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We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective.
We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk
Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show
that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make
local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a
nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic
entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different
vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically
preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena
et al. The uplifting of the 2D model to (dþ 2)-dimensional theories exhibiting hyperscaling violation is
briefly discussed.
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I. INTRODUCTION

Two-dimensional (2D) dilaton gravity models have a
long history (see Ref. [1] for a review). They have been first
proposed for studying quantum gravity in a simplified
context [2]. Later, they have been developed along several
different directions as an arena to understand gravity in a
simplified setting, as effective description of the radial
modes (the S-wave sector) of black holes [3] and as toy
models for black hole evaporation and related information
puzzles [4]. 2D dilaton gravity models have been also used
to explore the anti-de Sitter/conformal field theory (AdS/
CFT) correspondence in two dimensions [5–8] and to
investigate the microscopic origin of the Bekenstein-
Hawking black hole entropy [8].
Recently, a 2D AdS dilaton gravity model has been

proposed by Almheiri and Polchinski (AP) [9]. The main
motivation behind this proposal was to understand the
infrared (IR) behavior of higher-dimensional black holes,
which flow in the IR to an AdS2 × Sd spacetime. Among
many others, this is for instance the case of charged

Reissner-Nordström black holes in general relativity. The
IR behavior of these black holes is problematic for several
reasons. In fact, the T ¼ 0 extremal black hole is a zero
temperature vacuum state with non vanishing entropy and
the backreaction is so strong that there are no finite energy
excitations above the vacuum [10–12].
The AP dilaton gravity model coupled to a matter field f

is described by the action [9] (we set the dimensionless
Newton constant to G2 ¼ 1=8π)

S ¼
Z

d2x

�
1

2

ffiffiffiffiffiffi
−g

p ðηR − VðηÞÞ þ Lm

�
þ
Z

dtLb; ð1Þ

where η is a scalar field (the dilaton). The matter and
boundary Lagrangian Lm, Lb are given by

Lm ¼ −
1

8

ffiffiffiffiffiffi
−g

p ð∇fÞ2;
Lb ¼

ffiffiffiffiffiffi
jhj

p
ηK; ð2Þ

where hij is the induced metric on the boundary and K is
the trace of the second fundamental form. The potential for
the dilaton is

VðηÞ ¼ 2λ2ðα2 − ηÞ: ð3Þ

Notice that the potential contains a dimensionless parameter
α2 and a parameter λ with dimensions ½L�−1.
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TheAPmodel extends thewell-known Jackiw-Teitelboim
(JT) model [2], characterized by a simple homogeneous
potential, by including the constant term 2λ2α2.
The most important feature of the AP model is that it

allows for two kinds of vacuum AdS solutions. One with
constant dilaton, pure AdS2, to which we will refer as
constant dilaton vacuum (CDV). The other one is a solution
with a nonconstant, linearly varying, dilaton which we will
call linear dilaton vacuum (LDV). When uplifted to
(dþ 2)–dimensions, these vacuum solutions produce dif-
ferent spacetimes. The CDV produces a spacetime of the
form AdS2 × Rd, i.e., an intrinsically 2D spacetime. On the
other hand, the uplifting of the LDV leads to a hyperscaling
violating geometryHdþ2 [13], which describes the warping
of AdS2 with Rd. In this case, the dilaton plays the role of
the radius of Rd.
The JT model has been widely used as a 2D toy model

for higher-dimensional black holes, to give a microscopic
interpretation of black entropy [8] and to understand the
AdS/CFT correspondence in 2D in terms of asymptotic
symmetries [5,6,14]. Conversely, the extended AP model
has been recently used as a description of extremal black
holes in 2D (in particular to investigate the breakdown of
semiclassical thermodynamics and the flow from LDV to
CDV). Moreover it has also been used to describe the
backreaction on holographic correlators [9,10] and to
investigate its relation with the conformal symmetry break-
ing [15].
In this paper we present a revisitation of the AP model

from a 2D bulk perspective. The goal of our reconsindera-
tion is twofold. On the one hand, we want to describe the
pattern of conformal symmetry breaking and to explain its
dynamical consequences (generation of an IR scale and the
appearance of Goldstone modes) focusing mainly on bulk
gravitational features of the solutions. On the other hand,
we would like to connect and translate the formulation of
the boundary theory in terms of the Schwarzian action of
Ref. [15] in the language of Refs. [5,6,14], i.e., in the
language of canonical realization of the asymptotic sym-
metry group of AdS2.
We will show that the pattern of conformal symmetry

breaking and its dynamical consequences can be simply
described using bulk Killing vectors, the covariant (bulk)
mass definition of Refs. [16–18] and the flow between a
“symmetry-respecting” vacuum and a “symmetry-violat-
ing” vacuum. In this way we can easily understand, from a
purely 2D bulk gravitational perspective, the generation of
an IR scale (the mass gap/scale of conformal symmetry
breaking in the conformal correlators) and the appearance
of local Goldstone modes.
Our bulk perspective will also allows us to compare,

energetically, the CDV and LDV vacuum. We will show
that whereas at nonvanishing temperature the LDV is
always energetically preferred, at T ¼ 0 the situation is
reversed and the CDV is favorite. This signals a T ¼ 0

quantum phase transition which, from an higher-dimen-
sional perspective, can be thought as a spontaneous dimen-
sional reduction from a dþ 2 to d ¼ 2 dimensions
spacetime, whose possible role in quantum gravity has
been emphasized in Ref. [19].
The structure of the paper is the following. In Sec. II we

revisit the various solutions of the AP model. In Sec. III we
define the covariant mass and explain its leading role as the
physical mass of the solutions. In Sec. IV we discuss the
symmetries of the model, the pattern of the conformal
symmetry breaking as well as their consequences for the
boundary theory. In Sec. V we discuss the free energy of the
solutions and the quantum phase transition. In Sec. VI we
present our conclusions. In the Appendix we discuss the
uplifting of a 2D model to a (dþ 2)–dimensions model
exhibiting hyperscaling violation in the ultraviolet (UV).

II. SOLUTIONS AND VACUA

In Schwarzschild coordinates and in absence of matter
(f ¼ 0), owing to 2D Birkhoff theorem, the most general
solution of the model (2) is a two-parameter family of
solutions,

ds2 ¼ −ðλ2x2 − a2Þdt2 þ ðλ2x2 − a2Þ−1dx2;
η ¼ α2 þ η0λx: ð4Þ

where a2 and η0 are dimensionless integration constants.
Being our solution asymptotically AdS, we can use
the standard ADM procedure to assign a mass to it [20].
The mass defined in this way, i.e., the ADM mass, has the
physical meaning of the energy of the gravitational con-
figuration measured with respect to the reference AdS
background solution [20].
The ADMmass of the solution depends on both η0 and a

and on the parameter λ [9]

MADM ¼ η0λa2

2
: ð5Þ

It is important to stress that the ADMmass does not depend
on the parameter α2 appearing in the AP potential (3) for
the dilaton.
An important feature of the AP model is that it allows

for two different vacuum solutions, i.e., solutions with
MADM ¼ 0. In fact, for η0 ¼ 0 and α2 ≠ 0 we have the
constant dilaton vacuum. It describes the AdS2 spacetime
with a constant dilaton. It is already well known that at
classical level this vacuum does not allow for finite energy
excitations [9–11]. This is immediately evident from
Eq. (5): for η0 ¼ 0, MADM identically vanishes, independ-
ently from the value of a. Conversely, for η0 ≠ 0 we have
the linear dilaton vacuum, which is AdS2 endowed with a
linear dilaton. Differently from the CDV, this vacuum
allows for continuous excitations with a2 > 0.
It is important to stress that we have two different LDV

depending on the value of the parameters (η0, a) and α.
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For α2 ¼ 0 the AP model reduces to the JT model and the
solution for the dilaton is linear and homogeneous. Notice
that this is not an exact solution of the AP model (i.e., the
model with α2 ≠ 0) but appears only as an asymptotic
solution for x → ∞. On the other hand, for η0 ≠ 0 and
α2 ≠ 0, the LDV is an exact solution of the AP model and
interpolates between the CDV at small x and a linear,
homogeneous dilaton at large x. Whenever the distinction
between these two LDV will be necessary, we will call the
LDV with α2 ≠ 0 interpolating linear dilaton vacuum
(ILDV).
If one uses MADM as the mass of the solution the three

vacua become completely degenerate. They all have
MADM ¼ 0, as it is evident from Eq. (5), because the
CDV is characterized by η0 ¼ 0, whereas the LDV and the
ILDV have a ¼ 0. Actually, in view of the physical meaning
of the ADM mass, the three vacua are degenerate by
definition. This means that they represent three different
sectors of the theory, which strictly speaking cannot be
compared.
The finite,MADM > 0, excitations of the LDVand ILDV

can be interpreted as 2D black holes with horizon radius
x ¼ a=λ and temperature and entropy given by

T ¼ λa
2π

; S ¼ 2πηh ¼ 2πα2 þ 2πη0a; ð6Þ

MADM ¼ 2π2η0
λ

T2: ð7Þ

Notice that the interpretation of the a2 > 0 solutions as 2D
black holes is not completely straightforward. In fact, it is
well known that the metric (4) can be brought by a
coordinate transformation in the maximally extended

form ds2 ¼ −cosh2ρdτ2 þ dρ2

λ2
, −∞ < τ, ρ < þ∞, which

describes full, geodesically complete AdS2 (see e.g.,
Ref. [21]). This is not anymore true if one takes into
account the fact that points where the dilaton vanishes have
to be considered spacetime singularities. This makes
solutions with different a2 as globally inequivalent and
allows for the interpretation of the a2 > 0 solution as a 2D
black hole [22].
The previous argument forbids the existence of 2D black

hole solutions with constant dilaton, in agreement with the
absence of finite energy excitations of the CDV. On the
other hand, we can formally consider zero mass thermal
excitation of the CDV of the form

ds2 ¼ −
�
λ2x2 −

4π2T2

λ2

�
dt2 þ

�
λ2x2 −

4π2T2

λ2

�
−1
dx2;

η ¼ α2: ð8Þ
This solution can be obtained from the CDV by a
coordinate transformation, which generates a horizon with
related temperature T. Because in the CDV there is no
spacetime singularity, there is no obstruction to extend (8)

beyond the horizon, to cover the whole CDV spacetime.
Thus, the solution (8) is geometrically equivalent to the
CDV, but can be formally used to describe zero mass
thermal excitation of the CDV.
The discussion of the spacetime singularities is much

simpler using light-cone coordinates x�. Using the SLð2; RÞ
isometric transformations, the solution (4) becomes

ds2 ¼ −
4

λ2ðxþ − x−Þ2 dx
þdx−;

η ¼ α2 þ 2 η0
λ −MADMxþx−

xþ − x−
: ð9Þ

The η ¼ 0 singularity is located at

�
xþ þ α2

MADM

��
x− −

α2

MADM

�
¼

2η0
λ MADM − α4

M2
ADM

; ð10Þ

whereas the timelike asymptotic boundary ofAdS2 is located

at xþ ¼ x− ¼ t ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2η0

λMADM

q
. The nature of the singularity

depends on the value ofMADM. ForMADM > λα4=ð2η0Þ the
singularity is spacelike whereas forMADM < λα4=ð2η0Þ it is
timelike.
For planar spatial topology the ILDV gives a nice,

effective, 2D description of the flow from an AdS2 × Rd1

geometry in the IR to a hyperscaling violating geometry [13]
in (dþ 2)–dimension in the UV, of which AdSdþ2 is a
particular case. From the 2D perspective this flow is a simple
consequence of both the relationR ∝ ηp between the dilaton
and the radius R of Rd and of the constant/linear behavior of
the dilaton at small/large x.We briefly discuss the uplifting of
the AP model to a (dþ 2)-dimensional theory with hyper-
scaling violation in the Appendix.
From the thermodynamical point of view, the CDV gives

the typicalT ¼ 0, extremal, statewith nonvanishing entropy
of a large class of (dþ 2)-dimensional extremal black holes,
like e.g., charged Reissner-Nordström black holes in four
dimensions. Near extremality, the mass-temperature relation
for the excitations, MADM ∝ T2 in Eq. (7), implies the
breakdown of the thermodynamical semi-classical descrip-
tion and the appearance of a mass gap [10,12]

Mgap ¼
λ

2π2η0
: ð11Þ

The generation of the mass gap is the quantum counter-
part of the absence of finite energy excitations of the CDV
[11], which in turns is related to the strong backreaction on
AdS2. From the AdS/CFT correspondence point of view,
the appearance of the mass gap (11) can be also explained
in terms of the pattern of breakdown of the conformal
symmetry which generates, in the IR, a mass scale of order
λ [9,10,15].

1AdS2 × Sd in the case of spherical spacial topology.
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Despite the successes of the AP model described above,
two aspects are still not completely clear. The first is the
characterization of the energy of the solution trough the
ADM mass (5). This mass does not distinguish between
the different vacua of the theory, in fact it is independent
from α. Due to the different features of the two vacua,
the ADM-mass degeneracy between the CDV and LDV
becomes particularly ambiguous. Moreover, MADM does
not keep informations about the presence of the mass gap.
Last but not least, it also does not seem a suitable physical
parameter to characterize the singularity. Indeed, the
transition between spacelike and timelike singularities
occurs not when MADM changes sign, as expected, but
rather at strictly positive values.
The second aspect is the characterization of the pattern of

conformal symmetry breaking. This pattern has been
described using correlation functions in the dual conformal
field theory. However, in the spirit of the AdS/CFT
correspondence one should be able to characterize com-
pletely this pattern also using only the 2D gravity theory. In
what follows, we will show how the peculiarities of dilaton
gravity in 2D spacetime can help us to clarify the picture
presented above.

III. COVARIANT MASS

The first peculiarity of 2D dilaton gravity is that the
metric always admits the existence of a Killing vector
whose explicit form depends on the dilaton [14,16,18]

χμ ¼ F0ϵ
μν∂νη; ð12Þ

where F0 is a normalization factor. The second is the
existence of a covariant, conserved mass [16,17]

M ¼ −
F0

2

�Z
η
VðsÞdsþ ð∇ηÞ2

�
: ð13Þ

In this paper we will use the normalization prescription of
Refs. [16,18], i.e., F0 ¼ ðλη0Þ−1.
The covariant massM gives a definition of the energy of

the solution, which is invariant under Weyl transformation
of the metric [18]. It may differ from the standard ADM
mass only by a constant (temperature independent) term.
For this reason it is particularly appropriate to quantify the
energy of the different vacua of the AP model.
Computing the covariant mass for the general solution

(4) of our model we get,

M ¼ a2η0λ
2

−
α4λ

2η0
¼ MADM −

α4λ

2η0
: ð14Þ

There are several reasons indicating that the covariant mass
M and not the ADM mass MADM has to be considered as
the physical mass of the solutions. For α ¼ 0 we have
M ¼ MADM. By using M instead of MADM we remove the

degeneracy between the CDV and the LDV and keep also
track about the nonexistence of finite energy excitations
of the CDV. The ILDV has negative energy M ¼ − α4λ

2η0
,

whereas for the CDV we have M → −∞. Moreover, the
right-hand side (r.h.s.) of Eq. (10) can be written as
2η0M=M2

ADM. Thus, the spacetime singularity is spacelike
for M > 0, whereas it becomes timelike for M < 0.

IV. SYMMETRIES AND SYMMETRY BREAKING

Let us now discuss the symmetries of the different vacua
of the AP model. The isometry group of AdS2 is the
SLð2; RÞ ∼ SOð1; 2Þ group generated by three Killing
vectors. In Schwarzschild coordinates (4) they represent
time translations T , dilatations and special conformal
transformations. However, the SLð2; RÞ symmetry is only
a symmetry of the metric. The whole solution contains also
the dilaton which, under isometric transformations gener-
ated by the Killing vector χ, transforms as δη ¼ Lχη ¼
χμ∂μη [14]. Notice that a constant dilaton will preserve the
SLð2; RÞ symmetries of the metric, whereas a non constant
dilaton will necessarily break explicitly the SLð2; RÞ
symmetry. On the other hand, the 2D metric allows for
the killing vector (12), which is also always a symmetry of
the dilaton (δη ¼ 0). Thus, a nonconstant dilaton breaks
explicitly the full SLð2; RÞ symmetry group of AdS2 down
to its subgroup H generated by the Killing vector (12).
In the case of the static solutions (4) the residual

symmetry is the time translations T and the symmetry
breaking pattern is SLð2; RÞ → T [14]. As a consequence,
the CDV of the AP model preserves the full SLð2; RÞ
symmetries of AdS2, whereas the LDV breaks
SLð2; RÞ → T . In this way we can describe the IR/UV
flow CDV → LDV as a symmetry breaking of the full
SLð2; RÞ group down to time translations.
The parameter controlling the symmetry breaking is

∂xη ¼ η0λ. Any η0 ≠ 0 value breaks the SLð2; RÞ sym-
metry to T and generates a mass-scale in the IR, set by λ,
which is of the same order of magnitude of the mass
gap (11).
Thus, the presence of a nonconstant dilaton breaks the

conformal symmetry of the AdS2 background and gen-
erates in the quantum regime a mass gap through η0 ≠ 0.
Further, it also affects the asymptotic symmetries of AdS2
[14] and the dynamics of the boundary theory. In particular,
the latter can be constructed using boundary curves tðuÞ,
where u is the time coordinate in the one-dimensional
regularized boundary of AdS2 [15].
Actually, the two descriptions, that of Refs. [5,14], which

uses canonical realization of the asymptotic symmetry
group (ASG) of AdS2 and that of Ref. [15] give similar
results but using different languages and a different
coordinate system.
The ASG of AdS2 [6,14] is given by reparametrizations

of the type ξt ¼ ϵðtÞ, ξx ¼ xϵ0ðtÞ and is generated by a
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single copy of the Virasoro algebra. This transformations
map the boundary curves tðuÞ into curves tðuÞ ¼ uþ ϵðuÞ.
On the other hand, they act on the asymptotic expansion of
the metric [5,8,14]

gtt ¼ −λ2x2 þ γttðtÞ þ oðx−2Þ; ð15Þ

gtx ¼
γtxðtÞ
λ3x3

þ oðx−5Þ; ð16Þ

gxx ¼
1

λ2x2
þ γxxðtÞ

λ4x4
þ oðx−6Þ; ð17Þ

by transforming the values of the boundary fields γ.
In the case of the CDV (which is called “pure AdS2” in

Ref. [15]), the dilaton is constant, η0 ¼ 0, andwe do not have
the explicit breaking of the SLð2; RÞ conformal symmetry.
The full Virasoro ASG is spontaneously broken by the AdS2
bulkgeometry down to theSLð2; RÞgroupof isometries. The
zero modes can be characterized either by the boundary
curves tðuÞ (in the language of Ref. [15]) or by the boundary
deformations γ (in the language of Ref. [6,14]). These zero
modes can be viewed as the Goldstone modes associated to
the spontaneous breaking of the ASG [15]. However, these
modes are not local, there is no local action one can write for
them and this is related to the fact that the central charge c in
the Virasoro algebra is zero.
In the case of the LDV (which is called “nearly AdS2” in

Ref. [15]), as discussed above, the non constant value of the
dilaton breaks explicitly SLð2RÞ → T . This gives, in the
language of Ref. [15] a new dimensional coupling constant,
the renormalized boundary value of the dilaton ϕrðuÞ,
which can be used to constrain the shape of tðuÞ and to
produce a local, Schwarzian action for the pseudo-
Goldstone bosons tðuÞ.
Conversely, in the language of Refs. [6,14], the explicit

breaking of the conformal symmetry is described by
the asymptotic expansion for the dilaton η ¼ η0ρðtÞxþ
oðx2Þ with the boundary field ρðtÞ transforming as δρ ¼
ϵ_ρþ _ϵρ under the action of the ASG [6,14].
The two boundary fields can be identified:

ϕrðuÞ ¼ η0ρðtðuÞÞ. In both descriptions the physical effect
of the explicit symmetry breaking is to make the Goldstone
modes local and to generate a nonvanishing central charge
in the Virasoro algebra,

c ¼ 12η0; ð18Þ

through the anomalous transformation of the boundary
stress energy tensor Ttt under the action of the ASG. In fact,

we have Tð1Þ
tt ¼ ϕrftðuÞ; ug for the boundary theory of

Ref. [15], whereas Tð2Þ
tt ¼ −2η0=λρ̈ for the boundary theory

of Refs. [6,14]. The central charge c takes the form given
by Eq. (18) if we choose ρ ¼ 1. We can always make this
choice by fixing the u-reparametrization in the boundary

which corresponds, in the language of Refs. [6,14], to
consider deformations of the dilaton near the on-shell
solution (see [6,14] for details).
The stress energy tensor Tð2Þ

tt can be brought in the form

Tð1Þ
tt . In fact, by considering finite transformations asso-

ciated with the infinitesimal ones characterized by ϵ ¼ u,
by using the transformation of the boundary field ρ and by

setting ρ ¼ 1 one finds Tð2Þ
tt ¼ ðc=12ÞftðuÞ; ug. The link

between the origin of Schwarzian action and the presence
of a non constant dilaton was emphasized also in Ref. [23],
where it was shown that in a holographic framework the
effective action of the AP model can be put in a Schwarzian
form using the anomalous trace Ward identity. In particular,
the anomaly turns out to be proportional to the source of the
scalar operator dual to the dilaton, which is the analogue of
our function ρðtÞ.
Summarizing, the explicit breaking of the conformal

symmetry, SLð2; RÞ → T generated by a nonconstant
dilaton has two effects. First, it generates at the quantum
level an IR scale in the form of mass gap, Mgap ∼ λ,
separating the CDV from the LDV.
Second, it transforms the global Goldstone modes of the

CDVassociated with the spontaneous breaking of the ASG
into local pseudo-Goldstone modes, producing a central
charge c ¼ 12η0 in the Virasoro algebra associated to the
ASG. This central charge therefore counts the number of
pseudo-Goldstone modes. From this perspective we can
identify the degrees of freedom responsible for the entropy
of the 2D dilatonic black hole as these pseudo-Goldstone
modes. The microscopic derivation of the entropy of the 2D
dilatonic black hole given in Ref. [5] can be seen as
counting the states of these modes. It is also interesting to
notice that the mass gap in the chiral 2D CFT can be also
understood as finite size effect generated by a plane/
cylinder transformation of the vacuum of a CFT with
nonvanishing central charge c ¼ 12η0 [24,25].

V. QUANTUM PHASE TRANSITION AND
SPONTANEOUS DIMENSIONAL REDUCTION

The AP model allows for two different class of solutions,
namely the 2D black hole (4) and the zero mass thermal
excitations of the CDV (8). One important question is to
determine which of these two solutions is, from the
thermodynamic point of view, globally favorite.
Using the 2D Hamiltonian formalism [7], this can be

done by computing the difference ΔF between the free
energy, F, of the two solutions. In the case under consid-
eration this computation is not straightforward because ΔF
is usually computed for solutions having the same asymp-
totical behavior.
The presence of the dilaton makes the asymptotics of the

two classes of solutions of the AP model (linear and
constant dilaton, respectively) different, thus preventing
the standard computation of ΔF. This problem can be
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circumvented by defining the free energy of the solution
with respect to its own vacuum [26]. This method has been
applied, for example, in Ref. [26] to calculate ΔF for two
classes of 4D solutions approaching asymptotically to AdS
and to a solution with hyperscaling violation, respectively.
Using this prescription for the free energy F in the

Euclidean action formalism, for the case under consider-
ation we get:

FBH ¼ −
2π2η0
λ

T2 − 2πα2T;

FT ¼ −κηCh ¼ −2πα2T;

ΔF ¼ FBH − FT ¼ −
2π2η0
λ

T2; ð19Þ

where FBH is the free energy of the 2D black hole (4)
obtained by subtracting the contribution of the ILDV,
whereas FT is the free energy of the thermal excitation
of the CDV obtained by subtracting the contribution of its
own vacuum. From Eq. (19) follows immediately that for
any T ≠ 0, ΔF < 0 and the 2D dilatonic black hole is
energetically preferred.
By construction, Eq. (19) does not give any information

about the behavior at T ¼ 0, being F defined with reference
to the respective vacua at T ¼ 0. Formally, at T ¼ 0 the two
vacua are degenerate, consistently with the degeneracy of
the CDV and ILDV when the ADM mass is used to
characterize the two solutions.
Moreover, the semi-classical approximation, on which

the euclidean action formalism is based, breaks down at
T ∼Mgap, so that Eq. (19) cannot be trusted at T ¼ 0.
At T ¼ 0 there is no thermal contribution to the free

energy and ΔF is given by the mass difference between the
two vacua, ΔFT¼0 ¼ ΔM ¼ MILDV −MCDV.
We have already argued that we should use the covariant

mass (14) as the physical mass instead of the ADM mass.
Using this mass in the computation we find ΔFT¼0 →
∞ > 0. This means that the CDV is energetically preferred
and that at T ¼ 0 the 2D dilatonic black hole undergoes a
quantum phase transition to the CDV. Let us note that, here,
we are referring to the usual thermodynamical meaning of
phase transitions. In fact, we are considering a thermody-
namical system, which can exist in two different configu-
rations, the black hole given by Eq. (4) and the thermal
excitations of the CDV given by (8). Comparing the free
energy of the two configurations at the same temperature
we discover that at T ¼ 0 the free energy of the black hole
is bigger than that of the CDV. This means that at zero
temperature the black hole undergoes a phase transition to
the CDV.We call this phase transition “quantum” because it
happens at zero temperature and can be fully understood
only at full quantum level. The free energy of the CDV
diverges. In fact, in the limit η → 0 the covariant mass (14)
blows up and, classically, we can describe the phase

transition as an instability of the ILDV in which the
CDV expands to take over the spacetime. This description
changes at quantum level, where the divergence of the
covariant mass is cured by the presence of the mass gap.
However, there is no reason to expect in this quantum
description a change of sign of ΔFT¼0.
From a four-dimensional perspective this quantum phase

transition can be interpreted as a spontaneous dimensional
reduction. In fact, the (dþ 2)-dimensional uplifting of the
ILDV is a scale covariant geometryHdþ2 with hyperscaling
violation in (dþ 2)–dimensions, whereas the uplifting of
the CDV is AdS2 × Rd, i.e., a geometry which is intrinsi-
cally two-dimensional, being the radius of Rd not dynami-
cal. In terms of the uplifted geometries we have the T ¼ 0

phase transition Hdþ2 → AdS2 × Rd.
This phase transition supports the suggestion of Ref. [19]

about the existence of a spontaneous dimensional reduction
of the spacetime to two dimensions near the Planck scale.
Let us conclude with some remarks about one loop

corrections to the free energy (19). Our calculation is based
on the semiclassical approximation. One loop corrections
to F have been shown in Refs. [9,15] to have the typical
logT behavior, which gives a dangerous divergent term in
the IR. However, this term does not contribute to the
entropy of the CDV [15], we therefore expect our result to
extend also beyond the semi-classical approximation.

VI. CONCLUSIONS

In this paper we have revisited the AP dilaton gravity
model focusing mainly on bulk features of the model.
Using a covariant definition of the mass, bulk Killing
vectors and the flow between the two different vacua of the
theory characterized, respectively, by a constant and linear
varying dilaton, we have given a description of the pattern
of conformal symmetry breaking, which is complementary
to that emerging in the dual CFT [15].
This pattern is quite similar to that pertinent to hyper-

scaling-violating geometries in higher dimensions, to
which we show the AP model can be uplifted. In fact,
as a result of the flow between a “symmetry-violating”
vacuum and a “symmetry-respecting” vacuum at the
quantum level an IR scale is generated in the form of a
mass gap. The other effect of the conformal symmetry
breaking is to make local the Goldstone modes associated
with the asymptotic symmetries of the 2D spacetime. This
generates a nonvanishing central charge in the dual con-
formal theory, which explains at microscopic level the
entropy of the 2D black hole [5].
We have also shown that several features of the boundary

theory described in Ref. [15] can be easily translated in our
language, which is based on bulk quantities and on the
asymptotic symmetries of the spacetime.
Finally, the use of the covariant mass as measure of the

energy of the solutions, allowed us to compare energetically
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the two different vacua of the theory, showing the existence
of a zero temperature phase transition in which the vacuum
with constant dilaton is energetically preferred.We speculate
that this quantum phase transition could be related to the
spontaneous dimensional reduction of the spacetime to two
dimensions near the Planck scale described in Ref. [19].

APPENDIX UPLIFTING TO d + 2 DIMENSIONS

Let us briefly showhow the solution (4) can be uplifted to a
(dþ 2)-dimensional geometry describing the flow from a
AdS2 × Rd geometry in the IR to a (dþ 2)-dimensional
geometry with hyperscaling violation in the UV.
In (dþ 2)–dimensions the model is described by the

action

S ¼
Z

ddþ2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðdþ2Þ

p
Rðdþ2Þ þ LM; ðA1Þ

where LM is the Lagrangian for matter fields, which may
also contains explicit coupling of matter fields to the
dilaton.
For simplicity we assume that after dimensional reduc-

tion to two spacetime dimensions, the term LM either
reproduce exactly the potential (3) or a potential, which can
be approximated by (3). We look for brane solutions of the
model, i.e., solutions for which the d-dimensional spatial
sections have planar topology Rd and the dilaton, η, plays
the role of the radius: ds2ðdþ2Þ ¼ ds2ð2Þ þ η2=ddxidxi. In
general, the dimensional reduction of the action (A1) on
this background produces kinetic terms for the dilaton η in

the 2D dilaton gravity action. This terms can be put to zero
by a Weyl rescaling of the 2D metric [18]. This corresponds
to use, instead, the dimensional reduction

ds2ðdþ2Þ ¼ η
1−d
d ds2ð2Þ þ η

2
ddxidxi: ðA2Þ

One can check that the dimensional reduction now pro-
duces the AP action (1). Using Eq. (A2) and the form of
the 2D solution given by Eq. (4), one can easily realize
that the (dþ 2)-dimensional solution interpolates between
an hyperscaling violating geometry at large x and an
AdS2×Rd geometry at small x. In fact, for x→∞ the
term proportional to x in the dilaton dominates, and
the change of radial coordinate, x ∝ r−2d=ðdþ1Þ, brings
the metric in the scale covariant form given in Ref. [13]

ds2ðdþ2Þ ¼ r−2
d−θ
d ð−r−2ðz−1Þdt2 þ dr2 þ dxidxiÞ: ðA3Þ

The hyperscaling violating parameter θ and the dynamical
exponent z are

θ ¼ dðd − 1Þ
dþ 1

; z ¼ 2d
dþ 1

: ðA4Þ

Conversely, in the near horizon limit the term proportional
to x in the dilaton, can be neglected with respect to the
constant term and the metric (A2) gives an AdS2 × Rd

geometry. This can be also considered as the limiting case
θ ¼ 0, z ¼ ∞ of the hyperscaling violating geometry (A3).
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