be required. Concerning the smoothing, generally Savitzky–Golay 

filter are used (Savitzky & Golay, 1964), where a window is moved along 

the spectrum along the spectral variables direction and spectrum is 

approximated with a polynomial function of n-order. Regarding the 

baseline correction, the baseline can be approximated with a n-order 

polynomial curve obtained through Savitzky–Golay filter (Savitzky & 

Golay, 1964), other approaches used are linear interactive baseline 
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correction algorithm (e.g., Hrovat, 2009) or minimized cost function 

(Mazet et al., 2005).  

2.2.2 Variables transformation 

Data are pre-processed since spectral variables can have different order of 

magnitude (McGregor, 1995; Romagnoli & Palazoglou, 2012) or the 

measurements might not be normally distributed. These features can affect 

the multivariate analysis. 

Mean centering 

The mean centering is the most common method, where each element ��� 

are centered according the Equations (2) and (3). 

 

x�� = x�� − x�� (2) 

 

where, in Equation (2) 

 

x�� =
∑ ���
�
���

�
 (3) 

 

Unity variance 

Since multivariate techniques can be scale dependent, the unity variance 

(UV) standardization is usually employed and this transformation is 

reported in Equation (4). 

 

��� =
������̅

��
  (4) 

 

Where �� = �∑ �������̅�
��

���

���
  is the standard deviation of the j-th variable. 

This transformation aims to reduce the influence of the scale on the 

variables and make them comparable, such that the mean of the 

transformed j-th variable is zero and its standard deviation is unity. 
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2.3 Multivariate analysis 

Linear Multivariate Statistical Techniques have revealed as a powerful 

tool to extract chemical information from multicomponent spectra. The 

main premise of spectroscopic data is the linearity, assuming that the 

interaction between components are linear and light scattering does not 

occur. Indeed, each observed spectrum can be seen as a linear 

combination of the spectra of each species in the sample. The 

experimental matrix X(I×J) can be thus decomposed as expressed in 

Equation (5). 

 

��
(�×�)

= ���
(�×�)

∙���
�

(�×�)

+ ��
(�×�)

= ����
(�×�)

+ ��
(�×�)

  (5) 

 

In Equation (5), A is the number of pseudo-components, while TA can be 

seen as the pseudo-concentration (or abundance) matrix whose columns, 

ta(I×1) represent the pseudo-concentration (or abundance) of the a-th 

component estimated for the i-th observation, whereas each column of the 

PA matrix, pa(J×1) represents the estimated pseudo-spectrum of the a-th 

component. The matrix E is the residual matrix that represents the 

information not captured by the decomposition. The superscript T denotes 

the matrix transpose. ���  is the estimation of the experimental data matrix. 

Depending on the method used, TA and PA matrices have different 

definition. The most popular approach is Principal Component Analysis 

(Joliffe, 2002), others employed are non-iterative such as the Evolving 

Factor Analysis (Maeder, 1987), Sub-window Factor Analysis (Manne et 

al., 1999) or iterative, requiring an initial estimate for the matrix TA 

and/or PA, such as the Multivariate Curve Resolution-Alternative Least 

Squares (Tauler, 1995).  

2.4 Static Principal Component Analysis 

The Principal Component Analysis (PCA) is a well-known multivariate 

technique (Joliffe, 2002) used to compress data and extract relevant 

information from experimental data, it is indicated as static PCA, when 
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applied to stationary data. It is based on the decomposition of the generic 

data matrix X(N×J), as reported in Equation (5).  

 

��
(�×�)

= ��
(�×�)

∙ ��
�

(�×�)

 (6) 

 

Matrix P is computed as the eigenvector matrix of the covariance matrix 

S. This is semipositive and defined in Equation (7). 

 

��
(�×�)

=
��∙�

���
  (7) 

 

The loading matrix PT is orthonormal, which implies that PT =P-1. It is 

defined as the rotation matrix, since it is possible to rotate the original 

space into the new space. Each column of the matrix PT describes the 

relationship between the spectral variables and the j-th principal 

component. 

On the other hand, T is defined as the score matrix that represents the 

projections of the spectral variables onto the new subspace identified by 

the principal components. Each score (i.e., each column tj of T) is 

orthogonal (��
� ·�� = 0 ∀�,�). 

It can be noted that the j-th eigenvalue j in Equation (8) represents the 

variance explained by the j-th principal component. This value depends on 

the relative importance of the j-th principal component, in other words its 

ability to capture the variability of the data. 

 

�� =
���∙��

��

�
=

�

�
∑ ���

��
���   (8) 

 

The algorithm used for the estimation of the matrices P and T are iterative 

such as the Singular Value Decomposition (SVD) (Anderson et al., 1999) 

or the Nonlinear Iterative Partial Least Squares (NIPALS) (Wold, 1975). 

2.4.1 PCA model  

The aim of the PCA is the approximation of the data matrix X such that 

only relevant information is retained and the first A principal component 
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are considered to describe the variance of the data as reported in Equation 

(9). 

 

����
(�×�)

= ���
(�×�)

∙���
�

(�×�)

 (9) 

 

Where the matrix TA is the projection of the original variables onto the 

new subspace defined by the first A PCs. ���  is the prediction matrix 

obtained by retaining the first A principal components (PCs). 

A key factor in the development of PCA model is the choice of the 

number of PCs to retain. There are different criteria in literature, but the 

most used is based on the cumulative variance explained (Joliffe, 2002) as 

expressed in Equation (10). 

 

���(�) = ∑
��

∑ ��
�
���

�
��� ×100%       with a=1, 2, …, J (10) 

Therefore, the implementation of PCA to treat the data matrix X involves 

the following steps: 

i. Pre-processing 

Pre-processing of data matrix as described in Section 2.2. 

ii. Calibration 

the model is built based on the training set, �(�×�)
� , to this aim it should be 

chosen such that it is a quite fair representation of the normal operating 

condition (NOC). Subsequently, samples mean and covariance matrix, 

loading matrix P are computed. The fundamental step in the PCA 

modelling is the choice of the number of principal components (the 

cumulative variance criterion can be employed).  

iii. Prediction 

New observations are projected onto the PCA model to evaluate whether 

they are consistent with it and they behave according to the training set. 

Thus, a new multivariate observation xk is projected onto the space 

spanned by the first A principal components through the relationship (11). 

 

Akk Pxt   (11) 
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2.5 On-line process monitoring  

In order to detect abnormal process behaviour or classify a new 

observation as belonging to the training set, two statistics, T2 and Q (or 

Square Prediction Error, SPE), are employed for statistical process control 

(MacGregor and Kourti, 1995).  

 

The T2 is based on the work of Hotelling (1947), for a new observation xk, 

the statistic is evaluated through Equation (12). 

 

k
T
kkT tt  12  (12) 

 

where, in Equation (12), Λ is the covariance matrix of the tk scores. It is a 

diagonal matrix whose elements are the eigenvalues λj. In practice, the T2 

statistic represents an overall measure of the process variation related to xk 

as it was captured by the PCA model. In other words, it is the distance of 

the projections from the origin of the new subspace defined by the first A 

PCs.  

Statistical confidence limits for T2 statistic (Tracy et al., 1992) are 

calculated by means of Equation (13). 

 

����
2 =

�∙��2−1�

�∙(�−�)
��(�,� − �)  (13) 

 

Whilst, the Q statistic represents the euclidean distance between the 

observation and its projection onto the subspace defined by the first A PCs 

as reported in Equation (14) and describes how well the PCA model 

predicts the xk vector (Jackson, 1991). 

 

Akkkkkk
T
kkQ Ptxxxeee  ˆ,    (14) 

where ek is the difference between the experimental observation kx  and 

the value kx̂  predicted through the PCA model where A PCs are 

considered. 

The upper control limit for Q (see Jackson & Muldholkar, 1979) is 
defined as: 
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 (15) 

 
where: 
 

�� = ∑ ��
��

�����                               i=1, 2, 3 

ℎ� = 1−
2����

3��
�  

 
cα is the α-th upper percentile of the standard normal distribution.  

 

Another relationship used to calculate the Q threshold value (Nomikos & 

MacGregor, 1995) is reported in Equation (16), where the Q statistic 

follows a Chi-square distribution with g2 degrees of freedom ���,�
� , α is 

the significance level (usually 5 %).  

 

Q�,��� = g� ∙���,�
�   (16) 

 

The constants g1 and g2 are obtained as reported in Equation (17), where �� 

and ��
� are the mean and the variance of the Q statistics estimated for the 

observations belonging to the training set.  

g� =
��
�

���
       and      g� = 2���    (17) 

 

2.5.1 Geometric interpretation of T2 e Q 

In order to correctly interpret the results obtained through T2 e Q statistics, 

a key aspect to consider is the different role that they have during process 

monitoring. Indeed, they measure different deviations from nominal 

behavior (Qin, 2003; Wise & Gallagher, 1996). In Figure 1 an illustrative 

example is reported, where a bidimensional space (x1-x2) is considered. 

The training set is depicted as grey circles and data are highly correlated. 

Thus, the direction (dashed black line) where the data (grey circles) lie 

represents the first principal component (PC1) that identifies the new 

subspace. Therefore, each point is projected onto the component and O′ is 
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the multivariate mean of these projections. Two new samples (depicted as 

red and green squares) show the different role of the statistics. Their 

coordinates in the new subspace are the projections C� e D�, respectively. 

 

 
Figure 1 – Illustrative example to show the different role of T2 e Q statistics. The green 

square is classified as out-of-control by T2 statistic, since its projection onto the new 

subspace is distant from the new origin O′. The red square is out-of-control according to Q 

statistic since the Euclidean distance from its projection is higher than the values 

calculated for the training set.  

As previously explained, T2 is the distance of the projections from the 

origin of the new subspace defined by PC1, thus it measures a deviation 

within the subspace. This distance is represented by the segment C�O′ and 

D�O� for the red and green square, respectively. As a result, the sample D is 

classified out-of-control since the distance from the mean O′ is high. On 

the other hand, the Q statistic is the Euclidean distance of the points C and 

D from their projections onto the first component �C� e D��. Thus, the red 

square is identified as out-of-control, since it moved off the plane (Wise & 

Gallagher, 1996). Hence, the role of these statistics is asymmetric: T2 is 

able to detect only significant deviations from the multivariate mean 

(green square), in this case the correlation is still valid but the normal 

behavior is shifting away from the mean along the same direction 

identified by the first component, this scenario may not be necessarily a 

real fault. Regarding Q statistic, an abnormal situation is detected when it 

breaks the normal process correlation (red square) and residuals become 

higher, thus the PCA model cannot describe the new data. It should be 

noted that T2 is associated to the subspace defined by the components and 

they are characterized by large variations, while Q is related to the 

residual subspace that contains mainly noise. As a consequence, the 
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normal region defined by the control limit for T2 is usually much larger 

than that of Q. Therefore, the fault should be more relevant to exceed the 

T2 control limit rather than the Q one (Qin, 2003). For this reason, in most 

cases Q is preferable than T2 for fault detection. 

2.5.2 T2 and Q contribution plot  

Contribution plot is used to identify which variables are most contributing 

to T2 and Q statistics and then are deviating from the typical behavior 

(Alcala & Qin, 2011; Westerhuis et al., 2000). The contribution index 
Q
kc

of the Q statistics can be evaluated for the k-th observation through 

Equation (18). Each element of the vector corresponds to the ratio 

between the contribution of each variable to Q statistics, 2
ke , and the 

expected value (Alcala & Qin, 2011). 
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Where AA PIP 
~

is the loading matrix in the residual space.  

Similar definition for the contribution vector 2T
kc of T2 is given in Equation 

(19), where Λ is the eigenvalues matrix.  
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  (19) 

The limit value for the contributions 
Q
kc and 2T

kc is generally given by a 

��,�
� . Nevertheless, when the multiple statistical test is carried out on a 

multivariate sample, the probability of running into false positive values 

increases with J variables. To avoid excessive false positives and then 

reduce the chance of a type I error, the Bonferroni correction can be 

employed (Broadhurst & Kell, 2006; Armstrong, 2014), since it reduces 

the significance level for the single variable from α to α/J.  
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2.5.3 On-line process monitoring procedure 

On-line process monitoring is implemented following the subsequent 

steps: first, a PCA model, based on the reference data of the process, 

�(�×�)
� , has to be identified. Therefore, the loading matrix P, are 

determined and the number of principal components is selected. In 

addition, T2 and Q limits are evaluated according to Equations (13) and 

(15). For on-line monitoring, the new data points xk are projected onto the 

model space defined by the PCA model, spanned by the retained A 

loading vectors as reported in Equation (11). Then, the associated values 

of the T2 and Q statistics are calculated by means of Equations (12) and 

(14) and usually reported in control charts. The occurrence Qk>Qlim and/or 

T2
k>T2

lim may be indicative of abnormal process behavior or the 

observation is not consistent with the reference ones (MacGregor and 

Kourti, 1995; Romagnoli & Palazoglou, 2012). Once out-of-control 

observations are detected, contribution plots are usually employed, in 

order to identify which j-th spectral variables are significantly deviating 

from the reference behavior and are contributing to T2 and Q statistics.  

2.6 Partial Least Squares 

PLS represents a powerful multivariate statistical tool for the quantitative 

analysis of spectroscopic data that enables to overcome problems common 

to this data such as collinearity, peak overlaps and interactions and it can 

be seen as a feasible method for multivariate calibration. It can be also 

employed for process-monitoring (Godoy et al., 2014), but is also able to 

determine compounds concentration (PLS-Regression) (Wold et al., 2001, 

Meng et al., 2014), and for pattern recognition (PLS-Discriminant 

Analysis) (e.g., Szymańska et al., 2012). 

2.6.1 PLSR- Model calibration 

Given a predictor matrix X(I×J) and a response matrix Y(I×N) the PLS 

algorithm projects X and Y onto a low-dimensional space defined by a 

small number of latent variables A (Li et al., 2010) as expressed in 

Equation (20) and (21). Similarly to PCA, the choice of the number of 
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latent variables (A < J) is a key factor to describe adequately data, the 

cumulative variance criterion (Equation (10)) can be employed for PLS 

matrices X and Y as well. 

 

�
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�×�

∙��
�
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  (20) 
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�×�
  (21) 

 

Where TA is the orthonormal score matrix, PA and Q are the loading 

matrices for X and Y, respectively. E and F are the residuals matrices of 

X and Y. In general, X and Y can be pre-processed and scaled to unity 

variance and mean centred. The basic idea in PLS-R is that the covariance 

between X and Y should be maximized and there are several ways to 

solve the maximum optimization problem and compute PLS model 

matrices P and Q. In this thesis, the SIMPLS algorithm developed by De 

Jong (1993) was used since it appears faster and easier to interpret than 

nonlinear iterative partial least-squares one (NIPALS). PLS can be 

implemented to infer a single response variable (PLS1) or multiple 

response variables (PLS2). Here, PLS2 was adopted as it seemed more 

appropriate for process monitoring. This sounds reasonable since the joint 

regression of multiple response variables should provide more information 

than the ones collected by building N different independent PLS models 

(Li et al., 2010).  

2.6.2 PLS-R: quality variables prediction 

PLS method can predict the k-th sample concentration yk from the 

corresponding spectrum xk (MacGregor et al., 1994) as expressed in (22) 

and (23).  
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Where 
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In Equations (22) and (23) R is the pseudo-inverse of the PA matrix and B 

is the regression coefficients matrix estimated through the matrices R and 

QT. The prediction ability of PLS-R for the training set can be evaluated 

through the root mean square error of calibration (RMSEC), and for the 

prediction set through the root mean square error of prediction (RMSEP). 

They are determined according to Equation (24) and (25), where C and V 

are the number of samples in the training set and in the prediction set, 

respectively. 

 

����� = �∑ (������)
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���
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2.7 PCA-based approaches for transient data  

When data depend on an external variable t (time, temperature, pressure, 

etc.), the I observations are collected over the time and/or with the 

temperature, this implies that data contain dynamic information. Although 

Static PCA has been flexibly applied to spectroscopic data to reveal 

deviations or transitions from the reference conditions (Alcalà et al., 2010; 

Kogermann et al., 2004, Lin et al., 2006), when data contain dynamic 

information and are dependent on external variable t (time, temperature, 

pressure, etc.), the correct detection of faults cannot be always guaranteed 

during on-line monitoring. As a result, misclassification of new 

observations may occur, i.e., it can detect excessive false alarm. In fact, in 

a dynamic system data do not respect the assumption of independence 

with the variable t (Ku et al., 1995) and, actually, spectral variables and 

related statistics, such mean and covariance, are changing with respect to 

t. Therefore, since the training set remains static, it is not able to represent 

the current status of the process. In fact, during a transient process, 

variables can intrinsically change (increase or decrease), although this 

occurrence does not necessarily imply that the system is out-of-control. 

Therefore, when future observations are projected onto a static PCA, they 
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could be misidentified as deviation from the reference conditions (and 

thus classified as out-of-control).  

Different methodologies have been developed to monitor transient 

processes, such as dynamic PCA (DPCA) for auto-correlated data (Ku et 

al., 1995; Lu et al., 2005), while Recursive PCA (Li et al., 2000) and 

Moving Window PCA (Jeng, 2010; Wang et al., 2005) for non-stationary 

data. An interesting comparison of these three methods and works 

presented so far can be found in De Ketelaere et al. (2015). DPCA is the 

combination of PCA with Autoregressive Integrated Moving Average 

(ARIMA) model. The extended data matrix used for model calibration is 

composed of additional time shifted replicates of the original variables. 

Although it has been successfully applied, Kruger et al. (2004) show that 

the scores of DPCA will be inevitably autocorrelated. This leads to an 

increased rate of false alarms through T2. Whereas, Q statistic seems not 

affected by autocorrelation of the scores. Nevertheless, it is vulnerable to 

nonstationarity for the same reason as static PCA. Moreover, since DPCA 

use many more variables than static PCA to build the extended matrix, the 

interpretation of the contribution plots is more difficult than static PCA. 

To overcome these shortcomings and limit the influence of older 

observations on the estimation of the mean and covariance, other methods 

can be employed such as Recursive PCA (RPCA) and Moving Window 

PCA (MWPCA).  

Useful guidelines to choose the correct parameters in RPCA and MWPCA 

are provided by Schmitt et al. (2016). In detail, these latter methods 

involve updating the PCA model considering different datasets. RPCA 

includes new observations and exponentially downweights old ones to 

evaluate the mean and covariance matrix used in PCA. Hence, a forgetting 

parameter between 0 and 1 should be selected in order RPCA to give 

lower weight to older observations and it may be determined through the 

minimization of the sum of squared prediction errors (SSPE) of the model 

(Schmitt et al., 2016). During the implementation of RPCA, the model is 

not updated when an observation is classified as out-of-control. However, 

sometimes the choice of the forgetting factor requires a priori knowledge 

of likely fault conditions (Wang et al., 2005). Furthermore, as the 

dynamic process evolves, older data can become unrepresentative of the 

varying process. As pointed out by Jeng (2010) and He & Yang (2008) in 

presence of drifts, the number of false alarms may increase as the data size 
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becomes larger, since RPCA leads to a slower speed of model adaptation 

than MWPCA that can overcome some of these deficiencies of RPCA, 

building a more suitable adaptive process model. As in static PCA, it 

consists of calibration and prediction steps but on a finite time window. 

Nevertheless, the training set is not static but it is continuously renewed 

by removing the oldest observation and adding the newest one as long as 

the window moves. On the other hand, discarding observations too 

quickly can lead to too rapidly varying models and ineffective process 

monitoring. As RPCA, the model is not updated when an observation is 

detected as out-of-control. Since a fixed size window is moved along the 

data and a training set, �(�×�)
� , is selected, the size of the moving window, 

L, is a key parameter to choose. It depends on the speed at which the 

parameters (mean and covariance) change. There are different criterions 

used to select the proper size of the window. Nevertheless, when the 

number of available observations is limited, the size L is chosen so that 

the sum of squared prediction errors (SSPE) of the validation set �(�×�)
�  

(belonging to the NOC, where V is the size of the validation set) is 

minimized (for further details see Schmitt et al., 2016; Montgomery, 

2008b) as reported in Equation (26).  

 

����(�) = ∑ �xt
v − ��t,l

v �
����

�����  (26) 

 

Where  ���,� is the observation of the validation set at t (with t=l+1, l+2, …, 

l+V) predicted through the PCA model built with the observations 

collected between t=T0 and t=l (where l=Lmin, Lmin+1, …, Lmax), so that its 

size is increasing until the maximum.  

2.8 Evolving Factor Analysis 

When data collected come from an evolving system, local rank 

exploratory methods are powerful tools to extract information for the 

resolution of dynamic multicomponent systems, not only the total number 

of components can be determined, but also the location and evolution of 

each of these detected components can be inferred (de Juan et al., 2004).  

The EFA is a local rank method and aims to monitor the rank evolution of 

the X data matrix (Maeder, 1987). It performs singular values 
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decomposition on augmented submatrices Xi (i=1, 2, ...I) in backward and 

forward time direction as shown in Figure 2. 

 
Figure 2 – Graphical representation of the matrix augmentation carried out during EFA 

implementation. 

Combining the eigenvalues evolution obtained during the backward and 

forward analysis, the EFA plot can be built and information about the 

number of chemical species involved in the process can be inferred. 

Estimation of the concentration profiles is eventually carried out. The 

main advantage of the method is that no a priori knowledge about the 

chemical species involved in the process is required. Its main drawback is 

that the mathematical rank of the data matrix does not always correspond 

to the chemical rank (i.e., the actual number of chemicals in the system), 

due to the possible occurrence of rank deficiency of the experimental data 

matrix. In fact, in an evolving system the maximum mathematical rank 

(Amrhein et al., 1996), i.e. the maximum number of detectable species, is 

the minimum between the number of independent reactions (NR) and 

chemical species in the process (NC), as reported in Equation (27).  

 

 CR NNrank ,1min)( D   (27) 

 

Therefore, EFA may encounter some difficulties to distinguish more 

reactants (products) which decrease (increase) together in the same 

direction, and the outcomes of the algorithm could be a linear combination 

of these compounds. 

2.9  Multivariate Curve Resolution 

The MCR is a useful tool to investigate complex evolving system. It aims 

to estimate the spectra of the components and the corresponding 

concentration profiles in an evolving system (Tauler, 1995). For this 
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reason, it has been extensively applied to spectroscopic data coming from 

in situ experiments and hyphenated analytical techniques (De Juan et al., 

2014; Garrido et al., 2008; Hantao et al., 2012). The decomposition 

underlying this multivariate technique X=TA·PA
T + E, is the same as that 

shown in Equation (5), where the matrices TA and PA
T (generally 

indicated as C and ST matrices, respectively) represent the concentration 

profiles of the pure pseudo-species and spectra of pure pseudo-species, 

respectively. Unlike PCA, here the constraint of orthogonality between 

the scores is relaxed and in order that the matrices T and P have physico-

chemical meaning, one could set several constraints as follows (de Juan et 

al., 2009): 

i. Nonnegativity: concentration or response profiles (spectra) are 

forced to be positive.  

ii. Unimodality: it allows concentration or spectra profiles to have a 

single maximum.  

iii. Closure: it forces concentration profiles within the closed system 

to add up to a certain constant value (the closure constant) to 

satisfy the mass balance closure condition. 

iv. Hard modelling: it shapes concentration profiles and responses 

according to a mathematical function. In the concentration 

direction, these functions are typically physico-chemical models 

(kinetic or equilibrium). 

As a consequence, these constraints lead to a more meaningful and 

interpretable results than PCA. 

The MCR algorithm developed by Tauler (1995) and Jaumot et al., (2005) 

is an Alternating Least Squares iterative optimization procedure that 

minimizes the norm of the residual matrix E. Since it is an iterative 

method, suitable initial guess TA
0 for TA (or alternatively a feasible PA

0 

for PA) are required. Particularly, the choice and generation of the starting 

values is the crucial aspect of the optimization process in order to convey 

the iteration to chemically meaningful results. The number of compounds 

in X can be determined using PCA or can be known beforehand. If 

experimental spectra P0 or concentration profiles T0 are not available, 

different methods can be employed, such as EFA and SIMPLe-to-use 

Interactive Self-modeling mixture Analysis (SIMPLISMA) (Windig, 

1997) to estimate the first guesses. The MCR-ALS method consists of 
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solving alternatively the following two least-squares problems under 

suitable constraints (Equations (28) and (29)).  

 

� ←���
�|�

‖� − ���‖         under constraints on T (28) 

 

�� ←���
�|�

‖�− ���‖       under constraints on PT (29) 

 

In each iteration, T and PT matrices are calculated as shown in Equations 

(30) and (31). 

 

�� = ��� (30) 

 

� = (��)�� (31) 

 

Where �� and (��)� are the pseudo-inverse of the T and PT. The 

iterations continue until the convergence criterion is satisfied, i.e. when 

relative differences in standard deviations of the residuals between 

experimental data matrix and data estimated through ALS are less than a 

previously selected value, usually 0.1%. 

At the end of the iterations, the percentage of variance explained and the 

Lack of Fit (Jaumot et al., 2005) can be considered in order to evaluate the 

goodness of fit. The Lack of Fit is defined as the difference among the 

input data X and the data estimated through MCR as reported Equation 

(32), where xij is the element of the X matrix, while I and J are the number 

of rows and columns of the X matrix.  
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The percentage of variance explained (Equation (33)) and standard 

deviation of residuals with to respect experimental data (Equation (34)) 

are calculated according to the following expressions. 
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Moreover, the agreement between the spectra (or the concentration) 

estimated and the experimental ones can be assessed through the Pearson 

correlation coefficient as reported in Equation (35). 
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Where yj and jŷ  are the values of the experimental and the estimated 

spectrum (or concentration) at j-th spectral variable (or over the time), and 

jŷ  and y  are the mean of the experimental and the estimated spectrum (or 

concentration), respectively. 

2.10  Statistical Total Correlation Spectroscopy 

The Statistical Total Correlation Spectroscopy, STOCSY, (Cloarec et al., 

2005) was firstly introduced by Sâsić et al. (2000) based on the same 

concepts and theory underlying the Two-Dimensional Correlation 

Spectroscopy (2COS) developed by Noda (1993). It originally aims to aid 

the detection of potential biomarker molecules in metabonomic studies 

based on Nuclear Magnetic Resonance spectroscopic data. Since, 

potentially thousands of different metabolites can be present in complex 

biosamples, the analysis of the full spectrum and the detection of 

metabolites and identification of the corresponding spectrum can be quite 

challenging. 

However, the STOCSY is able to overcome this issue, since it takes into 

account only the synchronous changes of the spectral intensities and 

exploits the fixed proportionality in a set of NMR spectra between 

resonances coming from the same molecule.  

Considering the case of intensities recorded at different spectral variables, 

one eventually ends up with a correlation matrix R(J×J) whose elements rh,l 

represent the Pearson correlation coefficient between the intensities at the 
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spectral variables h and l (h=1, …, J and l=1, …, J) as expressed in 

Equation (36). 
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 (36)  

where, in Equation (36), the time-averages 
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x of the h and l intensities are employed. The row vector 

rh(1×J) of the R matrix represents the correlation of the intensity at the h-

th spectral variable with the other l intensities (l=1, …, J). When 

intensities h and l derive from the same chemical species, rh,l will tend to 

unity. Thus, two peaks are assumed to belong to the same pattern if r is 

greater than a correlation cut-off value η. 

Therefore, after computing the correlation matrix R, the spectrum 

STOCSYa,t̂  estimated for the a-th species can be obtained by resorting to the 

following recipe:  

1. choose a reference spectrum xi(1×J) from which the pure 

compound spectra are extracted. In case of evolving systems, 

it is suggested to use the initial (i.e. i=1) and the final 

spectrum (i.e. i=I) to estimate the reactants and products 

spectra, respectively; 

2. select the index h* hereafter referred as the driver peak; it 

should be preferably the highest one (Cloarec et al., 2005); 

3. define a driver vector rh*(1×J) whose elements are determined 

such that 

a. lhlh *,*, Rr     when lh*,R   l=1, …, J 

b. 0*, lhr          when lh*,R  

4. the spectrum of the a-th species is eventually computed 

multiplying the experimental pattern by rh
d as reported in 

Equation (37). 
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5. The residual spectrum xe is computed by removing the 

STOCSYa,t̂  from the reference experimental spectrum 

T
STOCSYae ,t̂xx   

6. A new driver peak is selected in the residual spectrum and the 

procedure is iterated A times, until no more significant peaks 

can be detected. 

 

As widely reported in the literature, the STOCSY technique and its 

different extensions (see e.g. Robinette et al., 2013) are suited to extract 

patterns from spectroscopic data. Some problems may however arise 

when driver peaks belong to more than one compound. This occurrence 

may lead to a wrong estimation of the spectrum that, in fact, will result as 

a linear combination of the spectra pertaining more than one involved 

species. Particularly, in case of evolving systems, STOCSY cannot 

accurately estimate compounds patterns when the driver peak belongs to 

both reactants and products. 

2.11  Software employed for data treatment 

In this thesis, for the implementation of multivariate techniques in-house 

and preexisting routines in Matlab® R2015a environment are used. For 

the MCR-ALS algorithm, MCR toolbox for Matlab developed by Jaumot 

et al. (2005) is used. 
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Chapter 3  

Overview of the contributions to the 

state of art 

In this Chapter, a brief overview of the shortcomings that may arise using 

multivariate techniques is given. The main contributions of this thesis to 

the state of art are presented as well.  
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3.1 Procedures for on-line monitoring of 
continuous and evolving processes 

Table 2 summarizes the spectroscopic techniques and multivariate 

techniques employed in this thesis. In the following the main 

contributions will be presented.  

3.1.1 Continuous processes 

Liquid commercial detergents production was considered as case study for 

on-line monitoring of quality through Infrared Spectroscopy.  

The first goal was the detection of out-of-control samples. This is 

typically carried out resorting to the statistics T2 and Q (MacGregor and 

Kourti, 1995). Different methods have been proposed to define a bivariate 

probability density function of these two statistics (Chen et al., 2004; Qin, 

2003). A bivariate probability density function of the statistics T2 and Q 

was here suggested and a new operating region was defined (Elliptical 

Normal Operating Region, ENOR). To this aim, a non linear 

transformation of these statistics was proposed to allow them to follow a 

Gaussian dispersion.  

The second aim was the estimation of compounds concentration in a 

robust way. The conventional methods like the inverse calibration and 

peak integration are not always suitable for on-line monitoring since they 

show limitations in the quantitative analysis of spectroscopic data. In fact, 

they it can be time consuming, inaccurate since the spectra can be 

characterized by collinearity and peak overlaps. On the other hand, Partial 

Least Squares Regression (PLS-R) enables to overcome these problems 

(Wold et al., 2001) and can be also implemented for on-line monitoring 

(Godoy et al., 2014). However, it should be noted that its prediction 

ability could be worsen if the PLS-R model is calibrated without 

considering the possible presence of external interferences and may lead 

to inaccurate results. 

Hence, the Qx statistic was proposed in this thesis to assess the reliability 

of the prediction in presence of a species whose deviations were not taken 

into account during model calibration. In presence of out-of-control 

samples the estimation of the concentration of the other compounds was 

not considered accurate. 
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3.1.2 Evolving process 

The cooling crystallization of an Active Pharmaceutical Ingredient was 

monitored through in situ Infrared spectroscopy. This case study was 

proposed to develop PCA-based approaches for transient data. Although 

PCA is used to track evolving systems and for off-line kinetic modeling 

(e.g., Alcalà et al., 2010), it encounters limitations during on-line 

monitoring of these systems (De Ketelaere et al., 2015), since it detects 

excessive false alarm (e.g. observations misclassified as out-of-control). 

Moving Window Principal Component Analysis (MWPCA) is frequently 

used for on-line monitoring of evolving processes, since it adapts PCA 

model such that the process dynamics can be taken into account (Jeng, 

2010). It is able to reduce the number of false alarms with the respect of 

the conventional PCA.  

Nevertheless, MWPCA seemed rarely applied to spectroscopic data for 

the on-line monitoring of evolving systems. In this work, T2 and Q and 

contribution plot based on MWPCA were employed to detect the 

nucleation and identify the spectral variables that were changing due to 

nucleation. 

3.2 Approaches to investigate phenomena 
occurring in evolving systems 

3.2.1 Treatment of hyperspectral data 

The system investigated was a surfactants paste that dissolves with water. 

Since data coming from confocal Raman microscopy vary over the time 

and along the space, their interpretation is not always straightforward. 

Multivariate Curve Resolution (MCR) is a very popular method for the 

resolution of spectra and for the determination of the evolution of the 

components over the time and/or along the space (Tauler, 1995; de Juan et 

al., 2014). It leads to more physically meaningful and interpretable results 

than PCA and EFA. To this aim, MCR was used to infer information 

about the dissolution behavior of the surfactants present in the paste. 
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3.2.2 Treatment of X-ray Powder Diffraction data 

This case study was focused on the understanding of the setting reaction 

of K-struvite, an innovative cementing material. The goal was the 

estimation of the conversion curves of the different species and the 

extraction of their diffraction patterns from in situ X-ray Powder 

Diffraction data. 

Although Multivariate Curve Resolution (MCR) is a useful tool, the 

results depend on the quality of the initial estimates since it is an iterative 

approach. On the other hand, STOCSY (Cloarec et al., 2005) can 

represent a efficient alternative to estimate diffraction patterns, since 

spectra are characterized by fixed proportionality between peaks 

belonging to the same species, as in Nuclear Magnetic Resonance spectra. 

However, it may find difficulties in estimation when dealing with 

evolving system, where reactant peaks can overlap with the products ones. 

Particularly, Time Window STOCSY (TWSTOCSY) was proposed here 

as a method to estimate crystalline patterns for evolving systems when 

peaks overlap. Thus, a combined procedure was suggested to estimate 

patterns and the evolution of phases during the reaction of K-struvite: 

TWSTOCSY that could provide more accurate initial guesses for MCR 

implementation to improve the estimation of spectra and evolution of 

species. This procedure required a limited a-priori knowledge of the 

spectra and species involved in the reaction. 

 
System 

investigated 
Aim 

Spectroscopic 

technique 

Multivariate 

Technique 

Commercial 

detergents 

Quality 

control 
Infrared 

 PCA 

 PLS-R 

Active 

Pharmaceutical 

Ingredient 

Crystallization 

monitoring 
In situ Infrared 

 PCA 

 Moving Window 

PCA 

Cementing 

material 

Reaction 

monitoring 

 

In situ X-ray 

Powder 

Diffraction 

 EFA 

 MCR 

 Time Window 

STOCSY 

Surfactants paste 
Dissolution 

investigation 

Confocal Raman 

Microscopy 
MCR 

Table 2 - Overview of the case studies investigated, the spectroscopic techniques and the 

multivariate techniques employed in this thesis.  
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Liquid commercial hard surfaces detergents are a complex blend 

composed by different chemical species, whose quality strongly depends 

on the relative proportions. Quality control is usually performed on the 

end-product at the completion of the process with off-line conventional 

analytical techniques (e.g. chromatography) that introduce time delay and 

consequently reduce the effectiveness of quality control. Indeed, in case 

the product does not meet certain specifications, it has to be reprocessed, 

implying an increase of cost and time waste. Thus, for the analysis and 

control of critical quality variables (i.e. the compounds proportions) 

during the manufacturing process, real time analyzers are required. For the 

case at hand, a proper experimental tool might be the attenuated total 

reflectance (ATR) coupled with Fourier transform infrared (FTIR) 

spectrometer (Stuart, 2004). This is an innovative, non-destructive 

analytical technique, capable of measuring in very fast times aqueous 

samples, characterizing materials in a really efficient way and that are 

well suited for on-line measurements. Nevertheless, because of the large 

amount of spectral information, interpretation and correlation of the 

collected spectra with quality variables is a challenging task.  

In this thesis, we tackle the issue of the on-line monitoring of commercial 

detergent mass production through a method based on a multivariate 

statistical process control approach applied to FTIR measurements of 

liquid detergent samples. Two different scenarios will be considered for 

this purpose: on one hand, the detection of samples that are characterized 

by a higher concentration value for one component of the mixture. On the 

other hand, the determination of the concentration of some selected 

compounds and an approach is proposed to detect out-of-control samples, 

particularly to assess the robustness of the estimation when deviations of 

other compounds are not taken into account during the model calibration. 

4.1 Experimental 

4.1.1 Materials 

Different batches of liquid commercial detergent were generated mixing 

the following components: sodium hydroxide, pH buffer, chelating agents, 

anphoteric surfactant, ethanol, fatty acid, non ionic surfactant, sodium 
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carbonate, perfume, polymer additive. Two datasets were produced where 

the compounds concentration in each sample is jointly varied according to 

an I-optimal design (Montgomery, 2008a). 

4.1.2 Infrared measurements 

The infrared measurements were performed at the Procter & Gamble 

R&D Brussels Innovation Center with a Thermo Scientific 

Nicolet™iS™10 FT-IR Spectrometer with a deuterated triglycine sulfate 

(DTGS) detector and a KBr/Ge mid-infrared optimized beam-splitter. The 

spectra cover the range from 3000 to 800 cm-1 with a wavenumber 

resolution equal to 1.928 cm-1.  

4.1.3 Dataset for on-line detection models 

This dataset is generated to detect out-of-control samples that can be 

characterized by the concentration of one component higher than the 

nominal value during detergent production.  

Samples that respect the standard of the end-product were generated and 

hereafter they will be referred as normal operating conditions (NOC). The 

in-control set consists of 71 samples were randomly chosen and are 

characterized by fluctuations from their nominal values as summarized in 

Table 3. The training data set includes 53 spectra (75 % of the in-control 

dataset, randomly chosen). The remaining 18 spectra were subsequently 

used as test set for the model validation. The corresponding spectra are 

depicted in Figure 3a and b. Other 44 samples (spectra in Figure 3c) were 

generated with the same average values and fluctuations, but with a 

concentration of the anionic surfactant 15 % greater than the nominal 

value assumed in the training set. Therefore, these latter samples may be 

regarded as an out-of-control dataset when compared with the former one. 

In all the samples, small variations in the components are introduced in 

order to mimic typical fluctuations unavoidably present in the standard 

mass production. The deviations from the nominal values are summarized 

in Table 3. 
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Table 3 – Deviations from the nominal values for the compounds present in the in-control 

and out-of-control samples set. 

 
Figure 3 - FTIR spectra for the: (a) training data (53 samples); (b) test data (18 samples); 

(c) out-of control data (44 samples). 

4.1.4 Dataset for on-line estimation of compounds 

concentration 

This dataset is generated for the on-line monitoring of detergent mass 

production as the previous one. However, here the goal is the 

determination of the concentration of some selected compounds (sodium 

hydroxide and non-ionic surfactant) and development of methods to detect 

out-of-control samples where the concentration of anionic surfactant 
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Compounds Deviation from the nominal value 

 in-control samples out-of-control samples 

anionic surfactant  ± 5 % ± 15 % 

 sodium hydroxide 

 pH buffer 

 chelating agents 

 anphoteric surfactant 

 ethanol  

 fatty acid 

 non ionic surfactant 

± 10 % ± 10 % 

 sodium carbonate 

 perfume 
± 14 % ± 14 % 

polymer additive  ± 25 % ± 25 % 
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deviates from the nominal one and is not taken into account in the model 

calibration.  

In-control samples were generated where sodium hydroxide and non-ionic 

surfactant concentration jointly vary (± 10 % of the average nominal 

values), while anionic surfactant concentration was kept at low level. 

Particularly, 34 samples were randomly selected from the in-control set to 

generate the training set to calibrate the model, the 6 left samples were 

considered for the validation set. The IR spectra are depicted in Figure 4a 

and Figure 4b, respectively. In addition, a further set was generated which 

is an out-of-control test set (12 samples), characterized by anionic 

surfactant concentration 22 % higher than the NOC value (Figure 4c), 

while variations of sodium hydroxide and non-ionic surfactant 

concentration for these samples were the same designed for the in-control 

samples. Concentrations of other compounds (sodium carbonate, fatty 

acid, pH buffer, chelating agents, anphoteric surfactant, ethanol, perfume, 

polymer additive) were slightly varied in all the samples in order to 

simulate industrial process fluctuations. The deviations from the nominal 

values are summarized in Table 4.  

 
Compounds Deviation from the nominal value  

 in-control samples out of-control samples 

 sodium hydroxide 

 non ionic surfactant 
± 10 % ± 10 % 

anionic surfactant  low level + 22 % 

sodium carbonate  ± 14.3 % ± 14.3 % 

perfume  ± 14 % ± 14 % 

polymer additive  ± 13.6 % ± 13.6 % 

 pH buffer 

 chelating agents 

 anphoteric surfactant 

 ethanol  

 fatty acid 

± 10 % ± 10 % 

Table 4 – Deviations from the nominal value for in-control and out-of-control samples. 
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Figure 4 - Infrared spectra for (a) training (34 samples), (b) validation (6 samples) and (c) 

out-of-control (12 samples). 

4.2 Methods  

4.2.1 Elliptical NOR for detection of out-of-control 

samples 

Traditionally, on-line process monitoring requires the analysis of T2 and Q 

on separate scalar charts (see e.g. Borin & Poppi, 2007 for an application 

to FTIR measurements). Eventually, one defines the normal operating 

region (NOR) of the regular process conditions in a bivariate plot 

(Romagnoli & Palazoglou, 2012) as the square region: [T2 - Q][0 - 

T2
lim][0 - Qlim]. Recently, different techniques have been proposed to 

combine the two metrics into a unified statistic (Qin, 2003), and through 

kernel density estimation (e.g., Chen et al., 2004) that allow to reduce the 

work load of plant operators. Chen et al. (2004) proposed a joint 

estimation of these two statistics by resorting to a nonparametric 

evaluation of the bivariate probability density function estimated from the 

observed values for the scalars T2 and Q.  

From a theoretical point of view the T2 follows a generalized student 

distribution and the Q statistic a Chi-Squared distribution (Jackson, 1991). 

As a result, the in-control region defined by T2 and Q is the joint of two 

ellipsoids (Qin, 2003). Hence, the aim of this work is the estimation of a 

new joint probability density function that is closer to these ellipsoids as 

much as possible. Thus, an alternative, simple approach is here proposed 

to (i) evaluate a joint Gaussian probability density function of these two 

new scalars and (ii) estimate a new bounded region.  
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Since it requires the variables to follow a Gaussian dispersion, the 

approach is based on a nonlinear transformation z*=[T2*, Q*] of the 

original scalars. The final goal is to assess whether it is possible or not to 

correctly detect the anomalies and properly classify the samples. 

Thus, in case these statistics do not follow the distributions assumed in the 

theory, we address a Box-Cox transformation for the statistics: 
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(38) 

The goal is to approximate the data as much as possible to a Gaussian 

variable. The value of  in Equation (38) was found by maximizing the 

Akaike Information Criterion (Akaike, 1974). The normality assumption 

for the transformed data is finally tested performing a Lilliefors goodness-

of-fit test (Lilliefors, 1967). Thus, the bivariate samples of the statistic z* 

can be regarded as outcomes of the multidimensional Gaussian random 

variable: 
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where the term: 

  constg T   )(*)()( **1*** zzVzzz  (40) 

represents isolevel curves identified in the zspace. The V* matrix is the 

covariance matrix estimated from the two transformed statistics evaluated 

for the samples. Equation (40) allows to define a recipe for the calculation 

of a new normal operating region that can be adopted for the statistical 

control: in detail, we will refer to the ellipse in the [T2*-Q*] space 

including the most of the observed z* values (e.g. the 95% of the data). 

This region will be referred as the Elliptical Normal Operating Region 

(ENOR). 
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4.2.2 PLS-R for on-line estimation of compounds 

concentration  

Partial Least Squares Regression (PLS-R) is considered as the best linear 

multivariate technique for the quantitative analysis of spectroscopic data 

because it enables to overcome common problems such as collinearity, 

band overlaps and interactions.  

Different works in literature usually determine the best calibration PLS-R 

model for compounds concentration in detergents formulations (Rohman 

et al., 2011), however the possible presence of external interferences is 

not considered. As a consequence, prediction ability could be worsened. 

In fact, since the PLS-R model is built only on a limited number of 

compounds, it could be no longer consistent when the system is out-of-

control, that is in presence of large deviations of other compounds not 

taken into account in the PLS-R model calibration. Hence, the PLS-R 

model could lead to wrong conclusions when this scenario occurs.  

Here, a Qx statistic is proposed to assess the concentration prediction 

reliability when a fault occurs, i.e. a perturbation from the NOC.  

4.2.2.1 PLS-R based statistical process control 

Beside the quantitative estimation of the compounds (see section 2.6), a 

PLS-based monitoring technique was here applied (Kourti, 2005). An 

important factor to consider is the consistency of the prediction of 

unknown samples, indeed the new observations should lie in the 

calibration region for a correct concentration prediction. Different works 

are devoted to this topic (Bu et al., 2013; Pierna et al., 2002). Here, the 

on-line detection of deviations from nominal conditions and, as a 

consequence, the accuracy of the concentration prediction was performed 

by resorting to the Qx statistic (Li et al., 2010). Such statistic (Godoy et 

al., 2014) is calculated for the k-th sample spectrum according to the 

Equation (41). 

 

Q�,� = ‖�� − ���‖� = ��� ∙�� − �� ∙�
���

�
 (41) 

 

Where the subscript x in the Q refers to the residual of the data matrix X,  

��� is the k-th spectrum as predicted by the PLS model considering the 
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first A latent variables. The threshold limit for this statistic can be 

evaluated as reported in Equation (15) or (16). Then, the procedure can be 

summarized as represented in Figure 5: the spectra are collected and PLS 

model is implemented, if the Qx exceeds the threshold estimated for the 

in-control sample set, the model is not suitable anymore for the prediction 

of compounds concentration. 

 

 
 

Figure 5 – Procedure for on-line monitoring of compounds concentration based on PLS-R 

and Qx statistic. 

4.3 Results  

4.3.1 On-line detection of out-of-control samples 

The PCA model was identified using the training data set based on the 

Equations illustrated in section 2.4. According to the cumulative variance 

criterion, the appropriate number of principal components in the PCA 

model was found to be A=6, explaining 91.1% of the total data variance, 

while the other components explain less than the 1 % and can be thus 

discarded (Figure 6). 
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Figure 6 – Cumulative variance explained of the matrix X. 

The samples of the T2 and Q statistics for the training, in-validation and 

out-validation set were then generated by applying Equations (12) and 

(14) described in section 2.5. The traditional bivariate chart T2 and Q 

statistics for process control is depicted in Figure 7. As it can be noted, the 

samples belonging to the training set (open circles) appear as the joint of 

two ellipsoids.  

 

 
Figure 7 - Scatter plot of the T2 and Q statistics evaluated for the observations belonging to 

the training data set, test set and out-of-control data set. Dashed-dotted lines are the 

limiting values calculated for the statistics. 

From a theoretical point of view the T2 and Q statistics are independent of 

each other (Chen et al., 2004; Jackson, 1991). Therefore, the 

independency of the two statistics is verified through the covariance 

matrix of the statistics estimated for the training set shown below and the 

correlation coefficient that is equal to -0.109.  
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In order to consider a joint distributed function, the variables should 

follow a normal distribution. Since T2 and Q statistics generally follow a 

generalized student distribution and a Chi-Squared distribution, 

respectively, before the estimation of the joint probability density 

function, the normality of these statistics is tested. To this aim, the 

Lilliefors test (Lilliefors, 1967) is carried out. In fact, it is found that 

normality assumption for Q was rejected with a p-value=0.021. While for 

T2 is equal to 0.192, therefore it can be considered as following a 

Gaussian distribution. The bivariate sample of statistics z*=[T2, Q*] can 

be reasonably approximated as an outcome of a multidimensional 

Gaussian random variable through the Box-Cox transformation as 

proposed in section 4.2.1. From the maximization of the Akaike 

Information Criterion, it was found that  for the SPE statistic (i.e. 

Q*=log Q) as depicted in Figure 8 where the Lilliefors tests give a p-value 

equal to 0.123.  

 
Figure 8 – P-value estimated from the Lilliefors test for the Q statistic. 

A summary of the results is reported in Figure 9, that reports the scatter 

points of the T2 and Q* statistics as they were estimated for the different 

data set: white circles, grey squares and black triangles correspond to the 

training set, test set, and out-of-control set, respectively. For the sake of 

completeness, it is shown in the Figure: (i) the ENOR calculated with 

Equation (40) and including the 95 % of the training data set (dotted line) 

and (ii) the threshold values (dashed-dotted line) estimated for the 

statistics T2
lim=15.61 and Q*lim=5.11 as they were evaluated through the 
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expressions available in the literature. Some comments are in order. Both 

the traditional NOR and the ENOR correctly classify almost all the 

samples of both the training (NOR: 52 out of 53 samples, that corresponds 

to 96%; ENOR: 51 out of 53 samples that corresponds to 92%) and the 

test set (both NOR and ENOR: 16 out of 18 that is 89%) as true negative 

(i.e. 0<Q*<Q*lim and 0<T2<T2
lim). It should be remarked that the 

successful classification of the test set further confirms the properness of 

the PCA model with A=6 principal components (at least for the variations 

of the compound here explored). Furthermore, the additional samples 

obtained at the higher level of anionic surfactant concentration fall almost 

completely out of both the operating regions and they are correctly 

classified as abnormal process conditions. An effective separation 

between the in-control (both training and test set) and out-of-control data 

is again observed. As a final remark, one can appreciate from visual 

inspection that the Q* statistic is also able to successfully discriminate the 

two data sets, at least for the case at hand. Whereas, no deviation from the 

nominal behaviour can be noticed through T2. Indeed, as also reported by 

Qin (2003), the T2
 is less sensitive to deviations than Q statistic. Although 

the anionic surfactant is also present in the in-control set, the deviation of 

its concentration from the nominal value (+ 15%) in the out-of-control set 

breaks the correlation between the spectral variables existing for the 

training set. This means that the projection of all the spectral variables 

onto the PCA model are still near to the origin of the PCA subspace, thus 

T2
 values are less than the limit. However, since only a subset of spectral 

variables (in this case related to the anionic surfactant) is deviating, the 

Euclidean distance from the projections becomes high and Q statistic 

exceeds the threshold. This occurrence can be compared to the red sample 

depicted in Figure 1 (section 2.5.1).  
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Figure 9 - Scatter plot of the statistics T2 and Q*. White circles represent the observations 

for the training data set, gray squares the observations for the test set, black triangles the 

out-of-control data set. Dashed-dotted lines are the limiting values calculated for the 

statistics. The dotted ellipse is the ENOR evaluated with Equation (40). 

The efficiency of the protocol here introduced is confirmed by 

representing the Receiver Operating Characteristic (ROC) curves 

(Scheipers et al, 2005), that are two-dimensional graphs of the true 

positive rates (TPs; i.e., successes) versus the false positive rates (FPs; 

i.e., false alarms). To perform the ranking statistical test, a scalar metric is 

required. In this work, we consider two scalars for the three datasets: (i) 

the usual Q statistic and (ii) the distance de for the ENOR defined in 

Equation (42). 

)(*)()( **1** zzVzz  T
ed  (42) 

Where the matrix V* is the estimated covariance matrix of the samples z*.  

The results are reported in Figure 10. The area under the ROC curve is the 

so-called AUC index, which is a scalar measure of the overall 

performance of a classifier, averaging across different thresholds that can 

be used to generate a classifier. In general, a model with a larger AUC is 

preferred to a model with a smaller one. The AUC of a random classifier 

is 0.5, whereas AUC=1 corresponds to perfect classification.  
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Figure 10 - ROC curves resulting from the comparison of the training with out-of-control 

data (solid line) and the training with test data (dashed line) for (a) the Q statistic and (b) 

the de scalar.  

The AUC values determined are shown in Table 5, where the comparison 

among the three different data sets, together with the related coefficient 

intervals estimated with a bootstrap technique are reported. The ideal 

scenario would be: (i) an AUC value as close as possible to 1, when 

comparing the training set with out-of-control set (thus meaning a perfect 

separation between the two classes) and (ii) an AUC value close to 0.5 

when comparing the training set with the test set. It is further confirmed 

how the proposed procedure shows a high capability to distinguish the in-

control from the out-of-control data. 

 

  AUC AUCmin AUCmax 

Q statistic Out of control 0.994 0.974 0.999 
Test set 0.696 0.553 0.826 

de scalar Out of control 0.962 0.881 0.988 

Test set 0.482 0.339 0.656 
Table 5 - AUC scalars for the Q statistic and the de scalar. 

In conclusion, it was found, at least for the case under investigation, that 

the proposed protocol correctly classifies the samples with a performance, 

at least comparable, with the traditional bivariate plot of T2 and Q 

statistics (Figure 7), but with a slightly higher specificity, since the test set 

is classified as belonging to the training set (AUC=0.482<0.696). As a 

final remark, it should be noticed that, up to our knowledge, a PCA based 

statistical control has been seldom implemented in the framework of 

infrared spectroscopy measurements for detergent quality monitoring. 
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4.3.2 On-line estimation of compounds 

concentration 

The PLS-R model (see Equations reported in section 2.6) was built on the 

training set samples represented by the experimental matrix X(34×1142) and 

concentration matrix Y(34×2). Model matrices (P, Q and B) are evaluated 

using SIMPLS algorithm (De Jong, 1993). For the case at hand, six latent 

variables were chosen as the variance explained for both X and Y 

achieves 92 and 97 %, respectively. The subsequent components explain 

less than the 1 % and can be thus discarded (Figure 11).  

 
Figure 11 – Cumulative explained variance for the data matrix X and Y. 

According to the procedure proposed in section 4.2.2.1, the Qx statistic for 

each sample and the Qx,lim were calculated according to Equation (41) and 

(16) and they are reported in Figure 12. It can be observed that samples 

belonging to training and validation sets have Qx values smaller than the 

threshold. Thus, they are correctly classified as in-control, that is the PLS-

R model is supposed to correctly predict the quality variables. On the 

other hand, the out-of-control samples exceed the limit and anomalous 

conditions are detected. In these cases, the PLS-R model cannot be used to 

infer the compound concentrations as suggested in Figure 5.  
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Figure 12 - Qx statistic control chart. It was evaluated for samples belonging to training 

(white circles), validation (gray squares) and out-of-control sets (black triangles), 

respectively. The dashed-dotted line represents the Qx limit. 

In order to show the prediction ability of the PLS-R model for the three 

different samples sets (training, validation and out-of-control test sets), the 

sodium hydroxide and non-ionic surfactant concentration (yk) were 

calculated according to Equation (22).  

The PLS2 model here developed demonstrates high predictive 

performance achieving R2 values of 97.4 and 97.3 % for sodium 

hydroxide and non ionic surfactant concentration estimation (for the 

training set), respectively. Similarly, the Root Mean Squared Error of 

Calibration (RMSEC) values are quite low and equal to 0.077 and 0.079. 

For validation set the Root Mean Squared Error of Prediction (RMSEP) is 

equal to 0.28 and 0.16. The results are summarized in Figure 13 where the 

experimental vs predicted concentrations (arbitrary units) for the three 

different sets are represented. In more detail, Figure 13a and Figure 13b 

refer to the sodium hydroxide concentration and non ionic surfactant 

concentration, respectively. It can be seen that the training samples (white 

circles) and the validation data (gray squares) are well predicted for both 

sodium hydroxide and non ionic surfactant. On the other hand, it was 

observed that the out-of-control samples, when projected onto the PLS 

model (black triangles in Figure 13), cannot be accurately predicted. In 

particular, the sodium hydroxide concentration was underestimated, 

whereas the non-ionic surfactant was slightly overestimated. The 

explanation of such lack of fit seems obvious: possible variations of 

anionic surfactant concentration were not included into the PLS-R model 
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calibration. As a consequence, the model is not suited to predict 

concentrations corresponding to out-of-control samples. 

 

 
Figure 13 - Experimental vs predicted concentration of sodium hydroxide (a) and non-

ionic surfactant (b). White circles, gray squares and black triangles represent training, 

validation and out-of-control samples, respectively. 

The efficiency of the Qx statistic is further evaluated by means of the 

Receiver Operating Characteristic (ROC) curves (Scheipers et al., 2005). 

Here, two ROC curves were determined as in the previous case study: (i) 

training set was compared with out-of-control set and (ii) training with 

validation set and depicted in Figure 14. The obtained AUC values for 

cases (i) and (ii) were AUC1=0.989 and AUC2=0.77. This confirms the 

capability of the Qx statistic to distinguish the in-control from the out-of-

control samples.  

 
Figure 14- ROC curves resulting from the comparison of the training with out-of-control 

data (solid line) and the training with validation data (dashed line) for the Qx statistic. 
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Results demonstrated that PLS model correctly estimates the compounds 

concentration when the system is in-control. In addition, the Qx statistic 

was demonstrated as an effective tool to clearly detect the out-of-control 

samples. This can be explained considering that the model was calibrated 

based on a specific correlation between the spectral variables. As a 

consequence, the deviation of anionic surfactant concentration from the 

nominal value (+ 22%) in the out-of-control samples is not consistent 

anymore with that correlation, since only a subset of spectral variables (in 

this case related to the anionic surfactant) is deviating. This means that the 

spectral variables belonging to the out-of-control samples moved off the 

plane defined by the latent variable and the statistic become higher than 

the limit. This occurrence is similar to the case of the red sample depicted 

in Figure 1 (section 2.5.1). Therefore, Qx statistic can give information 

about the consistency of the PLS model. Indeed, it cannot be employed to 

estimate the quality variables in case of operating conditions far from the 

NOC. 
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This case study is focused on the monitoring of cooling crystallization of 

Isonicotinamide (INA) in various solvents. It is a pyridine derivative with 

an amido group in γ-position (INA molecular structure is shown in Figure 

15) and has anti-tubercular, anti-pyretic and anti-bacterial properties.  

 
Figure 15 – Molecular structure of Isonicotinamide. 

This Active Pharmaceutical Ingredient (API) is a popular coformer that 

can be used as partner molecules with Active Pharmaceutical Ingredients 

(APIs) in co-crystal preparation (Filho et al., 2006). Moreover, several 

metal complexes of Isonicotinamide have been used as drugs in medicinal 

processes since some coordination compounds of this relevant biological 

ligand are more effective than the free Isonicotinamide molecule 

(Yurdakul et al., 2003). Since its use in drug industry are becoming 

relevant, proper tools are required to in-line monitor crystallization of 

INA.  

Its industrial production is usually carried out by crystallization. Product 

properties, i.e., crystal shape, crystal size distribution (CSD), mean crystal 

size and the polymorphic form may be affected by different factors 

(temperature, concentration of the solute, presence of seeds or impurities). 

For these reasons, monitoring and control batch cooling crystallization 

processes plays a key role in optimizing product quality and process 

performances. To this aim, the U.S. Food and Drug Administration (FDA) 

initiative promotes the use of in situ analytical technologies, usually 

referred to as Process Analytical Technologies (PATs) with advanced 

control methodologies for process understanding, analysis, and control 

(U.S. Food and Drug Administration, 2004). While, other industries had 

already employed these tools, pharmacy industry had found difficulties in 

their introduction for process monitoring, due to rigid regulatory systems. 

During cooling crystallization, the API is completely dissolved in the 

solvent at temperature higher than the saturation temperature, where the 

solubility is relatively high. When the solution is cooled down, the system 

reaches supersaturated conditions, where the solute concentration exceeds 

the solubility at that temperature. Then, the nucleation of new crystals 
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begins. However, the temperature at which it occurs depends on different 

factors such as initial concentration, cooling rate, level of agitation and 

impurities (Nývlt, 1985). Hence, since nucleation is a significant stage 

that can affect these properties during crystallization, the detection of the 

exact moment corresponding to the formation of the very first crystals in 

the system is essential. 

Over the last decades, Attenuated Total Reflection Fourier Transform 

Infrared (ATR-FTIR) spectroscopy has revealed useful for in-line process 

monitoring, control of solute concentration, supersaturation and 

nucleation detection in batch cooling crystallization (Schaefer et al., 2013, 

Thirunahari et al., 2011; Chen et al., 2009).  Nevertheless, since these real 

time analyzer provide highly informative data, methodologies able to 

interpret and gather information from these data are required.  

The aim of this case study is to correctly detected nucleation as spectra are 

collected and identify which spectral variables are mostly changing. 

Therefore, firstly the off-line detection of the nucleation temperature 

pursued through multivariate technique is assessed, then a procedure is 

developed and tested to take into account the transient nature of the data. 

5.1 Experimental 

5.1.1 Materials  

Due to issues with availability, INA was purchased from two vendors, 

Acros Organics and Sigma-Aldrich. X-ray powder diffraction (XRPD) 

analysis showed that the batch from Acros Organics was form 

2(EHOWIH02) and the batch from Sigma-Aldrich was form 1 

(EHOWIH01). Methanol, Acetone, Acetonitrile, Ethyl Acetate, were 

obtained from Sigma-Aldrich, Dichloromethane was obtained from VWR 

BDH Prolabo as 99.9% analytical grade solvents. 

5.1.2 Experimental setup 

The experiments were carried out in the Department of Chemical 

Engineering, Biotechnology and Environmental Technology (University 

of Southern Denmark). In-line IR spectra were collected from the INA 
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solutions during cooling crystallization with a Mettler Toledo ATR FTIR 

ReactIR 15 equipped with a DiComp Diamond probe every 30 seconds. 

Each spectrum was recorded covering a spectral range 648.9 - 2998 cm-1 

with a resolution of 3.73 cm-1. 

5.1.3 Cooling crystallization 

All cooling crystallizations were carried out using an Easymax 102 

synthesis workstation from Mettler Toledo with two 100 mL reactors. 

Mixing in the reactors was provided with crossbar stirring at 300 rpm and 

a condenser was mounted on each reactor to recover the evaporated 

solvent during crystallization. The Easymax 102 synthesis workstation is 

equipped with a built-in solid state thermostat, which ensured controlled 

cooling down to -25°C while still maintaining constant cooling rate. 

Cooling crystallization of INA from each solvent has been conducted with 

two different initial concentrations, solution saturated at 10°C and at 35°C 

(30°C for dichloromethane), respectively. Before the cooling started, the 

solution was heated to 10°C or 15°C above the saturation temperature for 

1 hour to ensure complete dissolution of INA. The cooling rate for all 

experiments was fixed at 0.5°C/min. Once the solution became turbid, the 

temperature was noted as the observed nucleation point. The cooling was 

continued until a sufficient amount of crystals nucleated out of solution, or 

in cases of solvents with low solubility, until the reactor temperature 

reached -25°C. At this point, experiments were stopped as it was not 

possible to keep a constant cooling rate below -25°C. IR data were 

collected using the ReactIR15 probe synchronized with the Easymax 

temperature control through software and an appropriate peak in the IR 

spectra was chosen depending on the solvent in order to trend the peak 

height during experiments.  

5.1.4 Dataset for off-line detection of nucleation  

This dataset is used for the off-line detection of the nucleation temperature 

of INA in various solvents. Therefore, spectra right after cooling was 

initialized until the end of the experiments were analyzed. Since 

crystallization of INA occurred in various solvents, the models were 

developed for each solvent separately. For each solvent, the IR spectra 
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corresponding to solution saturated at low temperature were included in 

the training set. On the other hand, spectra collected at high saturation 

temperature and the replicate at low saturation temperature were used as 

validation.  

 

 

Figure 16 - Infrared spectra of (a) methanol and (b) acetonitrile (black lines) compared 

with the spectrum of the INA solution collected at room temperature (grey line). INA 

peaks are indicated with arrows. 

Figure 16a depicts the IR spectrum of methanol and INA in methanol. As 

it can be observed, the main INA peaks are located at 764, 850, 1219, 

1413, 1555, 1604, 1630 and 1689 cm-1. While the peaks related to 

methanol bonds are located at 1022, 1115, 1413 and 1451 cm-1. It should 

be noted that the INA bond at 1413 cm-1 overlaps with the methanol one. 

Concerning the IR spectrum of INA solution in acetonitrile, Figure 16b 

shows that also in this case the main INA peak is located at 1689 cm-1, 

while the other peaks are distributed in the spectral range 1555 and 1618 
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cm-1, in addition three peaks are observed at 1219, 992, 850.2 cm-1. The 

remaining peaks can be assigned to the solvents. 

 

  

 
Figure 17 - Infrared spectra of (a) acetone and (b) ethylacetate (black lines) compared with 

the spectrum of the INA solution collected at room temperature (grey line). INA peaks are 

indicated with arrows. 

While, smaller INA peaks are observed for acetone and ethylacetate in 

Figure 17a and b, respectively. The peak at 1689 cm-1 present for the other 

solvents cannot be appreciated probably because the solvent peak strongly 

overlaps with it. However, in case of acetone three peaks are noted quite 

near (1640÷1525 cm-1), while the other peaks are located at 1067, 992, 

850, 764.5, 727.2 cm-1. Regarding the ethylacetate, there is a strong 
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overlap with the solvent peaks and only two tiny peaks can be 

distinguished (1700 and 760 cm-1). 

As it can be inferred from the previous Figures showing the INA solution 

in various solvents, that some peaks are located in the same position and 

they represent specific functional INA group as reported in Table 6. 

 
Spectral region (cm-1) Functional group 

1700-1680 
Coniugation of C=O with 

pyridine 

1690-1640 C=N stretch 

1640-1560 N-H stretch for primary amin 

1600 and 1475 C=C aromatic 

1350-1000 C-N stretch for amine 

900-690 =C-H, out of plane bending 

800 N-H, out of plane absorption 

Table 6 – Functional groups of INA. 

For the sake of brevity, only the spectra collected during the experiment 

carried out with methanol are reported in Figure 18, spectra pertaining the 

other solvents show analogous behavior. As expected, the different 

concentration of INA in the solutions corresponds to higher INA peaks in 

the spectra (grey lines). 

 
Figure 18 – IR spectra collected during cooling crystallization of INA in methanol. Spectra 

of the solution at low INA concentration is depicted as black lines, while the low is 

represented as grey lines. 
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5.1.5 Dataset for in-line detection of nucleation 

This dataset is considered as benchmark to develop and test algorithms for 

the analysis of transient data. The in-line implementation of these 

algorithms aims to detect nucleation as spectra are collected and identify 

which spectral variables are mostly affected by the nucleation. As an 

illustrative example, only methanol was used. It included spectra collected 

only during cooling crystallization of INA in methanol, where the solution 

was saturated at low temperature (10 °C) and depicted in Figure 19. 

Therefore, for data processing, we considered only spectra collected from 

the beginning of cooling (T= 24.91 °C) to the end of experiment (T= -9.78 

°C), in the spectral range 648.9÷2002 cm-1 in order to exclude 

contributions not informative for INA crystallization.  

 

 
Figure 19 – Infrared spectra collected during cooling crystallization of Isonicotinamide in 

methanol at low initial concentration. 

5.2 Methods 

The goal of this case study is the development and assessment of the 

proper procedures to apply to IR data for the correct detection of 

nucleation and the identification of spectral variables that are mostly 

changing during cooling crystallization of Isonicotinamide. Firstly, the 

off-line detection of the nucleation temperature pursued through static 

PCA is assessed. Since it is an evolving system, in order to take into 

account the transient nature of the data, a PCA-based method for the in-

line monitoring is developed and tested. 
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5.2.1 Off-line PCA model 

The IR spectra collected during crystallization of Isonicotinamide in 

various solvents are off-line analyzed through PCA (see section 2.4) in 

order to give an earlier indication of nucleation occurring and furthermore 

to help to distinguish the molecular clusters prior to the onset of 

nucleation. 

5.2.2 MWPCA applied to spectroscopic data  

In this thesis, MWPCA is proposed to process data coming from 

spectroscopic measurements during a transient process. Although this 

procedure is well known and extensively applied in process monitoring 

(Simoglou et al., 2005; Zhaomin et al., 2014), no works in literature have 

employed it for the analysis of in situ spectroscopic data along the 

perturbing variable t. Indeed, during a transient process, spectra may 

reflect step change (behavior different from the starting conditions: a 

component that disappears, another that appears). They also may be 

characterized by drifts that do not necessarily imply that the system is out-

of-control. 

The method here implemented is shown in Figure 20: after selecting the 

window size, the window was moved along the data, a training set, �(�×�)
� , 

was generated and PCA model was built, that means determining the 

loading matrix P, observations mean and standard deviation, number of 

principal components, T2 and Q limits according to Equations (13) and 

(15). Then, the next two observations were projected onto the PCA model 

and T2 and Q were estimated according Equations (12) and (14). The 

criterion adopted for the moving of the window was developed with the 

following criteria: if both observations are under the control limits, the 

new window will be moved forward including these two observations and 

removing the older two ones. An example of the sliding window is 

reported in Figure 21, where Xc and Xv refers to the training and 

validation set. 

When the statistics evaluated for three consecutive future observations 

exceed the limits (De Ketelaere et al., 2015), the system is defined as out-

of-control, the window does not move forward anymore. In this case, the 

contribution plot can be analyzed to assess which variables are most 
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contributing to the statistics. The main advantage of this procedure over 

the static PCA is that the number of false alarms can be drastically 

reduced and the detection of the out-of-control state can be more easily 

identified.  

 
Figure 20 – Moving Window PCA algorithm to monitor evolving system and detect out-

of-control observations. 

 
Figure 21 – An example of the sliding window along the data matrix X carried out during 

MWPCA implementation. 
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5.3 Results 

5.3.1 Off-line PCA model 

For each solvent, PCA model was built by considering the IR spectra 

corresponding to solution saturated at low temperature. The PCA model 

was then validated on the spectra collected at high saturation temperature 

and the replicate at low saturation temperature. Only the spectra collected 

right after cooling was initialized until the end of the experiments were 

taken into account. Spectra were pre-processed through mean-centering 

and standardization before PCA implementation.  

It was found that for the IR data of INA in methanol, the first two scores 

calculated for the training set (low saturation temperature solution) 

described the 84.9 % of variation in the data (the first 74.8 %, while the 

second 10.1 %).  

 
Figure 22 – First and second loading for INA in methanol saturated at 10°C compared with 

the spectrum of INA in methanol. The main characteristic peaks of the INA are also 

reported (open triangles). 

Figure 22 shows the first two loadings together with the spectrum of INA 

in methanol (black solid line), where the INA peaks are depicted as open 

triangles. It appears that the first component (dark grey line) was more 

influenced by the solvent peaks, the most apparent of which is located at 

1020 cm-1. Moreover, the first component also took into account to the 

temperature variation of the whole spectrum, since a drift of the whole 

absorbance spectrum towards higher values was appreciated during the 
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cooling. Regarding the second loading (reported as the light grey line), it 

was mainly related to the INA peaks (e.g. located at 1413, 1555 and 1689 

cm-1) and reflected the significant decrease of INA peaks occurring after 

the nucleation. Therefore, the crystallization process could be monitored 

by studying the only second score. Analogous conclusions were inferred 

from the loading plot obtained for the other solvents, not reported here for 

the sake of brevity. 

Figure 23 reports a phase diagram of the first two scores evolving with 

respect to the temperature. It appears that the first score significantly 

increased during the cooling, but for temperatures T below - 7 °C it stayed 

constant. As it regards the evolution of the second score, it slightly 

increased in the first part of the experiment. Then, it abruptly decreased at 

temperature T=-7 °C. This qualitative change in the behavior was 

supposed to be related to the onset of the nucleation process. Thus, 

analysis using PCA showed that the IR data did give a clear detection of 

the nucleation points. 

 
Figure 23 – First and second score for INA in methanol saturated at 10°C. 

Concerning the other solvents, the first component described the 38.5%, 

56.7%, 51.6%, while the second 14%, 8.7%, 12.9% for acetonitrile, ethyl 

acetate, and acetone, respectively. In addition, the validation set was 

projected on the PCA model and the scores were determined. As can be 

seen from the Figures below, the change of direction of the second score 

could be associated to the beginning of nucleation for INA in methanol 

(Figure 24), acetonitrile (Figure 25), ethyl acetate (Figure 26) and acetone 

(Figure 27). Different results were achieved for the second score of INA 

in dichloromethane. Due to the low INA solubility in this solvent, the IR 
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spectrum was characterized by very small INA peaks. As a result, the 

second score did not show a sharp change of direction as in the case of 

other solvents (results not reported for sake of brevity). The model and the 

ability of the score to follow the progress of the crystallization were 

further confirmed by the validation set represented as dark grey triangles 

and dark grey diamonds for solution saturated at 10 and 35 °C, 

respectively. In fact, the temperatures detected through the second score 

show little variance to the nucleation points observed by the naked eye 

(represented as light grey squares and diamonds), with variations of 

±0.5°C. A little higher difference (±1.3 °C) was obtained in case of INA 

in ethyl acetate. This could be due to peak overlap and to the fact that the 

decrease of the INA peaks did not start at the same nucleation temperature 

visually observed, in particular, the nucleation for the validation set at low 

and high saturation temperature is detected at 5 and 25 °C instead of 6.3, 

and 23.7 °C, according to Table 2. Therefore, the PCA could not 

consistently predict nucleation earlier than that was observed empirically 

by visual inspection or by raw IR data. However, results matched up with 

nucleation times that were visually observed. Furthermore, even if the 

PCA model was built considering spectra at one concentration, the results 

achieved for a similar system but different concentration were reasonable. 

In fact, the second score determined for the validation set showed a 

behavior similar to the score of the training set. This confirms that PCA 

can be employed to detect nucleation consistently even independent of 

initial concentrations and, in combination with ATR FT-IR, it revealed as 

a useful tool for the in-line monitoring of crystallization. 

 
Figure 24 – Second score of INA in methanol compared with visually observed nucleation 

temperature: training set (10°C) and validation set (10 and 35°C) 
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Figure 25 – Second score of INA in acetonitrile compared with visually observed 

nucleation temperature: training set (10°C) and validation set (10 and 35°C) 

 
Figure 26 – Second score of INA in ethyl acetate compared with visually observed 

nucleation temperature: training set (10°C) and validation set (10 and 35°C). 
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Figure 27 – Second score of INA in acetone compared with visually observed nucleation 

temperature: training set (10°C) and validation set (10 and 35°C) 

5.3.2 On-line detection of nucleation 

In this section, algorithms for the analysis of transient data were 

developed and tested. The intensity of the infrared spectra collected 

during crystallization are influenced by the change of INA concentration 

but also by the temperature since it affects the vibration intensity and 

frequency of molecular bonds (as investigated by Simone et al., 2014, 

Cozzolino et al., 2007). The in-line implementation of these algorithms 

aims to detect nucleation as spectra are collected. Particularly, the 

MWPCA was implemented and the results were compared with those 

obtained through static PCA.   

5.3.2.1 Static PCA for on-line monitoring 

The static PCA was firstly implemented to show its ability to detect faults. 

For its implementation, spectra were baseline corrected with a linear 

interpolation function, algorithm developed by Hrovat (2009) and pre-

processed through mean-centering and standardization.  

The static PCA was built considering a training set of spectra collected at 

T = [24.9 ÷ 13.61] °C that is higher than the saturation temperature. 

While, the prediction set consisted of the observations collected at 

temperature from 13.6 °C to -9.78 °C. The first component explained 

75.75% of the variance, the second 9 % and the third 3.2% while each of 
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the subsequent components added only about 1%. Therefore, three 

principal components collected most of the variance present in the 

evolving system. T2 and Q statistics were estimated for both training and 

prediction set (depicted as open squares and grey circles, respectively) and 

represented in Figure 28. As it was expected, the values of the statistics 

for the training set fell inside the normal operating region, only the Q 

statistic pertaining two observations was slightly higher than the limit. 

However, their value was quite close to the limit one and they can be 

classified as false positive. Incidentally, one should note that the false 

positive ratio in the training set was acceptable (3% of the total 

observations) and it was comparable to the significance level chosen for 

the limit value of the statistics (=5%). Concerning the prediction set, as 

reported in Pöllänen et al. (2006), if more than three observations exceed 

the limit, the system can be considered to approach the nucleation. 

However, it can be observed that the values of the two statistical indexes 

are clearly non-stationary (as also reported in Ku et al., 1995) and they 

increase with temperature. This feature was due to the fact that a static 

PCA was used to describe temperature-dependent data. In fact, the control 

charts show that the data collected for temperature below 7 °C result 

classified as out-of-control although nucleation has not occurred yet. 

Therefore, considering the visually observed nucleation point (TNUCL= -

7.38 °C), the Q statistic correctly classified 30.85 % of the prediction set 

and the false positive rate is 77.4 %. On the base of the T2 chart, 37.2 % of 

spectra were correctly classified and the false positive rate is 70.23 %. 

Moreover, the alarm triggers at temperature T= 6.62 °C for T2 and T=7.36 

°C according to Q chart, that is about 14 °C or, alternatively 30 min, 

earlier than the onset of the crystallization. This result was due to the fact 

that the drift of the spectral variables during the crystallization caused the 

change of the mean and covariance. As a consequence, the false positive 

rate was quite high and the control charts could be misleading. Although 

the change of slope of the statistical indexes values could give a definitive 

indication of the beginning of the nucleation, static PCA led to 

questionable outcomes, since the drift was intrinsic and was not to be 

considered as a fault in this case study. Thus, a more reliable procedure 

would be preferable during monitoring of crystallization to detect the 

nucleation and avoid both false positive and negative. 
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Figure 28 - Statistical monitoring using static PCA applied to Infrared data of INA in 

methanol. (a) Q statistic; (b) T2 statistic. The values estimated for the prediction set show a 

dependence on the temperature, the false positive rate is 77.4 % and 70.23 % for Q and T2, 

respectively.  

Moreover, another important aspect to take into account when a dynamic 

process is modeled through static PCA, is the selection of the proper 

training set. Indeed, the effectiveness of the statistical control depends on 

the size of the window, that is on the number of the observations included 

in the training set. In order to test the influence of the window size on the 

statistical control, static PCA was implemented considering a training set 

whose size was increased from the beginning of the cooling T=24.9 °C to 

a value near the saturation temperature. Three latent variables were 

chosen that explained an average cumulative variance of 85.4 %. 

Concerning the prediction set, it consisted of the observations collected at 

temperature T= Ttrain to the end of the experiment. Figure 29a shows that, 

when the size of the training set was increased from 20 to 40 observations 

-10-50510152025
10

1

10
2

10
3

10
4

10
5

Q

Temperature (°C)

 

 

training set

prediction set no nucleation

prediction set
nucleation occured

Q
lim

(a)

-10-50510152025

10
-1

10
0

10
1

10
2

10
3

T
2

Temperature (°C)

 

 

training set

prediction set no nucleation

prediction set
nucleation occured

T2

lim

(b)



72 Chapter 5.  Monitoring of cooling crystallization of Isonicotinamide 

 

 

(that means from the temperature range T= 24.9-19.86 °C to T= 24.9 to 

13.61 °C), the threshold temperature denoting the approach nucleation 

decreased from about 17 to 7 °C. This means that, if the training set size is 

too low and the conditions (temperature) at which the observations are 

collected are quite far from the actual nucleation temperature, the alarm 

could trigger too early. In fact, comparing this results with the visually 

observed nucleation point (TNUCL= -7.38 °C), the alarm would start from 

24 °C to 14 °C before the nucleation occurrence. Figure 29b depicts the 

false positive rate detected from the T2 and Q control charts depending on 

the size of the training set. One should notice that the ratio is quite high 

and does not decrease significantly with the window size (from 92% to 

77%).  

 

 

 
Figure 29 – Results after implementation of static PCA increasing the training set from a 

size of 20 (T= 24.9 to 19.86°C) to 45 (T= 24.9 to 13.61 °C). (a) The temperature at which 

the alarm should trigger to indicate the approaching nucleation was detected from the T2 

and Q control charts: when the size increased, the alarm temperature decreased. (b) the 

false positive rate calculated for T2 and Q, decreased as the size increased. 
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5.3.2.2 Moving Window PCA 

In this case study the external variable is the temperature. Before the 

implementation of the procedures illustrated in section 5.2.2, spectra were 

baseline corrected. Spectra pre-processing through mean-centering and 

standardization, was performed each time the window was moved. In 

principle, the system should fall into the out-of-control state at the onset 

of crystallization. To choose the window size L, the following parameter 

were taken into account: the minimum number of points collected in the 

experimental window was Lmin= 20, therefore the first window included 

the 20 observations collected between T= 24.91 and 19.86 °C; whereas 

the maximum size Lmax=45, the window included 45 observation collected 

from T= 24.91 up to T= 13.61 °C, value near the saturation temperature, 

since for temperature lower than the saturation one, the nucleation may 

occur. The PCA model was developed with 3 principal components that 

explained between 82 and 88.9% of cumulative variance (depending on 

the window size). While, for the validation set, three subsequent 

observations (V=l+1, l+2, l+3) were considered. The SSPE calculated 

through Equation (26) is shown in Figure 30: as it can be seen, the 

minimum size of the moving window was estimated as equal to 43 

observations, corresponding to ΔT=10.8 °C. 

 
Figure 30 – SSPE calculated varying the window size. The minimum value was observed 

for L=43. 

MWPCA was implemented according to the procedure shown in Figure 

20: the PCA model was built selecting three latent variables explaining an 

average cumulative variance of 86.66% and the results of the on-line 

monitoring procedure achieved for the most representative windows were 
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depicted in Figure 31 to Figure 33. T2 and Q control charts are represented 

in Figures (a) and (b), while Figure (c) shows the contribution plot where 

the contribution of each wavenumber to the statistics was reported, 

allowing the detection of the spectral region significantly changing due to 

nucleation. 

Figure 31 depicts the results obtained from MWPCA built considering a 

training set where observations collected at T = 24.91÷13.61 °C were 

included. In more detail, Figure 31a and Figure 31b, show the values of T2 

and Q, they are indicated by open squares for the training set and grey 

circles for the prediction set, while the control limits were evaluated as in 

Equations (13) and (15) at 95% confidence level. Figure 31c shows the 

contribution plot, reporting the standardized residuals with respect to the 

corresponding wavenumbers as they were computed according to 

Equation (18). For sake of completeness, the main INA peaks are 

represented as open triangles. The threshold value for the contribution cQ, 

reported with the dotted line, was computed with a significance value  = 

5% and modified according to Bonferroni adjustment. As it can be 

observed, (Figure 31a), the three subsequent observations, reported as 

grey circles, could be classified as in-control, and the contribution of each 

spectral variable did not exceed the control limit. 

Concerning the results achieved for the window between T=2.86 and -

7.63 °C (Figure 32), the prediction set exceeded the limit value of Q 

statistic (Figure 32b) and the onset of the crystallization could be detected 

at T= -7.86 °C, value quite near (-0.48 °C) to the visually observed one 

(T= -7.38 °C). Indeed, it could be inferred from the contribution plot that 

peaks related to INA located at 1689 and 1451 cm-1 were increasing and 

exceeded the threshold value. On the other hand, the T2 values could be 

classified as in-control, since the deviation from the model was limited 

and T2 was not probably able to detect it yet. 

Since three observations were greater than the Q threshold, the window 

was not moved anymore and new observations were added to the 

prediction set. Figure 33a clearly shows that the values of Q statistic for 

the prediction set were greater than the threshold and were considerably 

deviating. Moreover, it could be inferred from the contribution plot how 

the contributions corresponding to the INA peaks dramatically increased, 

while the solvent ones did not change. On the other hand, according to the 

T2 chart, nucleation should be detected at T= -8.75 °C, this delay could be 
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due to the fact that in general the T2 is less sensitive to deviations than Q 

(Qin, 2003). 

 
Figure 31 – Statistical monitoring of cooling crystallization of INA in methanol through 

Moving Window PCA built considering a training set (open squares) of observations 

collected at T=24.91÷13.61 °C. T2, Q and cQ control charts are reported, dash-dotted lines 

represent the control limits. The prediction set (grey circles) was classified as in-control, 

then no nucleation had occurred yet. 

 
Figure 32 – Statistical monitoring of cooling crystallization of INA in methanol through 

Moving Window PCA built considering a training set (open squares) of observations 

collected at T=2.86÷ -7.63 °C. T2, Q and cQ control charts are reported, dash-dotted lines 

represent the control limits. The prediction set (grey circles) was classified as out-of-

control according to Q control chart, then the onset of the crystallization was detected at 

T= -7.86 °C. 
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Figure 33 - Statistical monitoring of cooling crystallization of INA in methanol through 

Moving Window PCA built considering a training set (open squares) of observations 

collected at T= 2.86 ÷ -7.63 °C. T2, Q and cQ control charts are reported, dash-dotted lines 

represent the control limits. It can be noted that the future observations were strongly 

deviating from the NOC and the crystallization was continuing. 

A magnification of the contribution plot estimated (in Figure 33c) for the 

observations collected after the nucleation is reported in Figure 34. At the 

beginning the extent of the contribution was limited, while it increased as 

crystallization progressed from about 10 (before the nucleation, see Figure 

33a) to 104 (after the nucleation). During the implementation of the 

MWPCA only six false positives could be globally detected, while false 

negatives are zero for Q statistic, therefore the global false positive rate is 

5.8%. Regarding T2, seven false positives were observed and the global 

false positive rate was 6.7 %, value higher than Q statistic. It should be 

noted that also four false negatives were present, since nucleation was 

detected later than Q statistic, leading global false negative rate to 30.7 %. 

This high value reflected the ineffective monitoring performances of T2, at 

least for the case at hand. Indeed, as explained in section 2.5.1, spectral 

variables should significantly deviate from the origin of the new subspace 

so that is detected using T2 (Qin, 2003). Therefore, Q statistic 

demonstrated more able to discriminate out-of-control observations and 

detect the nucleation earlier than the T2.  

The MWPCA reveals as a suitable method to monitor transient processes 

like crystallization, since it demonstrates to detect nucleation more 

accurately than static PCA, indeed, the false positive rate has noticeably 

decreased from 77.4% (static PCA) to 5.8% (MWPCA), improving then 

the reliability of the control system. 

-10-8-6-4-202
10

0

10
5

Temperature (°C)

Q
 

-10-8-6-4-202
10

-5

10
0

10
5

Temperature (°C)

T
2

600800100012001400160018002000
0

2

4
x 10

5

Wavenumber (cm-1)

c
o

n
tr

ib
u

ti
o

n
 c

Q

 

 
INA peaks

prediction set

(c)

(b)

(a)



Chapter 5.  Monitoring of cooling crystallization of Isonicotinamide 77 

 

 

 

Figure 34 – Contribution plot of the observation detected as out-of-control. Contribution 

related to INA peaks were increasing, while solvent ones did not vary. Since the nucleation 

occurred the INA peaks were supposed to change. 

Final remarks 

Summarizing, the implementation of static PCA on IR data demonstrated 

that the nucleation temperature could be easily detected even when API 

concentration was different from the data used to create the model. 

However, the on-line detection of the nucleation required a methodology 

able to model dynamic data such Moving Window PCA proposed in this 

thesis. As a result, it demonstrated capable of correctly identifying the 

out-of-control status, otherwise not achievable through static PCA. 

Indeed, T2 and Q control charts based on MWPCA detected the onset of 

crystallization (T= -7.86 °C). The estimated value was quite close to the 

visually observed one (T= -7.38 °C). In addition, INA peaks were 

identified as the mostly contributing variables to the out-of-control status 

through contribution plots. Finally, it is worth noting that it improved the 

control system reliability since the false positive rate had noticeably 

decreased from 77 % (static PCA) to 5.8% (MWPCA). However, in order 

to further improve the accuracy of the detection, it would be interesting to 

investigate other approaches such as the combination of Recursive PCA 

and MWPCA (Jeng, 2010) and compare the results. 
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In this thesis, the dissolution of a dish paste was investigated. It is in gel-

like phase and consists of two surfactant pastes where water and 

surfactant A and B are present, respectively. Further details on the nature 

of the chemicals cannot be reported since they are covered by Confidence 

Disclosure Agreement with the P&G. During production of liquid dish 

detergent, a dish paste is dissolved in solvent, usually water. The diffusion 

of the surfactants paste into the solvent, may lead to the formation of 

mesophases at the interface that can influence how the system evolves 

during dissolution (Gradzielski, 2003). For this reason, the dissolution of 

the dish paste represents a key factor to interpret paste dissolution 

experiments, to properly design dissolution process and improve liquid 

dish detergent production, but also during its use at home. Surfactants 

dissolution is an interesting topic that is not often investigated, maybe due 

its complexity and the scarcity of systems where the equilibrium phase 

behavior can be easily explained (Warren & Buchanan, 2001). In general, 

surfactants dissolution is examined through optical microscopy (Chen at 

al., 2001), where the radius of a surfactant drop is tracked during 

dissolution, but no chemical information about the species and the 

morphological changes can be inferred. To this aim, hyperspectral 

techniques have been recently revealed very useful, since they allow to 

infer chemically and spatially resolved information. 

The employment of Hyperspectral Imaging techniques for quality 

monitoring has significantly grown over the last decades. It begun in the 

early 70's with mainly applications to remote sensing (van der Meer et al., 

2012; Lee et al., 2011), then it started to extend to different research areas 

such as food sciences (Cheng et al., 2016), pharmaceutical research (Terra 

et al., 2014; Alexandrino et al., 2015), but also in cultural heritage 

(Sciutto et al., 2012), in wood quality control (Burud et al., 2014) and 

polymer research (Mukherjee et al., 2015) for detection of defect in the 

surface. Hyperspectral Imaging comes from the combination of image 

analysis and bulk spectroscopy (e.g. UV, Infrared, Raman spectroscopy). 

The advantage of this recent technique with the respect to image analysis 

and bulk spectroscopy is that information about the distribution of the 

components can be gathered. 

Traditional image analysis is based on the fact that the optical properties 

of a product (food, surface, drugs) provide spatially resolved information 

about the quality of the product such as defects, structural changes and 
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texture features (Prats-Montalbán et al., 2011). The acquired images 

consist of a single measurement (in gray images) or three color-related 

values (in RGB images) for each pixel. Time Lapse Photography 

represents a particular kind of image analysis, where the images are 

collected over the time to detect and monitor changes of optical properties 

in the sample occurring. In this case, the information is not only spatially 

but also time resolved. It is employed e. g., in remote sensing (Nagai et 

al., 2016), in in vitro fertilization to monitor the embryo growth 

(Mandawala et al., 2016). Nevertheless, traditional image analysis does 

not provide any chemical information about the composition of the 

samples. 

On the other hand, bulk spectroscopy (Raman, UV, IR, etc.) is able to give 

average chemical information about the sample being analyzed and its 

composition. It has become popular in industry for quality monitoring 

since it is a non-invasive and non-destructive technique. In this 

framework, an evolution of the bulk spectroscopy is represented by in situ 

spectroscopy where measurements are collected over time and helps in 

process understanding and reaction monitoring (e.g., Leineweber & 

Mittemeijer, 2012; Wolf et al., 1999). Despite the great potentialities of 

bulk spectroscopy, its use is limited only to systems where there is no 

spatial distribution of the components, since no spatially resolved 

chemical information can be gathered. 

Therefore, the hyperspectral imaging technique represents a valuable tool 

that allows to overcome the issues related to the image analysis and bulk 

spectroscopy. Briefly, the hyperspectral imaging technique consists of 

acquiring images of the sample (in the most general case also over the 

time), a spectrum is collected for each point of the 1D, 2D or 3D mesh of 

the image. An illustrative example of the measurements performed by this 

technique is shown in Figure 35, where phenomena occurring in a sample 

are investigated. At the beginning of the experiment the sample appears 

homogeneous. Indeed, the spectra (Raman, UV, Infrared) collected along 

the space are very similar. After a certain time, formation of a new 

component due to reaction, degradation or separation of components can 

be detected in terms of appearance of another peak arising in the spectrum 

collected in the upper part of the sample. 
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Figure 35 – Principles of Hyperspectral Imaging Technique. 

Among the different hyperspectral analytical technique, Confocal Raman 

microscopy represents a powerful tool (Everall, 2009), that allows to 

gather spectral information at specific position in the sample being 

analyzed. Moreover, Raman spectroscopy are weakly influenced by the 

presence of water in the sample at least when compared to other analytical 

techniques, such as, e.g., infrared spectroscopy.  

As mentioned previously, the aim of the case study is to investigate the 

dissolution of a dish paste. To the authors’ knowledge, no works present 

in literature study dissolution of surfactants paste at microscopic level, but 

only by means of optical microscope. Therefore, Confocal Raman 

microscopy was explored to assess whether it can be a useful tool to study 

the dissolution of paste A and B.  

6.1 Experimental 

6.1.1 Materials 

The dish paste consisted of paste A and B which contain water and 

surfactant A and B, respectively. The ratio of the activity of surfactant B 

and A in the dish paste was 4.4.  

6.1.2 Experimental set-up 

The experiment was performed at the Procter & Gamble R&D Brussels 

Innovation Center using a confocal Raman microscope. It was an XPloRA 

(Horiba) equipped with multiple objectives allowing spatial resolution 

down to 1 micron (3-4 micron in Z direction). Multiple laser wavelengths 
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are available: 532 nm, 638 nm and 785 nm. The spectra cover the range 

from 2561 to 287.4 cm-1 with an average wavenumber resolution equal to 

5.6 cm-1. The spectrometer is also equipped with a glass capillary device 

provided by the Imperial London College (Figure 36), whose dimensions 

are 1 mm width and 2 cm length and it is provided with two open edges, 

where the height of the indent is 0.11 mm. The dish paste was introduced 

inside the capillary from the inlet open edge, then the capillary was 

located inside a water bath to allow the water to flow through the capillary 

and wet the dish paste during the experiment. Then, Raman spectra were 

collected from the open edge (indicated as z0) to 5 mm with a spatial 

resolution of 0.5 mm, from the beginning of the experiment until 85 min 

every 5 min. Moreover, an additional measurement was carried out at 135 

min. 

 
Figure 36 – Capillary device where the dish paste was introduced and it was used in the 

Raman confocal microscope to carry out the dissolution experiment. 

6.1.3 Raman spectra 

Raman spectra of the surfactants pastes without the capillary and pure 

water in the capillary were collected before starting the experiment and 

they are represented in Figure 37a. As it can be observed, the spectra of 

the paste A and B are quite similar and many peaks are located at the 

same position. However, some differences can be recognized, in detail, 

peaks located at 3027, 952.5 and 761.9 cm-1 pertain to the only spectrum 

of paste A, whereas surfactant B has only one distinguishing peak at 825.9 

cm-1. Spectrum of the capillary is also reported, it can be noted that it 

shows peaks at 1089 cm-1 and a smaller contribution at 546.9 cm-1, 

moreover a drift of the baseline (due to the fluorescence effect) is 

observed at higher wavenumbers. Spectrum of pure water without 

capillary is characterized by peaks at 448. 3 and 794 cm-1. Although the 

scattering coming from the water is not directly comparable with the 

pastes scattering, it can be observed that the contribution of the water in 

the pastes A, paste B and water with the capillary spectra seems to be 
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negligible. In Figure 37b, the Raman spectrum of the dish paste is 

reported. Due to the glass, the signal is amplified, the baseline shows an 

offset and a drift at higher wavenumbers. In addition, peaks of surfactant 

A and B partially overlap in the spectral range between 700 and 900 cm-1 

(see magnification of Figure 37b). 

 

 
Figure 37- (a) Raman spectrum of paste A, paste B, water without capillary, water in 

capillary and capillary. (b) Spectrum of the mixture of paste A and B in the capillary. 

6.2 Methods 

A hyperspectral image consists of spectra collected for each point of the 

1D, 2D or 3D mesh of the image of the sample. As a result, when spectra 

are collected also along one spatial variable z and over the time, 

hyperspectral data can be arranged in a 3-way matrix X(I×J×K) and can be 
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represented as a hypercube, where each row represents the spectrum 

collected along at J spectral variables and along I spatial variable and over 

K sampling times (blue cube in Figure 38). Therefore, chemometric tools 

represent a valuable tool to extract information, monitor the quality, study 

the compounds distribution in the sample. Principal Component Analysis 

is one of the most common method in hyperspectral data analysis, it is 

used to detect and monitor defect in samples and for Statistical Process 

Control (SPC) (Prats-Montalbán et al., 2011) in Multivariate Image 

Analysis (MIA). It reduces the dimension of the data sets and decomposes 

the spectral data calculating few latent variables that are able to describe 

main changes and features, where each latent variable can be associated to 

a pseudo-spectrum. However, they do not always have a clear physical 

meaning since they will result as a linear combination of the actual 

spectra. To overcome this issue, Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS) is preferable (de Juan et al., 

2014), since it can estimate the distribution maps and pure spectra related 

to the image constituents of a  sample, that are more easily interpretable. 

Since multivariate techniques perform the decomposition on a two-way 

matrix, hyperspectral data need to be unfolded beforehand. There are 

different approaches used for the unfolding, the most commons ones 

(Camacho et al., 2008) are the row wise where the hypercube is rearrange 

in the matrix X(I×JK) as depicted in Figure 38a, whereas the other approach 

arranges the matrix X(I×J×K) into the matrix X(IK×J) as represented in Figure 

38b. Since, Multivariate Curve Resolution was employed in this thesis, 

the column-wise unfolding procedure was carried out (de Juan et al., 

2009). The procedure used for the analysis of hyperspectral data is 

summarized in Figure 39. 
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Figure 38 – Unfolding procedures of the 3-way matrix X 

The decomposition performed by MCR reported in Equation (43), aims to 

infer the concentration profiles and spectra of the species. 

 ��
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 (43) 

In hyperspectral imaging, constraints usually used for concentration 

profiles, like unimodality, closure or hard-modeling results not always 

suitable due to the discontinuity introduced with the unfolding procedure 

(de Juan et al., 2014). Therefore, only non-negativity is applied to 

concentration profiles of the different components. Another constraint to 

be taken into account is that estimated spectra should be non-negative. 

Concerning the initial guesses required to implement the algorithm, a 

preliminary estimation of the concentration along the space and/over the 

time is not feasible through methods like Evolving Factor Analysis, since 

unfolding procedure introduces discontinuities in the unfolded data. 

Therefore, it would be preferable to use methods that aim to estimate the 

‘purest’ spectra from the hyperspectral data matrix, such as SIMPLISMA 

(Winding et al., 1997). On the other hand, if the experimental spectra of 

pure components are available, they can be considered as initial guesses as 

well. Once the decomposition is performed, the concentration matrix 

TA(IK×A) needs to be reshaped in the hypercube TA (I×A×K), similarly to the 

procedure followed for the unfolding of the experimental hypercube. 

Spectra and concentration images can be then represented and analyzed. 
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Figure 39 – Flowchart of the procedure used for hyperspectral imaging analysis. 

6.3 Results 

Since the characteristic peaks of the two pastes are located between 902.1 

and 691 cm-1, only this spectral range was considered for the multivariate 

analysis. Then, Raman hyperspectra were arranged in the 3-way matrix 

X(11×20×34), that was unfolded into the matrix X(220×34). Four different 

components were considered as initial guesses for the implementation of 

MCR-ALS algorithm: the experimental Raman spectra of paste A, paste 

B, empty capillary and water (Figure 37a). The spectrum of the capillary 

is taken into account as well, since it has been noted that the contribution 

of the glass to the spectra may change and influence the intensity of the 

collected spectra during the experiment. Non-negativity constraint was 

applied to both concentration profiles and spectra. Spectra estimated 

through MCR-ALS are represented in Figure 40, where they are compared 

with the experimental ones.  

As it can be seen, spectra of component 1 to 3 correspond to experimental 

spectra of paste A (Figure 40(i)), paste B (Figure 40(ii)) and capillary 

(Figure 40(iii)), respectively. Estimated water spectrum results to be zero, 

thus MCR-ALS did not appear to be able to distinguish water contribution 

from paste A and B, probably because negligible. The evaluation of the 
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spectra by means of MCR was quite accurate, indeed the Pearson 

correlation coefficient between the estimated and the experimental spectra 

(see Equation (35)), was equal to 0.8511, 0.9474, 0.9555 for spectra of 

paste A, paste B and glass, respectively. 

 

 
Figure 40 - Spectra estimated through MCR-ALS compared with the experimental spectra 

of paste A (i), paste B (ii) and capillary (iii). Estimated water spectrum was equal to zero, 

since probably its contribution was negligible and not distinguishable from the other 

components spectra.  

The concentration profiles were normalized with respect to maximum 

value assumed along the space and over the time for each concentration 

profile. In Figure 41a the normalized concentration of paste A is 

represented in the z-t plane as a surface, two different 2D plot could be 

extracted from this 3D surface in order to focus more on the variation of 

the concentration over the time or along the space. the concentration over 

the time at different position in the capillary is reported in Figure 41b: as 

it was expected, the concentration estimated at each position (therefore the 

dissolution) decreased over the time, but it slowed down approaching the 

paste inlet (z = 5 mm). It could be also appreciated that the concentration 

profile at z > 1.5 mm showed an initial lag period, then an exponential 

decrease. On the other hand, Figure 41c highlights the concentration 

profiles along the capillary estimated at different times: the concentration 

increased along the capillary at each time. It is worthwhile noting that 

concentration reached a constant value at z = 5 mm, implying that 

dissolution did not occur at z = 5 mm. Similar consideration could be 

carried out for the concentration profiles of paste B depicted in Figure 42. 
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These concentration profiles represented the starting point to investigate 

and model the dissolution of paste A and B. It is interesting to note that 

the glass contribution to the spectra (depicted in Figure 43) seemed to 

increase where the presence of water was higher and the dish paste was 

dissolving. Therefore, the presence of interfering components that could 

influence Raman scattering over the time and along the space could be to 

take into account through MCR-ALS. 
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Figure 41 - (a) Concentration profiles of paste A. 2D graphs report the concentration 

profiles (b) along the capillary and (c) over the time. 
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Figure 42 - (a) Concentration profiles of paste B. 2D graphs report the concentration 

profiles (b) along the space variable and (c) over the time. 
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Figure 43 - Relative contribution of glass to the spectra over the time and along the 

capillary. 

In order to assess whether the paste A and B dissolved similarly, as an 

illustrative example, the normalized concentration profiles of paste A and 

B estimated at z = 1.5 mm was considered. Moreover, the normalized 

height of peaks at 761.9 cm-1 (belonging to paste A) and 825.9 cm-1 

(belonging to paste B) was reported in Figure 44b. As it can be inferred 

from Figure 44a, the profiles of paste A and B overlap fairly well, 

implying that two surfactants behaved in a similar fashion. This was also 

confirmed by the normalized peaks height curves shown in Figure 44b 

that decreased together as well.  

Different empirical models are available in literature to describe 

dissolution over the time (Costa & Lobo, 2001). Here, the dissolution rate 

d of paste A and B was estimated using a simple exponential decay model 

as expressed in Equation (44). 

 

�̂� = � ∙���(−� ∙�) + �  (44)

  

The parameters of the exponential model were estimated for the 

normalized curves obtained by means of MCR-ALS (Figure 44a) and for 

the normalized peak height tracked over the time (Figure 44b).  A non-

linear regression was carried out through the Curve Fitting Toolbox of 

Matlab® which exploits the Levenberg-Marquardt algorithm to evaluate 

parameters. Results of the model calibration are summarized in Table 7 

and the predicted curves are reported as dotted lines in Figure 44. 
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Figure 44 - (a) Comparison of normalized concentration profiles of paste A and paste B 

estimated through MCR-ALS at z=1.5 mm over the time. (c) Comparison of normalized 

peak height of paste A and paste B at z=1.5 mm over the time. 

The model was able to describe both the MCR concentration profiles and 

the peak height dynamics. In the first case, the determination coefficient 

for normalized concentration profiles of paste A and B was equal to 0.969 

and 0.976, respectively. As it regards the normalized peak height curves 

for paste A and B, a slightly higher determination coefficient was found, 

that was 0.986 and 0.9828, respectively. Note that the dissolution rate d 

between MCR concentration profiles of paste A and B was qualitatively 

similar, at least they have the same order of magnitude (0.013 and 

0.01457 min-1, respectively). The values of d obtained from the 

normalized peaks height between paste A and B were similar (0.02156 

and 0.02115 min-1, respectively). Although the dissolution rate estimated 

for the peak height was double the values of the MCR dissolution rate, the 

0 20 40 60 80 100 120 140

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time (min)

N
o

rm
a

li
z
e

d
 c

o
n

c
e

n
tr

a
ti

o
n

 

 

Paste A

Paste B

 predicted paste A

predicted paste B

(a)

20 40 60 80 100 120 140

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time (min)

N
o

rm
a
li
z
e
d

 p
e
a
k
 h

e
ig

h
t

 

 

peak paste A (761.9 cm-1 )

peak paste B (825.9 cm-1)

predicted paste A

predicted paste B

(b)



Chapter 6. Dissolution of dish paste  93 

 

 

results obtained could suggest that both paste A and B were dissolving at 

the same rate. 
 Normalized concentration (MCR-ALS) Normalized peak height 

 paste A paste B paste A paste B 

dissolution 

rate 

d (min-1) 

0.013 

(0.007209÷0.01885) 
0.01457 

(0.009273÷0.01986) 

0.02156 

(0.01631÷ 

0.0268) 

0.02115 

(0.01542÷0.02688) 

pre-

exponential 

factor b 

0.93 

(0.7177÷ 1.143) 
0.8652 

(0.7136÷1.017) 
0.47  

(0.4349÷0.5051) 
0.5263 

(0.4824, 0.5702) 

c 
0.1608   

(-0.0722÷0.3938) 
0.247   

(0.07947÷ 0.4144) 
0.64  

(0.5977÷0.6824) 
0.58 

(0.5265÷0.6336) 
R2 0.969 0.976 0.986 0.9828 

RMSE 0.03974 0.03399 0.01284 0.01584 

Table 7 – Results of non-linear regression of the exponential decay used to describe 

dissolution profiles. The confidence intervals are also reported. 

In conclusion, hyperspectral confocal Raman microscopy in combination 

with Multivariate Curve Resolution demonstrated to be able to infer 

concentration of the pastes A and B over the time and along the capillary 

with quite good accuracy. It should be remarked that, unlike peak height 

tracking, the multivariate analysis carried out through MCR circumvented 

the numerical problems that may arise due to the presence of interfering 

contribution (the glass) in the spectra during the experiment and aided in 

hyperspectra interpretation. 
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The case study here investigated is the setting reaction of Magnesium 

potassium phosphate ceramics (MKPCs). They are chemically-bonded 

ceramics (Wagh, 2004) attractive for applications like waste 

encapsulation, bone repair, natural fibre composites. They form by fast 

reaction of MgO with potassium di-hydrogen phosphate (KDP) in 

solution. The detected crystalline product is K-struvite (MKP): MgO + 

KH2PO4 + 5H2O = MgKPO4·6H2O. Although several mechanisms for this 

reaction have been proposed (Soudée & Péra, 2000; Wagh & Jeong, 2003; 

Hall et al., 1988), kinetic analysis was accomplished for the first time 

using in situ synchrotron powder diffraction (Viani et al., 2016). The first 

step of the reaction was recognized to be the dissolution of MgO, and the 

best fit of the derived kinetic curves was obtained with a combination of 

first order model followed by a diffusion control one. Crystallization of 

MKP occurs later, with a first reaction step described by the Johnson-

Mehl-Avrami–Erofe’ev-Kolmogorov equation (Brown et al., 1980). 

These experimental evidences suggested that MgO dissolves quickly in 

the aqueous solution producing an intermediate amorphous phase. This 

thickening layer shifts the mechanism toward a diffusion control. The 

presence of an amorphous phase acting as the precursor of the crystalline 

MKP, was previously inferred observing that, after 30 min from the 

beginning of the reaction, and over long times, its amount decreases 

whereas that of crystalline MKP increases (Viani et al., 2015, Viani & 

Gualtieri, 2014). However, amorphous development during the first 

minutes, and the direct relationship with the onset of MKP crystallization, 

have never been shown before. Therefore, since reaction mechanisms and 

physical phenomena are not completely understood, investigating the 

evolution of the system by means of complementary techniques has 

become essential for process understanding.  

Time-resolved in-situ experiments are well suited for extracting 

information about reaction mechanism and activation energies 

(Leineweber & Mittemeijer, 2012). The advent of fast detectors and high 

intensity sources (i.e. synchrotron radiation and neutron sources), 

allowing for good time resolution, led to an explosive development of in-

situ kinetic experiments employing powder diffraction. Fast collection 

rates, available at laboratory, as well as at neutron or synchrotron 

facilities, require the treatment of a huge amount of data. Commonly, in a 

time-resolved diffraction experiment of a transformation reaction, kinetic 
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parameters are obtained from the analysis of the contribution of the 

crystalline fractions of the reactants and/or products to the detected total 

scattered intensity, as a direct evidence of the respective fractions 

transformed. This can be done by considering the integrated area of 

selected peaks in the powder diffraction pattern (Gualtieri et al., 2012; 

Solberg & Hansen, 2001; Cattaneo et al., 2003; Kubo et al., 2004), or 

alternatively, through the full profile Rietveld refinement of each data set 

(Allen & Evans, 2004; Allen et al., 2003; Müller et al., 2009). The 

procedures can be partly or completely automated, allowing for the 

analysis of hundreds of data sets in few minutes (Stinton & Evans, 2007). 

In practice, the conditions can be much less favourable, hindering the 

application of such fast procedures. Regardless of the approach adopted, 

one should bear in mind that the dynamic of the system and the 

experimental set-up may hide pitfalls that can lead to an erroneous 

interpretation of the process (Norby & Schwarz, 2008; Scarlett et al., 

2010). On the other hand, single peak integration is not free from potential 

sources of error. Since intensity information is extracted from a limited 

portion of the entire spectrum, the method is particularly sensitive to every 

effect that can selectively alter the diffracted intensities, these include 

preferred orientation and peak overlap with other phases in the system 

(that can also be intermediate phases). However, the integration of single 

diffraction peaks in a manual fashion is sometimes the only practicable 

choice, making data treatment a very time consuming task.  

Diffraction techniques encounter limitations in the complete 

characterization and description of the reaction when amorphous fraction 

is present. Several reactions of materials of technological or scientific 

importance see the intervention of an amorphous or poorly crystalline 

component. A far from exhaustive list include amorphous calcium 

phosphates formed by living organisms and during synthesis of materials 

for biomedical applications (Dorozhkin, 2010), chemically-bonded 

ceramics for bioengineering and structural applications (Wagh, 2004), 

cements (Kurdowski, 2014), biogenic and synthetic amorphous calcium 

carbonate (Cartwright et al., 2012), amorphous pharmaceutical solids (Yu, 

2001). The amorphous phase can be a metastable precursor of the 

crystalline counterpart lasting few minutes or hours (Politi et al., 2004; 

Bolze et al., 2002) or a main, stable, product of the reaction (Steinke et 

al., 1988; Richardson, 1999). Many efforts have been devoted to the 
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assessment of the amount of amorphous phases with X-ray powder 

diffraction (XRPD); of the methods developed for the quantification of 

powder mixtures (Bish & Howard, 1988, Bates et al., 2006; Lutterotti et 

al., 1992; O’Connor & Raven, 1988; Scarlett & Madsen, 2006), some can 

be applied in laboratory in-situ time-resolved experiments (Bergold et al., 

2013; Jansen et al., 2011). However, the number of examples of the latter 

type is limited, and to extend the application of such methods to include a 

larger number of systems and experimental set ups, is not straightforward 

and sometimes not possible. Consequently, the analysis of the time-

resolved XRPD patterns is often limited to the quantification of the 

crystalline fractions and occurrence of an amorphous or poorly crystalline 

component cannot be easily reckoned and quantified. 

In this thesis, the setting reaction was investigated by means of in-situ 

synchrotron X-ray powder diffraction (XRPD). Therefore, in order to 

study the reaction kinetics and mechanisms, the identification and the 

description of the time evolution of the crystalline, as well as the 

amorphous fractions in the sample, were pursued. The information 

contained in the diffraction pattern, in terms of intensity and Bragg angle 

2θ was evaluated through a semi-automated full-profile approach based on 

multivariate techniques proposed for the analysis of large XRPD datasets, 

as those obtained from time-resolved in situ experiments. 

7.1 Experimental 

The experiments were carried out at the European Synchrotron Radiation 

Facility (ESRF), Grenoble (France) with the technical support of the 

Institute of Theoretical and Applied Mechanics ASCR, Centre of 

Excellence Telč, (Czech Republic). 

7.1.1 Sample preparation 

MgO powder obtained by calcination of pharmaceutical grade MgCO3 at 

1400 °C was mixed with KDP by hand in agate mortar at unity molar ratio 

and then placed in a capillary 0.7 mm in diameter opened on both ends. 

The powder was laterally confined between 2 small layers of quartz wool, 

allowing for the water to flow through the capillary. The capillary was 

mounted on a goniometric head for data collection with one end 
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connected to a vacuum pump. An amount of water to ensure a water/solid 

weight ratio 1 was introduced on the other end, but initially not in contact 

with the powders. After starting data collection, operating the vacuum 

pump, the water was gently allowed to flow through the capillary and wet 

the powder, defining the start of the experiment. The whole process was 

followed through a high resolution camera. The advantage of such 

experimental setup, described in more detail elsewhere (Conterosito et al., 

2013), was that the reaction can be monitored from the very beginning. 

The downsides were that the exact water/solid ratio and the homogeneous 

wetting of the powder were not assured.  

7.1.2 In-situ synchrotron powder diffraction 

In situ XRPD data were collected at the beamline BM01a, European 

Synchrotron Radiation Facility (ESRF), Grenoble (France), employing a 

wavelength of 0.6895 Å with the pilatus 2M detector (Dectris). Isothermal 

runs at room temperature (20 °C) were conducted allowing the capillary to 

swing on its axis of 60° following the reaction for 39 min collecting four 

scans/min. Each spectrum was recorded covering an angular range 1-43.8° 

2θ with a resolution of 0.0146° 2θ. 

7.1.3 Peak fitting procedures 

Transformation conversion curves, expressed as degree of conversion α 

vs. time, have been built integrating the area of the (200) diffraction peak 

of MgO, and the (110) of MKP, as described in Viani et al. (2016). Single 

peak integration, accomplished with the software PeakFit (Systat Software 

Inc.), was dictated by the complex shape of MKP diffraction peaks. For 

this reason, their shape was described employing 3 pseudoVoigt 

functions, subtracting a flat background, whereas, 1 pseudoVoigt function, 

subtracting a flat background, was employed to describe MgO diffraction 

peaks. KDP, whose diffraction peaks disappeared within 3 minutes from 

the start of the experiment, was not considered. For MgO decomposition, 

the integrated area of the MgO peak in the first collected pattern was 

taken as α=1. Total conversion (α=0) was assumed as the asymptotic 

value attained by fitting the final part of the conversion curve with an 

exponential decay function (Viani et al., 2016). In the case of MKP 



Chapter 7. Setting reaction of cementing materials 99 

 

 

crystallization, the value of α=0 is easily set as no MKP peaks in the 

powder pattern are initially observed. The value corresponding to α=1 was 

set as the asymptotic value of the crystallization curve fitted with an 

exponential function rising to a maximum. Fitting was accomplished with 

software SigmaPlot v12 (Systat Software Inc.).  

7.1.4 Experimental XRPD patterns 

The most significant experimental XRPD patterns were selected by visual 

inspection and depicted in Figure 45. A comparison with the theoretical 

patterns of the phases present in the system may suggest the occurrence of 

the following main steps:  

a) before the injection of the water the pattern was characterized 

only by the reflections pertaining to MgO and KDP (Figure 45 

(i)); 

b) at t ≈ 0 min (water injection), a broad peak due to the diffuse 

scattering of water and centered at about 11° 2θ (Bergold et al., 

2013; Petkov et al., 2005) appeared. As soon as the water was 

injected, KDP quickly dissolved, and MgO started to react with 

the solution; the intensity of the background at about 13° 2θ 

increased (see magnification of Figure 45 (ii) on the top). This 

was likely the effect of the development of the amorphous product 

of the reaction;  

c) at t ≈ 3.0 min, only magnesia and amorphous contributions can be 

observed, as the crystalline fraction of the KDP dissolved 

completely (Figure 45 (iii)). As water was progressively 

consumed its contribution to the background decreased, 

conversely, that due to the amorphous product increased, 

changing the shape of the background; 

d) at t ≈ 12.5 min, crystallization of MKP crystals took place (Figure 

45 (iv));  

e) from t ≈ 27.5 to 39 min (end of the experiment) the crystallization 

of MKP continued extremely slowly and no other relevant 

changes were observed (Figure 45 (v)).  
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The dynamics of the process here conjectured were compared with the 

results provided by the procedure in order to assess whether they were 

consistent or not. For our purposes, the data considered during the 

implementation of the algorithms included patterns of the solid fractions, 

collected before the water injection for the XRPD patterns in the angular 

range from 6 to 43.8° 2θ and the time interval from 0 to 39 min. 

 

 
Figure 45 - Patterns representing the most significant changes over the time compared to 

the theoretical XRPD pattern of MgO, KDP and MKP. Patterns corresponded to: (i) MgO 

and KDP (before the injection of water), (ii) MgO, KDP and water/amorphous (0 min), 

(iii) MgO and water/amorphous (3.0 min), (iv) MKP, MgO and water/amorphous (12.5 

min) and (v) MKP, MgO and water/amorphous (39 min). Magnification of the pattern (ii) 

is depicted on the top. 
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7.2 Methods 

7.2.1 Time Window Statistical Total Correlation 

Spectroscopy 

As seen in section 2.10, Statistical Total Correlation Spectroscopy can be 

suited to any analytical techniques that determine molecular or atomic 

features. In this thesis, it was employed for the estimation of crystalline 

phases patterns from X-ray synchrotron powder diffraction data. Up to our 

knowledge, it has not been employed for XRPD data treatment yet. 

However, some problems may however arise when driver peaks belong to 

more than one compound. Particularly, in case of evolving systems, 

STOCSY cannot accurately estimate compounds patterns when the peaks 

of reactants and products overlap. Thus, the Time-Window Statistical 

Total Correlation Spectroscopy (TWSTOCSY) was here introduced for 

the analysis of patterns collected during in-situ X-ray synchrotron powder 

diffraction experiment. Particularly, it was supposed to be able to 

determine the patterns of the crystalline phases, even in case of 

overlapping peaks. The idea of applying the time window analysis to 

STOCSY, was based on the works of Manne (1995) and Manne et al. 

(1999) where the sub-windows are employed to determine spectra of the 

species in hyphenated chromatography. A sub-window is defined as a 

time interval where a particular species exists and whose amount may 

vary. 

The TWSTOCSY here proposed consisted of the following steps:  

1. determine the number K and related size IK of the time 

windows. Each time window was associated to a different step 

of the reaction occurring in the process. This could be carried 

out by exploiting the EFA results;  

2. partition of the data matrix X(I×J) in K different submatrices 

XK
(IK×J) where II K  and choice of the representative 

spectrum xK for each sub-window;  

3. implementation of the STOCSY and evaluation of the Ak 

patterns pertaining to each submatrix XK. 
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4. The procedure was iterated for each window. Estimation of the 

spectra TWSTp,ŝ  was eventually carried out (with p=1, …, aT 

where 



K

k
kT Aa

1

). 

TWSTOCSY could allow for detecting the number of species involved in 

the reaction even in the case of rank-deficient systems. The advantage of 

using TWSTOCSY over the classical STOCSY was that it could be 

applied for the resolution of overlapping peaks, since it was able to isolate 

the interaction between the compounds (or fractions) that exist in different 

time windows. As a result, the accuracy of the pattern matching could be 

greatly enhanced. 

7.2.2 Multivariate techniques exploited 

A semi-automated method combining different multivariate techniques 

was applied to the analysis of large datasets of time resolved X-Ray 

powder diffraction patterns. Time-Window Statistical Total Correlation 

Spectroscopy was here proposed for the pattern matching of the 

crystalline phase, to be used in case of overlapping peaks. Furthermore, 

Evolving Factor Analysis and Multivariate Curve Resolution were 

employed for the identification and the description of the time evolution 

of the crystalline, as well as the amorphous fractions in the sample.  

7.3 Results 

7.3.1 Analysis of data with EFA and MCR 

EFA was firstly implemented in order to discriminate the main changes 

occurring in the patterns and determine the raw concentration curves. In 

the following, the T matrix will refer to the conversion of each phase, 

while the P matrix will indicate the diffraction patterns matrix. For the 

case at hand, according to Equation (27), only two components should in 

principle be identified (de Juan et al., 2004; Amrhein et al., 1996), since 

one main reaction should take place. However, according to Figure 46, up 

to four components could be taken into account, since it showed that four 
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singular values profiles clearly arose from the noisy profiles depicted in 

the bottom of the figure. Nevertheless, it was verified that a fourth 

component did not lead to physically reasonable results. Therefore, three 

components were believed to capture most of the variance of the matrix 

X.  

 

Figure 46 – Singular values estimated as more observations were included in the 

augmented matrix during EFA algorithm implementation. Black lines refer to the results 

obtained for the forward EFA, while red lines to the backward EFA. 

The time evolution of the components estimated with the EFA procedure 

is reported in Figure 47a. The factors seemed to behave as: (i) a reactant 

(open triangles), (ii) intermediate species (black triangles), (iii) a product 

(grey diamonds). One should note that the behaviour of reactants and 

products is not monotone. In more detail, both reactants and product show 

a maximum at t ~ -1.5 min (i.e. before the water injection) and t ~ 38 min, 

respectively. To estimate both the matrices T and P, the MCR-ALS 

algorithm was used by considering the conversion curves previously 

estimated with EFA as the initial guess. The constraints considered were 

non-negativity of spectra and concentration matrices and closure of the 

concentration profiles set to be less than or equal to 1. The outcomes were 

hereafter referred as the matrices )395(

~
T and )31295(

~
P . As shown in Figure 

47b, the MCR-ALS algorithm provided results more plausible than the 

ones obtained with the EFA. Indeed, first and third components, 1

~
t  and 

3

~
t , were characterized by a monotonic trend. Furthermore, the second 
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approximately constant for a wide time range (from 7.5 to 17.5 min) 

before decreasing. The goodness of fit was confirmed by the percentage of 

variance and the lack of fit (see Equations (32) and (33)) that were equal 

to 99.8 % and 3.5 %, respectively. 

 

Figure 47 - (a) Normalized conversion curves of the three components estimated with the 

EFA algorithm. (b) Conversion curves T
~

estimated through MCR algorithm, where 1

~
t

corresponds to reactant, 2

~
t to intermediate phase, 3

~
t to product conversion curves. 

The spectra P
~

 were compared with the theoretical pattern of MgO, KDP 

and MKP (Figure 48). It was found that (i) 1
~p corresponded to the sum of 

MgO and KDP spectra; (ii) 2
~p to MgO and intermediate species (likely 

the water and amorphous product of reaction); (iii) 3
~p to MKP, in addition 

a small contribution of the MgO peaks was still appreciated. Hence, the 
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role of these two algorithms was complementary: on one hand, the EFA 

helped the identification of compounds and initial guesses, whereas MCR-

ALS led to a significant improvement of the conversion curves and 

spectra estimation. It should be remarked that, for the case at hand, EFA 

revealed fundamental to detect the presence of the amorphous fractions 

otherwise not easily determined with the conventional approach. 

Nevertheless, as already mentioned, the quality of MCR outcomes 

depends on the initial estimates T0 (or, alternatively, P0). Indeed, for the 

case under investigation, two reactants spectra (MgO and KDP) collapsed 

within a common spectrum, since they decreased together and EFA could 

not distinguish them. Moreover, the presence of unreacted magnesia also 

precluded the algorithm from separating MgO from MKP and amorphous 

patterns. Therefore, in order to improve the estimation of spectra of the 

crystalline fractions with respect to EFA-MCR results, TWSTOCSY 

algorithm was employed. It aimed to distinguish accurately the different 

patterns that overlap over the time. 

 

Figure 48 – Spectra P
~

estimated through MCR algorithm with the theoretical pattern of 

MgO, KDP and MKP. 1
~p corresponds to KDP and MgO, 2

~p to amorphous phase and 

MgO, 3
~p to MKP and MgO.  

7.3.2 Spectra estimation through TWSTOCSY 

Before implementing the TWSTOCSY, patterns were baseline corrected 

with a linear interpolation function (algorithm developed by Hrovat, 2009) 

in order to analyse only the contribution coming from the crystalline 
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fraction. The procedure here proposed differed from the classical 

STOCSY by taking into account the possible change of correlation with 

respect to the time.  

To this aim, the pattern matching carried out using the TWSTOCSY will 

be compared with the results obtained through the classical STOCSY. 

Indeed, during the implementation of the classical STOCSY, the accuracy 

of the pattern estimation could be affected by occurrence of driver peak in 

common with more species. The case at hand represents an illustrative 

example of such scenario, since some peaks belonging to KDP overlapped 

with the MKP ones (e.g. 2θ= 13.64°, 16.94°, 20.33°). A better insight of 

this issue is provided in Figure 49, where the evolution of the intensity of 

three peaks (2θ =7.7°, 10.6° and 13.64°) belonging to KDP, was 

compared. It can be noted that peaks at 7.7° and 10.6° decreased together 

(Figure 49a), while a different trend was observed for the peak at 

2θ=13.64° that started to increase after 15 minutes, due to the onset of 

MKP crystal growth. Indeed, this peak was in common between KDP and 

MKP. The influence of the peak overlap on the correlation coefficient 

could be quantified by resorting to a local estimation of this statistic. For 

this purpose, based on concentration profiles shown in Figure 47b, the 

window size was 6 minutes. It was moved across the data matrix X along 

the time direction (in this case along the columns) and X was partitioned 

in different submatrices Xk
(15×1295) (for k =1, … , 65). The correlation 

coefficient between peaks at 7.7° and 10.6° 2θ, which was calculated for 

each submatrix Xk, turned out to be positive over the time and greater than 

0.95 (open triangles in Figure 49b). On the other hand, it was apparent 

that the correlation between peaks at 10.6° and 13.64° changed sign with 

respect to the time (grey circles in Figure 49b). Therefore, the correlation 

coefficient will be lower than expected if it is computed on the whole 

dataset. 
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Figure 49 - (a) Evolution of the intensity of three peaks belonging to KDP and (b) 

correlation coefficient over the time calculated between peaks at 10.6° and 7.7° 2θ (open 

triangles) and peaks at 10.6° and 13.64° 2θ (grey circles). 

Figure 50 compares the correlation coefficient corresponding to the peaks 

selected on the base of the STOCSY procedure and TWSTOCSY, in case 

the reactant (KDP) and the product (MKP) have the same driver peak. 

Indeed, when the peak at 13.64° was considered as the driver one, only 

few peaks (dashed grey bars at 2θ =15, 16.9, 20.33°) resulted correctly 

classified as belonging to KDP (Figure 50a), whereas the others were not 

associated to that (in more detail the peaks at 2θ = 7.76, 10.6, 29.6, 31.4°, 

reported with grey bars in the figure). Similarly, when the peak at 13.6° 2θ 

was selected as the driver one, most of the MKP peaks (2θ = 7.12, 9.31, 

12.14, 15, 20.33°) were poorly correlated with the driver one (grey bars in 

Figure 50b) although they were recognized in the literature as belonging 
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to MKP. As a consequence, the spectrum of the final product was 

inadequately characterized. 

In order to overcome this issue, two sub-windows could be considered: (i) 

before the water injection until 3.5 min (for a proper estimation of the 

reactant patterns) and (ii) t=13-39 min (for the products patterns). A 

qualitative evaluation of the time windows could be suggested by the 

conversion curves obtained with the EFA and depicted in Figure 47a. The 

experimental data matrix X was then partitioned in two submatrices 

X1
(13×1295) and X2

(61×1295). As a result, the correlation with the driver peak at 

13.64° 2θ calculated in the first sub-window was higher than the threshold 

value (η=0.99) and all the peaks were correctly assigned to the KDP 

pattern, as it can be appreciated from Figure 50a (black bars). As for the 

KDP pattern estimation, the pattern matching of MKP could be 

considerably improved calculating the correlation only considering the 

second sub-window. This eventually led to a good estimation of the MKP 

patterns as shown in Figure 50b (black bars). 
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Figure 50 - Correlation coefficient determined considering the whole dataset compared 

with the one evaluated for one window in case of KDP (a) and MKP (b) patterns had to be 

identified. Since the driver peak at 13.64° 2θ was common to KDP and MKP, the pattern 

matching could be improved if the window analysis was carried out (black bars), 

conversely if the whole dataset was taken into account (grey bars) only few peaks were 

correctly assigned to KDP or MKP (grey dashed bars). 

As seen previously, the TWSTOCSY demonstrated to carry out the 

pattern matching more accurately than the STOCSY. Therefore, based on 

the correlation matrix previously determined for each window, X1
(13×1295) 

and X2
(61×1295) and proceeding with the steps introduced in Appendix A.1, 

the full pattern of each phase could be estimated. The results of the 

procedure for the estimation of the XRPD pattern of the solid reactants are 

reported in Figure 51. The first spectrum referring to the pure solid 

fractions is considered as the reference one. When the peak at 2θ = 13.64° 

was selected as the driver peak (Figure 52(i)), the extracted spectrum 
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TWST,1p̂  correctly corresponded to the KDP ones (Figure 51(ii)). After 

removing the KDP contribution, the residual spectrum was the new 

reference (Figure 51(iii)) and the peak located at 18.84° 2θ (white star) 

was chosen as the second driver peak. It turned out that the extracted 

spectrum TWST,2p̂  matched exactly the MgO profile (Figure 51(iv)). 

 

Figure 51 - Spectra extracted through TWSTOCSY applied to the first sub-window. The 

pattern of solid reactants collected before the water injection is shown (i), in the first 

iteration the peak at 13.64° 2θ was selected as the driver (grey star); (ii) the TWST,1p̂ pattern 

was estimated and was removed from the reference spectrum. The first residual spectrum 

(iii) showed a high intensity peak at 18.84° 2θ (white star) that allowed the extraction of 

the TWST,2p̂ pattern, reported in Figure 51(iv). For sake of comparison the theoretical 

patterns of MgO and KDP are also reported. 

By analogy, the above procedure was applied to the submatrix X2 to 

extract the product pattern. In this case, the pattern recorded at time t=39 

min was considered as the reference one (Figure 52(i)). Then, selecting 

the driver peak at 13.64° 2θ (grey star), the spectrum TWST,3p̂ was 

determined (Figure 52(ii)), which corresponded to the MKP one. The 

residual spectrum showed few positive peaks that belonged to unreacted 

magnesia (Figure 52(iii)). 
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Figure 52 - Spectra extracted through TWSTOCSY applied to the second sub-window. (i) 

pattern collected at t=39 min; (ii) estimated spectrum TWST,3p̂ ; (iii) residual spectrum. The 

theoretical pattern of MgO and MKP is reported to validate the results. 

By comparison with theoretical patterns, one can infer that patterns 

determined with this approach agreed very well with MgO, KDP and 

MKP. The results were summarized in Figure 53a(i), (ii), (iii), 

respectively. Indeed, TWSTOCSY allowed for clearly distinguishing 

magnesia from KDP profile and removing it from MKP one. These results 

encouraged the application and if needed, the adaptation of the procedure 

to other dataset where the choice and the partition in different 

subwindows is not so trivial. However, it is worth to remark that this 

procedure did require limited a-priori knowledge of the compounds 

patterns, since the selection of the driver peak was based on the highest 

intensity without other assumption. 

7.3.3 Spectra and conversion estimation through 

MCR 

In order to determine conversion curves, the MCR-ALS was 

implemented. Then, three crystalline compounds spectra TWSTp ,p̂

determined through TWSTOCSY (Figure 53a (i), (ii), (iii)) were used as 
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initial guesses. Nevertheless, since TWSTOCSY was developed to extract 

spectra of only crystalline compounds, the amorphous spectrum *
4

~p   was 

estimated subtracting the MgO peaks from the 2
~p  spectrum previously 

obtained with the EFA-MCR-ALS (Figure 53a (iv)).  

 

Figure 53 - (a) Patterns used as initial guesses for the MCR-ALS algorithm. Patterns (i), 

(ii), (iii) were estimated through TWSTOCSY and compared with the theoretical pattern. 

They corresponded to KDP (i), MgO (ii), and MKP (iii), respectively. Contribution of the 

incoherent scattering of water and amorphous (iv) obtained through EFA-MCR is reported. 

(b) Spectra estimated through MCR-ALS that corresponded to (i) KDP, (ii) MgO, (iii) 

MKP and (iv) water/amorphous with a small contribution of MgO. 

In Figure 53b the pa spectra (a = 1 to 4) resulting from the MCR-ALS 

algorithms are reported and compared to the theoretical patterns of the 

MgO, KDP and MKP. The spectra p1 to p3 matched very well the 

theoretical patterns of KDP (Figure 53b(i)), MgO (Figure 53b(ii)) and 
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MKP (Figure 53b(iii)), respectively. Moreover, the spectrum p4 associated 

to the intermediate phase was also determined (Figure 53b(iv)). Although 

the estimation of the amorphous phase pattern with the above procedure 

was rather good, some small positive and negative peaks belonging to the 

crystalline phases are present in the spectrum. In fact, MCR may 

encounter problems in perfectly discriminating the different contributions, 

especially when there are unreacted or inert phases (Amrhein et al., 1996). 

In this case study, magnesia was not consumed at the end of the 

experiment. This led MCR to consider the fourth component as a mixture 

of amorphous and a small amount of MgO. Nevertheless, MCR coupled 

with TWSTOCSY showed to provide smoother amorphous spectra, at 

least when compared to the one provided by the simple EFA and MCR 

protocol. Indeed, the intensity of MgO peak in spectrum s4 (Figure 53b) 

was about five times lower than in spectrum 2
~p (Figure 48). As a final 

remark, one can notice that the algorithm was able to separate the 

reactants spectra and that could not be pursued by resorting to the EFA-

MCR procedure. 

 

Figure 54 - Conversion curves of MgO, KDP, MKP and the incoherent scattering of 

water/amorphous phase determined through MCR-ALS. Dashed and dashed-dotted lines 

represent the estimated α conversion of MKP and MgO, obtained from integrated area of 

diffraction peaks, respectively. 

It is worth noting that the TWSTOCSY allowed a more accurate 

determination of the conversion curves. The better performance of the 

TWSTOCSY-MCR with the respect to EFA-MCR was also confirmed by 
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the decrease of the lack of fit from 3.5 % to 1.8 %, while the percentage of 

explained variance was almost unity (99.99 %). As a consequence, the 

description of the reaction dynamics turned out more reliable compared to 

the outcomes of EFA-MCR discussed in Figure 47. The conversions ta 

(a=1, …, 4) were obtained by normalizing the outcomes of the MCR and 

they are reported in Figure 54, where five main changes could be 

identified:  

I. Before the water injection, only MgO and KDP crystalline 

fraction were observed; 

II. t=0÷3 min: after the water was supplied, the KDP rapidly 

decreased. This was clearly due to its dissolution. The 

contribution of the incoherent scattering from water summed to 

the amorphous phase and quickly increased, reaching a maximum 

at t ~ 3 min; 

III. t=3÷13 min: MgO continued dissolving. The change of slope 

observed at t ~ 10 min could be explained with the reactivation of 

the reaction in some areas of the sample. This may be likely due 

to a non-homogeneous wetting of the powder during water 

injection. On the other hand, the amorphous phase curve appeared 

to be constant for this time interval. As more amorphous formed, 

water was consumed, and both signals were summed up. 

Meanwhile the gel phase required time to thicken and then to 

nucleate and crystallize in the product (Wagh & Jeong, 2003). 

This is the well-known induction period in case of crystallization 

from amorphous (Bhugra & Pikal, 2008; Šimon et al., 2005). 

IV. t=13÷27 min: MKP crystallization took place. Simultaneously, 

the amorphous content decreased; 

V. t > 27 min: crystal growth rate significantly slowed down and the 

amorphous decay flattened out. Thus, a relevant amount of 

amorphous fraction was still present at 39 min. This behaviour 

was in agreement with previous results (Viani & Gualtieri, 2014; 

Viani et al., 2015; Viani et al., 2016).  



Chapter 7. Setting reaction of cementing materials 115 

 

 

One can note that the conversion curves depicted in Figure 54 confirmed 

the interpretation of the reaction mechanism proposed in section 7.1.4, 

furthermore one of advantages of the approach introduced here consisted 

in being less time consuming than visually assessing all the patterns 

collected over the time and identifying the different phases present in each 

pattern. For sake of comparison, the conversion curves of magnesia and 

MKP obtained from the integration of single diffraction peaks described 

in Section 7.1.3 were depicted in Figure 54 as dashed and dashed-dotted 

lines, respectively. It can be seen that the curves evaluated through 

TWSTOCSY-MCR agreed very well with them. Particularly, the 

consistency of this result was also confirmed by the Pearson’s correlation 

between the conversion curves and the estimated ones (see Equation (35)): 

it was equal to 0.9995 and 0.9998 for MgO and MKP, respectively. It 

should be also pointed out that the proposed procedure was able to 

identify the non-crystalline component (depicted as circles in Figure 54) 

not accounted for by the traditional approach. In the first minutes, this 

component included the contribution of the liquid solution. By the time 

MKP crystallization started, and MgO dissolution was close to 

completion, the signal could be considered to come largely from the solid 

amorphous precursor, already observed, even at longer times, by SEM and 

detected with QPA with the external standard method (Viani & Gualtieri, 

2014; Viani et al., 2015). The synchronous onset of MKP crystallization 

and decrease of the non-crystalline component, processes occurring with 

the same dynamic, supported the view that MKP crystallizes from an 

amorphous precursor. In this work no separation of the contribution of the 

incoherent scattering of water from that of the amorphous precursor, has 

been attempted. As a final remark, the procedure introduced in this work 

not only allowed for the pattern matching and the evaluation of the 

conversion curves with limited or no user intervention, but it also resulted 

less time consuming than the conventional available methods. 

In conclusion, the main features of the procedure proposed to investigate 

the setting reaction of MKP and treat X-Ray powder diffraction data were 

summarized below: (i) it was a full-profile approach i.e. it took into 

account the whole powder diffraction profile rather than focusing on a 

limited number of peaks; (ii) it required a limited knowledge of the 

spectra of the pure phases; (iii) the windowed analysis allowed for 



116 Chapter 7.  Setting reaction of cementing materials 

 

 

isolating also phases that existed in different time windows but had 

overlapping peaks (such as reactants and products). In the case under 

investigation, TWSTOCSY demonstrated to be an excellent tool to 

distinguish the pattern of KDP from MKP and MgO ones. In addition, 

when combined with other techniques (i.e. the Multivariate Curve 

Resolution and the Evolving Factor Analysis), it was able to describe the 

evolution of the non-crystalline component, not easily appreciable using 

other methods for the analysis of XRPD data. Conversion curves were 

accurately reproduced, allowing for the study of reaction kinetics and 

identification of reaction mechanisms. These results encouraged to 

validate the procedure considering other evolving system where the 

windowing analysis could result not trivial. Although it was applied to 

investigate the setting reaction of a ceramic material, it can be extended to 

data also coming from other analytical spectroscopic techniques. 
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Chapter 8  

Conclusions 

The main conclusions of the present work are summarized in this Chapter. 
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In this thesis procedures based on multivariate techniques were proposed 

for on-line monitoring of continuous and evolving processes. 

With this regard, spectroscopic measurements demonstrated an extremely 

useful tool to extract chemical information from data collected.  

The on-line monitoring of continuous processes such as commercial 

detergents production was pursued through procedures based on Principal 

Component Analysis and Partial Least Squares Regression. In more detail, 

the Elliptical Normal Operating Region (ENOR) was developed by means 

of a Box-Cox transformation of the Q statistic, to detect occurrence of 

deviations from the reference state. The ENOR demonstrated to be 

capable of discriminating the in-control from the out-of-control 

observations with a high sensitivity. In addition, concentrations of the 

surfactant were estimated through Partial Least Squares Regression, with 

a quite high prediction performance. The reliability of the estimation was 

evaluated through the Qx statistic: when samples were classified as out-of-

control, the model could not be employed for the estimation.  

Concerning the monitoring of evolving processes, Moving Window 

Principal Component Analysis was employed. It is worth noting that this 

method has been seldom applied to in situ spectroscopic data. The 

crystallization of Isonicotinamide examined by means of infrared 

spectroscopy was considered as a representative case study. Therefore, the 

nucleation temperature was correctly detected through T2 and Q control 

chart (T= -7.86 °C). The proposed approach noticeably reduced the false 

positive ratio to 5.8 %, at least when compared to the 77 % of false 

positives observed with the static PCA). Eventually, the contribution plot 

could identify which were the spectral ranges mostly affected by 

nucleation. 

Phenomena occurring in evolving systems could be investigated through 

multivariate techniques as well. For this purpose, two case studies were 

investigated: (i) dissolution of surfactants paste studied by means of 

confocal Raman microscopy and (ii) the setting reaction of magnesium 

potassium phosphate (MKP) analyzed through X–ray powder diffraction.  

For the former case, Multivariate Curve Resolution was suggested for data 

treatment. The estimated spectra well reproduced the experimental ones. 

MCR concentration profiles of paste A and B were fitted through an 

exponential decay model and the estimated dissolution rate could suggest 

that both surfactants were dissolving at the same rate. 
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Concerning the setting reaction, Time Window Statistical Total 

Correlation Spectroscopy combined with Multivariate Curve Resolution 

(MCR) was here proposed. The main advantages over the conventional 

approaches were the following: the procedure required a limited 

knowledge of the spectra of the pure phases and particularly TWSTOCSY 

allowed for isolating also crystalline phases that existed in different time 

windows but had overlapping peaks (such as reactants and products). The 

combined procedure showed to distinguish the four components involved 

(MgO, KDP, MKP and amorphous phase) not otherwise possible through 

the only Evolving Factor Analysis-MCR. The estimation of their spectra 

and concentration was quite good, indeed the time evolution of MgO and 

MKP agreed very well with the conventional conversion curves. 

 

In summary, the potentialities of multivariate methods were illustrated in 

this thesis. The variety of system examined demonstrated the flexibility 

and the usefulness of the multivariate techniques employed.  

As it has been noted, both spectroscopy and multivariate techniques can 

be used for process analysis and monitoring, therefore they could lead to 

improve control system reliability and process performances. As a result, 

product quality can be monitored online and energy and costs could be 

saved. On the other hand, they showed as essential tools to investigate 

system dynamics and phenomena, not otherwise possible with 

conventional experimental and mathematical techniques. 
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