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Introduction, motivation and

overall objectives

This thesis is concerned with numerical methods for inverse problems
in applied Geophysics1. Its main purpose is to reconstruct the electrical
conductivity and the magnetic permeability of the soil by Electromagnetic
induction (EMI).

Electromagnetic induction is an established, noninvasive technique for
measuring the apparent electrical conductivity of soils and has been used to
characterize the spatial variability of soil properties since the late 1970s. Ini-
tially used to assess soil salinity, the use of EMI in soil studies has expanded
to include hydrological and hydrogeological characterizations [43, 52, 63],
hazardous waste characterization studies [24, 45], precision–agriculture
applications [6, 21, 84], archaeological surveys [42, 50, 68], geotechnical
investigations [53] and unexploded ordnance (UXO) detection [36, 37, 66].

In all cases the soil property being investigated must influence soil ap-
parent electrical conductivity either directly or indirectly for EMI techniques
to be effective. An increasing number and diversity of EMI sensors have
been developed in response to users’ needs and the availability of allied
technologies, which have greatly improved the functionality of these tools.
EMI investigations provide several benefits for soil studies, for instance, the
large amount of georeferenced data that can be rapidly and inexpensively
collected with EMI providing more complete characterization of the spatial
variations in soil properties than traditional sampling techniques. EMI the-
ory and foundations of measurement systems are described in the applied
geophysics literature [46, 67, 81]. In addition, compared to traditional soil
survey methods, EMI can more effectively characterize diffuse soil bound-
aries and identify areas of dissimilar soils within mapped soil units, giving
soil scientists greater confidence when collecting spatial soil information.
EMI techniques do have limitations as their efficacy highly depends on the
complex interactions among multiple and variable soil properties. Despite
this, EMI techniques are increasingly being used to investigate the spatial

1Subject of natural science concerned with the physical processes and physical properties
of the Earth and its surrounding space environment, and the use of quantitative methods
for their analysis.
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Introduction, motivation and overall objectives

variability of soil properties at field and landscape scales.
The main device used for this kind of techniques is the Ground Conduc-

tivity Meter (GCM). It contains two coils (a transmitter and a receiver) placed
at a fixed distance. An alternating sinusoidal current in the transmitter
produces a primary magnetic field, which induces small eddy currents in
the subsurface. These currents produce a secondary magnetic field, which
is sensed by the receiver. A meter that senses the voltage across this coil is
calibrated in units of milliSiemens per meter. The ratio of the secondary
to the primary magnetic fields is then used, along with the instrumental
parameters, to estimate electrical properties of the subsurface. It can be
used on the ground or at heights above the ground; at greater heights, the
instrument is less sensitive to electrical conductivity at greater depths. Thus
by taking measurements at several heights, we can gain information about
the depth profile of electrical conductivity. The orientation of the coils also
affects the response of the instrument to variations in the soil electrical
conductivity profile. Therefore, by holding the instrument so that the coils
are in vertical or horizontal positions, we can gain additional information
about the electrical conductivity profile.

Nevertheless, the noninvasive determination of electrical conductivity
depth profiles, using a finite number of noisy aboveground electromagnetic
induction measurements, remains difficult since it is an inverse problem. In
the last two decades, the field of inverse problems has certainly been one of
the fastest growing areas in applied mathematics. This growth has largely
been driven by the needs of applications both in other sciences and in
industry.

The aim of collecting data is to gain meaningful information about a
physical system or phenomenon of interest. However, in many situations
the quantities that we wish to determine are different from those we are able
to measure, or have measured. If the measured data depends, in some way,
on the quantities we want, then the data at least contains some information
about those quantities. Starting with the data that we have measured, the
problem of trying to reconstruct the quantities that we really want is called
an inverse problem. Loosely speaking, we often say an inverse problem is
where we measure an effect and want to determine the cause. Some typical
inverse problems also arise in other different applications:

• Deblurring Images [31]. When we use a camera, we want the
recorded image to be a faithful representation of the scene that we see.
Thus, image deblurring is fundamental in making pictures sharp and
useful. A digital image is composed of picture elements called pixels.
Each pixel is assigned an intensity, mean to characterize the color

2



of a small rectangular segment of the scene. Some blurring always
arises in the recording of a digital image, because of the unavoidable
presence of noise. For example, the optical system in a camera lens
may be out of focus, so that the incoming light is smeared out.

In image deblurring, we seek to recover the original, sharp image by
using a mathematical model of the deblurring process.

• Radio–astronomical imaging. When using a multi–element interfer-
ometer as a radio telescope, it turns out that the measured data is not
the distribution of radio sources in the sky (called the “sky brightness”
function) but is rather the Fourier transform of the sky brightness. It
is not possible to measure the entire Fourier transform spectrum, but
only a limited range. From that limited piece of information (even
disregarding the inherent noise), how is it possible to reconstruct the
desired sky brightness?

• Navigation. When travelling in a boat or plane, it is useful to have an
idea of the current location in close to real time. This is often done by
making a variety of measurements, for example by using bearings to
landmarks, stellar or satellite positions, and also by considering one’s
previous position and using information such as records of speed
and heading. How should all of these separate pieces of information
be combined together to give a coherent description of the vessel’s
motion?

Inverse problems typically lead to mathematical models that are not
well–posed in the sense of Hadamard [25], i.e., to ill–posed problems. This
means especially that their solution is unstable under data perturbations.
Numerical methods that can cope with this problem are the so–called
Regularization methods. For linear problems, this theory can be considered
to be relatively complete and we will study a linear case in Chapter. 2. For
nonlinear problems, the theory is, so far, developed to a much lesser extent.
We will see an example in Chapter. 3.

This thesis reports distinct algorithms and techniques to overpass these
difficulties since mathematical problems having these undesirable proper-
ties pose severe numerical adversities.

Along the thesis we present some cases that involve the solution of ill–
conditioned problems for reconstructing the electrical conductivity and the
magnetic permeability of the soil, and we propose for each of these problems
an inversion procedure to get a good approximation of the solution.

The structure of this thesis is the following:

3



Introduction, motivation and overall objectives

Chapter 1 introduces some preliminary notions which will be useful
for the rest of the thesis. We remind the definition of ill–posed
problems, and we describe some numerical tools, iterative methods
and regularization methods.

Chapter 2 studies a linear ill–posed problem for recovering the elec-
trical conductivity trough an inversion procedure based on an ap-
proximation of the solution by means of both first and second order
B–splines.

Chapter 3 presents a nonlinear ill–posed problem and we find the
approximation of the electrical conductivity and the magnetic perme-
ability of the soil by a regularized inversion procedure applying the
Gauss–Newton method, and the Truncated Singular Value Decom-
position and the Generalized Truncated Singular Decomposition. In
addition, we are working on a graphical user interface (GUI) using
GUIDE, the graphical user interface development environment of
Matlab.

Chapter 4 describes the problem of a sphere under the influence of
an electromagnetic field. We try to estimate the radius of the sphere
and both its electrical conductivity and magnetic permeability via
exponential sums.

4



1Some necessary preparatory tools

In this chapter we present a brief introduction to discrete ill–posed
problems. Specifically, we introduce some numerical tools such as the
Singular Value Decomposition (SVD) and the Generalized Singular Value
Decomposition (GSVD), and we also discuss some iterative methods as the
Newton method and the Gauss–Newton method. Moreover, we will de-
scribe the Tikhonov regularization, the Truncated Singular Value Decompo-
sition (TSVD) and the Truncated Generalized Singular Value Decomposition
(TGSVD) as regularization methods.

A more complete information of these aspects is given in [28].

1.1 Ill–posed problems

Let us consider the following problem: Finding x such that

F(x, d) = 0, (1.1)

where d is a data set from which the solution depends on, and F is the
functional relation between x and d. Typically, problem (1.1) is called direct
problem if F and x are known and d is unknown. Whereas (1.1) is called
inverse problem if F and d are known and x is unknown.

In 1923, Jacques Hadamard [25] defined the inverse problem (1.1) to be
well–posed if

• The solution exists.

• The solution is unique.

• The solution’s behavior changes continuously with the initial condi-
tions. More precisely, if we consider the following problem

F(x + δx, d + δd) = 0,

5



1. Some necessary preparatory tools

where δd is the perturbation of the data d and δx is the resulting
perturbation of the solution x, then

∃ η0 = η0(d) > 0, ∃ K0 = K0(d) > 0 s.t.

if ‖δd‖ ≤ η0 then ‖δx‖ ≤ K0‖δd‖.

Problems for which at least one of the properties above is not true, are
termed ill–posed.

Inverse problems are often ill–posed. For example, the inverse heat
equation, according to a formulation dating to Hadamard, must be ill–
posed in L2(R), since solutions do not exist for all data. Moreover, even if
the initial data is smooth enough that a solution exists for all data, there
is no continuous dependence on it. An arbitrarily small perturbation of
the initial data will preclude the existence of a solution for any data. In
a word, the backward heat equation is ill–posed because all solutions are
instantly swamped by high–frequency noise. Another example of ill–posed
problem is Fredholm integral equation of the first kind1 which is an integral
equation in which the unknown function only appear under the integral
sign.

Continuous models must often be discretized in order to obtain a
numerical solution. While solutions may be continuous with respect to the
initial conditions, they may suffer from numerical instability when solved
with finite precision, or with errors in the data. Even if a problem is well–
posed, it may still be ill–conditioned, meaning that a small error in the initial
data can result in much larger errors in the answers. An ill–conditioned
problem is indicated by a large condition number [28].

If the problem is well–posed, then it stands a good chance of solution on
a computer using a stable algorithm. If it is not, it needs to be re–formulated
for numerical treatment including a priori information concerning the ex-
pected solution, such as smoothness properties or the presence of blocky
structures. This process is known as regularization and we will study some
regularization methods in Section 1.3.

Theoretically, to be ill–posed the problem must be infinite dimensional.
However, there are some finite dimensional discrete problems which have

1Fredholm integral equation is defined by∫ b

a
K(x, y)ϕ(y)dy = f (x), x ∈ [a, b],

in which ϕ is the unknown, and the so–called kernel K and the right–hand side f are given
functions.
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1.1. Ill–posed problems

similar properties like being highly sensitive to high–frequency perturba-
tions. They are called discrete ill–posed problems.

We can distinguish between a linear system of equations or a nonlinear
system of equations depending on the operator of the problem, that is

F(x) = b, x ∈ Rn, b ∈ Rm,

where F can be either a linear or a nonlinear operator. Since now on the
finite dimensional problem is studied.

There are many possible ways of defining a “practical solution” to the
original problem. A choice which leads to a simple computational problem
is to let x be a solution to the minimization linear problem

min
x
‖F(x)− b‖, (1.2)

where ‖ · ‖ represents the Euclidean norm and r(x) = F(x)− b is called
the residual. We call (1.2) a least squares problem.

1.1.1 Linear least squares problem

Suppose Ax = b where A is a m × n matrix, b ∈ Rm and x ∈ Rn. For
simplicity, we assume A to be full–rank.

In the case in which m > n, there are more constraints than unknowns,
and the system is overdetermined with no solutions (except for degenerate
cases). We can find a least–squares solution that minimizes the error Ax−b,
i.e. we want to find x that minimizes

‖Ax− b‖2

or
(Ax− b)T(Ax− b)

or
xT AT Ax− xT ATb− bT Ax + bTb.

Differentiating w.r.t x and setting the result equal to zero yields

2AT Ax− 2ATb = 0,

from which we deduce that the solution is given by

x = (AT A)−1ATb,

where (AT A)−1AT = A† is the Moore–Penrose pseudoinverse of A [2].
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1. Some necessary preparatory tools

Assuming that m < n, we have fewer constraints than unknowns, and
the system is underdetermined with an infinite number of solutions. A
classical way to introduce unicity is to select the minimum norm solution.
That is we will minimize ‖x‖ subject to the constraint b = Ax. The method
of Lagrange multipliers let us add a term to the quantity to be minimized:

‖x‖2 + λT(b− Ax),

where λ ∈ Rn is a vector of parameters. Differentiating w.r.t x and setting
the result equal to zero yields

2x− ATλ = 0.

We cannot just solve for λ since A is not a square matrix, but we can
premultiply by A to obtain

2Ax− AATλ = 0,

and using b = Ax gives us

2b = AATλ,

so
λ = 2(AAT)−1b

and hence
x = AT(AAT)−1b.

If m = n and A is nonsingular, the solution of (1.2) is simply x = A−1b.
Linear least squares problems are discrete ill–posed problems if:

• The singular values of A decay gradually to zero.

• The ratio between the largest and the smallest nonzero singular values
of A is large.

The ill–conditioning of the matrix A does not mean that an approximate
solution cannot be computed. It implies that some classical numerical
methods for linear systems, such as LU, Cholesky or QR factorization [2]
cannot be used to solve (1.2) since these basic and all–purpose methods
suffer from high instability in such ill–discrete ill–posed problems due to
the “unbounded inversion” of the vanishing eigenvalues of AT A or AAT.

8



1.1. Ill–posed problems

1.1.2 Nonlinear least squares problem

All the methods for solving a nonlinear least squares problem are iterative
and each iteration step usually requires the solution of a related linear least
squares problem. This means that the problem is linearized at each step to
produce an approximate solution.

The aim of a nonlinear least squares problem is to find a global mini-
mizer of the sum of squares of m nonlinear functions,

min
x∈Rn

F(x), F(x) =
1
2

m

∑
i=1

r2
i (x), (1.3)

where ri(x) are the components of the residual r(x) introduced before.
We will present two methods for solving this kind of problems.

The Newton method

Let us consider the problem of finding the zeros of a function of n variables,
that is we want to solve equations of the form

G(x) = 0,

where G : D → Rn is a continuously differentiable function defined on
some open subset D ⊂ Rn.

Let x0 be an approximation to a zero of the function G. In a neighbor-
hood of x0, by Taylor’s formula, we have that

G(x) ≈ G(x0) + G′(x0)(x− x0) + . . . ,

where

G′(x) =
(

∂Gj

∂xk
(x)
)

j,k=1,...,n

denotes the Jacobian matrix of G. We obtain a new approximation x1 for
the solution of G(x) = 0 by solving the linearized equation

G(x0) + G′(x0)(x− x0) = 0,

which is
x1 = x0 − [G′(x0)]

−1G(x0).

Iterating this procedure leads to Newton’s method, as described in the fol-
lowing definition.

9



1. Some necessary preparatory tools

Definition 1.1.1 Let D ⊂ Rn be open and let G : D → Rn be a continuously
differentiable function such that the Jacobian matrix G′(x) is nonsingular for all
x ∈ D. Then Newton’s method for the solution of the equation

G(x) = 0

is given by the iteration scheme

xk+1 := xk − [G′(xk)]
−1G(xk), k = 0, 1, . . . ,

starting with some x0 ∈ D.

We explicitly note that xk+1 is obtained by solving the system of linear
equations

G′(xk)(xk − xk+1) = G(xk).

Of course, we cannot expect that Newton’s method will always converge.
However, we can assure local convergence; see [40].

Although Newton’s method is very attractive, it has to be observed that
one step of the Newton iteration for nonlinear systems can be very costly
both because the need for evaluating the entries of the Jacobian G′(xk) and
the cost of solving the linear system to arrive at the iteration xk+1.

Let us come back to problem (1.3). Minimizing the function F requires
the solution of ∇F(x) = 0. To achieve this goal, we set G(x) = ∇F(x)
and then, we apply the Newton method to the function G. This procedure
involves the computation (or the approximation) of both the gradient vector
G(xk) and the Hessian matrix G′(xk) of the function to be minimized,
leading to an algorithm characterized by a large computational complexity.
To overcome this difficulty, we resort to the Gauss–Newton method which
is described in the following subsection.

The Gauss–Newton method

The Gauss–Newton method for problem (1.3) is based on a sequence of linear
approximations of r(x). The method minimizes, at the kth iteration step,
the norm of a linear approximation of the residual r(xk + sk) with respect
to the step size sk. So we can write

r(xk+1) w r(xk) + J(xk)sk.

If xk denotes the current approximation, then the step sk is computed
as a solution of the linear least squares problem

min
s
‖r(xk) + J(xk)s‖, s ∈ Rn, (1.4)

10



1.1. Ill–posed problems

where J(xk) is the Jacobian matrix of r(x). The new approximation is
xk+1 = xk + sk.

The Gauss–Newton method as described above has the advantage that
it solves linear problems in just one iteration and has fast local convergence
on mildly nonlinear and nearly consistent problems. However, it may not
even be locally convergent on problems that are strongly nonlinear or have
large residuals. In these cases we apply the damped Gauss–Newton method,
that is

xk+1 = xk + αksk,

where sk is the solution of (1.4) and αk is a parameter to be determined.
When J(xk) is rank deficient sk can be chosen as the minimum norm
solution of the linear least squares problem (1.4). Properties about this
method are presented in [2] and a discussion on the local convergence of
Gauss–Newton method can be found in [59].

Two strategies for choosing αk are:

• Armijo–Goldstein principle [49]. Since

r(xk + αksk) w r(xk) + αk J(xk)sk,

or equivalently

r(xk)− r(xk + αksk) w −αk J(xk)sk,

we want to decrease the objective function which verifies

‖r(xk)− r(xk + αksk)‖2 ≥ ‖r(xk)‖2 − ‖r(xk + αksk)‖2.

In order to do it this method takes αk as the largest number in the
sequence 2−i, i = 0, 1, . . . for which the inequality

‖r(xk)‖2 − ‖r(xk + αksk)‖2 ≥ 1
2

αk‖J(xk)sk‖2

is satisfied. This choice ensures the convergence of the method pro-
vided that xk is nor a critical point, while the unrelaxed iteration may
not converge at all.

• Taking αk as the solution to the one–dimensional minimization prob-
lem

min
α
‖r(xk + αsk)‖2.
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1. Some necessary preparatory tools

1.2 SVD and Generalized SVD

One of the most relevant tools for the analysis of discrete ill–posed problems
are the Singular Value Decomposition (SVD) of the coefficient matrix A of the
problem and its generalization to two matrices, the Generalized Singular Value
Decomposition (GSVD) of the matrix pair (A, L), where L is a regularization
matrix.

The SVD reveals all the difficulties associated with the ill–conditioning
of the matrix A while the GSVD of (A, L) yields important insight into
the regularization problem involving both the coefficient matrix A and the
regularization matrix L.

In the next subsections we will present both methods.

1.2.1 The Singular Value Decomposition

The Singular Value Decomposition (SVD) has many useful applications
in numerous areas such as signal and image processing, statistics, pattern
recognition, etc.

The SVD of a rectangular matrix is a matrix decomposition for the treat-
ment of least squares problems since the unitary matrices that transform A
to diagonal form do not change the l2–norm of vectors.

Theorem 1.2.1 Singular Value Decomposition. Let A ∈ Rm×n be a rectangu-
lar matrix with m ≥ n. Then the matrix A can be broken down into the product of
three matrices

A = UΣVT =
n

∑
i=1

uiaivT
i , (1.5)

where U = (u1, . . . , um) ∈ Rm×m and V = (v1, . . . , vn) ∈ Rn×n are orthog-
onal matrices, and where Σ ∈ Rm×n is a diagonal matrix whose elements are
nonnegative and appear in non–increasing order

a1 ≥ · · · ≥ ar > 0, r ≤ n.

The quantities ai are called the singular values of A, and its rank r is equal to the
number of positive singular values. The vectors ui and vi are the left and right
singular vectors of A, respectively, and the condition number of A is equal to the
ratio a1/ar.

Every matrix A ∈ Rm×n has a unique Singular Value Decomposition,
except for singular vectors associated with multiple singular values or
null singular values, since the SVD is strongly linked to the eigenvalue
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1.2. SVD and Generalized SVD

decomposition of the symmetric positive semi–definite matrices AT A and
AAT.

Two characteristic features of the SVD of a matrix are very often found
in practical applications concerning discrete ill–posed problems.

• The singular values decay gradually to zero. As the dimension of A
increases, then a growth in the number of small singular values can
be appreciated.

• The vectors ui and vi tend to have more sign changes in their elements
as the index i increases (like high frequencies Fourier vectors).

The content of this section can be extended to the case in which the
matrices has complex elements [2].

1.2.2 The Generalized Singular Value Decomposition

We introduce the generalization of the Singular Value Decomposition
(GSVD) for two matrices A ∈ Rm×n and L ∈ Rp×n, with the same number
of columns, under the assumption N (A) ∩ N (L) = {0}, where N (A),
N (L) represent the kernels of the matrices A and L, respectively. The
GSVD and its application to certain constrained least squares problems
were first studied by Van Loan [72]. Paige and Saunders [51] extended
the GSVD to handle all possible cases, and gave a computationally more
amenable form.

The generalized singular values of (A, L) are the square roots of the
generalized eigenvalues of the matrix pair (AT A, LT L).

Theorem 1.2.2 Generalized Singular Value Decomposition. We assume that
the dimensions of A ∈ Rm×n and L ∈ Rp×n satisfy m ≥ n ≥ p. Then the GSVD
is the decomposition of A and L in the form

A = U
(

ΣA 0
0 In−p

)
Z−1, L = V

(
ΣL, 0

)
Z−1, (1.6)

where the columns of U ∈ Rm×n and V ∈ Rp×p are orthonormal, Z ∈ Rn×n is
non singular, and ΣA and ΣL are p× p diagonal matrices:

ΣA = diag(a1, . . . , ap), ΣL = diag(l1, . . . , lp).

Further, we have

0 ≤ a1 ≤ · · · ≤ ap ≤ 1, 1 ≥ l1 ≥ · · · ≥ lp ≥ 0,

normalized such that a2
i + l2

i = 1 for i = 1, . . . , p.

A complete treatment of the GSVD is given in [2].
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1. Some necessary preparatory tools

1.3 Regularization Methods

In general terms, regularization is the approximation of an ill–posed problem
by a family of neighboring well–posed problems. Firstly, let us focus on the
linear case.

We want to find a suitable approximation of the generalized solution
x† = A†b of

Ax = b

for a specific right–hand side b in the case when we do not know the “exact
data” b but we have an its approximation such that

‖bξ − b‖ ≤ ξ

is available. We will call bξ the “noisy data” and ξ the “noise level”.
In the ill–posed case, A†bξ is certainly not a good approximation of A†b

due to the unboundedness of A† even if it exists. We are looking for some
approximation xξ

δ of x† which, on the one hand, depends continuously on
the (noisy) data bξ , so that it can be computed in a stable way, and has, on
the other hand, the property that as the noise level ξ decreases to zero and
the regularization parameter δ is chosen appropriately, then xξ

δ tends to x†.
Taking some considerations mentioned in [17] into account we can give

the following definition.

Definition 1.3.1 Let A : X → Y be a bounded linear operator between the
Hilbert spaces X and Y , δ0 ∈ (0,+∞]. For every δ ∈ (0, δ0), let

Rδ : Y → X

be a continuous (not necessarily linear) operator. The family {Rδ} is called a
regularization or a regularization operator (for A†), if, for all b ∈ D(A†), there
exists a parameter choice rule δ = δ(δ, bξ) such that

lim
ξ→0

sup{‖Rδ(ξ,bξ )b
ξ − A†b‖ | bξ ∈ Y , ‖bξ − b‖ ≤ ξ} = 0 (1.7)

holds true. Here,
δ : R+ ×Y → (0, δ0)

is such that

lim
ξ→0

sup{δ(ξ, bξ) | bξ ∈ Y , ‖bξ − b‖ ≤ ξ} = 0. (1.8)

For a specific b ∈ D(A†), a pair (Rδ, δ) is called a (convergent) regularization
method (for solving Ax = b) if (1.7) and (1.8) hold true.
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1.3. Regularization Methods

A regularization method consists of a regularization operator and a
parameter choice rule which is convergent in the sense that, if the reg-
ularization parameter is chosen according to (1.7), then the regularized
solutions Rδ(ξ,bξ )b

ξ converge to A†b as the noise level ξ tends to zero.
It is not required the regularization operator {Rδ} to be a family of

linear operators. If the Rδ are linear, then we call the corresponding method
a linear regularization method, and the family {Rδ} a linear regularization
operator. However, it also makes sense to consider nonlinear regularization
methods for solving linear problems.

Similarly to the linear case, if we consider the operator equation

F(x) = b,

where F : D(F) ⊂ X → Y is a nonlinear operator between Hilbert spaces X
and Y , we are interested in the situation that a solution x† does not depend
continuously on the data. Since in practice only approximate data bξ with

‖bξ − b‖ ≤ ξ

are available, the problem has to be regularized. For more complete infor-
mation see [69].

In the following subsections we briefly describe the most commonly
regularization methods when ill–posed inverse problems are treated.

1.3.1 The Tikhonov Regularization

In the numerical solution of the equation Ax = b, problems occur when
the singular values of the operator A tend to zero rapidly, causing the norm
of the approximate solution xk to go to infinity when k → ∞. The idea
in the basic regularization scheme discussed in this section is to control
simultaneously the norm of the residual r = Ax− b and a regularization
term, replacing the minimization problem (1.2) by a penalized least–squares
problem.

A typical approach for the solution of ill–posed problems is the Tikhonov
regularization. It has been applied by various authors to the inversion of
geophysical data; see, for example, [4, 11, 33]

Definition 1.3.2 Let δ > 0 be a given constant. The Tikhonov regularized
solution xδ ∈ Rn is the minimizer of the following least squares problem

‖Ax− b‖2 + δ‖Lx‖2,

provided that a minimizer exists. The parameter δ > 0 is called the regularization
parameter and the matrix L is the regularization matrix.
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The matrix L is chosen so that the null spaces of A and L intersect
trivially. Common regularization matrices are either the identity matrix I
or finite difference matrices, such as

L =


1 −1 0

1 −1
. . . . . .

0 1 −1

 ∈ R(n−1)×n

or

L =


−1 2 −1 0

−1 2 −1
. . . . . .

0 −1 2 −1

 ∈ R(n−2)×n.

The null spaces of these matrices are

N(L1) = span{[1, 1, . . . , 1]T}

and
N(L2) = span{[1, 1, . . . , 1]T, [1, 2, . . . , n]T}.

These matrices therefore are referred to as smoothing regularization matrices.
The use of a smoothing regularization matrix can be beneficial when the
desired solution is a discretization of a smooth function.

The Tikhonov regularized solution exists, is unique, and is given by the
formula

xδ = (AT A + δ2LT L)−1ATb.

1.3.2 TSVD and TGSVD

A different way to treat the ill–conditioning of A is to derive a new problem
with a well–conditioned rank–deficient coefficient matrix. The closest rank–`
approximation, A`, is obtained by truncating the SVD expansion in (1.5) at
`. Then, A` is given by

A` =
`

∑
i=1

uiaivT
i , ` ≤ n. (1.9)

The truncated SVD regularization solves the problem

min ‖x‖ subject to min ‖A`x− b‖
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and solution of this problem [27] is

x` =
`

∑
i=1

uT
i b
ai

vi,

where ` is the truncation parameter.
As an alternative, we can generalize the TSVD method to the TGSVD

in order to introduce a regularization matrix L. The generalized singular
value decomposition (1.6) of the matrix pair (A, L) is

A = UΣAZ−1, L = VΣLZ−1,

and the TGSVD solution is

x`,L =
p

∑
i=p−`+1

uT
i b
ai

zi +
n

∑
i=p+1

(uT
i b)zi.

1.3.3 Total Variation regularization

For a N–dimensional function u, i.e. u : [a, b]N → R with Ω = [a, b]N , we
define the Total Variation of u [74] as

TV(u) = sup
{∫

Ω
u div~v dx : ~v ∈ C1

0(Ω, RN), |~v(x)|2 ≤ 1 for ∀x ∈ Ω
}

,

where ~v = (v1, . . . , vN)
T, div ~v = ∑N

i=1
∂vi
∂xi

, and C1
0(Ω, RN) is the space of

continuously differentiable functions with compact support in Ω.
If u is differentiable, then TV(u) =

∫
Ω |∇u|2 dx. In discrete case,

TV(u) = ∑i |[∇u]i|2.
So, Total Variation regularization consists of solving

min
u
‖Au− b‖2 + γ ∑

i
|[∇u]i|2.

1.3.4 Choosing the regularization parameter

The choice of the regularization parameter is crucial in order to obtain a
good approximation of the solution. In our case, this decision is taken
to determine the truncation index in the TSVD and the regularization
parameter in the Tikhonov regularization.

Again, to get a meaningful solution it is essential to correctly estimate
the value of the regularization parameter. Several criteria are available for
this task, some requiring the knowledge of the standard deviation of the
noise affecting the data and some not requiring it.
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1. Some necessary preparatory tools

The regularization parameter can be determined in a variety of ways [17,
27, 28]. We will concentrate on the Discrepancy Principle, the Generalized
Cross Validation, and the L–curve; see [60].

Discrepancy principle

When an accurate estimate of the norm of the error e = bξ − b is known,
an appropriate value of the parameter often can be determined with the
aid of the discrepancy principle due to Morozov [48], which chooses it as the
smallest index such that

‖Ax` − b‖ ≤ τ‖e‖,

where τ > 1 is a user–supplied constant independent of ‖e‖. Properties of
the discrepancy principle are discussed in [17].

Generalized Cross Validation and Mallows’ criterion

The Generalized Cross Validation (GCV) [9, 22, 75, 76] is a statistical method
which estimates the optimal value of the regularization parameter λ, under
the assumption that the data vector b is affected by normally distributed
noise, by minimizing the functional

G(λ) =

1
m
‖(I − A(λ))b‖2

2[
1
m

trace(Im − A(λ))

]2 ,

where m is the size of b and the influence matrix A(λ) is defined by the
identity

Axλ = A(λ)b.

In Fig. 1.1 we represent the GCV function and its minimum for the
Tikhonov regularization and for the TSVD corresponding to a 128× 128
matrix generated by the function deriv2 from Hansen’s Regtools package
in Matlab.

We can see from the figure that the value of the regularization parameter
for Tikhonov is λ = 5.19 · 10−6 while the truncation parameter for the TSVD
is λ = 93 which correspond with the minimum of both of the functions.
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Figure 1.1: Representation of the GCV function and its minimum
for the Tikhonov regularization on the left–hand side and for the
TSVD on the right–hand side.

The GCV has some computationally relevant properties and, moreover,
is a predictive mean–square error criterion [76], in the sense that it estimates
the minimizer of the residual function

T(λ) =
1
m
‖A(xλ − x)‖2.

If the standard deviation σ̂ of the noise on the data is known, the
following unbiased estimate for the function T(λ) is also available

T̂(λ) =
1
m
‖(I − A(λ))b‖2 − σ̂2

m
trace(Im − A(λ)) +

σ2

m
trace(A2(λ)).

Mallows’ criterion chooses the value of λ which minimizes T̂(λ). An-
other technique which makes use of the value of σ̂ is Morozov discrepancy
principle [47].

However, numerical experiments reported in the literature (see [9, 61])
showed that these two procedures do not give better results than GCV, even
when σ is exactly known.

L–curve method

The L–curve method, introduced by Hansen [28], consists of the analysis of
the piecewise linear curve

(log ‖Axλ − b‖, log ‖Lxλ‖).

In many discrete ill–posed problems this curve exhibits a typical “L”
shape and the optimal value of the regularization parameter λ is considered
to be the one corresponding to the corner of the “L” (see Fig. 1.2 and
Fig. 1.3).
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Figure 1.2: Representation of the L–curve and its corner.

Figure 1.3: L–curve for some real experiments.

This choice is justified by the fact that while the regularized solution
xλ coincides with the least–squares solution x when λ = p (being p the
number of rows of the regularization matrix L), the ill–conditioning of A
causes a strong growth in the weighted semi–norm ‖Lxλ‖ when λ exceeds
a certain threshold. The corner of the L–curve marks this transition, since
it represents a compromise between the minimization of the norm of the
residual and the semi–norm of the solution. This choice produces a solution
for which both the norm and the residual are fairly small. There are several
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papers showing examples in which the L–curve method systematically fails;
see [26, 73]. Nevertheless, it has been shown by numerical experiments that
it provides a good estimation of the optimal regularization parameter in
many inverse problems of applicative interest [30, 60].

A numerical algorithm for the detection of the corner of the L–curve
has been introduced in [32]. When the regularization method depends on
a continuous parameter λ, like in the Tikhonov regularization, then the
L–curve is a smooth function, possibly twice differentiable, and this method
selects the value which maximizes the curvature κ(λ) of the L–curve. If,
on the contrary, the regularization parameter is discrete, like in T(G)SVD
or in iterative regularization methods, the algorithm selects the parameter
closest to the point of maximum curvature of a cubic spline curve with
knots resulting from a local smoothing of the L–curve points. The L–corner
method if currently implemented in [29]. More details of this method are
also given in [62].

A new approach based on the comparison of regularized solutions
computed by both TSVD and the Tikhonov method, has been recently
proposed in [34].
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2Linear model for frequency domain

electromagnetic (FDEM) data

inversion

Assuming a linear dependence between the GCM response and the sub-
surface electrical conductivity, McNeill [46] presented a model to estimate
conductivities for simple multilayered earth models, which is applicable
for low induction numbers

B =
r
δ
= r
√

µ0ωσ

2
� 1,

under the assumption of uniform electrical conductivity σ measured in
Siemens/meter (S/m). Here r is the inter–coil distance, δ represents the skin
depth, µ0 = 4π10−7 is the magnetic permeability of free space measured in
Henries/meter (H/m) and ω = 2π f is the angular frequency with f the
operating frequency of the device in Hertz.

Adopting this linear model, that we will study in the next section, a
Tikhonov inverse procedure was implemented in [4] with a finite differ-
ence approximation of the second derivative as a regularization matrix to
reconstruct the electrical conductivity with respect to depth. In [11] a least
squares inverse procedure with the Tikhonov regularization, optimized
with a projected conjugate gradient algorithm, has been proposed.

In [13], we propose a numerical method based on the approximation of
the electrical conductivity of the soil by either a piecewise constant function
or a linear spline, and then we apply both the TSVD (see Section 1.3.2) and
the Tikhonov regularization (see Section 1.3.1) to the linear inverse problem.
In this chapter we describe this technique and we show some numerical
results.

Two among the most well known devices for this kind of measurements
are the Geonics EM–38 and EM–31; see [4, 46]. Both provide measurements
of both the conductivity and magnetic susceptibility components. The EM–
31 and EM–38 are used for different applications because of the difference
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2. Linear model for frequency domain electromagnetic (FDEM) data inversion

in inter–coil spacing, which affects the effective depth of exploration. The
EM–31 has a coil spacing of 3.7 meters that allows it to reach depths of
approximately 6 meters in the vertical dipole mode and approximately 3

meters in the horizontal dipole mode. These depths make the EM–31 great
for maps geologic variations, groundwater contaminants, or any subsurface
feature associated with changes in ground conductivity using an electro-
magnetic inductive technique that allows measurements without electrodes
or ground contact. With this inductive method, surveys can be carried out
under most geologic conditions including those of high surface resistivity
such as sand, gravel, and asphalt. They can be also used to perform sound-
ing surveys when several measurements (at different heights/frequencies)
are provided at each location to get quantitative estimates of depth vari-
ations in true electrical conductivity. The EM–38, on the other hand, has
a much smaller inter–coil spacing of either 1 meter or 0.5 meters. This
means its depth of exploration ranges from about 1.5 meters to 0.375 meters,
depending on coil selection and dipole mode. The shallow nature of the
EM–38 makes it suitable for applications in agriculture, archaeology and
general soil sciences.

2.1 The linear model

The linear model developed by McNeill in 1980 [46] consists of the following
system of two Fredholm integral equations of the first kind; see [39, 41],

MV(h) =
∫ ∞

0
φV(z + h) σ(z) dz,

MH(h) =
∫ ∞

0
φH(z + h) σ(z) dz,

(2.1)

where σ(z) denotes the conductivity at depth z (measured in meters), h is
the height at which the measurements are taken, MV(h) and MH(h) denote
the apparent conductivity for the vertical and horizontal orientation of the
coils, respectively, and the kernels φV and φH are the sensitive functions for
the vertical and horizontal orientation, respectively defined as

φV(z) =
4z

(4z2 + 1)3/2 , φH(z) = 2− 4z
(4z2 + 1)1/2 .

Let us remark than the kernels above introduced are integrable, being

φV(z) =
d
dz

(
− 1√

4z2 + 1

)
, φH(z) =

d
dz

(
2z−

√
4z2 + 1

)
.
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2.2. Numerical methods for the solution of the inverse problem

This model is appropriate when the conductivity of the soil is relatively
low (σ ' 100 mS/m). However, the model breaks down and errors become
significant as the average soil conductivity increases.

Fig. 2.1 shows the behavior of the functions φV and φH. It reflects the
relative contribution of the electrical conductivity at depth z to a certain
measurement. We see from this figure that, for the vertical orientation

(
φV),

material located at a depth z = 0.4 (that is approximately 0.4 times the
distance between the coils) gives maximum contribution to the secondary
magnetic field but that material at a depth of z = 1.5 (1.5 times the inter–
coil distance) still contributes significantly. However, with the coils in
the horizontal orientation

(
φH), the instrument is most sensitive to the

conductivity of the soil near the surface. If we hold the instrument above
the ground at height h, the sensitivity functions become φV(z + h) and
φH(z + h).
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Figure 2.1: The sensitivity functions φV and φH .

2.2 Numerical methods for the solution of the in-

verse problem

Let us consider (2.1) and assume that the apparent conductivities MV and
MH are known, and the conductivity σ is unknown. We will reconstruct
the electrical conductivity σ of the soil by discretizing Fredholm integral
equations (2.1) for turning the given equations into a linear system that can
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2. Linear model for frequency domain electromagnetic (FDEM) data inversion

be solved numerically to provide an approximate discrete solution of the
equations.

In order to discretize (2.1) we will propose two different procedures. The
first one is based on the approximation of the unknown function σ by using
a piecewise constant function, while, in the second one, we approximate
the conductivity σ by using a linear spline.

Once these discretizations are introduced, the problem is clearly a linear
discrete ill–posed problem and being that, it will be necessary to apply
some regularization techniques.

2.2.1 Approximation by a piecewise constant function

We represent σ(z) by means of B–splines of order 1 [40, 65] as

σ(z) '
∞

∑
j=0

αj Bj(z), (2.2)

with

Bj(z) =

{
1, zj ≤ z < zj+1,

0, otherwise.
(2.3)

By replacing (2.2) in (2.1) we get



∞

∑
j=0

αj

∫ ∞

0
φV(z + h) Bj(z) dz = MV(h),

∞

∑
j=0

αj

∫ ∞

0
φH(z + h) Bj(z) dz = MH(h),

from which, by collocating each equation in the m points hi for i =

0, . . . , m− 1 corresponding to different heights of the device, we have



∞

∑
j=0

αj

∫ ∞

0
φV(z + hi) Bj(z) dz = MV(hi),

i = 0, . . . , m− 1.
∞

∑
j=0

αj

∫ ∞

0
φH(z + hi) Bj(z) dz = MH(hi),

26



2.2. Numerical methods for the solution of the inverse problem

Taking (2.3) into account, we have

φV
ij :=

∫ ∞

0
φV(z + hi)Bj(z)dz =

∫ zj+1

zj

φV(hi + z) dz

=
1√

4(hi + zj)2 + 1
− 1√

4(hi + zj+1)2 + 1
. (2.4)

φH
ij :=

∫ ∞

0
φH(z + hi)Bj(z)dz =

∫ zj+1

zj

φH(hi + z) dz

= 2(zj+1 − zj) +
√

4(hi + zj)2 + 1−
√

4(hi + zj+1)2 + 1, (2.5)

and setting MV(hi) = MV
i and MH(hi) = MH

i , we can write

∞

∑
j=0

αj φV
ij = MV

i ,

∞

∑
j=0

αj φH
ij = MH

i .

The previous system can be also written as a linear system Φα = M, with
m rows and infinite columns. To overcome this fact, we need to truncate
both the sums above considering them as sums of n terms. We will see in
Section 2.2.3 how to choose the value of n.

Once we determine n, we can consider the linear system

Φα = M, (2.6)

where α = [αj]j=0,...,n is the array of the unknowns, Φ is the matrix of
coefficients defined as

Φ =

[
φV

φH

]
, φV = [φV

ij ] i=1,...,m
j=0,...,n−1

, φH = [φH
ij ] i=1,...,m

j=0,...,n−1
,

and M is the array of the right–hand side

M =

[
MV

MH

]
, MV = [MV

0 , . . . , MV
m]

T, MH = [MH
0 , . . . , MH

m ]T.

If we adopt a uniformly spaced discretization both in h and in z, with
constant step size δ, that is

hi = iδ, zj = jδ, ∀ i = 0, . . . , m− 1, ∀ j = 0, . . . , n, (2.7)
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2. Linear model for frequency domain electromagnetic (FDEM) data inversion

we get that the entries of our matrices φV
ij and φH

ij defined in (2.4) and (2.5),
respectively, become

φV
ij = ψij − ψi,j+1, φH

ij =
1

ψij
− 1

ψi,j+1
+ 2δ,

where
ψij =

1√
4(i + j)2δ2 + 1

.

This means that, in this specific case, the blocks of the matrices φV and
φH are Hankel matrices (or Toeplitz matrices if we invert the rows order).

2.2.2 Approximation by a linear spline

Let us now approximate the solution of system (2.1) by using a linear
combination of linear B–splines [40, 65],

σ(z) '
∞

∑
j=0

αj Bj(z),

where

Bj(z) =



1
δj
(z− zj−1), zj−1 ≤ z < zj,

1
δj+1

(zj+1 − z), zj ≤ z < zj+1, if j ≥ 1

0, otherwise,

(2.8)

with δj = zj − zj−1 and j = 0, 1, . . . and

B0(z) =


1
δ1
(z1 − z), z0 ≤ z < z1,

0, otherwise.

By applying the same procedure as before, we reach the linear sys-
tem (2.6), where the entries of the blocks of the matrices φV and φH are
defined as

φV
ij =



1√
4(hi + z0)2 + 1

− 1
δ1

ψV(hi + z0, hi + z1), if j = 0

1
δj

ψV(hi + zj−1, hi + zj)−
1

δj+1
ψV(hi + zj, hi + zj+1), if j ≥ 1,

(2.9)
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2.2. Numerical methods for the solution of the inverse problem

where

ψV(a, b) =
sinh−1(2b)− sinh−1(2a)

2
,

and

φH
ij =



√
4(z0 + hi)2 + 1

2
+

1
δ1

ψH(hi + z1, hi + z0), if j = 0

1
δj

ψH(hi + zj−1, hi + zj) +
1

δj+1
ψH(hi + zj+1 hi + zj), if j ≥ 1,

(2.10)
with

ψH(a, b) =
sinh−1(2b)− sinh−1(2a)

4
+

2a(a + b)(b− a)√
4a2 + 1 +

√
4b2 + 1

+ (b− a)2.

We recall that the linear system to solve is

Φα = M,

where α = [αj]j=0,...,n is the array of the unknowns, Φ is the matrix of
coefficients defined as

Φ =

[
φV

φH

]
, φV = [φV

ij ]i=1,...,m
j=0,...,n

, φH = [φH
ij ]i=1,...,m

j=0,...,n
,

and M is the array of the right–hand side

M =

[
MV

MH

]
, MV = [MV

0 , . . . , MV
m]

T, MH = [MH
0 , . . . , MH

m ]T.

Moreover, taking the discretization (2.7) into account, from (2.9), we can
write

φV
ij =


1√

4i2δ2 + 1
− 1

δ
ψV(iδ, (i + 1)δ), if j = 0

1
δ

ψV((i + j− 1)δ, (i + j)δ)− 1
δ

ψV((i + j)δ, (i + j + 1)δ), if j ≥ 1,

and, from (2.10), we obtain

φH
ij =



√
4i2δ2 + 1

2
+

1
δ

ψH((i + 1)δ, iδ), if j = 0

1
δ

ψH((i + j− 1)δ, (i + j)δ) +
1
δ

ψH((i + j + 1)δ, (i + j)δ), if j ≥ 1.

This means that, also in this case, the blocks of the matrices φV and φH

are Hankel matrices (or Toeplitz matrices if we invert the rows order).
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2. Linear model for frequency domain electromagnetic (FDEM) data inversion

2.2.3 Truncation error

As we mentioned before, we want to truncate and approximate the sums
by finite sums so, to do it, we introduce a truncation parameter zn, so that∫ ∞

0
φV(hi + z) σ(z) dz =

∫ zn

0
φV(hi + z) σ(z) dz +

∫ ∞

zn

φV(hi + z) σ(z) dz

'
n−1

∑
j=0

φV
ij αj +

∞

∑
j=n

φV
ij αj,

and aim to determine zn so that∣∣∣∣∣ ∞

∑
j=n

φV
ij αj

∣∣∣∣∣ '
∣∣∣∣∫ ∞

zn

φV(hi + z) σ(z) dz
∣∣∣∣ < τ.

We assume that |σ(z)| ≤ M, for z ≥ 0, which implies∣∣∣∣∫ ∞

zn

φV(hi + z) σ(z) dz
∣∣∣∣ ≤ M

∫ ∞

zn

φV(hi + z) dz =
M√

4(hi + zn)2 + 1
.

By requiring that the last quantity is lesser or equal than τ, we obtain

hi + zn >

√
M2 − τ2

2τ
' M

2τ
,

from which, for hi ≥ 0 and zn = nδ, it follows

n >
M

2δτ
. (2.11)

Under the same assumptions, from∫ ∞

zn

φH(hi + z) dz =
√

4(hi + zn)2 + 1− 2(hi + zn) <
τ

M
,

we obtain
n >

M
4δτ

,

which is contained in (2.11). This is telling us that the parametrization we
should use is also a function of the maximum conductivity in the subsurface.
Clearly, at the same time, we would need to take into account that M must
be small enough to make the linear approximation valid.

We remark that the matrix Φ of the system (2.6) is a Hankel matrix and
is severely ill–conditioned so we need a regularization. For our numeri-
cal experiments we will apply both the TSVD (see Section 1.3.2) and the
Tikhonov regularization (see Section 1.3.1), and we will choose the regu-
larization parameter by the Discrepancy Principle (see Section 1.3.4), the
Generalized Cross Validation criterion (See Section 1.3.4) and the L–curve
method (see Section 1.3.4).
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2.3. Numerical results

2.3 Numerical results

In order to verify the inversion procedure, we assume the both orientations
of the instrument and we let n = 30, 40, 50 and m = 10, 15, 20. This means
that we simulate a data set with measurements collected at heights hi,
i = 1, . . . , m, starting from the ground level up to 0.1 times the value of m
and that we consider a discretization below the surface with n layers, to the
depth of 0.1(n− 1) meters.

We consider the following model for the electrical conductivity as a
function of depth z ≥ 0,

f (z) = e−(z−1)2
,

which has a maximum at z = 1; see Fig. 2.2.
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Figure 2.2: Test function used to model conductivity with respect
to depth in S/m.

A synthetic data set M̂ is constructed by applying the linear model (2.1)
at the depths zi, i = 1, . . . , n starting from the ground level down to
0.1(n− 1) meters. Finally, we add white Gaussian noise to the synthetic
data by the formula

M = M̂ +
ξ‖M̂‖√

m
w,

where w is a vector with normally distributed entries with zero mean and
unitary variance, and ξ is the noise level.

To reconstruct the electrical conductivity σ of the soil we apply the TSVD
and the Tikhonov regularization for different choices of the regularization
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2. Linear model for frequency domain electromagnetic (FDEM) data inversion

parameters, as the L–corner method, the Generalized Cross Validation
(GCV) and the Discrepancy principle.

n m TSVD Tikhonov

10 1.3e-01 1.7e-01

30 15 8.9e-02 1.4e-01

20 5.5e-02 5.9e-02

10 1.3e-01 1.0e-01

40 15 9.7e-02 1.2e-01

20 7.9e-02 9.8e-02

10 1.8e-01 1.2e-01

50 15 1.0e-01 1.1e-01

20 1.0e-01 1.0e-01

Table 2.1: Best errors attainable by the method for selected
choices of the regularization parameter applying the TSVD and
the Tikhonov regularization, and for an approximation of the
solution by a spline of order 1. Profile for σ depicted in Fig. 2.2.

n m TSVD Tikhonov

10 1.7e-01 1.3e-01

30 15 1.6e-01 1.5e-01

20 6.6e-02 1.0e-01

10 1.3e-01 1.5e-01

40 15 1.1e-01 7.9e-02

20 7.5e-02 8.4e-02

10 1.8e-01 1.7e-01

50 15 9.6e-02 1.2e-01

20 1.0e-01 1.1e-01

Table 2.2: Best errors attainable by the method for selected
choices of the regularization parameter applying the TSVD and
the Tikhonov regularization, and for an approximation of the
solution by a spline of order 2. Profile for σ depicted in Fig. 2.2.

We report in the Table 2.1 and in Table 2.2 the best absolute errors
with the infinite norm between the exact solution and its approximation
for different numbers of layers, n = 30, 40, 50, different heights, m =

10, 15, 20 and a noise level ξ = 10−4. Table 2.1 shows the results using
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2.3. Numerical results

an approximation of the electrical conductivity σ by a piecewise constant
approximation; see (2.2) and (2.3). In Table 2.2 we can see the results
for the same choices of parameters but this time, the conductivity σ is
approximated by a linear spline; see (2.2) and (2.8).

We remark that the profile selected for σ takes 103 mS/m as the maximal
value because, as we said at the beginning of this chapter, the linear model
is valid only for small values of the conductivity.

We compare the TSVD with the Tikhonov errors reported in Table 2.1
and in Table 2.2, and we can see that both methods are equivalent. Moreover,
the tables show that the method is not very sensitive upon the number of
layers, the number of heights and the order of the approximation spline for
the conductivity σ.

In Fig. 2.3 we depict the graphs of the solutions for the TSVD on the
left–hand side and for the Tikhonov regularization on the right–hand side
of the figure. This graphs are made approximating the conductivity σ

by a spline of order 1 and for n = 40, m = 20, ξ = 10−4 choosing the
regularization parameter by the L–corner, the GCV and the Discrepancy
principle.
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Figure 2.3: Representation of the TSVD (left–hand side) and
Tikhonov (right–hand side) solutions for different choices of the
regularization parameter and for n = 40, m = 20, a noise level
ξ = 10−4 and an approximation of σ by a spline of order 1. The
second row is a zoom of the plots of the first row.

Fig. 2.4 shows the best solution (i.e. the one which is “closest” in some
sense to the true conductivity profile), applying the TSVD and the best
solution applying the Tikhonov regularization taken from Fig. 2.3. The
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2. Linear model for frequency domain electromagnetic (FDEM) data inversion

TSVD takes as the best solution the one that chooses the regularization
parameter by the GCV. However, Tikhonov takes as the best solution the
one that chooses the parameter by the L–corner.
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Figure 2.4: Best solutions for the conductivity for n = 40, m = 20,
a noise level ξ = 10−4, and an approximation of σ by a spline of
order 1.
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Figure 2.5: Representation of the TSVD (left–hand side) and
Tikhonov (right–hand side) solutions for different choices of the
regularization parameter and for n = 40, m = 20, a noise level
ξ = 10−4 and an approximation of σ by a spline of order 2. The
second row is a zoom of the plots of the first row.

In Fig. 2.5 we depict the results for the same values of the parameters
but this time we use as approximation of the conductivity σ a spline of
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2.3. Numerical results

order 2. In this case, the TSVD and the Tikhonov regularization takes as
the best solution the one that chooses the regularization parameter by the
GCV (see Fig. 2.6).
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Figure 2.6: Best solutions for the conductivity for n = 40, m = 20,
a noise level ξ = 10−4, and an approximation of σ by a spline of
order 2. The second row is a zoom of the plots of the first row.

Now, we want to know what happens if we increase a little the noise
level from 10−4 to 10−2. In this case, the approximation works worse but
still the reconstruction could be acceptable (see Fig. 2.7).
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Figure 2.7: Representation of the TSVD (left–hand side) and
Tikhonov (right–hand side) solutions for different choices of the
regularization parameter and for n = 40, m = 20, a noise level
ξ = 10−2 and an approximation of σ by a spline of order 1. The
second row is a zoom of the plots of the first row.
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Figure 2.8: Best solutions for the conductivity for n = 40, m = 20,
a noise level ξ = 10−2, and an approximation of σ by a spline of
order 1. The second row is a zoom of the plots of the first row.

In Fig. 2.8 are reported the best solutions for the TSVD and the Tikhonov
regularization. The best choice of the regularization parameter for both the
TSVD and Tikhonov is the L–corner. We decided to depict just the results
using the spline of order 1 since the results for the spline of order 2 are
similar, making the approximation by the spline of order 1 equivalent to
the one by the spline of order 2.

Until now, for our numerical experiments, we took the synthetic data
vector M̂ as the exact right–hand side of our linear system (2.6). Now,
we want compare the data vector obtained from the linear system with
the one obtained by a numerical integration. More precisely, we use the
Gauss–Kronrod quadrature (see [20]).

On the left–hand side of Fig. 2.9, we depict the data vector M̂ as the
data vector of our linear system (2.6) and its approximation by the Gauss–
Kronrod quadrature for the profile f (z) = e−(z−1)2

of σ, as represented in
Fig. 2.2. On the right side we compare this data vector and its approximation
for a profile of σ f (z) = e−(z−1)2

+ 1.
The left panel in Fig. 2.9 demonstrates that, for small σ(z), we can simu-

late the corresponding electrical responses (i.e., the vertical and horizontal
apparent conductivities) equally well by using the truncation approximation
and the quadrature integration. As it is clear from the right side of Fig. 2.9,
this is not true anymore for higher values of σ. At this point, we need to
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2.3. Numerical results

modify in some way the procedure by using other kinds of approximations
for the integrals of the linear model (2.1). This would be the next step of
the research on the linear model.
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Figure 2.9: On the left side, the data vector M as from the linear
system (2.6) (with n = 40; m = 20), compared against the corre-
sponding approximation calculated by using the Gauss–Kronrod
quadrature for the profile of σ(z) = e−(z−1)2

in Fig. 2.2. On
the right side, the same comparison for the profile of σ(z) =

e−(z−1)2
+ 1.

At the beginning of this chapter, we said that this linear model to
reconstruct the conductivity of the soil with respect to depth is valid for
small values of σ. To conclude this section, we want to show what happens
when σ takes bigger values. In the next chapter we will describe a nonlinear
model for reconstructing the conductivity of the soil which is more efficient
than the linear one. In the following figures we will compare the synthetic
data vector obtained by both the linear model and the nonlinear model.

In Fig. 2.10 we represent a profile of σ which has a maximum at
100 mS/m. Under this profile we depict the synthetic data vector by
using both the linear and the nonlinear model for n = 80 and m = 20. We
see, as expected, that they are relatively similar.

However, for the same values of n and m, if we choose a profile of σ

which has as maximal value 2 · 104 (Fig. 2.11), we see that the data vectors
are very different. This proves the fact for which the linear model does not
work well for high values of σ.
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Figure 2.10: Profile of σ with maximal value 100 mS/m and the
representation of the data obtained by the nonlinear model and
the linear model for n = 80, m = 20 and the magnetic permeability
equal to the one of the free space.
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Figure 2.11: Profile of σ with maximal value 2 · 104 mS/m and the
synthetic data obtained by the nonlinear and the linear models for
n = 80, m = 20 and the magnetic permeability the one of the free
space.
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2.3. Numerical results

If we consider the magnetic permeability of the soil to be µ = σµ0, we
obtain the data vectors depicted in Fig. 2.12. To overcome the difficulties of
the linear model previously described, we resort to a nonlinear model that
we will describe in the next chapter.
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Figure 2.12: Profile of σ with maximal value 2 · 104 mS/m and the
representation of the data obtained by the nonlinear model and
the linear model for n = 80, m = 20 and the magnetic permeability
equal to µ = σµ0.
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3Nonlinear model for frequency

domain electromagnetic (FDEM)

data inversion

In this chapter we try to detect or infer, by non destructive investigation
of soil properties, inhomogeneities in the ground or the presence of partic-
ular conductive substances such as metals, minerals and other geological
structures.

A nonlinear model, presented in [81] for high values of the induction
number, is used to describe the interaction of an electromagnetic field
with the soil. As we said in Chapter 2, a least squares inverse procedure,
implementing a projected conjugate gradient algorithm, is described in
[11]. With respect to the data collection strategy previously discussed,
recently, new generations of GCMs have been developed. They are designed
to record data at multiple coil spacing and orientations using multiple
frequencies simultaneously. So there is no need for time–consuming surveys
characterized by measurements at different heights for each sounding
location.

Accordingly, starting from electromagnetic data collected by a multi–
frequency Ground Conductivity Meter (GCM), we try to reconstruct both
the electrical conductivity (see [15]) and the magnetic permeability of
the soil with respect to depth (see [16]), with a damped Gauss–Newton
method with either the Truncated Singular Value Decomposition (TSVD)
and the Truncated Generalized Singular Value Decomposition (TGSVD);
see Section. 1.3.2, and explicit representation of the Jacobian to solve the
nonlinear inverse problem. We propose an inversion method, based on
the low–rank approximation of the Jacobian of the nonlinear model, which
depends on a relaxation parameter and a regularization parameter chosen
by automatic procedures.

We will finish this chapter with some numerical results that show the
approximate solution of our nonlinear problem.
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

3.1 The nonlinear model

We briefly recall here the forward model which describes the data measured
by an EM device, when the distribution of the conductivity and the magnetic
permeability in the subsoil layers are known. It is based on Maxwell’s
equations, after introducing suitable simplifications to account for the
symmetry of the problem. It has been described firstly in [78] and [81], and
then has been adapted to the case of a GCM in [33]. The input quantities are
the distribution of the electrical conductivity and the magnetic permeability
in the subsurface; the output is the instrument reading at height h.

Following [78], the soil is assumed to possess a layered structure with n
layers, each of thickness dk, k = 1, . . . , n; see Fig. 3.1. The thickness of the
deeper layer, dn, is assumed to be infinite. Let σk and µk be the electrical
conductivity and the magnetic permeability in the kth layer, respectively,
which are assumed to be constant inside any layer. The two coils of the
measuring device are at height h above the ground, their distance is ρ.
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Figure 3.1: Discretization and representation of the subsoil.

Let uk(λ) =
√

λ2 + iσkµkω, where ω is the angular frequency of the instru-
ment, that is 2π times the frequency in Hertz, and the integration variable
λ ranges from zero to infinity, and it measures the ratio between the depth
below the ground surface and the inter–coil distance ρ.
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3.1. The nonlinear model

If we denote the characteristic admittance of the kth layer by

Nk(λ) =
uk(λ)

iµkω
, k = 1, . . . , n,

then it is shown in [78] that the surface admittance Yk(λ) at the top of the
same layer verifies the following recursion

Yk(λ) = Nk(λ)
Yk+1(λ) + Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))
, (3.1)

for k = n− 1, . . . , 1. This recursion is initialized by setting Yn(λ) = Nn(λ)

at the lowest layer. Notice that both the characteristic and the surface
admittances are functions of the frequency ω via the functions uk(λ).

Assuming that the instrument coils are vertically aligned, the ratio of
the secondary to the primary field [12, 33] is given by

M1(σ, µ; h, ω) = −ρ3
∫ ∞

0
λ2e−2hλRω,0(λ)J0(ρλ) dλ, (3.2)

where σ = (σ1, . . . , σn)T, µ = (µ1, . . . , µn)T, Js(λ) denotes the Bessel func-
tions of the first kind of order s,

Rω,0(λ) =
N0(λ)−Y1(λ)

N0(λ) + Y1(λ)
, (3.3)

N0(λ) = λ/(iµ0ω), where µ0 is the magnetic permeability of free space,
and Y1(λ) is computed by the recursion (3.1). We have explicitly highlighted
the dependence upon the frequency ω in Rω,0(λ) , since it will be useful in
the following.

For the horizontal orientation of the coils, (3.2) is replaced by

M2(σ, µ; h, ω) = −ρ2
∫ ∞

0
λe−2hλRω,0(λ)J1(ρλ) dλ. (3.4)

We remark that both (3.2) and (3.4) are complex valued functions which
can be expressed in terms of the Hankel transform

Hν[ f ](ρ) =
∫ ∞

0
f (λ)Jν(ρλ)λ dλ. (3.5)

The available measuring devices, in general, return both the real and
the imaginary part of the fields ratio, often referred to as the in–phase and
the quadrature components, respectively.

In many previous works, only the quadrature component of (3.2)
and (3.4) have been considered; see [12]. This is justified by the fact that
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

the imaginary part of M1 and M2, scaled by the constant 4/(µ0ωr2), can be
interpreted as an electrical conductivity, and is generally referred to as the
apparent conductivity.

In this thesis we consider both the in–phase and the quadrature compo-
nent of the fields ratio, since they are both measured by a GCM.

3.2 The inverse problem

Some of the more recent EM devices allow for simultaneous measurement
by means of a set of different operating frequencies, and the acquisition can
be repeated at different heights. So we set h = h1, . . . , hmh and the different
frequencies ω = ω1, . . . , ωmω , and consider the corresponding 2mhmω data
points bν

ij, where i = 1, . . . , mh, j = 1, . . . , mω, and ν = 1, 2 represents the
two possible orientations of the coils, horizontal and vertical, respectively.

The inverse problem consists of finding the electrical conductivity vec-
tor σ and the magnetic permeability vector µ which produce the best
approximation

Mν(σ, µ; hi, ωj) ≈ bν
ij, ν = 1, 2, i = 1, . . . , mh, j = 1, . . . , mω.

Specifically, we vectorize the data values bν
ij in lexicographical order

into a unique vector b ∈ Cm, m = 2mhmω. We proceed similarly for the
model predictions, obtaining the vector M(σ, µ) ∈ Cm, and minimize the
Euclidean norm of either the in–phase or the quadrature component of the
residual between the data and the model, that is

(σ∗, µ∗) = arg min
σ,µ∈Rn

1
2
‖r(σ, µ)‖2, (3.6)

where r(σ, µ) = Re(b−M(σ, µ)) or r(σ, µ) = Im(b−M(σ, µ)). We will
denote the components of the residual either by ri(σ, µ), i = 1, . . . , m to
emphasize their position in the vector r(σ, µ), or by rν

ij(σ, µ), when it is
important to underline their dependence upon the height hi (i = 1, . . . , mh),
the frequency ωj (j = 1, . . . , mω), and the vertical or horizontal orientation
(ν = 1, 2).

As we said in Section 1.1.2, Newton’s method requires the computation
of both the gradient vector and the Hessian matrix of the residual, which
have a large computational complexity. So, to overcome this difficulty,
following [12], we resort to the Gauss–Newton method described in Sec-
tion 1.1.2, which minimizes, at the kth iteration step, the norm of a linear
approximation of the residual r of (3.6).
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3.2. The inverse problem

Let r(σ, µ) be Fréchet differentiable and let (σk, µk) denote the current
approximation. Then we can write

r(σk+1, µk+1) ' r(σk, µk) + J(σk, µk)qk,

where

qk =

[
sk
tk

]
, sk ∈ Rn, tk ∈ Rn

and J(σ, µ) is the Jacobian of r(σ, µ) = (r1(σ, µ), . . . , rm(σ, µ))T, defined by

J(σ, µ) =

[
∂r(σ, µ)

∂σ

∂r(σ, µ)

∂µ

]
,

with [
∂r(σ, µ)

∂σ

]
=

∂ri(σ, µ)

∂σj
,

[
∂r(σ, µ)

∂µ

]
=

∂ri(σ, µ)

∂µj
,

for i = 1, . . . , m and j = 1, . . . , n. The exact expression of the Jacobian
matrix is given in the next Section 3.2.1.

At each iteration k, the step length qk is the solution of the linear least
squares problem

min
q∈R2n

‖r(σk, µk) + Jkq‖, (3.7)

with Jk = J(σk, µk) or some approximation, leading to the following iterative
method namely Gauss–Newton method,

(σk+1, µk+1) = (σk + sk, µk + tk)

= (σk − J†
k r(σk, µk), µk − J†

k r(σk, µk)). (3.8)

Let us note that by using the generalized inverse of J, the least squares
approach is implicitly applied.

When the residuals ri(σk, µk) are small or mildly nonlinear in a neigh-
borhood of the solution, the Gauss–Newton method is expected to behave
similarly to Newton’s method [2]. We remark that, while the physical prob-
lem is obviously consistent, this is not necessarily true in our applicative
case, where in the presence of noise in the data the problem will generally
be inconsistent. In the case of a mildly nonlinear problem, a linear model is
available; see Chapter 2 and [4, 46].

To ensure convergence, we resort to the damped Gauss–Newton method
which starts with an initial point x0, then computes the step direction q
and calculates the new iterate replacing the approximation (3.8) by

(σk+1, µk+1) = (σk + αksk, µk + αktk), (3.9)
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

where αk is a step length so that there is enough descent. To choose it, we
use the Armijo–Goldstein principle [49], which chooses αk as the largest
step size in the sequence 2−i, i = 0, 1, . . . that satisfies

‖r(σk, µk)‖
2 − ‖r(σk + αksk, µk + αktk)‖2 ≥ 1

2
αk‖Jkqk‖2

This choice of αk ensures convergence of the method, provided that
(σk, µk) is not a critical point [2], and allows us to include an important
physical constraint in the inversion algorithm, i.e. the positivity of the
solution.

It is well known that the minimization of (3.6) is an extremely ill–
conditioned problem. In particular, it has been observed in [12, Fig. 2] that
the Jacobian matrix J, expressed as a function of σ, has a large condition
number virtually for each value of σ in the solution domain. We will inves-
tigate the behavior of the condition number with respect to the variation of
(σ, µ) in Section 3.2.1.

A common remedy to face ill–conditioning consists of regularization,
replacing the least–squares problem (3.7) by a nearby problem, whose
solution is less sensitive to the error present in the data.

A regularization method which particularly suits our problem, given the
size of the matrices involved, is the Truncated Singular Value Decomposition
(TSVD); see Section 1.3.2. This method is well suited because the Jacobian
matrix Jk is ill–conditioned and has a well–determined numerical rank; (see
[27]). The best rank ` approximation (` ≤ p = rank(Jk)) to the Jacobian
matrix, according to the Euclidean norm, can be obtained by the SVD
decomposition; see Section 1.2.1. This factorization allows us to replace the
ill–conditioned Jacobian Jk by a well–conditioned low–rank matrix A`, such
that

‖Jk − A`‖ = min
rank(A)=`

‖Jk − A‖.

Then, the regularized solution to (3.7) can be expressed as

q(`) = −A†
`r = −

`

∑
i=1

uT
i r

γi
vi,

where r = r(σk, µk), γi are the elements of the diagonal matrix Σ in the
SVD decomposition, and ` = 1, ..., p is the regularization parameter.

When some kind of a priori information on the problem is available,
e.g., the solution is a step function, we can apply either the Total Variation
regularization (see Section 1.3.3) or some regularization methods in Banach
spaces (i.e., complete vector spaces endowed with a norm that only allow
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3.2. The inverse problem

“length” and “distances” between its elements to be measured, without any
scalar product). Due to the geometrical properties of Banach spaces, these
regularization methods allow to obtain solutions endowed with lower over–
smoothness. Another useful property of the regularization in Banach spaces
is that the solutions are sparse, that is, in general they can be represented
by few values. Indeed, it has been shown that the Banach spaces, with
resolution of functional equations in Lp Banach spaces, with 1 ≤ p < 2,
leads to solutions which usually have few components. This is very useful
when dealing with large scale problems, where sparsity gives rise to low
numerical cost in computation and storage [18].

On the other hand, if the solution is a smooth function, it is sometimes
useful to introduce a regularization matrix L ∈ Rt×2n (t ≤ 2n), whose kernel
approximately contains the sought solution [33]. Under the assumption
N (Jk) ∩N (L) = {0}, problem (3.7) is replaced by

min
q∈S
‖Lq‖, S = {q ∈ R2n : JT

k Jkq = −JT
k r(σk, µk)},

Very common choices for L are the discretization of the first and second
derivative operators (see Section 1.3.1), which we will denote by D1 and D2,
respectively.

The Generalized Singular Value Decomposition (GSVD) of the matrix
pair (Jk, L) is the factorization

Jk = ŨΣJZ−1, L = ṼΣLZ−1. (3.10)

By the simultaneous factorization (3.10) it is possible to define a truncated
GSVD (TGSVD) solution q(`); see Section 1.2.2 and [28] for details.

In order to find a regularized solution of (3.6), we apply the damped
Gauss–Newton method (3.9) which requires at each step the solution of
the linear least squares problem (3.7). To solve the latter, our algorithm
applies either the TSVD or TGSVD. For a fixed value of the regularization
parameter `, we substitute the truncated SVD or GSVD solution of (3.7)
q(`), obtaining the following iterative method

(σ
(`)
k+1, µ

(`)
k+1) = (σ

(`)
k + αks(`)k , µ

(`)
k + αkt(`)k ). (3.11)

We denote by (σ
(`)
k , µ

(`)
k ) the solution at convergence.

In real applications, experimental data are affected by noise, so the data
vector in the residual function (3.6) must be expressed as b = b̂ + e, where
b̂ contains the exact data and e is the noise vector. If the noise is Gaussian
and an accurate estimate of ‖e‖ is available, we can determine ` by the
Discrepancy Principle [28]; see Section 1.3.4.
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

In the absence of a trustful estimation of the noise level, many heuristic
methods have been introduced to approximate a regularization parameter;
see Section 1.3.4.

3.2.1 Computing the Jacobian matrix

As we saw in the previous section, being able to compute or to approximate
the Jacobian matrix J of r is crucial for the implementation of an effective
inversion algorithm.

In this section we give the explicit expression of the Jacobian matrix
with respect to both the electrical conductivity σ and the magnetic per-
meability µ, which is a completely new contribution. We will show that
the complexity of this computation is smaller than required by the finite
difference approximation.

Jacobian matrix with respect to σ

Since the following calculus have been done and presented in [12], we will
just write two main results that will be useful for our work.

Lemma 3.2.1 The derivatives Y′kj =
∂Yk

∂σj
, k, j = 1, . . . , n, of the surface admit-

tance (3.1) can be obtained starting from

Y′nn =
1

2un
, Y′nj = 0, j = 1, . . . , n− 1,

and proceeding recursively for k = n− 1, n− 2, . . . , 1 by

Y′kj = N2
k bkY′k+1,j, j = n, n− 1, . . . , k + 1,

Y′kk =
ak

2uk
+

bk

2

[
N2

k dk −Yk+1

(
dkYk+1 +

1
iµkω

)]
,

Y′kj = 0, j = k− 1, k− 2, . . . , 1,

where

ak =
Yk+1 + Nk tanh(dkuk)

Nk + Yk+1 tanh(dkuk)
,

bk =
1

[Nk + Yk+1 tanh(dkuk)]2 cosh2(dkuk)
.

Proof 3.2.1 See [12].
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3.2. The inverse problem

Theorem 3.2.1 The partial derivatives of the residual function r(σ) are given by

∂rν
ij(σ)

∂σk
=



4ρ

µ0ωj
H0

[
λe−2hiλ

∂Rωj ,0(λ)

∂σk

]
(ρ), ν = 1.

4
µ0ωj

H1

[
e−2hiλ

∂Rωj ,0(λ)

∂σk

]
(ρ), ν = 2,

for i = 1, . . . , mh, j = 1, . . . , mω, and k = 1, . . . , n. Here Hν (ν = 1, 2) denotes

the Hankel transform, ρ is the inter–coil distance,
∂Rω,0(λ)

∂µk
is the kth component

of the gradient of the function (3.3)

∂Rω,0(λ)

∂σk
=

−2λiµ0ω

(λ + iµ0ωY1(λ))2 ·
∂Y1(λ)

∂σk
,

and the partial derivatives
∂Y1(λ)

∂σk
are given by Lemma 3.2.1.

Proof 3.2.2 See [12].

Jacobian matrix with respect to µ

In its statement we omit, for clarity, the variable λ, [16].

Lemma 3.2.2 The derivatives Y′kj =
∂Yk

∂µj
, k, j = 1, . . . , n, of the surface admit-

tance (3.1) can be obtained starting from

Y′nn =
σn

2µnun
− Nn

µn
, Y′nj = 0, j = 1, . . . , n− 1, (3.12)

and proceeding recursively for k = n− 1, n− 2, . . . , 1 by

Y′kj = N2
k bkY′k+1,j, j = n, n− 1, . . . , k + 1,

Y′kk =
ak − bkNkYk+1

µ2
kω

(
uk −

σk

2Nk

)
i +

bkdkσk

2µk
(N2

k −Y2
k+1),

Y′kj = 0, j = k− 1, k− 2, . . . , 1,

(3.13)

where

ak =
Yk+1 + Nk tanh(dkuk)

Nk + Yk+1 tanh(dkuk)
,

bk =
1

[Nk + Yk+1 tanh(dkuk)]2 cosh2(dkuk)
.

(3.14)
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

Proof 3.2.3 From the definition of Nk(λ) we obtain

∂uk

∂µj
=

∂

∂µj

√
λ2 + iσkµkω =

1
2Nk

σk

µk
δkj,

∂Nk

∂µj
=

∂

∂µj

uk

iµkω
=

uk − σk
2Nk

µ2
kω

iδkj,
(3.15)

where δkj is the Kronecker delta, that is 1 if k = j and 0 otherwise. The recursion
initialization (3.12) follows from Yn = Nn; see Section 3.1. We have

Y′kj =
∂Nk

∂µj
ak + Nk ·

∂Yk+1
∂µj

+ ∂Nk
∂µj

tanh(dkuk) + Nk
∂ tanh(dkuk)

∂µj

Nk + Yk+1 tanh(dkuk)

− Nkak ·
∂Nk
∂µj

+ ∂Yk+1
∂µj

tanh(dkuk) + Yk+1
∂ tanh(dkuk)

∂µj

Nk + Yk+1 tanh(dkuk)
,

with ak defined as in (3.14). If j 6= k, then
∂Nk

∂µj
=

∂uk

∂µj
= 0 and we obtain

Y′kj = N2
k

∂Yk+1
∂µj

(
1− tanh2(dkuk)

)
[Nk + Yk+1 tanh(dkuk)]2

= N2
k bkY′k+1,j.

The last formula, with bk given by (3.14), avoids the cancellation in 1− tanh2(dkuk).
If j = k, after some straightforward simplifications, we get

Y′kk =
∂Nk

∂µk
ak +

Nk

Nk + Yk+1 tanh(dkuk)

[
Y′k+1,k(1− ak tanh(dkuk))

+
∂Nk

∂µk
(tanh(dkuk)− ak) +

dk

2
σk

µk

(
1− ak

Yk+1

Nk

)
(1− tanh2(dkuk))

]
.

This formula, using (3.14) and (3.15), leads to

Y′kk =
∂Nk

∂µk
(ak − bkNkYk+1) + bk

dk

2
σk

µk

[
N2

k −Y2
k+1
]

.

The initialization (3.12) implies that Y′kj = 0 for any j < k. In particular
Y′k+1,k = 0 and, since Nk/uk is constant one obtains the expression of Y′kk given
in (3.13). This completes the proof.
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3.3. Software implementation

Theorem 3.2.2 The partial derivatives of the residual function r(µ) are given by

∂rν
ij(µ)

∂µk
=


ρ3H0

[
λe−2hiλ

∂Rωj ,0(λ)

∂µk

]
(ρ), ν = 1,

ρ2H1

[
e−2hiλ

∂Rωj ,0(λ)

∂µk

]
(ρ), ν = 2,

for i = 1, . . . , mh, j = 1, . . . , mω, and k = 1, . . . , n. Here Hν (ν = 1, 2) denotes

the Hankel transform, ρ is the inter–coil distance,
∂Rω,0(λ)

∂µk
is the kth component

of the gradient of the function (3.3)

∂Rω,0(λ)

∂µk
=

−2λiµ0ω

(λ + iµ0ωY1(λ))2 ·
∂Y1(λ)

∂µk
,

and the partial derivatives
∂Y1(λ)

∂µk
are given by Lemma 3.2.2.

Proof 3.2.4 The proof follows easily from Lemma 3.2.2 and from equations (3.3),
(3.2), (3.4), and (3.6).

3.3 Software implementation

The inversion algorithm described in the previous sections has been imple-
mented in the Matlab programming language. The numerical experiments
were performed on a dual Xeon CPU E5//2620 system (12 cores), running
the Debian GNU/Linux operating system and Matlab 9.1.

The main Matlab script driver deals with the reconstruction of the
electrical conductivity and the magnetic permeability of the soil. It is based,
principally, on a further routine, emsolvenl, which solves the non linear
model for FDEM with respect to either the conductivity or the permeability.
Using the smaller code tsvdnewt which applies the Gauss–Newton method
for TSVD regularization, emsolvenl provides us the following output:
the regularization parameter, the regularized solutions, the residuals and
the weighted norm for each regularized solution, the errors with respect
to the true solution, and the number of failures on the regularization
identification. For the forward problem driver calls these other routines:
hratio, inphase and quadracomp. The first one computes the complex
value of the ratio between the secondary and principal field at the height h
above the ground in a layered conductivity model, while the second and
the third ones calculate the in–phase and the quadrature components of the
ratio, respectively.
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

For simplicity’s sake, we are working on a graphical user interface (GUI)
using GUIDE, the graphical user interface development environment of
Matlab. In Fig. 3.2 we show the appearance of this interface.

Figure 3.2: Graphical user interface using GUIDE, the graphical
user interface development environment of Matlab.

Once the graphical interface will be finished, it will be available as
a free Matlab package for Analysis and Solution of Inverse problems in
Electromagnetic Sounding.

3.4 Numerical results

The numerical experiments were performed on a dual Xeon CPU E5//2620

system (12 cores), running the Debian GNU/Linux operating system and
Matlab 9.1.

We will study in the next subsections the behavior of the electrical
conductivity when the permeability is known and vice versa.

Electrical conductivity

To model the conductivity of the subsoil with respect to depth [15], ex-
pressed in meters, we chose the test function f (z) = e−(z−1)2

depicted in
Fig. 3.3.

52



3.4. Numerical results

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Depth z (m)

C
o
n
d
u
c
ti

v
it

y
 p

ro
le

 (
S
/m

)

Figure 3.3: Graph of the test function used to model conductivity
with respect to depth.

For fixed n and d = (3.5 meters)/n, we let σq = f (qd) and µ̂q = µ0 for
q = 1, . . . , n. Then, we apply the forward model described in Section 3.1 to
generate the instrument readings

b̂ij = Mν(σq, µ̂q; ωi, hj),

with i = 1, . . . , mω and j = 1, . . . , mh, corresponding to frequency ωi = 2π fi
and height hj. Finally, we add Gaussian noise to the synthetic data by the
formula

b = b̂ +
ξ‖b̂‖√

m
w,

where w is a vector with normally distributed entries with zero mean and
unitary variance, m = mωmh, and ξ is the noise level.

In order to simulate the use of a particular multi–frequency device,
the Geophex GEM–2 conductivity meter, we consider the coils to be in
the vertical orientation at a fixed distance r = 1.66m. The measure-
ment height h is either 1m (mh = 1) or 0.5m and 1m (mh = 2). Each
data set is recorded simultaneously at the operating frequencies fi =

775, 1175, 3925, 9825, 21725, 47025 (all expressed in Hertz), that is mω = 6.
In the first experiment we investigate how to choose some of the pa-

rameters of the methods, namely, the regularization matrix L, the heights
number mh, the number of layers n, and either the real or the imaginary
part of the signal. For each choice of the parameters, we apply the above
procedure to compute a synthetic data, we add noise at level ξ = 10−3, 10−2,
and we generate 20 realizations of the random noise vector w, to produce
40 test problems. For each test, we measure the relative error

E`opt =
‖σ − σ(`opt)‖
‖σ‖ ,
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

where the regularization parameter `opt has been chosen in order to min-
imize the value of E`, ` = 1, . . . , p, so that the accuracy attained by the
method is maximal.

L mh n = 20 n = 30 n = 40

I 1 3.6e-01 3.7e-01 3.7e-01

2 4.5e-01 4.5e-01 4.4e-01

R D1 1 3.0e-01 3.3e-01 2.9e-01

2 2.4e-01 2.4e-01 2.3e-01

D2 1 2.4e-01 2.1e-01 2.8e-01

2 2.5e-01 2.5e-01 2.3e-01

I 1 3.2e-01 3.9e-01 4.0e-01

2 3.0e-01 3.4e-01 3.4e-01

I D1 1 1.9e-01 2.3e-01 1.9e-01

2 2.1e-01 1.9e-01 1.9e-01

D2 1 2.3e-01 2.0e-01 2.4e-01

2 2.1e-01 2.2e-01 2.1e-01

Table 3.1: Best accuracy attainable by the method for both the real
part, R, and the imaginary part, I , of the signal and for selected
choices of the parameters. Each entry of the table is the average
of E`opt across 40 experiments, with two noise levels and 20 noise
realizations.

For each combination of the selected parameters, we report in Table 3.1
the average of the values of E`opt across the available 40 test problems. The
table confirms that the choice of the regularization matrix L = I produces
the least accurate results mainly because our test function is smooth, as
observed in [12], while D1 and D2 (see Section 1.3.1) are more or less
equivalent. The method is not very sensitive upon the number of layers n
and the accuracy does not improve substantially when mh = 2, with respect
to mh = 1. Since increasing mh implies a larger data acquisition time, in
our next experiments we will set L = D2, mh = 1, and n = 30. Both the
real and imaginary part of the signal seem to contain the same amount of
information about the solution, with the quadrature component reaching
a slightly better accuracy. This suggests that both components should be
considered in the solution of the least squares problem (3.6).

In our next experiment, we consider the presence of electromagnetic ma-
terials in the subsoil (µ > µ0 in some layer) and analyze the effectiveness of
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the L–curve as a method to choose the regularization parameter `. Table 3.2
is divided into 2 main blocks: the first 2 rows concern the optimal choice
` = `opt, the last 2 rows the choice ` = `L-curve, produced by the L–curve.
The integer number on the bottom of each row represents the number of
failures, that is how many of the 40 experiments produced a relative error
larger than 1.5. We verified that when the error is below this limit it is
still possible to recover from the solution significant information, e.g., the
localization in depth of the maximal conductivity. The real number on the
top of each row represents the average of E`opt (first two rows) and E`L–curve

(last two rows) across the acceptable errors. The first column contains the
result corresponding to µ̂q = µ0, q = 1, . . . , n, as for the previous exper-
iment. From the second to fourth column, the magnetic permeability of
each layer is set to

µ̂q = µrµ0 f (qd) + µ0, q = 1, . . . , n,

where the relative magnetic permeability µr = 10, 102, 103 (µr = µ/µ0), and
f (z) is the function of Fig. 3.3. The largest value of µr roughly correspond
to the magnetic permeability of iron.

µ0 µr = 10 µr = 102 µr = 103

optimal - R 2.3e-01 4.3e-01 5.3e-01 5.5e-01

0 13 9 19

optimal - I 2.4e-01 5.3e-01 4.5e-01 7.1e-01

0 6 4 12

L–curve -R 2.6e-01 6.3e-01 4.7e-01 5.4e-01

0 20 18 27

L–curve - I 2.6e-01 4.2e-01 5.5e-01 7.4e-01

0 23 10 16

Table 3.2: Results for different values of the relative magnetic
permeability µr. Each row displays the average error and the
number of failures across 40 experiments; see text. The upper block
concerns the optimal choice of `, the bottom block the choice by
the L–curve.

From Table 3.2, it is immediately evident that the inversion problem
is much harder to solve when µr > 1. The considerable number of exper-
iments whose relative error is larger than 1.5 (the failures) suggests that
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

the algorithm, originally conceived for constant permeability µ0, should be
modified in order to deal with the general situation. Nevertheless, when
the algorithm does not fail the error for µr > 1 is only slightly larger than
for µ = µ0. Preliminary results on field data in [3] suggest that the solutions
produced by the method are still accurate for moderate values of µr.

When the regularization parameter ` is chosen by the L–curve, rather
than optimally, the performance of the method gets worse, in terms of
number of failures, but the error is still acceptable. This experiment confirms
that both the real and imaginary part of the signal contain substantial
information about the solution.

To illustrate the effect of regularization on the computed solutions we
depict in Fig. 3.4 the first 4 regularized solutions σ(`), that is the limit
solutions of the iterative scheme (3.11) when ` = 1, 2, 3, 4. This experiment
is characterized by constant permeability µ0 and noise level ξ = 10−3;
the solution (green line) is computed by minimizing the real part of the
signal. The exact solution is displayed in each graph by a blue line. The
graphs show that when the parameter is smaller than the optimal value, the
solution is over–regularized and it is just a sketch of the correct conductivity
profile. On the contrary, when ` is too large there are no constraints on the
error propagation, and the under–regularized solution exhibits abnormal
oscillations.
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Figure 3.4: Plot of the first 4 regularized solutions, computed
by minimizing the real part of the signal, compared to the exact
solution. The magnetic permeability µ = µ0 is constant, the noise
level is ξ = 10−3.
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Figure 3.5: Solution obtained by minimizing the real part of the
data (left) or the imaginary part (right); ξ = 10−3, µr = 10 in the
top row, µr = 102 in the bottom row. The value of ` is chosen
either optimally or by the L–curve.

In Fig. 3.5 we compare the solution obtained by minimizing the real
part of the data (left column) to the one corresponding to the imaginary
part (right column). The blue line is the exact solution, the black line
is the optimal solution, the dashed line represents the L–curve solution.
The graphs in the top row correspond to µr = 10 and ξ = 10−3. For the
real part, the L–curve selects the optimal parameter ` = 2, with an error
E`opt = E`L-curve = 0.37; for the imaginary part, the algorithm fails. The
bottom row of Fig. 3.5 displays a similar experiment, with µr = 102. In this
case, the L–curve correctly identifies the regularization parameter for the
quadrature part minimization (` = 3), with an error E`opt = E`L–curve = 0.70.
On the contrary, while the optimal error for the real part is E`opt = 1.36
(` = 3), the L–curve chooses the parameter ` = 2, producing an incorrect
solution.

Some other numerical experiments for finding the imaginary part of the
electrical conductivity have been studied in [12].

Magnetic permeability

In the first experiment, we investigate the ill–conditioning of the problem.
We assume the loop–loop device is in the vertical orientation with a constant
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3. Nonlinear model for frequency domain electromagnetic (FDEM) data inversion

operating frequency f = 14600Hz and an inter–coil distance ρ = 1m; these
features are typical of one of the most widely used device, the Geonics
EM38. We let n = mh = 10, 20, 30, 40, that is, we simulate a dataset with
measurements detected at heights hi, i = 1, . . . , mh, starting from the ground
level up to 1.9m, and we consider a discretization below the surface with
the same number n of layers, until the depth of 3m. For each choice of
n, we evaluate the Jacobian matrix J at 100 random vectors in Rn, with
entries distributed in the interval [µ0, µrµ0], for a chosen value of µr. For
each example, we record the singular values of J, as computed by the svd

function of Matlab. The scaling parameter µr represents the maximum
value allowed for the relative permeability, and is initially set to 100. The
layers conductivity is fixed at a constant value.
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Figure 3.6: Average of the singular values of the Jacobian J(µ)
computed on 100 random points in Rn, for m = n = 10, 20, 30, 40
(left–hand side); each component of µ is in [µ0, 100µ0]. The right–
hand side graph shows the average singular values for n = 20
together with their maximum and minimum value across the
random tests.

The left–hand side graph in Fig. 3.6 displays the average of the singular
values for each choice of n; the dashed line marks the value of the machine
epsilon 2.2 · 10−16. It is immediate to observe that the singular values decay
exponentially. The deviation from the initial decay rate, observed for n > 20,
is likely to be due to the error propagation caused by ill–conditioning, so
it is reasonable to conjecture that the condition number increases with
the size of the problem. The right–hand side graph in Fig. 3.6 shows the
average of the singular values for n = 20, together with their maximum
and minimum value across the 100 performed random tests. The graph
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shows that the variance from the average is small, so that the Jacobian is
uniformly ill–conditioned for permeabilities in [µ0, µrµ0], when µr = 100.
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Figure 3.7: Average of the singular values of the Jacobian J(µ)
computed on 100 random points in Rn, for m = n = 20; each
component of µ is in [µ0, µrµ0], with µr = 10, 102, 103, 104.

Fig. 3.7 reports the average of the computed singular values when the
maximum relative permeability µr takes the values 10, 102, 103, 104. The
conditioning of the problem increases dramatically when the magnetic
permeability is large, making it much harder to solve the inversion problem.
This typically happens in the presence of ferromagnetic materials in the
subsoil; consider that for iron µr ' 5 · 103. The fact that the problem is
severely ill–conditioned also for small values of µr is in accordance with
[12, Fig. 2], where µr = 1 and the values of the conductivity are varied.
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Figure 3.8: Efficiency in the evaluation of the Jacobian J of size n =
10, 20, . . . , 100, compared to a finite difference approximation. The
left–hand side graph displays the computing time in seconds for
the two approaches; the right–hand side graph reports the speedup
factor, i.e., the ratio between the timings of finite difference and
the exact Jacobian.

Let us consider the following approximation of the partial derivatives
of the residual components

∂ri(µ)

∂µj
'

ri(µ + δj)− ri(µ)

δ
, i, j = 1, . . . , n, (3.16)

where δj = δ ej = (0, . . . , 0, δ, 0, . . . , 0)T and δ is a fixed constant. Resorting
to a finite difference approximation of the Jacobian is a common approach in
the solution of nonlinear problems; see, e.g., [33]. In [12] it was pointed out
that the exact computation of the Jacobian of the residual r(σ), expressed
as a function of the conductivity vector σ, has a smaller computational
complexity than its finite difference approximation. This was a relevant
observation, since in many practical applications it is often assumed that the
exact knowledge of the Jacobian is not strictly required, as its approximation
leads to an algorithm with equivalent performance. The superiority in term
of complexity of the exact evaluation of J is confirmed also when the
residual vector is seen as a function of µ. Fig. 3.8 shows how the two
approaches perform when the size of the problem increases. For mh = n =

10, 20, . . . , 100, we compute J by the exact formulas of Theorem 3.2.2 and
by its finite difference approximation. The execution time is averaged over
100 repetitions of the computation. Fig. 3.8 reports the computing time for
the two algorithms (left–hand side graph) together with the speedup factor
(on the right), which we define as the ratio between the two timings. It is
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clear that the efficiency of the exact computation increases with the size of
the problem.
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Figure 3.9: The “spy plot” on the left shows the pattern of the
nonzero elements for the Jacobian J of size 40× 20, as computed
by the formulas in Section 3.2.1. The central graph displays the
same information for J̃, obtained by the approximation (3.16). The
right–hand side plot represents the relative error for the first two
singular values with respect to the variation of δ in (3.16).

The exact Jacobian outperforms the finite difference approximation
also from the point of view of accuracy, as the latter suffers from severe
error propagation due to numerical cancellation. We let µi ∈ [µ0, µrµ0],
i = 1, . . . , n, with µr = 10, and compare the Jacobian J(µ) of size 40× 20 to
its approximation J̃(µ) obtained by (3.16) with δ = 10−6. The two left–hand
side graphs in Fig. 3.9 display the pattern of the nonzero elements of J and
J̃. The norm of the columns of J decays very quickly, leading to zero–out
its entries starting from the 15th column, because of underflow. When we
approximate the Jacobian by (3.16) for any δ ≤ 10−3, cancellation makes
the elements drop to zero already from the fourth columns; see the central
graph in Fig. 3.9. By computing the singular values σi(J) and σi( J̃) of the
two matrices J and J̃, respectively, we can see that σi(J) = 0 when i ≥ 12
for the exact Jacobian, while only the first three singular values of J̃ are
different from zero, denoting a dramatic loss of information.

The right–hand side of Fig. 3.9 shows the relative differences

σi(J)− σi( J̃)
σi(J)

, i = 1, 2,

when δ in (3.16) takes the values 10−3, 10−4, . . . , 10−10. While the approxi-
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mation error for the first singular value decays monotonically, the error for
the second one diverges when δ < 10−8. The situation is even worse for the
third singular value, since σ3( J̃) grows from 1.2 · 10−12 to 1.3 · 10−5 when
δ = 10−3, 10−4, . . . , 10−10, while σ3(J) = 2.0 · 10−20.

The accuracy of the finite difference approximation degrades in the
presence of a larger magnetic permeability, as for µi ∈ [µ0, µrµ0] with
µr ≥ 102 only one column (and consequently one singular value) of J̃(µ) is
different from zero, while the exact Jacobian preserves a larger number of
nonzero columns.

In order to verify the performance of the new formulas for the Jacobian
in the inversion of EM data, we considered the following a priori model for
the magnetic permeability as a function of depth

µθ(z) = µ0(θe−(z−1.2)2
+ 1),

where θ is a parameter to be chosen. The permeability takes values in
[µ0, (θ + 1)µ0] and has a maximum at z = 1.2m. The conductivity of the
subsoil is assumed to be known in advance and to be strongly correlated to
the values of µθ(z); we represent it by the model function σθ(z) = θe−(z−1.2)2

,
with values in [0, θ].

A synthetic data set is constructed by applying the forward model
described in Section 3.1 to the sampling of µθ(z) and σθ(z) at the depths
zi = 3.5(i− 1)/(n− 1), i = 1, . . . , n. We initially fix mh = 10, n = 40, and
let the measurement heights be hi = 1.9i/mh, i = 1, . . . , mh. We assume one
operating frequency f = 14600Hz for the instrument (mω = 1), and both
the horizontal and the vertical orientations. The data set is contaminated
by additive white noise, with mean value zero and standard deviation
ξ/
√

n. Since the noise level is known, we can estimate the regularization
parameter ` in (3.11) by the Discrepancy Principle (1.3.4), where we set
‖e‖ = ξ = 10−3 and τ = 1.5.

Fig. 3.10 shows the model solution compared to the approximated solu-
tions obtained by applying our inversion algorithm either to the real part or
to the imaginary part of the data values. We fixed θ = 2, corresponding to
a moderate variation of the magnetic permeability. The solutions identified
by the Discrepancy Principle lead both to a good global reconstruction of
the test function and a reasonably accurate localization of its maximum.
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Figure 3.10: Regularized solution obtained by fixing θ = 2, mh =
10, mω = 1, n = 40, and ξ = 10−3. On the left, the result obtained
by inverting the in–phase component of the data; on the right, the
solution corresponding to the quadrature component.

Fig. 3.11 displays the data set and the measurement predicted by the
model for both the regularized solutions. A good matching between the
measured and the predicted data values guarantees a small residual.
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Figure 3.11: Measured (circles) and predicted (asterisks) data
values for the two solutions displayed in Fig. 3.10; we display
the data for both the vertical and the horizontal orientation of
the device. The graphs on the left are obtained by inverting the
in–phase component of the measured signal; the graphs on the
right correspond to the quadrature component.
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This is, in general, an indication that the chosen initial solution con-
verged to an accurate local solution, and that the algorithm was successful.
In these experiments we chose µ(0) = 2µ0u, with u = (1, . . . , 1)T.
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Figure 3.12: Regularized solution obtained by fixing θ = 20, mh =
20, mω = 1, n = 40, and ξ = 10−3. On the left, the result obtained
by inverting the in–phase component of the data; on the right, the
solution corresponding to the quadrature component.

The graphs in Fig. 3.12 show the solutions obtained by fixing θ = 20,
that is, assuming a wider variation of the magnetic permeability. All the
other parameters are unchanged, except mh = 20. The solutions displayed
in the graphs are obtained by selecting the initial solution which produces
in the most significant converged solution, that is, µ(0) = 8µ0u for the
in–phase component inversion, µ(0) = 10µ0u for the quadrature component
inversion. Both experiments do not correctly reproduce the behavior of
the solution: despite the size of the data is doubled, the algorithm is only
able to detect the shape of the solution up to the depth of about 1 meter.
We remark that the quality of the approximations does not improve by
overestimating the value of the regularization parameter indicated by the
Discrepancy Principle.

Varying the instrument height, that is, considering many hi values, has
been the standard approach with first generation devices, in order to obtain
multiple data for each spatial point. This redundant information is required
whenever one pretends to reconstruct the distribution of the electromagnetic
features of the subsoil with respect to depth. Last generation instruments,
however, are either endowed with more than two coils, allowing for multiple
values of the inter–coil distance ρ, or are able to perform simultaneous
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measurements with different angular frequencies ωj = 2π f j. The Geophex
GEM–2 falls into the last class of devices; it is endowed with two coils at a
distance ρ = 1.66m, and it can be configured to use up to 10 frequencies
for each data acquisition. In the following experiment we assume that
each measurement is performed at 6 different frequencies, namely f =

775Hz, 1175Hz, 3925Hz, 9825Hz, 21725Hz, 47025Hz, with the instrument at
the height of 1m, and using both the orientations. This means that we fix
mh = 1, mω = 6, ν = 1, 2, and apply the inversion algorithm with m = 12
data values. The noise level is the same than before, i.e., ξ = 10−3, and
the regularization parameter is chosen by the Discrepancy Principle (1.3.4),
with τ = 1.5.
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Figure 3.13: Regularized solution obtained by fixing θ = 20, mh =
1, mω = 6, n = 40, and ξ = 10−3. On the left, the result obtained
by inverting the in–phase component of the data; on the right, the
solution corresponding to the quadrature component.

We report in Fig. 3.13 the results obtained by assuming the same strong
variation of the permeability (θ = 20) of the preceding experiment. The two
graphs are computed by inverting either the in–phase or the quadrature
component of the signal. The accuracy of the reconstructions demonstrates
that varying the operating frequency of the device produces a data set
containing much richer information than varying its height, and suggests
that this approach should be preferred in practical EM data inversion.
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4Time domain electromagnetic

(TDEM) response of a conductive

permeable sphere

The reaction of a spherical conducting ore zone to an impressed mag-
netic field is of great practical importance, e.g., discover of unexploded
ordnance. The general problem of a sphere under the influence of an
impressed electromagnetic field has been firstly investigated, in a general
manner, by Debye [10] in 1909 and a more specific problem of a conducting
sphere in the presence of a magnetic dipole has been treated by March [44]
in 1929.

When a conducting body is immersed in a time–varying magnetic field,
eddy currents are induced. These produce, in turn, a secondary magnetic
field which may be detected by an observer external to the sphere. It has
been demonstrated that a measurement of the external field can be used
to estimate the conductivity of the body if certain assumptions are valid.
Ward, in 1953 [80], has shown that the conductivity and permeability of
geological core specimens from diamond drill holes may be determined by
examining the frequency dependence of the time–harmonic response of the
specimen. In principle, the same information should also be available from
the time–response of the specimen for a suddenly applied magnetic field
[77].

In 1951 Wait [77] dealt with a special case of a conducting sphere
embedded in a relatively poorly conducting medium [79]. The applied field
was assumed to be uniform in the region of the sphere. The secondary
fields for sinusoidally varying primary fields were developed from first
principles. This is a special case of the Debye and March solutions when
the external medium has a small conductivity. The transient solutions can
be obtained directly by suitable integrations of the steady state solutions.
The secondary field responses to a step–function type of magnetic applied
field are in turn explicitly calculated.
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4. Time domain electromagnetic (TDEM) response of a conductive permeable sphere

This chapter involves a work in progress which is concerned with
estimating the magnetic permeability, the conductivity and the radius of a
sphere imbedded in a uniform time–varying magnetic field via exponential
sums. We first find a series expansion for the magnetic fields inside and
outside the sphere, after that we impose regularity (i.e. continuity of
the normal flux and tangential magnetic field) at the boundary in order
to explicitly compute coefficients of the series. Then, we find a series
expansion for the step–function and finally compute the parameters of the
materials by means of the (measured) values of the step–function (i.e. the
inverse problem).

4.1 Setting of the problem

φ

z

x

rs

re

P

µs, σs

µ0

y

Figure 4.1: The coordinate system for the conducting sphere.

Let us consider a sphere of radius rs, conductivity σs and permeability
µs, and assume that, in the neighborhood of the sphere, a uniform mag-
netic field H = H0eiωt, with intensity H0, is applied at the time t with a
propagation constant

γe =
√

iµeω(σe + iεeω), (4.1)

where εe, µe, σe denotes the dielectric constant, the permeability and the
conductivity of the external medium, respectively. Assuming the existence
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4.1. Setting of the problem

of a uniform external applied field means that the radius of the sphere is
much less than a wavelength in the external medium, i.e. the radius and
the above propagation constant satisfy the constrain

|γers| � 1. (4.2)

We introduce a spherical polar coordinate system centered at the center
of the sphere (see Fig. 4.1) and, without loss of the generality, assume that
the polar axis (i.e. the z axis) is taken parallel to the external magnetic field.
The magnetic field must be expressible everywhere in terms of the magnetic
vector [F]z with only the z component since the resulting circulating or
eddy currents are only in the φ direction,

H = −(σ + iω)[F]z +
1

iµω
grad div[F]z.

Hence, the magnetic vector potential for the primary field is given by

[F0]z = −(σe + iεeω)H0.

The magnetic field outside the sphere has a potential vector given by
(see [7])

[Fe]z = −(σe + iεeω)H0 +
iµeω

re

∞

∑
n=0

an K̂n(γere)Pn(cos θ), (4.3)

where re is the distance between the center of the sphere and the observation
point P ≡ P(x, y, z), Pn denotes the Legendre polynomials [23] and K̂n are
the modified spherical Bessel functions of the second kind [23] defined

as K̂n =
√

2z
π Kn+ 1

2
, with Kn+ 1

2
the modified Bessel functions of the second

kind [82].
On the other hand, denoting by

γs =
√

iµsω(σs + iεsω)

the propagation constant of the sphere, the vector magnetic field inside the
sphere is

[Fs]z =
iµsω

rs

∞

∑
n=0

bn În(γsrs)Pn(cos θ) (4.4)

where În is the modified spherical Bessel functions of the first kind [23]
defined as În =

√
πz
2 In+ 1

2
, with In the modified Bessel functions of the first

kind [82].
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4. Time domain electromagnetic (TDEM) response of a conductive permeable sphere

The two magnetic fields along the boundary, that is when rs = re ≡ ρ,
has to assure that the normal flux density has to be continuous as well
as the tangential magnetic field. This implies that in (4.3) and (4.4) all
coefficients with n 6= 0 vanish and (4.3) and (4.4) become

[Fe]z = −(σe + iωεe)H0 + a0 µeiω
e(−γeρ)

ρ
, [Fs]z = ib0 µs ω

sinh(γsρ)

ρ

where a0 and b0 satisfy the following system
1
ρ

∂Fs

∂ρ
− γ2

s Fs =
1
ρ

∂Fe

∂ρ
− γ2

e Fe,

µs

(
∂2Fs

∂2ρ
− γ2

s Fs

)
= µe

(
∂2Fe

∂2ρ
− γ2

e Fe

)
.

By solving the above system we find that the potential outside the sphere
shell corresponds to an uniform field H0 plus a dipole field having the
following dipole moment a0 oriented parallel to H0:

a0 = eγeρ H0ρ3 γ2
e (εeiω + σe)

2µeiω
γsρ(2µs + µe) cosh (γsρ)− (2µs + µe + (γsρ)2µe) sinh (γsρ)

A cosh (γsρ) + B sinh (γsρ)
,

with
A = γsρ(−µe(1 + γeρ) + µs(1 + γeρ + (γeρ)

2)),

B = µe(1 + γeρ)(1 + (γsρ)
2)− µs(1 + γeρ + (γeρ)

2).

Inside the sphere, there is a uniform magnetic field parallel to H0 and equal
in magnitude to −b0 with

b0 = H0ρ3 γ2
e (εeiω + σe)µe

2µsiω
(3 + 3γeρ + (γeρ)2)

A cosh (γsρ) + B sinh (γsρ)
.

Let us note that under the assumption (4.2), taking (4.1) into account
and setting α = γsρ, the previous coefficients can be written as

a0 = H0ρ3 (εeiω + σe)
2 α(2µs + µe) cosh (α)− (2µs + µe + α2µe) sinh (α)

2α(µs − µe) cosh (α) + 2(µe(α2 + 1)− µs) sinh (α)
,

b0 = H0ρ3 (εeiω + σe)
2µ2

e
3

2α(µs − µe) cosh (α) + 2(µe(α2 + 1)− µs) sinh (α)
.

From now on, we will assume that the conductivity of the external field
is zero (σe = 0) and the permeability of the both the sphere and the external
field µs and µe coincide with the one of free space, that is, µ0 = 4π10−7. So,

a0 = −3
2

H0ρ3(εes)2χ(s), s = iω,
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4.1. Setting of the problem

where the induced magnetic dipole moment factor χ(s) is

χ(s) =
1
α2 −

cosh(α)
α sinh(α)

+
1
3

.

We can investigate the corresponding transient problem where the
approximations are made so that |γeρ| � 1 and σs � εeω, for important
frequencies in the spectrum. This will be valid for a step function source
magnetic field when the measuring time of the field response is always
such that t� σeµ0ρ2 and t� εe/σs.

The steady state response of the secondary field can be written as
follows

H(s) = C
(

1
α2 −

cosh(α)
α sinh(α)

+
1
3

)
H0(s),

where C is a constant. The transient field is given by a Fourier Integral as
indicated in [77, 79]. A complete study has been done in [5, 38, 77].

We now consider the transient response for the permeable conducting
sphere whose permeability µ is known. In this case our coefficient a0

becomes
a0 = −1

2
H0ρ3(εes)2χ(s),

where the induced magnetic dipole moment factor χ(s) is defined as

χ(s) = − (2µr + 1)[sinh(α)− α cosh(α)] + α2 sinh(α)
(µr − 1)[sinh(α)− α cosh(α)]− α2 sinh(α)

,

where α = β
√

s and β = (σsµs)1/2. Let us remark that in this case the ex-
pression of α is identical to the one used for the definition of the coefficients
a0 and b0.

Using the inverse Laplace transform1, we can calculate the step–function
response h(t) directly from the contour integral

h(t) = L−1
{

χ(s)
s

}
= − 1

2πi

∫ c+i∞

c−i∞

F(s)
G(s)

estds, (4.5)

where

F(s) = (2µr + 1)[sinh(β
√

s)− (β
√

s) cosh(β
√

s)] + β2s sinh(β
√

s) (4.6)

1The Laplace transform is a frequency–domain approach for continuous time signals
irrespective of whether the system is stable or unstable. The Laplace transform of a function
f (t), defined for all real numbers t ≥ 0, is the function L(s), which is a unilateral transform
defined by

L(s) =
∫ ∞

0
e−st f (t)dt,

where s is a complex number frequency parameter.
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4. Time domain electromagnetic (TDEM) response of a conductive permeable sphere

and

G(s) = s[(µr − 1)(sinh(β
√

s)− (β
√

s) cosh(β
√

s))− β2s sinh(β
√

s)]. (4.7)

The only singularities of the integral in equation (4.5) are poles which
occur in the s plane where G(s) = 0. It is evident that these poles are at
s = 0 and at s = sn (for n = 1, 2, 3, . . .) on the negative real axis. Setting
βs1/2

n = iδn, we easily find that

tan(δn) =
(µr − 1)δn

µr − 1 + δ2
n

,

which yield real solutions for δn.
From (4.6) and from (4.7), we can obtain a series representation for the

function h(t) of equation (4.5),

h(t) =
∞

∑
n=1

12πρ

µ0σ

δ2
n

(µr + 2)(µr − 1) + δ2
n

e
− δ2

n
ρ2µσ

t
. (4.8)

4.2 A nonlinear approximation problem

Let us write the step–function response (4.8) as

h(t) =
∞

∑
n=1

cn e−dnt, t > 0 (4.9)

where

• dn =
δ2

n
ρ2µσ

with δn the nth zero of the following equation

tan x =
(µr − 1)x

(µr − 1) + x2 . (4.10)

• cn =
12πρ

µ0σ

δ2
n

(µr + 2)(µr − 1) + δ2
n

.

and let us assume at first check the integer N such that

h(t) =
∞

∑
n=1

cn e−dnt '
N

∑
n=1

cn e−dnt.

To this end, we have investigated the behavior of the sum h(t) for
some metallic materials whose values of their electrical conductivity and
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4.2. A nonlinear approximation problem

the magnetic permeability are reported in Table 4.1. We can find more
information about metallic materials in [8].

Metallic material σ (S/m) µ (H/m)

Aluminum 3.50× 107 1.256665× 10−6

Carbon Steel 6.99× 106 1.26× 10−4

Ferritic stainless steel 1.45× 106 2× 10−3

Iron 1.00× 107 6.3× 10−3

Table 4.1: Electrical conductivity σ and magnetic permeability µ
of some metallic materials.

We represent in Fig. 4.2 and Fig. 4.3 the sum h(t) for each material
and for N = 10, 100, while in Fig. 4.4 we display the behavior of h(t) as a
function of N for each material and for t = 2× 10−6.
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Figure 4.2: The behavior of the sum h(t) for different materials
for N = 10.
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Figure 4.3: The behavior of the sum h(t) for different materials
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4.2. A nonlinear approximation problem

From Fig. 4.4 we can deduce the value of N for our sum. For example,
for the aluminum and for the carbon steel, it would make sense to fix
N = 400 and N = 1000, respectively, since if the sum has a number of
terms greater than this value of N, h(t) takes the same values. However,
for Ferritic stainless steel and Iron we would need to plot the step–function
h(t) for N bigger than 1000 in order to be able to choose N for the sum.

Now, we assume that we know the value of the function (4.9) in 2N
equispaced points tj = jh, j = 1, 2, 3, . . . .. Our aim is to identify

1. the coefficients {dn}N
n=1,

2. the parameters {cn}N
n=1 and to recover ρ, σ and µ.

The two mostly used methods are the Prony–like (or polynomial) meth-
ods and the matrix–pencil methods. The first one are based on the paper by
G. de Prony [58] who was the first to investigate this problem. The method
is principally based on the solution of two linear systems characterized by a
Hankel and a Vandermonde matrix, respectively. The first system furnishes
the coefficients of a polynomial (the so–called Prony polynomial) whose
roots zn allow one to determine the parameters dn (being zn = edn ), while
the second system provides the coefficients cn. Several extensions have been
proposed (see [1, 70, 71, 83], and more recently [54, 55, 56, 57]) to apply
this polynomial method also to the case where N is only approximately
known or the data are affected by noise. The matrix–pencil technique
has been developed more recently [19, 35]. As the Prony–like methods,
one recovers the coefficients cn by solving a Vandermonde system but the
computation of the parameters dn is reduced to only one step; see [64]. In
fact, the matrix–pencil method allows one to estimate the zeros of the Prony
polynomials and then dn without passing through the computation of its
coefficients. This is the main difference with the Prony–like methods and it
makes this kind of method more computationally efficient.

Hereafter, we describe the well–known Prony method which is the
technique we have applied until now to solve our problem. In the future,
we will apply also the matrix–pencil method to our problem.

Prony method

We rewrite

h(tj) =
N

∑
n=1

cn e−dn jh =⇒ h(j) =
N

∑
n=1

cn zj
n, zn = e−dnh,
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4. Time domain electromagnetic (TDEM) response of a conductive permeable sphere

and we see it as the general solution of a homogeneous linear difference
equation of order N of the type

N−1

∑
k=0

pkh(k + m) = −h(m + n), m = 0, 1, ..., N − 1,

where pk are the coefficients of the Prony polynomial

P(z) =
N

∏
n=1

(z− zn)
mn =

N−1

∑
k=0

pkzk, pN ≡ 1.

At this point, let us recover at first the zeros {zn}N
n=1 and then the coeffi-

cients.

1. Computation of {zn}N
n=1.

• Identify the coefficients of the Prony polynomial by solving the
following system whose matrix of coefficients is a Hankel matrix.



h(1) h(2) h(3) . . . h(n− 1)
h(2) h(3) h(4) . . . h(n)
h(3) h(4) h(5) . . . h(n + 1)

. . . . . . . . .
. . .

...
h(n− 2) h(n− 1) h(n) . . . h(2n− 3)
h(n− 1) h(n) h(n + 1) . . . h(2n− 2)





p0
p1
p2
...

pn−2
pn−1

 =



−h(n)
−h(n + 1)
−h(n + 2)

...
−h(2n− 2)
−h(2n− 1)

 .

• Once we solve this system, by computing the eigenvalues of the
following Companion matrix

C =


0 0 0 . . . −p0

1 0 0 . . . −p1

0 1 0 . . . −p2

0 0 1
. . .

...
0 0 . . . 1 −pn−1

 ,

we can recover the zeros zn and then dn = − log zn
h .

2. Computation of {cn}N
n=1.

The coefficients {cn} are the solution of the following system having
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4.3. Some numerical results

a Vandermonde matrix of coefficients.

z0
1 z0

2 z0
3 . . . z0

n
z1

1 z1
2 z1

3 . . . z1
n

z2
1 z2

2 z2
3 . . . z2

n

. . . . . . . . .
. . .

...
zn−1

1 zn−1
2 zn−1

3 . . . zn−1
n

zn
1 zn

2 zn
3 . . . zn

n





c1

c2

c3
...

cn−1

cn


=



−h(n)
−h(n + 1)
−h(n + 2)

...
−h(2n− 2)
−h(2n− 1)


.

Once we get the parameters dn and cn, we can obtain the value of σ and
ρ by solving 

dn =
δ2

n
ρ2µσ

,

cn =
12πρ

µ0σ

δ2
n

(µr + 2)(µr − 1) + δ2
n

.

In the following section we will show some numerical results about it.

4.3 Some numerical results

For our first numerical experiments we have assumed that the sphere is
made of a certain material and we evaluate the step–function response

h(t) =
N

∑
n=1

cn e−dnt, t > 0

in some points.
In order to find δn ∈ (nπ, nπ + π

2 ), which are the zeros of (4.10), we
apply the Newton method (see Section 1.1.2). However the presence of
the asymptotes of the tangent function make unstable the method, in the
sense that the zeros of (4.10) could be sometimes very close to them. This
happens when the right–hand size of equation (4.10) is approaching to its
maximal value, which is attained at x =

√
µr − 1. In Fig. 4.5 we depict

the behavior of the tangent function and the function g(x) = (µr−1)x
(µr−1)+x2 for

different values of µr and we can see, together with an empirical research,
that if nπ + π

2 ≤ 3
√

µr − 1, the root of the equation is close to the asymptote
giving place to an overflow.
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-2
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4
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r=51

=11r

r=2

Figure 4.5: Plot of f (x) = tan x (blue line) and g(x) = (µr−1)x
(µr−1)+x2

for µr − 1 = 1, 10, 50 (pink, yellow and green lines, respectively).

With the aim of overcoming these difficulties we solve the inverse
equation of (4.10) when nπ + π

2 ≤ 3
√

µr − 1, that is:

• If nπ +
π

2
≤ 3

√
µr − 1 we solve the equation

cot x =
1
x
+

x
µr − 1

.

• If nπ +
π

2
>
√

µr − 1 we solve

tan x =
(µr − 1)x

(µr − 1) + x2 .

In Fig. 4.6 we show the behavior of δn − nπ as a function of n for
n = 1, . . . , 100 and for different values of the relative permeability, µr =

1, 10, 50, 100, 200, 5100. We can see that for small values of µr, δn − nπ tends
to zero while for bigger values of the relative permeability, δn − nπ tends

to
π

2
.
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Figure 4.6: δn as a function of n and parametrically as a function
of the relative permeability µr.

For the reconstruction of σ and µ, we need to know, as we said at the
beginning of this section, the values of h(t) in some points. To generate this
synthetic data set, we choose a priori σ and µ and then, once we compute
the values of h(t), we determine both the electrical conductivity and the
magnetic permeability by the Prony method. In Table 4.1 we reported
the electrical conductivity and the magnetic permeability of some metallic
materials.

dn d̃n εn

2.243954973008462e+01 2.243954973008579e+01 5.20e-14

8.975789563175007e+01 8.975789563180739e+01 6.38e-13

2.019551388008130e+02 2.019551388187708e+02 8.89e-11

3.590312792374512e+02 3.590312827371441e+02 9.74e-09

5.609863169416867e+02 5.609866405940118e+02 5.76e-07

8.078202519135250e+02 8.078279136080553e+02 9.48e-06

1.099533084152968e+03 1.098811780829547e+03 6.56e-04

1.436124813660015e+03 1.385496497352069e+03 3.52e-02

1.817595440434669e+03 1.597756993664808e+03 1.20e-01

2.243944964476928e+03 2.107856078732385e+03 6.06e-02

Table 4.2: Comparison of the exact dn and its approximation d̃n,
and the corresponding relative error εn for N = 10.
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4. Time domain electromagnetic (TDEM) response of a conductive permeable sphere

We apply the Prony method to the sum (4.9) in the aluminum case. As
we said before, from the graph of the aluminum in Fig. 4.4, we can deduce
that an acceptable value of N to reconstruct all the coefficients of the sum
would be 400.

Starting with N = 10, we report in Table 4.2 the exact value of the
coefficients vector dn and its approximation d̃n with the corresponding
relative error. We can see that there is an error of order 10−1, which makes
us think that the reconstruction of the parameters is not satisfactory. This
happens because of the ill–conditioning of the involved matrices in Prony’s
method since they are Hankel and Vandermonde matrices. We see in
Fig. 4.7 the representation of their singular values.

0 5 10 15 20 25
10

−20

10
−10

10
0

10
10

The singular values of the Hankel matrix

0 5 10 15 20 25
10

−10

10
−5

10
0

10
5

10
10

The singular values of the Vandermonde matrix

Figure 4.7: The singular values of the involved matrices.

We just saw that the reconstruction of the coefficients is not optimal for
N = 10. If N = 400 the dimensions of the matrices would increase and
the condition number would be higher, so applying the Prony method for
N = 400 does not make sense. In order to address these difficulties, we
are currently working on the implementation of a strategy based on the
matrix–pencil method [14].
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work

We have seen along this thesis diverse applications of inversion proce-
dures to solve different problems in Geophysics. In this last section, we
write some conclusions about each problem and some future work we plan
to do.

For the linear model (see Chapter 2) we recover the electrical conductiv-
ity of the soil with respect to depth approximating a priori the conductivity
by either a piecewise constant function or a linear spline. From the for-
ward linear model we generate synthetic data set by the Gauss–Kronrod
quadrature, and then we apply both the TSVD and the Tikhonov regular-
ization to solve the ill–conditioned inverse problem. Comparing the results
reported in the tables of Chapter 2, we conclude that, in general the TSVD
is comparable to the Tikhonov regularization. In the near future, in order to
compare our results we want to introduce other numerical methods based
on the approximation of the conductivity by the Lagrange polynomials or
by other polynomials which allow us to use equidistant nodes.

For the nonlinear model (see Chapter 3) we have proposed a regu-
larized inversion method to reconstruct the electrical conductivity and
the magnetic permeability of the soil with respect to depth, starting from
electromagnetic data collected by a multi–frequency Ground Conductivity
Meter (GCM). We applied a damped Gauss–Newton method with either the
TSVD and the TGSVD. This inversion procedure is based on the low–rank
approximation of the Jacobian of the nonlinear model, which depends on a
relaxation parameter and a regularization parameter chosen by automatic
procedures. Our numerical experiments have shown that the algorithm
produces reasonable results for both the electrical conductivity and the mag-
netic permeability choosing a noise consistent with real situations. Until
now, we have recover the electrical conductivity assuming that the magnetic
permeability is known, and vice versa. In the future, we want to write
an algorithm to detect both the electrical conductivity and the magnetic
permeability at the same time.

The case of the conducting sphere (see Chapter 4) involves a work
in progress which handles the estimation of the magnetic permeability,
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Summary conclusion and further work

the conductivity and the radius of a sphere imbedded in a uniform time–
varying magnetic field via exponential sums. Until now, we have studied
the behavior of the step–function response and, now we are trying to apply
the Prony method or some modification of it. We also would like to apply
the Matrix–pencil method to our sum.
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