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”A witty saying proves nothing.”
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Abstract

The present work introduces a new class of nets which aims to give a more compact

non-sequential semantics to safe Petri nets, namely unravel nets. As causal nets

can be a representation of runs of a safe Petri net, i.e. its unfolding, unravel nets

can be regarded as a succinct version of these unfoldings. The main contributions

of the thesis, beside the definition of this class of nets, are:

• their close connection with a brand of event structures, namely bundle event

structures, and we show that configurations of the former can be mapped

into the ones of the latter and vice versa,

• the encodings, in terms of unravel nets, of the existing approaches for merging

unfoldings,

• the definition of a general notion of merging relation which can, under certain

constraints, preserve some properties of a net, in particular we introduce the

notion of conflict conditions which can force a net to be an unravel one after

the merging,

• the addition of contextual arcs (in our approach read arcs) to unravel nets,

which allow to model new kinds of causality. We consider various kind of

event structure with non-standard causality, namely dynamic causality event

structure, and prove that they are related to contextual unravel nets simi-

larly to what happens to bundle event structures and unravel nets without

contexts.
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Chapter 1

Introduction

1.1 Scenario

Petri nets [Pet66, Rei85, Rei13] are a well-known model for describing distributed

systems.

In order to represent how a system evolves, i.e. to model the behavior of the

system, the semantics are essentially of two kind: sequential and non-sequential.

The former takes into account how different markings changes from the initial

one, and are based on the analysis of the so called reachability graph. Each node

represents a marking and there is a directed arc from one node to another if from

that marking it is possible to fire a transition which marks the correspondent

places of the second node. The reachability graph is often related to the state

space explosion problem: graph size is, in general, exponentially larger than the

original net. This growth in size can be attributed to the concurrency that can

can arise among transitions. Also each execution assumes a total order among

transitions fired.

Non-sequential semantics instead models causal dependencies among transi-

tions by casting their possible executions onto partial order of events (concurrency

means absence of order). This allows in part to reduce the state space explosion:

1



2 CHAPTER 1. INTRODUCTION

runs of the system do not take into account all possible interleaves of transitions,

which can be deduced directly from the relations of conflict and dependency, and

concurrency is handled by allowing the execution of events in any order.

Although non-sequential semantics give a larger structure than the original

net, they have in general a better performance. Another aspect that makes them

attractive is that partial order are strongly tied to a specific class of Petri nets,

the causal ones. Causal nets are acyclic safe nets (for each execution at most one

token can be found in a place), where places have at most an incoming arc and

where the events can be partially ordered.

Thus, it is possible, given a Petri net, to associate a causal net, with a suitable

labeling for events and conditions, in which each run is mapped into a run of

the starting net. Such causal nets are called unfoldings. From the fact that an

unfolding can be naturally equipped with a partial order (among its events) it

follows a fundamental result in the field of Petri net semantics: the connection

between causal nets and prime event structures [NPW81, Win87, Win88].

Indeed, the relations of dependency and conflict among events in a causal net

can be easily defined and they satisfy the requirements for a prime event structure.

The use of unfoldings for net semantics in practical applications needs to face

with the infinite or too large size that they can often have. Techniques exists to

generate a finite representation of an unfolding which contains enough information.

Nonetheless it may happen that this finite net can be still exponential with respect

to the size of the original net.

To cope with this problems two known methods exist which condense an un-

folding by merging places and transitions: trellis processes [Fab07] and merged

processes [KKKV06]. Driven by different motivations and with similar but sub-

stantially different results they achieve the goal by finding equivalences among

places and transitions. Those equivalences are found by considering as equal suf-

fixes of conflicting computations that satisfy certain properties, which is, roughly
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speaking, the fact that these suffixes are originated at the same state.

Although such techniques have proven their usefulness into practice, the result-

ing nets loses the property of being causal,i.e. cycles (syntactic or semantic) can

arise after the merging, thus removing any connection with prime event structures.

Moreover it is not clear if other kind of event structures can be related to them.

1.2 Contribution and outline of the thesis

This work is centered on the notion of unravel net. Unravel nets are defined as

safe Petri nets where each execution, intended as the set of transitions that can be

fired starting from the initial marking, identifies a causal net. Unravel nets try to

capture the idea of acyclic runs of a net whereas the unravel nets themselves, are

not, in general, acyclic. The aim is to use them to represent compact behaviors

of Petri nets on the one hand, and to relate them to event structures on the other

hand. Many authors have considered suitable classes of nets and have related them

to suitable notions of event structures. We may recall, among others, the flow nets

and flow event structures[Bou90] , contextual nets [MR95] and asymmetric event

structures, inhibitor nets and inhibitor event structure or the 1-occurrence net

and their corresponding notion of event and configuration structures [vP09]. The

event structures brand taken into consideration here as counterpart of unravel nets

are the bundle event structures [Lan93]. Due to the syntactical properties of the

unravel nets, it is easy to associate a bundle event structure (bes). They allows

to model structural features of the nets such has cycles (not executable) which

are not allowed in causal nets. Furthermore there is a one to one correspondence

between traces of an unravel nets and those of bundle event structures. In [CP14]

we introduced an early characterization of unravel nets which we tied to the flow

event structures. Unfortunately we faced some issues when extending the notion

to any kind of safe nets different from multi-clock nets.

In addition, we show how from a bes an unravel net can be built, maintaining
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the correspondence between traces.

We observe that existing techniques for compacting nets do not build, in gen-

eral, an unravel net. The problem arises because merging histories leads to for-

getting past conflicts, and this allows places to be marked again in certain com-

putations, i.e. syntactic cycles can be traversed, which is not allowed in unravel

nets. Given that, we introduce a way to force such nets to be unravel. We in-

troduce the idea of adding suitable places that have the purpose of maintaining

lost conflicts among transitions. We show that although trellises are unravel nets

by themselves, merged process can indeed be turned into them and that there is

a bijection between the configurations, i.e. enriching those nets does not change

their behaviors.

Additionally we give a generalization of the merging operation on nets. Both

techniques use a criterion for making places equivalent based on their mutual in-

compatibility. We extend this notion by defining the merging relations. With those

relations we present a general framework for compacting nets: given an labeled un-

ravel net, where the label represent an existing total net morphism, it is possible

to compact it giving a merging relation. We distinguish those relations by pointing

out when they can lead to unravel nets, thus preserving the unravelness property

of the original net, or when they need to be enriched. Moreover we prove that

trellises and merged processes can be defined as merging relations. This part is an

extension of [CP16] and [CP17a].

The last piece of work is based on [CP17b]. At the beginning of the ’90s the

idea that a partial order was the unique way to represent dependencies has been

somehow abandoned. Bundle event structures have been introduced to give se-

mantics to LOTOS ([BB87]) and may model or -causality and their generalization

dual event structures ([Kat96]) gain expressivity dropping the assumption that or -

causality implies that either one or the other cause happens, but not both. These

event structures have a more operational flavour with respect to prime event struc-



1.2. CONTRIBUTION AND OUTLINE OF THE THESIS 5

tures ([Win87]), flow event structures, asymmetric event structures ([BCM01]) or

inhibitor event structure ([BBCP04]), as the possibility of adding an event is pre-

scribed by bundles that may be sets of events of any kind. This change in perspec-

tive has been driven by the observation that the same event (observable activity

producing observable changes) could have totally different histories (pasts) and

from these histories it was not possible to find a common pattern (see, for in-

stance, the possible events in the event automata [PP95] or the notion of events in

causal automata), and it has been further pursued with the notions of asymmet-

ric and inhibitor event structures. However either these phenomena are due to the

presence of contexts or inhibitions, that may be added or removed by the happening

of events, or they are represented in a logical way, like in [Gun92] or [vP09]. Event

structure with dynamic causality are introduced in [AKPN15a] by stipulating that

the happening of certain events, called modifiers, may add or remove causal de-

pendencies for a certain event, so that the phenomena of shrinking or growing

causality may be captured. They compare their new notion of event structure to

many other presented in the literature with respect to their expressiveness.

The intuition behind all these approaches has always followed a common pat-

tern: to each transition of the net it should be possible to associate an event in

the corresponding event structure and from the net structure the relations among

events may be deduced.

Since an unravel net can model a bundle event structure and vice versa, we

extend unravel nets to cope with the higher expressivity of dynamic event structures

compared to the one of bundle event structures. To do so we consider contextual

unravel nets, i.e. we add read arcs [BBCP04, Bal00].

As we have did with bundle event structures, we prove several propositions

and theorems relating contextual unravel nets and dynamic event structures, their

traces, and how to build one from another.
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1.2.1 Outline

• In Chapter 2 we recall basic definitions and notions related to Petri nets,

event structures and unfoldings,

• In Chapter 3 we introduce the unravel nets and discuss their relationships

with bundle event structures,

• In Chapter 4 the known methods for compacting nets are casted into unravel

nets’ world. We introduce conflict places and show how they can be used to

turn merged process into unravel nets. For trellis processes we discuss their

tight relationship with unravel nets,

• Merging relations are defined in Chapter 5. Merged and trellis processes

are proved to be the result of proper merging relations. A general notion of

enrichment of nets is also presented,

• Chapter 6 is aimed to introduce contextual unravel nets and how they can

model dynamic event structures. As we did for bes, we prove how traces are

preserved when are built from one another.



Chapter 2

Preliminaries

In this chapter we recall the basic definitions, propositions and theorems that we

will use in the rest of our work. With N we denote the set of natural numbers.

2.1 Multiset

Let X be a set, |X| denotes its cardinality. Let A be a set, a multiset of A

is a function n : A Ñ N. The set of multisets of A is denoted by µA. The

usual operations on multisets, like multiset union ` or multiset difference ´ are,

with overloading of notation, defined as usual, hence pn ` n1qpsq “ npsq ` n1psq,

pn ´ n1qpsq “ npsq ´ n1psq if npsq ě n1psq and pn ´ n1qpsq “ 0 otherwise. We

write n Ď n1 if npaq ď n1paq for all a P A. If n P µA, we denote by rrnss the

multiset defined as rrnsspaq “ 1 if npaq ą 0 and rrnsspaq “ 0 otherwise; and we

will use rrnss also as the denotation of the subset ta P A | npaq ě 1u of A. Finally,

when a multiset n of A is a set, i.e. m “ rrnss, we write a P n to denote that

npaq ‰ 0, namely that a P rrnss, and often confuse the multi set n with rrnss, the

empty multiset will be confused with the empty set.

7
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2.2 Petri nets

Definition 2.1. A Petri net is a 4-tuple N “ xS, T, F,my, where

• S is a set of places and T is a set of transitions such that S X T “ H,

• F Ď pS ˆ T q Y pT ˆ Sq Ñ N is the flow relation, and

• m P µS is called the initial marking.

Petri nets are depicted as usual: places are circles, transitions are boxes and

the flow relation is represented by arcs from x to y whenever F px, yq is greater

than 0.

We will consider always labeled nets, namely nets such that to each place or

transition a label is associated.

Definition 2.2. A labeled Petri net is N is the pair pN, lq, where N “ xS, T, F,my

is a Petri net and l : S Y T Ñ Λ a total mapping such that lpT q X lpSq “ H.

When the label is not relevant, we assume that the labeling function is the

identity, and often we will omit it. Sometimes we will write xS, T, F,m, ly instead

of pxS, T, F,my, lq.

The flow relation of a net can be seen as a multiset on pS ˆ T q Y pS ˆ T q with

the constraint that tx, yu Ď S ñ F px, yq “ 0 and tx, yu Ď T ñ F px, yq “ 0.

We will consider Petri nets where the flow relation F is constrained to be a set,

i.e. @x, y. F px, yq ď 1.

Preset and postset: Given a net N “ xS, T, F,my and x P SYT , we define the

following multisets: ‚x “ F p´, xq, which we call the preset of x, and x‚ “ F px,´q,

which we call the postset of x.

A transition t P T is enabled at a marking m P µS, denoted with m rty ,

whenever ‚t Ď m. A transition t enabled at a marking m can fire and its firing
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produces the marking m1 “ m´ ‚t` t‚. The firing of a transition t at a marking m

is denoted with m rtym1. We assume that each transition t of a net N is such that

‚t ‰ H ‰ t‚, which implies that no transition may fire spontaneously and that the

firing of a transition may have observable effects.

Firing sequences: Given a marking m, the firing sequence (fs) starting at m of

the net N “ xS, T, F,my, is defined as usually:

a) m is a fs, and

b) if m rt1ym1 ¨ ¨ ¨ mn´1 rtnymn is a firing sequence and mn rtym
1 then also

m rt1ym1 ¨ ¨ ¨mn´1 rtnymn rtym
1 is a fs.

The set of firing sequences of a net N starting at a marking m is denoted with RN
m

and it is ranged over by σ, and we may omit the index denoting the net when it is

clear from the context, and the initial marking of the set of firing sequence when it

coincides with the initial marking of the net. Given fs σ “ m rt1yσ
1 rtnymn, with

startpσq we denote the marking m, with leadpσq the marking mn and with tailpσq

the fs σ1 rtnymn.

Given a set of markings M , with PpMq we denote the set of places that are

marked at some marking in M , namely ts P S | Dm PM. mpsq ą 0u, and given a

fs σ, Mpσq are the markings associated to the fs σ, where Mpσq is Mpσq “ tmu if

σ “ m and Mpσq “ tstartpσqu YMptailpσqq otherwise.

Reachable markings: Given a net N “ xS, T, F,my, a marking m is reachable

iff there exists a fs σ P RN
m such thats leadpσq is m, and the set of reachable

markings of N is MN “
Ť

σPRN
m

Mpσq. Observe that the same marking can be

reached with different firing sequences.

States of a net: Given a fs σ “ m rt1ym1 ¨ ¨ ¨mn´1 rtnym
1, with Xσ “

řn
i“1ttiu

we denote the multiset of transitions associated to this fs. We call this multiset
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a state of the net. The set of states of a Petri net is then StpNq “ tXσ P µT |

σ P RN
mu. Again different firing sequences may give the same state.

Traces: We introduce the notion of trace for a Petri net, which is just the se-

quence of the labels associated to the transitions in a firing sequence.

Definition 2.3. Let N “ pxS, T, F,my, lq be a labeled net and let σ P RN
m be

fs, with σ “ m rt1ym1 rt2ym2 ¨ ¨ ¨mn´1 rtnymn, then a trace of N is the sequence

lpt1t2 ¨ ¨ ¨ tnq and it is denoted with runpσq.

Observe that if σ “ m then to this fs the empty word is associated, i.e. runpσq “

ε. The set of traces of a net is TrpNq “ trunpσq | σ P RN
mu.

Safe nets: A net is said safe whenever the flow relation has value in t0, 1u and

its places hold at most one token in all possible evolutions.

Definition 2.4. A Petri net N “ xS, T, F,my is said safe if rrF ss “ F and each

marking m PMN is such that m “ rrmss.

When it is not stated differently, we will consider only safe netsN “ xS, T, F,my

where each transition can be fired, i.e. @t P T. Dm PMN . m rty .

Subnet: A subnet of a net is a net obtained restricting places and transitions,

and correspondingly also the multirelation F and, possibly, the initial marking.

Definition 2.5. Let N “ xS, T, F,my be a Petri net and let T 1 Ď T . Then the

subnet generated by T 1 is the net N |T 1 “ xS 1, T 1, F 1,m1y, where

• S 1 “
Ť

tPT 1

`

rr ‚tss Y rrN‚tss
˘

Y ts P S | mpsq ą 0u,

• F 1 is restriction of F to S 1 and T 1, and

• m1 is the multiset on S 1 obtained by m restricting to places in S 1.

Observe that N |T 1 may have isolated places and it may be not connected.

Analogously we can restrict the net to a subset of places.
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(a) (b)

(c)

Figure 2.1: A net and two of its subnets.

Definition 2.6. Let N “ xS, T, F,my be a Petri net and let S 1 Ď S. Then the

subnet generated by S 1 is the net N |S1 “ xS 1, T 1, F 1,m1y, where

• T 1 “ tt P T | F pt, sq ą 0 or F ps, tq ą 0 for s P S 1u,

• F 1 is restriction of F to S 1 and T 1,

• m1 is the multiset on S 1 obtained by m restricting to places in S 1.

Acyclicity: Given a net N “ xS, T, F,my, we can associate to it a relation ďN

associated to the flow relation and defined as the reflexive and transitive closure

of the relation x ăN y iff F px, yq ě 0.

Definition 2.7. Let N “ xS, T, F,my be a Petri net and let S 1 Ď S and T 1 Ď T .

N is said to be acyclic with respect to S 1 and T 1 whenever ďN is a partial order,

where ďN is the transitive and reflexive closure of ăN XpS 1 Y T 1q ˆ pS 1 Y T 1q.

We say that N “ xS, T, F,my is acyclic if it is acyclic with respect to S and T .
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Figure 2.2: An occurrence net.

r q

s p

a

bc d

r

s

q

p

a

bc b d

Figure 2.3: A multi-clock net and its two components.

Occurrence Nets: The notion of occurrence net we use here is the one called

1-occurrence net in [vP09] and the intuition behind it is the following: regardless

how tokens are produced or consumed, an occurrence net guarantees that each

transition can occur only once.

Definition 2.8. An occurrence net O “ xS, T, F,my is a Petri net where each

state is a set, i.e. @X P StpOq it holds that X “ rrXss.

Example 2.1. An example of occurrence net is shown in Fig 2.2.

Multi-clock nets: Safe nets can be seen as formed by various sequential com-

ponents (automata) synchronizing on common transitions. This intuition is for-

malized in the notion of multi-clock nets, introduced by E. Fabre in [Fab07].

Definition 2.9. A multi-clock net N is a safe net xS, T, F,my such that there

exists a mapping ν : S Ñ m such that

• for all s, s1 P rrmss, it holds that s ‰ s1 implies ν´1psq X ν´1ps1q “ H,
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•
Ť

sPrrmss ν
´1psq “ S,

• ν|m is the identity, and

• for all t P T . ν is injective on rr ‚tss and on t‚, and νp ‚tq “ νpt‚q.

Given a safe net N it can easily turned in a multi-clock one by adding comple-

mentary places to all the places of the net beside the ones involved in self loop and

defining the trivial partition mapping as the one mapping the unmarked comple-

mentary place to the marked original one and each unmarked place to the marked

complementary one. It is trivial to observe that the partition mapping is not nec-

essarily unique. We will often denote multi-clock nets as a pair explicitly adding

the partition mapping: pN, νq, and the partition mapping will be denoted with

νpNq

Given s P S, with s we denote the subset of places defined by ν´1pνpsqq. The

consequences of the two requirements, namely (a) ν|m is the identity and (b) ν

is injective on the preset (postset) of each transition, is that for each s P m, the

net xS, T, F,my|s “ xs, Ts, Fs,msy is a state-machine net, i.e. the preset and the

postset of each transition has at most one element. State-machine nets can be

considered as finite state automata, and the net xS, T, F,my can be seen as the

union of the various components.

Example 2.2. Consider the net in figure 2.3, the two partitions are identified by

the following partition mapping νpsq “ s, νprq “ s, νppq “ p and νpqq “ p.

2.3 Causal nets and prime event structure

The notion of occurrence net is a semantical one, as it requires that the states

of the net enjoy a suitable property, whereas the one of causal net is much more

syntax oriented. For denoting places and transitions of a causal net we use B and

E (see [Win87]) and call them conditions and events respectively. A causal net
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is acyclic, when the whole set of conditions is considered, and equipped with a

conflict relation.

Definition 2.10. A causal net C “ xB,E,G, cy is a safe net satisfying the follow-

ing restrictions:

1. @b P rrcss, ‚b “ H,

2. @b P B. Db1 P rrcss such that b1 ďC b,

3. @b P B. ‚b is either empty or a singleton,

4. for all e P E the set te1 P E | e1 ďC eu is finite, and

5. # is an irreflexive and symmetric relation defined as follows:

a) e#re
1 iff e, e1 P E, e ‰ e1 and ‚eX ‚e1 ‰ H,

b) x#x1 iff Dy, y1 P E such that y#ry
1 and y ďC x and y1 ďC x1.

The intuition behind this notion is the following: each condition b represents

the occurrence of a token, which is produced by the unique event in ‚b, unless

b belongs to the initial marking, and it is used by only one transition (hence if

e, e1 P b‚, then e # e1). Furthermore each event has a finite number of predecessors

and the immediate conflict relation, stipulating that two events are in conflict if

they compete on a common resource, is inherited along the flow relation.

On causal net it is natural to define a notion of causality among elements of

the net: we say that x is causally dependent from y iff y ďC x. Given a causal net

C “ xB,E,G, cy, if @b P B it holds that b‚ is at most a singleton, we say that it

is a conflict-free causal net (the relation # is empty). The following proposition is

obvious.

Proposition 2.1. Let C “ xB,E,G, cy be a causal net. Then C is also an occur-

rence net.
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Definition 2.11. Let C “ xB,E,G, cy be a causal net. We say that C 1 “

xB1, E 1, G1, c1y if a prefix of C (C ď C 1q whenever

• c “ c1,

• E 1 Ď E,

• B1 “ E 1‚ Y ‚E 1 Y c,

• G1px, yq “ 1 iff Gpx, yq “ 1, with x, y P B1 Y E 1, and

• @b P B1, @x ďG b it holds x P B1 Y E 1.

It follows that:

Proposition 2.2. Let C be a causal net and let C 1 be a net such that C 1 ď C.

Then C 1 is a causal net.

Prime event structures (pes) [NPW81, Win87] are a simple event-based model

of concurrent computations in which events are considered as atomic and instan-

taneous steps, which can appear only once in a computation. The relationships

between events are expressed by two binary relations: causality and conflict. The

relevance of the notion of prime event structure is rooted in the well known relation

with another central notion for modeling computations, namely the one of domain.

Definition 2.12. A prime event structure (pes) is a tuple P “ pE,ď,#q, where

E is a set of events and ď, # are binary relations on E called causality relation

and conflict relation respectively, such that:

1. the relation ď is a partial order and the set teu “ te1 | e1 ď eu is finite for all

e P E, and

2. the relation # is irreflexive, symmetric and hereditary with respect to ď, i.e.,

e#e1 and e1 ď e2 imply e#e2 for all e, e1, e2 P E.
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An event can occur only after some other events (its causes) have taken place,

and the execution of an event can prevent the execution of other events. This

is formalized via the notion of configuration of a pes P “ xE,ď,#y, which is a

subset of events C Ď E such that for all e, e1 P C  pe#e1q (conflict-freeness) and

teu Ď C (left-closedness).

Causal nets and pes are closely related: let C “ xB,E,G,my be a causal net.

Then EpespCq “ pE,ď,#q is a pes, where ď“ďC XpEˆEq and # are the causality

and conflict relations obtained by the causal net (see [Win87]). To a configuration

of the associated pes it is possible to associate a marking in the causal net.

Proposition 2.3. Let C “ xB,E,G, cy be a causal net, and let X Ď E be a

configuration of EpespCq “ pE,ď,#q. Then X P StpCq and, given σ P RC
m such

that X “ Xσ, markpXq “ leadpσq is the marking reached executing the events in

X.

We observe that, given a configuration X of the pes associated to a causal net

C, the subnet C|X is a causal conflict-free net, i.e. each condition b is such that

rrb‚ss is a singleton.

2.4 Unfoldings and branching processes

The behavior of a Petri net can be described in many ways, e.g using the marking

graph, or the set of firing sequences, or its unfolding (see [DR15, Rei13] among

many others). The notion of unfolding ([Win87, Eng91]) is particularly relevant as

it allows to record conflicts and dependencies among the activities modeled with

a Petri net, and the possibility of finding a finite representation of it (the prefix),

has given profitability to the notion, otherwise confined to the purely theoretical

modeling realm ([McM93, ERV02]).

Given a net N “ xS, T, F,my, the unfolding is a labeled causal net where the

labeling enjoys some additional requirement.
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Figure 2.4

Definition 2.13. Let N “ xS, T, F,my be a safe net and let C “ pC, pq be labeled

causal net, with C “ xB,E,G, cy, where p : B Y E Ñ S Y T is a labeling mapping

such that

• ppBq Ď S, ppEq Ď T ,

• there are bijections between ‚e and ‚ppeq, e‚ and ppeq‚,

• there is a bijection between c and m, and

• for all e, e1 P E, if ‚e “ ‚e1 and ppeq “ ppe1q then e “ e1.

We call C a branching process of N , and we call p a folding.

It is shown in [Eng91] that there is a unique maximal branching process, w.r.t.

prefix relation. The uniqueness is up to isomorphism. It is called unfolding of the

net. For a complete overview of branching processes and unfoldings see ([Win87]

and [Eng91]).

Example 2.3. Consider the nets in Fig. 2.4. The one on the left is a branching

process of the one on the right. The dashed lines represent the images of the

conditions and events of the branching process through the labeling p. Each event
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of the branching process represents a transition of the safe net, and each condition

represents a token in a place of the net.

The causal net represents the non sequential behaviour of the safe net, and in

particular the followings hold (let C be the unfolding of N):

• to each reachable markings m PMN there exists a reachable marking m1 P

MC such that ppm1q “ m,

• each reachable marking m P MC is mapped to a reachable marking of N ,

and

• for each reachable markings m P MC and for each e P E such that m rey ,

there exist a markingm2 PMN and a transition t of N such that ppmq rtym2,

ppeq “ t and and ppm1q “ m2, where m1 is the marking reached executing e,

i.e. m reym1.

Since a net can have one (or more) infinite firing sequence(s), like the one in Fig. 2.4,

the resulting unfolding is, in general, an infinite causal net.

A folding can be seen as a morphism between nets. We recall a definition of

morphism that applies in this case.

Definition 2.14. Let N “ xS, T, F,my and N 1 “ xS 1, T 1, F 1,m1y be two nets. A

morphism h : N Ñ N 1 is a pair xhT , hSy, where hT : T Ñ T 1 is a partial function

and hS Ď S ˆ S 1 is a relation such that

• for each s1 P m1 there exists a unique s P m and s hS s1,

• if s hS s1 then the restriction hT : ‚s Ñ ‚s1 and hT : s‚ Ñ s1‚ are total

functions, and

• if t1 “ hT ptq then hopS : ‚t1 Ñ ‚t and hopS : t1‚ Ñ t‚ are total functions, where

hopS is the opposite relation to hS.
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If s P S we denote with hSpsq the set ts1 P S 1 | s hS s1u and, if t P T , with hT ptq

the set tt1 P T 1 | hT ptq “ t1u.

Morphisms between nets enjoy the following property:

Proposition 2.4. Let N “ xS, T, F,my and N 1 “ xS 1, T 1, F 1,m1y be two nets, let

xhT , hSy : N Ñ N 1 be a morphism, and let t P T be a transition. Then

a) ‚hT ptq “ hSp
‚tq

b) hT ptq‚ “ hSpt
‚q

Proof. aq Let s P ‚hT ptq. Consider the set hSp ‚tq “ ts1 P S 1 | Ds̄ P ‚t. s̄ hS s
1u.

By definition of morphism hopS : ‚hT ptq Ñ
‚t is a total function, hence there exists

s1 P ‚t such that s hS s1. Thus ‚hT ptq Ď hSp
‚tq. Take now s P ‚t and consider

s1 such that s hs s1, i.e. s1 P hSp ‚tq. Now, hT : s‚ Ñ s1‚ is a total function, and

hT ptq P s
1‚. Hence s1 P ‚hT ptq. But this means that hSp ‚tq Ď ‚hT ptq.

bq Let s P hT ptq‚. Consider again the set hSpt‚q “ ts1 P S 1 | Ds̄ P t‚. s̄ hS s1u.

By definition of morphism hopS : hT ptq
‚ Ñ t‚ is a total function, hence there exists

s1 P t‚ such that s hS s1. Thus hT ptq‚ Ď hSpt
‚q. Take now s P t‚ and consider

s1 such that s hS s1, i.e. s1 P hSpt‚q. Now, hT : ‚s Ñ ‚s1 is a total function, and

hT ptq P
‚s1. Hence s1 P hT ptq‚. But this means that hSpt‚q Ď hT ptq

‚. �

Net morphisms preserve the firing of transitions.

Theorem 2.1. Let N “ xS, T, F,my and N 1 “ xS 1, T 1, F 1,m1y be two nets, let

xhT , hSy : N Ñ N 1 be a morphism, let m,m1 P MN be two markings of N , and

t P T . If m rtym1, then hSpmq rhT ptqyhSpm1q.

Proof. As m rtym1 we know that ‚t Ď m. Using Prop. 2.4 we have that hSp ‚tq “

‚hT ptq, hence ‚hT ptq Ď hSpmq. Using the same proposition we have also that

hSpt
‚q “ hT ptq

‚, thus hSpm1q “ hSpmq ´
‚hT ptq ` hT ptq

‚. �

Theorem 2.1 can be trivially lifted to firing sequences, as the following corollary

shows.
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Corollary 2.1. Let N and N 1 be two nets, let h “ xhT , hSy : N Ñ N 1 be a net

morphism, let m,m1, . . .mn PMN , let t1, . . . , tn a set of transitions of N , and let

σ “ m rt1ym1 . . .mn´1 rtnymn be a firing sequence, i.e. σ P RN . Then also hpσq “

hSpmq rhT pt1qyhSpm1q . . . hSpmn´1q rhT ptnqyhSpmnq is a firing sequence and hpσq P

RN 1.

As a consequence of Th. 2.1 and Cor. 2.1 we have that net morphisms preserve

firing sequences and thus they preserve reachable markings.

The composition of two net morphisms is again a net morphism.

Let hS and h1S two relations, hS˝h1S Ď SˆS2 is the relation defined as s hS˝h1S s2

iff Ds1 such that s hS s1 and s1 h1S s2.

Definition 2.15. Let xhT , hSy : N Ñ N 1,xh1T , h1Sy : N 1 Ñ N2, h “ xhT , hSy be two

nets morphisms. We define their composition as xh1S ˝ hS, h1T ˝ hT y.

Proposition 2.5. Let N “ xS, T, F,my, N 1 “ xS 1, T 1, F 1,m1y, and N2 “ xS2, T 2, F 2,m2y

be three nets. Let xhT , hSy : N Ñ N 1, xh1T , h1Sy : N 1 Ñ N2, let h “ xhT , hSy be two

net morphisms. Then xh1S ˝ hS, h1T ˝ hT y is a morphism from N to N2.

Proof. Take s2 P m2. As h1 “ xh1T , h1Sy is a morphism, there exist a unique s1 P m1

such that s1 h1S s2. Also h “ xhT , hSy is a morphism, hence there exists a unique

s P m such that s hS s1. Hence there exists a unique s hS ˝ h1S s2.

Take now s hS ˝ h
1
S s

2. There exists s1 P S 1 such that s hS s1 and s1 h1S s2. We

have that both hT : ‚sÑ ‚s1 and h1T : ‚s1 Ñ ‚s2 are total function, ad h and h1 are

morphisms, hence also h1T ˝ hT : ‚sÑ ‚s2 is total. Similarly for h1T ˝ hT : s‚ Ñ s2‚.

Finally consider t2 “ h1T phT ptqq. As h1 is a morphism, h1opS : ‚t2 Ñ ‚hT ptq is a

total function, and, as h is a morphism, also hopS : ‚hT ptq Ñ
‚t is a total function.

Their composition ph1S ˝ hSqop “ hopS ˝ h
1op
S : ‚t2 Ñ ‚t is a total function as well. By

reasoning in the same way we have that also ph1S ˝ hSqop : t2‚ Ñ t‚ is total. This

concludes the proof. �
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Given a branching process C “ pC, pq of a safe net N “ xS, T, F,my, where

C “ xB,E,G, cy, with define the morphism hp : C Ñ N as follows:

• hpT : E Ñ T is p|E, and

• pb, sq P hpS iff ppbq “ s

Proposition 2.6. Let N “ xS, T, F,my and let C “ pC, pq be a branching process

of N . Then hp : C Ñ N is a net morphism.

Proof. Clearly if b P C there is just one s P m such that ppbq “ s, as there is a

bijection between c and m.

As there are bijection between ‚e and ‚ppeq, e‚ and ppeq‚, we have that

phpSq
op : ‚ppeq Ñ ‚e and phpSq

op : ppeq‚ Ñ e‚ are total.

Finally consider b, ppbq, and hpT : ‚b Ñ ‚ppbq. As p is a labeling, it is total,

hence the thesis. �

2.5 Finite Prefix

In this section we briefly recall one the main techniques that permits to cope with

infinite structures like unfoldings.

Definition 2.16. Let C “ pC, pq and C1 “ pC 1, p1q two branching processes of a net

N . Then C1 is a prefix of C if C|C1 satisfies:

1) if b1 P B1, then @e P ‚b1 such that e P E it holds that e P E 1,

2) if e1 P E 1, then @b P ‚e1 such that b P B and @b P e1‚ such that b P B, it holds

that b P B, and

3) p1 is the restriction of p to conditions and events in C 1.

Although unfoldings, in general, cannot be easily treated (due to the existence

of infinite runs in the original net), it is possible to identify a suitable finite subnet
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of an unfolding where all the relevant informations about sependencies and conflicts

are preserved: the complete prefix.

Complete prefixes have been introduced in [McM93] where a general algorithm

for truncating nets is presented along the applications of prefixes to model checking.

Subsequently, in [ERV02], the authors refines the McMillan’s algorithm.

We now recall some basic definitions.

Definition 2.17. Let C “ xB,E,G, cy be a causal net, two conditions b, b1 P B

are in co relation, denoted with b co b1, iff  pb ď b1q ^  pb1 ď bq ^  pb # b1q.

In this definition the conflict relation and the partial order are those of the

causal net C.

A set of conditions of a branching process is a co-set if its elements are pairwise

in co relation. A maximal co set with respect to set inclusion is called a cut.

Definition 2.18. Let C be a branching process. A finite configuration X of C is a

subset of events which is conflict-free and left closed, i.e. if e P C and e1 ď e then

e1 P C.

From now on we will consider finite configurations only (thus the adjective finite

will be omitted). Let X be a configuration of C “ xB,E,G, cy, we denote with

CutpXq the set

CutpXq “ pcYX‚
qz
‚X

CutpXq is a cut that includes all conditions marked by executing the events in X

and the remaining conditions of the initial marking c not consumed by X. CutpXq

represents a reachable marking of the original net (ppCutCqq, and we denoted the

latter with MpXq.

Definition 2.19. A branching process C of a net N is said complete if for every

reachable marking m PMN there exists a configuration X in C such that:

1) MpXq “ m, and
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2) for every transition t enabled at m (m rty ) there exists a configuration XYteu

such that e R X and e is labeled by t.

Condition 1) says that every marking of N must be represented in C and con-

dition 2) is the so called preservation of firings, it means that a branching process

must contain at least one instance of all events that can be fired from a marking

M .

The number of reachable markings of a safe Petri net is finite so there always

exists a finite complete branching process.
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Chapter 3

Unravel nets

In this chapter we introduce a new class of nets, unravel nets, which can be con-

sidered as a generalization of causal nets. The idea is rather simple: in each

executions it must be possible to extract dependencies among transitions syntac-

tically, whereas the conflict is confined to the semantic level, as the syntactically

definable conflicts are just a part of the whole set of conflicts.

We do two sanity checks on this notion. First we show that a causal net is

indeed an unravel net (which is rather obvious) and then we will show that unravel

nets are tightly related to bundle event structure (bes) [Lan92, Lan93]. We will

show how, given an unravel net, it is possible to associate a bundle event structure,

and how to construct an unravel net from a bundle event structure, in such a way

that the states of an unravel net and the configurations of the related bes coincide.

Causal nets (Def. 2.10 of subsection 2.3) capture dependencies and conflicts

among transitions (events) whereas occurrence nets capture the unique occurrence

property of each transition. Dependencies are inferred using the partial order

obtained from the flow relation whereas conflicts are obtained using the notion

of immediate conflicts (two events share a condition in their preset) and adding

conflicts involving all the events that depends on the initial ones.

We define a net which will turn to be, so to say, in between occurrence and

causal nets. Like in occurrence nets we require that each transition happens just

25
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Figure 3.1: An unravel but not causal net, and two of its subnets (causal nets).

once in a configuration, and similarly to causal nets we still want to be able to

retrieve dependencies among the firings of transitions, though in a more semantical

way.

Definition 3.1. An unravel net R “ xS, T, F,m, ly is an occurrence net such that

a) R is safe,

b) for each state X P StpRq the net R|rrXss is a conflict-free causal net, and

c) for each transition t P T there exists a state X P StpRq such that t P X.

The idea here is that if we focus on each single execution, the restriction of the

net to the events in this execution is an acyclic net where each condition has at

most one incoming arc and one outgoing arc (thus is a conflict free causal net). The

fact that a safe net is an occurrence net can be easily enforced by adding, for each

transition t a place st in the preset of t, marking it initially and such that ‚st “ H.

The last condition has two consequences. One is that each transition of the net

may really represents the firing of a transition in the net of which the unravel net

may represent the behavior, and the second one is that initial conditions may be

easily identified as they have an empty preset.

We first show that unravel nets are a conservative extension of the notion of

causal net. Indeed, it is straightforward to observe that if C “ xB,E,G, cy is a

causal net then it is an unravel net as well.
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Proposition 3.1. Let C “ xB,E,G, cy be a causal net. Then C is an unravel net

as well.

Proof. The first two conditions are trivial. It remains to prove that for each

transition e P E there exists a state X P StpCq such that e P X. Consider

teu “ te1 P E | e1 ďC eu, it is trivial to observe that teu P StpCq, hence the the-

sis. �

The contrary does not hold as the following example shows:

Example 3.1. Consider the net in figure 3.1a. Clearly it is not a causal net, as

the place Q has two incoming arcs. The states of the net are tau, tdu, ta, cu, ta, du,

td, eu, ta, d, eu, ta, c, eu, td, e, bu. The net is safe, and each state induces a conflict-

free causal net so, by definition, it is an unravel net. Figures 3.1b and 3.1c depict

the nets that correspond to states ta, c, eu and td, e, bu.

We list some properties of unravel nets. First of all, like in causal nets, places

in the initial marking have no incoming arc.

Proposition 3.2. Let R “ xS, T, F,my be an unravel net and let s P S such that

s P rrmss then ‚s “ H.

Proof. Assume ‚s ‰ H, then there exists a transition t P T such that t P ‚s.

Now, as R is an unravel net, t can be executed, hence there exists a fs σ such that

σ rtym1. we have two cases:

a) each transition t1 in σ is such that s R ‚t1, but then m1psq “ 2, contradicting

the safeness of R,

b) there is a transition t1 in σ such that s P ‚t1, but then R|rrXσss is cyclic,

contradicting the hypothesis that R is an unravel net. �

The main difference between unravel nets and causal nets is that conflicts among

transitions in unravel nets have to be defined semantically whereas in causal nets

they are syntax driven.
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Definition 3.2. Let R “ xS, T, F,my be an unravel net. We define the conflict

relation # Ď T ˆT as follows: t # t1 whenever t ‰ t1 and @X P StpRq it holds that

tt, t1u * X.

Though the definition of conflict is a semantic one, some conflicting transitions

can be characterized syntactically.

Proposition 3.3. Let R “ xS, T, F,my be an unravel net, let s P S and t, t1 P T .

If t‚ X t1‚ ‰ H then t # t1.

Proof. Let s P t‚ X t1‚. Assume that  pt # t1q, then exists a fs σ such that

σ “ σ1 rtyσ2 rt1yσ3 with

σ2 “

$

’

’

&

’

’

%

m̄ or

m̄ rt̄y σ̄

or σ “ σ1 rt1yσ2 rtyσ3 with

σ3 “

$

’

’

&

’

’

%

m̂ or

m̂ rt̂y σ̂

Then leadpσ1 rty m̄qpsq “ 1 and leadpσ1 rtyσ2 rt1y m̂q ě 1. If leadpσ1 rtyσ2 rt1y m̂q ě 2

we violate the safeness, if leadpσ1 rtyσ2 rt1y m̂q “ 1 the net has a cycle. �

Proposition 3.4. Let R “ xS, T, F,my be an unravel net, and let t, t1 P T . If

‚tX ‚t1 ‰ H then t # t1.

Proof. Assume that  pt # t1q and let s P ‚t X ‚t1. Then exists a fs σ such that

σ1 rtyσ2 rt1yσ3 or σ1 rt1yσ2 rtyσ3. With the same argument of Prop. 3.3 we have

that s would get marked twice violating the acyclicity of N |Xσ . �

3.1 Bundle event structures

Prime event structure are tightly connected with causal nets. We show that a

similar relationship exists between unravel nets and bundle event structures.
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a b

c

Figure 3.2: A graphical representation of a bes.

In bundle event structures [Lan93] causality is represented by pairs pX, eq, the

bundles, where X is a non empty set of events and e an event. The meaning of

a bundle pX, eq is that if e happens then one (and only one) event of X has to

have happened before (events in X are pairwise conflicting). An event e can be

caused by several bundles, in that case, for each bundle an event in it should have

happened.

Definition 3.3. A bundle event structure is a triple β “ pE, ÞÑ,#q, where

• E is a set of events,

• # is an irreflexive and symmetric binary relation on E (the conflict relation),

• ÞÑ Ď 2E
fin ˆ E is the enabling relation such that if X ÞÑ e then for all

e1, e2 P X. e1 ‰ e2 implies e1 # e2, and

• for each e P E it holds that the set
Ť

tX | X ÞÑ eu is finite.

The final condition is an analogous of the finite cause requirement for prime

event structures. Indeed this requirement rules out situations like the following

one. Consider an event s such that @i P N there is a bundle teiu ÞÑ e. Then the

event e has infinite causes which we want to rule out.

To draw a bes we adopt the usual convention: the conflict relation is depicted as

a dotted line, and bundles are depicted as arrows connected together by a straight

line.

The configurations of a bes are defined as follows.

Definition 3.4. Let β “ pE, ÞÑ,#q be a bes and X Ď E be a set of events. Then

X is a configuration of β iff
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1. it is conflict free, i.e. @e, e1 P X. e ‰ e1 ñ  pe #e1q, and

2. there exists a linearization te1, . . . , en, . . . u of the events in X such that @i P N

and for all bundles Xji ÞÑ ei it holds that Xji X te1, . . . , ei´1u ‰ H.

The requirements are the usual ones: it must be conflict free and each event

must have all of its causes. The causes of an event in a bes, as said before, have

to be chosen using all the bundles involving the event.

We first show that bes are a conservative extension of pes. Indeed each pes

P “ pE,ď,#q can be seen as the bes, as the following proposition shows.

Proposition 3.5. Let P “ pE,ď,#q be a pes, then BpP q “ pE, ÞÑ,#q where

ÞÑ“ tpte1u, eq | e1 ă eu is a bes, and ConfpP q “ ConfpBpP qq.

Proof. Clearly
Ť

tX | X ÞÑ eu is finite as teu is finite, then the bundles of BpP q

are well defined, hence it remains to show that the set of configurations are indeed

the same.

Take X P ConfpP q, then it is clearly conflict free. It remain to show that there

exists a linearization te1, . . . , en, . . . u of the events in X such that @i P N and for

all bundles Xi ÞÑ ei it holds that Xi X te1, . . . , ei´1u ‰ H. For each event e of X,

consider a linearization of X compatible with the ordering teu. This linearization

clearly satisfies the second condition of Def. 3.4, and then X P ConfpBpP qq.

For the converse, consider X P ConfpBpP qq. Again X is conflict free, hence it

remains to show that for each e P X it holds that teu Ď X. As X P ConfpBpP qq,

there exists a linearization te1, . . . , en, . . . u of elements of X and, given ei, it holds

that each bundle Xi ÞÑ ei is such that Xi X te1, . . . , ei´1u ‰ H. But as the Xi are

singletons we have that Xi Ď te1, . . . , ei´1u and as we have a bundle for each event

strictly smaller than ei, it holds that teu Ď X, hence X P ConfpP q. �

bes are more expressive than pes, as they are able to model or -causality. In

fact we may have the following bes a # b (symmetric pair omitted) and ta, bu ÞÑ

c stipulating that the same event may have two different and alternative pasts,
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namely one containing a and the other b. The two maximal traces of this bes are

ac and bc (see Figure 3.2).

For our purpose finite configurations will suffice, as we will consider mostly

finite computations, which are precisely represented by finite configurations. To

characterize finite configurations we resort to the notion of events trace. Consider

a set of events E, ρ “ e1 ¨ ¨ ¨ en is a sequence of events in E. With overloading of

notation we denote ε as the empty sequence. Given a sequence ρ “ e1 ¨ ¨ ¨ en of

events, with ρ we denote the set te1, . . . , enu and clearly the set associated to the

empty sequence is the empty set. Given a sequence ρ of events, its length is |ρ|

and it is denoted with lenpρq and for each 1 ď i ď lenpρq with ρi we denote the

sequence e1 ¨ ¨ ¨ ei, and with ρ0 we denote the empty sequence.

Definition 3.5. Let β “ pE, ÞÑ,#q be a bes. A trace is a sequence of distinct

events ρ “ e1 ¨ ¨ ¨ en such that

• ρ Ď E,

• @1 ď i, j ď lenpρq.  pei # ejq, and

• @1 ď i ď lenpρq.@X Ď E. X ÞÑ ei ñ ρi´1 XX ‰ H.

The set of traces of a bes β is denoted Trpβq.

Traces, as they are defined, are finite, and they characterize linearized finite

configurations.

Definition 3.6. Let β “ pE, ÞÑ,#q be a bes. Then X Ďfin E is a finite con-

figuration iff there exists a trace ρ P Trpβq such that ρ “ X. The set of finite

configurations of β is denoted with Conffinpβq.

3.2 Unravel net and bes

In this section we relate unravel nets and bes. We define how to construct a bes

from a given unravel net and viceversa. We will relate the states of an unravel net
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Figure 3.3: An unravel net and its associated bes.

to the traces of a bes, showing that there is an 1-1 correspondence.

We first show how to associate a bes to an unravel net. The intuition is rather

simple: to each place in the preset of a transition t we associate a bundle X for

the correspondent event t in the event structure, and the bundle is formed by the

transitions putting a token in that place.

Proposition 3.6. Let N “ xS, T, F,my be an unravel net, then EpNq “ pT, ÞÑ,#q

is a bes, where

• t # t1 in EpNq iff t # t in N , and

• for each t P T , for each s P ‚t, we have ‚s ÞÑ e.

Proof. We show that EpNq is indeed an bes. The conflict relation in EpNq is

antisymmetric and irreflexive because it is so in N . Since we are are dealing with

unravel nets, all the transitions putting tokens in the same place are in conflict, so

the bundles respect Def. 3.3. �

Example 3.2. Consider the net in Fig. 3.3a and its associated event structure

3.3b. The bundles are tc, du ÞÑ e and ta, bu ÞÑ e, and are obtained syntactically,

whereas the conflicts c #d, a #b, a #c and b #c are obtained using all the possible

executions, though in this example they are syntactically deducible as they share a

condition in their preset.
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We show that the sets of traces of the unravel net N and of the associated bes

EpNq coincide.

Theorem 3.1. Let N “ xS, T, F,my be an unravel net and EpNq “ pT,#, ÞÑq be

the associated bes. Then

τ P TrpNq ðñ τ P TrpEpNqq.

Proof. (ð) By induction on the length of the trace. For the empty trace it is trivial

to observe that the fs σ “ m is precisely the one we are looking for as runpσq is

indeed the empty trace.

Assume it holds for traces of length n. Consider τ “ t1 ¨ ¨ ¨ tntn`1, we know,

by induction hypothesis, that τ 1 “ t1 ¨ ¨ ¨ tn is a trace of N , hence there exists a fs

σ such that runpσq “ τ 1 and leadpσq is the marking reached executing this firing

sequence. We show that ‚tn`1 Ď leadpσq (hence leadpσq rtn`1y ). Take s P ‚tn`1,

we must show that leadpσqpsq “ 1. We distinguish two cases:

a) ‚s “ H, then s must belong to the initial marking, otherwise no transition

with s as precondition could be executed, contradicting the fact that N is an

unravel net. Assume leadpσqpsq “ 0, there exists tj P τ 1 with j ď n such that

s P ‚tj, but then, for Prop. 3.4, tn`1 # tj, contradicting the conflict freeness

of τ ,

b) ‚s ‰ H, then it has been marked by a tj P τ 1 and ‚s ÞÑ tn`1. Again assume

leadpσqpsq “ 0, then there exists tk P τ 1 with j ă k ď n such that s P ‚tk,

but then, for Prop. 3.4, tk # tn`1, contradicting the conflict freeness of τ .

Then leadpσq rtn`1y and we have the thesis.

(ñ) Assume that τ is a trace of N , then there exists a fs σ such that runpσq “ τ .

To show that it is also a trace of EpNq we have to prove that

1) it is conflict free and
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2) @1 ď i, j ď lenpτq.  pei # ejq and @1 ď i ď lenpτq.@Y Ď T. Y ÞÑ ei ñ

τi´1 X Y ‰ H.

Conflict freeness is trivial, by definition of # for unravel nets (Def. 3.1). For 2), we

must prove, by induction on the length of τ , that each transition t of τ either has

a bundle in EpNq enabling it or it is such that ‚t Ď m. If lenpτq “ 1 then τ “ ttu

and the transition t is enabled at initial marking. By Prop. 3.2, each s P rrmss has

an empty preset, hence there is no bundle associate to t, thus τ is a trace of EpNq.

Assume that for n “ lenpτq 2) is satisfied.

Consider τtn`1 P TrpNq. We have leadpσq rtn`1y where leadpσq is the marking

reached executing the firing sequence σ such that runpσq “ τ . Thus @s P ‚tn`1,

leadpσqpsq “ 1. We have to prove that each bundle ‚s ÞÑ tn`1 is satisfied, for each

s P ‚tn`1. We again distinguish two cases:

1) if ‚s “ H, as there is no bundle associated to it the thesis follows, and

2) if ‚s ‰ H, then s is marked in leadpσq by a transition tj with j ď n and the

bundle ‚s ÞÑ tn`1 is satisfied.

It follows that tn`1 can be added to τ and τtn`1 P TrpEpNqq. �

We show now how to associate an unravel net to a bes. We consider only bes

where all the events may be executed, namely such that @e P E there is a finite

configuration X such that e P X. This assumption is required for generating nets

without impossible transitions (see Def. 3.1). The unravel net associated to the

event structure β “ pE, ÞÑ,#q has as transitions the events of β, and places are

defined by bundles, by the conflict relations and, in order to guarantee that the

preset of each transition is non empty, also by a place guaranteeing this.

Proposition 3.7. Let β “ pE, ÞÑ,#q be a bes such that @e P E DX P Conffinpβq. e P
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X. Then N pβq “ xS,E,F, Smy where S “ Sm Y SB Y So with

Sm “ tpe, iq | e P Eu Y te, e1 | e # e1u

SB “ tpY, eq | Y ÞÑ eu

So “ tpe, oq | e P Eu

and F is defined as follows

Fps, eq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if s “ pe, iq or s “ pe, e1q or s “ pe1, eq

1 if s “ pY, eq

0 otherwise

Fpe, sq “

$

’

’

&

’

’

%

1 if (s “ pY, e1q and e P Y ) or s “ pe, oq

0 otherwise

is an unravel net.

Proof. The safeness of N pβq results from the fact that the places pe, iq allows only

one execution of each transitions e as they have no incoming arc, and the places

with more that one incoming arc, the SB ones, cannot be marked by more than

one transition because of the conflicts in the bundle set, finally the places te, e1u

does not allow the execution of conflicting transitions in the same run.

Let σ be a fs of N pβq and be τ “ e1 ¨ ¨ ¨ en “ runpσq the associated trace. By

induction on lenpτq we show that N |runpσq is a conflict-free causal net.

• The empty trace is a conflict-free causal net (a net of marked places only and

no transitions),

• consider the trace τ “ e1 ¨ ¨ ¨ en´1en and let τ be the state te1, . . . , en´1enu

associated to τ . As τ 1 “ e1 ¨ ¨ ¨ en´1 is a trace as well, by inductive hypothesis
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N pβq|τ 1 “ x ‚τ 1 Y τ 1‚ Y Sm, τ 1,F
1, Smy is a conflict-free causal net. Consider

N pβq|τ and assume that a place s in en
‚ already belongs to ‚τ 1Y τ 1‚. Then s

must be a place of the kind pY, eiq, for some ei P τ 1, but then there must be a

ej in τ 1 such that ej P Y , which this contradicts the fact that τ 1 is conflict-free

as ej # en. So en cannot mark places already marked in the past, hence the

subnet N pβq|τ 1 is a conflict-free causal net. �

This proposition just establishes that the construction gives an unravel net. In

Fig. 3.4 we see an unravel net built from a bes. We show now that the construction

is indeed correct as the set of traces of the bes and of the associated net are the

same

Theorem 3.2. Let β “ pE, ÞÑ,#q be a bes such that @e P E DX P Conffinpβq. e P

X, and N pβq the associated unravel net. Then

τ P Trpβq ðñ τ P TrpN pβqq

Proof. (ñ) By induction on the length of a trace τ . If τ is the empty trace, then

τ is also a trace of N pβq. If lenpτq “ 1 and τ “ teu then e has no bundle and

‚e Ď Sm, i.e. hence e is also a trace of N pβq.

Assume that, for lenpτq “ n, it holds τ P TrpN pβqq, and consider the trace

τen`1 P Trpβq. If en`1 requires no bundle then, by construction, the transition in

en`1 is enabled at the marking leadpσq where σ is the fs associated to the trace

τ , as the preset of en`1 just contains pen`1, iq and ten`1, eu for each e in conflict

with en`1. But as en`1 has not been executed and τ does not contain any event

in conflict with en`1, they are still marked in leadpσq. If it requires bundles, by

Def. 3.5, τ X B is a singleton teiu, for some i ď n and for all bundles B ÞÑ en`1.

Each ei can be fired in N pβq by inductive hypothesis and each bundle B ÞÑ en`1q

is a place in ‚en`1, hence ‚en`1 Ď leadpσq, with σ being the fs associated to τ , is

satisfied.
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Figure 3.4: A bes with its associated unravel net.

(ð) Again we do the proof by induction on the length of the trace. For the

empty trace the thesis is trivial. Let τ “ e1 ¨ ¨ ¨ en´1 P TrpN pβqq. Then there exists

a fs σ such that runpσq “ τ . Consider the trace τ ¨ en P TrpN pβqq. By inductive

hypothesis e1 ¨ ¨ ¨ en´1 is a trace of β, and that en is enabled at the marking leadppqσq.

We show that, for each bundle B ÞÑ en, B X te1, . . . , en´1u ‰ H. As en is enabled

at the marking leadppqσq, it means that the place pB, enq is marked leadppqσq, but

then a transition ej P B belongs to τ , hence BXte1, . . . , en´1u ‰ H. Clearly τ ¨ en

is conflict free. �
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Chapter 4

Unravel nets and Unfoldings

In the previous chapter we have introduced unravel nets and we have shown that

they are closely related to a particular class of event structures. As bundle event

structures model disjunctive causality without duplicating events, they may be the

proper kind of event structure for representing the behaviors of a net in a more

compact way. In this chapter we review the two known techniques for compacting

the unfolding of a net and show how they fit into the framework we are trying to

develop. The next two sections are dedicated to recall the basic definitions and

properties of those approaches, then we discuss whether they do give unravel nets

and in the case they don’t, if this can be easily enforced.

4.1 Merged processes

Although the existence of a finite representation of an unfolding, the complete

prefix, makes it usable in practical applications, the size of the finite prefix can

still be too large. In [KKKV06] the authors developed a technique, called merged

processes, that allows to compress the behavior of a Petri net. The idea behind

the merged processes is to merge two or more nodes of a branching process that,

in some sense, represent the same resource, and then consider as the same the

transitions that, after the fusion, share the preset and postset. In this section we

39
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will recall some basic definitions and propositions that we will use in the following

chapters.

The idea of being the same resource in the case of safe nets is quite simple: the

execution of transition t putting a token in a place s just produce the resource in

that place for the i-th time, hence to know if two conditions in a branching process

represent the same resource it is enough to determine the occurrence-depth of this

condition, namely how many conditions with the same label are less or equal to it.

Clearly conditions with the same occurrence-depth and the same label must be in

conflict.

Definition 4.1. Let b “ pC, pq be a branching process of a safe net N and x one

of its nodes (condition or event). The occurrence-depth of x is defined as the

maximum number of ppxq-labelled nodes on any directed path starting at a minimal

(w.r.t ă) condition and terminating at x in the directed graph representing b.

The above notion is well-defined since there is always at least one directed path

starting at a minimal (w.r.t. <) condition and terminating at x, and the number

of all such paths is finite.

Once the occurrence-depth of conflicting conditions has been determined, we

can merge these conditions and after that merge also the events having the same

label, the same preset and the same postset (thus the events representing the same

transition in alternative executions).

Definition 4.2. Let N be a safe net and pC, pq be a branching process of N ,

where C “ xB,E, F,my is a causal net and p is a labeling mapping satisfying the

requirements of Def. 2.13. The merged process of pC, pq is the net MergepC, pq

defined by the following steps:

1. all the conditions bearing the same label and having the same occurrence-

depth are merged together, and these conditions, called mp-conditions, in-

herits the same incoming and outgoing arcs of the conditions that are fused,

finally an mp-condition inherits the same label as the fused conditions,
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2. after performing the previous step, all the events with the same label, the

same preset and the same postset are fused together, giving an mp-event,

and they inherit the label from the fused events as well as the incoming and

outgoing arcs, and

3. the initial marking is given by the mp-conditions which are originated by

conditions that were minimal in the causal net C.

If pC, pq is a branching process of a net N and MergepC, pq its merged process,

we denote by Ĉ the net obtained by fusing the conditions and the events and, in

correspondence with this operation, adapting the flow relation, the initial marking

and the labeling. The latter is well defined as conditions and events are merged only

when they bear the same labels. By p̄ we denote the labeling (the net morphism

p̄ : Ê Ñ N) of fused conditions and events on the place and transition of N , and

with B̂, Ê, F̂ and m̂ we denote respectively the set of its mp-events, the set of its

mp-conditions, its flow relation and its initial marking. The merged process of the

whole unfolding of the net N will be denoted by MergepNq.

4.1.1 Properties

We point out some properties of merged processes. Let pC, pq be a merged process

of N .

1) There is at most one mp-condition sk resulting from the fusion of conditions

labelled by place s of N occurring at depth k ě 1,

2) two distinct conditions in pC, pq having the same label and occurrence-depth

are in conflict (it is true for safe Petri nets only, otherwise they can be

concurrent),

3) for two mp-conditions, sk and sk`1, there is a directed path from the former

to latter. Moreover, if sk`1 is present and k ě 1 then sk is also present,
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Figure 4.1: The net N running example of [KKKV06]

4) in general, Ĉ is not acyclic (cycles can arise due to criss-cross fusions of

conditions),

5) there can be events consuming conditions in the postset of a cut-off mp-event,

6) there is a strong correspondence between the runs ofN and those ofMergepNq:

σ is a run of N iff σ “ ĥpσ̂q for some run σ̂ of MergepNq.

Given a merged process MergepC, pq, a multiset X̂ of mp-events, it is an mp-

configuration if X̂ “ p̄pX 1q for some configuration X 1 of MergepNq. Note that

there is a subtlety in this definition: we have to use the whole unfolding of

N rather than an arbitrary branching process pC 1, p1q such that MergepC, pq “

MergepC 1, p1qq, since MergepC, pq may contain mp-configurations which are not p̄-

images of any configurations in such a branching process, i.e., the mp-configurations

of MergepC, pq might be ill-defined if it can arise from several different branching

processes.

Example 4.1. Consider the net in Fig 4.1, in its finite prefix there are two con-

ditions labeled with p4, both with occurrence depth equal to 1, and similarly for the

two conditions labeled with p5. Hence these two pairs of conditions can be merged

giving the merged process in Fig. 4.2. Observe that this is not an unravel net. In

fact the executions involving the two events e, e1 labeled with t3 and t4 respectively,
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mark twice one of the p1i , with i P t4, 5u (depending whether the event labeled with

t1 or the one labeled with t2 has been executed).

The previous example shows that in general the notion of merged process does

not enforce that the resulting net is an unravel one. We will see later how to enforce

this property.

4.2 Trellis processes

Instead of the token occurrence, the time can be taken into account when merging

conflicting conditions of a branching process.

To formalize this idea, on which the notion of trellis process is based (see [Fab07]),

we do need to guarantee that the proper time can be identified for each condition.

To do so we resort to multi-clock nets, introduced by E. Fabre ([Fab07]). First of

all we observe that if N is a multi-clock net then also any branching process of N

is a causal net as well and the partition mapping is induced by the the one for N .

Let C “ pC, pq be a branching process of the multi-clock N , with ν as partition

mapping. Given a condition b of C, the height of b, denoted with heightpbq, is

|tb1 P B | b1 ďC b and νpppbqq “ νpppb1qqu|, where B are the conditions of C. The

height of a condition is well defined in a casual net which is a multi-clock as well,

as in the case of branching processes arising from multi-clock nets.

p14 p15 p13

p12

p11

p24p25

t3 t4t3
e

t4

e1

t1 t2

Figure 4.2: Merged process of the net in Fig 4.1
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We first recall the notion of trellis.

Definition 4.3. A trellis T “ xB,E,G, c, νy is a (multi-clock) net satisfying:

1) c “ tb P B | ‚b “ Hu,

2) for every b P B, the automaton T |νpbq is acyclic (i.e. its flow relation defines

a partial order), and

3) each event belongs to at least one finite state of T , i.e. @e P E. DX P

StpT q. e P X.

The notion of trellis has, like the one of unravel net, an acyclicity requirement,

and this is local and also syntactic, as it depends on the partition mapping only.

Trellis nets are indeed unravel net, as conditions 2 and 3 of the definition ensure

that each state is acyclic and each event is at least in a state.

Proposition 4.1. Let T a trellis net, then T is an unravel net.

Proof. See Lemma 2 in [Fab07]. �

We can recall the notion of trellis process.

Definition 4.4. Let N “ xS, T, F,m, νy be a multi-clock net. Then a trellis process

of N is the pair pT , pq where T “ xB,E,G, c1, νy is a trellis net and p a labeling

mapping p : B Y E Ñ S Y T such that

1) p is a folding,

2) @e, e1 P E if ‚e “ ‚e1 ^ ppeq “ ppe1q then e “ e1, and

3) @b, b1 P B if heightpbq “ heightpb1q ^ ppbq “ ppb1q then b “ b1.

Example 4.2. Consider the multi-clock net in Fig. 4.3(a). The net has three

components (one has places ta, bu, another the places tc, gu and the last one places

td, e, fu. The initial part of the trellis is the one in Fig. 4.3(b). The condition c
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Figure 4.3: A multi-clock net and one of its trellis process.

belonging to the second component is fused as it belongs either to the computatione

where the first two automata do synchronize on t1 or to the one where the first

automata does a t2 followed by t3 before synchronizing on t1.

Trellis processes of a multi-clock net N can be obtained by a branching process

fusing conditions belonging to the same partition, having the same label and the

same height.

4.3 Turning merged processes into unravel nets

Merged processes are not, in general, unravel nets, as we shown in the Ex. 4.1. The

main reason is that whenever two or more transitions are marked as equivalent,

it may happen that conflicts in the past are forgotten, allowing executions that

would be otherwise forbidden.

For instance, consider the net in Fig. 4.4. The branching process which is the

prefix is the one in Fig. 4.5 and the corresponding merged process is the one in

Fig. 4.6. This is not an unravel net. In fact, consider the runs abcd and bcd.

After the merging, the postset of q1 (q1‚) contains d, d̄, which have the same label
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Figure 4.4: A safe net N

r1

r1 q1

q1

s1 p1

s2

s2p2

s3 p2

a b

b̄ c

c̄ d

d̄

Figure 4.5: The prefix pC, pq of the net N in Fig. 4.4.

(thus they represent the happening of the same transitions of the safe net N in two

different context). It is clear that only one of them should be executable, depending

on the path we followed to mark q1 because d # a but  pd̄#aq. However this can

be turned into an unravel net by suitably adding some places to rule out unwanted

executions. This has to be done with some criteria and in the following we propose

a criterion.
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4.3.1 Conflict conditions

The idea is rather simple: for each place in the original net N , we add a condition

in the representation of the behaviors of the net N with the aim of representing

that the i´ th token has been produced that place. Then the idea is to make sure

that all the events producing the i´ th token in that place (which is a condition or

a set of conditions) produce this condition and use the conditions stating that the

pi ´ 1q ´ th token was produced before in that place. This intuition is formalized

as follows:

Definition 4.5. Let N be a safe net, pC, pq a branching process of N , and pĈ, p̂q

be the merged process of pC, pq, where Ĉ “ xB̂, Ê, Ĝ, ĉy. We define NgpĈq “

r1

q1

s1 p1

s2

p2 s3

a b

b̄
c

d d̄

Figure 4.6: The merged process of the net N in Fig. 4.4 corresponding to the
branching process in Fig. 4.5.
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p12

p11

p24p25
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p14 p15

p25 p24

t3 t4t3 t4

t1 t2

Figure 4.7: The enriched merged process of Fig 4.1

xB̂ YB#, Ê, G, c, py as the net where:

B# “ tpb,#, iq | b P B ^ the occurrence depth of b is iu Y tpb,#, 0q | b R cu

Gpx, yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Ĝpx, yq if tx, yu Ď B̂ Y Ê

1 if x “ pb,#, iq, b P y‚ ^ the occurrence depth of b is i` 1

1 if y “ pb,#, iq, b P x‚ ^ the occurrence depth of b is i

mpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if x “ pb,#, 0q

1 if x “ b and b P ĉ

0 otherwise

The conditions in B# are called no-gap or conflict conditions.

Example 4.3. Consider the merged process of the Ex. 4.1. The result of enriching

the net in Fig. 4.1 is shown in Fig. 4.7, where conflict conditions are depicted as

circles filled in red.

The result of this construction is an unravel net.

Theorem 4.1. Let N be a safe net, pC, pq a branching process of N , andMergepC, pq

be the corresponding merged process. Then NgpMergepC, pqq is an unravel net.
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Proof. We first show that this is indeed a safe net, and then we prove that each

execution gives an acyclic net.

• We first show that NgpMergepC, pqq is a safe net. To this aim we recall that

the merged process of a safe net is a safe net (see [KKKV06]). By adding

conflict conditions between two events we syntactically states that they are

images of two conflict events of the branching process. To show this consider

two transition e and e1 of pC, pq such that  pe# e1q, with tbu Ď t‚ X t1‚, and

assume that the occurrence-depth of the conflicting conditions that are fused

in b is k, and assume that, after the enrichment with conflict conditions, they

are still not conflicting, i.e. there is a state X of NgpMergepC, pqq such that

te, e1u Ď X.

If k is one, then both events use the same initially marked condition pb,#, 0q,

then e#e1 are in conflict, contradicting the assumption.

Suppose k ě 2. An event of X putting a token in pb,#, k´ 1q needs a token

from pb,#, k ´ 2q and so on, thus a state X of NgpMergepC, pqq in which

pb,#, kq is marked will contain all conflict conditions pb,#, iq, 0 ď i ă k.

The only way to mark pb,#, kq in the same state is to enable the preset of

pb,#, k ´ 1q two times (at least). By repeating the reasoning till pb,#, 1q,

using the fact that ‚pb,#, 1q is composed by a set of conflicting events, and

the impossibility to mark pb,#, 0q again in a state, it follows that if e is

enabled in a state then e1 cannot be enabled as well. Hence the enriched net

is safe.

• In the previous item we have shown the impossibility to obtain an executable

loop in the merged process enriched with conflict condition (it would violate

the safeness). We also showed that two (or more) events putting a token in

the same (resource or conflict) place are in conflict. To summarize states of

this net are sets of events (the net NgpMergepC, pqq is an occurrence net),
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and no place is marked again (the net NgpMergepC, pqq is acyclic). Hence

the thesis.

�

We now prove that states of this unravel net are precisely those we are interested

in.

Theorem 4.2. Let N a safe net, pC, pq a branching process of N , MergepC, pq

be the merged process of pC, pq and NgpMergepC, pqq the corresponding enriched

net. Then X is a configuration of NgpMergepC, pqq iff σ is a mp-configuration of

MergepC, pq.

Proof. (ñ)

We must prove that:

1. X P StpNgpMergepC, pqqq ñ X P StpMergepC, pqq,

2. NgpMergepC, pqq|X is acyclic,

3. denote with Bi the conditions of NgpMergepC, pqq|X and consider b P Bi such

that b is the merged condition corresponding to conditions b1 of pC, pq such

that the occurrence depth of b1 is k, then all conditions b̂ corresponding to

conditions b2 of pC, pq, bearing the same label as b, such that the occurrence

depth of b1 is i, 0 ď i ă k, are present in Bi as well,

Removing places (conditions) from a Petri net can only increase the number of

firing sequences, so (1) is trivially true. To prove (2) it should be noted that, since

the events ofX identify an acyclic subnet in the enriched net NgpMergepC, pqq, that

subnet still enjoys the property of being acyclic if we remove a subset of conditions

(the no-gap one).

If a condition b P Bi corresponding to conditions with token occurrence k (bk)

is present in X, this means the event e such that bk P e‚, consume the token
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pb,#, k ´ 1q marked by e1 with bk´1 P e1‚ . Since NgpMergepC, pqq|X is acyclic, we

can proceed backward till we encounter b0, if the place ppbq R m or p1 otherwise,

hence the thesis.

(ð)

Let X be a mp-configuration of MergepC, pq. We show that it is a configuration

of NgpMergepC, pqq. (by induction on the size of the mp conf?)

Assume X “ teu. The preset of e in NgpMergepC, pqq contains only marked

conditions (no-gap and resources) so its is firable in NgpMergepC, pqq, hence ttu is

a configuration of NgpMergepC, pqq as well.

Assume that a mp-configuration X, with size n ´ 1, is a also a configuration

of NgpMergepC, pqq. Consider the extended mp-configuration X 1 “ X Y teu. Let

e‚ be composed by conditions with token occurrence tok1, . . . , tokk. By definition

of mp-configuration there is a set of events in X which marks a set of conditions

that are the fusion of conditions with token occurrence tok1 ´ 1, . . . , tokk ´ 1 (if

tokk ´ 1 “ 0 then that condition is initially marked). After the execution of X

in NgpMergepC, pqq the conflict condition pb,#, tok1 ´ 1q, . . . , pb,#, tokk ´ 1q are

marked. Assume that one of them is not marked, then there would be an event

ē ‰ e1 which consumed that token and has marked the condition b̄ corresponding

to conditions with occurrence-depth toki, 1 ď i ď k. But this would violate the

safeness of the mp-configuration since e1 marks b̄ too. To summarize X marks all

the conflict condition of e1 and thus X 1 is also a configuration of NgpMergepC, pqq.

�

4.4 Conflict conditions and trellises

Trellis processes executions are acyclic, then it may sound useless to enrich them

with the conflict conditions. But, since we aim to use unravel nets to build a

general theory for compacting net behaviors, it may be useful to show how to add

conflict conditions in a setting where token occurrence does not play a role.
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Figure 4.8: The enriched trellis obtained from the one in Fig. 4.3b

From the merged process point of view a conflict condition pb,#, kq is added to

the preset of an event e if it put a token in b P Bi with occurrence depth of b equal

to k, an arc from pb,#, k ´ 1q to e is also set. For trellises we have to take into

account the height of each condition, which depends on the automaton it belongs

to. The set of conflict conditions B# is then defined as follows (and has no relation

with the order in which some resources are produced but with the local time of

production):

B# “ tpνpbq,#, iq | b P B ^ heightpbq “ iu

The flow relation connecting these new conditions to events is defined in the obvious

way, and it is also trivial to establish which ones are the initial conditions. The

whole net is not any longer a multi clock net as now conflict conditions belonging

to a partition are together with the conditions of this partition, thus violating one

of the requirements for being a multi clock net. Still, if we restrict to resource

conditions or conflict conditions we obtain again a multi clock net.
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Example 4.4. In Fig 4.8 we see how to enrich a trellis process in Fig. 4.3b of the

multi-clock net in Fig. 4.3a. It should be stressed that, since trellis processes are

already unravel nets, conflict places are somehow superfluous, but they stress which

events belonging to the same component are in conflict.
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Chapter 5

Merging relations

In this chapter we propose a simple and general framework to compact labeled

unravel nets. We assume that labeled unravel net represent the behavior of the

system (in general a net), and the labeling mapping is the one relating the places

and transitions of the unravel net to the one of the system.

We introduce the notion of incompatibility among places which can be used to

identify the places that can be fused. Then we define the notion of merging relation

which can be used to compact Petri nets where incompatible places have been

identified. We show that this framework includes the notion of merged processes

and trellis processes, as we will show that the criteria for identifying places are

indeed merging relations. As it should be clear, merging an unravel net does not

necessarily gives an unravel net. We investigate under which conditions a merging

relation gives an unravel net from another one, or similarly to what we have done

with merging process, how to enrich the merged unravel net to guarantee that the

result is still an unravel net.

5.1 Merging contexts

We first introduce a semantic notion of incompatibility between places, capturing

the idea that, if a place is akin to a resource, two resources are incompatible if

55



56 CHAPTER 5. MERGING RELATIONS

they never appear in the same computation, even at different stages. Then we

show that, given a suitable equivalence relation, related to places incompatibility,

a more succinct version of the net we started with can be obtained.

Let N “ pN, lq be a labeled net where N “ xS, T, F,my and let t, t1 P T be

two transitions. We say that t and t1 are identifiable whenever ‚t “ ‚t1, t‚ “ t1‚

and lptq “ lpt1q. Thus on T it is possible to define an equivalence relation » such

that t » t1 iff t and t1 are identifiable. The set of transitions can be quotiented

through this equivalence relation obtaining the set trts» | t P T u. Observe that

the transitions in rts» are such that they cannot be executed together at the same

marking.

Definition 5.1. Let pN, lq “ pxS, T, F,my, lq be a labeled net and let » be the

equivalence relation induced by transitions identifiability. Then we can construct

the labeled net pN “ p pN, l̂q where pN is the Petri net xS, pT , pF ,my with pT “ trts» |

t P T u, pF ps, rts»q “ F ps, tq and pF prts», sq “ F pt, sq, and pl is the mapping defined

as l̂psq “ lpsq and l̂prts»q “ lptq.

Let σ P RN
m , then pσ is constructed as follows: pσ “ m if σ “ m and pσ “

pσ1 rrts»ym if σ “ σ1 rtym. The firing sequences of N and of pN are clearly related, as

the following proposition shows. Observe that runppσq “ lprt1s»¨ ¨ ¨rtns»q “ runpσq.

Lemma 5.1. Let pN, lq “ pxS, T, F,my, lq be a labeled net, and let » be the equiv-

alence relation induced by transitions identifiability. Let pN “ p pN, l̂q as in Def. 5.1.

Then xhS, hT y : N Ñ pN defined as hT ptq “ rts», hS “ iS is a net morphism.

Proof. Since hS is the identity relation, each place of the initial marking of N is

related to itself. By definition each transition belong to an equivalence class, so hT

is total, in particular also its restriction to ‚s and s‚, for each s, is total as well

(since s hS s). As hS is the identity relation, hops , which is the identity function, is

total. Then, by Def. 2.14, xhS, hT y is a net morphism. �
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Figure 5.1: A labeled unravel net N.

Proposition 5.1. Let pN, lq “ pxS, T, F,my, lq be a labeled net, and let » be the

equivalence relation induced by transitions identifiability. Let σ P RN
m be a fs, then

there exists a fs σ1 P R pN
m such that pσ “ σ1.

Proof. Follows from Prop. 5.1 and Th. 2.1 as firing sequences are preserved. �

5.1.1 Places Incompatibility

Here we introduce a notion of place incompatibility (i.e. resources of the safe net).

The notion is semantical as it depends on all the firing sequences.

Definition 5.2. Let N “ xS, T, F,my, we say that two places s, s1 P S are incom-

patible iff for each firing sequence σ P RN
m it holds that ts, s1u * PpMpσqq, and we

denote it with s ’ s1

Observe that this notion is quite similar to the one of conflict we introduced on

unravel nets.

Clearly ’ is a symmetric relation. Observe that if s P rrmss and s ’ s1 then

@σ P Rm. s
1 R PpMpσqq. We are interested in a conflict relation on places that

implies incompatibility, but does not necessarily coincide with it.

Example 5.1. Consider the labeled net N “ pN, lq in Fig. 5.1, with initial marking

m “ tc0u. The relation ’ contains the pairs pci, cjq such that i, j ą 0 and if i is

odd then j is even and vice versa as well. Thus c4 ’ c7 and c7 ’ c6 but c6 ’ c4.
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5.1.2 Merging relation

We introduce now the main notion of the chapter, namely the one of merging rela-

tion. A merging relation is any equivalence relation induced by another arbitrary

relation which is included in the incompatible one.

Definition 5.3. Let N “ pN, lq be a labeled net where N “ xS, T, F,my, let ~ Ď’

be a transitive relation, and let „ be an equivalent relation such that s „ s1 ô

ps ~ s1 _ s “ s1q ^ lpsq “ lps1q. Then „ is a merging relation for N.

Thus a merging relation is any equivalence relation respecting labeling and

incompatibility. Observe that the identity on places is a trivial merging relation.

Furthermore if s is initially marked then rss„ “ tsu.

The merging relation is used to compress the net. Similarly to what is done in

[KKKV06], we first merge places by identifying equivalent ones, thus the merged

places will be S 1 “ trss„ | s P Su. Then, when needed, we may identify also

transitions.

Definition 5.4. Let N “ pN, lq be a labeled unravel net where N “ xS, T, F,my,

and let „ be a merging relation. Then we construct the labeled net rN “ p rN,rlq, where

rN is the Petri net xrS, T, rF , rmy defined as rS “ trss„ | s P Su, rF prss„, tq “ F ps, tq,

rF pt, rss„q “ F pt, sq and rmprss„q “
ř

sPrss„
mpsq, and rl is the labeling mapping

defined as rlprss„q “ lpsq and rlptq “ lptq.

The flow relation is well defined, as @t P T. |rr ‚tssXrss„| ď 1 and @t P T. |rrt‚ssX

rss„| ď 1 as well, and the same for the initial marking, as the equivalence class of

each place in the initial marking contains just that place.

Example 5.2. Consider the net of the Ex. 5.1. A suitable merging relation can

be c1 „ c4, c2 „ c3, c6 „ c7 and c5 „ c8 and the result of the merging of these

places is the net in Fig. 5.2. Another merging relations could be c1 „1 c8, c2 „1 c3,

c6 „
1 c7 and c5 „1 c4, or simply c1 „2 c4. Clearly the resulting more compact net is

different from the one depicted before.
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5.1.3 Preserving behaviours

The construction can be lifted to the reachable markings and firing sequence.

Let m P MN , then rm P µrS is the mapping from rS to N defined as rmprss„q “
ř

sPrss„
mpsq. Observe that, as places in rss„ are in conflict, hence incompatible, at

most one may contain a token. We then lift the construction to firing sequences,

and we use the same “r̈” to denote it. Consider σ P RN
m , then rσ is obtained as

follows: if σ “ m then rσ “ m, if σ “ σ1 rtym then rσ “ rσ1 rty rm, i.e. the new firing

sequence comprises the same transitions, which still are enabled at each marking.

The following proposition points out the obvious relation among the firing se-

quences of both nets.

Proposition 5.2. Let N “ pN, lq be a labeled unravel net where N “ xS, T, F,my,

and let „ be a merging relation. Let hT : T Ñ T be the identity and hS Ď S ˆ rS

be the relation defined as follows: s hS rss„. Then xhT , hSy : N Ñ rN is a net

morphism.

Proof. First of all we observe that if s P m we have that @s1 P S. s1 ‰ s.ñ  ps ’

s1q. Clearly if s P m then rss„ is just tsu, hence the thesis.

Consider now s hS rss„, hT : ‚sÑ ‚rss„ is the identity, hence it is total.

Finally take t P T then hopS : trss„ P rS | s P ‚tu Ñ ‚t is total (it maps rss„ to

s
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Figure 5.2: The compact representation of the net N in Fig. 5.1
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the s in ‚t). Similarly hopS : trss„ P rS | s P t‚u Ñ t‚ is total. �

Proposition 5.3. Let N “ pN, lq be a labeled net, let „ be a merging relation and

p rN,rlq be the labeled net of Def. 5.4. Then @σ P RN
m Dσ

1 P R rN
rm . rσ “ σ1.

Proof. An obvious consequence of Prop. 5.2, Th. 2.1 and Cor. 2.1. �

By merging places it may happen that two equally labeled transitions have the

same preset and the same postset. Hence the equivalence relation » induced by

transition identifiability may be non trivial, i.e. different from the identity. We

can then apply the construction of Def. 5.1 and identify these transitions as well.

The executions of the original net and the ones of the compact version are related

as follows.

Proposition 5.4. Let N “ pN, lq be a labeled net and let „ be a merging relation.

Then pN, lq is the labeled net obtained applying first the construction of Def. 5.4

and then the one of Def. 5.1, and, @σ P RN
m Dσ

1 P RN
m . runpσq “ runpσ1q.

Proof. Before identifying transitions we have that to each fs σ of N a fs rσ in rN

corresponds. Clearly runpσq “ runprσq. Observing that the identified transitions

have the same preset, the same postset and have the same label, we have the

thesis. �

We stress again that by identifying places and transitions we do not lose any

behavior, but the obtained net may have more behaviors than the one we started

with.

5.2 Merging causal nets

In chapter 4 we recalled two methods for compacting Petri nets, merged processes

and trellis processes. Both start from a causal net as the representation of a net

behavior (a branching process) and then merge places and transitions according
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to two different criteria. Here we show a quite obvious result: each of two criteria

defined on causal nets clearly induces a merging relation.

Merged processes. The merging criteria is the occurrence depth of a transition.

Let C “ pC, pq be a branching process of the safe net N , we define the token

occurrence of a condition as tokpbq “ |tb1 P B | b1 ďC b ^ ppbq ´ ppb1qu. We define

a relation „µ between two conditions b, b1 P B such that:

b „µ b
1
ô tokpbq “ tokpb1q ^ ppbq “ ppb1q

The fact that b ’ b1 is implied by the fact that C is a causal net, hence two condi-

tions with the same token occurrence should belong to two alternative branches of

C, and the conflict relation chosen is precisely ’. The following proposition states

that „µ is indeed a merging relation.

Proposition 5.5. „µ is a merging relation.

Proof. By property (2) of merged processes (see subsection 4.1.1), two distinct

conditions with the same token occurrence are in conflict and have the same label,

namely @b, b1.tokpbq “ tokpb1q ^ ppbq “ ppb1q ñ b # b1. The conflict relation on

conditions in a causal nets implies incompatibility, i.e. # Ď’. Let us prove that

„µ is an equivalence relation.

• reflexivity

@b, tokpbq “ tokpbq ^ ppbq “ ppbq, then b „µ b1,

• symmetry

@b, b1 such that b „µ b1,tokpbq “ tokpb1q ^ ppbq “ ppb1q and “ is symmetric,

hence b1 „µ b,

• transitivity

@b, b1, b2 such that b „µ b1 ^ b1 „µ b2, tokpbq “ tokpb1q ^ ppbq “ ppb1q and
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tokpb1q “ tokpb2q ^ ppb1q “ ppb2q. From the transitivity of the “ relation

follows the thesis.

To summarize b „µ b1 ô pb # b1 _ b “ b1q ^ ppbq “ ppb1q. �

Trellis processes. For trellises the relation between two conditions of the branch-

ing process is defined as:

b „T b1 ô heightpbq “ heightpb1q ^ ppbq “ ppb1q

As before, the following proposition holds:

Proposition 5.6. „T is a merging relation.

Proof. The proof is the same of Prop. 5.5. �

We can conclude this section observing that the two criteria introduced for

trellis and merged processes give two merging relations.

5.3 Merging unravel nets

The framework we have devised in the previous sections can be applied to any

kind of labeled net representing the behavior of a Petri net. In particular it may

be applied to unravel nets where causal dependencies can still be dug out, as well

as a conflict relation. Indeed, the only requirement we pose on the net representing

the behavior of the net is that a conflict relation on places can be identified, but

still we may imagine that each state of the net corresponds to a reachable marking

of the net whose behavior is represented by the unravel net.

When compacting behaviors we start from a labeled unravel net, but the pro-

duced net is not necessarily an unravel one (as we have seen in the previous chapter

when dealing with merged processes), and in the compaction we may lose the tight

correspondence among nets and event structures. In fact cycles may be introduced
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Figure 5.3: Unravel net in which a strictly increasing measure has been defined.

when merging places and transitions, and in some case the cycles may be exe-

cutable, and thus the associated event structure would have a configuration where

dependencies are not a partial order, or even some places may be marked twice

(see Ex. 4.1), contrasting the intuition that resources are produced just once (at

least in a computation).

We follow closely the approaches in [Fab07, KKKV06] and we try to introduce

abstractedly a measure on places, on which we base the merging relation. The

possibility of preserving the property of being an unravel net after the merging

may be then connected with the notion of measure associated to places.

Definition 5.5. Let R “ pR, lq with R “ xS, T, F,my be a labeled unravel net, and

let δ be a function such δ : S Ñ N such that δpsq “ δps1q implies s ’ s1. We say

that δ is strictly increasing measure if for each state X P StpRq, and each pair of

places s, s1 of the net R|rrXss, it holds that s ď s1 ñ δpsq ă δps1q.

We state some properties of unravel nets equipped with a strictly increasing

measure.

Proposition 5.7. Let R “ xS, T, F,m, ly be a labeled unravel net, and let δ : S Ñ N

be a strictly increasing measure, then @s, s1 P S such that s‚ X ‚s1 ‰ H it holds

δpsq ă δps1q



64 CHAPTER 5. MERGING RELATIONS

Proof. Let t P s‚ X ‚s1. In any subnet R|X that contains t (such X exists because

each transition is executable in an unravel net) then ts, s1u are places of R|X , s ď s1

and then δpsq ă δps1q as the measure δ is strictly increasing. �

Proposition 5.8. Let R “ xS, T, F,m, ly be a labeled unravel net, and let s1s2 ¨ ¨ ¨ sn

be a sequence of places with ts1, s2, . . . , snu Ď S be such that @i ă n, si
‚X ‚si`1 ‰ H,

i.e. there is a path from s1 to sn. Let δ : S Ñ N be a strictly increasing measure,

then δps1q ă δpsnq.

Proof. As for each i such that 1 ď i ă n we have that δpsiq ă δpsi`1q we have that

δps1q ă δpsnq. �

Note that Prop. 5.8 does not imply that there exists a state which define a

subnet containing ts1, s2, . . . , snu. The following proposition says if the measure is

strictly increasing then the net is acyclic.

Proposition 5.9. Let R “ xS, T, F,m, ly be a labeled unravel net, and let δ : S Ñ N

be a strictly increasing measure, then R is acyclic.

Proof. Assume there is a cycle s1s2 ¨ ¨ ¨ sns1. By Prop.5.8 we would have that

δps1q ă δps1q, leading to a contradiction. �

The following theorem states that the property of being an acyclic unravel net

is preserved when a strictly increasing measure is considered.

Theorem 5.1. Let R “ pR, lq where R “ xS, T, F,my be a labeled unravel net, let

δ : S Ñ N be strictly increasing and let „ be the equivalence relation induced by δ,

i.e. s „ s1 iff pδpsq “ δps1q and lpsq “ lps1qq or s “ s1. Then the resulting compact

labeled net R “ pR, lq is a labeled unravel net.

Proof. We prove something stronger, namely that R is acyclic. Suppose there

exists a fs σ “ m rt0ym1 rt1y ¨ ¨ ¨ rti´1ymi rtiy ¨ ¨ ¨ rtj´1ymj rtjy P RR
m such that

mi Xmj ‰ H and Drss„ P mi Xmj such that mkprss„q “ 0 for i ă k ă j, i.e. rss„

is marked twice in σ.
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Consider a s1 P rss„, @rsj´1s„ P mj´1 it holds that δps1j´1q ă δps1q, s1j´1 P rsj´1s„

because they share a transition (see Prop. 5.7). By proceeding backward till mi we

define a chain of places of R, s1 ¨ ¨ ¨ s1 where δps1q ă ¨ ¨ ¨ ă δps1q, which is impossible.

Since δps1j´1q ă δps1q, s1j´1 P rsj´1s„ holds for each representant of rss„ then there

can be no path from rss„ to itself, hence the thesis. �

The requirement of being an acyclic unravel net is too strong to ask: cyclic

unravel nets would be impossible to merge if we allow strictly increasing measures

only, if we want to preserve the property of being an unravel net. We then have

to use a weaker criterion for merging nets. For this purposes we consider a special

class of unravel nets. We take unravel nets that can be decomposed in smaller

parts satisfying some properties, a sort of generalization of multi-clock nets (see

the subsection 2.2). In these nets if a transition puts a token in a place s of a

partition ν then it must have consumed a token from another place (at least one)

of the same partition. This is formalized in the following definition:

Definition 5.6. Let R “ pR, lq be a labeled unravel net, where R “ xS, T, F,my. Let

S1, . . . , Sk be a partition of S such that @t P T,@s P t‚. s P Si implies that Ds1 P Si

and s1 P ‚t, for some i P t1, . . . , ku, and for each i P t1, . . . , ku, Ri “ xSi,
‚Si Y

Si
‚, Fi,mi, ly “ R|Si is a connected Petri net. We call R a labeled partitioned

unravel net and we denote the partition as ν : S Ñ t1, . . . , ku such that Si “ ν´1piq.

We observe that R “ x
Ť

i Si,
Ť

ip
‚Si Y Si

‚q,
Ť

i Fi,
Ť

i mi,
Ť

i liy. The notion of

partition is clearly inspired to the one of multi-clock net and the unique requirement

we pose is that a token is produced in a place belonging to a transition, then there

must be a place belonging to the same partition in the preset, which implies that

a partition cannot move just receiving a token from another one, but is should be

able to move independently.

Definition 5.7. Let pR, νq “ ppR, lq, νq, with R “ xS, T, F,my, be a labeled parti-

tioned unravel net. We say that δ : S Ñ N is a locally strictly increasing measure
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if for each state X P StpRq, and each pair of places s, s1 of the net R|rrXss, it holds

that s ď s1 ^ νpsq “ νps1q ñ δpsq ă δps1q.

Propositions 5.7, 5.8 and 5.9 can be lifted to partitioned unravel nets and locally

strictly increasing measures.

Proposition 5.10. Let pR, νq “ ppR, lq, νq with R “ xS, T, F,my be a labeled

partitioned unravel net, and let δ : S Ñ N be a locally strictly increasing measure,

then @s, s1 P S such that ps‚ X ‚s1 ‰ Hq ^ pνpsq “ νps1qq it holds δpsq ă δps1q.

Proof. Let t P s‚ X ‚s1. In any subnet R|X that contains t (such X exists because

each transition is executable in an unravel net) s ă s1, then, by the hypothesis

νpsq “ νps1q and by Def. 5.7, δpsq ă δps1q. �

Proposition 5.11. Let pR, νq “ ppR, lq, νq with R “ xS, T, F,my be a labeled

partitioned unravel net, and let s1s2 ¨ ¨ ¨ snu a sequence of places such that @i ă

n, psi
‚ X ‚si`1 ‰ Hq ^ νpsiq “ νpsi`1q, i.e. there is a path from s1 to sn. Let

δ : S Ñ N be a locally strictly increasing measure, then δps1q ă δpsnq.

Proposition 5.12. Let pR, νq “ ppR, lq, νq with R “ xS, T, F,my be a labeled

partitioned unravel net, and let δ : S Ñ N be a locally strictly increasing measure,

then for each partition Si of S it holds R|Si is acyclic.

Proof. Assume there is a cycle s1s2 ¨ ¨ ¨ sns1, from Prop.5.11 it would happen that

δps1q ă δps1q, which is an absurd. �

The following theorem shows that if we have a partitioned unravel net, where we

defined a locally strictly increasing measure, we can merge it and obtain faithfully

another unravel net.

Theorem 5.2. Let pR, νq “ ppR, lq, νq with R “ xS, T, F,my be a labeled partitioned

unravel net, let δ : S Ñ N be a locally strictly increasing measure and let „ be the

equivalence relation induced by δ, i.e. s „ s1 iff pδpsq “ δps1q^ lpsq “ lps1q^ νpsq “

νps1qq or s “ s1. Then the resulting compact labeled net R “ pR, lq is a labeled

unravel net.
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Figure 5.4: A partitioned unravel net.

Proof. Suppose there exists a fs σ “ m rt0ym1 rt1y ¨ ¨ ¨ rti´1ymi rtiy ¨ ¨ ¨ rtj´1ymj rtjy ¨ ¨ ¨ P

RR
m such that mi X mj ‰ H and Drss„ P mi X mj such that mkprss„q “ 0 for

i ă k ă j, i.e. rss„ is marked twice in σ.

Since pR, νq is a partitioned then, @s1 P rss„ we can find in ‚tj´1 an equivalence

class with a representant s2 such that νps2q “ νps1q, hence δps2q ă δps1q. By

repeating the process from s2 till s P ti‚ we eventually find again s1 P ‚ti with

νps “ νs1. The chain of places S “ s1s2 ¨ ¨ ¨ ss1 satisfies the hypotheses of Prop. 5.11,

then δps1q ă δps1q which is impossible, then there is no firing sequence in pR, νq

which allows to mark twice a place. This prove that pR, νq restricted to a state

is safe and acyclic. That subnet is also causal because a place with two incoming

arcs would violate the safeness or the acyclicity, then it is as unravel net. �

When the measure is not strictly increasing or locally strictly increasing we may

still obtain an unravel net, but sometimes at the price of enriching it in order to

forbid certain unwanted executions in the compact version. The notion of measure

we consider now is inspired from the one of occurrence depth.

Definition 5.8. Given a labeled unravel net R “ pR, lq with R “ xS, T, F,my, we

say that a measure δ : S Ñ N is homogeneous iff for each X P StpRq and each

subset of places Ŝ of R|X “ xS 1, X, F 1,my such that there exists a label a such that

l´1paq X S 1 “ Ŝ, it holds that Ŝ 1 can be totally ordered with respect to the reflexive
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Figure 5.5: A labeled net.

and transitive closure of F 1, δpŜ 1q “ t1, . . . , |Ŝ 1|u and s ď s1 ñ δpsq ď δps1q.

An homogeneous measure on causal nets is the token count of merged process.

Again, as done before, we may introduce an equivalence relation which is based

on an homogeneous measure δ by stipulating that s „ s1 iff either s “ s1 or

plpsq “ lps1q ^ δpsq “ δps1qq. As the measure is an homogeneous one, we do

not have to require that the two places are incompatible as it is implied by the

definition of the measure itself. When compacting using this merging relation the

result may be not an unravel net (a merged process with executable cycles, for

instance). However this net may be turned into an unravel one without losing

behaviors of the original net by adding some places which sole purpose is to forbid

unwanted executions.

Take an unravel net R “ pxS, T, F,my, lq and an homogeneous measure δ on

S. We can add to the net R “ xS, T, F,my a set of places Sng “ tplpsq, δpsq, ngq |

s P Su Y tplpsq, 0, ngq | s P Szmu, and connect them to the transitions in T as

follows: Fngpplpsq, n, ngq, tq “ 1 whenever Ds1 P t‚. lpsq “ lps1q and δps1q “ n ` 1,

and Fngpt, plpsq, n, ngqq “ 1 whenever Ds1 P t‚. lpsq “ lps1q and δps1q “ n; finally

the places plpsq, 0, ngq are initially marked as well as plpsq, 1, ngq if b P m (and are

the multiset mng).

We call these places no-gap as in the case that the δ is precisely the token count

and R “ pR, lq is a branching process of a safe net N , they assure that the tokens in
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Figure 5.6: The enriched branching process of the net in Fig. 5.5.

a place of the original net N are produced in the proper sequence. The net obtained

by adding these new places Sng , namely NgpRq “ xSYSng , T, F YFng ,m`mngy, is

an unravel net such that to each fs σ of NgpRq a fs σ1 of R corresponds and they are

such that runpσq “ runpσ1q but also the vice versa holds, thus to each fs σ̂ P RR
m a

fs σ̂1 P RNgpRq
m`mng

corresponds such that runpσ̂q “ runprunpσq1q, hence both unravel

nets have exactly the same states, which means that this enriching does not change

the behaviors of the net. The following theorem states that merging an enriched

unravel net generates an unravel net. This somehow generalizes Theorem 4.1.

Theorem 5.3. Let R “ pR, lq be a labeled unravel net, where R “ xS, T, F,my.

Let NgpRq “ pNgpRq,Ngplqq where Ngplqpsq “ lpsq if s P S and lpps, n, ngqq “ lpnq

obtained with respect to an homogeneous measure δ. Let „ be the equivalence

relation induced by this measure on the places in S. Then NgpRq “ pNgpRq,Ngplqq

is an unravel net.

Proof. Merging relations preserve safeness. The proof that NgpRq is indeed an

unravel net is the same as the one of Theorem 4.1. �

As a corollary of this theorem we have the following.
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Figure 5.7: The resulting unravel net of the compaction of NgpCq in Fig. 2.1

Corollary 5.1. Let C “ pC, pq be a branching process of the safe net N , where

C “ xB,E, F,my. Let NgpCq “ pNgpCq,Ngppqq be the unravel net obtained by

applying Ng to C and p and consider the equivalence relation „ induced by „tok ,

where „tok is defined on conditions in B. NgpCq “ pNgpCq,Ngppqq in a labeled

unravel net and furthermore NgpCq|B„tok
is a merging process of N , where B„tok

are the merged resource conditions.



Chapter 6

Contextual unravel nets and event

structures

Event structures are one of the main ways to represent computations in service

oriented computations, thus the quest for event structures where the new kind of

dependencies may be easily represented.

Consider a seller behaving as follows. When he receives a request for delivering

a good, he sends a confirmation if the good is immediately available, but if it is

not (hence the not-available event happens) he sends a confirmation only after

being sure that the good is available in some other places and he may eventually

get it. Furthermore he delivers the good only after receiving the payment unless

the one requesting the good is a premium user. In this scenario the event confirm

may happens after the event request has happened unless the not-available

event has happened. In this case the event confirm depends not only on request,

but also on the event available signalling that the good is somewhere available.

The dependency pattern of confirm may augment in presence of a certain event

(in this case not-available). The event deliver depends on the event pay, but

if the event premUser is present then this dependency is dropped.

Event structures have generally a relation to represent the dependencies among

events and another relation to stipulate which events cannot happen in the same

71
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computation under certain conditions. A computation is then a subset of events

such that there is no pair of events in conflict and each event is such that all of its

causes are contained in the configuration. The dependencies are often represented

as a partial order or a relation that should be a partial order when confined to

configuration, like in flow event structures.

In this chapter we give a Petri net counterpart to the notions of shrinking and

growing causality that, as the example shows, can be one of the relevant ingredients

for service oriented computations. The authors in [AKPN15a] state that in the

usual notion of event structures the dependencies have a static flavour, whereas,

in the case of shrinking and growing causality, the dependencies to be dropped

or added give a more dynamic account. However in the shrinking and growing

causality relations it is somehow hardwired which dependencies are involved. Thus

an event may have several histories, depending on the combination of modifiers

that have happened so far. Our idea is rather simple. We introduce a transition

(with the same label) for each possible history (similarly to what happens when

considering labelled causal nets like the notion of unfolding [Win87] or branching

processes [Eng91]) and we use contextual arcs to understand which is the set of

modifiers that have happened so far. The kind of nets we devise should still have

some characteristics similar to the ones of causal nets, hence we require that the

restriction of the net to a specific subset of transitions (a computation) gives an

acyclic net, i.e. a net where dependencies are easily understandable and conflicts

are absent. We call this notion unravel net.

The notion of unravel net with contextual arcs turns out to be powerful enough

to represent shrinking and dynamic causality, but it should be stressed that we

actually give an implementation of how the executions of the event structures may

be performed. For this reason we focus on traces rather than on configurations.

By exploiting the relationship between dynamic event structures and labeled

unravel nets with contextual arcs where the contextual arcs are not inhibitor ones,
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we remain in the classes of nets where many properties can be easily and efficiently

verified.

6.1 Contextual Petri nets

We recall the main definitions about labeled Petri nets with contextual arcs.

Definition 6.1. A Petri net with contextual arcs is a 5-tuple N “ xS, T, F, C,my,

where S is a set of places and T is a set of transitions (with S X T “ H), F Ď

pS ˆ T q Y pT ˆ Sq is the flow relation, C Ď pT ˆ Sq is the context relation and

m P µS is called the initial marking.

We require that pt, sq P C implies pt, sq R F . Contextual Petri nets are depicted

as usual: places are circles, transitions are boxes, the flow relation is represented

by arcs from x to y whenever px, yq P F and the read arcs are depicted as a straight

lines.

Since we are not interested anymore on identifying places, the labeling mapping

will be defined for transitions only.

Definition 6.2. A labeled Petri net over L is the pair N “ pN, lq where N “

xS, T, F, C,my is a Petri net with contextual arcs and l : T Ñ L is a total labeling

mapping.

Given a transition t, its context is t “ ts P S | pt, sq P Cu. Also t may be seen as

a multiset on S: tpsq “ 1 whenever pt, sq P C and tpsq “ 0 otherwise. A transition

t P T is enabled at a marking m P µS, denoted with m rty , whenever ‚t Ď m and

t Ď m. A transition t enabled at a marking m can fire and its firing produces

the marking m1 “ m ´ ‚t ` t‚. The firing of a transitions t at a marking m is

denoted with m rtym1. We stress that the context is used only to check whether

or not a transition is enabled at a given marking. ‚t ` t ‰ H (which means that

no transition may fire spontaneously).



74 CHAPTER 6. C-UNRAVEL NETS AND EVENT STRUCTURES

The other notions like firing sequences and reachable markings are the obvious

generalizations of the ones on safe nets without contextual arcs.

6.2 Contextual Unravel Nets

Definition 6.3. A contextual unravel net (c-unravel net) N “ xS, T, F, C,m, ly

over a set of label L is a safe occurrence net such that

1. for each state X P StpNq the net N |S1X is acyclic and conflict-free, where

S 1 “ ‚X YX‚ YX,

2. for all t1, t2 P T , if t1 # t2 and lpt1q ‰ lpt2q then for each t P l´1plpt1qq and

for each t1 P l´1plpt2qq it holds that t # t1,

3. for each e P lpT q there exists a unique place s such that tsu Ď
Ş

tPl´1peq
‚t

‚s “ H and mpsq “ 1, and we denote that place with ˛e, and

4. for each e P lpT q there exists a unique place s such that tsu Ď
Ş

tPl´1peq t
‚,

s‚ “ H, mpsq “ 0 and ‚s “ l´1peq, and we denote that place with e˛.

The whole unravel net is not constrained to be either acyclic or conflict-free,

but each of its execution gives an acyclic and conflict-free net. Condition (2)

guarantees that if two transitions are in conflict and have different labels, then any

pair of transitions with the same labels are in conflict as well. The other conditions

guarantee that two equally labeled transitions are in conflict, each transition can

happen just once and equally labeled transitions have some common places in their

preset. The two final conditions ensure that all equally labelled transitions are in

conflict (as they share a place in the preset which is initially marked and that

cannot be filled again), and all of them put in a place (where no other transition

beside the ones bearing that specific label can put a token). This place may be

redundant, unless it is connected to a transition with a contextual arc.
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As equally labeled transitions are in conflict in an unravel net all the transitions

in a firing sequence have different labels. The sequence of labels of a fs form a trace

of the net. Formally,

Definition 6.4. Let N “ xS, T, F, C,m, ly be an unravel net over a set of labels L.

Let σ P RN
m with σ “ m rt1ym1 rt2ym2 ¨ ¨ ¨mn´1 rtnymn. Then a trace of N is the

sequence of labels lpt1t2 ¨ ¨ ¨ tnq and it is denoted by runpσq. The set of traces of a

net is TrpNq “ tw P L˚ | Dσ P RN
m . runpσq “ wu

Configurations are obtained by forgetting the sequence, as each state is obtained

by a firing sequence. Let N “ xS, T, F, C,m, ly be an unravel net over a set of

labels L. Let X P StpNq, then X “ tlptq | t P Xu is a configuration of N . The set

of configuration of a net is denoted with ConfpNq.

6.3 Beyond prime and bundle event structures

Event structures usually model concurrency systems by defining relationships among

events such as causality and conflict. We recall the definitions of various kind of

event structures (not of all possible variants). In order to describe the state of

those systems we will adopt the one of events trace which, besides some peculiar

cases, is enough to retrieve the the usual notion of configuration. Consider a set

of events E and let ρ “ e1 ¨ ¨ ¨ en be a sequence of distinct events in E and with

overloading of notation with ε we denote the empty sequence. With ρ we denote

the set te1, . . . , enu and the set associated to the empty sequence is the empty set.

Given a sequence ρ of events, its length is |ρ| and it is denoted with lenpρq for each

1 ď i ď lenpρq with ρi we denote the sequence e1 ¨ ¨ ¨ ei, and with ρ0 we denote the

empty sequence.

In Def. 2.12, (1) is the axiom of finite causes which states that events cannot

depend on an infinite number of other events, and (2), contains the conflict heredity

property, which says if two events are in conflict then each one conflicts with all of
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the other one’s successors.

In the following we will show several types of event structures defined as exten-

sions of pes. Since some of them can express a sort of dynamism in the structure

(e.g. adding or dropping causal dependencies), clauses (1) and (2) will be hard to

maintain. To cope with that limitation we will consider a different definition of

pes which is equivalent to Def. 2.12 if finite configurations are considered.

6.3.1 Simple prime event structures

We start by defining the notion of simple prime event structure we will use in this

paper following [AKPN15a]. We consider only finite event structures, thus the set

of events should be always considered finite.

Definition 6.5. A simple prime event structure (spes) is a triple P “ pE,Ñ,#q,

where E is a finite set of events and Ñ, # are two not intersecting binary relations

on E called causality relation and conflict relation respectively, such that # is

irreflexive and symmetric.

This notion differ substantially from the one given in [Win87], but both have

the same configurations and traces, as we are considering finite event structures,

as we will show.

Given a spes P “ pE,Ñ,#q and an event e P E with icpeq we denote the set

te1 | e1 Ñ eu. A sequence of events ρ “ e1 ¨ ¨ ¨ en is a trace whenever ρ is conflict

free, i.e. for each ei, ej P ρ, ei ‰ ej ñ  pei # ejq and for each i ď n, icpeiq Ď ρi´1.

Given a trace ρ the associated configuration is ρ.

6.3.2 Dual event structures

Definition 6.6. A Dual Event Structure (des) is a triple δ “ pE,#, ÞÑq, where

E is a set of events, # Ď E2 is an irreflexive symmetric relation (the conflict

relation), and ÞÑĎ PpEq ˆ E is the enabling relation.
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The definitions of traces and configurations are the same as the ones of bes(Def. 3.4

and 3.5).

We now recall some notions of event structure where causality may change.

6.3.3 Shrinking Event Structures

Given a pes it is possible to add a suitable relation to model the removal of causal

dependencies [AKPN15a]. The idea is to introduce a ternary relation stipulating

that the happening of a specific event (the modifier) allows to drop a specific cause

for another event (the target).

Definition 6.7. A Shrinking Causality Event Structure (ses) is the quadruple

γ “ pE,Ñ,#,Bq where pE,Ñ,#q is a pes and B Ď E ˆ E ˆ E is the shrinking

causality relation such that re Ñ e2sB e1 implies e Ñ e2 for all e, e1, e2 P E.

The only extra requirement is that to have a cause to drop for an event, this

cause should be hardwired in the causality relation Ñ. For rc Ñ tsBm we call m

the modifier, t the target and c the contribution, and we denote with rc Ñ tsB the

set of all modifiers dropping c Ñ t. The set of dropped causes of an event can be

defined w.r.to a specific history, i.e. a set of events, by the function dc: 2EˆE Ñ 2E,

which is defined as follows: dcpH, eq “ te1 | Dd P H. re1 Ñ esB du. As for pes, we

have a function ic : E Ñ 2E defined in the same way, i.e icpeq “ te1 | e1 Ñ eu, and

we say that icpeq are the initial causes of the event e.

Definition 6.8. Traces for a ses are defined as follows. Let γ “ pE,Ñ,#,Bq be

a ses. A trace of γ is a sequence of distinct events ρ “ e1 ¨ ¨ ¨ en with ρ Ď E such

that:

1. ρ is conflict-free and

2. @1 ď i ď lenpρq. picpeiq z dcpρi´1, eiqq Ď ρi´1.
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The relevant difference with the notion of trace for pes is just that in the

enabling of each event, depending on the modifiers happened so far (hence the role

of the history), the set of the immediate causes may shrink.

Example 6.1. Consider the following ses, with just three events a, b and c, with

b Ñ c and rb Ñ csB a. a is the modifier for the target c and its happening has the

effect that the cause b may be dropped. The maximal traces are: acb, abc, bca and

bac. It is worth to notice that in all but the trace bca the event c has no predecessor.

6.3.4 Growing Event Structures

Opposite to shrinking causality there is the notion of growing causality [AKPN15a],

in which a dependency between two events is added after the execution of a third

event.

Definition 6.9. A growing causality event structure (ges) is the quadruple δ “

pE,Ñ,#,Iq where pE,Ñ,#q is a pes and IĎ Eˆ Eˆ E is the growing causality

relation such that @e, e1, e2 P E. e1 I re Ñ e2s ùñ  pe Ñ e2q.

Here the requirement is that a dependency can be added only if it is not hard-

wired in Ñ. For m I rc Ñ ts we call m the modifier, t the target and c the

contribution, and we denote with I rc Ñ ts the set of all modifiers adding c Ñ t.

The set of added causes of an event has to be defined w.r.t a specific history, i.e.

a set of events, and it is using the function ac : 2E ˆ E Ñ 2E, which is defined as

follows: acpH, eq “ te1 | Dd P H. d I re1 Ñ esu. The initial causes of an event are

defined as usual.

Definition 6.10. Let δ “ pE,Ñ,#,Iq be a ges. A trace of δ is a sequence of

distinct events ρ “ e1 ¨ ¨ ¨ en with ρ Ď E such that

1. ρ is conflict-free and

2. @1 ď i ď lenpρq. picpeiq Y acpρi´1, eiqq Ď ρi´1.
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Example 6.2. Consider just three events a, b and c, and the unique non empty

relation is a I rb Ñ cs. a is the modifier for the target c and its happening has

the effect that the cause b should be added. The maximal traces are: abc, bac, cab

and cba. It is worth to notice that in all but the traces abc, bac the event c must

happen after b.

6.3.5 Dynamic causality event structure

In [AKPN15a] it is shown that neither the shrinking causality relation can be

expressed with the growing causality relation or not the converse, hence ses and

ges are incomparable. Thus the two notions of shrinking and growing causality

can be put together in a definition.

Definition 6.11. A dynamic causality event structure (dces) is a quintuple Σ “

pE,Ñ,#,B,Iq, where pE,Ñ,#q is a pes B Ď EˆEˆE is the shrinking causality

relation, and IĎ EˆEˆE is the growing causality relation, and are such that for

all e, e1, e2 P E

1. re Ñ e2sB e1 ^ @m P E. m I re Ñ e2s ùñ e Ñ e2,

2. e1 I re Ñ e2s ^ @m P E.re Ñ e2sBm ùñ  pe Ñ e2q, and

3. @e, e1 P E. @m, a P E. a I re Ñ e1sBm.

For detailed comments on this definition we refer to [AKPN15a], it should be

observed, however, that the definition we consider here is slightly less general of

the one presented there, as we add a further condition, the last one, which is

defined in the [AKPN15b] and it does not allow that the same contribution can

be added and removed by two different modifiers. These are called in [AKPN15b]

single state dynamic causality event structures and rule out the fact that some

causality (or absence of) depends on the order of modifiers. Conditions (1) and (2)

simply rephrase the conditions under which the shrinking and growing relations
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are defined: in the case of the shrinking relation the dependency should be present

and in the case of the growing not; condition (3) says that if a dependency is added

then it cannot be removed.

The traces are defined accordingly.

Definition 6.12. Let Σ “ pE,Ñ,#,B,Iq be a dces. A trace of Σ is a sequence

of distinct events ρ “ e1 ¨ ¨ ¨ en with ρ Ď E such that

1. ρ is conflict-free and

2. @1 ď i ď lenpρq. ppicpeiq Y acpρi´1, eiqqz dcpρi´1, eiqq Ď ρi´1.

Example 6.3. Consider the set of events ta, b, c, d, eu, with b Ñ c, rb Ñ cs B a

and d I re Ñ cs. a and d are the modifiers for the target c, the happening of a has

the effect that the cause b may be dropped, and the one of d that the cause e should

be added for c. If the prefix of the trace is bc (the target c is executed before of one

of its modifiers a and d) then the final part of the trace is any combination of a, e

and d. If the modifier a is executed before c then we have the traces ac followed by

any combination of the remaining three events, abcde and abced and finally if the

two modifiers happen before c we have adecb or adebc and similarly we have daecb

and daebc. Clearly, after the happening of the two modifiers in any order, it not

prescribed that c happens immediately, as it may happen after b which is not any

longer a cause for it.

We now recast in this setting the example discussed in the introduction.

Example 6.4. The events of the seller example illustrated in the introduction are

c corresponding to confirm, r to request, n to not-available, a to available

which means available somewhere else, p to pay, d to deliver, i that means that

the good is present in stock and finally u to premUser. The event structure has

just a pair of events in conflict, namely i and n and the various relations are: the

causal relation is r Ñ i, r Ñ a, i Ñ c, p Ñ d, c Ñ d and u Ñ d, the shrinking
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relation is rp Ñ dsB u, ri Ñ csB n and ru Ñ dsB p and finally the growing relation

is n I ra Ñ cs. Once that the event r happens then there is choice: the good is

present (i) or not (n). In the former situation the confirm message can be issued

(c) and after that the good can be delivered, either after a payment p or because the

one issuing the request is a premium user (u). A trace could be ricpd or ricud. A

premium user can also pay, but this has no influence on the delivering of the good.

In the latter situation (the good is not in stock) the c depends on the availability of

the good at some place (n I ra Ñ cs) and it should not depend any longer from i

(ri Ñ csB n). A trace is rnacpd.

6.4 Unravel nets and event structures

In this section we relate unravel nets and event structures. We characterize some

unravel nets and we show how to associate an event structure to them, and then

we will directly consider dces and associate to a dces a suitable unravel net.

6.4.1 From unravel nets to event structures

Given an unravel net N “ xS, T, F, C,m, ly over a set of labels L, a transition t1 P T ,

with Predpt1q we denote the set tt P T | t‚ X ‚t1 ‰ Hu. Two different labels e and

e1 in lpT q are said to be in conflict, denoted e F e1 iff Dt P l´1peq and Dt1 P l´1pe1q

and t # t1. Observe that due to condition (b) of Def. 3.1 this is well defined.

We start characterizing unravel nets representing event structures where no

modifier is present.

Definition 6.13. Let N “ xS, T, F, C,m, ly be an unravel net over the set of labels

L. We say that N is simple whenever l is injective, C is empty and for each s P S.

| ‚s| ď 1.

Observe that a simple unravel net is indeed a causal net. To a simple unravel

net a pes can be easily associated. The intuition is the expected one: to each
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place s in the preset of a transition t labeled with an event e we associate a causal

dependency for e, namely with the unique event associate to the transition ‚s. The

proof of the following proposition is obvious.

Proposition 6.1. Let N “ xS, T, F, C,m, ly be a simple unravel net, then EsipNq “

plpT q,Ñ,#q is a spes, where the conflict relation is defined as follows: e # e1 iff

e F e1, and the causal relation is defined as follows: for each e P lpT q, for each

s P ‚l´1peq we have lp ‚sq Ñ e.

The following theorem states that a simple net and the associate spes have the

same traces.

Theorem 6.1. Let N “ xS, T, F,H,m, ly be a simple unravel net and let EsipNq

be the associated spes. Then w is a trace of N iff w is a trace of EsipNq.

Proof. Observe that a simple unravel net is a special case of unravel net as it is a

causal net. Hence the proof is as in Th. 3.1. �

The requirements for an unravel net to be simple are quite strong. We start in-

vestigating what happens if we drop injectivity of the labeling mapping. Intuitively

this means that we have various implementations of the same activity, as this one

may happen due to various causes which are not any longer in the exclusive or

relation.

Definition 6.14. Let N “ xS, T, F, C,m, ly be an unravel net over the set of labels

L. We say that N is semi simple whenever C is empty and l is not injective.

Consider the net in Fig. 6.1, the transitions t3, t4 and t5 represent the same

activity c. This activity may be executed after a only (t3), or after b only (t5)

and finally after both (t4). Following the spirit of des we do not implement a

maximal causal semantics, where the instance of the transition with more or -causes

is executed.
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Figure 6.1: A semi simple unravel net

To this kind of net a des is associated, as the following proposition shows.

Observe that the bundle are formed in a slightly different way, with respect to the

previous notion.

Proposition 6.2. Let N “ xS, T, F, C,m, ly be a semi simple unravel net, then

EsspNq “ plpT q,#, ÞÑq is a des, where

• the conflict relation is defined as follows: e # e1 iff e F e1, and

• the bundle relation is defined as follows: for each e P lpT q, consider Te “

l´1peq, then

– for each s P
Ş

tPTe
‚t we have lp ‚sq ÞÑ e, and

– lp
Ť

tPTe
p
Ť

sP ‚t
‚sqq ÞÑ e.

Proof. The conflict and the enabling relation satisfy Def. 6.6. �

Example 6.5. Consider the net N in Fig. 6.1, the associated des EsspNq has

three events ta, b, cu, the conflict relation is empty (not the one of the net, where

the transitions t3, t4 and t5 are all pairwise in conflict), and the relation ÞÑ is

ta, bu ÞÑ c.

Theorem 6.2. Let N “ xS, T, F, C,m, ly be a semi simple unravel net and EsspNq

be the associated des. Then w is a trace of N iff w is a trace of EsspNq.
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Proof. Since the traces and the configurations are similar of the ones of a bes the

proof follows the same pattern of the Th. 3.1. �

We introduce now the notion of stable unravel net. The intuition behind this

definition is the following: contextual conditions can be removed (they are initially

marked places, and there is no incoming arc connected to these conditions) or they

can established and they last forever (the places have no outgoing arcs). Given a

transition t such that t ‰ H, with Modifiersptq we denote the set of labels associated

to the contextual arcs and it is equal to tlps‚q | s P tu Y tlp ‚sq | s P tu, i.e. the set

of transitions putting or removing tokens in t.

Definition 6.15. Let N “ xS, T, F, C,m, ly be an unravel net over the set of labels

L. We say that N is stable whenever

1. C is not empty,

2. for all t P T t ‰ H ñ @s P t. ‚s “ H _ s‚ “ H,

3. for all e P lpT q, for each marking m PMN , for all t, t1 P l´1peq with t ‰ t1 if

m rty then  pm rt1y q, and

4. for all e P lpT q, for all t, t1 P l´1peq it holds that H ‰ t ‰ t1 ‰ H and

Modifiersptq “ Modifierspt1q.

In stable unravel nets contextual arcs are used to signal modifiers to a label,

by allowing to trigger the proper instance of that label (the one corresponding to

the proper combination of triggers), whereas in the classical theory of contextual

nets ([MR95] or [BCM01]) they are used to either enlarge concurrency or to model

asymmetric conflicts. The final conditions are introduced to assure that equally

labeled transitions cannot be simultaneously enabled at any marking and have

always a non empty context. Stability is not enough to capture shrinking or growing

causality. In fact we have to identify, among the various conflicting transitions

that are equally labeled which is the one representing the occurrence of the event
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Figure 6.2: A well formed unravel net with shrinking causality.

without that any modifiers has happened. Once that we have found that transition

representing the happening without any modifier, we may find out whether the

modifier is a shrinking or growing (or both, but for different labels).

Definition 6.16. Let N “ xS, T, F, C,m, ly be a stable unravel net over the set

of labels L. We say that N is well formed (wfn) iff, for all e P lpT q, one of the

following holds:

• if |l´1peq| ą 1 then D! t P l´1peq such that @s P t. ‚s “ H or

• if l´1peq “ ttu then t “ H.

This definition guarantees that among the transitions bearing the same label

there is one that may happen before that all the modifiers have happened. The

second condition say that if there is just one instance of a given label (event) then

there is no modifier for that event.

Due to the two definitions above it is possible to introduce the following set of

labels. Given a wfn N “ xS, T, F, C,m, ly and a label e P lpT q, with StableCpeq “

lp
Ť

sP ‚t
‚sq, where t is the unique transition in l´1peq such that either @s P t. ‚s “ H

or t “ H, we denote the set of stable causes of e. Observe that we are identifying,

in the net N , a subset of transitions with a specific label.

Example 6.6. Consider the stable N net in Fig. 6.2, it is clearly a well formed,

the set of modifier for c contains just a and StableCpcq “ tpt2, bqu. Instead of,
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d

t1

e

t2

ft3 f t4

N 1

Figure 6.3: A well formed unravel net with growing causality.

considering the wfn N 1 in Fig. 6.3, the set of modifier for f contains just d but

StableCpfq “ H.

The following definition captures what is the usage of contextual arcs in the

case of removing causes.

Definition 6.17. Let N “ xS, T, F, C,m, ly be a wfn over the set of labels L and

let e1, e P lpT q such that e1 ‰ e. We say that e1 is a shrinking modifier for e iff

• there Dt, t1 P l´1peq such that t ‰ t1, p ˛e1, tq P C and pe1˛, t1q P C and

• there exists e2 P StableCpeq such that e2 R lp
Ť

sP ‚t1
‚sq.

The set of shrinking modifiers for e is denoted with ShrModpeq.

When the set ShrModpeq is not empty, one has to identify what are the depen-

dencies that are dropped. These are captured as follows. Consider e1 P ShrModpeq,

then there exists t P l´1peq such that p ˛e1, tq P C. The elements that are dropped

are

Drope
e1 “ tlptq | Dp

˛e1, tq, pe1˛, t1q P C. lptq “ lpt1q “ e ^ t P ‚
p
‚tqu X StableCpeq

Similarly we can define the growing modifier, using the contextual conditions

as well.



6.4. UNRAVEL NETS AND EVENT STRUCTURES 87

a

t1

b

t2

c

t3

d

t4

d

t5

d

t6

d

t7

e

t8

f

t9

Figure 6.4: A wfn such that ShrModpdq ‰ H and GroModpdq ‰ H. Contextual
arcs are drawn in red to avoid confusion.

Definition 6.18. Let N “ xS, T, F, C,m, ly be a wfn over the set of labels L and

let e1, e P lpT q such that e1 ‰ e. We say that e1 is a growing modifier for e iff

• there Dt, t1 P l´1peq and t̂ P l´1pe1q such that t ‰ t1, p ˛e1, tq P C and pe1˛, t1q P C

and

• there exists e2 P lp
Ť

sP ‚t1
‚sq such that e2 R StableCpeq.

The set of growing modifiers for e is denoted with GroModpeq.

Again when the set GroModpeq is not empty, one has to identify what are the

dependencies that are added. Consider again e1 P GroModpeq, again there exists

t P l´1peq such that p ˛e1, tq P C. The elements that are added are

Adde
e1 “ tlpt

1
q | t1 ‰ t ^ pe1˛, t1q P CuzlpStableCptqq

Example 6.7. Consider again the nets of the Fig. 6.2. It has a shrinking modifier

a for the label c (ShrModpcq “ tau) and Dropc
a “ tbu, whereas the one in the Fig. 6.3

has a growing modifier d for the label f (GroModpfq “ tdu) and Addf
d “ teu. In
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the case of the wfn in Fig. 6.4 we have that the label d has two modifiers: e and f,

where e is both shrinking and growing, whereas f is only shrinking.

The following two propositions characterize event structures associated to wfns

where only one kind of modifier is present, either shrinking or growing.

Proposition 6.3. Let N “ xS, T, F, C,m, ly be a wfn such that
Ť

ePlpT q ShrModpeq ‰

H and
Ť

ePlpT q GroModpeq “ H, then EshpNq “ plpT q,#,Ñ,Bq is a ses, where

1. the conflict relation is defined as follows: e # e1 iff e F e1,

2. the causality relation is defined as follows: for each e P lpT q, for each s P

‚l´1peq, for each t P ‚s we have lptq Ñ e, and

3. the shrinking causality relation is defined as follows: for all e P lpT q, for each

e1 P ShrModpeq define re2 Ñ esB e1 where e2 P Drope
e1.

Proof. We must prove that 3) implies 2), in particular e2 P Drope
e1 implies e2 Ñ e.

Recall Drope
e1 “ tlptq | Dp

˛e1, tq, pe1˛, t1q P C. lptq “ lpt1q “ e ^ t P ‚p ‚tquXStableCpeq,

it holds lptq “ e2 for some t P ‚p ‚tq and, since e2 is also a stable cause, then it

belongs to the set lptq of item 2), hence e2 Ñ e. �

Proposition 6.4. Let N “ xS, T, F, C,m, ly be a wfn such that
Ť

ePlpT q ShrModpeq “

H and
Ť

ePlpT q GroModpeq ‰ H, then EgrpNq “ plpT q,#,Ñ,Iq is a ges, where

1. the conflict relation is defined as follows: e # e1 iff e F e1,

2. the causality relation is defined as follows: for each e P lpT q, for each s P

‚l´1peq, for each t P ‚s we have lptq Ñ e provided that for all e1 P GroModpeq

it holds that lptq R Adde
e1, and

3. the growing causality relation is defined as follows: for all e P lpT q, for each

e1 P GroModpeq define e1 I re2 Ñ es where e2 P Adde
e1.
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Proof. We prove that e1 I re2 Ñ es implies  pe2 Ñ eq. Suppose e2 Ñ e then

lptq “ e2 for each t P ‚s and for each s P ‚l´1peq but lptq R Adde
e1 which contradicts

the hypothesis on e2. �

Example 6.8. The shrinking event structure associate to N in Fig. 6.2 is rb Ñ

csBa, whereas the growing event structure associated to N 1 in Fig. 6.3 is d I re Ñ fs

As before we have the following two theorems.

Theorem 6.3. Let N “ xS, T, F, C,m, ly be a wfn such that
Ť

ePlpT q ShrModpeq ‰ H

and
Ť

ePlpT q GroModpeq “ H, and let EshpNq “ plpT q,#,Ñ,Bq be the associated

ses. Then w is a trace of N iff w is a trace of EshpNq.

Proof. (ñ) Let σ P RN
m with σ “ m rt1ym1 rt2ym2 ¨ ¨ ¨mn´1 rtnymn, and let τ “

lpt1t2 ¨ ¨ ¨ tnq the associated trace. We have lptiq ‰ lptjq for all 0 ď i, j ď n, otherwise

ti# tj would be in conflict against the hypothesis of belonging to the same net trace,

then the sequence of labels τ “ lpt1t2 ¨ ¨ ¨ tnq contains no duplicates, as required by

Def. 6.8. Also no labels are in conflict, so the sequence is conflict free. It remains

to prove that @1 ď i ď lenpτq. picpeiq z dcpτi´1, eiqq Ď τi´1. If lenpτq “ 0 then

the empty sequence of events of EshpNq is trivially a trace. Suppose that it is true

for net trace of length n. Let lpt1t2 ¨ ¨ ¨ tntn`1q the new trace of length pn ` 1q.

Let e “ l´1ptn`1q, we have leadpσq rtn`1y where leadpσq is the marking reached

executing the firing sequence σ, and since mn Ď
‚l´1ptn`1q and ttnu Ď ‚mn, by

Prop. 6.3, lptq Ñ e.

(ð) Again, by induction on the length of the trace. The proof is similar to the

(ð) part of Theorem. 3.1 but we must take into account that a trace of a ses is

a sequence of labels and each of these can map into several transitions of the net.

However, by condition 2) of Def 6.15 at each marking only one transition bearing

the same label can be enabled, so there is no ambiguity in the trace of N . �

Theorem 6.4. Let N “ xS, T, F, C,m, ly be a wfn such that
Ť

ePlpT q ShrModpeq “ H

and
Ť

ePlpT q GroModpeq ‰ H, and let EgrpNq “ plpT q,#,Ñ,Iq be the associated
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ges. Then w is a trace of N iff w is a trace of EgrpNq.

Proof. (ñ) Let σ P RN
m with σ “ m rt1ym1 rt2ym2 ¨ ¨ ¨mn´1 rtnymn, and let τ “

lpt1t2 ¨ ¨ ¨ tnq the associated trace. We have lptiq ‰ lptjq for all 0 ď i, j ď n, otherwise

ti# tj would be in conflict against the hypothesis of belonging to the same net trace,

then the sequence of labels τ “ lpt1t2 ¨ ¨ ¨ tnq contains no duplicates, as required by

Def. 6.8. Also no labels are in conflict, so the sequence is conflict free. It remains

to prove that @1 ď i ď lenpτq. picpeiq Y acpτi´1, eiqq Ď τi´1. If lenpτq “ 0 then

the empty sequence of events of EshpNq is trivially a trace. Suppose that it is true

for net trace of length n. Let lpt1t2 ¨ ¨ ¨ tntn`1q the new trace of length pn ` 1q.

Let e “ l´1ptn`1q, we have leadpσq rtn`1y where leadpσq is the marking reached

executing the firing sequence σ, and since mn Ď
‚l´1ptn`1q and ttnu Ď ‚mn, by

Prop. 6.4, lptq Ñ e because it is a stable cause of e, i.e. cannot belong to Add
lptn`1q

lptq .

(ð) Again, by induction on the length of the trace. The proof is similar to the

(ð) part of Theorem. 3.1 but we must take into account that a trace of a ses is

a sequence of labels and each of these can map into several transitions of the net.

However, by condition 2) of Def 6.15 at each marking only one transition bearing

the same label can be enabled, so there is no ambiguity in the trace of N . �

We can now put together what we have seen up to now obtaining a dces.

Proposition 6.5. Let N “ xS, T, F, C,m, ly be a wfn such that if e1 P
`
Ť

ePlpT q ShrModpeqX
Ť

ePlpT q GroModpeq ‰ H
˘

it holds that Drope
e1XAdde

e1 “ H, then EsgpNq “ plpT q,#,Ñ

,B,Iq is a dces, where

• the conflict relation is defined as follows: e # e1 iff e F e1,

• the causality relation is defined as follows: for each e P lpT q, for each s P

‚l´1peq, for each t P ‚s we have lptq Ñ e provided that for all e1 P GroModpeq

it holds that lptq R Adde
e1,

• the shrinking causality relation is defined as follows: for all e P lpT q, for each

e1 P ShrModpeq define re2 Ñ esB e1 where e2 P Drope
e1, and
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• the growing causality relation is defined as follows: for all e P lpT q, for each

e1 P GroModpeq define e2 I re Ñ e1s where e2 P Adde
e1.

Proof. It follows from Prop. 6.3 and 6.4. �

Example 6.9. Consider the net in Fig. 6.4. The sets of modifiers for d are

ShrModpdq “ te, fu and GroModpdq “ teu, Dropd
e “ tau,Dropd

f “ tbu and Addd
e “

tcu and finally StableCpdq “ H. The associated dces has the following enabling

relation: a Ñ d and b Ñ d, the conflict relation is empty, the shrinking causal-

ity relation is ra Ñ ds B e and rb Ñ ds B f and the growing causality relation is

e I rc Ñ ds.

Theorem 6.5. Let N “ xS, T, F, C,m, ly be a wfn such that if e1 P
`
Ť

ePlpT q ShrModpeqX
Ť

ePlpT q GroModpeq ‰ H
˘

it holds that Drope
e1 X Adde

e1 “ H, and let EsgpNq “

plpT q,#,Ñ,B,Iq be the associated dces. Then w is a trace of N iff w is a

trace of EsgpNq.

Proof. It follows from Th. 6.3 and 6.4. �

6.4.2 From dces to unravel nets

The idea here to associate to each event of the event structure a set of equally

labeled transitions, each of them represent one of the possible enabling conditions

of the event.

We start defining a number of sets we will use in the following. Consider a

dces Σ “ pE,#,Ñ,B,Iq then, for each e P E

• Beforepeq “ te1 | e1 Ñ e _ e2 I re1 Ñ esu is the set of events that causally

are before e, also potentially, in the case of growing causality,

• Afterpeq “ te1 | e Ñ e1 _ e2 I re Ñ e1su is the set of events that causally are

after e, also potentially, in the case of growing causality,
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• ModShrpeq “ te1 | re2 Ñ esB e1u is the set of shrinking modifiers for a certain

event e,

• ModGropeq “ te1 | e1 I re2 Ñ esu is the set of shrinking modifiers for a certain

event e,

• Lesspe, Xq “ te1 | De2 P X. re1 Ñ esB e2u is the set of cause of e that may be

removed due to a modifier in the set X,

• Morepe, Xq “ te1 | De2 P X. e2 I re1 Ñ esu is the set of cause of e that may

be added due to a modifier in the set X, and

• Solidpeq “ te1 | e1 Ñ eu.

For each event e and each subset of modifiers ModShrpeq Y ModGropeq we will

introduce a transition labeled with e. Among all the transitions with the same

labels the one that should be executed is the one where all and only the modifiers

in the subset have been previously executed.

Proposition 6.6. Let Σ “ pE,#,Ñ,B,Iq be a dces. Then to Σ we associate the

wfn N pΣq “ xS, T, F, C,m, ly where

1. S “ pEˆt˚uqYpEˆt˝uqYtpe, e1,Ñq | e1 P AfterpequYtpe, e1,Ñq | e P Beforepe1quY

tpte, e1u,#q | e # e1u,

2. T “ tpe, Xq | e P E ^ X Ď ModShrpeq YModGropequ,

3. ps, tq P F whenever one the following holds:

(a) s “ pe, ˚q and t “ pe, Xq, for any X,

(b) s “ pe1, e,Ñq and t “ pe, Xq with either e1 P SolidpeqzLesspe, X X

ModShrpeqq or e1 P SolidpeqzMorepe, X XModGropeqq,

(c) s “ pY,#q, with t “ pe, Xq and e P Y , for any X,

4. pt, sq P F whenever one the following holds:
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(a) s “ pe, ˝q and t “ pe, Xq, for any X,

(b) s “ pe, e1,Ñq and t “ pe, Xq, for any X,

5. ps, tq P C whenever

(a) s “ pe1, ˚q and t “ pe,Hq, for all e1 P ModGropeq YModShrpeq ‰ H,

(b) s “ pe1, ˚q and t “ pe, Xq if e1 R X XModShrpeq,

(c) s “ pe1, ˝q and t “ pe, Xq, if e1 P X XModGropeq,

6. mpsq “ 1 iff s is equal to pe, ˚q or to pe, e1,#q and it is equal to 0 otherwise,

and

7. lpe, Xq “ e.

Proof. We first prove that N pΣq is stable (see 6.15). Requirements 1) and 2) of

Def. 6.15 are trivially achieved by 5). To prove 3) of 6.15 we notice the each

transition with the same label e, pe, Xq, differs by the subsets X of modifiers which

has been executed before e, this means that when one of transitions of l´1peq is

executed the preset of the others bearing the same label is partially marked because

the subset of modifier (which define the preset) is different (otherwise it would be

the same transition). Last requirement for being a stable unravel net says that all

transitions with the same label have a not empty context and the modifiers map in

the same sets of labels. This is true in N pΣq because, by construction all transition

are built taking all possible subsets of modifiers of the same label.

Condition 5) captures the fact that N pΣq is a wfn (Def. 6.16). �

Each target of modifiers has a number of different implementations depending

on the set of modifiers that has happened. The flow and contextual relation are

defined easily using the sets of labels defined before Prop. 6.6.

Example 6.10. Consider the dces where the causal relation is a Ñ d and b Ñ d,

the empty conflict relation, the shrinking causality relation is ra Ñ ds B e and
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Figure 6.5: The unravel net of the seller in example 6.4

rb Ñ dsB f and the growing causality relation is e I rc Ñ ds. It is straightforward

to check that the synthesized wfn is the net in Fig. 6.4.

Theorem 6.6. Let Σ “ pE,#,Ñ,B,Iq be a dces, and let N pΣq “ xS, T, F, C,

m, ly be the associated unravel net. Then w is a trace of Σ iff w is a trace of N pΣq.

Proof. (ñ) By induction on the length of a trace w.

If w is the empty trace, then w is also a trace of N pΣq. If lenpwq “ 1 and

w “ teu then l´1peq is connected to the initial marking, i.e. ‚l´1peq Ď Sm, hence

e is also a trace of N pΣq. Assume that, for lenpwq “ n, it holds w P TrpN pΣqq,

w “ e1 ¨ ¨ ¨ en with w Ď E and consider the trace wen`1 P TrpΣq. According to

Def. 6.12 we can have four cases:

1. acpwn, en`1qq “ dcpwn, en`1qq “ H.

Then icpen`1q Ď wn. Hence when l´1penq is executed all places of the form

pe1, en`1,Ñq are marked which coincide with ‚pen`1,Hq,

2. dcpwn, en`1qq “ H.

The causes of en`1 are all the initial ones plus those added by the adding

modifiers, which lead to one of the presets of the transitions l´1pen`1q to be
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satisfied (not more than one because it is a stable unravel net),

3. acpwn, en`1qq “ H or H ‰ acpwn, en`1qq ‰ dcpwn, en`1qq ‰ H. This case can

be treated as 2), i.e. when l´1penq is executed (and only one of them is) only

one of the preset of l´1pen`1q will be marked.

(ð) Again we do the proof by induction on the length of the trace. For the empty

trace the thesis is trivial. Let u “ lpt1t2 ¨ ¨ ¨ tnq P TrpN pΣqq. Then there exists a

fs σ such that runpσq “ u. Consider the trace u ¨ tn`1 P TrpN pΣqq. By inductive

hypothesis lpt1t2 ¨ ¨ ¨ tnq is a trace of Σ, and that tn`1 is enabled at the marking

leadpσq. We show that ppicplptn`1qq Y acplpunq, lptn`1qqz dcplpunq, lptn`1qqq Ď un.

As tn`1 is enabled at the marking leadpσq, we have that the places pe1, e,Ñq are

marked, where e “ lptn`1q and each e1 satisfies ppicpe1qYacplpun´1q, e
1qz dcplpun´1q, e

1qq Ď

un´1. Then

1. e1 P un for each e1,

2. e1 P ppicplptn`1qq Y acplpunq, lptn`1qqz dcplpunq, lptn`1qqq for each e1,

From these two conditions it follows that pun´1 X all the e1 defined aboveq Ď un.

Clearly ue is conflict free. �

Observe that EsgpN pΣqq gives indeed Σ but this is not in general true if, starting

from a wfn N satisfying all the condition in Prop. 6.5 we do not in general obtain

the same net after applying N pEsgpNqq.

Example 6.11. Consider the seller described in the introduction and formalized

as dces Σ in Ex. 6.4. The associated net N pΣq is the one depicted in Fig. 6.5.

The event s has four instances, as it has two modifiers (p and u), hence the four

transitions are ps,Hq, ps, tpuq, ps, tuuq and ps, tp, uuq, whereas the event c has just

two instances as there is just a modifier acting as a modifier letting the dependencies

grow and shrink at the same time.
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Chapter 7

Conclusion

We try to draw some conclusions that are more a way to settle what we have

reached and what we can imagine to do in the future development of the ideas we

have presented.

The unravel nets turned out to be a flexible tool for representing in a compact

way the non-sequential behavior of Petri nets. Furthermore, as in the case of causal

nets, they have a strong connection with the event structures domain.

We have shown that bundle event structures can model faithfully the behaviours

of unravel nets and vice versa, w.r.t event traces. Then they have been put into

the context of the classic non-sequential semantics for Petri nets, namely the one of

unfoldings, and they proved to capture their compact representations. From this

we developed a general framework which, through the notion of merging relation,

is capable of defining different criteria for merging places and transitions. Finally

we took a more expressive notion of event structure and shown that the unravel

nets with read arcs are the proper counterpart of some of these notions.

We foresee some developments that we briefly summarize.
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7.1 Causal conditions

The notion of unravel net allows one to obtain causal dependencies that have a

local flavour which, in the context of property verification, is of limited use. It

would instead be nice to be able to add some conditions to ensure that the whole

subnet identified by these conditions is acyclic.

An attempt in this direction is the one proposed in [CP14] where a notion of

causal condition is proposed. Roughly speaking a causal condition is associated

to the i ´ th resource with a certain label (hence, if the resource is b, tokpbq “ i)

and it records all the possible ways this token is produced. This information is

based on the notion of neighbourhood of a transition. Formally the neighbour-

hood is defined as follows: Let N “ xS, T, F,my be a net, and let t P T , with

	 ptq “ tt1 | t1 P ‚s or t1 P s1‚ with s P ‚t and s1 P t‚u Y ttu we denote the

neighborhood of t, namely the transitions following and preceding t, including t.

The transitions in the neighborhood of t are used to find the local name of the

occurrence of the transition in the unfolding, and the name is used to character-

ize also internal and control places. To this aim, we introduce an equivalence on

words (on alphabets containing the names of transitions in the net we have to

unfold). Let N “ pxS, T, F,my, νq be a multi-clock net, and let T 1 Ď T be a subset

of transitions, and let w,w1 two words on pT 1q`, the for all t P T 1, we say that

w „t w
1 iff for all s P rr ‚tss, |proj pw, ‚sq| “ |proj pw1, ‚sq| and for all s P rrt‚ss,

|proj pw, ‚sq| “ |proj pw1, ‚sq|, where the operation proj pw,Xq takes a word on an

alphabet containing X and deletes all the symbols that are not in X and with

p|w|q„t we denote the equivalence class of the word w. Control places and transi-

tions are pairs where the first component is an equivalence class of words on an

alphabet of transitions (restricted to the transitions of an automata forming the

multi-clock net) and the second component is a transition. The first component

of a control place, the equivalence class, encodes all the equivalent (local) histories
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leading to the same future, represented by the name of the transition in the second

component.

Unfortunately adding these conditions (connected to the events consuming the

resource they are associated to, or to the events producing that resource and that

are in the one of the local histories coded by the word) does not enforce acyclicity

when restricting to these places, for the same reason it does not in mergend pro-

cesses. Furthermore control places do not guarantee that the resulting net is an

unravel one.

Still it is worth investigating if a suitable subset of control places and conflict

places can lead to positive results.

7.2 Heterogeneous partitions

Merging criteria depends on which kind of information on places we consider to be

of any interest. For instance, merged processes take the token occurrences while

trellis processes take time occurrences of a labeled place. We can think of combining

those two or defining new ones, and, with or without conflict places we are able to

maintain the unravel net status. If we are able to partition unravel nets, one could

imagine to apply different criteria to different partitions. For example, consider a

net with three partitions ν1, ν2, ν3, where ν1 is a generic branching processes, ν2

is a branching processes result of the unfolding of a multi-clock net, and ν3 is an

unravel net with no specific characteristics. It would be interesting to study how

different merging criteria behave in such scenario:e.g. if we use occurrence depth

in ν1, height in ν2, and another proper measure in ν3 will the unravelness property

preserved? if not, it is possible to enforce it? How do this merging would perform

with respect a suitable global merging relation? We do believe that the answer to

these questions is positive.
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7.3 Merging relation and contextual unravel nets

The kind of contextual unravel nets we have considered can be easily reduced to

unravel nets without read arcs. One may think to develop a way to define merging

relations to include contexts. In [RSK13] the authors introduce merged processes

for contextual Petri nets (cmp). From our point of view several questions arise:

• Are contextual merged processes also contextual unravel nets?

• If the answer to the previous question is negative, can they the property of

being an unravel net somehow forced as we did in this thesis?

• Since cmp configurations differ from classic mp-configurations, can we find

the same correspondence with configurations of contextual unravel nets?

7.4 Reveals relations vs merging relation

Reveals relations [BCH13, HKS13] are relations on transitions defined in causal

nets. A transition a reveals another transition b, a B b if for any maximal run

containing a, b is present. Reveal relations are neither symmetric nor antisymmet-

ric, but their symmetric closure turns them into equivalence relations. The set of

transitions partitioned in this way, called facets, are such that if one belongs to a

run, then all the equivalent transitions in the class are in it, which implies that

runs can be seen as set of facets. By quotienting the net under these relations one

obtain a more concise representation of the causal net called tight net. Since causal

nets are unravel nets, it is natural to think if the tight nets are and, if so, what

relationships can be find between reveal and merging relations.
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