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Abstract

The Snyder spacetime represents the first proposal of noncommutative geometry. It still

retains a significant role because of its property of preserving Lorentz invariance. In the

thesis, several different aspects of the model are investigated. In particular, the results

include: a calculation of the orbits of a particle in Schwarzschild spacetime in the set-

ting of the relativistic Snyder geometry; the definition of the path integral in one- and

two-dimensional Snyder space, in the traditional setting and using the Faddeev-Jackiw

formalism; a study of the representations of the three-dimensional Euclidean Snyder-de

Sitter algebra (namely, the extension of the Snyder model to a spacetime background of

constant curvature) with the calculation of the spectrum of the operators of position and

momentum squared; a generalisation of the Snyder model, which includes all possible

deformations compatible with Lorentz invariance, and an investigation of it within the

Hopf algebroid setting, including the discussion of the twist operator, the R-matrix and

the deformed addition of momenta.
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Chapter 1

Introduction

The structure of spacetime at Planck scale lengths, where quantum gravitational effects

cannot be ignored, is still unknown since this is an area of physics where it is practically

impossible to obtain physical data. Already in 1854 Riemann suggested that, at these

lengths, the known concept of spacetime should be changed. Heisenberg proposed the

idea of noncommutative spaces as a solution to the problem of ultraviolet divergences

in his letter to Peierls and through Pauli this idea reached Oppenheimer. It was Oppen-

heimer’s student Snyder who in 1947 for the first time formulated the idea mathematically

[56].

In his paper, Snyder has shown that the introduction of a minimal unit of length nec-

essarily leads to a noncommutative algebra of spacetime coordinates, but also that the

assumption of Lorentz covariance does not impose a requirement for the spacetime to be

continuous.

Because of the success of the renormalisation theory, the idea of noncommutative

spaces had been disregarded until the 80’s, when mathematicians Connes and Woronow-

icz introduced the notion of a differential structure within the noncommutative frame-

work. At that time motives for studying noncommutative spaces came also from string

theory, which gave similar predictions for the structure of spacetime at small length scales.

Furthermore, different approaches to the unification of all physical interactions into one
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renormalisable quantum field theory also pointed to the need of introducing a natural unit

of length. The motivation for studying them came from several different approaches to

quantum gravity as well, like for example, loop quantum gravity.

However, regardless of the renewed interest, most work carried out so far has been

related to the so called Moyal plane, the most simple type of noncommutative space where

the commutator of the spacetime coordinates is given by a constant tensor or, for example,

the κ-Minkowski spacetime, a Lie-algebra type deformation of the Minkowski spacetime.

Less interest has been devoted to Snyder’s original proposal, even though, contrary to the

before mentioned examples, it has the property that it preserves Lorentz invariance.

In his paper, Snyder has shown that if one assumes that the spectra of the spacetime co-

ordinate operators are invariant under Lorentz transformations, there exists a solution that

admits a natural unit of length. Lorentz invariant commutation relations for the spacetime

coordinates x̂µ and momenta p̂µ are then given by

[x̂µ, x̂ν] = iβ2 Ĵµν, [ p̂µ, p̂ν] = 0, [x̂µ, p̂ν] = i
(
ηµν + β2 p̂µ p̂ν

)
, (1.1)

where β2 is a coupling constant, usually assumed to be of the scale of the square of the

Planck length and Ĵµν are the generators of the Lorentz algebra, which satisfy the usual

commutation relations

[Ĵµν, Ĵρσ] = i
(
ηνρ Ĵµσ − ηµρ Ĵνσ − ησµ Ĵρν + ησν Ĵρµ

)
, (1.2)

[Ĵµν, p̂µ] = i
(
ηνλ p̂µ − ηµλ p̂ν

)
, [Ĵµν, x̂µ] = i

(
ηνλ x̂µ − ηµλ x̂ν

)
. (1.3)

The Snyder algebra is defined by the commutation relations (1.1) - (1.3) and is nonlin-

ear. Since it can be obtained by constraining the momenta to lie on a hypersphere in a

(4+1)-dimensional space, the Snyder model can be viewed as the equivalent of de Sitter

spacetime for momentum space. In the limit β2 → 0, one retrieves the usual commutation

relations of quantum mechanics.

Restricting the model to three-dimensional Euclidean space, i.e. to its spatial sec-
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tion, gives its nonrelativistic limit, which still contains the main features of the model,

but for example allows the implementation of quantum mechanics. In its classical limit,

the model is described by a noncanonical symplectic structure and its study requires the

methods for treating constrained Hamiltonian systems [12]. The model implies a gen-

eralisation of the uncertainty relations [29, 8], which gives rise to a lower bound in the

uncertainty of the position, and the discreteness of the spectra of area and volume [52].

The new results of the thesis come from [48, 49, 50, 25] and [37] and are presented

in sections 2.3, 3.3, 4.2, 5.2 and 5.3 respectively. The thesis is structured as follows:

The second chapter deals with the classical limit of the Snyder model and hence starts

with a review of the Dirac method for constrained Hamiltonian systems [12]. After that,

some known results [47] on the classical dynamics of the Snyder model, which display

the formalism, are surveyed. The concluding section gives the results of [48], where the

orbit of a particle in Schwarzschild spacetime was calculated, assuming that the dynamics

is governed by the Snyder symplectic structure.

The third chapter is devoted to the problem of the construction of the path integral for

the Snyder space, which was discussed in [49], following the traditional procedure and in

the first-order formalism of Faddeev and Jackiw. Before presenting the results a review

of the methods used [53, 14, 23] is given.

The fourth chapter concerns the Snyder-de Sitter model, a generalisation of the Snyder

model to a spacetime of constant curvature. First, some of the known properties of the

model [45] are revised and following that new results concerning the spectrum of the

operators of position and momentum squared from [50] are given.

In the fifth chapter a generalisation of the Snyder model is considered using Hopf al-

gebroid techniques. Before discussing the results on the generalised Snyder model [37],

a short survey of Hopf algebras and of the twist operator [1] is given and the Hopf alge-

broid structure of noncommutative space, which was elaborated in [25] for the case of the

κ-Minkowski spacetime, is explained.

Throughout the thesis, we have set ~ = c = 1, and the usual convention of summation

over repeated indices is understood. The scalar product between a and b is denoted as
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a · b, a2 stands for a2 = a · a, and the flat metric ηµν = diag(−1, 1, 1, 1). Greek indices

µ, ν, ... take the value in {0, 1, 2, 3}, while the Latin ones, i, j, k, ..., run from 1 to 3.



Chapter 2

The classical limit of the Snyder model

A useful starting point for studying the Snyder spacetime is to consider its classical limit.

Since it is described by a phase space with noncanonical symplectic structure, its dynam-

ics need to be investigated using Hamiltonian methods.

Studying the classical motion of a nonrelativistic particle in Snyder space within this

framework, it is possible to find exact solutions of the equations of motion for a free

particle and for the case of a harmonic potential [44]. It results that the free motion is

trivial, but in the presence of external forces the classical dynamics is modified. E.g.,

in the case of the harmonic oscillator, while the motion is periodic, it is not given by a

simple trigonometric function like in classical mechanics and the frequency of oscillation

depends on the energy, as in special relativity.

Whether these features can be extended to the relativistic dynamics is a nontrivial

question, since Hamiltonian dynamics of a particle in the relativistic domain is con-

strained and it is necessary to use the Dirac formalism. Another point to make is that,

because the relativistic Snyder model has nontrivial Poisson brackets between time and

spatial coordinates, its nonrelativistic limit doesn’t necessarily coincide with the nonrela-

tivistic theory.

The chapter begins with a short review of the Dirac formalism [12] for treating con-

strained Hamiltonian systems. It then presents the main results of [47], where these
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methods were used to study the classical dynamics of the relativistic Snyder model. It

concludes with presenting the work of [48], which follows the previous approach when

calculating the orbits of a particle in Schwarzschild spacetime, under the assumption that

the dynamics is governed by a Snyder symplectic structure.

2.1 Dirac’s method for constrained Hamiltonian systems

Starting from an action functional

S [xi(t)] =

∫
dtL(xi, ẋi), (2.1)

where xi(t) are canonical coordinates, ẋi = dxi/dt are canonical momenta, the Lagrangian

L(xi, ẋi) has no explicit t-dependence, the canonical momenta are defined as pi = ∂L/∂ẋi,

and requiring that the variation of the action is stationary, gives the Euler equations

dpi

dt
−
∂L
∂xi

= 0. (2.2)

Choosing the Poisson brackets as

{A, B} =
∂A
∂xi

∂B
∂pi −

∂A
∂pi

∂B
∂xi

, (2.3)

gives {pi, x j} = −δi
j, with δi

j the Kronecker delta, and then the canonical Hamiltonian

Hc(pi, xi) = pi ẋi − L(xi, pi), (2.4)

generates the Hamiltonian equations of motion

ẋi = {xi,Hc} =
∂Hc

∂pi , ṗi = {pi,Hc} = −
∂Hc

∂xi
. (2.5)

A Lagrangian L(xi, ẋi) is defined as being singular if the velocities ẋi cannot be ex-
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pressed uniquely in terms of the canonical coordinates and momenta. A necessary and

sufficient condition that L be singular is

Det
∂2L
∂ẋi∂ẋ j

= 0. (2.6)

The above is a consequence of the existence of certain primary constrains

ϑm(x, p) ≈ 0, m = 1, ..,M (2.7)

following from the form of the Lagrangian alone. ≈, read as weakly zero, means that ϑm

may have nonvanishing canonical Poisson brackets with some canonical variables.

In this case the canonical Hamiltonian is not unique and can be replaced by the effec-

tive Hamiltonian

H̃ = Hc + nmϑm(x, p) ≈ Hc, (2.8)

which generates new equations of motion

ẋi = {xi, H̃} ≈
∂Hc

∂pi + nm
∂ϑm

∂pi , (2.9)

ṗi = {pi, H̃} ≈ −
∂Hc

∂xi
− nm

∂ϑm

∂xi
. (2.10)

To have a consistent system, it must be required that the t-derivatives of the constraints

(2.7) are zero or weakly zero, which is the case if they are linear combinations of the

constraints

ϑ̇l = {ϑl, H̃} ≈ {ϑl,Hc} + nm{ϑl, ϑm} ≈ 0. (2.11)

The above equation can be true as a consequence of the original primary constraints. If

it is not, it can either impose conditions on the form of nm, or it can imply new relations

among the canonical coordinates and momenta, independent of nm. These relations are

then secondary constraints, which must be added to the original ones. The process is re-

peated until all independent constraints and conditions on nm are found. For K additional
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constraints, the complete set is

ϑm(x, p) ≈ 0, m = 1, ..,M + K = T, (2.12)

and the consistency of all the constraints with the equations of motion requires that there

exists a solution for nm as a function of the canonical coordinates and momenta. Hence,

H̃ can also be expressed in terms of x and p, H̃ = H̃(x, p).

Functions of x and p are defined as first class quantities if their Poisson bracket with

all the constraints (2.12) is weakly equal to 0 and as second class if at least one of them

is not. From here, all the constraints (2.12) can be divided into a set of all the linearly

independent first class constraints

ϑ1i(x, p) ≈ 0, i = 1, .., I, (2.13)

and the set of the remaining N = T − I second class constraints

ϑ2i(x, p) ≈ 0, i = 1, ...,N. (2.14)

The second class constraints give rise to a nonsingular N x N matrix of Poisson brackets

Cαβ = {ϑ2α, ϑ2β}. (2.15)

Its inverse C−1
αβ exists and satisfies CαβC−1

βγ = δαγ.

For a given dynamical variable A, it can be shown that a new variable A′ defined by

A′ = A − {A, ϑ2α}C−1
αβϑ2β (2.16)

has vanishing brackets with all second class constraints. Defining the Dirac bracket as

{A, B}∗ = {A, B} − {A, ϑ2α}C−1
αβ{ϑ2β, B}, (2.17)
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it follows that

{A, B}∗ ≈ {A′, B′} ≈ {A′, B} ≈ {A, B′}. (2.18)

Since the Dirac bracket of anything with a second class constraint vanishes, if all Pois-

son brackets are replaced with Dirac brackets, all second class constraints can be be set

strongly to zero. It can also be shown that the Dirac brackets will satisfy the Jacobi iden-

tity.

Setting the effective Hamiltonian H̃ to

H̃ = H′ = Hc − {Hc, ϑ2α}C−1
αβϑ2β, (2.19)

so that nm(x, p) = −{Hc, ϑ2α}C−1
αβ , H̃ will be first class. Since the equations of motion aren’t

altered by adding any linear combination of the I first class constraints to this choice of

H̃, the Hamiltonian is still not completely determined, so the total Hamiltonian is taken

to be

H = H′ + liϑ1i(x, p). (2.20)

H will have vanishing brackets with all the constraints and will lead to new equations

of motion which will explicitly involve the functions li. These functions appear in the

Hamiltonian because the original Lagrangian possessed I gauge degrees of freedom as-

sociated with the first class constraints ϑ1i. The values of the li can be fixed by choosing

explicit forms for each gauge and imposing them as constraints that do not follow from

the Lagrangian.

2.2 Classical dynamics on Snyder spacetime

The formalism of the previous section can be applied to study the classical dynamics of

a relativistic particle in Snyder spacetime, both for a free particle and for the case of a

particle subject to an external force generated by a harmonic potential [47].
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2.2.1 Free particle

In (1+1)-dimensional spacetime, which is considered for simplicity, the Snyder funda-

mental Poisson brackets are defined by

{xµ, pν} = ηµν + β2 pµpν, {xµ, xν} = β2Jµν, {pµ, pν} = 0, µ, ν ∈ {0, 1}, (2.21)

where ηµν is the flat metric, Jµν = xµpν − pνxµ is the generator of the Lorentz transforma-

tions.

Since Lorentz invariance is preserved, the Hamiltonian can be chosen as in special

relativity

H =
λ

2
(p2 − m2), (2.22)

with p2 = p2
0 − p2

1 and λ a Lagrange multiplier enforcing the mass shell constraint χ1 =

p2 − m2 = 0. The Hamiltonian equations that follow are

ẋµ = {xµ,H} = λ(1 + β2 p2)pµ = λ(1 + β2m2)pµ, ṗµ = {pµ,H} = 0, (2.23)

with the dot denoting the derivative with respect to the evolution parameter. Since the

constraint χ1 = 0 is first class, a further constraint must be imposed to eliminate the

redundant degrees of freedom x0 and p0 and reduce the system to motion in one spatial

dimension with external time.

The standard choice is to identify the evolution parameter with the time coordinate,

χ2 = x0 − t = 0, and it gives

C ≡ {χ2, χ1} = (1 + β2m2)p0. (2.24)

From the requirement that χ̇2 = 0, it follows that λ = 1/C.

The Dirac brackets are defined as

{A, B}∗ = {A, B} + {A, χ2}C−1{χ1, B} − {A, χ1}C−1{χ2, B}, (2.25)
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and for the independent variables x1, p1, they read

∆ ≡ {x1, p1}
∗ = −1, (2.26)

as in special relativity.

The reduced Hamiltonian K reads

K = p0 =

√
p2

1 + m2, (2.27)

and results in the Hamiltonian equations

dx1

dt
=

p1√
p2

1 + m2
,

dp1

dt
= 0, (2.28)

which coincide with the equations of motion of a free particle in special relativity, showing

that for the case of a free particle motion in Snyder spacetime is trivial.

Another possible gauge could be given by a constant rescaling of time, t =√
1 + β2m2x0 =

√
1 + β2 p2x0, motivated by the fact that the natural metric of spacetime,

invariant under Snyder transformations is ds2 = (1 + β2 p2)dx2, with dx2 the Minkowski

metric.

For this choice of gauge, {χ2, χ1} = (1 + β2m2)3/2 p0, with the Dirac brackets still given

by (2.26). The reduced Hamiltonian is given by

K =
p0√

1 + β2m2
=

√
p2

1 + m2

1 + β2m2 , (2.29)

and the Hamiltonian equations are

dx1

dt
=

p1√
(1 + β2m2)(p2

1 + m2)
,

dp1

dt
= 0. (2.30)
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2.2.2 Harmonic oscillator

For the case of a harmonic potential, that depends only on the spatial position of the

particle, V = V(x1), the Hamiltonian considered [46]

H =
λ

2

(
p2 − (m + V)2

)
= 0, (2.31)

enforces the constraint χ1 = p2 − (m + V)2 = 0. The equations of motion that follow are

given by

ẋ0 = λ
(
(1 + β2 p2)p0 + β2J(m + V)V ′

)
, ṗ0 = λp0 p1(m + V)V ′,

ẋ1 = λ(1 + β2 p2)p1, ṗ1 = −λ(1 − β2 p2
1)(m + V)V ′, (2.32)

with the prime denoting a derivative with respect to x1 and J ≡ J10 the generator of

Lorentz transformations.

One finds that in the interacting case finding a gauge compatible with the nontrivial

symplectic structure is not easy and it is necessary to chose time that depends on the

dynamics of the model

χ = S x0 − t = 0, (2.33)

with

S =
√

1 + β2(m + V)2 =
√

1 + β2 p2. (2.34)

It follows that

C = {χ2, χ1} = S (1 + β2 p2)p0 + β2S J(m + V)V ′ + β2S −1(1 + β2 p2)J(m + V)V ′p1x0

= S (S 2 + (m + V)V ′x1)p0, (2.35)

the Lagrange multiplier is given by λ = 1/C and the Dirac bracket of x1 and p1 reads

{x1, p1}
∗ = −

S 2

S 2 + (m + V)V ′x1
. (2.36)



2.2. CLASSICAL DYNAMICS ON SNYDER SPACETIME 19

The form of the reduced Hamiltonian K that generates motion on the reduced phase space

induced by these Dirac brackets is given by

K =
p0

S
=

√
p2

1 + (m + V)2

1 + β2(m + V)2 , (2.37)

and the equations of motion that follow are

dx1

dt
=

1
B

p1

K
,

dp1

dt
= −

1 − β2 p2
1

(1 − β2m2)B
(m + V)V ′

K
, (2.38)

with B = S 2+(m+V)V ′x1. The system of equations can be solved by defining an auxiliary

time variable τ, such that dt = Bdτ and using the conservation of the reduced Hamiltonian

K, which gives

p2
1 = K2 − (1 − β2K2)(m + V)2. (2.39)

After redefining the energy, for the case of the harmonic oscillator with potential V = κ
2 x2

1,

it follows that

x1 =

√
E2 − m2

κE
sd(ωτ, q), (2.40)

where

ω2 =
κ

E
=
κ
√

1 − β2K2

K
, q =

E − m
2E

=
K − m

√
1 − β2K2

2K
, (2.41)

and sd(ωτ, q) is a Jacobian elliptic function. The period of oscillation T0 can be written

in terms of the complete elliptic integral K(q)

T0 =
4
ω

K(q) ∼
2π
ω0

(
1 −

3
8

E − m
m

)
, (2.42)

where ω0 =
√

κ
m is the frequency of the nonrelativistic oscillator.

The solution for the momentum is given by

p1 =
E2 − m2

1 + β2E2 cd(ωτ, q)nd(ωτ, q), (2.43)
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where cd(ωτ, q) and nd(ωτ, q) are Jacobian elliptic functions.

In terms of the physical time variable t, the solution reads

t = (1 + β2E2)τ −
β2(E2 − m2)

ω
sd(ωτ, q)cd(ωτ, q)nd(ωτ, q), (2.44)

and the period of oscillation, given by T = t(T0),

T =
4(1 + β2E2)

ω
K(q) =

4
(1 − β2K2)ω

K(q), (2.45)

contains energy-dependent contributions coming from both special relativity and Snyder

dynamics.

2.3 Snyder dynamics in a Schwarzschild spacetime

The validity of noncommutative geometry is presumably limited to Planck-scale physics,

so it would be reasonable to assume that its effects cannot be extended to macroscopic

systems, where the classical limit holds, e.g. the solar system.

This was confirmed by previous studies of planetary motion based on Snyder dynam-

ics [10], which, when confronted with observations, predict for the coupling constant of

the model a scale well bellow the Planck scale, which would be expected on dimensional

grounds.

These estimates have however been obtained from a Newtonian theory, while the ef-

fect of general relativity cannot be neglected at these scales. Because of this, in [48] we

have repeated the calculations in a relativistic setting. The results have partially confirmed

those of previous works [10], since the corrections to relativistic dynamics due to Sny-

der mechanics turn out to be of the same order of magnitude as the ones obtained in the

Newtonian approximation, although numerically different.

Our starting point is the classical limit of the Snyder model, which is based on the
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noncanonical Poisson brackets

{xµ, pν} = ηµν + β2 pµpν, {xµ, xν} = β2Jµν, {pµ, pν} = 0, (2.46)

where Jµν = xµpν − xνpµ, and ηµν is the flat metric with signature (-1, 1, 1, 1).

The approach to the problem of planetary orbits is rather conservative: the Hamil-

tonian equation of a free particle in a Schwarzschild background is written down and it

is assumed that the only changes in the dynamics are due to the Snyder noncanonical

symplectic structure (2.46). In particular, the same Hamiltonian as in general relativity is

chosen, even though the Snyder symmetries may allow for more general choices.

2.3.1 Particle motion in flat spacetime

The formalism is set by considering first the free motion of a particle in three-dimensional

flat Snyder spacetime. The spatial sections are parametrized with polar coordinates, de-

fined in terms of cartesian coordinates as

t = x0 = −x0, ρ =
√

(x1)2 + (x2)2, θ = arctan
x2

x1 . (2.47)

The corresponding momentum components read

pt = p0, pρ =
x1 p1 + x2 p2√
(x1)2 + (x2)2

, pθ ≡ J12 = x1 p2 − x2 p1. (2.48)
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With these definitions, the Poisson brackets for polar coordinates in Snyder space follow-

ing from (2.46) are

{t, pt} = −1 + β2 p2
t , {ρ, pρ} = 1 + β2

(
p2
ρ +

p2
θ

ρ2

)
, {θ, pθ} = 1, (2.49)

{ρ, θ} = β2 pθ
ρ
, {t, ρ} = β2

(
tpρ − ρpt

)
, {t, θ} = β2 tpθ

ρ2 ,

{pt, pρ} = −β2 pt p2
θ

ρ3 , {pt, pθ} = {pρ, pθ} = {t, pθ} = {ρ, pθ} = 0,

{t, pρ} = β2
(
pt, pρ +

tp2
θ

ρ3

)
, {ρ, pt} = β2 pt pρ, {θ, pt} = β2 pt pθ

ρ2 , {θ, pρ} = β2 pρpθ
ρ2 .

Here, contrary to the canonical case, the choice of polar coordinates changes the symplec-

tic structure.

The Hamiltonian is chosen as in special relativity,

H =
λ

2

(
−p2

t + p2
ρ +

p2
θ

ρ2 + m2
)

= 0, (2.50)

with λ a Lagrange multiplier enforcing the mass shell constraint. The choice of the Hamil-

tonian is not unique, but (2.50) seems to be the most reasonable in this context.

The Hamiltonian equations derived from (2.49) and (2.50) are

ṫ = λ∆pt, ρ̇ = λ∆pρ, θ̇ = λ∆
pθ
ρ2 ,

ṗt = 0, ṗρ = λ∆
p2
θ

ρ3 , ṗθ = 0, (2.51)

with ∆ = 1 − β2m2. Hence, as in special relativity, the momenta pθ and pt are constants

of motion, that according to the standard notations, are denoted as ml and E respectively.

They can be identified with the angular momentum and energy of the particle. As in the

case of 1+1 dimensions [47], which was discussed in Sec. 2.2.1, all the equations are

identical to those of classical relativity, except that they are multiplied by the common

factor ∆. Their solution can therefore be obtained as in special relativity, after a redefini-

tion of proper time.
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In particular one should choose a gauge by fixing the time variable, in order to elimi-

nate the Hamiltonian constraint (2.50) by means of the Dirac formalism. However, if one

is only interested in the equation of the orbits, it is not necessary to fix the gauge since,

like in special relativity,
dρ
dθ

=
ρ̇

θ̇
= ρ2 pρ

pθ
, (2.52)

does not depend on λ. From the Hamiltonian constraint (2.50), it follows that in flat space

pρ =

√
E2 − m2

(
1 +

l2

ρ2

)
, (2.53)

and hence

ρ′ ≡
dρ
dθ

=
ρ

l

√(
E2

m2 − 1
)
ρ2 − l2, (2.54)

which is solved by

ρ =
l√

E2/m2 − 1

1
cos(θ − θ0)

, (2.55)

which describes a straight line in polar coordinates and coincides with the solution of

classical special relativity.

2.3.2 Particle motion in Schwarzschild spacetime

We consider next the motion of a planet in the Schwarzschild spacetime with metric

ds2 = −A(ρ)dt2 + A−1(ρ)dρ2 + ρ2dΩ2, (2.56)

where

A(ρ) = 1 −
2M
ρ
, (2.57)

and M is the mass of the sun. As in special relativity, due to the conservation of the

angular momentum, the problem can be reduced to 2+1 dimensions.
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The Hamiltonian is chosen as in standard relativity,

H =
λ

2

(
−

p2
t

A
+ Ap2

ρ +
p2
θ

ρ2 + m2
)

= 0, (2.58)

where m is the mass of the planet.

The field equations derived from (2.49) and (2.58) are

ṫ = λ

[
pt

(
A−1 − β2m2 − β2 M

ρ

(
p2
ρ +

p2
t

A2

))
+ β2 Mtpρ

ρ

(
p2
ρ +

p2
t

A2 − 2
p2
θ

ρ2

)]
,

ρ̇ = λ

[
A − β2m2 −

2β2Mp2
θ

ρ3

]
pρ, θ̇ = λ

pθ
ρ2

[
1 − β2m2 −

β2M
ρ

(
p2
ρ +

p2
t

A2

)]
,

ṗt = −λ

[
β2Mpt pρ

ρ2

(
p2
ρ −

2p2
θ

ρ2 +
p2

t

A2

)]
, ṗθ = 0,

ṗρ = λ

(1 − β2m2)
p2
θ

ρ3 −
M
ρ2

(p2
ρ +

p2
t

A2

) (
1 + β2

(
p2
ρ +

p2
θ

ρ2

))
− 2β2

p2
ρp2

θ

ρ

 . (2.59)

The equation of the orbit is obtained as in the case of particle motion in flat spacetime.

Now, while pθ is still a constant, pt is no longer conserved. Instead, it can be checked that

the quantity

E =
pt√

1 + β2(−p2
t + p2

ρ + p2
θ/ρ

2)
(2.60)

is conserved and plays the role of the energy. It follows that

p2
t =

E2

1 + β2E2

[
1 + β2

(
p2
ρ + p2

θ/ρ
2
)]
. (2.61)

Moreover, (2.58) and (2.61) imply that

p2
ρ =

E2(1 + β2m2l2/ρ2) − m2(1 + β2E2)(1 + l2/ρ2)A
(1 + β2E2)A2 − β2E2 , (2.62)

where l = pθ/m is defined.
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The equation of the orbits is conveniently written in terms of the variable u = 1/ρ as

du
dθ

= −
1
ρ2

ρ̇

θ̇
= −

A − β2m2(1 + 2Ml2u3)
1 − β2m2 − β2Mu(p2

ρ + p2
t /A2)ml

. (2.63)

Substituting in (2.63) the values of pρ and pt deduced from (2.61) and (2.62), one can

write down a differential equation for the single variable u(θ).

The calculations are very involved and the equation can only be solved perturbatively.

One can first expand in the Snyder parameter β2m2 and then adopt the usual expansion

used in standard textbooks on general relativity to solve for the Schwarzschild orbits. To

this end, it is useful to define the dimensionless quantities v = l2
M u and ε = M2

l2 . The

parameter ε is small for planetary orbits, and can be taken as an expansion parameter.

Moreover, it is assumed that β2m2 � ε, since the Snyder corrections are expected to

be small with respect to those of general relativity. Also, by the viral theorem, and the

definition (2.60) of E, E2 − m2 ∼ m2(εq + β2E2), with q a parameter of order unity.

The first-order expansion in both β2m2 and ε gives, after lengthy calculations,

v′2 = q + 2v − v2 + 2εv3 + β2m2(2v + 4ε(qv + v2)). (2.64)

It is convenient to take the derivative of this expression, which gives

v′′ = 1 + β2m2 − v + ε(3v2 + β2m2(2q + 4v)). (2.65)

Expanding v = v0 + εv1 + ..., at zeroth order one obtains a Newtonian approximation of

the solution

v0 = 1 + β2m2 + e cosθ, e = 1 +
q
ε

= 1 +
l2(E2 − m2)

M2m2 , (2.66)

while v1 satisfies

v′′1 + v1 = 3 + (10 + 2q)β2m2 + 2(3 + 5β2m2)e cosθ + 3e2cos2θ, (2.67)
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which is solved by

v1 = 3
(
1 +

e2

2

)
+ 2β2m2(5 + q2) + e(3 + 5β2m2)θ sinθ −

e2

2
cos2θ. (2.68)

The solution at first order is therefore

v ≈ (1 + β2m2) + ε

[
3
(
1 +

e2

2

)
+ 2β2m2(5 + q2)

]
+ e cos

[
(1 − ε(3 + 5β2m2))θ

]
−
ε

2
e2cos2θ. (2.69)

From this expression one can easily obtain the perihelion shift as

δθ = 2πε(3 + 5β2m2) ≈
6πM2

l2

(
1 +

5
3
β2m2

)
. (2.70)

The first term is of course the one predicted by general relativity, while the second depends

on the mass of the planet. This dependence is of course a consequence of the breaking of

the equivalence principle in Snyder mechanics.

It turns out that the Schwarzschild geodesics are slightly deformed. In particular, a

shift of the perihelion arises in addition to that predicted by general relativity. In a New-

tonian setting, the shift due to Snyder mechanics is given by δθ = −2πβ2m2M2/l2 [10].

While the order of magnitude of the Snyder correction is the same as that obtained from

the relativistic model, its sign is opposite. Therefore, calculations based on Newtonian

mechanics are not very reliable in this context. In any case, it has been shown [10] that

for these corrections to be compatible with the observed discrepancy of the perihelion

shift of Mercury from the predictions of general relativity, β must be less than 10−9 in

Planck units. This estimate remains true in the relativistic case.

Another important outcome of the investigation is that the principle of equivalence

is broken in Snyder mechanics, since the corrections to the equation of the geodesics

depend on a parameter β2m2, which is a function of the mass m of the particle. This

effect is a consequence of the nontrivial dependence of the dynamics on the momenta of
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the particles, and it also puts strong limits on the value of the coupling constant β if the

validity of Snyder mechanics at planetary scale is assumed. Experimental data show that

violation of the equivalence principle are less than one part in 1012 [58]. It follows that

β < 10−26 in Planck units for planetary masses of order 1024kg = 1032MPl. This bound is

even stronger than the previous one.

These results seem to indicate that if one assumes that Snyder mechanics holds at

scales compatible with the orbit of planets, the coupling constant β must be less than its

natural value of order 1 in Planck units by many orders of magnitude.

This is expected, as the limitation of the validity of Snyder mechanics to microscopic

physics should be justified. This problem can be related to the soccer-ball problem of

doubly special relativity [33]. In fact, in Snyder spacetime the summation rules for the

momenta must be nonlinear, since the translation invariance is deformed [7], and, follow-

ing a reasoning analogous to that of [33], should be arranged in such a way that classical

mechanics holds at macroscopic scales. A related argument, that has not been thoroughly

investigated yet, is that passing from the quantum-gravity regime to its classical limit

some kind of decoherence should occur so that classical mechanics is recovered, as in the

classical limit of quantum mechanics. However, the detailed mechanism of this transition

from the Plank to the larger scales has not been figured out yet.
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Chapter 3

Path integral in Snyder space

The Feynman path integral provides an alternative formulation of quantum mechanics

and it rests on the idea that the integral kernel (i.e. the propagator) of the time-evolution

operator, which is the amplitude for a particle to get from the point a to the point b,

can be expressed as a sum over all possible paths connecting the two points, where each

path’s contribution is weighed by a factor which is proportional to the action. Hence, the

probability P(b, a) to go from a point xa at the time ta to the point xb at tb is the absolute

square P(b, a) = |K(b, a)|2 of an amplitude K(b, a) to go from a to b, and this amplitude is

the sum of contributions Φ[x(t)] from each path

K(b, a) = Σover all pathsΦ[x(t)], (3.1)

where the contribution of a path has a phase proportional to the action S (of the corre-

sponding classical system)

Φ[x(t)] = const. eiS [x(t)]. (3.2)

A characteristic of noncommutative spaces is that the corresponding classical phase space

is not canonical, i.e. the Poisson brackets do not have the usual form. However, since the

standard definition of the path integral assumes a canonical phase space, it is necessary to

extend the standard formalism to include this more general situation.
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This problem has been afforded in a variety of ways and several different approaches

have been proposed for the definition of the path integral on noncommutative spaces. The

first is based on the noncanonical structure of the phase space: Darboux’s theorem ensures

that it is always possible to find a transformation to canonical (and hence commutative)

coordinates, which will deform the measure of the integral, but otherwise allow the use

of the standard formulation of the path integral [36, 3, 13]. A different approach uses

the standard integration measure, but treats the products in the integrand as star prod-

ucts between functions of noncommutative coordinates [16]. This second framework is

more suitable for a generalisation to field theory. Alternatively, some authors propose the

adoption of smeared (coherent state) bases for the Hilbert space to avoid the use of non-

commutative coordinates in the computation of the path integral [55]. However, most of

the work on this subject has been developed for the so-called Moyal plane [51], the most

simple type of noncommutative space, whose Poisson brackets are constant tensors.

The chapter begins with a brief survey of the usual procedure for the reduction of

Lagrange’s equations to the Hamiltonian form, following the presentation of [53], after

which the Faddeev-Jackiw formalism for the Hamiltonian reduction of unconstrained and

constrained systems is reviewed. It ends with a presentation of the results obtained in

[49], where these methods have been used for the Snyder model.

3.1 Reduction of Lagrange’s equations to the Hamilto-

nian form

The usual procedure [53] for the reduction of Lagrange’s equations to the Hamiltonian

form starts with the prescription for the canonical momenta

pi =
∂L
∂ẋi

, i = 1, ..., n. (3.3)



3.1. REDUCTION OF LAGRANGE’S EQUATIONS TO THE HAMILTONIAN FORM 31

Assuming that the Lagrangian is not singular

det
(
∂2L
∂ẋi∂ẋ j

)
, 0, (3.4)

the velocities ẋi, and hence also the Hamiltonian, can be expressed in terms of the canon-

ical variables, and from the Lagrange’s equations, one gets the Hamiltonian equations in

the usual form

ẋi =
∂H
∂pi

, ṗi = −
∂H
∂xi

, i = 1, ..., n. (3.5)

These can be written in a unified form

ξ̇i −Ωi j
∂H
∂ξ j

= 0, i, j = 1, .., 2n (3.6)

where

ξi =

 xi, i = 1, ..., n

pi, i = n + 1, ..., 2n,
(3.7)

Ωi j =

 0n×n 1n×n

−1n×n 0n×n

 . (3.8)

An equivalent form of these equations is given by

(Ω−1)i jξ̇ j −
∂H
∂ξi

= 0, (3.9)

where

(Ω−1)i j =

 0n×n −1n×n

1n×n 0n×n

 . (3.10)
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The action can also be written in a unified way

S =

∫
dt

(
pi ẋi − H

)
(3.11)

≡

∫
dt

(
ai(ξ)ξ̇i − H(ξ)

)
, (3.12)

with

ai =

 pi, i = 1, ..., n

0, i = n + 1, ..., 2n.
(3.13)

From the variational principle, one then gets Hamilton’s equations in the following form

(
∂a j

∂ξi
−
∂ai

∂ξ j

)
ξ̇ j −

∂H
∂ξi
≡ (Ω−1)i jξ̇ j −

∂H
∂ξi

= 0, (3.14)

where the following identity has been used

∂a j

∂ξi
−
∂ai

∂ξ j
≡ (Ω−1)i j, i, j = 1, ..., 2n. (3.15)

3.2 The Faddeev-Jackiw formalism

An alternative approach to the Dirac method for the Hamiltonian reduction of uncon-

strained and constrained systems, which is based on Darboux’s theorem, has been devel-

oped by L. Faddeev and R. Jackiw [14, 23].

The starting point of this method is a first-order Lagrangian, i.e., one that is linear in

time derivatives, noting that this does not necessarily imply the existence of constraints.

In fact, using the same Legendre transform which is used to pass from a Lagrangian to

Hamiltonian, a second-order Lagrangian can be transformed into a first-order one. This

means that, for a given Hamiltonian description of dynamics, one can always construct a

first-order Lagrangian whose configuration space coincides with the Hamiltonian phase

space.
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Thus, the starting point is a general first-order Lagrangian

L = ai(ξ)ξ̇i − V(ξ), (3.16)

where ai has the character of a vector potential for an Abelian gauge theory, as modifying

ai(ξ) by a total derivative does not affect the dynamics, because it would change the La-

grangian by a total time derivative. Furthermore, since the Lagrangian is first-order in ξ̇i,

velocities don’t appear in the combination ∂L
∂ξ̇i
ξ̇i, so if the Hamiltonian is defined with the

usual Legendre transform, it can be identified with V

H =
∂L
∂ξ̇i

ξ̇i − L = V, (3.17)

and the Lagrangian can be written as

L = ai(ξ)ξ̇i − H(ξ), (3.18)

where the first term of the right side defines the canonical one-form ai(ξ)dξi ≡ a(ξ).

An introduction to the method is given by considering the special case of its simplest

realisation, in which ai(ξ) is linear in ξi

ai(ξ) =
1
2
ξ jω

ji, (3.19)

where the constant matrix ωi j is antisymmetric, since any symmetric part would only

contribute a total time derivative to L. The Euler-Lagrange equations that follow are

ωi jξ̇ j =
∂H(ξ)
∂ξi

. (3.20)

If the antisymmetric matrix ωi j possesses an inverse, (ω−1)i j, in which case it has to be
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even-dimensional, i.e. i, j = 1, ...,N = 2n, it follows that ξi satisfy the evolution equation

ξ̇i = (ω−1)i j
∂H(ξ)
∂ξ j

, (3.21)

and there are no constraints. With the identification ωi j ↔ (Ω−1)i j, eqs. (3.20) and (3.21)

coincide with (3.9) and (3.6) respectively.

The classical Poisson brackets are defined in such a way that they reproduce these

equations by commutation with the Hamiltonian

ξ̇i = (ω−1)i j
∂H(ξ)
∂ξ j

= {H(ξ), ξi}

= {ξ j, ξi}
∂H(ξ)
∂ξ j

, (3.22)

which implies that

{ξi, ξ j} = (ω−1)i j, (3.23)

and for general functions of ξ

{A(ξ), B(ξ)} =
∂A(ξ)
∂ξi

(ω−1)i j
∂B(ξ)
∂ξ j

. (3.24)

In the more general case, where ai(ξ) is an arbitrary function of ξi, that does not depend

on time, the Euler-Lagrange equations of (3.18) are

(Ω−1)i j(ξ)ξ̇ j =
∂H(ξ)
∂ξi

, (3.25)

where

(Ω−1)i j(ξ) =
∂a j(ξ)
∂ξi

−
∂ai(ξ)
∂ξ j

. (3.26)

(Ω−1)i j(ξ) behaves as a gauge invariant field strength and is called the symplectic two-

form, 1
2 (Ω−1)i j(ξ)dξidξ j = Ω−1(ξ). Since Ω−1 = da it is exact and hence also closed

dΩ−1 = 0.

For the non-singular, unconstrained case, the antisymmetric N × N, (N = 2n), matrix
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(Ω−1)i j has an inverse and the Euler-Lagrange equations imply

ξ̇i = Ωi j(ξ)
∂H(ξ)
∂ξ j . (3.27)

In order to reproduce this evolution equation by commutation with H, the bracket needs

to be chosen as

{ξi, ξ j} = Ωi j(ξ). (3.28)

Even though the case of an arbitrary ai(ξ) and unconstrained dynamics seems more gen-

eral, it is actually included in the special case where ai(ξ) is linear in ξ. Using Darboux’s

theorem, it can be shown that an arbitrary vector potential (one-form aidξi) whose associ-

ated field strength (two-form d(aidξi) = 1
2 (Ω−1)i jdξidξ j is non-singular (the matrix (Ω−1)i j

possesses an inverse), can be mapped by a coordinate transformation onto (3.19) with ωi j

non-singular. Because of this, apart from a gauge term, ai(ξ) can always be expressed as

ai(ξ) =
1
2
ζk(ξ)ωkl∂ζl(ξ)

∂ξi
, (3.29)

and (Ω−1)i j(ξ) as

(Ω−1)i j(ξ) =
∂ζk(ξ)
∂ξi

ωkl∂ζl(ξ)
∂ξ j

. (3.30)

In terms of the new coordinates ζi the field strength is ωi j, a constant and non-singular

matrix. Furthermore, modifying the Gram-Schmidt argument, it is possible to construct a

basis in which the antisymmetric N × N matrix ωi j takes the block-off-diagonal form

ωi j =

 0 I

−I 0

 , (3.31)

where I is the n-dimensional unit matrix (N = 2n).

When writing down the path integral for the non-singular, first-order dynamics, the
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action corresponding to the Lagrangian (3.18) is simply given by

S =

∫
(ai(ξ)dξi − H(ξ))dt, (3.32)

but the measure is not minimal, instead the path integral is given by

A =

∫
Dξi

∣∣∣det Ω jk

∣∣∣− 1
2 eiS . (3.33)

The reason for the factor
∣∣∣det Ω jk

∣∣∣− 1
2 is that when going from the canonical variables ζi to

the coordinates ξi, the Jacobian of the transformation appears in the path integral measure,

∏
Dζi = det

∣∣∣∣∣∣ ∂ζi

∂ξ j

∣∣∣∣∣∣∏Dξ j =
√

det(Ω−1)i j
∏
Dξi. (3.34)

3.3 Construction of the path integral for the Snyder

space

We discuss the definition of path integrals, both in the traditional setting, which was re-

called in Sec. 3.1, and in the first-order formalism of Faddeev and Jackiw, described in

Sec. 3.2, for one- and two-dimensional Snyder space [49]. In its nonrelativistic version

the Snyder space commutation relations are given by

[x̂i, p̂ j] = i(δi j + β2 p̂i p̂ j), [x̂i, x̂ j] = iβ2 Ĵi j, [ p̂i, p̂ j] = 0. (3.35)

Following the Hamiltonian formalism of the two previous sections, we consider non-

canonical Poisson brackets of the type

{ξi, ξ j} = Ωi j(ξ), (3.36)

with ξi denoting the phase space variables xi and pi, and Ωi j an invertible matrix. The
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Hamiltonian equations for the Hamiltonian H(ξ) are then still given by (3.6) or equiva-

lently (3.9), but for the Snyder space Ωi j(ξ) is no longer given by (3.8).

If one wants to obtain these equations from the variation of a first-order action of the

form (3.12), the condition (3.15) still needs to hold, however, ai will now not be given by

(3.13). Going in the other direction, knowing the form of the matrix Ωi j, one can solve

(3.15) for the ai and thus write down the action that generates the Hamiltonian equations

(3.6).

3.3.1 One-dimensional Snyder path integral

Even though noncommutativity is absent in the case of the one-dimensional Snyder

model, the symplectic structure is still noncanonical, and thus an investigation of the

one-dimensional Snyder model is useful for understanding the higher-dimensional case.

When investigating the Snyder model, it is necessary to use the phase space formula-

tion of the path integral. For a particle satisfying canonical Poisson brackets, moving in a

one-dimensional space, the path integral is defined as

A =

∫
DpDx eiS , (3.37)

where

S =

∫ t f

ti
Ldt =

∫ t f

ti
(pẋ − H(x, p))dt (3.38)

is the action and DpDx is a measure on the space of paths in phase space that will be

defined bellow.

It can be shown that in a momentum basis the transition amplitude A(p f , pi) from an

initial state of momentum pi at time ti to a final state of momentum p f at time t f is given

by

A(p f , pi) =

〈
p f

∣∣∣∣e−iĤ(t f−ti)
∣∣∣∣ pi

〉
. (3.39)

A momentum basis is chosen because, when considering Snyder space, the standard po-

sition variables do not commute and hence do not form a complete set of observables.
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The aim is to generalise this formula to the one-dimensional Snyder phase space,

whose only nontrivial Poisson bracket is

{x, p} = 1 + β2 p2. (3.40)

Given the Hamiltonian H = p2/2 + V(x), the Hamiltonian equations in Snyder space read

ẋ = (1 + β2 p2)p, ṗ = −(1 + β2 p2)
∂V
∂x
. (3.41)

These equations can be obtained from an action principle following the procedure of the

previous section. Defining ξ1 = x, ξ2 = p, the inverse of the symplectic matrix associated

to (3.40) is

(Ω−1)i j =
1

1 + β2 p2

 0 −1

1 0

 . (3.42)

Inserting into (3.15), one can get the particular solution

a1 = 0, a2 =
−x

1 + β2 p2 , (3.43)

from where follows the action

S =

∫ (
−

xṗ
1 + β2 p2 − H

)
dt =

∫ (
arctan βp

β
ẋ − H

)
dt, (3.44)

where the two expressions are related by an integration by parts. It is next shown that

inserting (3.44) into (3.37) gives the correct expression for the path integral.

When considering the quantum mechanics of the one-dimensional Snyder model [26],

the Poisson bracket (3.40) goes into the commutator

[x̂, p̂] = i(1 + β2 p̂2). (3.45)
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The operators x̂ and p̂ satisfying (3.45) can be represented in a momentum basis by [22]

p̂ = p, x̂ = i(1 + β2 p2)
∂

∂p
. (3.46)

These operators are hermitian with respect to the scalar product

〈ψ|φ〉 =

∫ +∞

−∞

dp
1 + β2 p2ψ

∗(p)φ(p). (3.47)

The identity operator can therefore be expanded in terms of momentum eigenstates |p〉 as

[26]

1 =

∫ +∞

−∞

dp
1 + β2 p2 |p 〉〈 p|, (3.48)

with 〈p|p′〉 = (1 + β2 p2)δ(p − p′).

The eigenvalue equation for the position operator, x̂ |x〉 = x |x〉, has formal solutions

(which are not physical, because they have infinite energy [26], but are sufficiently regular

to adopt them in this setting)

〈p|x〉 ∝ e−ix arctan βp
β . (3.49)

These states form an overcomplete set. However, one can choose a discrete basis with

x = 2βn, n integer, which satisfies the completeness relation [26]

1 =

∫
dx |x〉 〈x| , (3.50)

with 〈x|x′〉 = δxx′ and, for simplicity of notation, an integral sign is used for the infinite

sum over n.

Going back to the path integral, splitting the interval t f − ti into N intervals of equal

length ε = tk − tk−1, the Trotter product formula gives

A = lim
ε→0

〈
p f

∣∣∣∣∣∣(e−iε p̂2
2 e−iεV(x̂)

〉1/ε
∣∣∣∣∣∣ pi

〉
. (3.51)

This follows from the Baker-Campbell-Hausdorff formula and the fact that the commu-
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tator terms are higher order in 1/N and then vanish for N → ∞, independently from the

deformation of the symplectic structure [54].

Inserting the completeness relations (3.48) and (3.50) between each pair of operators,

this reduces to

A = lim
N→∞

∫ N−1∏
k=1

dp(k)

1 + β2 p2
(k)

∫ N∏
k=1

dx(k)

N∏
k=1

〈
p(k)|x(k)

〉 〈
x(k)

∣∣∣∣e−iεĤ
∣∣∣∣ p(k−1)

〉
. (3.52)

Recalling that

〈
x(k)

∣∣∣∣∣e−iε p̂2
2

∣∣∣∣∣ p(k−1)

〉
= e−iε p2

2
〈
x(k)|p(k−1)

〉
,〈

p(k)

∣∣∣e−iεV(x̂)
∣∣∣ x(k)

〉
= e−iεV(x) 〈p(k)|x(k)

〉
, (3.53)

and taking into account (3.49),one then obtains

A = lim
N→∞

∫ N−1∏
k=1

dp(k)

1 + β2 p2
(k)

∫ N∏
k=1

dx(k) e−i
∑N

k=1

[
1
2 εp2

(k−1)+εV(x(k))+ 1
β x(k)(arctan βp(k)−arctan βp(k−1))

]
.

(3.54)

Finally, in the limit ε → ∞,

arctan βp(k)

β
−

arctan βp(k−1)

β
≈

ṗ(k)ε

1 + β2 p2
(k)

, (3.55)

and hence one recovers for A the form (3.37) with S given by (3.44) and

Dp = lim
N→∞

N−1∏
k=1

dp(k)

1 + β2 p2
(k)

, Dx = lim
N→∞

N∏
k=1

dx(k), (3.56)

which proves the claim. This result was previously obtained in [57], but with an incorrect

measure for the path integral.
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3.3.2 Two-dimensional Snyder path integral

In higher dimensions the problem is more difficult since the position operators x̂i do not

commute and their eigenfunctions cannot be taken as a basis for the Hilbert space. The

Poisson brackets in D dimensions are

{xi, p j} = δi j + β2 pi p j, {xi, x j} = β2Ji j, {pi, p j} = 0, (3.57)

where Ji j = p jxi − pix j, i = 1, ...,D.

However, most problems in higher dimensions are most conveniently addressed using

(hyper-)spherical coordinates. In particular, the D = 2 is discussed, for which polar coor-

dinates are chosen to parametrise the momentum space, and their canonically conjugate

variables for the position space. More precisely, it is defined

pρ =

√
p2

1 + p2
2, pθ = arctan

p1

p2
, (3.58)

and

ρ =
p1x1 + p2x2√

p2
1 + p2

2

, J = J12 = p2x1 − p1x2. (3.59)

The position coordinates ρ and J essentially correspond to the parallel and orthogonal

components of the position vector with respect to the momentum of the particle. The

phase space polar coordinates defined above obey the Poisson brackets

{pρ, pθ} = 0, {ρ, J} = 0, {pρ, J} = 0,

{ρ, pρ} = 1 + β2 p2
ρ, {J, pθ} = 1, {pθ, ρ} = 0. (3.60)

Since the Poisson bracket of ρ and J vanishes, the corresponding quantum operators com-

mute and form a basis for the position space. An alternative basis would be constituted

by the operators r̂2 and Ĵ, where r̂2 = x̂2
1 + x̂2

2 [32]. These coordinates however give rise

to more complicated formulas.
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Defining ξ1 = ρ, ξ2 = J, ξ3 = pρ and ξ4 = pθ, the symplectic matrix associated with

the Poisson brackets (3.60) takes the simple form

Ωi j =



0 0 1 + β2 p2
ρ 0

0 0 0 1

−(1 + β2 p2
ρ) 0 0 0

0 −1 0 0


, (3.61)

with inverse

(Ω−1)i j =
1

1 + β2 p2
ρ



0 0 −1 0

0 0 0 −(1 + β2 p2
ρ)

1 0 0 0

0 1 + β2 p2
ρ 0 0


. (3.62)

A solution of eq. (3.15) for this symplectic structure is then

a1 = a2 = 0, a3 =
−ρ

1 + β2 p2
ρ

, a4 = −J, (3.63)

from which one can write the action that generates the classical Hamilton equations. This

is

S = −

∫ (
ρ ṗρ

1 + β2 p2
ρ

+ J ṗθ + H
)

dt =

∫ (
arctan βpρ

β
ρ̇ + pθ J̇ − H

)
dt, (3.64)

where the two expressions are related by an integration by part, and H =
p2
ρ

2 + V .

When considering the quantum theory, the quantum operators must be defined care-

fully, because of ordering ambiguities. The ordering that is adopted is the one with p̂i

always on the left. The commutation relations are

[x̂i, p̂ j] = i(δi j + β2 p̂i p̂ j), [x̂i, x̂ j] = iβ2 Ĵi j, [ p̂i, p̂ j] = 0. (3.65)



3.3. CONSTRUCTION OF THE PATH INTEGRAL FOR THE SNYDER SPACE 43

A representation of (3.65) is given by [22]

p̂i = pi, x̂i = i
(
∂

∂pi
+ β2 pi p j

∂

∂p j

)
. (3.66)

The hermitian operators corresponding to the classical polar coordinates are

p̂ρ =

√
p2

i ≡ pρ, p̂θ = arctan
p1

p2
≡ pθ, (3.67)

and

ρ̂ = i(1 + β2 p2
ρ)

(
∂

∂pρ
+

1
2pρ

)
, Ĵ = i

∂

∂pθ
, (3.68)

where the scalar product

〈ψ|φ〉 =

∫ +∞

−∞

pρdpρdpθ
1 + β2 p2

ρ

ψ∗(p)φ(p) (3.69)

is understood. The completeness relations for momentum eigenstates are therefore

∫ +∞

−∞

pρdpρ
1 + β2 p2

ρ

∫ 2π

0
dpθ

∣∣∣pρ, pθ
〉 〈

pρ, pθ
∣∣∣ = 1. (3.70)

The eigenvalue equations for the position operators read (in this case as well, the eigen-

functions are not physical because their energy diverges)

ρ̂ |ρ〉 = ρ |ρ〉 ,
〈
pρ|ρ

〉
∝

1
√pρ

e−iρ
arctan βpρ

β , (3.71)

and

Ĵ |J〉 = J |J〉 , 〈pθ|J〉 ∝ e−iJpθ , (3.72)

with integer J.

Defining a basis |ρ, J〉 = |ρ〉 |J〉, one has

〈
pρ, pθ|ρ, J

〉
=

1
√pρ

e−i
(
ρ

acrtan βpρ
β +Jpθ

)
, (3.73)
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with ∫ ∞

0
dρ

∫ ∞

−∞

dJ |ρ, J〉 〈ρ, J| = 1. (3.74)

Proceeding as in the one-dimensional case, one can show that for infinitesimal ε

〈
ρ, J

∣∣∣e−iεH
∣∣∣ pρ, pθ

〉
∼

1
√pρ

ei
(
ρ

arctan βpρ
β +Jpθ−εH

)
, (3.75)

and hence one obtains in the limit ε → 0 the formula (3.37) with action (3.64), and the

measure adapted to two dimensions

Dp = lim
N→∞

N−1∏
k=1

∫
d2 p(k)

1 + β2 p2
(k)

, Dx = lim
N→∞

N∏
k=1

∫
d2x(k), (3.76)

where d2 p(k) = pρ(k)dpρ(k)dpθ(k) and d2x(k) = dρ(k)dJ(k)/pρ(k).

In terms of the previous coordinates, the classical Hamiltonian H =
p2
ρ

2 +V(r2) takes the

form H =
p2
ρ

2 + V
(
ρ2 + J2

p2
ρ

)
. However, it is known that in order to obtain the correct result

for the path integral in polar coordinates, that takes into account the hermitian nature of

the operator ρ̂2, an additional term −1/2p2
ρ must be added to the classical two-dimensional

action [15]. Hence, the correct effective potential will be V = V
(
ρ2 + J2−1/2

p2
ρ

)
.

3.3.3 Faddeev-Jackiw formalism

The previous results can also be obtained in an easier way just assuming the validity of the

canonical path integral framework and employing the first-order formalism introduced by

Faddeev and Jackiw. As it was shown in Sec. 3.2, using a Darboux transformation from

the original variables ξi to new canonical variables, that for noncanonical variables the

path integral can be written in the form of (3.33), and S is given by (3.32) [23].

For the Poisson brackets (3.57), it can be shown by induction that for the Snyder model

in any dimension ∣∣∣detΩi j

∣∣∣ = (1 + β2 p2
i )2, (3.77)

from where the measures (3.56) and (3.76) follow.
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In this framework the explicit form of the Darboux’s transformation is not needed.

However, several possibilities are known for the Snyder model, e.g., in terms of canonical

variables Pi and Xi, one may choose pi = Pi, xi = X + β2XkPkPi [56]. A different

transformation was proposed in [44, 45], with pi = Pi/
√

1 − β2P2, xi =
√

1 − β2P2Xi. All

these choices give equivalent results, as it also follows from the study of the Schrödinger

equation [44, 45, 32].

3.3.4 Two-dimensional examples

If the formalism is applied to the case of a free particle, integration over the angular

variables pθ and J simply yields a delta function δ
(
p(i)
θ − p( f )

θ

)
, and one is left with an

integral over the radial coordinates,

∫
Dρ

∫
Dpρ exp

i ∫  ρ ṗρ
1 + β2 p2

ρ

+
p2
ρ

2

 dt
 , (3.78)

where

Dpρ = lim
N→∞

N−1∏
k=1

∫
dpρ(k)

1 + β2 p2
ρ(k)

. (3.79)

Performing a change of variablesPρ = β−1arctan βpρ, one gets

∫
Dρ

∫
DPρ exp

[
i
∫ (

ρṖρ +
tan 2Pρ

2

)
dt

]
, (3.80)

with

DPρ = lim
N→∞

N−1∏
k=1

∫
dP(k)

ρ . (3.81)

The integration on ρ gives in turn a delta function δ
(
P(i)
ρ − P( f )

ρ

)
and one is left with

∫
DPρ exp

[
i
2

∫
tan 2Pρdt

]
. (3.82)

In the harmonic oscillator case, the classical potential is V = ω2r2 → ω2
(
ρ2 + J2−1/4

p2
ρ

)
.
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It is convenient to integrate first in pθ, getting the conservation of angular momentum,

δ
(
J(i) − J( f )

)
. The integral then reduces to a sum on different J sectors

∫
Dρ

∫
Dpρ

1 + β2 p2
ρ

exp
i ∫  ρṗρ

1 + β2 p2
ρ

+
p2
ρ

2
+ ω2ρ2 + ω2 J2 − 1/4

p2
ρ

 dt
 . (3.83)

Defining a new variable Pρ as before, one gets

∫
Dρ

∫
DPρ exp

[
i
∫ (

ρṖρ + ω2ρ2 +
tan 2Pρ

2
+ ω2 J2 − 1/4

tan 2Pρ

)
dt

]
, (3.84)

and the gaussian integration over ρ yields

∫
DPρ exp

−i
∫  Ṗ2

ρ

4ω2 −
tan 2Pρ

2
− ω2 J2 − 1/4

tan 2Pρ

 dt

 . (3.85)

This path integral can be evaluated at least perturbatively by standard methods and is

similar to the one obtained for the one-dimensional case in [57].

Adopting the approach of [3], which is based on the noncanonical structure of phase

space, we have discussed the formulation of one-particle nonrelativistic quantum me-

chanics through path integral techniques for the Snyder model. A detailed derivation was

given starting from the definition of the path integral and using a representation of the

operators in terms of canonical coordinates. We have also shown that the same results can

be obtained in a more formal way using the techniques introduced in [14] for the study

of first-order systems, taking for granted the definition of the path integral for canonical

variables.



Chapter 4

The Snyder-de Sitter model

The Snyder model can be considered as an example of doubly special relativity (DSR),

a theory where a new fundamental scale is introduced by deforming special relativity

[4, 5]. Models of this sort can be described in terms of a curved momentum space [29],

which in the Snyder case is a 3-sphere S 3. In general, the non-trivial geometry of the

momentum space entails some remarkable consequences on the definition of locality, that

loses its absolute meaning and becomes observer dependent, suggesting the possibility

that locality is a relative property [6].

The Snyder-de Sitter (SdS) model is a generalisation of the Snyder model to a space-

time background of constant curvature. It is an example of a noncommutative spacetime

admitting two fundamental scales besides the speed of light, and is invariant under the

action of the de Sitter group.

The extension of the Snyder model to a spacetime background of constant curvature

was proposed in [30], motivated by the necessity to include the cosmological constant Λ ∼

α2 among the bare parameters of a theory of quantum gravity. Because it includes three

fundamental constants, the theory was originally called triply special relativity (TSR).

The most relevant feature of this generalisation is its duality for the interchange between

position and momenta, that realises the Born reciprocity principle [11].

In the first section, a review of the classical and quantum mechanics of the non-
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relativistic Snyder model in curved space, which was investigated in [45] is given. Fol-

lowing that, the results of [50], where the representations of the 3-dimensional Euclidean

Snyder-de Sitter algebra and the spectrum of the position and momentum operators were

studied, are presented.

4.1 Dynamics of the non-relativistic Snyder model in

curved space

The non-relativistic version of the SdS model, i.e. the Snyder model restricted to a three-

dimensional sphere, can be studied by means of a nonlinear transformation relating the

SdS phase space variables to canonical ones, allowing one to investigate both the dynam-

ics of a free particle and the harmonic oscillator case [45].

The starting point is the TSR algebra, which is generated by the position X̂µ, momenta

P̂µ and Lorentz generators Ĵµν, which satisfy

[X̂µ, X̂ν] = iβ2 Ĵµν, [P̂µ, P̂ν] = iα2 Ĵµν,

[X̂µ, P̂ν] = i
(
ηµν + α2X̂µX̂ν + β2P̂µP̂ν + αβ(X̂µP̂ν + P̂µX̂ν − Ĵµν)

)
,

[Ĵµν, X̂λ] = i(ηµλX̂ν − ηνλX̂µ), [Ĵµν, P̂λ] = i(ηµλP̂ν − ηνλP̂µ), (4.1)

and the usual Lorentz algebra commutation relations satisfied by the Ĵµν. The Ĵµν and

P̂µ generate a de Sitter or anti-de Sitter subalgebra (depending on the sign of α2) that

describes the spacetime symmetries of the model. As in DSR, the action of the translations

on the spatial coordinates is nonlinear. The coupling constants α and β have dimensions

of inverse length and inverse mass respectively and are usually identified with the square

root of the cosmological constant (α) and the inverse of the Planck length (β). In the

following it is required that αβ � 1. The limit α → 0 gives the flat Snyder model,

while the limit β → 0 yields the Heisenberg algebra of quantum mechanics in a de Sitter

background endowed with projective coordinates.
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From (4.1) it follows that in TSR both position and momentum components do not

commute among themselves. While the noncommutativity of position coordinates in (4.1)

characterises Snyder spaces, the noncommutativity of momenta is typical of curved space-

times. What can also be noted is the duality of the model under position and momentum

interchange through X̂µ ←→ P̂µ, α←→ β.

4.1.1 Classical mechanics

In classical mechanics, motion in the non-relativistic SdS model can be described by

postulating a non-canonical symplectic structure of the phase space, with fundamental

Poisson brackets given by [42]

{Xi,X j} = β2Ji j, {Pi,P j} = α2Ji j,

{Xi,P j} = δi j + α2XiX j + β2PiP j + αβPiX j, (4.2)

where i, j = 1, 2, 3. These Poisson brackets are obtained from (4.1) by introducing the

standard expression Ji j = XiP j − X jPi for the generators of rotation.

In the notation that is adopted, α2 and β2 are allowed to be negative, but, in order

for the Jacobi identities to hold, they must have the same sign. When they are both

negative, αβ is also taken to be negative, while for expressions linear in α and β it is

defined α =

√∣∣∣α2
∣∣∣, β =

√∣∣∣β2
∣∣∣. The case of positive coupling constants corresponds to

the Snyder model on a spherical background, while the model with α2 and β2 negative

gives rise to the anti-Snyder model on a pseudosphere, the so-called anti-Snyder-de Sitter

(aSdS) model.

The Poisson brackets (4.2) can be obtained from those of the flat Snyder model, with

position variables xi and momentum variables pi obeying

{xi, x j} = β2(xi p j − x j pi), {pi, p j} = 0, {xi, p j} = δi j + β2 pi p j, (4.3)

by performing a linear unimodular, but non-symplectic transformation of the phase space
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coordinates

Xi = xi +
β

α
λpi, Pi = (1 − λ)pi −

α

β
xi, (4.4)

where λ is a free parameter, that can be chosen arbitrarily.

It can be shown that the phase space variables xi and pi can be written in terms of

the coordinates Xi and Pi, that satisfy canonical Poisson brackets, through the nonlinear

transformation [44]

pi =
Pi√

1 − β2P2
, xi =

√
1 − β2P2Xi. (4.5)

Combining (4.4) and (4.5), the coordinatesXi andPi, that satisfy the SdS Poisson brackets

can be written in terms of the canonical coordinates Xi,Pi, as

Xi =
√

1 − β2P2Xi + λ
β

α

Pi√
1 − β2P2

,

Pi = −
α

β

√
1 − β2P2Xi + (1 − λ)

Pi√
1 − β2P2

, (4.6)

with the inverse transformations

Xi =
(1 − λ)αXi − λβPi

α
√

1 + (αXk + βPk)(αXk + βPk)
,

Pi =
βPi + αXi

β
√

1 + (αXk + βPk)(αXk + βPk)
. (4.7)

If α2, β2 < 0, it is necessary to impose |αXk + βPk| < 1, and hence the range of definition

of the coordinates depends on the value of the momentum. A possible interpretation for

this is that the radius of the pseudosphere is a function of the momentum of the particle,

which is a common situation in DSR theories defined on curved spaces, where the metric

properties are momentum dependent [43, 34].

While the full phase space is invariant under the S O(5) or S O(4, 1) group, depending

on the sign of the coupling constant, the symmetries of the configuration space are de-

scribed by the S O(4) or S O(3, 1) groups, which leave invariant a three-dimensional space
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of constant, positive or negative curvature, respectively, and which are generated by the

angular momentum Ji j = XiP j − X jPi and momentum Pi.

Since the phase space coordinates transform as vectors under the action of the gener-

ators of rotation Ji j,

{Ji j,Xk} = δikX j − δ jkXi, {Ji j,Pk} = δikP j − δ jkPi, (4.8)

the symmetry under rotations is realised in the usual way.

The action of the translation generators Pi on phase space variables can be read from

(4.2): the momenta transform according to the standard law for a constant curvature space,

but the action on the position coordinates is deformed and is nonlinear.

Because of the Jacobi identities, the fundamental Poisson brackets (4.2) transform

covariantly under the action of the symmetry group.

For the Hamiltonian of a free particle defined in the usual way, H = P2

2m , the deformed

Poisson structure leads to the following Hamiltonian equations

Ẋi =
(
1 + β2P2 + 2αβXkPk

)
Pi + α2XkPkXi,

Ṗi = −α2
(
P2Xi − XkPkPi

)
. (4.9)

Since the relation between velocity and momentum is no longer linear, the equations are

in general difficult to solve. However, in one dimension the Poisson brackets reduce to

{X,P} = 1 + (αX + βP)2 , (4.10)

leading to the Hamilton equations

Ẋ =
(
1 + (αX + βP)2

) P
2m

, Ṗ = 0. (4.11)
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In this case, the momentum is constant P = P0, and integrating the first equation gives

X = 1
α
tan αP0

m t − β

α
P0, α2 > 0,

X = 1
α
tanh αP0

m t − β

α
P0, α2 < 0. (4.12)

It can also be seen that in the second case, the condition |αX + βP| < 1, is fulfilled as

required.

When considering the example of the one-dimensional harmonic oscillator, the Hamil-

tonian is given by

H =
P2

2m
+

mω2
0X

2

2
. (4.13)

In the case of α2, β2 > 0, and for unit mass, the Hamilton equations are given by

Ẋ =
(
1 + (αX + βP)2

)
P, Ṗ = −ω2

0

(
1 + (αX + βP)2

)
X. (4.14)

From here, it follows that the Hamiltonian is conserved,

P2

2
+
ω2

0X
2

2
= E, (4.15)

with E the total energy of the oscillator.

After some work, the equations can be solved to find

X =

√
2E
γ

α
ω0

sinωt − β
√

1 + 2γE cosωt

ω0

√
1 + 2γE cos2ωt

,

P =

√
2E
γ

β sinωt + α
ω0

√
1 + 2γE cosωt√

1 + 2γE cos2ωt
, (4.16)

where

γ = β2 +
α2

ω2
0

, ω =
√

1 + 2γEω0. (4.17)

The solutions are periodic, but not sinusoidal, and the frequency now depends on the
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energy of the oscillator. In order for the frequency to be real, the energy must be such

that 1 + 2γE ≥ 0, which is always true if the energy is positive. In the limit α → 0, one

recovers the flat Snyder oscillator.

In the aSdS case, the same relation between the frequency and the energy is recovered,

but with with negative γ, and the solutions of the Hamilton equations are given by

X =

√
2E
|γ|

α
ω0

sinωt − β
√

1 + 2γE cosωt

ω0

√
1 + 2γE cos2ωt

,

P =

√
2E
|γ|

β sinωt + α
ω0

√
1 + 2γE cosωt√

1 + 2γE cos2ωt
. (4.18)

The condition imposed on the energy in order for the solutions to be real now gives rise

to an upper bound for the energy, 2E < ω2
0/(|β

2|ω2
0 + |α2|), consistently with the bound

|αX + βP| < 1.

4.1.2 Quantum mechanics

An equivalent form of the (a)SdS commutation relations (4.1), between the position and

momentum operators, X̂i and P̂i, is given by

[
X̂i, X̂ j

]
= iβ2 Ĵi j,

[
P̂i, P̂ j

]
= iα2 Ĵi j, (4.19)[

X̂i, P̂ j

]
= i

(
δi j + α2X̂iX̂ j + β2P̂iP̂ j +

αβ

2

(
3P̂iX̂ j + X̂ jP̂i − P̂ jX̂i + X̂iP̂ j

))
,

where the last equation is obtained from (4.1) after substituting the representation Ĵi j =

1
2

(
P̂iX̂ j + X̂ jP̂i − P̂ jX̂i − X̂iP̂ j

)
for the angular momentum. The lower degree of sym-

metry of (4.19) with respect to the classical expression (4.1) is due to operator ordering

problems.

The deformed commutation relations imply a modification of the Heisenberg uncer-

tainty relations and give rise to minimal uncertainty of both position and momentum. In

the simple case in which
〈
P̂i

〉
=

〈
X̂i

〉
= 0, the uncertainty relations that follow from (4.1)
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for states with vanishing angular momentum are

∆Xi∆P j ≥
1
2

∣∣∣∣〈[X̂i, P̂ j

]〉∣∣∣∣ =
1
2

∣∣∣∣δi j +
〈(
αX̂i + βP̂i

) (
αX̂ j + βP̂ j

)〉∣∣∣∣
≥

1
2

∣∣∣∣δi j + α2∆Xi∆X jβ
2∆Pi∆P j − αβ

(
∆Xi∆P j + ∆X j∆Pi

)∣∣∣∣ , (4.20)

where the last step follows after using the Schwartz inequality.

In the one-dimensional case, the algebra (4.19) simplifies

[
X̂, P̂

]
= i

(
1 + α2X̂2 + β2P̂2 + αβ

(
X̂P̂ + P̂X̂

))
, (4.21)

and the uncertainty relations (4.20) reduce to

∆X∆P ≥
1
2

∣∣∣1 + α2 (∆X)2 + β2 (∆P)2
∣∣∣

1 + αβ
. (4.22)

If α2, β2 > 0, they imply the existence of both minimal position and momentum uncer-

tainties, given by

∆XM =
β√

1 + 2αβ
∼ β(1 − αβ), ∆PM =

α√
1 + 2αβ

∼ α(1 − αβ). (4.23)

For α2, β2 < 0, no minimal uncertainties emerge.

Using the relation between the SdS coordinates and the canonical ones (4.6), it is

possible to define a realisation of the position and momentum operators X̂i and P̂i that

satisfies the algebra (4.19). The action of the operators on a Hilbert space of functions of

a variable Pi are then given by

X̂i = x̂i + λ
β

α
p̂i = i

√
1 − β2P2 ∂

∂Pi
+ λ

β

α

Pi√
1 − β2P2

,

P̂i = −
α

β
x̂i + (1 − λ)p̂i = −i

α

β

√
1 − β2P2 ∂

∂Pi
+ (1 − λ)

Pi√
1 − β2P2

. (4.24)

For α2, β2 > 0, the range of allowed values of Pi is bounded by P2 < 1/β2. Otherwise, if
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α2, β2 < 0, all real values of Pi are allowed, but the upper bound of the eigenstates of the

operator
(
αX̂k + βP̂k

) (
αX̂k + βP̂k

)
is 1, as in the classical limit.

A simple example of the action of the operators can be given by considering a particle

in one dimension. For this case, it is convenient to set λ = 0 in (4.24). If α2, β2 > 0, in

order to get symmetric operators, i.e.

(
P̂ψ, φ

)
=

(
ψ, P̂φ

)
,

(
X̂ψ, φ

)
=

(
ψ, X̂φ

)
, (4.25)

the scalar product must be defined as

(ψ, φ) =

∫ 1/β

−1/β

dP√
1 − β2P2

ψ∗(P)φ(P), (4.26)

and the wave functions have to satisfy periodic boundary conditions, ψ(−1/β) = ψ(1/β).

For α2, β2 < 0, the scalar product is defined by

(ψ, φ) =

∫ ∞

−∞

dP√
1 − β2P2

ψ∗(P)φ(P), (4.27)

and only the convergence of the integral is required.

When studying the spectrum of the position and momentum operators, certain diffi-

culties arise. Starting for example from the eigenvalue equation

X̂ψX = XψX, (4.28)

the solutions are given by

ψX = C e−
iX
β arcsin βP, (4.29)

with C a normalisation constant andX = 2nβ. While the eigenstates (4.29) have vanishing

position uncertainty, their energy diverges, and hence they cannot be accepted as physi-

cal. Here however, unlike in ordinary quantum mechanics, position eigenstates cannot be

obtained as a limit of states with finite energy. This is because the existence of a minimal
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indetermination of the positions implies that no exactly localised states can exist. One can

then, considering that
[
X̂, P̂

]
=

[
x̂, p̂

]
, guess that the functions that minimise the commu-

tator expectation value are the same as the ones that give rise to minimal uncertainty in

flat Snyder space, i.e.

ψX = C
√

1 − β2P2 e−
iX
β arcsin βP. (4.30)

The functions (4.30) satisfy the boundary conditions without the need of quantising the

parameter X. For these functions,

∆X = β, ∆P =

√
1
β2 + α2, ∆X∆P =

√
1 + α2β2, (4.31)

and ∆X is close to its minimal value (4.23), while ∆P is extremely large due to the small-

ness of β.

The properties of the momentum operator P̂ are similar to those of X̂. The eigenvalue

equation

P̂ψP = PψP, (4.32)

has the solution

ψP = C(1 − β2P2)
i

2αβ e
iP
α arcsin βP, (4.33)

with P = 2nα, and it exhibits problems analogous to those affecting the position operator

eigenstates. Here, ∆P = 0, but the expectation value of X̂2 diverges. As before, it is

possible to define a basis,

ψP = C(1 − β2P2)
1
2 + i

2αβ e
iP
α arcsin βP, (4.34)

in which P is not quantised, and the expectation value of X̂2 is finite. The uncertainties in

this basis are

∆X =

√
1
α2 + β2, ∆P = α, ∆X∆P =

√
1 + α2β2. (4.35)
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Hence, a basis of states more physical then the formal eigenstates (4.29) and (4.33), is

given by smeared functions like (4.30) and (4.34), which describe a fuzzy phase space,

with no sharply defined values of positions and momenta.

In the aSdS case, since no minimal indetermination arises, the situation is analogous

to ordinary quantum mechanics and the formal eigenfunctions are limits of states with

finite ∆X and ∆P. For the position operator, the eigenfunctions are

ψX = C e−
iX
β arcsinh βP, (4.36)

and for the momentum

ψP = C(1 − β2P2)
i

2αβ e
iP
α arcsinh βP. (4.37)

The invariance of the configuration space of the classical model under the S O(4) or

S O(3, 1) group can be extended to the quantum case.

The rotations are generated by

Ĵi j =
1
2

(
X̂iP̂ j + P̂ jX̂i − X̂ jP̂i − P̂iX̂ j

)
= p̂ j x̂i − p̂i x̂ j = i

(
P j

∂

∂Pi
− Pi

∂

∂P j

)
, (4.38)

and act in the standard way. The spectrum of Ĵi j is the same as in ordinary quantum

mechanics, and defining Ĵi = εi jk Ĵ jk, the eigenfunctions in spherical coordinates in the

momentum representation are given by the standard spherical harmonics

Ĵ2Ylm(Pθ, Pφ) = l(l + 1)Ylm(Pθ, Pφ), Ĵ3Ylm(Pθ, Pφ) = mYlm(Pθ, Pφ). (4.39)

The translations are generated by the momentum operators P̂i, that act according to (4.19).

Their action on momenta is the usual one for a space of constant curvature, but the one

on position variables is deformed and takes a nonlinear form. The commutation relations

(4.19) transform covariantly under these symmetries.

As a simple example of one-dimensional dynamics, one can consider the Schrödinger
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equation for a free particle. In the representation (4.24), with λ = 0 and for unit mass, it

reads

d2ψ

dP2 −

(
β −

2i
α

)
βP

1 − β2P2

dψ
dP
−
β2

α2

(
P2 − iα/β

(1 − β2P2)2 −
2E

1 − β2P2

)
ψ = 0. (4.40)

In the SdS case, the solutions of this equation, that vanish at P = ±1/β are

ψ = const. × (1 − β2P2)
i

2αβ cos
 √2E
α

arcsin βP
 , (4.41)

with E = 1
2α

2n2, for odd integer n. These solutions have finite values of ∆X.

In the case of aSdS, the solutions are given by the momentum eigenfunctions (4.37)

and the energy is not quantised.

If one wants to consider the case of the one-dimensional harmonic oscillator, with the

Hamiltonian given by

H =
P̂2

2m
+

mω2
0X̂

2

2
, (4.42)

it is convenient to choose the coefficient λ in (4.24) such that the cross term P̂X̂ + X̂P̂ in

the Hamiltonian vanishes. This is achieved with the choice of the gauge

λ =
α2

β2ω2
0 + α2

. (4.43)

The Schrödinger equation for unit mass now reads

1
2

β2ω2
0

β2ω2
0 + α2

(
P̂2 +

(β2ω2
0 + α2)2

β4ω2
0

X̂2
)
ψ = Eψ. (4.44)

Using the realisation (4.24), this equation becomes

d2ψ

dP2 −
β2P

1 − β2P2

dψ
dP
−

1
ω2

(
P2

(1 − β2P2)2 −
2ε

1 − β2P2

)
ψ = 0, (4.45)

where ω =

(
1 + α2

β2ω2
0

)
ω0 and ε =

(
1 + α2

β2ω2
0

)
E.
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After certain redefinitions of variables and requiring that ψ vanish at P = ±1/β, one

finds the solution in terms of Gegenbauer polynomials Cα
n [2]

ψ = const. × (1 − β2P2)α/2 Cα
n (βP), (4.46)

with α = 1
2 (1 +

√
1 + 4µ), and

µ =
ω2

0

(β2ω2
0 + α2)2

. (4.47)

The spectrum of energy is given by

E =

(
n +

1
2

)
ω0

√
1 +

(β2ω2
0 + α2)2

4ω2
0

+

(
n2 + n +

1
2

)
β2ω2

0 + α2

2
, (4.48)

and it exhibits corrections of order (β2ω0 + α2/ω0) with respect to the standard case and a

duality for β2ω0 ↔ α2/ω0.

For the case of α2, β2 < 0, the energy spectrum is the analytic continuation of (4.48)

to negative values of α2 and β2. Since the energy becomes negative for great n, it is

necessary to impose an upper bound on the allowed values of n.

The previous considerations can also be generalised to three dimensions.

4.2 Spectrum of position and momentum squared

The representations of the three-dimensional Euclidean SdS algebra can be studied start-

ing from those of the Snyder algebra and exploiting the geometrical properties of the

phase space that can be identified with a Grassmannian manifold [50].

For the given problem, it is more convenient to consider as generators of rotation

Ĵk = 1
2εi jk Ĵi j, which satisfy

[
Ĵi, Ĵ j

]
= iεi jk Ĵk,

[
Ĵi, X̂ j

]
= −iεi jkX̂k,

[
Ĵi, P̂ j

]
= −iεi jkP̂k. (4.49)
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The rest of the commutation relations of the SdS algebra are then given by

[
X̂i, X̂ j

]
= iβ2εi jk Ĵk,

[
P̂i, P̂ j

]
= iα2εi jk Ĵk,[

X̂i, P̂ j

]
= i

(
δi j + α2X̂iX̂ j + β2P̂ jP̂i + αβ

(
X̂ jP̂i + P̂iX̂ j

))
, (4.50)

where Ĵi j = 1
2

(
X̂iP̂ j + P̂ jX̂i − X̂ jP̂ j − P̂iX̂ j

)
.

The SdS algebra can be considered as a nonlinear realisation of a model proposed

by Yang [59], which differs from SdS only in the assumption of a standard Heisenberg

algebra for positions and momenta,
[
X̂i, P̂ j

]
= iK̂δi j, K̂ being a central charge for the

rotation group, satisfying
[
K̂, X̂i

]
= iα2P̂i,

[
K̂, P̂i

]
= −iβ2X̂i. With the identifications

Ĵi j = Ĵi j, αX̂i = Ĵ4i, βP̂i = Ĵ5i, K̂ = Ĵ45, the Yang model reproduces an S O(5) algebra

with generators Ĵµν, µ, ν = 1, ..., 5.

The three-dimensional nonrelativistic SdS model also enjoys an S O(5) symmetry. Its

phase space can be realised on the six-dimensional Grassmanian coset space Gr(3, 5) =

S O(5)/S O(3) × S O(2), with S O(3) generated by the Ĵi j and S O(2) by Ĵ45.

The space Gr(3, 5) can be parametrised by homogeneous coordinates Xµ and Pµ, that

satisfy the constraints [17]

α2X2
µ = 1, β2P2

µ = 1, XµPµ = 0. (4.51)

This parametrisation associates a one-parameter set of matrices to each coset. One can

then identify the variables Xµ and Pµ with canonical coordinates of a ten-dimensional

phase space and hence reduce it to a six-dimensional phase space parametrised by Xi

and Pi by eliminating the constraints (4.51), using the Dirac formalism [12], which was

recalled in Sec. 2.1. However, in order to obtain a one-to-one parametrisation, it is

necessary to impose a further constraint on the parameters X4, X5, P4, P5. This is also

required by the Dirac formalism since the constraints (4.51) split into one first class and

two second class constraints [42]. Unfortunately, not every constraint leads to the SdS

algebra and it is therefore necessary to choose a suitable gauge [42]. In particular, the
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choice αX5 + βP5 = 0 yields the algebra (4.50).

4.2.1 The nonrelativistic Snyder algebra

Before considering the SdS case, it is useful to review some results on the representation

of the Snyder algebra from [44, 32].

The Snyder algebra, as the limit of the SdS algebra for α → 0, contains an S O(4)

subalgebra of S O(5) generated by x̂i = Ĵ4i and Ĵi = 1
2εi jk Ĵ jk, while the momentum space

is realised as the coset space S 3 = S O(4)/S O(3).

The representations of the S O(4) algebra can be labelled by the eigenvalues of Â2, Ĵ2

and Ĵ3, where Âi is the operator defined as Âi = 1
2

(
Ĵi + β−1 x̂i

)
, so that x̂2 = β2

(
4Â2 − Ĵ2

)
,

Ĵ2| j, l,m〉 = l(l + 1)| j, l,m〉,

Ĵ3| j, l,m〉 = m| j, l,m〉,

x̂2| j, l,m〉 = β2(4 j( j + 1) − l(l + 1))| j, l,m〉, (4.52)

with 0 ≤ l ≤ 2 j, and j( j + 1) being the eigenvalue of Â2. The eigenvalues of x̂2 have

degeneration 2l + 1.

The momentum space can be realised as a 3-sphere, obtained by imposing the con-

straint p2
i + p2

4 = 1/β2 on a four-vector p. This can be shown algebraically [32], or from

a Dirac reduction of phase space [18].

The representation I

It is possible to define different representations of the Snyder algebra on a Hilbert space

and they are usually given in a momentum representation. One possibility is [32, 22]

p̂i = pi, x̂i = i
∂

∂pi
+ iβ2 pi

(
p j

∂

∂p j
+ µ

)
, Ĵi = −iεi jk p j

∂

∂pk
, (4.53)
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with the operators x̂i, p̂i, Ĵi acting on functions ψ(pi) of the Hilbert space, µ an arbitrary

real parameter and −∞ < pi < ∞. The operators are symmetric for the measure

d3 p
(1 + β2 p2)2−µ , (4.54)

provided that the functions ψ(pi) go to infinity like
(

1√
p2

)µ−1/2

.

In this representation the operator x̂2 takes the form

x̂2 = −(1 + β2 p2
ρ)

2
(
∂2

∂p2
ρ

+
2
pρ

∂

∂pρ

)
− µβ2

(
2(1 + β2 p2

ρ)pρ
∂

∂pρ
+ (1 + µ)β2 p2

ρ + 3
)

+
Ĵ2

i

p2
ρ

.

(4.55)

For µ = 0, the equation x̂2φ = x2φ has eigenfunctions [32]

φnlm = const. × sinlχC(l+1)
n (cos χ)Y l

m(pθ, pϕ), (4.56)

where the polar coordinates pρ, pθ, pϕ have been used, and χ is defined as χ = arctan βpρ.

The functions C(a)
n are Gegenbauer polynomials with n a nonnegative integer parameter

and Y l
m(pθ, pϕ) are spherical harmonics.

For µ , 0, the eigenfunctions (4.56) are simply multiplied by cosµχ. The eigenvalues

are independent of µ and read

x2 = β2(n2 + 2nl + 2n + l), (4.57)

with 0 ≤ l ≤ n. They can be identified with (4.52) by setting n = 2 j − l.

The operator p̂2 = p̂2
ρ is trivial and its spectrum extends to the positive real line.

The representation II

An alternative representation is given by [44]

p̂i =
pi√

1 − β2 p2
, x̂i = i

√
1 − β2 p2 ∂

∂pi
, (4.58)
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with p2 < 1/β2. In this representation the operators are symmetric for the measure

d3 p√
1 − β2 p2

, (4.59)

and the operator x̂2 takes the form

x̂2 = −(1 − β2 p2
ρ)

2 ∂
2

∂p2
ρ

−
2 − 3β2 p2

ρ

pρ

∂

∂pρ
+

(1 − β2 p2
ρ)Ĵ2

p2
ρ

. (4.60)

Its eigenfunctions are given by

φqlm = const. × sinlη cos ηP(1/2, l+1/2)
q (cos 2η)Y l

m(pθ, pϕ), (4.61)

where η = arcsin βpρ and Pa,b)
q are Jacobi polynomials with q a nonnegative integer. The

eigenvalues are given by β2((2q + l + 2)2 − l(l + 1)− 1). Taking q = (n− 1)/2, one recovers

the eigenvalues (4.57).

4.2.2 The nonrelativistic SdS algebra

As in the previous section, the representations of the operators X̂i and P̂i that satisfy the

SdS algebra can be obtained from the operators x̂i and p̂i of the Snyder algebra by taking

the linear combinations [45]

X̂i = x̂i + λ
β

α
p̂i, P̂i = (1 − λ)p̂i −

α

β
x̂i, (4.62)

with the inverse

x̂i = (1 − λ)X̂i − λ
β

α
P̂i, p̂i = P̂i +

α

β
X̂i, (4.63)

where λ is a free parameter. Since representations with different values of λ are related

by unitary transformations [45], for simplicity only the case λ = 0 is considered in the

following.

The relation between Snyder and SdS representations can be understood by con-
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sidering the embedding of S 3 into Gr(3, 5), corresponding to the branching S O(5) →

S O(4). The vectors of Gr(3, 5) satisfy the constraints (4.51), while those of S 3 satisfy

β2(p2
i + p2

4) = 1. Taking into account the SdS gauge constraint αX5 + βP5 = 0, one can

see that the combination pµ = Pµ + α
β
X defined as in (4.2.2) satisfies the same constraints

as the vectors of S O(4)/S O(3) and then transforms as the Snyder momentum.

The momentum representation I

Setting λ = 0, from (4.62) and (4.53), one obtains the representation

X̂i = i
∂

∂Pi
+ iβ2Pi

(
P j

∂

∂P j
+ µ

)
,

P̂i = Pi − i
α

β

(
∂

∂Pi
+ β2Pi

(
P j

∂

∂P j
+ µ

))
. (4.64)

As for the Snyder model, the eigenfunctions can be written in terms of X̂2, Ĵ2 and Ĵ3.

Since X̂2 = x̂2, the equation

X̂2ψ = X2ψ (4.65)

has the same eigenfunctions (4.56) and eigenvalues (4.57) as in the Snyder model.

The calculation of the operator P̂2 is more involved. From (4.62), setting λ = 0, one

gets

P̂2 = p̂2 −
α

β
(x̂i p̂i + p̂i x̂i) +

α2

β2 x̂2. (4.66)

The second term of the right hand side can be written as

x̂i p̂i + p̂i x̂i = 2i(1 + β2P2
ρ)Pρ

∂

∂Pρ

+ 3i + iβ2(1 + 2µ)P2
ρ. (4.67)
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From (4.55) and (4.67) it then follows

P̂2 = −
α2

β2

(
(1 + β2P2

ρ)
2 ∂

2

∂P2
ρ

+ (1 + β2P2
ρ)

(
1 + β2P2

ρ + i
β

α
P2
ρ

) 2
Pρ

∂

∂Pρ

−
Ĵ2

P2
ρ

)
−
α

β

(
3i +

(
iβ2 −

β

α

)
P2
ρ

)
+µα2

(
2(1 + β2P2

ρ)Pρ

∂

∂Pρ

+ (1 + µ)β2P2
ρ + 3 − 2i

β

α
P2
ρ

)
. (4.68)

As for the Snyder model, it is straightforward to check that the solutions with µ , 0 can

be obtained by multiplying those with vanishing µ by cosµχ, so only the µ = 0 case is

considered. Then the solutions of the eigenvalue equation P̂2φ = P2φ can be deduced

from those of (4.65) by noting that the substitution φ = (1 + β2P2
ρ)
−i/2αβψ brings the

equation to the same form as (4.55), with x2 → (β2/α2)P2, and hence its eigenfunctions

differ only by a phase from those of X̂2, and are given by

φnlm = const. × sinlχ cosi/αβχC(l+1)
n (cos χ)Y l

m(Pθ, Pϕ). (4.69)

The operators X̂2 and P̂2 are therefore related by a unitary transformation, and the eigen-

values of P̂2 are the same as those of X̂2, except for a multiplicative constant

P2 = α2(n2 + 2nl + 2n + l). (4.70)

This could have been predicted on the ground of the duality between X̂i and P̂i. It follows

that in the SdS model the eigenvalues of the momentum squared (and hence of the energy)

are also quantised and they do not depend on β.
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The momentum representation II

The prescription (4.58) along with the relation between the SdS and Snyder algebras gives

an alternative representation of the SdS algebra. For λ = 0, one obtains

X̂i = i
√

1 − β2P2 ∂

∂Pi
,

P̂i =
Pi√

1 − β2P2
− i

α

β

√
1 − β2P2 ∂

∂Pi
. (4.71)

As before, the operator X̂2 coincides with x̂2 and its eigenfunctions and eigenvalues are

given by (4.61) and (4.57) respectively.

On the other hand, the operator P̂2 is given by

P̂2 = −
α2

β2

(1 − β2P2
ρ)
∂2

∂P2
ρ

+
2 − (3β2 + 2i(β/α))P2

ρ

Pρ

∂

∂Pρ


−

(1 + 2iαβ)P2
ρ + 3i(α/β)

1 − β2P2
ρ

+
α2 Ĵ2

β2P2
ρ

. (4.72)

This result has been obtained in [45] for a sightly different operator.

In analogy to the previous calculations, the eigenvalue equation for P̂2 can be reduced

to the form (4.60) by introducing a function ψ such that φ = (1−β2P2
ρ)

i/2αβψ. The solution

is therefore

φqml = const. × sinlη cos1+i/2αβηP(l+1/2, 1/2)
q (cos 2η)Y l

m(Pθ, Pϕ), (4.73)

with η = arcsin βPρ. As in the Snyder case, taking q = (n + 1)/2, one recovers the

eigenvalues (4.70).

The position representation

The duality of the SdS algebra for the interchange of X̂i and P̂i permits to define position

representations by simply exchanging the roles of the phase space coordinates. Alterna-

tively, such representations can be obtained starting from those of the symmetries of S 3
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in Beltrami coordinates and using transformations analogous to (4.62).

From (4.64) and (4.71) one can in this way obtain the action of the momentum and

position operators on the Hilbert space of functions of Xi. For λ = 0, they take the form

P̂i = i
∂

∂Xi
+ iα2Xi

(
Xk

∂

∂Xk
+ µ

)
,

X̂i = Xi − i
β

α

(
∂

∂Xi
+ α2Xi

(
Xk

∂

∂Xk
+ µ

))
, (4.74)

and

P̂i = i
√

1 − α2X2 ∂

∂Xi
,

X̂i =
Xi

√
1 − α2X2

− i
β

α

√
1 − α2X2 ∂

∂Xi
, (4.75)

respectively. Position representations can be useful in some problems, like the hydrogen

atom, where the potential is a nontrivial function of Xi.

All the results could also be extended to the case of negative coupling constants. In

this case the algebra would no longer be compact and it is expected that the spectra of

position and momentum be continuous [45].

With the aim of generalising the results on the algebraic structure of the three-

dimensional nonrelativistic Snyder model investigated in [32], to the case of a curved

background, we have studied the representations of the three-dimensional Euclidean SdS

algebra. In the SdS case, the algebraic structure is less useful than in the Snyder case,

because for SdS the spectrum of the position operator cannot be derived directly from the

algebraic structure of the theory. However, since it is possible to find a relation between

the representations of the Snyder and the SdS algebra, one can find the spectrum of the

square of the position and momentum operators analytically.
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Chapter 5

Snyder-type spaces from the Hopf

algebroid point of view

From the noncommutative geometry point of view, relatively few investigations have been

performed on the Snyder model. Except for a series of papers [8, 9, 39], where the model

was generalised and the star product, coproduct and antipodes were calculated, the model

was also investigated in [19], where it was considered from a geometrical point of view

as a coset in momentum space, with results equivalent to those of [8, 9]. The construction

of a quantum field theory on Snyder spacetime was also started in these papers.

The chapter begins with a short review of Hopf algebras and the twist operator [1]

and follows with explaining the Hopf algebroid structure of (noncommutative) spacetime

[25]. In the last section, the results on the Snyder space from [37] are presented.
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5.1 Hopf algebras and the twist operator

5.1.1 Hopf algebras

An associative algebra with unit is a vector space A over a field K equipped with two

linear maps

m : A ⊗ A→ A, the product (5.1)

η : K → A, the unit, (5.2)

such that ∀a, b ∈ A

m(m ⊗ 1) = m(1 ⊗ m), (5.3)

m(η ⊗ 1) = m(1 ⊗ η), (5.4)

where ⊗ is the tensor product, m(a ⊗ b) = ab is the product of a and b, the mapping η is

determined by its value η(1K) ∈ A, which is the unit element in A, for 1K the unit element

in K. The identity map 1 : A→ A, is such that 1(a) = a, ∀a ∈ A.

A coalgebra is a vector space over a field K equipped with two linear mappings

∆ : A→ A ⊗ A, the coproduct, (5.5)

ε : A→ K, the counit, (5.6)

such that

(∆ ⊗ 1)∆ = (1 ⊗ ∆)∆, (5.7)

(ε ⊗ 1)∆ = 1 = (1 ⊗ ε)∆. (5.8)

Eq. (5.3) is the associativity condition and (5.8) is referred to as the coassociativity of the

comultiplication ∆. In eqs. (5.4) and (5.8) the isomorphism of algebras K ⊗ A and A is
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understood, so that the objects α ⊗ a and a, ∀α ∈ K, ∀a ∈ A, can be identified.

A bialgebra A is a vector space which is an algebra and a coalgebra such that ∀a, b ∈ A

the following conditions hold

∆(ab) = ∆(a)∆(b),

ε(ab) = ε(a)ε(b),

∆(1) = 1 ⊗ 1,

ε(1) = 1K . (5.9)

A bialgebra A is a Hopf algebra if there exists an additional mapping

S : A→ A, (5.10)

called the antipode, such that

m(S ⊗ 1)∆ = ηε = m(1 ⊗ S )∆. (5.11)

If A is an algebra with generators gi and relations R : gig j − g jgi − ick
i jgk = 0, the

universal enveloping algebra U(A) of A is the free algebra generated by the elements gi

and divided by the ideal generated by the relations R.

The universal enveloping algebra of the Poincaré algebra, which is generated by the

momenta Pµ and the Lorentz generators Jµν, provides an example of a Hopf algebra if the

coproducts, counits and antipodes are given by the following

∆(Pµ) = Pµ ⊗ 1 + 1 ⊗ Pµ, ε(Pµ) = 0, S (Pµ) = −Pµ, (5.12)

∆(Jµν) = Jµν ⊗ 1 + 1 ⊗ Jµν, ε(Jµν) = 0, S (Jµν) = −Jµν. (5.13)
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5.1.2 The twist operator

The twist operator F is in invertible element F ∈ U(A) ⊗ U(A) that satisfies

1. the cocycle condition

(F ⊗ 1)(∆ ⊗ 1)F = (1 ⊗ F )(1 ⊗ ∆)F , (5.14)

(F −1 ⊗ 1)(∆ ⊗ 1)F −1 = (1 ⊗ F −1)(1 ⊗ ∆)F −1, (5.15)

2. the normalisation condition

m(ε ⊗ 1)F = 1 = m(1 ⊗ ε)F . (5.16)

For the primitive coproduct ∆0 defined as

∆0(gi) = gi ⊗ 1 + 1 ⊗ gi, gi ∈ A, (5.17)

one can define the twisted coproduct ∆t as

∆t(gi) = F∆0(gi)F −1. (5.18)

If U(A) is a Hopf algebra with the coproduct (5.17), then Ut(A), defined such that the

algebraic sector is the same as that of U(A), but the coproduct is replaced with (5.18),

will also have all the properties of a Hopf algebra.

5.2 Hopf algebroid structure of (deformed) phase space

The Hopf algebra formalism is a useful tool for dealing with the symmetries of noncom-

mutative spaces, but it cannot be used for describing the phase space, as the universal

enveloping algebra of the Heisenberg algebra does not satisfy the properties of a Hopf

algebra. Considering a different type of noncommutative spacetime, the κ-Minkowski
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spacetime, it was shown that the proper framework for describing the (deformed) phase

space is that of Hopf algebroids [25].

5.2.1 The undeformed Hopf algebroid

The Heisenberg algebra H (i.e. quantum phase space) is generated by the commutative

coordinates xµ and momenta pµ that satisfy the following relations

[xµ, xν] ≡ xµxν − xνxµ = 0,

[pµ, pν] ≡ pµpν − pνpµ = 0,

[pµ, xν] ≡ pµxν − xνpµ = −iηµν1. (5.19)

The quantum phase spaceH is defined as the free unital algebra generated by xµ and pµ,

divided by the ideal generated by the relations (5.19). The bases elements inH are chosen

to be normally ordered monomials, i.e. the coordinates xµ are left from the momenta pµ.

H can symbolically be written as H = AT , where A is the unital commutative algebra

generated by xµ and T is the unital commutative algebra generated by pµ, T = C[[p]].

The coproducts of the generators are given by

∆0xµ = xµ ⊗ 1, ∆0 pµ = pµ ⊗ 1 + 1 ⊗ pµ, (5.20)

where an equivalence class inH ⊗H is generated by the ideal I0 = U+(R0)(A⊗ 1)∆0T .

Here, U+(R0) is the universal enveloping algebra generated by (R0)µ ≡ xµ⊗1−1⊗ xµ, but

without the unit element [40], and ∆0T = C[[∆0 p]] ⊂ T ⊗T is the image of T in T ⊗T .

The elements R0 satisfy the following properties

[∆0xµ,R0] = 0, [∆0 pµ,R0] = 0, [(R0)µ, (R0)ν] = 0. (5.21)

Since the Heisenberg algebraH can be written asH = AT , it can be shown that ∆0H =

U(R0)(A ⊗ 1)∆0T /I0 = [(A ⊗ 1)∆0T + I0]/I0 is an algebra isomorphic to H , and that



74 CHAPTER 5. SNYDER-TYPE SPACES FROM THE HOPF ALGEBROID POINT OF VIEW

∆0A = (A⊗ 1 + I0)/I0 = (A⊗A + I0)/I0 is an algebra isomorphic toA.

For every generator h ∈ H , the counit ε0 can be defined by the action of h on 1. The

coproduct ∆0 and the counit lead to a bialgebroid structure of the quantum phase space.

The undeformed Hopf algebroid is defined by the total algebra H (quantum phase

space), base algebra A, multiplication m, coproduct ∆0, antipode S 0, counit ε0, source

map α0 and target map β0.

The coproduct is a mapping

∆0 : H 7→ U(R0)(A⊗A)∆0T /I0, (5.22)

defined by (5.20). It is a homomorphism and satisfies the coassociativity condition

(∆0 ⊗ 1)∆0 = (1 ⊗ ∆0)∆0. (5.23)

The antipode S 0 is a mapping S 0 : H 7→ H and an antihomomorphism S 0(h1h2) =

S 0(h2)S 0(h1), ∀h1, h2 ∈ H . For the generators of the Heisenberg algebra it is given by

S 0(xµ) = xµ, S 0(pµ) = −pµ. (5.24)

The counit ε0 : H 7→ A is defined by ε0(h) = h . 1 ∈ A ⊂ H , ∀h ∈ H , where the action

. is defined by

xµ . f (x) = xµ f (x), pµ . f (x) = −i
∂ f (x)
∂xµ

. (5.25)

It can be seen that ε0(H) = A. The target map α0 : A 7→ H and the source map

β0 : A 7→ H are equal and for f (x) ∈ A are given by α0( f (x)) = β0( f (x)) = f (x).

The coproduct ∆0, antipode S 0 and counit ε0 satisfy the following relations

m(ε0 ⊗ 1)∆0 = m(1 ⊗ ε0)∆0 = 1,

m(S 0 ⊗ 1)∆0 = m(1 ⊗ S 0)∆0 = ε0, (5.26)
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and hence are highly related through (5.23)-(5.26). For example, in the momentum rep-

resentation

εmom
0 (pµ) = pµ, εmom

0 (xµ) = 0, (5.27)

and then

∆mom
0 (pµ) = pµ ⊗ 1, ∆mom

0 (xµ) = xµ ⊗ 1 + 1 ⊗ xµ, (5.28)

and

S mom
0 (pµ) = pµ, S mom

0 (xµ) = −xµ. (5.29)

5.2.2 The twisted Hopf algebroid

When dealing with noncommutative spaces, the spacetime is generated by a set of coordi-

nates x̂µ, which no longer commute, i.e. the relations (R0) no longer hold, but are replaced

by a different set which determines the type of noncommutative spacetime.

For a large class of spacetimes it is possible to find an isomorphism between the

noncommutative algebra Â, generated by the x̂µ and the algebra A∗, which is generated

by the commutative coordinates xµ, but the multiplication is replaced with the star product.

The star product between two elements f (x), g(x) ∈ A∗ is defined by

f (x) ∗ g(x) = f̂ (x̂)ĝ(x̂) . 1, (5.30)

where f̂ (x̂) and ĝ(x̂) are elements of Â, the action . is defined by (5.25) and in order to

calculate the right hand side of (5.30) one needs to choose a specific realisation of the

noncommutative coordinates x̂µ in terms of the commutative phase space variables xµ, pµ.

The deformed phase space, generated by x̂µ and pµ, can be denoted as the deformed

Heisenberg algebra Ĥ . It is convenient to define the action [27] I: Ĥ ⊗ Â 7→ Â, where

symbolically Ĥ = ÂT , Â being the subalgebra of Ĥ generated by the x̂µ and T the

subalgebra of Ĥ generated by pµ

x̂µ I ĝ(x̂) = x̂µĝ(x̂), pµ I 1 = 0, pµ I x̂ν = −iηµν. (5.31)
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From the Leibniz rule

x̂µ I f̂ (x̂)ĝ(x̂) = x̂µ f̂ (x̂)ĝ(x̂), (5.32)

follows the coproduct of ∆x̂µ

∆x̂µ = x̂µ ⊗ 1. (5.33)

For any choice of realisation, one way of constructing the corresponding coproducts ∆

for xµ and pµ is using the Leibniz rules for pµ . ( f ∗ g) and xµ . ( f ∗ g) obtained from the

property h1h2 . f (x) = h1 . (h2 . f (x)), where h1, h2 ∈ H [40].

The relation between the deformed coproducts ∆ and the undeformed ones ∆0, defines

the corresponding twist operator

∆h = F∆0hF −1, (5.34)

for every h ∈ H . Hence,

∆xµ = F∆0xµF −1, ∆pµ = F∆0 pµF −1. (5.35)

The star product can also be written in terms of the twist operator

f (x) ∗ g(x) = m∗ ( f (x) ⊗ g(x)) = m
(
F −1 . ( f ⊗ g)

)
, (5.36)

with m the multiplication map m(h1⊗h2) = h1h2, and m∗ the multiplication map defined by

m∗(h1⊗h2) = h1 ∗h2, ∀h1, h2 ∈ H . The star product does not change if F −1 → F −1 +J0,

where J0 = U+(R0)H ⊗H is the right ideal with the property m (J0 . ( f ⊗ g)) = 0. On

the other hand, f (x)g(x) = m( f ⊗ g) = m∗ (F . ( f ⊗ g)) does not change if F → F + J ,

whereJ is also a right ideal defined byJ = U+(R)H⊗H = FJ0, with Rµ = F (R0)F −1.

The right ideal J has the property m∗ (J . ( f ⊗ g)) = 0. The right ideals J0 and J also
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satisfy

J0(H ⊗H) = J0,

J(H ⊗H) = J ,

J = FJ0F
−1 = FJ0

JJ0 ⊂ J , J0J ⊂ J0. (5.37)

It can be shown that ∆H = U(R)(A ⊗ 1)F∆T /I is an algebra isomorphic to H , where

(A ⊗ 1)F = F (A ⊗ 1)F −1 and I = F (I0)F −1 = U+(R)(A ⊗ 1)F∆T . It can also be

shown that ∆A = F (∆0A)F −1 = ((A⊗ 1)F + I) /I is an algebra isomorphic to A. The

elements Rµ satisfy the following properties

[∆xµ,R] = 0, [∆pµ,R] = 0, [Rµ,Rν] = 0. (5.38)

The ideals I0 and I satisfy

I0∆0H = ∆0HI0 = I0,

I∆H = ∆HI = I,

II0 ⊂ J , I0I ⊂ J0. (5.39)

The twist F ∈ (H ⊗ H)/J is a mapping F : ∆0H 7→ ∆H , while its inverse F −1 ∈

(H ⊗H)/J0 is a mapping F −1 : ∆H 7→ ∆0H .

The twisted Hopf algebroid is defined by the total algebraH (quantum phase space),

the base algebra Â (where the elements of Â are taken in a particular realisation), multi-

plication m, twisted coproduct ∆F ≡ ∆, antipode S F ≡ S , counit εF ≡ ε̂, source map α̂

and target map β̂. The twisted structure also satisfies the axioms of a Hopf algebroid.

Using the twist F and its inverse F −1, that satisfy the cocycle condition (5.14) and the

normalisation condition (5.16), the twisted coproduct defined as ∆h = F∆0hF −1, ∀h ∈ H
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will satisfy the coassociativity condition

(∆ ⊗ 1)∆ = (1 ⊗ ∆)∆. (5.40)

The antipode S : H 7→ H is an antihomomorphism defined by

S (h) = χS 0(h)χ−1, (5.41)

where χ−1 = m
(
(S 0 ⊗ 1)F −1

)
.

The counit ε̂ : H 7→ Â ⊂ H is defined by

ε(h) = m
(
F −1(. ⊗ 1)(ε0(h) ⊗ 1)

)
. (5.42)

So it follows that

ε̂( f ) = f̂ , ε0( f̂ ) = f ,

ε̂( f ∗ g) = f̂ ĝ, ε0( f̂ ĝ) = f ∗ g,

ε̂(ε0( f̂ )) = f̂ , ε0(ε̂( f )) = f , (5.43)

∀ f , g ∈ A, and ∀ f̂ , ĝ ∈ Â.

The source and the target map can also be reconstructed from the twist. One first

defines the maps α : A∗ → Â ⊂ H and β : A∗ → H by

α( f (x)) = m
(
F −1(. ⊗ 1)(α0( f (x)) ⊗ 1)

)
, α0( f (x)) = f (x),

β( f (x)) = m
(
F̃ −1(. ⊗ 1)(β0( f (x)) ⊗ 1)

)
, β0( f (x)) = f (x), (5.44)

where F̃ = τ0F τ0 and τ0 is the flip operator τ0(h1 ⊗ h2) = h2 ⊗ h1, ∀h1, h2 ∈ H . The

source and target map are then given by

α̂ = αε0 |Â, β̂ = βε0 |Â . (5.45)
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The coproduct ∆, antipode S and counit ε satisfy the following relations

m(ε̂ ⊗ 1)∆ = m
(
1 ⊗ S −1ε̂S

)
∆ = 1,

m(S ⊗ 1)∆ = S −1ε̂S ,

m(1 ⊗ S )∆ = ε̂, (5.46)

which are compatible with the Hopf algebroid structure in [31]. The relation between

the presented approach and Lu’s paper [31] is αε 7→ ε̂ and βε 7→ S −1ε̂, since in the

present case ε̂ : H 7→ Â ⊂ H . In the undeformed case the relation is αε 7→ ε0 and

βε 7→ S −1
0 ε0 = ε0.

5.2.3 The Hopf algebroid structure of Ĥ

The deformed phase space Ĥ , generated by the noncommutative coordinates x̂µ and the

momenta pµ also has a Hopf algebroid structure which is defined by the total algebra Ĥ ,

base algebra Â ⊂ Ĥ , multiplication map m, coproduct ∆ (which is for the coordinates

x̂µ given by (5.33), and for a given realisation needs to be calculated for the momenta),

antipode S , counit ε̂, source map α̂ and target map β̂. The counit is defined by

ε̂(ĥ) = ĥ I 1, ∀ĥ ∈ Ĥ . (5.47)

It is useful to introduce ŷµ as the right multiplication by x̂µ

ŷµ I f̂ (x̂) = f̂ (x̂)x̂µ, (5.48)

from where it follows

∆ŷµ = 1 ⊗ ŷµ. (5.49)

The relation Q̂µ = ŷµ ⊗ 1− 1⊗ x̂µ, which has the property Q̂µ I Â ⊗ Â = 0, generates the

right ideal J = U+(Q̂)H ⊗ Ĥ , which satisfies J I Â ⊗ Â = 0.
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The antipode S is then defined by S (ŷµ) = x̂µ and satisfies

m(ε̂ ⊗ 1)∆ = m(1 ⊗ S −1ε̂S )∆ = 1,

m(S ⊗ 1)∆ = S −1ε̂S

m(1 ⊗ S )∆ = ε̂. (5.50)

The antipode for pµ, S (pµ) follows from m(S ⊗ 1)∆(pµ) = m(1 ⊗ S )∆(pµ) = 0. The

source map α̂ : Â 7→ Ĥ is a homomorphism and the target map β̂ : Â 7→ Ĥ is an

antihomomorphism defined by β̂ = S −1α̂.

5.3 Snyder-type spaces, twisted Poincaré algebra and ad-

dition of momenta

5.3.1 Snyder-type spaces

We define generalised Snyder spaces as deformations of ordinary phase space, generated

by noncommutative coordinates x̂µ and momenta p̂µ that span a deformed Heisenberg

algebra Ĥ(x̂, p̂) of the type

[x̂µ, x̂ν] = iβ2 Ĵµνψ(β2 p̂2), [p̂µ, p̂ν] = 0, [ p̂µ, x̂ν] = −iϕµν(β2 p̂2). (5.51)

The algebra also includes the Lorentz generators Ĵµν that satisfy the standard relations

[Ĵµν, Ĵρ,σ] = i(ηµν Ĵνσ − ηµσ Ĵνρ + ηνρ Ĵµσ − ηνσ Ĵµρ),

[Ĵµν, p̂λ] = i(ηµν − ηλν x̂µ), [Ĵµν, x̂λ] = i(ηµν − ηλν x̂µ).

(5.52)

The functions ψ(β2 p̂2) and ϕµν(β2 p̂2) are constrained by the requirement that the Jacobi

identities hold and ηµν = diag(−1, 1, 1, 1). The commutation relations (5.51)-(5.52) gen-
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eralise those originally investigated in [56], that are recovered for ψ =const.

The commutative coordinates xµ and momenta pµ, that generate the undeformed

Heisenberg algebraH(x, p), satisfy

[xµ, xν] = 0, [pµ, pν] = 0, [pµ, xν] = −iηµν. (5.53)

The action of xµ and pµ on functions f (x) belonging to the enveloping algebraA generated

by the xµ is defined by

xµ . f (x) = xµ f (x), pµ . f (x) = −i
∂ f (x)
∂xµ

. (5.54)

The noncommutative coordinates x̂µ, the momenta p̂µ and the Lorentz generators Ĵµν in

(5.51)-(5.52) can be expressed in terms of commutative coordinates xµ and pµ as [8, 9]

x̂µ = xµϕ1(β2 p2) + β2x · ppµϕ2(β2 p2) + β2 pµχ(β2 p2), (5.55)

p̂µ = pµ, Ĵµν ≡ Jµν = xµpν − xνpµ. (5.56)

The function χ does not appear in the defining relations (5.51)-(5.52), but takes into ac-

count ambiguities arising from operator ordering of xµ and pµ in eq.(5.55).

In terms of the realisation (5.55), the functions ϕµν in (5.51) read

ϕµν = ηµνϕ1 + β2 pµpνϕ2, (5.57)

while the Jacobi identities are satisfied if

ψ = −2ϕ1ϕ
′
1 + ϕ1ϕ2 − 2β2 p2ϕ′1ϕ2, (5.58)

where the prime denotes a derivative with respect to β2 p2. In particular, the function ψ

does not depend on the function χ.

From eq.(5.58), it follows that the coordinates x̂µ are commutative for ϕ2 =
2ϕ′1ϕ1

ϕ1−2β2 p2ϕ′1
,
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and correspond to the Snyder space for ϕ2 =
1+2ϕ′1ϕ1

ϕ1−2β2 p2ϕ′1
. In particular, the Snyder realisation

of the Snyder space is recovered for ϕ1 = ϕ2 = 1, and the Maggiore realisation for

ϕ1 =
√

1 − β2 p2, ϕ2 = 0 [8, 9]. There is also another interesting realisation of the Snyder

space for ψ = s =const., given by

x̂µ = xµ +
β2

4
Cµ, (5.59)

where Cµ = xµp2−2x · ppµ are the generators of conformal transformations in momentum

space, with [Cµ,Cν] = 0.

The algebra (5.51) unifies commutative space ψ = 0, and Snyder space ψ = 1. Since

the Lorentz transformations are not deformed, the Casimir operator of the algebra (5.51)-

(5.52) is C = p2.

It can be shown that [27, 41, 28]

eik·x̂ . 1 = eiK(k)·x+ig(k), (5.60)

and

eik·x̂ . eiq·x = eiP(k,q)·x+iQ(k,q), (5.61)

where eqs. (5.60) and (5.61) can be seen as the defining relations for the functions

K(k), g(k), P(k, q) and Q(k, q). It is easily seen that

Pµ(k, 0) = Kµ(k), Pµ(0, q) = qµ, (5.62)

and it can be checked that

e−iλk·x̂ pµeiλk·x̂ . eiq·x = Pµ(λk, q)eiq·x, (5.63)

with λ a real parameter. Differentiating both sides of the last equation by λ, it follows that
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the function Pµ(λk, q) satisfies the differential equation

dPµ(λk, q)
dλ

= kαϕαµ (P(λk, q)) , (5.64)

where the relation (5.57) was used to write the realisation (5.55) in terms of ϕµν.

The generalised addition of momenta kµ and qµ is then defined as [9, 39, 24]

kµ ⊕ qµ = Dµ(k, q), (5.65)

where Dµ(k, 0) = kµ, Dµ(0, q) = qµ, and the function Dµ(k, q) can be calculated in terms

of ϕµν as

Dµ(k, q) = Pµ(K−1(k), q), (5.66)

with K−1
µ (k) the inverse map of Kµ(k), i.e. K−1

µ (K(k)) = kµ. From (5.64) and (5.57) it

follows that Pµ(k, q) and hence alsoDµ(k, q) do not depend on the function χ in (5.55).

Writing the inverse of eq.(5.60),

eik·x = eiK−1(k)·x̂−ig(K−1(k)) . 1, (5.67)

it follows that the star product of two plane waves is given by

eik·x ∗ eiq·x = eiK−1(k)·x̂−ig(K−1(k)) . eiq·x

= eiP(K−1(k),q)·x+iQ(K−1(k),q)−ig(K−1(k)). (5.68)

Using (5.66), noting that g(k) = Q(k, 0), and defining the function G(k, q) by

G(k, q) = Q(K−1(k), q) − Q(K−1(k), 0), (5.69)
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it follows that the star product can be written as

eik·x ∗ eiq·x = eiD(k,q)·x+iG(k,q). (5.70)

It should be noted that G vanishes if χ(k) = 0. Defining x̂µ(0) = xαϕµα and using (5.57) when

writing down the realisation (5.55) for x̂µ, one can check that the following equality holds

e−iλk·x̂(0) pµeiλk·x̂ . eiq·x = Pµ(λk, q)eiq·x+iQ(λk,q), (5.71)

with λ a real parameter. Differentiating both sides of (5.71) by λ and using (5.64), it

follows that Q(k, q) satisfies the differential equation

dQ(λk, q)
dλ

= kαχα (P(λk, q)) , (5.72)

with Q(0, q) = 0 and χα ≡ pαχ(β2 p2).

We next follow the approach of Sec. 5.2. Since the coproduct for the Snyder space

does not satisfy the coassociativity condition, the structure corresponding to the phase

space will be that of a quasi-Hopf algebroid. Hence,the algebra A, generated by the

commutative coordinates xµ, can be extended to the quasi-Hopf algebroidH generated by

the xµ and the pµ, symbolically indicated as H = AT , where T is the algebra generated

by the pµ [25]. In this approach, the coproduct for the momenta ∆pµ is obtained from

Dµ(k, q) as

∆pµ = Dµ(p ⊗ 1, 1 ⊗ p). (5.73)

From this definition it follows that the addition of momenta and the coproduct do not

depend on χ(β2 p2).

From the coproduct one can then define the twist F , such that ∆h = F∆0hF −1 for any

h ∈ H , as [25, 20]

F −1 =: exp {i(1 ⊗ xα)(∆ − ∆0)pα + G(p ⊗ 1, 1 ⊗ p)} :, (5.74)
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where ∆0 pµ = pµ ⊗ 1 + 1 ⊗ pµ, and : : denotes normal ordering in which the coordinates

xα stand on the left of the momenta pα.

In this approach, the star product f ∗ g can be defined as

( f ∗ g)(x) = m
(
F −1(. ⊗ .)( f ⊗ g)

)
, f , g ∈ A, (5.75)

with m : A⊗H → H the multiplication map ofA.

The relation (5.55) between x̂µ and xµ can also be written in terms of the twist as

x̂µ = m
(
F −1(. ⊗ 1)(xµ ⊗ 1)

)
= xαϕαµ(p) + β2 pµχ(p). (5.76)

It follows for consistency

∆pµ = F (∆0 pµ)F −1, ∆0 pµ = pµ ⊗ 1 + 1 ⊗ pµ, (5.77)

in accordance with (5.73).

The coproducts of the momenta were found for special cases in [9]. For the Snyder

realisation, it reads

∆pµ =
1

1 − β2 pα ⊗ pα

pµ ⊗ 1 −
β2

1 +
√

1 + β2 p2
pµpα ⊗ pα +

√
1 + β2 p2 ⊗ pµ

 , (5.78)

and for the Maggiore realisation

∆pµ = pµ ⊗
√

1 − β2 p2 −
β2

1 +
√

1 − β2 p2
pµpα ⊗ pα + 1 ⊗ pµ. (5.79)

The coproducts of the Lorentz generators are given by

∆Jµν = F (∆0Jµν)F −1, ∆0Jµν = Jµν ⊗ 1 + 1 ⊗ Jµν. (5.80)

Because of the commutation relations (5.52), the coproduct of Jµν will be trivial, i.e.
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∆Jµν = ∆0Jµν [9].

For the coordinates, the coproducts are given by

∆x̂µ = x̂µ ⊗ 1 + I, (5.81)

where I is the right ideal ofH with the property m∗ (I(. ⊗ .)( f ⊗ g)) = 0, where m∗( f ⊗

g) = f ∗ g for f , g ∈ A. Hence,

∆xµ = F∆0xµF −1 = F (xµ ⊗ 1)F −1. (5.82)

The antipodes for the Snyder space are trivial [9]

S (pµ) = −pµ, S (Jµν) = −Jµν. (5.83)

5.3.2 First order expansion

The study of the general form of the deformed Heisenberg algebra (5.51) is difficult,

however it can be studied perturbatively, by expanding the realisation (5.55) of the non-

commutative coordinates in powers of β2

x̂µ = xµ + β2(s1xµp2 + s2x · ppµ + cpµ) + O(β2), (5.84)

with parameters s1, s2, c. It can be seen that the commutation relations do not depend on

the parameter c and up to the first order are given by

[x̂µ, x̂ν] = iβ2sJµν + O(β2), [pµ, x̂ν] = −i
(
ηµν(1 + β2s1 p2) + β2s2 pµpν

)
+ O(β4), (5.85)

where s = s2 − 2s1.

The models of [8, 9] are recovered for s2 = 1 + 2s1. Furthermore, for s1 = 0, s2 = 1,

eqs.(5.84)-(5.85) reproduce the exact Snyder realisation, while for s1 = −1/2, s2 = 0, they

give the first order expansion of the Maggiore realisation. For s2 = 2s1, the spacetime is
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commutative to first order in β2, and for s1 = −s/4, s2 = s/2, c = 0, one gets the exact

realisation (5.59).

The first order expression for the function Pµ(k, q) is given by

Pµ(k, q) = qµ +

∫ 1

0
dλ

{
kµ + β2

[
s1kµ(λk + q)2 + s2(λk2 + k · q)(λkµ + qµ)

]}
+ O(β4)

= kµ + qµ + β2
[(

s1q2 +

(
s1 +

s2

2

)
k · q +

s1 + s2

3
k2

)
kµ + s2

(
k · q +

k2

2

)
qµ

]
+O(β4) (5.86)

from where it follows that

K−1
µ (k) = kµ −

β2

3
(s1 + s2)k2kµ + O(β4). (5.87)

Using these results, it is possible to write down the generalised addition law of the mo-

menta kµ and qµ at first order

(k⊕q)µ = Dµ(k, q) = kµ + qµ +β2
(
s2k · qqµ + s1q2kµ +

(
s1 +

s2

2

)
k · qkµ +

s2

2
k2qµ

)
+ O(β4).

(5.88)

In particular, for the "conformal" case s1 = −s/4, s2 = s/2,

(k ⊕ q)µ = kµ + qµ +
β2s
4

(
2k · qqµ − q2kµ + k2qµ

)
+ O(β4). (5.89)

Another interesting outcome is that for s2 = 2s1 , 0, s = 0, although spacetime is

commutative up to the first order in β2, the addition of momenta is deformed

(k ⊕ q)µ , kµ + qµ. (5.90)

The Lorentz transformations of momenta are not deformed and, denoting them by

Λ(ξ, p), with ξ the rapidity parameter, the law of addition of momenta implies that

Λ(ξ, k ⊕ q) = Λ(ξ1, k) ⊕ Λ(ξ2, q) (5.91)
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is satisfied for ξ1 = ξ2 = ξ. Hence, there are no backreaction factors in the sense of

[21, 35], meaning that in composite systems the boosted momenta of the single particles

are independent of the momenta of the other particles in the system.

The coproduct up to the first order can be read from (5.88) and is given by

∆pµ = ∆0 pµ + β2
(
s1 pµ ⊗ p2 + s2 pα ⊗ pαpµ +

(
s1 +

s2

2

)
pµpα ⊗ pα +

s
2

p2 ⊗ pµ
)

+ O(β4).

(5.92)

The corresponding twist operator F −1 is

F −1 = 1 ⊗ 1 + i(1 ⊗ xα)(∆ − ∆0)pα + icβ2 pα ⊗ pα + O(β4). (5.93)

From this, it is possible to calculate the coproducts ∆Jµν, ∆xµ and the antipodes S (pµ),

S (Jµν), S (xµ) in the Hopf algebroid sense.

In general, the exact twist will not satisfy the cocycle condition, the corresponding star

product will be non-associative and the coproducts ∆pµ, ∆Jµν will be non-coassociative

[9], hence the corresponding phase space will have a quasi-Hopf algebroid structure. An

exception is given in the commutative case s2 = 2s1, when the star product is associative

and the corresponding coproduct ∆pµ is cocommutative and coassociative.

Using the twist (5.93) to calculate the coproduct of pµ as in (5.77), one gets again

(5.92), the same result as when using the function D, while using (5.80) to calculate the

coproduct of Jµν gives ∆Jµν = ∆0Jµν + O(β4).

In the special case s2 = 2s1, s = 0, which corresponds to commutative space, it is

easily seen from (5.92) that

∆̃pµ ≡ τ0∆pµτ0 = ∆pµ, (5.94)

i.e. the coproduct is left-right symmetric, with the flip operator τ0 defined in the usual

way as

τ0(A ⊗ B) = B ⊗ A. (5.95)

The coproduct will also be cocommutative and the corresponding star product will be
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commutative, but not local.

The flip operator, τ = F τ0F
−1, is relevant in the discussion of the twisted statistics of

particles in quantum field theory on noncommutative spaces [40, 20]. Another important

operator in this context is the R−matrix, which satisfies the relation R∆0 pµR−1 = ∆̃pµ.

Defining F̃ = τ0F τ0, it can be written as

R = F̃ F −1 = 1 ⊗ 1 + Rcl + O(β4), (5.96)

where the classical R−matrix Rcl reads

Rcl = (xα ⊗ 1)(∆̃ − ∆0)pα − (1 ⊗ xα)(∆ − ∆0)pα, (5.97)

where ∆pµ is given by (5.92). For commutative spaces, Rcl is given by

Rcl = (xα ⊗ 1 − 1 ⊗ xα)(∆ − ∆0)pα ∈ I0, (5.98)

where I0 is the right ideal of H with the property m (I0 . ( f ⊗ g)) = 0. Its relation with

the right ideal I is given by I = FI0F
−1.

5.3.3 Twist for the Snyder realisation

As it turns out, for the case of the Snyder realisation of the Snyder space, it is possible

to find the exact twist operator using the perturbative approach introduced in [25], by

expanding the coproduct in powers of β2. The Snyder realisation corresponds to the case

ϕ1 = ϕ2 = 1, χ = 0, i.e.

x̂µ = xµ + β2x · ppµ. (5.99)

The coproduct of the momenta is given by (5.78). It is expanded with respect to the
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deformation parameter β2 as ∆pµ =
∑∞

k=0 ∆k pµ, with ∆k pµ ∝ (β2)k

∆pµ = pµ ⊗ 1 + 1 ⊗ pµ + β2
(
1
2

pµpα ⊗ pα + pα ⊗ pαpµ +
1
2

p2 ⊗ pµ

)
+β4

(
1
2

pµpαpβ ⊗ pαpβ + pαpβ ⊗ pαpβpµ +
1
8

pµpαp2 ⊗ pα −
1
8

p4 ⊗ pµ

+
1
2

pαp2 ⊗ pαpµ

)
+ β6

(
1
2

pµpαpβpγ ⊗ pαpβpγ + pαpβpγ ⊗ pαpβpγpµ

−
1
16

pµpαp4 ⊗ pα +
1
8

pµpαpβp2 ⊗ pαpβ +
1

16
p6 ⊗ pµ −

1
8

pαp4 ⊗ pαpµ

+
1
2

pαpβp2 ⊗ pαpβpµ

)
+ O(β8) (5.100)

and the twist is assumed to take the form

F = e f1+ f2+ f3+..., (5.101)

where fk ∝ (β2)k. From (5.77) follow the equations satisfied by the fk, order by order

[
f1,∆0 pµ

]
= ∆1 pµ, (5.102)[

f2,∆0 pµ
]

= ∆2 pµ −
1
2

[
f1,

[
f1,∆0 pµ

]]
, (5.103)[

f3,∆0 pµ
]

= ∆3 pµ −
1
2

([
f1,

[
f2,∆0 pµ

]]
+

[
f2,

[
f1,∆0 pµ

]])
−

1
3!

[
f1,

[
f1,

[
f1,∆0 pµ

]]]
, (5.104)

and so on. To calculate f1 one writes down the ansatz

f1 = β2(α1 p2 ⊗ x · p + α2 pαpβ ⊗ xαpβ + α3 pα ⊗ x · p pα + α4 pα ⊗ xαp2), (5.105)

and inserts it into (5.102) to determine the unknown coefficients αi. The resulting expres-

sion for f1 is

f1 = −iβ2
(
1
2

p2 ⊗ x · p +
1
2

pαpβ ⊗ xαpβ + pα ⊗ x · p pα
)
. (5.106)
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Inserting this and the ansatz

f2 = β4(α1 p4 ⊗ x · p + α2 pαpβp2 ⊗ xαpβ + α3 pαp2 ⊗ x · p pα

+α4 pαp2 ⊗ xαp2 + α5 pαpβpγ ⊗ xαpβpγ
)
, (5.107)

into (5.103), one finds

f2 = i
β4

2

(
1
2

p4 ⊗ x · p +
1
2

pαpβp2 ⊗ xαpβ + pαp2 ⊗ x · p pα
)
. (5.108)

An analogous procedure for the third order gives

f3 = −i
β6

3

(
1
2

p6 ⊗ x · p +
1
2

pαpβp4 ⊗ xαpβ + pαp4 ⊗ x · p pα
)
. (5.109)

Inductively, it follows that the closed form for the twist is given by

F = exp
{
−i

(
1
2

p2 ⊗ x · p +
1
2

pαpβ ⊗ xαpβ + pα ⊗ x · p pα
) (

log(1 + β2 p2)
p2 ⊗ 1

)}
.

(5.110)

One can check that (5.110) gives the correct twist for the Snyder space by calculating

m
(
F −1(. ⊗ 1)(xµ ⊗ 1)

)
= xµ + β2x · ppµ. (5.111)

An independent verification is to start from (5.74). One gets

F −1 = : exp
{

i
1 − β2 pα ⊗ pα

[
β2

√
1 + β2 p2

1 +
√

1 + β2 p2
pβpγ ⊗ xβpγ +

( √
1 + β2 p2 − 1

)
⊗ x · p

+β2 pβ ⊗ x · ppα
]}

: , (5.112)
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which expanded up to the second order gives

F −1 = 1 ⊗ 1 + iβ2
(
1
2

pαpβ ⊗ xαpβ +
1
2

p2 ⊗ x · p + pα ⊗ x · ppα
)

−
iβ4

2

(
1
4

p4 ⊗ x · p −
1
4

pαpβp2 ⊗ xαpβ − pαp2 ⊗ x · ppα − pαpβpγ ⊗ xαpβpγ

−2pαpβ ⊗ x · ppαpβ
)
−
β4

2

(
1
4

p4 ⊗ xαx · ppα +
1
2

pαpβp2 ⊗ xαx · ppβ

+pαp2 ⊗ xβx · ppβpα +
1
4

pαpβpγpδ ⊗ xαxβpδpγ + pαpβpγ ⊗ xαx · ppβpγ

+pαpβ ⊗ xγx · ppγpαpβ
)

+ O(β6). (5.113)

The expression in eq.(5.113) agrees exactly with what one would get from (5.106) and

(5.108) using the fact that F −1 = 1 ⊗ 1 − f1 − f2 + 1
2 f 2

1 + O(β6).

Using the exact twist (5.110) to calculate the coproduct of Jµν one can verify that the

coproduct of the Lorentz generators is undeformed to all orders, i.e.

∆Jµν = ∆0Jµν. (5.114)

5.3.4 Twist for the Maggiore realisation

The same procedure can be performed for the Maggiore realisation (5.79). The coproduct

when expanded up to the third order, takes the following form

∆pµ = pµ ⊗ 1 + 1 ⊗ pµ −
β2

2

(
pµpα ⊗ pα + pµ ⊗ p2

)
(5.115)

−
β4

8

(
pµ ⊗ p4 + pµpαp2 ⊗ pα

)
−
β6

16

(
pµ ⊗ p6 + pµpαp4 ⊗ pα

)
+ O(β8).
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Using the same procedure as in the previous subsection, one finds

f1 =
iβ2

2

(
pα ⊗ xαp2 + pαpβ ⊗ xαpβ

)
, (5.116)

f2 =
iβ4

8

(
pα ⊗ xαp4 + pαp2 ⊗ xαp2 + 2pαpβpγ ⊗ xαpβpγ

+2pαpβ ⊗ xαpβp2 + 2pαpβp2 ⊗ xαpβ
)
,

f3 =
iβ6

8

(1
2

pα ⊗ xαp6 +
4
3

pαpβp4 ⊗ xαpβ +
3
2

pαpβ ⊗ xαpβp4

+
7
12

pαp4 ⊗ xαp2 +
5

12
pαp2 ⊗ xαp4 +

7
3

pαpβpγ ⊗ xαpβpγp2

+
5
3

pαpβp2 ⊗ xαpβp2 +
4
3

pαpβpγpδ ⊗ xαpβpγpδ + 2pαpβpγp2 ⊗ xαpβpγ
)
.

In this case it doesn’t seem to be possible to find a closed form for the twist. How-

ever, the perturbative result, when used to calculate the coproduct of Jµν, gives again the

primitive coproduct, as it should.

We have extended the previous investigations on the noncommutative geometry of

the Snyder model in several directions. It was first generalised further to include in the

defining commutations relations all terms compatible with undeformed Lorentz invari-

ance. The corresponding deformed addition of momenta was also obtained and analysed.

Adopting the formalism of Hopf algebroids [25], recalled in Sec. 5.2, the twist and the

R-matrix were calculated to first order in the deformation parameter in the general case

and the exact expression for the twist for the case of the so-called Snyder realisation was

obtained. It should be noted however that because of the non-coassociativity of the co-

product, the twist for the Snyder space will not satisfy the cocycle condition in the sense

of Hopf algebras (5.1.2), as can be checked directly order by order, and the structure asso-

ciated to the phase space will be that of a quasi-Hopf algebroid. The formal definition and

elaboration of the quasi-Hopf algebroid corresponding to the Snyder space is non-trivial

and will be presented in future work.
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Chapter 6

Concluding remarks

In this thesis we have studied the Snyder model from several points of view. As we have

seen, this model is an example of noncommutative geometry based on a deformation

of the Heisenberg algebra, and can also be considered as an example of doubly special

relativity. Its relevance is due to its distinctive property of preserving Lorentz invariance,

in contrast with analogous models. We list below the original results discussed in this

thesis:

We have calculated the orbits of a particle in Schwarzschild spacetime, assuming that

the dynamics is governed by a Snyder symplectic structure in a relativistic setting. We

found that the perihelion shift of the planets acquires an additional contribution with re-

spect to that predicted by general relativity and that the equivalence principle is violated.

Another outcome of our assumptions is that the coupling constant β has to be less than

its natural value of order 1 in Planck units by many orders of magnitude. Therefore, the

calculations are in accordance with the natural starting presumption that the validity of

Snyder mechanics is limited to Planck-scale physics.

The definition of path integrals in one- and two-dimensional Snyder space was dis-

cussed in detail, first using the standard techniques and it was then shown how the same

results follow, in a much simpler way, employing the formalism introduced by Faddeev

and Jackiw.
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We have studied the realisations of the three-dimensional Euclidean Snyder-de Sit-

ter algebra and used them to find the spectra of the position and momentum operators

squared. Since position and momentum are related by duality, the obtained spectra turn

out to be the same, apart from a multiplicative constant. Due to the compactness of the

algebra, the spectra are discrete.

We have analysed the Snyder model in the Hopf algebroid framework. We have also

introduced a generalisation of the model that includes all possible deformations com-

patible with Lorentz invariance. The corresponding deformed addition of momenta was

obtained and analysed, as well as the twist and the R-matrix up to the first order in the de-

formation parameter. For the case of the Snyder realisation, we were able to find a closed

form for the twist.

An important development of the present work that we started to investigate is the

study of quantum field theory in Snyder spaces. We recall that the original motivation

of Snyder for introducing his model was to remove the divergences from quantum field

theory. In a recent paper [38] we have shown that the free scalar theory, in analogy with

other noncommutative models, is equivalent to the commutative theory. This however

changes when one considers the interacting theory. It is likely that the modification of the

vertices with respect to the commutative theory improve the ultraviolet behaviour, and we

plan to study this possibility in the future
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[13] B. Dragovich and Z. Rakić, Theor. Math. Phys. 140 (2004) 1299, arXiv:hep-

th/0309204

[14] L. Faddeev and R. Jackiw, Phys. Rev. Lett. 60 (1988) 1692

[15] K. Fujikawa, Prog. Theor. Phys. 120 (2008) 181, arXiv:0805.3879

[16] S. Gangopadhyay, F. G. Scholtz, Phys. Rev. Lett. 102 (2009) 241602,

arXiv:0904.0379

[17] R. Gilmore, Lie groups, Lie algebras and some of their applications, John Wiley

and Sons, 1974

[18] F. Girelli, T. Konopka, J. Kowalski-Glikman and E. R. Livine, Phys. Rev. D 73

(2006) 045009, arXiv:hep-th/0512107

[19] F. Girelli and E. L. Livine, J. High Energy Phys. 1103 (2011) 132, arXiv:1004.0621

[20] T. R. Govindarajan, K. S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Phys.

Rev. D 77 (2008) 105010, arXiv:0802.1576

[21] G. Gubitosi and F. Mercati, Class. Quantum Grav. 20 (2013) 145002,

arXiv:1106.5710

[22] E. J. Hellund and K. Tanaka, Phys. Rev. 94 (1954) 192

[23] R. Jackiw, Constrained quantization without tears, in Diverse topics in theoretical

and mathematical physics, World Scientific, 1995, arXiv:9306075
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