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A⊆N Set of terminals 
J                     Set of runs 
Le Set of legs 
n Bus stop index 
j Run index 
HDRn,(j,j-1) Real departure headway at bus stop n ∈ N between runs j ∈ J and j-1∈ J  
HDSn,(j,j-1) Scheduled departure headway at bus stop n ∈ N between runs j ∈ J and j-1 ∈ J  
HDn,(j,j-1) Departure headway deviation at bus stop n ∈ N between runs j ∈ J and j-1 ∈ J 
RATij Real arrival time at bus stop n ∈ N for run j ∈ J 
SDTij Scheduled departure time at bus stop n ∈ N for run j ∈ J 
ARTaj Available recovery time at terminal a ∈ A for run j ∈ J 
HARn,(j,j-1) Real arrival headway at bus stop n ∈ N between runs j ∈ J and j-1 ∈ J  
HASn,(j,j-1) Scheduled arrival headway at bus stop n ∈ N between runs j ∈ J and j-1 ∈ J  
HAn,(j,j-1) Arrival headway deviation at bus stop n ∈ N between runs j ∈ J and j-1 ∈ J 
HTSRn,(j, j-1) Real time spent headway at bus stop n ∈N\A between runs j ∈ J and j-1∈ J 
HTSSn,(j, j-1) Scheduled time spent headway at bus stop n ∈ N\A between runs j ∈ J and j-1 ∈ J 
HTSn,(j, j-1) Headway time spent deviation at bus stop n ∈ N\A between runs j ∈ J and j-1 ∈ J 
rrt(n-1,n)j  Real running time between stops n-1 ∈ N and n ∈ N for run j ∈ J 
srt(n-1,n)j  Scheduled running time between stops n-1 ∈ N and n ∈ N for run j ∈ J 
rs(n-1,n)j Real speed between stops n-1 ∈ N and n ∈ N for run j ∈ J 
sms(n-1,n)j Scheduled mean speed between stops n-1 ∈ N and n ∈ N for run j ∈ J 
LHD, LHA, LHTS Minimum acceptable value of HD, HA, HTS, respectively 
UHD, UHA, UHTS Maximum acceptable value of HD, HA, HTS, respectively 
η Congestion speed 
ρ Numerical threshold < 1 
τ Numerical threshold > 1 
μ Urban speed limit 

1. Introduction 

In high frequency transit systems, characterizing the regularity and understanding possible systematic irregularity 
sources is extremely desirable and provides an opportunity to keep buses running as planned. On the one hand, the 
analysis of irregularity has captured attention as theoretical models have investigated the impact of passengers on 
headway regularity along the route (e.g., Bellei and Gkoumas, 2010; Islam et al., 2014). However, transit operators 
do not eagerly adopt models since models cannot incorporate practical and operational considerations arising in a 
specific case study (e.g., rules negotiated with trade unions). On the other hand, measuring regularity is technologically 
feasible by Automatic Vehicle Location (AVL) systems, which can collect abundance of disaggregated data on the 
delivered service (Moreira-Matias et al., 2015). Many studies have so far used AVL data to analyze regularity by 
using inferential (e.g., Diab et al., 2015; Strathman et al.,2003) or descriptive models (e.g., Barabino et al., 2013a, 
2013b; Feng and Figliozzi, 2011, 2015; Hammerle et al., 2005; Kimpel et al., 2008; Lin and Ruan, 2009; Lin et al., 
2008) to provide quantitative monitoring of service. However, a gap exists in the identification of systematic 
irregularity sources and their link to strategies. In fact, inferential models are suitable for long-term analysis but they 
do not provide details on where and when unreliability problems occur. Conversely, descriptive models provided a 
clear picture on the analysis of irregularity causes but they are not general, owing to the lack of an overall framework 
able to analyze the most systematic irregularity sources. 

Building on these studies, this paper investigates descriptive models and further develops methods to identify and 
analyze the spatial-temporal sources of low regularity in order to help bus operators select possible preventive 
strategies, since AVL archived data are used. More in detail, this paper proposes a framework which outperforms an 
existing structure for the analysis of time reliability (Barabino et al., 2017a), because it proposes a diagnosis of 
regularity for any high frequency route from archived AVL data. This framework: 1) characterizes bus stops and time 



	 Sara Mozzoni  et al. / Transportation Research Procedia 27 (2017) 1179–1186� 1181
 Mozzoni et al./ Transportation Research Procedia 00 (2017) 000–000 3 

periods where regularity is not met; 2) discovers the irregularity sources starting from irregularity effects and 
originating causes, and selects quantification-based strategies which may be applied successfully to the case at hand. 
Although part 1) uses algorithms successfully applied in Barabino et al. (2013a), (2013b), (2017a) and (2017b) for 
the reliability characterization, Part 2) advances data analysis procedures over all bus stops and time periods, whereas 
several studies focused on a limited subset of bus stops and time periods (e.g., Lin et al., 2008; Lin and Ruan, 2009, 
and Horbury, 1999). It differs from Feng and Figliozzi (2015) and Hammerle et al. (2005) as this framework provides 
a quantitative analysis of data instead of time-space trajectory graphs, and from Feng and Figliozzi (2011) as the 
proposed framework provides analysis of bunching and large gaps together. Moreover, Part 2) removes the choice of 
finding irregularity sources by quantifying scheduled and actual times as if the actual service adheres to the scheduled 
time, it also adheres to the scheduled headway. This modus operandi may be tricky in high-frequency routes when 
buses run with short headways and it is problematic to maintain the planned timetable, which is uninteresting for 
passengers. In fact, in high frequency routes, passengers are supposed to arrive at bus stops independently from 
published timetables and actual vehicle arrivals, and are usually supposed to board on the first arriving vehicle. As 
passengers aim to minimize their waiting time and the waiting time depends on headways, it may be more coherent 
to analyze the irregularity causes and sources by comparing arrivals and departures headways between two 
consecutive bus stops, unlike in Barabino et al. (2017a). To the best of our knowledge, such a detailed analysis of 
comparison of headways at two consecutive stops has never been done to detect irregularity sources. Moreover, control 
dashboards present the outcomes by tables organized in time and space attributes. This paper is organized as follows. 
Section 2 proposes a framework to analyze regularity and detect irregularity sources. Section 3 illustrates its 
experimentation on a real case study. Section 4 draws conclusions and future research. 

2. Methodological Approach 

The proposed framework is organized in two parts. Part 1) characterizes the regularity and Part 2) identifies the 
magnitude of irregularity problem sources (which can be clustered in Improper Service Design (ISD), Drivers and/or 
Supervisors Failures (D&SF), Uncertainties in Passengers Volumes (UPV) and Uncontrollable External Factors (UEF) 
according to Ceder (2007), and selects suitable strategies for their mitigation. 

2.1. The characterization of irregularity 

Consider a high frequency route. First, its AVL data are collected from a database on the provided service. The main 
data provided by AVL system include date, route, trip number, bus stop code and order, actual and scheduled transit 
times and finally, the time spent in a pre-defined area around each bus stop, or the dwell time, depending on the specific 
AVL architecture. Second, since AVL data are not ready-for-use as are, the framework performs proper handling on 
data anomalies to account for Bus Overtakings (BO) and distinguishes between missing data points - i.e., Technical 
Failures (TF) or Incorrect Operation in the Service (IOS) - according to Barabino et al. (2013a), (2013b), (2017a), 
(2017b) and (in press). Third, the actual and the scheduled headways are computed as the difference between two 
consecutive bus arrival (or departure) times. The actual headways need different analysis, depending on the occurrence 
of TF and IOS. TF cannot be used to compute real headways owing to the missing information on transit occurring for 
real. Conversely, actual headways are computed in the case of IOS because passengers suffer these headways for real. 
Four, according to Kittelson & Associates et al. (2013), the regularity measure is obtained by the coefficient of variation 
of headway (Cvh), which is computed as the ratio between the standard deviation of the differences between actual and 
scheduled headway and the average of scheduled headway. The Cvh is also calculated for all bus stops and time periods 
and is matched with a LoS in order to show which segments of the route do not attain a sufficient regularity level. Fifth, 
if LoSs report a sufficient mark denoted by A, B or C, the service is considered as acceptable and no further analysis is 
required. Conversely, if LoSs report an insufficient mark denoted by D, E or F, the service needs further investigation 
to understand the possible irregularity source. Sixth, AVL processed data are represented effectively by control 
dashboards organized in space and time attributes to show which time periods and bus stops of the route contain most 
of the problems and deserve further analyses. 

2.2. The identification of irregularity sources and the selection of possible strategies 

2.2.1. Irregularities sources  
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Let A be the set of terminals and J the set of runs. For each terminal a  A, the departures of two consecutive runs 
j  J and j-1  J are considered in case of run beginning. Once the real and the scheduled departure headways are 
collected, since they may be different, one may compute their deviation as follows: 

HDa(j, j-1) = HDR a(j, j-1) – HDS a(j, j-1)   a  N\A,  j  J (1) 

If HD a(j, j-1) ≈ 0, the real headway complies with the scheduled headway. If HD a(j,j-1) ≠0, the analysis of the recovery 
time at the terminal is performed. Particularly, if HDa(j,j-1)>0, buses run with a long gap in the service, whereas if HD 

a(j,j-1) < 0, buses run with a short gap (bunching) in the service. Since long and short gaps represent irregularity 
problems, in what follows, we focus on their analysis. In order to begin the next trip as scheduled and give operators 
a short break, drivers are provided with recovery times, but actual recovery times may be different from scheduled 
ones. Therefore, it is important to derive the available recovery time which is computed as: 

ARTaj =SDTaj –RATa(j-1)  a  N\A,  j  J (2) 

The analysis of the headway deviation at the terminal and that of the available recovery time are crucial for detecting 
irregularity sources, because they may result in additional irregularity in the next run. Their combined analysis helps 
understand if irregularity mainly depends on ISD or D&SF.  
Nine different cases can be obtained, as shown in Table 1, according to the sign of HD a(j, j-1) and ARTaj.. For each entry 
in Table 1, one can compute the related magnitude in terms of percentage values. The notation ≈ 0 must be read as: 

LHD ≤ HDa(j, j-1) ≤ UHD, LART ≤ ARTaj ≤ UART  a  N\A,  j  J (3) 

Table 1 shows that some critical combinations may occur if: 
 HDa(j, j-1) <0 or HDa(j, j-1) >0 and ARTaj <0, drivers do not have the available recovery time for the new run, then 

they start runs which fail to comply with scheduled headway. The problem may be ISD. At this stage, the traffic 
is not supposed to be an irregularity source for the new run since it already occurred in the previous one. 

 HDa(j, j-1) <0 or HDa(j, j-1) >0 and ARTaj >0, drivers have sufficient recovery time to start the new run which complies 
with scheduled headway, but they start bunched or overly spaced out. Therefore, in this case, the problem may 
depend on driver behaviour or the lack of public transport company supervision (D&SF). 

 HDa(j, j-1) <0 or HDa(j, j-1) >0 and ARTaj ≈ 0, drivers have little recovery time, so they may start their trips bunched 
or with a large gap if they want to have a break. However, in this case, there may also be a problem in ISD and/or 
D&SF. Besides, if it distinguishes better between ISD and D&SF, the following rules can be adopted. If LART 
<ARTaj < 0, the problem source is ISD, whereas if 0 < ARTaj < UART, D&SF is detected. 

Table 1 – Possible irregularity sources at the terminal 

ARTaj HDa (j,j-1) < 0 ≈ 0 > 0 
< 0  ISD Ok ISD 
≈ 0  ISD or D&SF Ok ISD or D&SF 
> 0  D&SF Ok D&SF 

2.2.2. Irregularity sources en-route 
Let N be the set of all bus stops (including terminals) and J the set of runs. In the case of bus stop 𝑛𝑛 ∈ 𝑁𝑁\𝐴𝐴, a run 

𝑗𝑗 ∈ 𝐽𝐽 can arrive (depart) bunched, regular or with a long gap with the previous one. In order to understand the causes 
of irregularity, for each pair of consecutive bus stops n-1  N\A and n  N\A, and each pair of consecutive runs j ∈
𝐽𝐽 and 𝑗𝑗 − 1 ∈ 𝐽𝐽, one derives the scheduled and the real headway, both in departure and arrival. Then, the headway 
deviations are calculated as follows: 

HAn (j, j-1)= HAR n (j, j-1) – HAS n (j, j-1)  n  N\A,  j  J (4) 

HD(n-1),(j, j-1)= HDR(n-1),(j, j-1) – HDS(n-1),(j, j-1)  n  N\A,  j  J (5) 

As both bunching and large gaps in arrival (or departure) at each bus stop n  N\A n represent irregularity problems, 
in what follows, we focus on their analysis which involves the selected bus stop, n  N\A and the previous one, n-1  
N\A. More in detail, one computes HAn (j, j-1) and HD(n-1),(j, j-1) according to eqns. (4) and (5), respectively, and analyse 
their values. Besides, if HAn (j, j-1) ≈ 0, any further analysis is not required as the regularity is assured (i.e., regular 
headways are kept at the bus stop n  N\A). Conversely, if HAn (j, j-1) ≠0, a combined analysis of HD(n-1),(j, j-1) at bus stop 
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n-1  N\A, and the HAn at bus stop n- N\A is performed, and six situations may occur according to their signs. In 
these situations, the “>”means that the real headway is amplified with respect to the scheduled one, that is, the arriving 
(or departing) buses are moving away from each other. The “<”means that the real headway is lesser than the scheduled 
one, that is, the arriving (or departing) buses are bunched. The notation ≈ 0 must be read as:  

LHA ≤ HA n(j, j-1) ≤ UHA ; LHD ≤ HD(n-1),(j, j-1) ≤ UHD    n  N\A,  j  J  (6) 

Before analyzing these possible combinations, the proposed method performs an analysis of real and scheduled 
headways time spent and its deviations at bus stop n-1  N\A, to understand if the irregular departure may depend on 
passenger volumes. The dwell time can provide information on the volumes of boarding and alighting passengers, but 
the time spent may be related to passenger volumes in the case of less advanced transit operators that do not 
automatically count passengers or when AVL architectures are conceived to record the time spent in the proximity of 
bus stops instead of the dwell time. In detail, once the real and the scheduled time spent headways are collected, one 
may compute their difference as follows: 

HTS(n-1),(j, j-1) = HTSR(n-1),(j, j-1) – HTSS(n-1),(j, j-1)  n  N\A,  j  J (7) 

Three cases can occur according to the sign of HTS(n-1),(j, j-1). If HTS(n-1),(j, j-1) ≈ 0, the time spent at bus stop n ∈ 𝑁𝑁\𝐴𝐴 
does not affect the irregular departure. The notation ≈ 0 must be read as follows: 

LHTS ≤ HTS(n-1),(j, j-1)≤ UHTS   n  N\A,  j  J (8) 

Conversely, if HTS(n-1),(j, j-1) <0 or HTS(n-1),(j, j-1) >0, then the irregular departure could depend on passengers as the  
volume of boarding and alighting is probably lower or greater than the expected one and thus, UPV may occur. The 
impact of passengers could optionally be observed by a correlation analysis between the time spent at bus stop n-1  
N and the lateness at bus stop n  N, as a large headway of a vehicle often results in a short headway in the following. 
In order to understand the possible sources that generate irregularities along the route, one can examine together, 
headway arrival deviations at bus stop n N\A, headway departure deviations at bus stop n-1  N\A and headway time 
spent deviations at bus stop n-1  N\A, and combine all these cases. Table 2 shows these 18 critical cases that may 
occur. The different cases can be clustered according to common characteristics related to the sign of all deviations 
and problem sources. The magnitude of clustered problems is expressed in terms of percentage values. In what follows, 
the discussion of these cases is provided. 

Table 2: Possible irregularity sources along the route 

 
 
More in detail: 

 if HA n(j, j-1)  < 0 (i.e., buses arrive bunched to bus stop n  N\A) and HD(n-1),(j, j-1) > 0 (i.e., buses depart with gap 
from bus stop n-1  N\A) or if HA n(j, j-1)  < 0 and HD(n-1),(j, j-1) ≈ 0 (i.e., buses depart regularly from bus stop n-1  
N\A), the problem sources may depend on D&SF. Indeed, it is supposed that HTS(n-1),(j, j-1) at bus stop n-1  N\A 
does not affect the regularity. Thus, the irregularity source can be most likely due to the operator's driving style 
that may be too “sporty” or lack of supervision from coordinators. 

 if HA n(j, j-1)  < 0 and HD(n-1),(j, j-1) < 0 (i.e., buses depart bunched from bus stop n-1  N\A), the problem sources may 
also depend on D&SF. Indeed, the irregularity is constant along the route between bus stops n-1  N\A and n  
N\A. Thus, it is likely that the scheduled travel time is suitable. Besides, there are three possible cases; where HTS(n-

1),(j, j-1) is larger, lesser or ≈ than the expected time, thus a further analysis follows. If HTS(n-1),(j, j-1)>0, the following 
bus stayed at bus stop longer than the previous, however buses have been bunched; therefore, the problem may be 
also related to D&SF. If HTS(n-1),(j, j-1)≈ 0, the time spent is regular but the buses are bunched, and also in this case, 
the problem may be due to D&SF. Conversely, if HTS(n-1),(j, j-1)<0, means that the following bus stayed at bus stop 
lesser than the expected time, thus buses depart bunched. In this case, the irregularity source may also depend on 
UPV, as few passengers are supposed to be at bus stop n-1  N\A. 

HAn (j, j-1) < 0 HAn (j, j-1)  > 0

HD(n-1) (j, j-1)

< 0 UPV D&SF D&SF D&SF or ISD or UEF D&SF or ISD or UEF D&SF or ISD or UEF
≈ 0 D&SF D&SF D&SF D&SF or ISD or UEF D&SF or ISD or UEF D&SF or ISD or UEF
> 0 D&SF D&SF D&SF D&SF or ISD or UEF D&SF or ISD or UEF UPV

HTS(n-1) (j, j-1)
< 0 ≈ 0 > 0< 0 ≈ 0 > 0
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 if a) HA n(j, j-1)  > 0 (i.e., buses arrive with a gap to bus stop n  N\A), and HD(n-1),(j, j-1) < 0 (i.e., buses depart bunched 
from bus stop n-1  N\A) or if b) HA n(j, j-1)  > 0 and HD(n-1),(j, j-1) ≈ 0 (i.e., buses depart regularly from bus stop n-1 
 N\A) or c) if HA n(j, j-1)  > 0 and HD(n-1),(j, j-1) > 0 (i.e., buses depart with gap from bus stop n-1  N\A), the problem 
sources may depend on D&SF, ISD, UEF or UPV. More in detail, for cases a) and b), HTS(n-1),(j, j-1) at bus stop n-1 
 N\A does not affect the regularity. Indeed, despite departures being bunched or regular (i.e., HD(n-1),(j, j-1) ≈ 0), 
buses arrive at bus stop n  N\A with a large gap. In both these cases, the irregularity source may be due to D&SF, 
ISD or UEF. Therefore, the irregularity source cannot be identified by only this analysis, thus a further refinement 
is suggested. Differently, for case c), HTS(n-1),(j, j-1) at bus stop n-1  N\A can affect the regularity in one case. Indeed, 
if HTS(n-1),(j, j-1)>0, means that the following bus stayed at bus stop greater than the expected time, thus buses may 
depart with a long gap. In this case, the irregularity source may depend on UPV, as many passengers are supposed 
to be at bus stop n-1  N\A. In the remaining cases, if HTS(n-1),(j, j-1) <0 (i.e., the following bus stayed at bus stop 
lesser than the previous one) or if HTS(n-1),(j, j-1) ≈ 0, buses are not unable to fill the gap which is maintained along 
the route. Therefore, as in cases a) and b), the irregularity source may be due to driver’s behavior or wrong 
scheduled travel time, and/or scheduled time spent or uncontrollable external factors (i.e., D&SF, ISD or UEF). 
When the irregularity source is identified as ambiguous (i.e., it presents a combination of possible sources), an 
analysis of the speed between consecutive bus stops is suggested, as the speed can provide information about the 
running time. 

2.2.3. Refinement of irregularity sources en-route by speed analysis 
In order to distinguish among ambiguous irregularity sources, the proposed method performs an analysis of the 

speed along the leg le  Le from n-1  N to n  N. Next, the method tries to understand if problems along the leg le 
 Le from n-1  N to n  N depend on ISD, D&SF or UEF. The magnitude of these causes is evaluated by percentage 
values. Two different speeds are considered: the real speed between stops n-1  N to n  N for each run j  J; and the 
scheduled mean speed between bus stops n-1  N to n  N. For a fixed time period t, they are computed as follows: 

  n  N,  j  J (9) 

 

  n  N,  j  J (10) 

 

Some problems can be detected by the value of rs (n-1,n)j and appropriate threshold parameters  < 1 and > 1. More 
precisely if: a) rs (n-1,n)j ≤ η (i.e., the minimum acceptable speed), the unreliability source is probably UEF; b) η < rs 
(n-1,n)j  ≤  , buses run beyond the minimum acceptable speed but they cannot reach the planned speed. The unreliability 
source is probably ISD; c)   smsn-1,n < rs (n-1,n)j ≤   smsn-1,n, there is no problem disclosed by the speed analysis 
because the real speed is close to the planned one; d) rs(n-1,n)j >  smsn-1,n or larger than the urban speed limit μ, buses 
run beyond the acceptable speed. This slack may depend on the too “sporty” driving style, thus the unreliability source 
is probably D&SF. 

2.2.4. Possible preventive strategies 
Since the framework runs offline, we focus only on preventive strategies which can be divided into priority and 

operational ones, according to Barabino et al. (2017a). A possible link between irregularity sources and strategies 
shows that if the irregularity source is: 1) D&SF, possible strategies are operator training, incentives and penalties, as 
well as supervision; 2) ISD, possible strategies are schedule adjustments (e.g., running time, recovery time); 3) UPV, 
possible strategies are schedule adjustments (e.g., dwell time and/or time spent) and/or improving vehicle access; 4) 
UEF, possible strategies are exclusive lanes, route re-design and signal priority. 

3. Application in a Real Case 

The experiment was conducted on the major bus operator (i.e., CTM) from Cagliari, a coastal Italian city with 0.4 M 
inhabitants. For the sake of synthesis, the proposed method is tested on the westbound direction of a route about 8 km 
long with 6 bus stops, which links the university and a hospital center with the city. The route has been chosen because 
of these characteristics which are supposed to point out different problem sources. Its headway is 10 minutes from 
7.00 to 9.59 and from 12.00 to 14.59, thus the route is evaluated in terms of regularity only in these time periods. This 
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route-direction can be divided into two parts. A fast flow exurban road characterizes the former (bus stops 1 and 2); 
the bus can travel at a good commercial speed without interferences with vehicle looking for parking or pedestrian 
flows. Two-way streets characterize the latter within the city in mixed-traffic conditions. The AVL data were collected 
during weekdays of March 2016. In this analysis, 15,034 AVL data were collected from 07.00 to 21.59, but we focus 
only from 7.00 to 9.59 and from 12.00 to 14.59, when the route operates with high frequency. At the end of Part 1), 
we processed 3,416 AVL data and the outcomes are represented in the control dashboard of Fig. 1, where rows 
represent bus stops, and columns represent time periods. Each entry represents the LoS at that bus stop and at that 
time period, according to the values obtained by the Cvh (Kittelson & Assoc, Inc et al., 2013). 

 
Fig. 1 - The characterization of regularity LoS – Part 1 

For example, LoSs from A to C means that regularity can be considered satisfied (Cvh ≤ 0.40). Fig. 1 shows that the 
regularity is critical in all time periods, particularly from 12.00 to 14.59 where LoS E and LoS F are frequently 
observed. Moreover, in this route direction, the analysis shows that vehicles run bunched in Part 2 (from bus stops 3 
to 6), when they operate in the city. As LoSs E and F are consistently observed, along the route, the experimentation 
of Part 2) was carried out considering all time periods. The outcomes are shown in Fig. 2 where a dashboard includes 
both at the terminal and en-route analysis for the selected route-direction.  

 
Fig. 2. Analysis of irregularity sources at terminal, en-route and speed analysis. Westbound direction – Part 2  

In addition, this dashboard shows the results of speed analysis which allow the dissolving of the ambiguities arising 
from nested cases as shown in the previous section. More in detail, each entry can indicate: a) the relative percentage 
of occurrences of each irregularities, which are shown with black background when the occurrences are larger than 
50% (i.e., they are supposed to be systematic criticalities) and with grey background when they result with the highest 
relative occurrence; b) the absence of a datum (the symbol n/a is used). The analysis at the terminal shows almost 
regular situations. Besides, the time period 7.00 - 8.59 has a high relative percentage of ISD, even if it is not the 
prevailing source. Conversely, from 14.00 to 14.59, unambiguous problem sources on D&SF arose. In this case, 
drivers have sufficient recovery time that would enable them to start the new run and comply with the scheduled 
headway, but they extend this recovery time (they start the run overly spaced out) or decrease it excessively (they start 
the run bunched). Therefore, the irregularity problem depends on driver behaviour or on the lack of supervision. The 

Eastbound direction

Part Bus stop 7.00 
7.59

8.00 
8.59

9.00 
9.59

12.00 
12.59

13.00 
13.59

14.00 
14.59

1 F E E E F F
2 F E E E E E
3 E E E E E E
4 E E E D D C
5 E E D C C B

Westboud direction

Part Bus stop 7.00 
7.59

8.00 
8.59

9.00 
9.59

12.00 
12.59

13.00 
13.59

14.00 
14.59

1 E E D C D D
2 F E D C C C
3 F E E F E F
4 E E E F F F
5 E E E F F F
6 E E E E F E

2

2

1

1

7.00 
7.59

8.00 
8.59

9.00 
9.59

12.00 
12.59

13.00 
13.59

14.00 
14.59

7.00 
7.59

8.00 
8.59

9.00 
9.59

12.00 
12.59

13.00 
13.59

14.00 
14.59

OK 43.90% 56.38% 34.04% 78.41% 67.37% 17.95%
D&SF 14.64% 4.26% 41.49% 19.32% 23.16% 80.77%
ISD 41.46% 39.36% 24.47% 2.27% 9.47% 1.28%
OK n/a n/a n/a n/a n/a n/a OK n/a n/a n/a n/a n/a n/a

D&SF n/a n/a n/a n/a n/a n/a D&SF n/a n/a n/a n/a n/a n/a

ISD - - - - - - ISD n/a n/a n/a n/a n/a n/a

UPV n/a n/a n/a n/a n/a n/a UPV n/a n/a n/a n/a n/a n/a
ISD/D&SF/UEF n/a n/a n/a n/a n/a n/a UEF n/a n/a n/a n/a n/a n/a

2
OK 8.33% 12.50% 13.04% 20.41% 22.33% 13.33% OK 8.33% 16.07% 13.04% 20.41% 25.24% 13.33%
D&SF 50.00% 57.29% 46.74% 46.94% 44.66% 53.33% D&SF 70.83% 62.05% 63.22% 60.20% 52.43% 65.52%
ISD - - - - - - ISD 4.17% 3.57% 2.55% 2.04% 4.85% 4.06%
UPV 4.17% 5.21% 9.79% 2.04% 1.94% 2.86% UPV 4.17% 5.21% 9.79% 2.04% 1.94% 2.86%
ISD/D&SF/UEF 37.50% 25.00% 30.43% 30.61% 31.07% 30.48% UEF 12.50% 13.10% 11.40% 15.31% 15.54% 14.23%

3
OK 10.81% 11.11% 12.35% 15.11% 14.77% 3.30% OK 10.81% 11.11% 12.35% 15.11% 18.18% 6.87%
D&SF 54.05% 52.22% 49.38% 45.35% 52.27% 43.96% D&SF 54.05% 52.22% 49.38% 45.35% 52.27% 43.95%
ISD - - - - - - ISD 24.32% 27.78% 33.33% 31.40% 23.87% 39.29%
UPV 10.82% 8.89% 4.94% 8.14% 5.68% 9.89% UPV 10.82% 8.89% 4.94% 8.14% 5.68% 9.89%
ISD/D&SF/UEF 24.32% 27.78% 33.33% 31.40% 27.27% 42.86% UEF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4
OK 12.00% 25.00% 22.55% 31.37% 18.45% 16.30% OK 33.33% 42.97% 27.90% 31.37% 23.74% 28.48%
D&SF 56.00% 40.63% 39.22% 37.25% 33.01% 43.48% D&SF 66.67% 46.62% 57.93% 37.25% 38.31% 43.48%
ISD - - - - - - ISD 0.00% 0.00% 5.35% 16.67% 18.53% 18.26%
UPV 0.00% 10.41% 8.82% 14.71% 19.42% 9.78% UPV 0.00% 10.41% 8.82% 14.71% 19.42% 9.78%
ISD/D&SF/UEF 32.00% 23.96% 29.41% 16.67% 29.13% 30.43% UEF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

5
OK n/a n/a n/a n/a n/a n/a OK n/a n/a n/a n/a n/a n/a
D&SF n/a n/a n/a n/a n/a n/a D&SF n/a n/a n/a n/a n/a n/a
ISD - - - - - - ISD n/a n/a n/a n/a n/a n/a
UPV n/a n/a n/a n/a n/a n/a UPV n/a n/a n/a n/a n/a n/a
ISD/D&SF/UEF n/a n/a n/a n/a n/a n/a UEF n/a n/a n/a n/a n/a n/a
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TERMINAL AND EN- ROUTE ANALYSIS REFINEMENT WITH SPEED ANALYSIS
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en-route analysis shows that the main problem sources are D&SF in all times and in all legs. The refinement through 
speed analysis would only be necessary in cases where the percentages of the prevailing sources are lesser than 50%, 
but it is shown as an example in all time periods and legs. For example, focusing on leg T4R, from 9.00 to 9.59, the 
first analysis detects a 29.41% of possible ambiguous sources (i.e., ISD/D&SF/UEF). Through speed analysis, this 
percentage is distributed among D&SF, ISD and UEF and identifies operator's driving style as the main source. Thus, 
from bus stop 3 to 5, buses run beyond the planned speed. Although UPV is not the most frequent irregularity source 
in this route, we also carried out a correlation analysis between the time spent at the considered bus stop and the 
lateness at the following bus stop. As expected, a significant correlation was observed, even if the coefficient of 
correlation did not take high values. The recommended strategy could be to set up operator training and/or to check 
their behaviour better by AVL supervisors. 

4. Conclusions and Future Work 

This paper improved the state of the art for any high frequency route by a new offline framework. The main 
contributions of this paper are the categorization and analysis of headway irregularity at the terminal and at pairs of 
consecutive stops. The framework shows where and when irregularity occurs by accurately processing AVL data, 
discloses who is responsible for the irregularity starting from what irregularity effects are and why irregularity occurs. 
This framework is tested on a real route using about 15,000 AVL data records provided by the bus operator CTM in 
Cagliari (Italy). This new framework results in significant time and energy savings in the investigation of large 
datasets. Control dashboards show clear and synthetic outcomes from the analysis of irregularities. The tuning of some 
thresholds and the validation of the framework will enable the evaluation of specific strategies and testing of outcomes 
by the support of several bus operator departments. 
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