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Abstract

Despite the vivid research activity in the sector of the exact methods, nowadays
many Optimization Problems are classified as Np-Hard and need to be solved by
heuristic methods, even in the case of instances of limited size. In this thesis a
Vehicle Routing Problem with Backhauls is investigated. A Greedy Randomized
Adaptive Search Procedure metaheuristic is proposed for this problem. Several
versions of the metaheuristic are tested on symmetric and asymmetric instances.
Although the metaheuristic does not outperform the best known solutions, a large
number of high-quality routes are determined in several solutions for each instance.
Therefore the metaheuristic is a promising approach to generate feasible paths for
set-partitioning-based formulations.
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Chapter 1

Introduction

In this thesis, a Vehicle Routing Problem with Backhauls (VRPB) is investigated.
This is a challenging Combinatorial Optimization problem, which differs from the
well-known Capacitated Vehicle Routing Problem because two types of customers
must be served by a given fleet of vehicles: some customers (or Linehaul customers)
need to receive goods from a depot, other customers (or Backhaul customers) need
ship goods to the same depot. Each customer must be visited only once. Moreover,
in each route all Linehauls must be visited before all Backhauls, in order to mini-
mize loads reshuffling in the common case of rear-door vehicles. The objective is to
minimize the total routing costs.
VRP problems are NP -hard and there is a little hope to find optimal solution for
many instances of real interest. In such cases, heuristic and metaheuristic methods
are generally utilized to find high-quality solutions, even if their optimality cannot
be proved. The effectiveness of these methods depends on their ability to adapt to
the specific problem at hand, take advantage of its basic structure, and avoid the
entrapment in a local minimum. General speaking, a relevant effort in this field is
to tune in the correct way some key parameters.
Therefore, it is of interest to adopt metaheuristics where few parameters need to be
set and tuned. This appealing feature can be found in GRASP (Greedy Random
Adaptive Search Procedure) metaheuristics. In addition, they allow reusing some
existing and efficient local search procedures and one can focus on the implemen-
tation of efficient data structures to assure quick iterations. In fact, fast iterations
are a key requirement to calculate an high number of feasible solutions. The best
overall solution is kept as the final outcome.
More precisely, the GRASP is a multi-start metaheuristic which consists of a con-
structive procedure, based on a greedy randomized algorithm combined with a local
search. In this thesis, a GRASP is proposed for the VRPB. In the constructive
phase, one determines which customer is the last Linehaul and the first Backhaul
in each route. Next, two open routes are created from these nodes to the depot.
Finally, the two open routes are merged, in order to obtain a feasible routes for
the VRPB. This procedure is repeated until all nodes are included in a route and,
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thus, a feasible solution is obtained for the VRPB. Next, this solution is improved
by a local search phase. Different sequences of neighborhoods are implemented and
tested in this phase. When a local minimum is found, the construction phase is run
again, a new solution of the VRPB is built and improved in the local search phase,
and so on until the maximum running time is not reached.
This thesis is organized as follows. Chapter 2 describes the several variants of the
Vehicle Routing Problem and focuses on the description of the VRPB. Alternative
mathematical models for this problem are reported.
In chapter 3 we briefly recall the basic concepts of integer programming and on gen-
eral purpose algorithms to obtain optimal solutions. The exact methods for VRPB
are reviewed.
In chapter 4, the main (meta)heuristic approaches for Combinatorial Optimiza-
tion Problems are presented. Special attention is devoted to heuristics and meta-
heuristics for the VRPB.
In chapter 5, a Greedy Random Adaptive Search Procedure metaheuristic for VRPB
is presented. The algorithm is analyzed in detail using several pseudocodes, starting
from an high-level point of view and describing the main procedures.
In chapter 6 the experimentation is presented. The algorithm is tested using different
benchmarks: the symmetric instances proposed by Goetschalckx and Jacobs-Blecha
in [GJB89] and the asymmetric instances presented in [FTV94]. Different local
search techniques are used and all results are presented.
Conclusions and future research direction are shown in chapter 7



Chapter 2

The Vehicle Routing Problem
with Backhauls

The Combinatorial Optimization studies the optimization problems in which the
feasible set is defined in terms of combinatorial structures, including graphs that
play an important role. The key feature of these problems is to handle only discrete
feasible sets, unlike linear optimization in which the feasible set is continuous.

2.1 The Vehicle Routing Problem - a short de-

scription

The Vehicle Routing Problem, which will be indicated from now with the acronym
VRP, is a typical Combinatorial Optimization Problem about distribution networks
and consists in distribution of material goods between a depot or a set of depots
and a set of customers.
This problem was introduced by Dantzig and Ramser in [DR59]; the term VRP
includes an entire class of problems that has for object the study of techniques for
the route planning of a fleet of vehicles, which have a distribution service of material
goods, services or information between a set of stores and a set of customers.
Core is the path planning (route) on which customers are willing to reach and
serve, with the objective of minimizing the routing costs and assignment of vehicles
relative paths.
This type of problem is the most important between routing problems, which
constitute a subset of the logistics problems; these relate to the problem of defining
a set of paths covered by a set of vehicles carrying materials, people or information
and that start and end in the same depot using a suitable road network; the
resolution of these problems involves the construction of a graph model.
The most realistic routing problems include the appearance of scheduling in which
one must also schedule the service timetable; in this case it is considered in addition
to the component typical of the geographical routing problem pure also a time
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component. The VRP has many practical implications in the reality in logistical
and distribution contexts detail, such as the school bus service, the collection of
waste, the cleaning of roads by vehicles; these problems affect not only companies
in the transportation industry, but every company has to face a goods actual
transport (e.g. handle internal mail service of a big company).
The VRP can be explained by going to describe in detail the characteristics of
the vehicles, customer and road network that define the operating environment.
The road network used for transport is normally represented by a graph oriented
or less (depending on whether the arches are set to the direction of travel or less)
whose arcs represent sections of road passable and whose vertex correspond to the
important points network, that is, at intersections and at points where they are
located customers and depots. It is a weighted graph, or to each arc is specified
the cost of transit (length connection) but some models can represent the travel
time (it depends the type of vehicle that runs through this link or what time frame
during which the link is crossed). Each customer is characterized by:

• a node of the road graph in which it is located;

• a quantity of goods, even of different types, which must be delivered and/or
collected (the Customers can request: delivery of goods, removal of goods,
both services);

• intervals of time (time windows) for the service, as customers have a precise
time during which they can receive the requested service (the opening hours
of a exercise are an example);

• times for load and unload goods by the customer;

• any subsets of vehicles that can be used for deliver (for example, in certain
parts of the city may only be suitable for some types of vehicles);

• a question that, if not entirely satisfied:

– you define levels of priority (precedence constraints defined between cus-
tomers);

– or if it is not backed in whole or in part the service is expected a penalty
(in terms of time or costs).

The routes have origin and destination in one or more depots located in the vertex
of the graph. Each depot possesses a number and certain types of vehicles may also
vary the quantity of goods that the warehouse is able to treat. In some cases, a pre-
assigning some customers to stores and vehicles depart and returning to the same
depot, for which each store acts independently from the other and so the problem
can be decomposed into several problems relating each to a single depot.
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It is frequently the situation in which this decomposition can not take place be-
cause the vehicle does not returns to the same starting depot for the failure of
customers pre-assignment special depot, to cope with this, if necessary, to addi-
tional constraints, for example the constraint of capacity. Another dimension for
the classification of VRP problems is given by the vehicle’s characteristics:

• the fleet of vehicles can be fixed or variable;

• the starting depot, where the vehicles come back or not at the end of the trail;

• capacity of the vehicle, which can be defined by the weight, volume, number
of units of packaging of goods, with possible division into compartments of the
goods;

• some vehicles may not be suitable for loading certain types of goods (such as
the need for cold storage for perishable goods);

• loading and unloading methods and availability on board of facilities for han-
dling of goods (movable platforms);

• impossible for the vehicle to transit in some road sections;

• the cost associated with the use of the vehicle, the cost related to the time
used or distance traveled.

The problem is also characterized by drivers who are used for the driving of vehicles
which are restricted by different types of trade union regulation depending on
whether they are employees of the carrier or self-employed workers (eg working
hours, number and length of breaks). Usually these constraints are associated with
the vehicle.

d
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3

4
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6

7

89

Figure 2.1: A VRP graph

The main objectives, even conflicting, of the vehicle routing problems, are:
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• minimize the number of vehicles used to serve all customers;

• minimize the total distance traveled by the fleet;

• minimize total transport cost which depends on the total distance traveled,
from total time and the fixed costs associated with the vehicle;

• minimize the penalties associated with the service led to complete only part
of the clients;

• balancing paths regarding the travel time and / or paid by the vehicle;

• minimize an objective function which corresponds to a combination of previous
objectives.

2.2 Complexity

The VRP is not a purely geographical problem as the customer demand can be bind-
ing; in fact most of the time you can find an optimal solution only if the number of
customers to visit is relatively small.
Specifically, these problems belong to a class of NP -hard problems, that is, the
execution of algorithms that solve in an exact way these problems requires a time
of exponential calculation in the problem size. To better understand the concept
of NP -hard following is a brief exposition of the various complexity classes. The
various problems can be divided into classes according to the time required algo-
rithm, defined by the number of operations required to solve this problem. The
main categories are:

• P (Polynomial) problems, for which there are solution algorithms of complex-
ity polynomial, are decision problems that can be solved with a car sequential
deterministic in a time that is polynomial with respect to the size of the the
input data.

• NP (Nondeterministic Polynomial) problems, this class includes the problems
of Decision whose positive solutions can be verified in polynomial time having
the right information, or equivalently, whose solution can be found in polyno-
mial time with a non-deterministic machine.

• NP complete problem, a problem is NP -complete if and only if it belongs to
NP and every other problem in NP can be attributed to it in polynomial time;
are the difficult problems in NP class in the sense that, if it were an algorithm
able to fix quickly (in the sense of using polynomial time) any NP -complete
problem, then you could use it to solve faster every problem in NP.
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• NP -hard problems (hard not deterministic polynomial time), a problem fall
into this class if every problem in NP is reducible to it in time polynomial (even
if it does not belong to NP); these problems are at least complex as those laid
down in the version of optimizing an NP -complete problem; to demonstrate
that a calculation problem is equivalent to a problem known NPhard it is to
demonstrate that it is virtually impossible to find an efficient way to solve it.

2.3 The Vehicle Routing Problem with Backhauls

(VRPB)

The VRP with Backhaul (VRPB) is an extension of the Capacitated VRP (CVRP).
In this problem, the set of customers is divided into two subsets:

• the first subset, L, contains n Linehaul customers. Each customer has a specific
demand of goods; Those are customers who need to receive a quantity of
products;

• the second subset, B, it contains m Backhaul customers. From this type of
customer a certain amount of product must be withdrawn.

It is a problem that typically well suited to reality as large islands, in which is
possible to identify a restricted number of points of access/exit of goods, usually
coincident with the ports, and a high number of Importers clients and other
Exporters to be served.
In this case, the route traveled is initially all points of delivery of goods taken
from a depot (Linehaul customers), and after all withdrawal points of goods to be
transported to the depot (Backhaul customers).
The above described sequence is motivated by two main aspects: the first one is
that in many practical application Linehaul customers have a higher priority than
Backhaul customers. In addition, vehicles are often rear-loaded. Due to this fact, in
case of a mixed service, an on-board load arrangement (supposing that is possible)
is required during the route, and an extended time could be requested, making the
process very inefficient.
The VRPB can be formulated using a directed graph G = (N,A). N represent the
set of vertex, wheres A represent the set of arcs. The set of customers is N\{n0},
where n0 represent the depot node. In this problem, N\{n0} is split in two subsets,
L and B.
Vertex are numbered so that L = {1, ..., n} and B = {n+ 1, ..., n+m}.
In this case it is established a precedence constraint between the customers in the
L and customers in B, if a path serving customers of both types: all of L customers
must be visited before each of those in B, this to avoid having to reorganize the
loads on the vehicle.
For each node i is associated with a non-negative demand (or offer) di for goods;
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the depot is associated with a fictitious value d0 = 0. The quantity of goods to be
delivered and to be withdrawn is fixed and known in advance. If the cost matrix is
asymmetric, the problem is called VRP with Asymmetrical Backhaul (AVRPB).
There is also a variant that comprises the constraint time window (time windows)
called VRPBTW.
The objective is find a route set that minimize the total routing cost, defined as the
sum of the arcs belonging to the circuits. A set of constraint must be respected,
solving a VRPB, such that:

• each route visit the depot;

• each node is visited by one and only one route;

• in each route, all Linehaul customers are visited prior to any Backhaul cus-
tomers;

• the total requests of customers at L and those in B does not exceed, separately,
the capacity C of the vehicle.

• Total distance traveled by the vehicle is minimized.

Typically routes with only Backhaul customers are not allowed.
Denoted by KL and KB the minimum number of vehicles required to serve all cus-
tomers in all those in B and L, respectively, it shall be assumed for the admissibility
of an instance that:
K ≥ max{KL, KB}.
KL and KB can be obtained by solving the instance of Bin Packing Problem asso-
ciated with the respective subsets of vertex.
The VRPB and the AVRPB generalize respectively SCVRP (Symmetric Capaci-
tated VRP) and ACVRP (Asymmetric Capacitated VRP) when the set of Backhaul
B = ∅, and therefore are NP -hard problems in the strict sense.

2.4 VRPB Mathematical Model

In the modeling phase, consider a depot n0 (which generally coincides with
the port), a set L of Linehaul Clients (importers), a set B of Backhaul Clients
(exporters), and a set K of different trucks, each with capacity uk. An integer
demand di ≥ 0 of load units is associated with each customer i ∈ {L ∪ B}. When
i ∈ L, di represents the number of load units used to service Linehaul customer.
When i ∈ B, di represents the number of load units used to service Backhaul
customers. In this problem setting, di may not exceed the value of the load capacity
uk of the truck k.



2.4. VRPB MATHEMATICAL MODEL 19

d

L1

B2

L3

L4

L5

L2

B3

B4B1

Figure 2.2: A VRPB graph

Detailing more, is possible to define an oriented graph G(N,A) where:

• N = n0 ∪ L ∪B (node n0 is the depot)

We need to term two new node sets, in order to define the arcs of the graph:

• B0 = B ∪ {n0};

• L0 = L ∪ {n0}

The arc set A can be partitioned into three disjoint subsets:

• A1 = {(i, j) ∈ A : i ∈ L0, j ∈ L}

• A2 = {(i, j) ∈ B : i ∈ L0, j ∈ B0}

• A3 = {(i, j) ∈ A : i ∈ L, j ∈ B0}

Note that A = A1 ∪ A2 ∪ A3 does not contain arcs that cannot belong to a feasible
solution.
In this way, it is represented the fact that a truck k can serve a Linehaul customer
after the depot or after another Linehaul (A1), or a truck can serve a Backhaul
customer or go back to the depot after a Backhaul customer (A2), or a truck can
serve a Backhaul customer after a Linehaul (A3). All the other possibilities are
not allowed; so, for example, it’s not possible in a route to serve only Backhaul
customers, or in a route to serve a Linehaul after a Backhaul customer.
For each node i, it is possible to split the completeness incidents arcs into 2 subsets:
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• ∆+
i = {j : (i, j) ∈ A}

• ∆−i = {j : (j, i) ∈ A}

representing, of the given node i, the forward (∆+
i ) and the backward (∆−i ) stars.

After define all possible arcs, during the modeling phase it is necessary to size the
fleet of trucks; it is defined:
F = family of all admissible subsets of customers.
At this point we define:
r(S) : minimum number of vehicles to serve all customers in S, S ∈ F
The following decision variable is defined:

• xkij link selection variable: it is equal to 1 if arc (i, j) ∈ A is traversed by truck
k ∈ K, 0 otherwise;

Each arc (i, j) has a cost ci,j representing the cost related to the route between the
node i and node j, independently from the type of vehicle used. These costs are
related to e. g. toll costs. A heterogeneous fleet of vehicles are stationed at the
depot and are used to supply the customers. In our problem we consider the cost
of an arc exactly equal to its length, without considering fixed costs (e.g. capital
amortization cost) and variable costs (fuel costs, service/maintenance costs, tyres
wear costs).
In our problem, the carrier use only one type of vehicle, with the common feature
of using a container for the carriage of goods; this means that we cannot consider
the index k related to a truck but is possible to consider only one type of vehicle
with only one capacity u of load.
Due to the above specifications, it is possible to term two variables, both linked to
the problem:

• ckij is the routing cost of truck k ∈ K on arc (i, j) ∈ A;

• uk is single truck k capacity.

Using the above considerations, it is possible to mathematically express the
problem as a Linear Programming (LP) Problem, defining an objective function
that minimize the total cost of the delivery of goods between depot and customers.
Starting from the fact that all trucks use a container to stock the goods to
deliver/collect, is correct to use a two index model, without considering the k truck.

min
∑

(i,j)∈A

cijxij
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subject to

∑
i∈∆−

j

xij = 1, ∀j ∈ N \ {0} (2.1)

∑
j∈∆+

j

xij = 1, ∀i ∈ N \ {0} (2.2)

∑
i∈∆−

0

xi0 = K (2.3)

∑
j∈∆+

0

x0j = K (2.4)

∑
j∈S

∑
i∈∆−

j \S

xij ≥ r(S), ∀S ∈ F (2.5)

∑
i∈S

∑
j∈∆+

i \S

xij ≥ r(S), ∀S ∈ F (2.6)

xij ∈ {0, 1}, ∀(i, j) ∈ A, (2.7)

The constraints (2.1), (2.3) impose a maximum degree, the indegree and out-
degree, respectively, for the customers. In the case studied, it is required that the
customer is served by only one truck. The constraints (2.2), (2.4) behave exactly
like the previous ones, but requiring exactly k trucks transiting for the depot.
The so-called capacity constraints-Cut (CCCS) (2.5) and (2.6) require both connec-
tivity routes and the limitations on the capacity of the truck. Note that, because of
the degree of constraints (2.1) - (2.4), for each given subset S ∈ F , the left member
of (2.5) and (2.6) are equal (i.e., the number of arcs entering in S is equal to number
of arcs that come out). Finally, it is possible to note that both families of constraints
(2.5) and (2.6) have an increasing exponential with a cardinality that depends to
the max (n,m). Due to this fact, the LP relaxation of the minimization problem
(see chapter 3) defined by the objective function and the constraints (2.1) - (2.6),
without considering the constraint (2.7) but using:
0 ≤ xi,j ≤ 1, with (i, j) ∈ A
cannot be directly solved, even for moderate sized problems.
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Chapter 3

Integer Linear Programming

An Integer Programming problem consists of maximizing or minimizing a real
function of many variables, subject to inequality and equality constraints and
integrality restrictions on some or all of the variables. If the function that must
be maximized or minimized and inequality and equality constraints are linear, the
problem is called Linear Integer Programming problem (ILP).
A great number of real problems can be represented and solved by integer and
combinatorial optimization: facility location, transportation network design, distri-
bution of goods, production scheduling and in general Vehicle Routing Problems,
that are analyzed in detail in chapter 2.

3.1 Integer Linear Programming

We can write a general linear Mixed-Integer Programming (MIP) problem as follows:

max{cx+ hy : Ax+Gy ≤ b, x ∈ Zn+, y ∈ Rp
+}

where x = (x1, . . . , xn), y = (y1, . . . , yp) are the variables, c is a n-vector, h a
p-vector, A an m×n matrix, G an m× p matrix and b an m-vector. An instance of
the problem is a set of data (c, h, A,G, b). Because of the presence of both integer
and continuous (real) variables, this problem is called mixed. Moreover, it can
be observed that minimizing a function is equivalent to maximizing the negative
of the same function and that an equality constraint can be represented by two
inequalities.
The set S = {x ∈ Zn+, y ∈ Rp

+, Ax + Gy ≤ b} is called the feasible region, and an
(x, y) ∈ S is called a feasible solution. An instance is said to be feasible if S 6= ∅.
The function

z = cx+ hy
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is called the objective function. A feasible point (x0, y0) for which the objective
function has the maximum value, that is, cx0 +hy0 ≥ cx+hy ∀(x, y) ∈ S, is called
an optimal solution. If (x0, y0) is an optimal solution, cx0 +hy0 is called the optimal
value or weight of the solution.
A feasible instance of MIP may not have an optimal solution. It can be said that an
instance is unbounded if there is an (x, y) ∈ S such that cx+hy ≥ ω, for any ω ∈ R1.
In this case we use the notation z = ∞. If you solve an instance of MIP you can
obtain an optimal solution or show that it is either unbounded or infeasible. When
there are no continuous variables we have a special case of MIP called linear(pure)
integer programming problem (ILP):

max{cx : Ax ≤ b, x ∈ Zn+}

On the other hand, when there are no integer variables we obtain a linear program-
ming problem (LP)

max{hy : Gy ≤ b, y ∈ Rp
+}

We have an other important frequent case, when the integer variables are used to
represent logical relationships.
Consequently they can only be equal to 0 or 1. Thus we obtain the 0-1 MIP
(respectively 0 -1 IP) in which x ∈ Zn+ is replaced by x ∈ Bn, g Bn is the set of
n-dimensional binary vectors.
For example, we use of 0-1 variables to represent binary choice, if we have to choose
between two possibilities, as an event that can or cannot occur. In the model of
this problem it is introduced a binary variable x, that assume the value 1 if the
event occurs, and 0 otherwise.
The study of theory and algorithms of linear programming is fundamental to
understand integer programming. It is well known that solving an integer pro-
gramming problem is much more difficult than a linear programming problem,
since the theory and the computational aspects of integer programming are less
developed than the ones of linear programming. For this reason the theory of linear
programming represents a guide for developing results for integer programming.
Moreover, linear programming algorithms are very often used as a subroutine in
integer programming algorithms to obtain upper bounds on the value of the integer
program. Let

zIP = max{cx : Ax ≤ b, x ∈ Zn+}

note that zLP ≥ zIP since Zn+ ⊂ Rn
+. The upper bound zLP can be used to prove

optimality for IP; that is, if x0 is a feasible solution to IP and cx0 = zLP , then x0 is
an optimal solution to IP. See [WN99].
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3.2 Continuous Relaxation

Let zIP = max{cx : Ax ≤ b, x ∈ Zn+} be an integer problem. If we remove integral-
ity restrictions we obtain the following problem: zLP = max{cx : Ax ≤ b, x ∈ Rn

+},
called continuous relaxation of the original problem. Generally, the continuous re-
laxation problem is easier to solve and it has a lower execution time than the integer
problem associated. Let S and S∗ be feasible regions of zIP and zLP , respectively.
Then S = S∗ ∩ Zn. Consequently:

• S may be the empty set, though S∗ is different to empty set,

• if S∗ is bounded, then S is finite.

It follows that the optimal solution could be found calculating the value that the
objective function f assumes in every point (x, y) ∈ S and choosing the maximum
value of f . Obviously, this method is allowed only if the cardinality of S is very small.
You might remove integrality constraints and approximate the optimal solution of
the continuous relaxation. However, this approach is useless for tow reasons:

• the approximate solution may be unfeasible

• the approximate solution may be feasible, but very far from the optimal so-
lution.(when variables assume very small optimum values, for example if we
have binary variables)

Both cases are shown in the figure 3.1.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

0

A

B Z D

E F G H

IJ

K

P

C

Optimal solution for ILP

Optimal Solution for LP

Unfeasible Solution

Figure 3.1: Continuous relaxation

Usually, we need an alternative approach using the continuous relaxation, that
can be solved with the simplex method. In the paragraph 3.3 we analyze two of
these methods: branch and bound and cutting-plane.
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3.3 Exact Methods for ILP

Linear programming problems and in particular integer programming problems are
very difficult to solve. In fact, no efficient general algorithm is known for their
solution.
Algorithms for integer programming problems can be divided in three main sets:

• Exact algorithms, as cutting-planes, branch-and-bound, and dynamic pro-
gramming, that guarantee to find an optimal solution; however may have an
exponential number of iterations.

• Heuristic algorithms that provide a suboptimal solution,but without a guar-
antee on its quality. Although the running time is not guaranteed to be poly-
nomial, empirical evidence shows that some of these algorithms find a good
solution in a short time.

• Approximation algorithms that assure in polynomial time a suboptimal solu-
tion and a bound on the degree of sub-optimality.

In this section we analyze two exact method: branch-and-bound and cutting plane.

3.3.1 Branch and bound

Branch-and-bound was developed by Land and Doig and by Dakin. In this method
it is very important to have an upper bound for the maximum value of ILP, easy to
compute and not far from the optimum value. Gomory’s cutting plane method is
one method of obtaining an upper bound.
We give a general branch-and-bound algorithm for solving IP. In the description of
the algorithm, L is a collection of integer programs {IPi}, each of which is of the
form zip = maxcx : x ∈ Si where Si ⊆ S. Associated with each problem in L is an
upper bound zi ≥ ziIP .
General Branch-and-Bound Algorithm

1. (Initialization): L = {IP}, S0 = S, z0 =∞, and zIP = −∞.

2. (Termination test): If L = ∅, then the solution x0 that yielded zIP = cxo is
optimal.

3. (Problem selection and relaxation): Select and delete a problem IPi from L .
Solve its relaxation RPi. Let ziR be the optimal value of the relaxation and
let xiR be an optimal solution if one exists.

4. (Pruning):
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Figure 3.2: Example of branch-and-bound method

(a) If ziR ≤ zIP , go to Step 2. (Note if the relaxation is solved by a dual
algorithm, then the step is applicable as soon as the dual value reaches
or falls below zIP )

(b) If xiR 6∈ Si , go to Step 5.

(c) If xiR ∈ Si and cxiR > zIP , let zIP = cxiR. Delete from L all problems
with z ≤ zIP . If cxiR = ziR, go to Step 2; otherwise go to Step 5.

5. (Division): Let {Sij}kj=1 be a division of Si. Add problems {IPij}kj=1 to L,
where zij = ziR for j= 1, ... ,k. Go to Step 2.

3.3.2 Cutting-plane method

Let zIP be a linear integer programming problem, x∗ th optimal solution (optimal
value z∗), zLP the continuous relaxation of zIP , x0 the optimal solution of zLP
(optimal value z0). An hyperplane ax ≥ a0 is called cutting plane if:

• x0 is unfeasible (ax0 < a0)

• is feasible for all optimal integer solution of the original problem (ax ≥ a0,∀x
feasible and integer)

Cutting planes algorithm:

1. begin
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2. solve zLP obtaining x0

3. if zLP is unbounded or impossible then stop;

4. while x0 is not integer do

5. determine a cutting plane ax ≥ a0 and add it to constraints of P

6. solve zLP obtaining x0

7. if zLP is impossible then stop;

8. end while

9. end (you have x∗ = x0)

This method has some disadvantages: first of all, its computational complexity
is not polynomial.

The feasible region of a ILP problem may be determined by constraints that can
be more or less stringent. In these cases the formulation of ILP are equivalent, but if
you remove integrality constraints, generally, you obtain different optimal solution,
as shown in fig. 3.3.
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Figure 3.3: Example of different feasible region of the same ILP

To understand which is the ideal formulation we need the following definition:
Given a set S ⊆ Rn, a point x ∈ Rn is a convex combination of points of S if there
exists a finite set of points {xi}ti = l ∈ S and a λ ∈ Rt

+ with
∑t

i=l λi = 1 and

x =
∑t

i=l λixi.
The convex hull of S, denoted by conv(S), is the set of all points that are convex
combinations of points in S. If S ⊆ Zn conv(S) represents a polytope P ′ with every
corner is an integer point. Given S it is possible to find A′, d′, subject to P ′ =
{x ∈ Rn : A′x ≥ d′, x ≥ 0} = conv(S) and it means that min{cTx : x ∈ S}=
min{cTx : A′x ≥ d, x ≥ 0}
In this case you can solve the ILP through simplex method.
Unfortunately, to determine conv(S) is very difficult, because in general, the system
A′x ≥ d′ has a large number of constraints
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3.3.3 Exact Algorithms for VRP with Backhauls

Several exact algorithms are proposed in the literature in order to solve with an
optimal solution a VRPB problems. In this brief review, we will focus on two pe-
culiarities, relating to the input instances: the first one is the size (n + m, where
n = number of Linehaul and m = number of Backhaul) of the instances solved, and
the second one in the computational time used to achieve the results. The goal is
to better analyze the limits of the exact methods, that are linked to the size of the
problem.
In [TV97] an ILP model, valid both for AVRPB and VRPB Problems, is pre-
sented. The branch-and-bound lowest-first algorithm for this model, based on the
Lagrangian relaxation, is an exact procedure that has been applied to three differ-
ent subsets of instances taken form the literature; the first one is extract form the
symmetric instances by [GJB89]. Instances whose (n + m) size range from 25 to
68, were solved within an imposed time limit of 6000 CPU seconds. The second
subset of instances solved is that proposed by [TV96]. In this case, VRP symmetric
instances with a number of customers n + m between 21 to 100, were solved. The
first step was, starting from VRP Instances, to generate VRPB instances using dif-
ferent percentages (50%, 66%, 80%) of Linehaul/Backhaul customers. In the same
way, a third set of VRPB Instances, starting from those proposed by [FTV94]was
generated. In this case too, asymmetric VRPB instances are derived by introducing
a different percentage (50%, 66%, 80%) of Linehaul/Backhaul customers. The num-
ber of customers (n+m) range from 33 to 70 nodes, and were solved in an imposed
time limit of 6000 seconds.
Another VRPB mathematical model is proposed by [MGB99]. An Exact method,
that use duality in order to reduce the number of variables of a given integer pro-
gram P , generate a dual problem D that is solvable by an Integer Programming
Solver (in this case CPLEX). Like the exact method aforementioned, a subset of
symmetric instances by [GJB89] and another subset of those proposed by [TV96]
were used, within a size bounded to 113 nodes, with an imposed time limit of 25000
seconds.
Several variants of VRPB were investigated in the literature. A Pickup and Delivery
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Problem with Backhauling and Time Windows is considered in [CS03], and a mixed
integer linear program has been formulated. This formulation takes advantage of
the conditions of the problem to eliminate those arcs that are known to be infeasible.
The instances have been constructed from live data and by random generation. In
their work, authors asserts that this technique would take a prohibitive amount of
running time if applied to instances of realistic size. Alternative lower bounds were
found by relaxing integrality or time window constraints for those instances having
up to 100 customers to serve.
More recently, in the work of [OB16] another VRPB variant was investigated. A
model of VRPMBTW, a combination of Vehicle Routing Problem with Time Win-
dows (VRPTW) and Vehicle Routing Problem with Mixed Backhauls (VRPBM) is
proposed. In their conclusions, the authors do not suggest the use of exact methods
for instances of relative big sizes. In their case-study, a maximum number of 28
customers is reported, that was solved in up to 6 seconds.



Chapter 4

Heuristics and Metaheuristics

4.1 Approximate solutions

Find the optimal solution of the modest-sized NP -hard optimization problems also
may be too burdensome. Furthermore, given that the parameters of the model
considered may be suffering from approximation errors due to modeling, this effort
may be of no importance.
In practical cases may be accepted good solutions which, hopefully, are not far away
by the optimum. A heuristic algorithm is an algorithm that solves an optimization
problem, generally using common sense rules, and provides a feasible solution but
not necessarily good.
A further problem, in addition to the heuristic design, is its evaluation. When
possible (not always so), should be given an overstatement for the error made by
accepting a heuristic approach related to the studied problem.
Given a problem P, define S the set of all feasible solution. A function c evaluate
the cost of a generic solution x ∈ S; called

zopt = min(c(x), x ∈ S)

the value of the optimum solution and zA the value provided by the heuristic
algorithm, are defined:

• Absolute error: AE = zopt − zA

• Relative error: RE = zopt−zA
zopt

in [SW00] is defined a ρ−approximation algorithm as a procedure for an optimiza-
tion problem, that generates solutions with a guarantee on its quality. In an ap-
proximation scheme, the user can specify any level of accuracy of the approximation.
As might be expected, the run time increases as more accurate accuracy levels are
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requested. A value ε > 0 defines the accuracy of the approximation. An approxima-
tion scheme is a family of algorithms {Aε} such that {Aε} is a (1+ε)−approximation
algorithm. A polynomial-time approximation scheme (PTAS) is an approximation
scheme with running time that is polynomial in the input size for fixed ε. A fully
polynomial-time approximation scheme (FPTAS) is an approximation scheme with
running time that is polynomial in the input size and 1/ε.
When they exist, should be applied approximation algorithms, for which it is calcu-
lated, by definition, a maximum limit of error made, with respect to the heuristic
algorithms based on common sense, but for which it can not provide a maximum
error limit.
For some problems approximate algorithms are not known, for others the best ap-
proximation algorithm has large values of ε (greater than 0.5). Moreover heuristic
algorithms with average performance are acceptable, at times are preferred to ap-
proximate algorithms (at least at first) because they are easier to implement and
generally faster.

4.2 Heuristic algorithms

As we stated in the previous section, many of Combinatorial Optimization problems
are difficult, and it is often necessary to develop heuristic algorithms. Normally
the heuristic algorithms have a low computational complexity, but in some cases,
for large problems and complex structure, you may need to develop sophisticated
heuristic algorithms, often with an high complexity. Furthermore, it is possible, in
general, that a heuristic algorithm fails and is not able to determine any feasible
solution of the problem, without being able to demonstrate that they do not exist.
Design effective heuristic algorithms requires careful analysis of the problem to
be solved once to identify the structure, i.e the specific useful characteristics, and
a good knowledge of the main algorithmic techniques available. In fact, even if
every problem has its own specific characteristics, there are a number of general
techniques that can be applied in different ways, to many problems, producing
classes of well-defined optimization algorithms. In this chapter we will focus on two
of the main algorithmic techniques useful for the realization of heuristic algorithms
for Combinatorial Optimization problems: the greedy algorithms and those of
local search. These algorithmic techniques surely do not exhaust the spectrum of
possible heuristics, as far as provide a good starting point for the analysis and
characterization of many approaches.
In particular, it is worth noting here that the emphasis on the structure of the
optimization problem is also common to the techniques used for the construction
of greatest lower bound on the optimal value of the objective function, where the
absolute minimum cannot be calculated. This often causes a problem of the same
structure is used both to realize that heuristics to determine greatest lower bound.
Is possible as well to have a sort of partnership between heuristics and relaxations,
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see section 3.2, as in cases of rounding techniques and heuristics Lagrangian. By
contrast, the above rounding techniques and heuristics are often classified into
two large families: the constructive heuristics and the improvement heuristic.
Typically, the solutions provided by the constructive heuristics and those used
by the improvement heuristics are feasible solutions. For certain problems can
be extremely difficult to determine an initial feasible solution, then it can be
appropriate to use the Lagrangian relaxation of some constraints, i.e., determining
a first solution that meets at least some of the constraints and penalize the fact
that other constraints are not respected. Then iteratively starting from the solution
(infeasible) obtained try to determine that an increased respect for the constraints
in the neighborhood of that date.
Goetschalckx and Jacobs-Blecha in [GJB89] propose a heuristic approach based
on space-filling curves. Linehaul and Backhaul customers transform from points
in the points along a line plan using the transformation curve that fill the space.
These two series of points are used to determine viable routes. Then each Linehaul
path is merged with the Backhaul path closer than the mapping that fill the space.
Toth and Vigo in [TV99] suggest a cluster-first, route second algorithm for the
VRPCB and its asymmetric problem (AVRPCB). A cluster is a group of clients
that contains only Linehaul customers or Backhaul.
Thangiah, Potvin, and Sun in [TPS96] propose a two-step approach for VRPB with
time windows. First, an initial solution is determined using a heuristic insertion.
Then, in a second phase, a λ-interchange procedure and a 2 − opt procedure is
applied to improve the initial solution.

4.3 Metaheuristic algorithms

A metaheuristic is formally defined as an iterative generation process which guides a
subordinate heuristic by combining intelligently different concepts for exploring and
exploiting the search space, learning strategies are used to structure information in
order to find efficiently near-optimal solutions, from [OL96].
Metaheuristics are strategies that guide the search process, with the goal of an effi-
ciently exploration of the search space in order to find (near-)optimal solutions. The
techniques which constitute metaheuristic algorithms range from simple local search
procedures to complex learning processes, and they may incorporate mechanisms to
avoid getting trapped in confined areas of the search space.
Metaheuristics may make use of domain-specific knowledge in the form of heuristics
that are controlled by the upper level strategy. So a specialized heuristic can be
pair with a control logic that work in an abstract level description. Several methods
of solution to address the VRPCB metaheuristics based on can be found in the lit-
erature. A similar approach is proposed in [OW02], a work that suggest a reactive
tabu search heuristic. This paper describes two route-construction heuristics that
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generate initial solutions quickly. These heuristics are based on the saving-insertion
and saving-assignment procedures, respectively. The initial solutions are then im-
proved by a reactive tabu search meta-heuristic. The reactive concept is used in
a new way to trigger the switch between different neighborhood structures for the
intensification and diversification phases of the search.
Another use of the concept of Reactive GRASP is in the work of [PR00]. A new pro-
cedure of Reactive GRASP is presented, in which the basic parameter that defines
the restrictiveness of the cardinality of the elements of a candidate list during the
construction phase is self-adjusted according to the quality of the solutions previ-
ously found, without require calibration efforts.In this work, on most of the literature
problems considered, the new Reactive GRASP heuristic matches the optimal solu-
tion found by an exact column-generation with branch-and-bound algorithm.
In his work Brandao [Bra06] presents a tabu search-based procedure, with a search
algorithm that starting from pseudo-lower bounds and improve the solution.
Ropke and Pisinger in [RP06b] show an uniform approach with an heuristic algo-
rithm that can be used for a wide class of VRPB problems by modeling them as rich
pickup and delivery problem with time windows (Rich PDPTW). In the same year
[TMSZ06] propose a memetic algorithm, while a neural network based approaches
are presented in [GO06].
A heuristic approach based on a hybrid operation of reactive tabu search (RTS)
and adaptive memory programming (AMP) is proposed to solve the vehicle routing
problem with Backhauls (VRPB). This search process that resulted in early con-
vergence when tested on most of the VRPB instances. this method is discussed by
Wassan in [Was07]
A multi-ant colony system (MACS) is used to solve VRPB which is a combinato-
rial optimization problem by [GA09]; in this algorithm artificial ants are used to
construct a solution by using pheromone information from previously generated so-
lutions, and an Ant Colony System (ACS) algorithm uses a new construction rule
as well as two multi-route local search scheme.
An iterated local search heuristic yielding high-quality solutions is proposed by Ar-
raiz and Palhazi Cuervo in [APC11]. In their heuristic search it is not limited to
the space of feasible solutions; Instead, solutions are temporarily considered that
do not meet the capacity constraint. Zachariadis and Kiranoudis in [ZK12] propose
an effective local search heuristic which explores rich neighborhoods composed of
exchanges of variable-length customer sequences. To efficiently investigate a rich
solution neighborhood, tentative local search moves are statically encoded by data
structures stored in special priority queue structures (Fibonacci Heaps) offering fast
minimum retrieval, insertion and deletion capabilities. To avoid cycling phenomena
and induce diversification, authors introduce the concept of promises, which is a
parameter-free mechanism based on the regional aspiration criterion used in Tabu
Search implementations.
Vidal, Crainic, Gendreau, and Prins in [VCGP14] suggest a unified framework for a
great variety of routing problems of multi-attribute vehicles, including the VRPCB.
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A general-purpose local search based on partial route concatenations is introduced,
and a Unified Hybrid Genetic Search (UHGS) with a unified Split algorithm is pro-
posed.

4.3.1 Hill climbing, local minimum

The hill climbing search is a local search based on a search cycle of nodes with
the highest values (best) in the vicinity of a particular reference node. The term
indicates the hill climbing algorithm’s ability to climb the nodes toward those with
higher values. The hill climbing algorithm search space is limited to only nodes
closest to the current one. When a neighbor node is better than the reference node
(the current node), the latter is replaced with the new node. The hill climbing
algorithm processing cycle ends when it reaches the node with the highest value
(local optimum), that is, when no nodes neighbor has greater value than the
reference value. In this search technique, the ability of the designer in tuning
environmental variables is crucial. For example, the concept of neighborhood, or
the use of techniques to avoid a relapse into a local minimum already analyzed
(stagnation). In fact, when the algorithm finds a local maximum value, greater
than all neighboring nodes, he stops. However, this does not exclude the distant
presence of global maximum with higher value. Research hill climbing has the same
disadvantages of the greedy search (greedy search). It is moving quickly towards
the best node using a too short-sighted strategy. To avoid this problem, the greedy
search is often accompanied by other associated techniques that avoid the fallout in
local minimum, such as dynamically changing the construction of the neighborhood
rules, even randomly, or by preventing the algorithm to process solutions already
visited.

4.3.2 Variable Neighborhood Search

A relatively new technique and therefore not yet thoroughly explored is the so-
called VNS (Variable Neighbourhood Search), introduced in [HM01] and discussed
in [VMOR12]. Contrary to other metaheuristics based on local search methods,
VNS does not follow a trajectory but explores neighborhood at a distance gradually
increasing from the best current feasible solution, and moves from the latter with
a new one if and only if there was evidence of an improvement of the objective
function.

VNS Algorithm

Denote Nk a finite set of neighborhoods structures pre-selected (K = 1, ..., kmax),
and with Nk(x) the set of solutions in the kth neighborhood of x (the classical
heuristic local search usually use a single structure around, ie kmax = 1).
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The VNS based heuristic includes the following steps:
Initialization:
select the set of neighborhoods structures Nk, k = 1, ..., Kmax, which will be used in
research;
find an initial solution x;
choose a condition of exploration term.
Repeat these steps until you have met the time requirement:
fix k = 1
until k ≤ kmax, repeat the following steps:

• diversification (shaking): randomly generates a point x neighborhood of x′

belonging to the kth (x′ ∈ Nk(x));

• intensification (local research): apply some method of Local Search using x′

as the initial solution; denoted with x′′ the local optimum obtained

• possible shift: if the local optimum just found is better than incoming x,
considers x′′ as a new incoming optimum (x = x′′) and continue the search
with N1(k = 1); otherwise, fix k = k + 1

even if x′′ is worse than x, since it is in the situation in which k > kmax, assign
x = x′′ and continue research

A graphical interpretation of this method, applied to a function of scalar

Figure 4.1: VNS method graphical interpretation
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variable, can be the following:
Starting by the excellent local x: We take the N1 around and choosing a random
solution x′1 in its interior, after which applies the iterative descent algorithm; what
happens is that the value go back to x, ie x′′1 = x.
As second step, it leaves the first region and considers the around N2, in which
it chooses a random solution x′2; also in this case, applying to x′2 the descent
algorithm, it’s back to x, ie x′′2 = x.
It repeats again the reasoning: choosing a random solution x′3 belonging from the
around N3, even more distant from x than the previous; this time, by applying the
descent algorithm x′3, is reached a local optimum x′3 = x, and even better.
What is done at this point is to take x′′3 as a new solution incumbent (ie as the new
x) and re-run the same steps seen before.
The execution term condition can be a time limit, a maximum number of iterations,
or a maximum number of iterations between two improvements.

4.3.3 Large Neighborhood Search and Adaptive Large
Neighborhood Search

Shaw, in [Sha98] presents the Large Neighborhood Search (LNS) metaheuristic. In
this heuristic is used a destroy and a repair method with the aim of defining, given
a solution, its neighborhood.
The destroy method destroy, using (in general) stochastic observation, different part
of the starting solution in every invocation, while the repair method rebuilds the
destroyed solution. The neighborhood of a solution x, called N(x), is then defined
as the set of solution that can be founded by first applying the destroy method and
after the repair method. the idea is that more impactful is the destroy phase, larger
is the possibility of building new neighborhoods. A very simple destroy method can
randomly cut a percentage of nodes in a set of routes, and an equally simple repair
method could rebuild the solution by inserting removed customers, for example using
a greedy heuristic. if the destroy method destruct a large percentage of the initial
solution x,N(x) contains a large amount of solution that can be rebuilt by rebuilt
method, and not necessarily with an improving approach.
Therefore, it is possible to consider of a change in the neighborhood dimension linked
to the dimension of the destroyed part of the solution, or use acceptance criteria
taken from Simulated Annealing to change the size of the neighborhood In general,
the algorithm obtain a solution x′ destroying and rebuilding a starting solution x,
evaluate x′ with a cost function; if x′ is better than x, than x′ become the actual
solution and the algorithm proceeds until a stopping criteria is met.
In the Adaptive Large Neighborhood Search (ALNS) proposed in [RP06a] the LNS
is extended allowing multiple and destroy methods in the same search, each of them
characterized by its own weight, dynamically adjusted during the search.
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4.3.4 Greedy Randomized Adaptive Search Procedure

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative algo-
rithm proposed by[LK73], in which each GRASP iteration consists of two phases,
a construction phase, in which is produced a feasible solution, and a local search
phase, in which a local optimum is sought in the neighborhood of the previously
constructed solution. The best overall solution is maintained as a result. GRASP
is an iterative metaheuristic used to solve combinatorial optimization problems.
In the construction phase, a viable solution is iteratively built, one at a time. The
basic construction phase GRASP is similar to the semi-greedy heuristic proposed
independently by Hart and Shogan in [HS87]. At each iteration of the construction
phase, the choice of the next element to be added is determined by sorting all the
candidate elements (that is, those that can be added to the solution) in a candidate
list RCL, than a greedy function:

g : RCL→ R

measures the benefit of selecting each item at a step k.
The GRASP metaheuristic is adaptive because the benefits associated with each
element are updated at each k iteration of the construction phase to reflect changes
caused by the preceding element choice. The probabilistic component of a GRASP
is characterized by choosing in a random way one of the candidates on the list, but
not necessarily taking the first one. The list of the best candidates is called the
restricted candidate list (RCL). This choice allows different technical solutions to
be achieved at each GRASP iteration, but does not necessarily compromise the
power of the greedy adaptive component of the method.
As is the case for many deterministic methods, the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to
simple neighborhood definition. So, it is almost always helpful to apply a local
search for groped to improve each constructed solution. A local search algorithm
works iteratively replacing then current solution by a better solution in the current
solution area. The algorithm stops when no better solution is in the neighborhood.
The neighborhood structure N for a problem P define, starting from a solution s of
the problem, a subset of solutions of N(s). A solution s is called locally optimal if
there is no better solution in N(s). A suitable choice of a neighborhood structure,
united to efficient of neighborhood search techniques, and a starting solution are
typical features that a local search algorithm must have. A pseudocode of the
GRASP procedure is shown:

Function GRASP(Max iterations)
Begin

Read Input()
i ← 0
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while (i < Max iterations)
RouteSet ← constructionPhase()
if RouteSet is not feasible then

RouteSet ← repair(RouteSet)
endif
BestLocalRouteSet ← localSearch (RouteSet)
if cost(BestLocalRouteSet) < BestCost

BestRouteSet ← BestLocalRouteSet
BestCost ← cost (BestLocalRouteSet)

endif
i ← i + 1

endwhile
return RouteSet

end
More in detail, in figure 4.2 shows the construction phase of a GRASP procedure,
which has the characteristic of that doesn’t use any information on the history of
research. The GRASP starts from an empty solution. The set of candidate elements
is composed by all the elements in the available set. In order to make the selection
of the next item to be included in the solution under construction, all candidates
elements must be evaluated. To do this is used a greedy evaluation function, which
evaluate the incremental increase in the cost function that is obtained with the
inclusion of the element in the solution being create. The candidates, before the
insertion, are valued and sorted in descending order of performance. The random
insertion, choose a feasible node to insert, in according to the truck residual capacity.

A Restricted Candidate List (RCL) that includes the nodes with the best perfor-
mance, that are the elements whose inclusion in the partial solution in construction
appears to have smaller additional costs, is created at this point. This is the greedy
aspect of the algorithm.
The element to be included in the partial solution is extracted random from the
RCL. This is the probabilistic aspect of the metaheuristic.
Summarizing the construction phase of GRASP, is possible to follow three main
phases:

1. evaluation of candidates

2. construction of the Restricted Candidate List

3. random selection of an item from this list

Once the selected node has been inserted into the partial solution, the list
of candidates must be updated and the candidate elements re-evaluated. It is
necessary to do this because the partially constructed solution influences the
performance of the candidate elements. This is the adaptive aspect of the heuristic.
These steps are repeated until there is a candidate element.
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Figure 4.2: Construction of solution diagram



4.3. METAHEURISTIC ALGORITHMS 41

In the case in which the greedy randomized construction procedure is not able to
produce a feasible solution, is possible to apply a repair procedure for obtaining
eligibility. The solutions generated by a greedy randomized construction are not
necessarily optimal. In general, it can be improved by a second phase, the phase of
local search.

s Solution Improvement s′Solution Construction

Figure 4.3: Solution improvement

4.3.5 The GRASP algorithm over VRP Problems. Litera-
ture overview

It is difficult to formally analyze the quality of the solution values found using the
GRASP methodology. However, there is an intuitive justification that sees GRASP
as repetitive sampling technique
Each GRASP iteration produces a test sample from an unknown distribution of all
results obtained. The mean and variance of the distribution are functions of the
restrictive nature of the list of candidates. For example, if the cardinality of the
restricted lists is limited to one, then only one solution will be produced and the
variance of the distribution will be zero.
Since an effective greedy function, the value of the average solution in this case
should be good, but probably not optimal. If a limit is imposed cardinality is less
restrictive, many different solutions will be produced which implies a larger varia-
tion. Since the greedy function is more impaired in this case, the average value of
the solution should degrade. Intuitively, however, the order statistics and the fact
that the samples are produced at random, find the best value should exceed the
average value. In fact, often the best solutions are often optimal solutions.
A particularly interesting feature of GRASP is the ease with which it can be im-
plemented. In just a few parameters must be set and adjusted, and then the de-
velopment can focus on delivering efficient data structures to ensure rapid GRASP
iterations. Finally, GRASP can be trivially implemented in parallel. Each proces-
sor can be initialized with its own copy of the proceedings, the instance data, and a
sequence of independent random numbers.
The GRASP iterations are then performed in parallel with a single global variable
needed to retain the best solution found on all processors. GRASP has been applied
to the vehicle, aircraft, telecommunications, inventory and routing problems.
In the work of Johnson et al. [JPY88], is studied that local optimization procedures
can require exponential time but, from an arbitrary starting point, empirically their



42 CHAPTER 4. HEURISTICS AND METAHEURISTICS

efficiency significantly improves, as the initial solution improves. The result is that
often many GRASP solutions are generated in the same amount of time required
for the local optimization procedure converge to a single random start. In addition,
the best of these solutions GRASP is generally significantly better than the only
solution obtained from a random starting point.
In [Hjo95]three metaheuristics to effectively search through the space of cyclic or-
ders for VRP are developed. They are based on GRASP, tabu search, and genetic
algorithms. In Tabu Search, different schemes are investigated to control the length
of the taboo list, including a reactive tabu search method. To get good solutions
when using the genetic algorithm, crossover specialist are developed, and is added
a local search component. GRASP is used to construct a good first solution.
A GRASP is proposed by [KB95]] for solving VRPTW. The goal is to find the min-
imum number of vehicle in order to serve the customers. The greedy function of
the construction phase takes into account both the cost of minimum global inser-
tion and the penalty cost. Local search is applied to the best solution we found
every five iterations of the first phase, and not to each feasible solution. The pro-
pose metaheuristic was tested on Solomons data sets in [Sol87] and in a real case
study. The former consist of six data sets, each of which contains between 8 and
12 100-node problems over a grid 100*100, with customers placed in the area using
different distributions (uniform, clustered, random). The case study was obtained
from an Industry-based problem, and contain two instances with 417 customers and
two instances with 219 customers, randomly distributed. All datasets are Euclidean
(symmetric) distances.
In his work [ABY97] presents an outlet to rebuild paths in response to aircraft
groundings and delays experienced during the day. The objective is to minimize
the cost of air flights reallocation by taking into account the available resources and
other system constraints. This paper develops a GRASP and provides empirical re-
sults for data associated with Continental Airlines 757 fleet. The GRASP and lower
bounding procedure were applied to a 757 flight schedule obtained from Continental
Airlines. The schedule consists of 42 flights serviced by 16 aircraft over a network of
13 airports spanning eight time zones and three continents. A total of 6068 problem
instances were generated. For over 90% of the instances tested, the best GRASP
solution was within 10% of the lower bound, and the GRASP and lower bounding
procedure required less than 15 CPU seconds per instance.
[Atk98] proposed a Greedy Randomised Search Heuristic for Time-Constrained Ve-
hicle Scheduling and the Incorporation of a Learning Strategy. The application de-
scribed is for solve a vehicle-scheduling problem (VSP). The metaheuristic is tested
using a case study, that involves the routing of vehicles over a large area in central
London for delivering hot meals from kitchens to schools. In their paper, authors
are concerned only with the testing of various search heuristics by applying them to
problem VSP, in which 86 schools are to be supplied with meals from 44 kitchens
using 16 vehicles.
A methodology is presented by [BHJD98]. The Inventory routing Problem (IRP),
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in which a central supplier must restock a subset of customers on an intermittent
basis, was solved comparing a Clarke-Wright, a GRASP and a sweep-line algorithm.
In this work, the proposed procedures were tested on data sets generated from field
experience with a national liquid propane distributor. All of the heuristic proposed
was suitable to solve the proposed problem, in terms of time responding. From this
point of view, the results ranks the GRASP in a mid position.
A GRASP for a routing problem in the telecommunications sector is described by
[RR99].
The incorporation of interactive tools for heuristic algorithms is investigated by
[CB02]. Close is used in the construction of the airways and improving. The con-
struction phase implemented in a heuristic clustering that builds paths by grouping
the remaining customers according to the semi-defined vehicles by applying heuris-
tics 3-opt to reduce the total distance traveled by each vehicle. The greedy function
takes into account the routes with smaller cost of insertion and customers with the
largest difference between the smallest and the second smallest of the input costs
and fewer paths may cross. Since the step of local search, 3-opt is used.
The mixed postman problem, a generalization of the Chinese postman problem, is to
find the shortest tour that passes through each edge of a given graph Joint (a chart
containing both oriented and directed edges) at least once. In his paper[CMS02]
proposes an understanding for the mixed postman problem. The Virtual Private
Line Circuit Routing problem is formulated as a multicommodity entire ow problem
with additional constraints and an objective function that minimizes propagation
delays and congestion and/or network. The authors of [RR03] propose variants of
a GRASP with the path relinking.
In the work of [dlP04], a new approach based in the GRASP metaheuristic, Simu-
lated Annealing and Genetic Algorithms is introduced to solve the Undirected Rural
Postman Problem (URPP).
The Rural Postman Problem (RPP) consists of determining a minimum cost tour
of a specified arc set of a graph G = (V,A) with the particularity that only a subset
T ⊆ A of arcs is required to be traversed at least once. The arcs can be directed,
undirected or both. RPP is a NP-hard problem.
This approach was applied to the 26 instances described and exactly solved in
[CCCM86]. This method was compared with the heuristics of [CCCM86], with
the approach of [dCRS98] and [BRRC02]. The result values presented show that,
according with the quality of solutions, this hybrid approach outperformed the other
methods.
The authors of [LGWL04] propose a hybrid socket for the routing of the vehicles
both with Time Window and limited number of vehicles. It is combined with more
initialization, re-use solution, the mutation improvement, and with four heuristics:
shortly before the left, near customer first, short waiting times first, and long route
first.
An NP-hard production-distribution problem for one product over a multi-period
horizon is investigated in the work of [BLP07]. A metaheuristic that simultaneously
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tackle production and routing decisions is developed: a GRASP and two improved
versions using either a reactive mechanism or a path-relinking process. These al-
gorithms were tested on 90 randomly generated instances with 50, 100 and 200
customers and 20 periods. About this problem, reaction and path-relinking give
better results than the GRASP alone.
In their article, [FB89] presents a model that can be used by planners to both locate
maintenance stations and to develop flight schedules that better meet the cycli-
cal demand for maintenance. A first two-phase heuristic is described, from which
GRASP is derived. A case study with data supplied by American Airlines for their
Boeing 727 and Super 80 and DC-10 fleets was used to test the procedure.
The problem is a large-scale MIP. Because obtaining feasible solutions from its LP
relaxation is difficult, the authors propose a GRASP.
The code (Fortran) itself is set up to handle 500 planes and 300 cities and was able
to outperform the results obtained in the same period, even if executed on a non-
performance computer.
A GRASP with a 2-exchange local search is used to solve the Intermodal Assign-
ment Problem in the work of [FGV95]. The problem of optimally assigning highway
trailers railcar hitch in intermodal transport is discussed. Using a set covering
formulation, the problem is modeled as an integer linear program, whose linear pro-
gramming relaxation produces a narrow lower limit. This formulation also provides
the basis for the development of a branch and bound algorithm and a GRASP to
resolve the problem. The greedy strategy of the construction phase of GRASP con-
sists in selecting an assignment feasible at every step of the most difficult to use
available railcar together with the most difficult to assign trailer. The algorithm
was tested on 60 historical instances of the given problem. All those instances were
already solved using an exact method (branch and bound), but the GRASP pro-
posed outperform from the time consumption point of view. In 23 instances, the
optimal value was found in the constructive phase of the GRASP, without using the
local search phase.
In [Bar97], the author reports on the results of an effort to design and analyze the
rail car unloading area of Procter & Gamble’s principal laundry detergent plant. In
this problem, the bottleneck lies in the packaging department. The combinatorial
problem related allocation of rail cars for positions on the platform and unloading
equipment for railroad cars is modeled as a mixed integer nonlinear program. Ac-
counting for the operational and physical limitations of the system, GRASP was
used to determine the maximum performance that could be achieved under normal
conditions. At about solving the problem, they have proposed four alternatives and
evaluated with the help of a GRASP.
Two heuristic based on simulated annealing and GRASP are presented by [Sos00]
for the approximate search solutions for a simplified fleet assignment problem.
Both methods are based on exchanging sequence parts of flight legs assigned to
an aircraft (rotation cycle) between two randomly chosen aircraft. In simulated
annealing, the exchange is such that a solution is accepted according to a probabil-
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ity distribution, while in the grip only exchanges that leads to a better solution is
possible and potentially best part of the job is retained and the rest are randomly
reallocated. The construction phase does not make use of a list of candidates explic-
itly restricted, but a solution is constructed simply trying to make the time interval
between two flights as small as possible.
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Chapter 5

A GRASP for the VRPB

5.1 First version

In this GRASP metaheuristic, the number of routes of the final solution is required
as an input data. This number is equal to the k number of available trucks, and the
metaheuristic starts from this information to create the sequence of visits of clients.
Denote by P a generic VRPB instance, with feasible solution s. The solution
s is a set composed by k routes. It is possible to say that, ∀r ∈ s, a sequence
Linehaul-backahaul (or Linehaul-depot) has to happen. Consequently, a couple of
customer (i, j) with i ∈ Linehaul set and j ∈ Backhaul set (or the depot), must
exist in every route r ∈ s, with r = 1, , k and r ∈ s. The main idea is to find
the k most promising pairs, and start from these pairs to construct two feasible
open-routes, and finally merge them in a feasible route r. In the constructive phase
of the metaheuristic, more than k couple are generated, but only k of these are
selected, using the Saving (Si,j) criteria.
At the greater value of saving Si,j, related couple (i, j) is associated as the most
promising one and so on, until k couples have been selected.
The greedy open route construction is not only guided to the value of the demand
(or offer) of the node to insert, but a weight ωu is associated to all candidate node
u that can be inserted in the open route that it is creating.
The rule is that during the construction of a route, starting from a current
node t, an insertion of a node u is more promising instead of a node v that
has the same demand, if the truck is partially loaded and node u is closer to
the depot in respect to the node v. A linear low is used: less is the free space
in the truck, more weight is assigned to the distance between the node and the depot:

wt|u = αt
1

Dtu

+ (1− αt)
1

βDtu + γDu0

where:

αt =
CRt
CM
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and CRt is the residual load capacity of the truck k after serving the node t, CM is
the capacity of the truck, and so it is possible to declare that αt ∈ (0, 1], while β =
1 and γ = 1 are tuning parameters.
The distance between two nodes i, j is expressed by the value Di,j.
In designing a meta-heuristic, two conflicting criteria must be taken into account:
diversification and intensification.

• In intensification, the promising regions are explored in a deeper way hoping
to find better solutions.

• In diversification, non-explored solutions in the search space must be visited
to be sure that all regions of the search space are evenly explored and that the
search is not confined to only a reduced number of regions.

Several research in the neighborhood are implemented in the local phase of the
proposed GRASP. Strategy of best-improvement or first-improvement or combo
moves are implemented.
In the case of a best-improvement strategy, all elements of the neighborhood
are evaluated and the current solution is replaced from the best one from the
neighborhood (if it finds an improving one). In the case of a first-improvement
strategy, the current solution moves to the first neighbor whose cost function value
is less than the one of the current solution.
Combo moves starts the local search with one of the previous strategy and makes
use of a change of strategy to introduce a diversification in case of local minimum.

5.1.1 Restricted Candidate List

Manifold studies have been conducted to analyze the behavior of a GRASP
algorithm in relation to the space of solutions during the exploration of the
neighborhood. In particular, in the work of [ARR02] the probability distributions
of solution time to a sub-optimal target value is analyzed in five GRASPs that have
appeared in the literature and for which source code is available. In this study, a
common behavior was found despite several algorithm implementations.
In the work of [RR05], an analysis related to RCL list between greedy and random
factors is made. In this work is focused that the GRASP metaheuristic mix greedy
and random construction for the restricted candidate list (RCL) creation. This
is done basically starting from two different approach: in the first case, using
greediness to build the list of candidate and randomness to select an element from
them, or, in a second case, by using randomness to build the list and greediness for
selection. The candidate elements e ∈ C, where C is the set of available nodes, are
sorted according to a greedy function value v(e).
In a cardinality-based RCL, the latter is made up of the first p top-ranked elements.
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In a value-based construction, the RCL consists of the elements in the set

{e ∈ C : v′ ≤ v(e) ≤ v′ + α ∗ (v′′ − v′)}

where
v′′ = max{v(e) : e ∈ C}, v′ = min{v(e) : e ∈ C} and α is a parameter ∈ [0, 1].
Since the best value for α is often difficult to determine, it is often assigned a random
value for each GRASP iteration.
The case α = 0 corresponds to a pure greedy algorithm, while α = 1 is equivalent
to a random construction.
In the metaheuristic proposed, a cardinality based approach have been used to
propose three variants, related to the construction of the Restricted Candidate List
(RCL):

• In the first variant, all eligible nodes e ∈ C are inserted in the RCL. In this
case, the feature of diversification in the search space of a methaeuristic is
preferred.

• Intensification is followed in the second variant, that composes the RCL list
using only the first p most promising nodes from the neighborhood. In our
tests, p = 5.

• An intermediate variant, the third, is more articulated: after evaluating
v(e),∀e ∈ C, it assigns each node e ∈ C a value of probability directly linked
to the value of v(e). At this point, it inserts in the RCL list a sequence of
nodes, starting form the first one (that is the most probably) and repeats
the insertion until all nodes that lyes in the first slot percentage of 70% of
probability, are inserted.

Another parameter that is possible to use, in order to tune the metaheuristic, is the
number of iteration of the GRASP procedure. In the metaheuristic proposed, this
number is linked to the number of node of the instance, multiplied by a constant
The total computation time increases linearly with the number of iterations. The
quality of the current solution could only improve with the last iteration: this means
that with a large number of iterations would expect to find a best solution for the
price of a greater computation time. Each newly generated solution is compared to
the best solution found up to that time and is stored as a best solution if it exceeds
in quality.

5.1.2 Main

Function GRASP
Begin

initialize (LinehaulSet, BackhaulSet, k, C, max iter, BestCost, BestRouteSet)
i ← 0
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while (i < Max iter)
RouteSet ← constructionPhase(LinehaulSet, BackhaulSet, k, C)
BestLocalRouteSet ← localSearch (RouteSet)
if cost(BestLocalRouteSet) < BestCost

BestRouteSet ← BestLocalRouteSet
BestCost ← cost (BestLocalRouteSet)

endif
i ← i + 1

endwhile
return RouteSet

end

The GRASP function is the heart of the algorithm. The first call is the
initialize function, to which are passed as empty the following parameters:

• LinehaulSet, that will be initialize with the Linehaul customers

• BackhaulSet, that will be initialize with the Backhaul customers

• k, that represents the number of routes that the final solution must have

• C, that is the maximum load of a single truck

• max iter, is the maximum number of iteration of the algorithm

• BestCost and BestRouteSet, are the cost and the composition of the best
solution that was found by the algorithm, respectively.

A counter i is initialized to 1 and used in the main while loop, from which it will
come out when the algorithm will reach the number of iterations determined, stored
in the variable max iter. After the initialization phase, inside the while loop is called
the function constructionPhase, in which are passed as parameters the set of Line-
haul (LinehaulSet) customers, the set of Backhaul customers (BackhaulSet) and
k, that represents the number of routes that will compose the final solution (set by
the user), and the maximum load capacity of the truck C. The constructionPhase
returns a collection of routes indicated by RouteSet, that is a feasible solution of
the initial problem. The procedure localSearch then take as a parameter the col-
lection of routes just returned, RouteSet. The procedure returns the best RouteSet
after the application of local search, indicated with BestLocalRouteSet. At this
point it is estimated the overall cost of the routes BestLocalRouteSet: If the actual
value of the objective function related at the solution found is lower than the actual
BestCost, (the lowest cost found by the algorithm up to the actual iteration), then it
is assigned to BestRouteSet the collection routes just found (BestLocalRouteSet)
and at BestCost the cost of BestLocalRouteSet. It increases the value of the
counter i and repeats the steps described above for maxiter iterations. The main
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GRASP procedure returns the BestRouteSet, that is the best set of routes found
and improved by local search, meaning best set of routes in term of cost.

5.1.3 Initialize

Function initialize (LinehaulSet, BackhaulSet, k, C, max iter, BestCost, Be-
stRouteSet)
Begin

LinehaulSet ← Load the set of Linehaul Customer
BackhaulSet ← Load the set of Backhaul Customer
k ← Load the number of routes That form the final solution
C ← Load the capacity of the truck
max iter ← Load the number of restart of the GRASP Algorithm
BestCost ← Set to infinity the actual value of objective function
BestRouteSet ← Set to Empty the set of k best route

end

The initialize function initializes the set of Linehaul customers indicated with
LinehaulSet, the set of Backhaul customers indicated with BackhaulSet, the k
number of routes that the number of routes that will compose the final solution. C
represent the load capacity of a truck (which in reality is read from the instance),
the number of iterations max iter, the lowest cost for the routes found by the
heuristic after max iter iterations, initially set equal to infinity, that is indicated
with BestCost and finally the best set of routes indicated with BestRouteSet.

5.1.4 Construction phase

Function constructionPhase (LinehaulSet, BackhaulSet, k, C)
Begin

PairSet ← Set to empty the k pairs of Linehaul/Backhaul client
RouteSet ← Set to empty the set of k route
PairSet ← createPair (LinehaulSet, BackhaulSet, k)
RouteSet ← createRoutes (LinehaulSet, BackhaulSet, PairSet, C)
return RouteSet

end

The constructionPhase procedure receives as parameters the two sets of cus-
tomers: the Linehaul set (LinehaulSet), and the Backhaul set (BackhaulSet), the
k number required to create k routes and the capacity of the truck, C. Within the
procedure are initialized to empty the | k | set of pairs that will be created, called
PairSet, and the set of | k | routes that will be returned, indicated by RouteSet.
Then come two procedure calls. The createPair procedure that input the set of
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Linehaul LinehaulSet customers, the set of Backhaul BackhaulSet customers and
k number of routes that you want to create and return a PairSet, which is a set of
couples (Linehaul, Backhaul). The procedure createRoutes, which is passed the set
of Linehaul LinehaulSet, the set of Backhaul BackhaulSet, the pairs of PairSet re-
turned by the previous procedure and the capacity of the truck C, and returns a set
of routes indicated by RouteSet. The main procedure constructionPhase returns
RouteSet, i.e. a set of eligible routes.

5.1.5 Creation of couples

As anticipated, in this GRASP metaheuristic it is possible to select the number of
trucks that is required to use, and thus the number of different routes that we want
to have in our final solution. Obviously, there will be a minimum number of nec-
essary trucks to cover all customers, determinable by solving a Bin Packing problem.

Function createPair (LinehaulSet, BackhaulSet, k)
Mode: a parameter that control the selection of the most promising neighbor
Begin

SelectedSet ← smaller (LinehaulSet, BackhaulSet; if equal useBackhaulSet)
RemainingSet ← notUsedBetween (SelectedSet, LinehaulSet, BackhaulSet)
SelectedRCLList ← createRCLList (SelectedSet, RemainingSet, mode)
SelectedPair ← createAllPair (SelectedSet, SelectedRCLList)
SavingList ← computeSavings (SelectedPair)
OrderedSavingList ← Order SavingList in a not-growing way
PairSet ← SelectedPair ordered by SavingList

if k >| SelectedSet |
residualPair ← createResidualPair (k - | SelectedSet |, RemainingSet
PairSet ← merge (PairSet, residualPair)

endif
return the first k values of PairSet ;

end

The basic idea is to create all of customer pairs (a Linehaul with a Back-
haul) possible, according to the number of the instance customers taken into
consideration. For example, referring to an instance of 33 nodes asymmetric VRPB,
the possible configurations are showed in table 5.1.
The createPair procedure receives as parameters the set of Linehaul customers
LinehaulSet, the set of Backhaul customers BackhaulSet, and k number of routes
that is required. In general, the two sets don’t have the same cardinality. Due to
this fact, in order to be able to compose a complete set of customer pairs (Linehaul,
Backhaul), the smallest of the two sets between LinehaulSet and BackhaulSet is
chosen as selectedSet. RemainingSet, for exclusion, is equal to the other set. If the
two sets have the same cardinality, the BackhaulSet is chosen as the SelectedSet.
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Table 5.1: Distribution of the nodes

BH Rate BH number LH number
50% 16 17
66% 22 11
80% 26 7

To give a practical example, solving an instance with a number of Backhaul equal
to 50% of the total of 33 customers, 16 pairs (Linehaul, Backhaul) will be created,
in an instance with Backhaul to 66% of customers, 11 pairs will be created and in
the third type of instance with Backhaul equal to the 80% of customers, 7 customer
pairs will be created. As already described before, each element of the SelectedSet
will be the first component of a eligible couple.
Different cases are evaluated: if the SelectedSet is composed by Linehaul customer,
only a Backhaul customer can be considered as eligible, to perform a couple. If in
SelectedSet is stored the set of bachauls, then a predecessor node is searched in the
set of Linehaul customer, and used to create the couple.

Once identified the SelectedSet and RemainingSet, an RCL list is created of
avaliable nodes for each customer (or node) of the SelectedSet.

RCL List of Linehaul Bi

Figure 5.1: Single RCL creation, for a node of SelectedSet = BackhaulSet)

Li RCL List of Backhaul

Figure 5.2: Single RCL creation, for a node of SelectedSet = LinehaulSet

The createRCLList procedure receives as parameters the selectedSet and
remainingSet and returns the RCL list for each element of SelectedSet, indicated
SelectedRCLList. In this way, starting from a set of nodes, the output is a set
of RCL, each one related to corresponding node of the SelectedSet. Initially all
customers of RemainingSet are placed in the list RCL. It is necessary to establish
an evaluation criterion useful to classify and sort the customer in the RCL list.
At this step, the Euclidean distance between the current customer (or node) of
SelectedSet and the customer (or node) of the RCL list is used to classify nodes
into RCL list. During this phase the customers within the RCL list are ranked by
an increasing distances criterion, so in the first position, there will be the closest
node to the node of the SelectedSet concerned. In this phase, every RCL list
contains the same elements. What changes is the order, because as mentioned
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above, it depends on the distance from the current node.

Function createRCLList (SelectedSet, RemainingSet, mode)
Begin

i ← 0
for each node i in SelectedSet

SelectedRCLList (i) ← insert all nodes of RemainingSet in according to
the value of mode

end foreach
return SelectedRCLList

end

RCL1 List of Linehaul B1

RCL2 List of Linehaul B2

: :

RCLi List of Linehaul Bi

: :

RCLn−1 List of Linehaul Bn−1

RCLn List of Linehaul Bn

Figure 5.3: RCL lists creation, SelectedSet = BackhaulSet

Function createRCLList ends with a collection of RCL lists, one for each
element of the SelectedSet. The next step is nothing more than the creation of
pairs.

Function createAllPair (SelectedSet, SelectedRCLList)
Begin

i ← 0
for each node in SelectedSet

i ← i + 1
if mode← fixNumber
BestMatch ← rouletteWheelSelection (SelectedRCLList (i))
SelectedPair (i) ←(node, BestMatch)
endif

endfor
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L1 RCL1 List of Backhaul

L2 RCL2 List of Backhaul

: :

Li RCLi List of Backhaul

: :

Ln−1 RCLn−1 List of Backhaul

Ln RCLn List of Backhaul

Figure 5.4: RCL lists creation, SelectedSet = LinehaulSet)

return SelectedPair
end

The createAllPair procedure receives the set of customers contained in
SelectedSet and the collection of related RCL list, for each element of SelectedSet.
This collection is indicated as SelectedRCLList. A counter i is initialized to 0
and is used to move through the elements of the SelectedSet, with the aim of find-
ing, for each of them, a node with which to pair, taking it from the corresponding
RCL list. The procedure returns the set of pairs that have been created, indi-
cated SelectedPair. The node that must be associated with the current item of
SelectedSet is chosen randomly from the corresponding RCL list, using the roulette
wheel selection mechanism, and is indicated as BestMatch. For node extraction
three variants have been used:

First variant

In the first variant, a value of probability is assigned to each node of the RCL list,
that is inversely proportional to its distance of the current node. In this way, the
closest customer and thus closer to the element of SelectedSet, will have a greater
chance. In the RCL List, distances having previously been ordered in an increasing
way, and consequently probabilities are already ordered in a not-growing order. The
random aspect of the heuristic is related to the extraction of a random element
from the RCL list. A random number p ∈ [0, 1] is thus extracted, and a sum of
the probabilities of the elements of the RCL List is performed until the sum is not
at least equal to the random number p. As soon as the sum becomes greater than
or equal to p, the index of the actual element of the RCL List is saved, and it
corresponds to the value returned by rouletteWheelSelection procedure.
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Second variant

In the second variant there is an additional step compared to the first. After ob-
taining the corresponding probabilities for each customer of the RCL list, a sub-list
is extracted from the list of all customers, using the first elements whose sum of
the probability is 0.7. In other words in this variant it is not considered the entire
probability range from 0 to 1, but only the 70% of the range. We need that the
sum of probabilities is equal to 1, and a new set of values is computed for customers
included in the 70% and re-compute the probability inversely proportional to the
distance for each customer. Once allocated to each customer his probability, a ran-
dom number p ∈ [0, 1] is generated, and, like the first variant, the probabilities are
added until the sum is at least equal to the random number p. As soon as the sum
becomes greater than or equal to p, it saves the corresponding index of the RCL
list, and return them.

Third variant

In the third variant, as well as in the second, there is an additional step compared
to the first. After obtaining the corresponding probabilities for each customer of
the RCL list, a sub-list of the 5 most promising nodes is extract. A new RCL list
with 5 equiprobable customers is generated. An extraction of a integer random
number p between 1 and 5 which becomes the index of the RCL list that we want
to extract. It saves the index to return the corresponding element.

A particular attention is required in all variants, because the createAllPail
have to manage two aspects that are dynamic during the iterations: the first is that
if a node already have been used during the iteration, it is not available for the next
sub-RCL list, and the second problem is that in the last steps of the sequence, due
to the fact that many nodes were used, final RCL Lists can have a short length,
until it could happen that only one element can be available for the last one. One
of these variants has been used during all iterations. As anticipated, the element
of RCL list, referred to as BestMatch, whose index corresponds to the extracted
random number, will be paired with the corresponding selectedSet element. And,
as mentioned above, it should be noted that once awarded the BestMatch, it will
be deleted from the lists of the elements of the RCL SelectedSet that still be used.

The phase of creation of pairs (Linehaul, Backhaul) is now completed. For the
next deployment step is necessary to introduce the concept of saving.

Savings and choice of couples

The concept of saving was introduced by a constructive heuristic, derived from
savings algorithm (Clarke and Wright, [CW64]). The basic idea of saving is to save
on the cost of fusing routes. To better explain, a practical example is analyzed. In
this example, the depot is indicated with d, while i and j are generic customers.
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BestMatch L1 B1

BestMatch L2 B2

: :

BestMatch Li Bi

: :

BestMatch Ln−1 Bn−1

BestMatch L5 Bn

Figure 5.5: Couples extraction, SelectedSet = BackhaulSet)

L1 BestMatch B1

L2 BestMatch B2

: :

Li BestMatch Bi

: :

Ln−1 BestMatch Bn−1

Ln BestMatch Bn

Figure 5.6: Couples extraction, SelectedSet = LinehaulSet)
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i j

d

cid
cdi

cdj

cjd

Figure 5.7: Case a): route costs without saving

i j

d

cdi

cij

cjd

Figure 5.8: Case b): route costs with saving

The goal is to visit customers i, j starting from the depot. In figure 5.7
customers are visited on separate routes, each one starts from the depot and arrives
to the customer. So, after serving customer i, the truck returns to the depot and
after leaves to customer j, and finally returns to the depot. There would be an
alternative, that is to visit both clients on the same route, as shown in figure 5.8.
The cost to go from the depot to a customer or to a customer to another customer,
can be known, in the problem, or it can be calculated. The question is whether
there is a convenience in visiting the j customer immediately after the customer i
without going back to the depot.
Indicating with cij the cost to go from the customer i to the customer j, we have:
The total cost turns out to be:
Case a: = cdi + cid + cdj + cjd
Case b: = cdi + cij + cjd

To find the saving Sij visiting the j customer immediately after the customer i
without returning the depot, it is calculated:
Sij = Case a - Case b
= (cdi + cid + cdj + cjd) - (cdi + cij + cjd)
= cid + cdj − cij
A great value of Sij indicates that there is an high convenience from the cost point
of view to visit the i and j customers on the same route. The concept of saving, as
brief explained, is used in the implementation of the metaheuristic.
The createAllPair function creates a pair for each element of the selected set,
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that is the less numerous set between Backhaul and Linehaul customers. In
general, the number of required routes k (that will compose the final solution)
is smaller than the cardinality of the SelectedSet. So, it is necessary to select a
set of couple, from the all ones. For each pair created earlier it is evaluated the
savings if the truck consecutively visits customers of the couple without going
back to the depot. The computed savings are then used to rank couple in a
decreasing way, because as has been said, a great value savings indicates a certain
convenience in performing that route, and everything is stored in PairSet. At this
point the first k pairs of PairSet are selected, which will give rise to exactly k routes.

Function createResidualPair (k - | SelectedSet |, RemainingSet)
Begin

RemainingSet ← Set to empty the pair k of client Linehaul / Backhaul
ResidualPair ← createResidual (Depot, k - | SelectedSet |, RemainingSet)
RouteSet ← createRoutes (LinehaulSet, BackhaulSet, PairSet, C)
return ResidualPair

end

There may be a special case, because k may be greater than the cardinality
of SelectedSet. In this case you are not able to select exactly k routes. The so-
lution proposed is to create the k − |SelectedSet| remaining pairs, indicated by
residualPair, using customers from RemainingSet. The createResidualPair pro-
cedure receives as parameters a number indicating how many are the missing cou-
ples, that is k − |SelectedSet| and receive the RemainingSet. First, it order the
customers of RemainingSet by increasing distances to the depot. Then, through
createResidual procedure are created k − |SelectedSet| couples, taking the depot
and the first k − |SelectedSet| customers of RemainingSet. The k − |SelectedSet|
have finally returned with remaining couples, residualPair. At this point it is pos-
sible to merge the couples, adding the pairs of residualPair to those of PairSet.
Now it is concluded the construction process of couples, with the return from the
procedure createPair the set of pairs selected from PairSet.

Assuming that the final solution must contain 3 routes, k = 3, i.e. three customer
pairs have thus been generated (Linehaul, Backhaul). Now the set of Linehaul
(LinehaulSet) and the set of Backhaul (BackhaulSet) will contain the starting
elements, the elements that have been assigned to the pairs. Generalizing the two
cases it can be said to have 3 customer couples to start, see figure 5.11

5.1.6 Creating routes

The createRoutes procedure receives as parameters the set of Linehaul LinehaulSet,
the set of Backhaul BackhaulSet, the set of selected pairs PairSet and truck
capacity C.
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BestMatch L1 B1

BestMatch L2 B2

BestMatch L3 B3

BestMatch L4 B4

: :

BestMatch Ln−1 Bn−1

BestMatch L5 Bn

PairSet

Figure 5.9: PairSet selected for k = 3 with SelectedSet = BackhaulSet

L1 BestMatch B1

L2 BestMatch B2

L3 BestMatch B3

L4 BestMatch B4

: :

Ln−1 BestMatch Bn−1

Ln BestMatch Bn

PairSet

Figure 5.10: PairSet selected for k = 3 with SelectedSet = LinehaulSet

L1 B1

L2 B2

L3 B3

Figure 5.11: PairSet from which start to create routes
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Function createRoutes (LinehaulSet, BackhaulSet, PairSet, C)
Begin

ResidualLinehaulSet ← LinehaulSet
ResidualBackhaulSet ← BackhaulSet
RouteSet ← Set to Empty
for each pair in PairSet

firstBHnode ← Backhaul node from pair
BHRoute ← constructBHRoute (firstBHnode, ResidualBackhaulSet, C)
lastLHnode ← Linehaul from node pair
LHRoute ← constructLHRoute (lastLHnode, ResidualLinehaulSet, C)
update (ResidualBackhaulSet, ResidualLinehaulSet)
singleRoute ← merge (LHRoute, BHRoute)
RouteSet ← RouteSet + singleRoute

end foreach
for each ResidualElement in ResidualLinehaulSet or in ResidualBackhaulSet

RouteSet ← RouteSet + createDirectRoute (ResidualElement, depot)
endforeach
return RouteSet

end

Linehaul and Backhaul customers set that are not part of the pairSet are
inserted into two sets called ResidualLinehaulSet and ResidualBackhaulSet,
respectively. It is also initialized to the empty set of routes indicated with RouteSet.
For each pair of PairSet, the Backhaul node and the Linehaul node are treated
separately. It begins with the extraction the Backhaul of the first pair node, in this
case B1, and a semi-route of Backhaul customers from the same B1 they are pro-
cessed separately, through constructBHRoute procedure. The constructBHRoute
procedure receives as parameters the first Backhaul node, firstBHnode, which in
this case is the Backhaul node of the first pair, the ResidualBackhaulSet and the
capacity of the truck, C.

Function constructBHRoute (firstBHnode, ResidualBackhaulSet, C)
Begin

currentNode ← firstBHnode
BHRoute ← firstBHnode
residualCapacity ← C - currentNodeDemand
while (residualCapacity > 0)

RCLlist ← computeBHRCL(currentNode, ResidualBackhaulSet, residual-
Capacity, C)

newNode ← rouletteWheelSelection (RCLlist)
BHRoute ← BHRoute + newNode
residualCapacity ← residualCapacity - newNodeDemand
currentNode ← newNode
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update (ResidualBackhaulSet)
endwhile
return BHRoute

end

At first, it is assigned to the current node, denoted by currentNode, the Backhaul
node of the first firstBHnode couple. It is then inserted into the route of the
Backhaul that is being built, as the first node, the firstBHnode. After every
insertion, the remaining capacity is updated, residualCapacity, subtracting the
capacity of the truck the offer (or demand) of current node currentNodeDemand.
The process of construction of the Backhaul route is guided by a while loop that
checks the residual load capacity on the truck, residualCapacity, which decreases
as the nodes are added. As long as the remaining capacity is greater than zero, it
creates a list RCL for the current node currentNode. Initially the current node is
B1, see figure 5.12

L1 B1 RCL1 of Backhaul

L2 B2

L3 B3

Figure 5.12: RCL construction for the Backhaul node of the first pair

The RCL list is created taking into account some details, described in the next
paragraph. It can however anticipate that also in this case to each element of the
RCL list is associated a variable probability. The element that will add to the route,
indicated by newNode, is randomly chosen from the RCL list that corresponds to
the current node, using the same roulette wheel selection mechanism. As before,
three variants have been used.

First variant

In the first variant a random number p ∈ [0, 1] is generated and the single proba-
bilities associated at all elements of the RCL List are added until the sum is not
at least equal to p. As soon as the sum becomes greater than or equal to p, the
current RCL list index is saved and corresponding to the element to be returned by
the rouletteWhellSelection procedure.

Second variant

The second variant select from the list all the elements until the sum of the proba-
bility is 0.7. In this case are not considered available all nodes of the remainingSet,
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but his 70%. A sub-RCL list is recreated, but limited to 70% of the extracted ele-
ments. Like the first variant, a random number p ∈ [0, 1] is generated, and the sum
of the probabilities until the sum was at least equal to p is computed. As soon as the
sum becomes greater than or equal to p, the corresponding index of the sub-RCL
list is saved to be returned by the rouletteWheelSelection procedure.

Third variant

The third variant select from the candidate list the first 5 elements, namely the
5 elements with the highest probability if the size of the RCL list is ≥ 5. If the
size is lower than 5 elements, all elements are considerate. Extrapolated elements
are made equally probable and extracted a random element, saving the index
corresponding to be returned by rouletteWheelSelection procedure.
Like the couple generation, only one of the three strategies is used. The three
strategies share the fact that only the nodes that have a compatible request with
the remaining load capacity are used to compose the RCL lists. Once a customer is
extracted, the newNode, it can be added to the route of the Backhaul, BHRoute.
See figure 5.14.

L1 B1 n1

L2 B2

L3 B3

Figure 5.13: Insertion of the first node in the route of the Backhaul of the first pair

Now one updates the remaining capacity of the truck, residualCapacity, which
has decreased because of the offer (or demand) of n1 node. The newNode becomes
the current node, n1. It is updated ResidualBackhaulSet, eliminating the node
just inserted into the route. A new RCL is created for the new inserted node n1.

L1 B1 n1 new RCLn1

L2 B2

L3 B3

Figure 5.14: RCL Construction for Backhaul node n1

The algorithm repeats these steps, until it is no longer possible to add nodes to
the route for capacity reasons.
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L1 B1 n1 n2 .. nr

L2 B2

L3 B3

Figure 5.15: Example of BHRoute

The constructBHRoute function returns the Backhaul route just created, called
BHRoute. This is an open-route that is going to be linked to another open-route
made using Linehaul nodes. FunctionconstructLHRoute starts from the other
node of the couple that is processed. See figure 5.15.

Function constructLHRoute (lastLHnode, ResidualLinehaulSet, C)
Begin

currentNode ← lastLHnode
LHRoute ← lastLHnode
residualCapacity ← C - currentNodeDemand
while (residualCapacity > 0)

RCLlist ← computeLHRCL(currentNode, ResidualLinehaulSet, residual-
Capacity, C)

newNode ← rouletteWheelSelection (RCLlist)
LHRoute ← LHRoute + newNode
residualCapacity ← residualCapacity - newNodeDemand
currentNode ← newNode
update (ResidualBackhaulSet)

endwhile
return LHRoute

end

At first it is assigned to the current node, denoted by currentNode, the Line-
haul node of the first lastLHnode couple. Then it is inserted into the route of
Linehaul that is being created, as the last node, just the lastLHnode. It then
updates the remaining capacity of the truck, residualCapacity, subtracting the de-
mand currentNodeDemand of the current node. The process of construction of the
Linehaul route is guided by a while loop that checks the residual capacity of the
truck, residualCapacity, which decreases as the nodes are added. As long as the
remaining capacity is greater than zero, it creates a list RCL for the current node
currentNode. Initially the current node is L1.

As for the case of the Backhaul, an RCL list is created taking into account some
details, and associating to each element of the RCL list a probability.
The element which will add to the route, indicated by newNode, is chosen ran-



5.1. FIRST VERSION 65

L1 BHRoute1RCL1 of Linehaul

L2 B2

L3 B3

Figure 5.16: RCL Construction for Linehaul node of the first pair

domly from the RCL list corresponding to the current node, using the same
roulettewheelselection mechanism. As before, three variants are proposed, in a
similar way of the case of Backhaul.
Only one of the three strategies is used, in particular the same strategy used for the
creation of the first couples and for Backhaul route. Once extracted, the newNode
can be added to the open route of Linehaul LHRoute. See figure 5.17

L1 BHRoute1n1

L2 B2

L3 B3

Figure 5.17: Insertion of the first node in the Linehaul route

At this point one updates the residual capacity of the truck, residualCapacity,
which is decreased because of the node n1 request. The newNode becomes the
current node, n1. It is updated ResidualLinehaulSet, eliminating the node just
inserted into the route.
It then to calculates the RCL for the new inserted node n1.

L1 BHRoute1n1new RCLn1

L2 B2

L3 B3

Figure 5.18: RCL Construction for Linehaul node n1 of the first pair

The algorithm goes on until it is no longer possible to add nodes to the route for
capacity reasons.

The constructLHRoute procedure returns the Linehaul route just created, called
LHRoute. See figure 5.19

After obtaining 2 open-routes, the createRoutes procedure performs the merge of
the Linehaul customers LHRoute1 and the route of Backhaul customers BHRoute1
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L1 BHRoute1n1...nr

L2 B2

L3 B3

Figure 5.19: Example of LHRoute

LHRoute1 BHRoute1

L2 B2

L3 B3

Figure 5.20: LHRoute and BHRoute from first pair

route, creating the singleRoute1, the first one of the set of routes routeSet. The
singleRoute1 is added to RouteSet. See figure 5.22

SingleRoute1

L2 B2

L3 B3

Figure 5.21: LHRoute and BHRoute merge

The process is repeated for all pairs of PairSet, adding all the routes found to
the set of routes routeSet.

Some customers may remain in ResidualLinehaulSet or ResidualBackhaulSet,
because it failed to enter in the previously created routes. In this case, direct routes
are created: depot → ResidualElement → depot, for each customer that is in a
residual set. Each direct route created is then added to routeSet, and the local
search phase will manage the overabundant number of routes. The aim of function
createRoutes is to return a collection of feasible routes, routeSet, at the end of
the construction phase, that form a feasible solution useful to constructionPhase
function.

Calculation of the RCL when creating routes

.
Function computeBHRCL (currentNode, ResidualBackhaulSet, residualCapacity,
C)
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SingleRoute1

SingleRoute2

:

SingleRoutek

Figure 5.22: RouteSet of k initial pair

Begin
weightSum ← 0
β ← 1
γ ← 1
foreach Node in ResidualBackhaulSet with demand <= residualCapacity
αi← residualCapacity / C
ωij ← αi∗(1/distance(i, j)+(1−αi)∗(1/(β∗distance(i, j)+γ∗distance(j, 0)))
weightSum ← weightSum+ ωij
Insert Node ωij in RCLList sorted by ωij

end foreach
foreach Node in RCLList
pij ← ωij / weightSum
insert pij into RCLList

end foreach
return RCLList

end

Function computeLHRCL (currentNode, ResidualLinehaulSet, residualCapacity,
C)
Begin

weightSum ← 0
β ← 1
γ ← 1
foreach Node in ResidualLinehaulSet with demand <= residualCapacity
αi← residualCapacity / C
ωij ← αi∗(1/distance(i, j)+(1−αi)∗(1/(β∗distance(i, j)+γ∗distance(j, 0)))
weightSum← weightSum+ ωij
Insert Node ωij in RCLList sorted by ωij

end foreach
foreach Node in RCLList
pij ← ωij / weightSum
insert pij into RCLList
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end foreach
return RCLList

end

Functions computeBHRCL and computeLHRCL performs the same task. In
the input parameters, both receive the current node currentNode and, related to
the truck, the remaining capacity residualCapacity and the maximum load capacity
C. They differ in the parameter of the whole residue, which in the first case is
the ResidualBackhaulSet while the second case is the ResidualLinehaulSet. As
output, they return the RCL List associated with the current node.
Only nodes in ResidualBackhaulSet (ResidualLinehaulSet) whose offer (demand)
is ≤ residualCapacity are considered. This is because it is unnecessary to consider
nodes that do not meet the eligibility conditions. It is first assigned to a parameter,
αt, that depends on the current node, a value corresponding to the ratio between
the residual capacity and the capacity of the truck.
Then, using an amount-sensitive approach, the ωt|u parameter is calculated, which
is the sum of two quantities:

• the first quantity is the ratio between αt and the distance Dtu (between the
current node t and the node-to-reach u)

• the second quantity is the ratio between 1 - αt and the sum of Dtu and Du0

distances (Du0 is the distance between the node u and the depot)

Clearly, the first part of the sum increase for the u nodes closest to the current node.
The second part of the sum instead takes into account the distance between the u
and the depot node. This was done to promote the nodes closest to the depot when
the remaining capacity is saturating.
At this point, one computes the sum of all the ωt|u parameters found, and is stored
in the variable weightSum. Finally each node is added at the RCL list, choosing
as sorting values decreasing of ωt|u. The probability pt|u, associate to a node u and
related to a node t, is the ratio between the ωt|u value associated and the value of
the variable weightSum. In this way, nodes with a high ωt|u value will have a higher
probability.
The procedure can be summarized adopting the following five points:

1. compute the residual capacity of the truck, at the current node CRi and for
each node j which satisfies: dj ≤ CRi

2. Determine the weight associated to the node u reachable from the node t (see
par. 5.1) with the formula:

wt|u = αt
1

Dtu

+ (1− αt)
1

βDtu + γDu0
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where:

αt =
CRt
CM

CRt is the residual load capacity of the truck k after serving the node t, CM
is the capacity of the truck, and so it is possible to declare that αt ∈ (0, 1],
while β = 1 and γ = 1 are tuning parameters. The distance between two
nodes i, j is expressed by the value Di,j.

3. order nodes on a non-increasing way, using the ωt|u weight criterium

4. calculate the sum of weights ωt|u associated with each node of the RCL list,
weightSum

5. associate to each node u of the RCL associated to the node t a probability pt|u
= ωt|u / weightSum

5.1.7 Local search

The local search proposed explores the search space of feasible routes and evaluates
at the same time three types of moves in three neighborhoods:

• in the Node Relocate a node is moved from its current route and inserted into
another route according the cheapest insertion criterium;

• in the Node Exchange a pair of nodes is swapped between two different routes;

• in 2-opt removes two edges from a route and reconnects the two paths.

Both first improving and best improving moves in these neighborhoods are im-
plemented. The local search was implemented by a Static Move Description (SMD),
introduced in [ZK10], in order to reduce the complexity required for examining the
neighborhoods. Combo moves, a mix of Node Relocate and Node Exchange, are
used to avoid the entrapment in local minimum. Furthermore, first-improvement
and best-improvement approaches are used in order for diversification/intensification
the local search phase in the search space.

5.2 Second version

5.2.1 A GRASP for the VRPB with pre-processing

In this section, a pre-processing approach is presented on the GRASP metaheuristic,
in order to improve the performances. In the first version, we propose three variant,
regarding the construction of the RCL. In any case, however, it was necessary to
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create a RCL from a subsets of node. The disadvantage is, despite we use efficient
data structure, that the dynamic computing of list of weighed probabilities is deemed
compute-intensive. The possible compromise is to use more memory space, and
compute statically all possible (and feasible) RCL list, before the GRASP iteration,
so that the metaheuristic only seek at data structures reducing the cpu time.
It is possible to see, in the experimental test in 6.2, that the running time, in
the same set of benchmark, decreases by 83%, with a moderate lost of accuracy
(+1.66%). The decrease in accuracy can be explained by the fact that in this version
we compute statically all feasible RCL lists, using a greedy function that depends
on the Euclidean distance from the nodes, and the amount-sensitive approach is
less efficient in this static version than that used in (see section 5.1.6). Local search
phase is very similar to that used in the first version. See section 5.1.7

5.2.2 Main

Function Enhanced GRASP
Begin

initialize (LinehaulSet, BackhaulSet, k, C, max iter, BestCost, v, RCL C,
RCL L, RCL B, RCL LD, RCL BD)

i ← 1
while (i < max iter)

RouteSet ← constructionPhase (LinehaulSet, BackhaulSet, k, C, v,
RCL C, RCL L, RCL B, RCL LD, RCL BD)

BestLocalRouteSet ← localSearch (RouteSet)
if cost(BestLocalRouteSet) < BestCost

BestRouteSet ← BestLocalRouteSet
BestCost ← cost (BestLocalRouteSet)

endif
i ← i + 1

endwhile
return BestRouteSet

end

This section describes the main function, called Enhanced GRASP. The idea
of a sequence of iterations, made up from successive constructions of a greedy
randomized solution, and subsequent iterative improvements of it by a local search
is preserved. We can observe that the flow is similar to that explained in the main
function of the first version 5.1.2
In this version, the main difference is that the initialize function compute, in pre
processing, all feasible RCL, in according to 2.4.
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5.2.3 Initialize

Function initialize(LinehaulSet, BackhaulSet, k, C, max iter, BestCost)
Begin

LinehaulSet ← Load the set of Linehaul Customer
BackhaulSet ← Load the set of Backhaul Customer
k ← Load the number of routes that form the final solution
C ← Load the capacity of the truck
max iter ← Load the number of restart of the GRASP Algorithm
BestCost ← Set to infinity the actual value of objective function
RCL C ← Load RCL for couple: calculate in preprocessing
RCL L ← Load RCL for Linehaul: calculate in preprocessing
RCL B ← Load RCL for Backhaul: calculate in preprocessing
RCL LD ← Load RCL for Linehaul that contains also informations by depot

distance: calculate in preprocessing
RCL BD ← Load RCL for Backhaul that contais also informations by depot

distance: calculate in preprocessing
end

5.2.4 Feasible RCL Lists computing

Function createRCL C (LinehaulSet, BackhaulSet, k)
Begin

mode ← 0
SelectedSet ← smaller (LinehaulSet , BackhaulSet; if equal use BackhaulSet)
RemainingSet ← notUsedBetween (SelectedSet, LinehaulSet, BackhaulSet)
if | BackhaulSet |< k

Add the depot to the SelectedSet
endif
RCL C ← createRCLList (SelectedSet, RemainingSet, mode)
return RCL C

end

Function createRCL L (LinehaulSet, RemainingSet, mode)
Begin

mode ← 1
SelectedSet ← LinehaulSet
RemainingSet ← null
RCL L← createRCLList (SelectedSet, RemainingSet, mode)
return RCL L

end
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Function createRCL B(BackhaulSet, RemainingSet, mode)
Begin

mode ← 1
SelectedSet ← BackhaulSet
RemainingSet ← null
RCL B← createRCLList (SelectedSet, RemainingSet, mode)
return RCL B

end

Function createRCL LD (LinehaulSet, RemainingSet, mode)
Begin

mode ← 2
SelectedSet ← LinehaulSet
RemainingSet ← null
RCL LD← createRCLList (SelectedSet, RemainingSet, mode)
return RCL LD

end

Function createRCL BD(BackhaulSet, RemainingSet, mode)
Begin

mode ← 2
SelectedSet ← BackhaulSet
RemainingSet ← null
RCL BD← createRCLList (SelectedSet, RemainingSet, mode)
return RCL BD

end

Function createRCLList(SelectedSet, RemainingSet, mode)
Begin

foreach node in SelectedSet
if mode ← 0

compute t nodes distance from node i and RemainingSet
SelectedRCLList (i) ← set of t nodes

if mode ← 1
compute t nodes distance from node i and SelectedSet
SelectedRCLList (i) ← set of t nodes

if mode ← 2
compute t nodes distance of depot and nodes i in SelectedSet
SelectedRCLList (i) ← set of t nodes

end foreach
SelectedRCLList ← sort by decreasing distance (SelectedRCLList)
return SelectedRCLList
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end

During a pre-processing phase, all feasible RCL List are computed; in the mathe-
matical model in 2.4 we define A as the set of admitted arcs: A = A1∪A2∪A3 where:

• A1 = {(i, j) : i ∈ L0, j ∈ L}

• A2 = {(i, j) : i ∈ B, j ∈ B0}

• A3 = {(i, j) : i ∈ L, j ∈ B0}

Using this notation, to better explain the creation of the RCL lists, we associate the
single functions to the right subset of A.

• arcs in A1 are made by the join of createRCL L and createRCL LD

• arcs in A2 are made by the join of createRCL B and createRCL BD

• arcs in A3 are made by createRCL C (Couples)

Finally, the multi-purpose createRCLList function is called by previous func-
tions, and the control variable mode is used to lead the right RCL list construction.
Another control variable, used in createRCLList, is t. As in the first version, three
variants are proposed, regarding the size of the RCL List:

• t = 1, all available nodes are used to create the RCL List. For each node i a
probability pi is computed with a greedy function related to the distance, and
associated to i. After, a ranking of all nodes is used to create the RCL List
(tightly greedy).

• t = 2, the same behavior of t = 1. A sum of pi of ranked list is made, and only
the nodes that are in the sum equal or less of 0,7 are used. In other words,
the first 70% of nodes are used, not in term of node number, but in term of
their probability.

• t = 3, only 5 nodes (if available), starting from the most probable (generated
like case t = 1), are used to create the RCL List. In this case, after the
selection, all nodes are set to be equally probable (tightly random).
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5.2.5 Construction phase

Function constructionPhase (LinehaulSet, BackhaulSet, k, C, RCL C, RCL L,
RCL B, RCL LD, RCL BD)
Begin

PairSet ← Set to Empty the k pair of client Linehaul/Backhaul
RouteSet ← Set to Empty the set of k route of the final solution
PairSet ← CreatePair (k, RCL C)
RouteSet ← CreateRoutes (PairSet, C, RCL L, RCL B, RCL LD, RCL BD)
return RouteSet

end

The constructionPhase is very similar to that described in 5.1.4. The main
difference is that all pre-computed RCL Lists are passed as parameters, and not
dynamically computed during the iterations.

5.2.6 Creation of couples

Function createPair (k, RCL C)
Begin

SelectedPair ← createAllPair (RCL C)
If k >| SelectedPair |

residualPair ← CreateResidualPair (k - | SelectedPair |, RCL C(depot))
SelectedPair ← merge (SelectedPair, residualPair)

End if
SavingList ← ComputeSavings (SelectedPair) and order it in a not-growing

way
PairSet ← SelectedPair ordered in SavingList order
return the first k values of PairSet

end

Function CreateResidualPair (k -| SelectedPair |, RCL C(depot))
Begin

residualPair ← createResidual (k -| SelectedPair |, RCL C(depot) )
made residual pair with couple Linehaul-depot

return residualPair
end

Function createAllPair (RCL C)
Begin

i ← 0
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for each node in RCL C
i ← i +1
BestMatch ← rouletteWellSelection (RCL C (i))
SelectedPair (i) ← (node, BestMatch)

end for
return SelectedPair

end

In this section, the creation of couples is explained. As well as the latest
functions explained, the structure is similar to the corresponding one in the
first version. In this case too, the main difference is that all pre-computed RCL
Lists are passed as parameters, and not dynamically computed during the iterations.

5.2.7 Creation of routes

Function CreateRoutes(PairSet, C, RCL L, RCL B, RCL LD, RCL BD)
Begin

foreach pair in PairSet
firstBHnode ← Backhaul node from pair
lastLHnode ← Linehaul node from pair
BHRoute ← constructBHRoute (firstBHnode, RCL B , RCL BD ,C)
LHRoute ← constructLHRoute (lastLHnode, RCL L , RCL LD, C)
singleRoute ← merge (BHRoute, LHRoute )
RouteSet ← RouteSet + singleRoute

end foreach
RouteSet ← RouteSet + createDirectRoute (ResidualElement, depot)

return RouteSet
end

Function constructBHRoute (firstBHnode, RCL B , RCL BD, C)
Begin

currentNode ← firstBHnode
BHRoute ← firstBHnode
residualCapacity ← C - currentNodeDemand
while (residualCapacity is > 0)

if residualCapacity < C*0,75
newNode ← rouletteWheelSelection (RCL B )
else newNode ← rouletteWheelSelection (RCL BD )
BHRoute ← BHRoute + newNode
residualCapacity ← residualCapacity - newNodeDemand
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currentNode ← newNode
endwhile
return BHRoute

end

Function constructLHRoute(lastLHnode, RCL L , RCL LD, C)
Begin

currentNode ← lastLHnode
LHRoute ← lastLHnode
residualCapacity ← C - currentNodeDemand
while (residualCapacity is > 0)

if residualCapacity < C*0,75
newNode ← rouletteWheelSelection (RCLlist, RCL L)
else newNode ← rouletteWheelSelection (RCLlist, RCL LD)
LHRoute ← LHRoute + newNode
residualCapacity ← residualCapacity - newNodeDemand
currentNode←newNode

endwhile
return LHRoute

end

Function CreateRoutes, starts from a set of couples, PairSet, and creates two
open route, using constructBHRoute end constructLHRoute functions respectively.
The roulette wheel selection mechanism is used to create the open routes, from
this functions. Note that, when residual capacity is less then 25%, the construct
route) functions switches from RCL Lists that are made only with a greedy function
distance based, to the RCL lists made by the same set, but those one computed
taking into account the depot too, with the amount-sensitive approach.



Chapter 6

Test and results

Benchmarking is a tool for evaluating performance. In heuristic field, an exact value
useful for comparison term often is not available. In the literature different classes
of benchmark instances are used to experimentally compare the performance of
exact and heuristic algorithms proposed. The experimentation of the metaheuristic
is carried out using two different sets of instances, symmetric and asymmetric.
Furthermore, a tuning phase is necessary to set the metaheuristic ready to perform.
For example, it is necessary to establish the number of iterations to run the GRASP
on the specific instance. It is necessary to set a suitable number of restart to ensure
a sufficiently high number of different solutions on which to apply the local search.

6.1 Experimentation on asymmetric instances

The class that contains 24 instances of AVRPB, obtained from ACVRP instances
described by Fischetti et Al in [FTV94], is used for the experimentation of
asymmetric instances. For each of ACVRP instance three instances of AVRPB
have been created, each corresponding to a percentage of Linehaul respectively
50%, 60% and 80% of customers. The set of customers is partitioned defining, in
the list of vertex (generic customer), a Backhaul as the first vertex in every two in
the instances with 50% of Linehaul, the first every three customers in the case of
66% and and the first every five customers, respectively, in case of a percentage of
Linehaul of 80%.
The customer demand, the capacity of the truck, and the cost matrix are equal
to those of the original ACVRP instances. The number of available trucks is
determined by K = max(KL, KB).
Asymmetric instances have been solved by a number or GRASP iteration equal to
10 multiplied by the number of customers instance (the size of the instance).
We propose three variants, in the costructionphase (see chapter5). For each
variant, the three different percentage between Linehaul-Backhaul are solved, using
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different sequences of local search phases, and the Gap indicated is calculated as
the average Gap between the lowest objective function value and the BKV.
Results are presented in detail from table 6.1 to table 6.18. For a better performance
comparison of the proposed metaheuristic, summary results are presented in table
6.19, related to the objective function Gap, and in table 6.20, related to the average
time consumption (expressed in seconds). Both are compared with results obtained
by [TV99].
We solve 80% of asymmetric instances, while a value N/A means that the value is
not available for the specific instance.

6.1.1 Table 6.1 - 6.18

The following notation is adopted:

• size is referred to the cardinality of the instance

• The first column indicates the instance that has been resolved and the per-
centage of Linehaul (50%, 66% and 80%)

• BKV is the best known solution, obtained by [TV99]

• sequences of local search phases: {BR: Best Relocate, BE: Best Exchange,
FR: First Relocate, FE: First Exchange}

• BrBe: Best Exchange applied to the output of Best Relocate

• BeBr: Best Relocate applied to the output of the Best Exchange

• FrFe: First Exchange applied to the output of First Relocate

• FeFr: First Relocate applied to the output of the First Exchange

• Time (m) indicates the time in minutes to perform the procedure

• Best Gap indicates a percentage, what we deviate from the BKV, computed
for the best o. f. value

6.1.2 Table 6.19 - 6.20

In table 6.19, for each variant proposed, it have been reported the average results
of the different type of sequences of local search phases implemented, and for every
variant and every sequence, the average result is reported in the line avg.
The notation is the same of tables 6.1 - 6.18.
The best result is obtained in the 3rd Var., using the BrBe (Best Relocate - Best
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Table 6.1: 1st Var., Linehaul = 50 %, restarts = 10 ∗ size: o. f. values

50% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1841 2095 2217 2061 2063 2104 2198 2269 2755 11.95
a036-02f 2112 2219 2470 2216 2278 2271 2384 2371 2813 4.92
a039-02f 2162 2283 2384 2283 2290 2279 2350 2279 2661 5.41
a045-02f 2363 2428 2724 2404 2531 2425 2451 2548 2951 1.74
a048-02f 2352 2641 2935 2583 2586 2583 2655 2744 3531 9.82
a056-02f 2459 2656 2886 2632 2603 2654 2770 2730 3581 5.86
a065-02f 2788 3134 3479 3134 3178 3075 3138 3297 3866 10.29
a071-02f 3012 3384 3785 3219 3393 3243 3555 3443 4535 6.87

Table 6.2: 1st Var., Linehaul = 50 %, restarts = 10 ∗ size: time consumption

50% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 3 4 4 5 2 1 0 0
a036-02f 4 4 6 7 4 4 2 0
a039-02f 7 6 9 11 6 7 3 1
a045-02f 16 13 20 25 13 15 7 2
a048-02f 22 23 29 39 18 15 7 1
a056-02f 46 45 57 69 37 33 17 5
a065-02f 95 84 111 131 75 86 45 22
a071-02f 130 130 144 166 100 83 52 19

Table 6.3: 1st Var., Linehaul = 66 %, restarts = 10 ∗ size: o. f. values

66% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1900 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a036-02f 2190 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a039-02f 2165 2303 2409 2258 2318 2258 2303 2512 2437 4.30
a045-02f 2234 2719 2745 2595 2522 2669 2527 2809 2775 12.89
a048-02f 2458 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 2302 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a065-02f 2678 3436 3469 3266 3206 3287 3240 3410 3699 19.72
a071-02f 2831 3193 3737 3168 3209 3205 3312 3484 4025 11.90
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Table 6.4: 1st Var., Linehaul = 66 %, restarts = 10 ∗ size: time consumption

66% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f N/A N/A N/A N/A N/A N/A N/A N/A
a036-02f N/A N/A N/A N/A N/A N/A N/A N/A
a039-02f 5 5 9 9 7 6 3 2
a045-02f 11 12 18 19 15 13 7 4
a048-02f N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f N/A N/A N/A N/A N/A N/A N/A N/A
a065-02f 76 85 111 109 108 86 63 31
a071-02f 139 130 134 137 131 118 53 33

Table 6.5: 1st Var., Linehaul = 80 %, restarts = 10 ∗ size: o. f. values

80% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1704 1793 1852 1791 1767 1783 1889 1785 2133 3.70
a036-02f 2002 2309 2417 2227 2186 2314 2303 2359 2486 9.19
a039-03f 1982 2184 2406 2184 2227 2177 2231 2180 2502 9.84
a045-03f 2184 2385 2726 2363 2413 2352 2400 2383 2685 7.69
a048-02f 2355 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 2328 2858 2929 2727 2625 2762 2677 3091 2938 12.76
a065-03f 2689 2831 3251 2820 2859 2775 2888 2806 3313 3.20
a071-02f 2707 3269 3517 3148 3217 3096 3229 3112 3633 14.37

Table 6.6: 1st Var., Linehaul = 80 %, restarts = 10 ∗ size: time consumption

80% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 5 4 6 7 4 5 2 1
a036-02f 4 4 8 7 7 6 3 2
a039-03f 10 6 12 13 5 7 3 3
a045-03f 23 14 27 30 11 14 6 5
a048-02f N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 41 44 65 61 65 52 38 23
a065-03f 125 87 137 153 57 72 42 37
a071-02f 151 133 134 403 92 95 67 55
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Table 6.7: 2nd Var., Linehaul = 50 %, restarts = 10 ∗ size: o. f. values

50% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1841 2149 2204 2113 2088 2005 2193 2066 2592 8.91
a036-02f 2112 2207 2491 2203 2268 2216 2370 2359 2663 4.31
a039-02f 2162 2285 2492 2267 2321 2351 2384 2427 2450 4.86
a045-02f 2363 2432 2799 2432 2571 2460 2497 2580 3090 2.92
a048-02f 2352 2691 2847 2600 2463 2558 2667 2621 3518 4.72
a056-02f 2459 2609 3006 2609 2621 2686 2760 2790 3508 6.10
a065-02f 2788 3147 3451 3098 3106 3144 3197 3281 3908 11.12
a071-02f 3012 3264 3734 3261 3304 3296 3510 3579 4198 8.27

Table 6.8: 2nd Var., Linehaul = 50 %, restarts = 10 ∗ size: time consumption

50% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 6 8 9 13 5 3 1 0
a036-02f 8 10 12 18 8 9 3 1
a039-02f 13 11 16 26 11 14 6 3
a045-02f 27 24 35 46 23 27 11 4
a048-02f 38 41 51 69 32 26 12 3
a056-02f 78 75 99 133 65 60 27 7
a065-02f 163 151 210 237 140 164 77 38
a071-02f 205 218 104 141 183 153 84 28

Table 6.9: 2nd Var., Linehaul = 66 %, restarts = 10 ∗ size: o. f. values

66% BKV BR BE BrBe BeBr FrFe FeFr0 FR FE Best Gap %

a034-02f 1900 2035 2194 2005 2040 2053 2038 2087 2397 5.53
a036-02f 2190 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a039-02f 2165 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a045-02f 2234 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a048-02f 2458 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 2302 2413 2710 2383 2343 2341 2348 2435 3024 1.69
a065-02f 2678 3430 3339 3228 3161 3191 3267 3587 3465 18.04
a071-02f 2831 3301 3492 3207 3249 3168 3422 3447 4182 11.90
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Table 6.10: 2nd Var., Linehaul = 66 %, restarts = 10 ∗ size: time consumption

66% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 7 9 10 16 6 8 3 1
a036-02f N/A N/A N/A N/A N/A N/A N/A N/A
a039-02f N/A N/A N/A N/A N/A N/A N/A N/A
a045-02f N/A N/A N/A N/A N/A N/A N/A N/A
a048-02f N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 84 73 105 140 72 87 32 19
a065-02f 124 136 189 163 164 161 98 52
a071-02f 93 187 109 126 214 179 79 52

Table 6.11: 2nd Var., Linehaul = 80 %, restarts = 10 ∗ size: o. f. values

80% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1704 1846 1997 1792 1809 1738 1790 1901 2086 2.00
a036-02f 2002 2403 2352 2361 2262 2325 2272 2457 2402 12.99
a039-03f 1982 2175 2414 2164 2162 2208 2202 2244 2544 9.08
a045-03f 2184 2429 2737 2395 2437 2279 2401 2281 2719 4.35
a048-02f 2355 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 2328 2857 2844 2725 2715 2796 2752 3077 3054 16.62
a065-03f 2689 2732 3349 2732 2828 2757 2858 2805 3284 1.60
a071-02f 2707 3221 3747 3143 3172 3130 3235 3296 3735 15.63

Table 6.12: 2nd Var., Linehaul = 80 %, restarts = 10 ∗ size: time consumption

80% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 9 9 12 19 7 9 3 2
a036-02f 7 10 13 16 12 10 5 5
a039-03f 18 11 22 26 10 14 6 5
a045-03f 40 27 47 56 21 26 12 12
a048-02f N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 67 74 113 114 99 91 59 37
a065-03f 213 139 204 107 103 131 84 59
a071-02f 95 88 107 139 83 108 131 126
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Table 6.13: 3rd Var., Linehaul = 50 %, restarts = 10 ∗ size: o. f. values

50% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1841 1977 2281 1977 2110 2084 2189 2270 2728 7.39
a036-02f 2112 2264 2388 2259 2253 2275 2361 2330 2669 6.68
a039-02f 2162 2350 2523 2339 2311 2315 2296 2358 2660 6.89
a045-02f 2363 2545 2832 2494 2465 2476 2502 2490 3014 4.32
a048-02f 2352 2658 2694 2608 2528 2495 2699 2636 3366 6.08
a056-02f 2459 2645 2923 2645 2700 2623 2734 2814 3410 6.67
a065-02f 2788 3090 3368 3088 3103 3122 3129 3225 3686 10.76
a071-02f 3012 3247 3613 3227 3396 3290 3435 3483 4105 7.14

Table 6.14: 3rd Var., Linehaul = 50 %, restarts = 10 ∗ size: time consumption

50% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 2 2 3 3 2 1 0 0
a036-02f 3 3 4 5 3 3 1 0
a039-02f 5 4 6 8 4 5 2 1
a045-02f 10 8 13 17 8 10 4 1
a048-02f 13 14 17 24 11 9 4 1
a056-02f 28 29 37 46 25 22 11 3
a065-02f 49 48 59 74 44 50 27 14
a071-02f 68 67 84 107 57 49 29 10

Table 6.15: 3rd Var., Linehaul = 66 %, restarts = 10 ∗ size: o. f. values

66% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1900 2053 2226 2026 1987 1966 2058 2033 2307 3.47
a036-02f 2190 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a039-02f 2165 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a045-02f 2234 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a048-02f 2458 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 2302 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a065-02f 2678 3329 3423 3129 3115 3149 2978 3437 3550 11.20
a071-02f 2831 3037 3690 3037 3267 3083 3202 3282 4018 7.28
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Table 6.16: 3rd Var., Linehaul = 66 %, restarts = 10 ∗ size: time consumption

66% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 2 2 3 5 2 3 1 0
a036-02f N/A N/A N/A N/A N/A N/A N/A N/A
a039-02f N/A N/A N/A N/A N/A N/A N/A N/A
a045-02f N/A N/A N/A N/A N/A N/A N/A N/A
a048-02f N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f N/A N/A N/A N/A N/A N/A N/A N/A
a065-02f 35 42 54 60 53 49 33 23
a071-02f 76 66 85 110 78 74 30 21

Table 6.17: 3rd Var., Linehaul = 80 %, restarts = 10 ∗ size: o. f. values

80% BKV BR BE BrBe BeBr FrFe FeFr FR FE Best Gap %

a034-02f 1704 1769 2002 1761 1831 1776 1761 1811 2052 3.35
a036-02f 2002 2424 2332 2285 2171 2355 2284 2471 2504 8.44
a039-03f 1982 2156 2473 2156 2178 2159 2177 2205 2479 8.78
a045-03f 2184 2366 2691 2366 2397 2338 2373 2338 2851 8.33
a048-02f 2355 N/A N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 2328 2744 2894 2510 2500 2580 2751 2963 2926 7.39
a065-03f 2689 2787 3216 2773 2834 2723 2745 2800 3292 1.26
a071-02f 2707 3075 3624 3075 3178 3183 3182 3224 3598 13.59

Table 6.18: 3rd Var., Linehaul = 80 %, restarts = 10 ∗ size: time consumption

80% BR BE BrBe BeBr FrFe FeFr FR FE

a034-02f 3 2 4 5 2 3 1 0
a036-02f 2 3 4 4 4 4 1 1
a039-03f 6 4 8 9 4 5 2 1
a045-03f 13 8 16 19 7 9 4 3
a048-02f N/A N/A N/A N/A N/A N/A N/A N/A
a056-02f 22 26 32 31 36 33 16 15
a065-03f 60 40 69 85 31 38 24 19
a071-02f 74 68 89 133 68 87 41 49
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Table 6.19: Average Gap for all GRASP variants and all sequences of local search
phases in respect to BKV for asymmetric instances

o. f. Gap (%)
GRASP % of
variant Linehaul BR BE BrBe BeBr FrFe FeFr FR FE

1st Var. 50 % 9,03 19.44 7.54 9.42 8.20 12.60 13.63 39.47
66 % 17.29 23.92 13.58 13.26 14.93 14.37 23.04 29.27
80 % 12.68 21.75 10.43 10.52 10.57 12.86 13.40 26.02

avg 13.00 21.70 10.52 11.07 11.23 13.28 16.69 31.59

2nd Var. 50 % 8.95 20.30 7.86 8.67 8.36 13.01 13.35 35.34
66 % 14.15 20.31 10.72 10.49 10.20 13.03 17.83 33.66
80 % 13.23 23.85 10.96 11.26 10.31 11.94 15.74 26.65

avg 12.11 21.49 9.84 10.14 9.62 12.66 15.64 31.88

3rd Var. 50 % 8.77 18.46 8.05 9.23 8.34 11.87 13.24 34.43
66 % 13.21 25.11 10.25 12.10 9.99 10.87 17.09 31.97
80 % 11.02 22.82 8.45 9.39 9.64 10.53 14.07 26.02

avg 11.00 22.13 8.92 10.24 9.32 11.09 14.80 30.81

Exchange) sequence of local search phase. In this case, an average Gap of 8.92% is
achieved.
From the time consumption point of view, the critical phase is the local search.
The most promising strategy is the First Exchange, that in the 3rd Var. obtain an
average time consumption of 8.32 minutes (499.2 s), but it is one of the worst in
accuracy. The combo strategy of Best Relocate follow to a Best Exchange (BrBe) is
the most accurate, from the objective function value point of view, but it obtain, in
the 3rd Var., an average time of 30.83 minutes (1849.8 s), which is one of the worst,
best only of BeBr.

6.2 Experimentation on symmetric instances

In order to test symmetric problems, the class of problems that consists of 62 Eu-
clidean VRPB randomly instances generated, proposed by Goetshalckx and Jacobs-
Blecha in [GJB89] is used. The customer coordinates are uniformly distributed in
the interval [0, 24000] to the x values and the interval [0, 32000] for the y values.
The depot is located centrally at coordinates (12000, 16000).
The cost of the link ci,j ∈ A (see the mathematical model, paragraph 2.4) is defined
as the Euclidean distance between i and j customers.
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Table 6.20: Time comparison - GRASP variants for asymmetric instances

time consumption for each instance (min)
GRASP % of
variant Linehaul BR BE BrBe BeBr FrFe FeFr FR FE

1st var. 50 40.38 38.63 47.50 56.63 31.88 30.50 16.63 6.25
66 62.75 50.13 73.13 70.25 47.00 55.25 40.00 33.00
80 48.75 39.50 53.38 90.00 32.88 35.00 21.63 16.88

avg 50.63 42.75 58.00 72.29 37.25 40.25 26.08 18.71

2nd var. 50 67.25 67.25 67.00 85.38 58.38 57.00 27.63 10.50
66 60.00 75.50 80.17 89.67 83.83 81.67 38.33 22.67
80 62.75 50.13 73.13 70.25 47.00 55.25 40.00 33.00

avg 63.33 64.29 73.43 81.76 63.07 64.64 35.32 22.06

3rd var. 50 22.25 21.88 27.88 35.50 19.25 18.63 9.75 3.75
66 27.17 25.50 34.00 41.83 29.67 30.33 14.17 9.33
80 24.75 20.63 30.63 39.50 20.88 24.75 12.00 11.88

avg 24.72 22.67 30.83 38.94 23.26 24.57 11.97 8.32

In table 6.21 are reported the size of the solved instances, that correspond to the
sum of n Linehaul and m Backhaul customers.
Customers requests are generated from a normal distribution with an arithmetic
mean µ = 500 and standard deviation σ = 200. Fourteen values for the total num-
ber of vertex, n + m (whose total vary between 25 to 150), with a percentage of
Linehaul equal to 50%, 66%, and 80%. For each value of n + m, the capacity C of
the vehicle is defined so that about a number of vehicles k ∈ [3, 12], k ∈ N, are used
to serve all the requests.
Time consumption, in symmetric instances, is indicated in milliseconds (ms).
The number of restarts of the GRASP metaheuristic (max iteration) is linked to
the size of the instance, and it vary with the law:

max iteration = 15 ∗ (n+m)

Results on symmetrical instances are presented in detail from table 6.22 to table
6.49. Summary results are presented in table 6.50, concerning to the objective
function Gap, and in table 6.51 concerning to the average time consumption
(expressed in ms).
To better perform a comparison between the approach presented and the results
from the literature, for each instance the Best Known Value (BKV) and its related
Gap are reported in results. The reference BKV used are those obtained from
[ZK12]. Both objective function value and the request CPU time are compared.
Notice that the authors of [ZK12], regarding the termination condition used for
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Table 6.21: Symmetric instances - names and size (nodes)

instance size instance size instance size instance size

A1.txt 25 E1.txt 45 H1.txt 68 K1.txt 113
A2.txt 25 E2.txt 45 H2.txt 68 K2.txt 113
A3.txt 25 E3.txt 45 H3.txt 68 K3.txt 113
A4.txt 25 F1.txt 60 H4.txt 68 K4.txt 113
B1.txt 30 F2.txt 60 H5.txt 68 L1.txt 150
B2.txt 30 F3.txt 60 H6.txt 68 L2.txt 150
B3.txt 30 F4.txt 60 I1.txt 90 L3.txt 150
C1.txt 40 G1.txt 57 I2.txt 90 L4.txt 150
C2.txt 40 G2.txt 57 I3.txt 90 L5.txt 150
C3.txt 40 G3.txt 57 I4.txt 90 M1.txt 125
C4.txt 40 G4.txt 57 I5.txt 90 M2.txt 125
D1.txt 38 G5.txt 57 J1.txt 94 M3.txt 125
D2.txt 38 G6.txt 57 J2.txt 94 M4.txt 125
D3.txt 38 J3.txt 94 N1.txt 150
D4.txt 38 J4.txt 94 N2.txt 150

N3.txt 150
N4.txt 150

a single execution, sets to the completion of 120 CPU seconds for problems with
(n+m) ≤ 50, and 300 CPU seconds for instances involving up to 50 vertices.

6.2.1 Table 6.22 - 6.49

The following notation is adopted:

• instance is the solved instance

• BKV is the best known solution, obtained by [ZK12]

• first version, without preprocessing: the values of the objective function and
the related Gap (%), and the time consumption. The local search strategy is
free, choosing the best result find for every instance solved

• second version, with preprocessing: the values of the objective function and
the related Gap (%), and the time consumption; in this case, we force two
local search sequences: FeFr: First Relocate applied to the output of the
First Exchange, and BeBr: Best Relocate applied to the output of the Best
Exchange
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Table 6.22: Class A instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

A1.txt 229886 229886 0 229886 0 230547 0.28
A2.txt 180119 180119 0 180119 0 180119 0
A3.txt 163405 163642 0.14 163405 0 163405 0
A4.txt 155796 155796 0 156033 0.15 156033 0.15

Table 6.23: Class A Instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

A1.txt 229963 0 46391 0 15713 0.28
A2.txt 274072 0 39024 0 14641 0
A3.txt 311584 0.14 33055 0 14782 0
A4.txt 295864 0 31679 0.15 12760 0.15

• o. f. is the value of the objective function

• Gap % is the Gap with BKV

• time (ms) is the CPU time required to solve the instance

6.2.2 Table 6.50 - 6.51

In table 6.50, the average values of o.f. results re presented. The second version
with a sequence of local search of Best Relocate follow a Best Exchange (BeBr),
score a Gap of 5.79%, while the other sequence proposed, the Best Relocate follow
to a Best Exchange (BrBe), obtain the worst Gap.
From the time consumption point of view, the proposed metaheuristic obtain a
good result for instances with size ≤ 50 (see 6.2). In fact, the second version with
a sequence of local search of Best Relocate follow a Best Exchange (BrBe) give a
performance less than -57% in respect to the best known. This promising result
worsens along with the increase in the size of the instance, due to the fact that the
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Table 6.24: Class B instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

B1.txt 239080 239080 0 239080 0 239152 0.03
B2.txt 198048 198048 0 198048 0 198048 0
B3.txt 169372 169372 0 169372 0 169372 0

Table 6.25: Class B Instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

B1.txt 402444 0 70884 0 23148 0.03
B2.txt 533486 0 70205 0 28819 0
B3.txt 575029 0 53657 0 25335 0
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Table 6.26: Class C instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

C1.txt 250556 251665 0.44 254477 1.56 256694 2.45
C2.txt 215020 220941 2.75 219587 2.12 219609 2.13
C3.txt 199346 199346 0 203396 2.03 201164 0.91
C4.txt 195366 195367 0 200179 2.46 199975 2.35

Table 6.27: Class C instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

C1.txt 1412641 0.44 153440 1.56 66581 2.45
C2.txt 1600588 2.75 137964 2.12 64650 2.13
C3.txt 1926792 0 117221 2.03 65587 0.91
C4.txt 1902683 0 118679 2.46 63175 2.35
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Table 6.28: Class D instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

D1.txt 322530 322530 0 322740 0.06 324169 0.50
D2.txt 316708 318431 0.54 316709 0 318327 0.51
D3.txt 239479 240122 0.26 242074 1.08 239934 0.19
D4.txt 205832 207710 0.91 208411 1.25 212420 3.20

Table 6.29: Class D instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

D1.txt 1767024 0 168201 0.06 63376 0.50
D2.txt 1456836 0.54 163405 0 57877 0.51
D3.txt 1651440 0.26 142557 1.08 58132 0.19
D4.txt 1883220 0.91 119846 1.25 56179 3.20
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Table 6.30: Class E instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

E1.txt 238880 239756 0.36 243490 1.93 245334 2.70
E2.txt 212263 213139 0.41 216592 2.03 212376 0.05
E3.txt 206659 209713 1.47 219769 6.34 210332 1.77

Table 6.31: Class E instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

E1.txt 3100368 0.36 227704 1.93 109417 2.70
E2.txt 3243705 0.41 187720 2.03 98608 0.05
E3.txt 3443746 1.47 184124 6.34 99478 1.77
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Table 6.32: Class F instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

F1.txt 263173 278467 5.81 278308 5.75 276955 5.23
F2.txt 265213 265654 0.16 268747 1.33 274205 3.39
F3.txt 241120 252069 4.54 261528 8.46 248583 3.09
F4.txt 233861 246290 5.31 250750 7.22 244775 4.66

Table 6.33: Class F instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

F1.txt 8925326 5.81 291379 5.75 251453 5.23
F2.txt 9460159 0.16 295700 1.33 270500 3.39
F3.txt 10811699 4.54 250216 8.46 253253 3.09
F4.txt 10808895 5.31 241038 7.22 252832 4.66
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Table 6.34: Class G instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

G1.txt 306306 311656 1.74 320774 4.72 318834 4.09
G2.txt 245441 251883 2.62 245797 0.14 254230 3.58
G3.txt 229507 233340 1.67 237916 3.66 234289 2.08
G4.txt 232521 239918 3.18 249935 7.48 243065 4.53
G5.txt 221730 232867 5.02 234243 5.64 228815 3.19
G6.txt 213457 225584 5.68 230180 7.83 220220 3.16

Table 6.35: Class G instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

G1.txt 9962271 1.74 312073 4.72 233332 4.09
G2.txt 9844463 2.62 245420 0.14 213118 3.58
G3.txt 10678444 1.67 220377 3.66 207890 2.08
G4.txt 10811734 3.18 232184 7.48 225885 4.53
G5.txt 10804967 5.02 208948 5.64 214016 3.19
G6.txt 10812317 5.68 211037 7.83 202012 3.16

Table 6.36: Class H instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

H1.txt 268933 280643 4.35 282393 5 282196 4.93
H2.txt 253365 265800 4.90 269911 6.53 265310 4.71
H3.txt 247449 267337 8.03 271547 9.73 263318 6.41
H4.txt 250221 265296 6.02 263882 5.46 261202 4.38
H5.txt 246121 267859 8.83 272212 10.60 258976 5.22
H6.txt 249135 265399 6.52 271486 8.97 263943 5.94



6.2. EXPERIMENTATION ON SYMMETRIC INSTANCES 95

Table 6.37: Class H instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

H1.txt 10816072 4.35 425785 5 376634 4.93
H2.txt 10802912 4.90 411953 6.53 368306 4.71
H3.txt 10811470 8.03 386020 9.73 360284 6.41
H4.txt 10809833 6.02 397714 5.46 376910 4.38
H5.txt 10807211 8.83 392120 10.60 370601 5.22
H6.txt 10809947 6.52 387392 8.97 380201 5.94

Table 6.38: Class I instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

I1.txt 350246 369286 5.43 373723 6.70 375738 7.27
I2.txt 309944 326055 5.19 350493 13.08 343550 10.84
I3.txt 294507 324183 10.07 326582 10.89 324421 10.15
I4.txt 295988 314540 6.26 336296 13.61 321907 8.75
I5.txt 301236 318322 5.67 330599 9.74 317924 5.54

Table 6.39: Class I instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

I1.txt 10826415 5.43 1647814 6.70 1013776 7.27
I2.txt 10822947 5.19 1450553 13.08 938782 10.84
I3.txt 10839929 10.07 1260896 10.89 919495 10.15
I4.txt 10812359 6.26 1293910 13.61 999395 8.75
I5.txt 10826445 5.67 1354541 9.74 1043845 5.54
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Table 6.40: Class J instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

J1.txt 335006 352801 5.31 364295 8.74 358919 7.13
J2.txt 310417 343975 10.81 341786 10.10 329208 6.05
J3.txt 279219 307191 10.01 316174 13.23 300840 7.74
J4.txt 296533 317177 6.96 325587 9.79 315258 6.31

Table 6.41: Class J instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

J1.txt 10837724 5.31 1837470 8.74 1038197 7.13
J2.txt 10822553 10.81 1718190 10.10 1013428 6.05
J3.txt 10803924 10.01 1581680 13.23 1013338 7.74
J4.txt 10814367 6.96 17301.05 9.79 1017676 6.31
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Table 6.42: Class K instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

K1.txt 394071 427179 8.40 430964 9.36 423374 7.43
K2.txt 362130 403350 11.38 404155 11.60 393960 8.79
K3.txt 365694 411016 12.39 405485 10.88 391312 7.00
K4.txt 348950 389552 11.63 396134 13.52 377429 8.16

Table 6.43: Class K instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

K1.txt 10825798 8.40 3525764 9.36 1901732 7.43
K2.txt 10863111 11.38 3273691 11.60 1900787 8.79
K3.txt 10855352 12.39 3375189 10.88 1977590 7.00
K4.txt 10854125 11.63 3353628 13.52 1994505 8.16
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Table 6.44: Class L instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

L1.txt 417896 509328 21.87 513273 22.82 502715 20.29
L2.txt 401228 455992 13.64 482345 20.21 462025 15.15
L3.txt 402678 459041 13.99 471290 17.03 456409 13.34
L4.txt 384636 444263 15.50 464329 20.71 433024 12.58
L5.txt 387565 454654 17.31 467954 20.74 440572 13.67

Table 6.45: Class L instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

L1.txt 10812987 21.87 3600623 22.82 3600545 20.29
L2.txt 10904618 13.64 3603643 20.21 3601094 15.15
L3.txt 11159460 13.99 3604219 17.03 3601536 13.34
L4.txt 10977078 15.50 3602095 20.71 3600042 12.58
L5.txt 11014096 17.31 3602039 20.74 3600530 13.67
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Table 6.46: Class M instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

M1.txt 398593 439846 10.35 444242 11.45 419208 5.17
M2.txt 396917 450343 13.46 456418 14.99 439169 10.64
M3.txt 375696 401994 6.99 416000 10.72 407542 8.47
M4.txt 348140 389300 11.82 393610 13.06 376677 8.19

Table 6.47: Class M instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

M1.txt 10861022 10.35 3601527 11.45 2523681 5.17
M2.txt 10830164 13.46 3602309 14.99 2343494 10.64
M3.txt 10820885 6.99 3601606 10.72 2513456 8.47
M4.txt 10825775 11.82 3600788 13.06 2525238 8.19
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Table 6.48: Class N instances: o. f. values

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance BKV o. f. Gap (%) o. f. Gap (%) o. f. Gap (%)

N1.txt 408101 467525 14.56 478759 17.31 446672 9.45
N2.txt 408066 471885 15.63 478949 17.37 435498 6.72
N3.txt 394338 457466 16 465787 18.11 425676 7.94
N4.txt 394788 463324 17.36 447772 13.42 N/A

Table 6.49: Class N instances: time consumption

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instance time (ms) Gap (%) time (ms) Gap (%) time (ms) Gap (%)

N1.txt 11028568 14.56 3604835 17.31 3601242 9.45
N2.txt 10805727 15.63 3604012 17.37 3601319 6.72
N3.txt 10816953 16 3602007 18.11 3602163 7.94
N4.txt 11372768 17.36 3600882 13.42 N/A
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Table 6.50: o.f. Gap comparison - GRASP Versions on symmetric instances

first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

(%) (%) (%)
6.78 8.55 5.79

Table 6.51: Time comparison - GRASP Versions on symmetric instances

Time BKV first version second version
LS Opt.: Fe Fr LS Opt.: Be Br

instances (ms) (ms) (%) (ms) (%) (ms) (%)
From A1 to E3 120000 1445082,5 104 114764,22 -4 52125,44 -57
From F1 to N4 300000 10733639,76 3478 1888128,46 529 1464490,56 388

time limit we imposed is 3600 seconds, far greater than that of comparison.
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Chapter 7

Conclusion

7.1 Summary of work

In this thesis we propose a GRASP for the VRPB. In the construction phase, it
determines a number of Linehaul-Backhaul pairs which is equal to the number of
routes required in VRPB instances. These pairs are promising because they are
likely to be found in high quality VRPB routes. Next, two open routes are created
from each node of the pair to the depot. At each step, the next node to be included
in the open route is randomly selected from a RCL, which is a list of nodes that
can be visited after the current one. Finally, these routes are joined to create a
feasible route for the VRPB. These steps are repeated for all pairs, until a feasible
VRPB solution is determined.
Three different strategies (variants) are proposed for the RCL construction. In the
first variant, all nodes can be used as candidate for the RCL, and at each of them
a probability proportional to its distance of the current node is assigned; in the
second variant, a fixed percentage of probability limit the number of node that can
be used in the candidate list; in the third variant, a fixed number of nodes is used,
regardless of the probability. The first variant is a pure random strategy, the third
is greedy strategy, while the second is a mixed approach.
The second phase, called local search phase, improves the construction phase
solution, using several local search sequences. These sequences are based on
node relocate and node exchange moves with first-improvement (Fe) and best
improvement (Be).

7.2 Future research directions

The GRASP generates an high number of solutions, each of which may separately
contain high quality routes. Therefore, it is of interest to store in memory all
solutions and select by a set partitioning formulation the subset of routes with
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minimum solution cost. In a very recent experimentation, we solve all instances in
[GJB89], obtaining promising results. More precisely, from Class A1 to Class E2
we always find BKVs; from instance E3 to instance H6, the Gap is 0.86% with 3
BKVs found; from instance I1 to instance K4 the Gap is 1%, whereas it is about
2% for instances from L1 to N6. A tuning phase of the algorithm is currently in
progress in order to find the best setting of parameters. Future work will be done
adding the possibility of accepting infeasible solutions during the search process, in
order to visit new promising areas of the solutions space which cannot be reached
by standard local search methods. Another interesting development could address
the insertion of some ideas on granularity to speed-up the local search phase.
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