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Abstract 

Coastal flooding is a topic of great relevance in the context of Coastal Engineering, particularly in 

the perspective of climate change and related sea level rise. Effective evaluation of coastal flooding 

at the hindcast, nowcast or forecast level, requires a high degree of interdisciplinary skills because 

of numerous aspects involved and different space and time scales usually considered. In particular, 

a peculiar perspective may be depicted by investigating the deep complementarity, as well as the 

close interrelation, coming up by the combined used of extreme value theory and advanced 

numerical modelling tools. As a matter of fact, numerical simulations are forced by offshore and/or 

nearshore boundary conditions, which, in the case of coastal flooding, are usually obtained by long-

term statistical predictions of the sea state, related to the extreme regime of wave climate. The aim 

of this work is primarily focus on analysing and developing an operational methodology for the 

assessment of coastal flooding induced by extreme waves, with subsequent use of numerical 

modelling. In particular, the area of interest of wave climate analysis is related to the Sardinian 

coasts. 

 

It is evident how a reliable specification of boundary conditions is a fundamental component in 

numerical modelling. First of all, each dataset must formally fulfil correctness, representativeness, 

reliability and homogeneity characteristics. Unfortunately, even a rigorous assessment of the 

offshore boundary conditions is affected by an inherent uncertainty, due to the limited spatial and 

temporal extension which often characterizes a wave-climate dataset source. The sample size 

largely hinders the effectiveness of the asymptotical hypothesis, which is one of the cornerstones of 

the extreme value theory. On account of the above limitations, it is therefore still an open question 

in the literature whether upper limited (e.g. bounded Generalized Pareto) or upper unlimited (e.g. 

Weibull) distributions are most suitable for engineering purposes. Operationally, an investigation of 

the adequateness of the dataset at disposal is preliminary carried out. Next, several metrics are used 

to assess the effectiveness of most popular extreme wave distributions. Finally, the extreme, 

offshore sea states over the region of interest were computed. 

 

On the other hand, a plethora of numerical models have been implemented within the coastal 

community, with different levels of accuracy and complexity. A well-known and well-defined 

focused distinction is represented by the phase-averaged and phase-resolving approach. The main 

interest of this work is addressed to operational models, where outcomes’ accuracy criteria and non-

prohibitive computational burden requirements should be well-balanced and properly considered. 

With this purpose in mind, an online coupling implementation between a spectral phase-averaged 

model and a non-hydrostatic phase-resolving model is provided. Specifically, two open-source 

models have been adopted as model components: the spectral SWAN model and the non-hydrostatic 

SWASH model. 

 

To sum up, the long term meteo-marine climate over the Sardinian coasts is evaluated first, by 

considering both mean and extreme characteristics of a heterogeneous dataset, previously deeply-

corrected, ranging from waves to wind fields. From this, it is relatively straightforward to compute 

the offshore-boundary conditions. Second, a numerical coupled model involving two open source 
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state-of-the-art models, was implemented, in order to enable a seamless and accurate chain 

simulation of an extreme sea state from offshore up to the shore. 
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Introduction 

In the context of coastal engineering, the probabilistic design of marine structures or sea defences is 

closely related to the statistical prediction of the sea state, such as defined by wave heights, periods, 

mean directions, etc. These wave climate elements are, furthermore, the data source for both coastal 

hazard analysis and evaluation of the safety level of coastal structures in the so-called Source-

Pathway-Receptor concept (Oumeraci, 2004). In both cases, the extreme value theory is generally 

adopted to estimate the final values to be used either as design value or as the offshore boundary 

condition, which are, in turn, assumed to be equal to the input values of the coastal modelling chain. 

 

Due to the fact that a common, standard and generally recognized approach has not been reached 

yet within the coastal community, but rather, remains a subject of continuous ongoing debate and 

active research, it was chosen to carried out the extreme value analysis with the intent of bringing 

together both an engineering and a statistical perspective. Specifically, the classical approach of 

statistical inference has been considered more suitable, tailored and easily implemented to the 

available dataset, compared to more advanced techniques, relatively recent but sometimes more 

complicated. A specific review of this last matter can be found, for example, in Hawkes (2008) and 

in all related papers, where one might find, among others, either the Bayesian framework, the cross-

spectra and singular spectrum analysis, the multivariate extreme analysis and joint distribution, such 

as defined by copula tools, or even the non parametric modelling through neural network analysis. 

 

The development of this work, as previously mentioned, is restricted to classical inference, which, 

despite all, represents the necessary starting point of several practical aspects and, most of all, is 

known to require a greater attention within the Mediterranean Sea in general, and over the Italian 

coasts in particular: basically, some concerns need to be either amplified or relaxed, due to the 

inherent lack of offshore data, as well as to the known underestimation of the wind field resulting 

from numerical models in that area (Cavaleri and Bertotti, 2004). Nonetheless, although hindcasting 

can be nowadays used to alleviate the lack of spatial density and to improve the temporal scale, it 

does neither solve completely the problem of underestimation of wind fields nor the corresponding 

underestimation of wave heights. 

 

In the light of the above reasons and, moreover, because of the inherent small size of our dataset, 

the intent of bringing together both an engineering viewpoint and a statistical perspective, without 

chosen a priori one of them, becomes mandatory. In addition, compared to other works (Sartini et 

al. 2015, Li et al 2012, Mazas and Hamm 2011) some insights into parameter estimation methods, 

best fit selections and, last but clearly not least important, threshold selection methods (Mazas and 

Hamm 2011, Deidda 2010, Thompson et al. 2009) were added. Furthermore, the independency and 

homogeneity for waves and wind fields are determined on the basis of the sea-storm definition, 

according to the Wave Atlas (Corsini et al. 2004) and Boccotti (2000) recommendations. In 

addition, in order to enhance and improve the homogeneity, a combination between fetch 

distribution, sea storm polar plot, and wave climate characteristics, is considered so as to group data 

belonging to same meteorological events within homogeneous directional clusters (Corsini et al. 

2004). From the viewpoint of quantile estimation, numerous parameter estimation methods are 

employed and the uncertainty associated to both parameters and quantile estimations (e.g. the 
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confidence intervals) is provided by implementing a Monte Carlo simulation technique. Finally, the 

best-fit model is assessed by analysing several parametric and non-parametric metrics. 

 

Operationally, a long term wave and wind climate study is firstly provided by scrutinizing data from 

three wave buoys supplied by the Italian National Wave Measurement Network (Rete Ondametrica 

Nazionale, RON), and nine coastal wind measurement stations acquired by the Italian National 

Civil Aviation network (UGM-ENAV). Secondly, an extreme value model inter-comparison is 

carried out with respect to the most reliable directional wave buoy data. 

 

On the whole, in this work the classical statistical approach of frequency analysis is followed, by 

using a multi-parent-distribution approach, as suggested by Goda (2010, 2011b), Mazas and Hamm 

(2011) and Hosking and Wallis 1997), among many others, because the need of taking into account 

for the small sample size effects. 

 

The second part of this work addresses the development of a one-way, online, open-source coupled 

model between a spectral phase-averaged model (SWAN, Booij et al. 1999) and a non-hydrostatic 

model (SWASH, Zijlema et al. 2011b). The work aims at representing inherently all the relevant 

spatial scales involved in coastal flooding simulations (i.e. from shallow to deep water, say from 

    to     wave lengths). Phase-averaged and phase-resolving models are two class of wave-

models traditionally used to simulate wave fields in coastal areas. Spectral phase-averaged models 

are based on the spectral wave action balance equation and can thus be conventional applied to 

larger areas (say from near-shore areas to regional scales of the order      to     wave lengths); on 

the other hand, phase-resolving (or time-domain) models resolve the wave field on the scale of the 

individual waves, within the wave period, and are based on the time-dependent mass and 

momentum balance equations. A variety of such kind of models has been presented in the literature, 

differing as to dimensionality (1D to 3D), kind of motion represented – whether rotational or 

irrotational –, vertical pressure distribution, dispersive properties, free surface conditions, wave 

breaking representation, possible inclusion of turbulence models, bottom friction specification, 

wetting and drying algorithm, and numerical solution technique. Models of very different ease of 

use and computational efficiency are thus included in this class. As a rule of thumb, most frequently 

used vertically-integrated models are suitable for simulating wave motion over narrower areas of 

the order of     to     wave lengths (say from very shallow to relative intermediate waters). 

 

It is prominent the complementary characteristics on these modelling approaches, since weakness of 

each model component can be overcome by the strength of the other. On one hand, it seems 

appropriate to use phase-resolving models closed to the shore (i.e. in shallow water) in order to 

improve wave simulation, where phase-averaged wave action balance models are known to suffer 

from inaccurate prediction of the wave spectrum, due to, e.g., incomplete modelling of wave 

diffraction, reflection, or nonlinear interactions. The majority of these physical processes are 

inherently accounted for by time-domain models in a straightforward way. It is also to be pointed 

out that, for instance, triad wave-wave interactions are usually modelled in phase-averaged models 

through an explicit parametric formulation which comes from a phase-resolving model, i.e. the 

spectral version of the Boussinesq model proposed by Madsen and Sorensen (1993) is implemented 

in the Lumped Triad Approach (LTA) by Eldeberky et al (1996). Nonetheless, despite of the huge 

and numerous improvements achieved on the operational modelling in the last decades, so far it still 
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holds that “to date there is no comprehensive model formulation for fully directional wave-wave 

interactions over two-dimensional bathymetry, applicable to arbitrary scales of propagation and 

suitable for operational wave forecasting problems” (The WISE Group 2007, pg. 636). 

 

On the other hand, extending phase-resolving models to the offshore would require using fully non-

hydrostatic models with a large number of layers, resulting in excessive computational burden, not 

rewarded by a comparably better representation of waves at the outer limit of the nearshore. 

Relaxing the requirement for very accurate wave dispersion representation, which would be an issue 

in phase-resolving modelling up to offshore, an improved balance can be achieved between the 

limiting computational burden on the one hand, and the effectiveness, efficiency, and accuracy 

usually sought on the other hand, by restricting the use of phase-resolving models to the nearshore. 

In fact, the need for both wave dispersion and nonlinearity with models that are suitable for 

practical application is the main reason for the number of different existing formulations of phase-

resolving models. 

 

Therefore, it is often convenient to drive phase-resolving models running in the near-shore with 

boundary conditions obtained by phase-averaged wave models run over larger areas, with the aim 

of simulating, among others, wind-wave propagation, nonlinear shoaling, diffraction and refraction, 

wave runup, overtopping, inundation, infra-gravity waves, harbour entrances, and ship waves. 

 

Objective and outline 

The overarching objective of the present study is twofold. First, the attention is focused on the 

analysis of an evaluation methodology of the wave climate over the Sardinian coasts – at medium 

and extreme level –, within the framework of Regional mapping of Coastal Flooding Hazard. 

Second, an online, one-way coupled model implementation between a spectral wave model and a 

non-hydrostatic model has been developed, with the aim of modelling, seamlessly and efficiently, 

the wave evolution, from offshore up to the shore. 

 

This thesis is composed by 6 Chapters. In Chapter 1 a literature review is provided with respect to 

both statistical and numerical modelling contexts. Chapter 2 describes the mathematical formulation 

of extreme value theory. Chapter 3 introduces the long-term wave climate of both wave and wind 

fields and the related data quality control procedures. Chapter 4 is focused on the application of the 

EV model inter-comparison on the most reliable wave-buoy dataset. Chapter 5 describes SWAN 

and SWASH governing equations and the implementation of the coupled SWAN + SWASH model, 

with a validation with laboratory data. Finally, conclusion are given in Chapter 6. 
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1 Literature Review 

1.1 Statistical frequency and extreme value overview 

Extreme value analysis may be generally addressed on either block-maxima (BM), peaks-over-

threshold (POT), or Poisson point process (PP) methods. Synthetically, several choices should be 

considered within the frequency analysis framework, involving among others: de-clustering 

methodology, threshold selection, parent distribution selection, plotting position formula, parameter 

estimation method, confidence interval computing, and best-fit model selection. In the following 

paragraphs, the main framework followed in this work for each of these themes is briefly reported. 

1.1.1 Parent distribution – multi-distribution approach 

Among many cumulative distribution functions (CDF) employed in extreme data analysis, three 

distributions of the Weibull (WBL) family (Weibull 1951), the Generalized Pareto (GP) family 

(Pickands 1975, Hosking and Wallis 1987), and the Generalized Extreme-Value (GEV) family 

(Fisher and Tippet 1922, Gnedenko 1943, Gumbel 1958) are considered in this study. Following 

Goda (2011a), this set is assumed to be representative for any probable population in the field of 

extreme wave heights. Furthermore, this is consistent with the classical frequency analysis 

approach, where a set of parent distributions has to be chosen to statistically find and mimic the so-

called true distribution. In addition, as underlined later, this is the methodology recommended by 

Hosking and Wallis (1997) in order to find out the best marginal distribution, and, for instance, 

highlighted by other authors (e.g. the multi-distribution approach suggested by Mazas and Hamm 

2011). 

 

From an engineering and historical point of view the WBL distribution has been one of the most 

recommended (Mathiesen et al 1994), used (Goda 2010) and accepted in several practical 

applications related to extreme waves (Goda et al. 1990, Goda 2010). From a theoretical and 

statistical viewpoint the extreme value (EV) theory provides appropriate recipes for developing the 

long term statistical analysis in each Earth science, including maritime and coastal fields. 

 

Herein, some of the main EV theory concepts are going to be introduced, while a deeper review can 

be found, among others, in Kotz and Nadarajah (2000), Coles (2001), and Castillo (2004). 

Since the pioneering work of Fisher and Tippet (1928), revised by Gnedenko (1943) and Gumbel 

(1958), it is known that if there exists a limiting distribution of the block maxima (typically with a 

yearly time scale) selected from an independent and identically distributed (iid) sample, this 

distribution belongs to the domain of attraction of the GEV family. Furthermore, under the same 

conceptual framework, the limit distribution of a sequence of excesses over a high enough threshold 

follows a corresponding approximate distribution within the GP family (Pickands 1975, Balkema 

and De Han 1974). 

 

In addition, it can be shown that the POT approach may be used to indirectly fit the GEV 

distribution, with the aim of obtaining a more accurate extreme quantile estimates than fitting a 

GEV on annual maxima (Madsen et al, 1997a). The GP-GEV duality is consistent with the PP 

model representation (Davison and Smith 1990, Coles 2001, Katz et al. 2004), which, in turns, 

provides a formal theoretical justification to adopt the POT approach for fitting the GEV 

distribution; more concisely, a two-dimensional, inhomogeneous Poisson process is combined with 
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the dual-domain POT modelling. The GP distribution can therefore be used to fit the excesses over 

a threshold, while the Poisson distribution can be assumed to represent the occurrence time of 

exceedances. As a matter of fact, fitting GP on a reasonable number of exceedances over a proper 

threshold can give more reliable information concerning the whole phenomena than its BM 

counterpart and, consequently, a more representative insight into the maxima. 

 

At this point, it seems useful to introduce another relevant issue within this context, that is the 

asymptotic behaviour required by the EV theory; on the whole, it can be assumed pertained to 

discriminate between the engineering perspective and the statistical viewpoint. It should be pointed 

out that inferences are critically dependent on sample size; unfortunately, small sample sizes are the 

routine in offshore and coastal engineering. 

 

Goda (2011b) analysed sample size effect by using numerical simulations and comparison with real 

field data. First, it was emphasized by the author that the best-fitting distribution of a small size 

sample of yearly maxima (e.g. less than a few hundred) is not confined to GEV family, but scattered 

among the WBL, GP and GEV distributions. Second, an inherent negative bias of quantile estimates 

corresponding to return period longer than several dozen years and a tendency of increasing of the 

shape parameter for small sample size was underlined. Third, the superiority of the GP-Poisson 

model over both the WBL-Poisson model and GEV direct fit on annual maxima in case of large 

sample size of annual maxima (e.g. around 500) was confirmed. On balance, it might be said, as a 

crude obviousness, that the asymptotical behaviour is consistent with the large sample size only, 

while small sample size effects tend to hinder its reliability. 

 

These results may be considered somewhat in common with other, as remarkably as questionable, 

aspects pointed out by some other authors (Castillo and Sanabria 1992, Jonathan and Ewans 2014), 

which emphasized the GP superiority. Actually, the WBL drawbacks and weakness are considered 

to be noticeably inferior with respect to the GP-flexibility. One of the driven reason to corroborate 

this thesis is inherent to the principle feature of the shape parameter, which governs the tail 

behaviour and the aptitude to originate shorter or broader, that is bounded or unbounded, or rather, 

using a common statistical terminology, light-tailed or heavy-tailed family distribution. This is, on 

the other hand, a straightforward means to recognize the domain of attraction for maxima of each 

distribution and, thus, to investigate the relative weight assigned to extreme values. 

 

Specifically, Cunnane (1973) has shown that the WBL distribution becomes asymptotically of the 

Gumbel type (i.e. a WBL distribution with shape parameter equal to one). In other words, this 

implies that fitting using the WBL distribution implicitly constrains the solution to be exclusively 

unbounded on the right tail, whereas modelling using GP avoids this restriction. It is interesting to 

observe that this is one of the reason why fitting using GP and WBL are expected to give similar 

estimates for return values corresponding to return periods of the order of that of sample, but 

different estimates are likely to arise for return values especially at longer return periods. Most 

probably, this aspect addressed Goda et al. (2010) to strongly advise against of the GP distribution 

fit for coastal structure design; that is, quantile estimates would be greatly underestimated whenever 

GP distribution was used. Moreover, the same piece of advice was reported by Mazas and Hamm 

(2011) when the extreme analysis is applied to short dataset (say less than 10-20 years), such that 
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the GP-Poisson model is found to produce too small return values, in spite of a very good statistical 

fit. 

 

On the other hand, for some authors (Jonathan and Ewans 2012, Mazas and Hamm 2011, Castillo 

and Sanabria 1992) unbounded and heavy tail distributions should be considered not appropriate for 

coastal engineering, whereas bounded and light tails should be more suitable. The reason is to be 

found in the fact that wave heights should be assumed bounded because of physical constraints on 

storm size, which, in turns, are determined by limitations on pressure and wind fields, storms 

intensity, as well as on water depth and fetch values. Nonetheless, they do not recommend the use 

of GP in the Fréchet domain, because unbounded, as a final suggestion. 

 

Nevertheless, the above final assessment seems to be somewhat contrasting with the Goda (2010 

pag 543) view, whose remarks of no physical ground in deep water lead to believe that extreme 

wave heights would not have an upper limit. Probably, it should also be considered contrasting with 

GP-Poisson model features, as well as with the aim of using the POT approach to obtain a better 

GEV estimates, so as to avoid less reliable quantile estimates than those provided with the single 

GP family. Moreover, they are contrasting with the Hosking and Wallis (1997) recommendation, 

which they do not give any priority to the asymptotic distributions, arguing that the number of 

storm events in a year is rarely large enough to justify the EV approximation. 

 

Recapping, small sample size effect requires to focus the inference on a multi-distribution approach, 

without excluding any of the possible distributions, or, similarly, by not assuming a priori the EV 

family distributions only, because the asymptotical hypothesis may not completely be verified in 

practice. 

 

On the whole, in this work the classical statistical approach of frequency analysis is followed, by 

using a multi-parent-distribution approach, as suggested by Goda (2010, 2011b), Mazas and Hamm 

(2011) and Hosking and Wallis 1997), among many others, because the need of taking into account 

for the small sample size effects. 

1.1.2 De-clustering methodology 

The EV theory is often based on sequences of independent and identically distributed (iid) random 

variables. However, in the Earth Science area, temporal independence is usually an unrealistic 

assumption. For instance, with particular reference to wave heights, it is widely known that waves 

travel in group and exhibit a tendency of being persistent for many hours; according to Goda 

(1979), an evident correlation between wave heights 24 hours apart is common in ocean waves. 

Moreover, the group of small wave heights is likely to constitute a population different from that of 

the group of large heights, thus violating the homogeneity assumption. 

 

Although sometimes the independency is artificially assumed to be valid, it can also be relaxed by 

considering stationary series or, more easily, by utilising an adequate de-clustering method based on 

either physical or statistical assumptions. For example, a limiting condition is usually assumed in 

practical applications, where the events Xi > u and Xj > u (being u the threshold) can be considered 

approximately independent if u is high enough and the occurring times of i and j are far enough 

apart (Coles 2001, page 93). 
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In this work, the independency and homogeneity are determined on the basis of the sea-storm 

definition, according to the Wave Atlas (Corsini et al. 2004) and Boccotti (2000) recommendations. 

In addition, in order to enhance and improve the homogeneity, a combination between fetch 

distribution, sea storm polar plot, and wave climate characteristics, is considered so as to group data 

belonging to same meteorological events within homogeneous directional clusters (Corsini et al. 

2004). 

1.1.3 Threshold selection 

Despite threshold selection may be defined one of the key aspects in each POT modelling, no final 

consensus has been achieved yet in the scientific community to identify a standard approach that 

may be clearly superior with respect to others. This is actually a still active research field. A first 

non-comprehensive review can be found in the work of Lang et al. (1999). Recently, Scarrot and 

MacDonals (2012) have proposed a wider overview of the so-called fixed-threshold approach, as 

well as about the mixture models implementation (e.g. Solari and Losada, 2012). 

 

In general terms, a high enough threshold should be chosen, such that the problem, from a statistical 

perspective, can be seen as a classical balance between bias and variance. Generally, an extreme 

value model should be able to represent adequately the population tail, which is uniquely defined by 

the threshold; however, the threshold value must balance the bias arising from the asymptotic tail 

approximation, as well as the parameter estimation uncertainty due to the inherent scarcity of 

exceedances. Therefore, if the selected threshold is too low, bias causes distortions in the model 

because of violation on the model assumptions (e.g. values might not be independent or non-

extreme threshold excess data might be included in the sample). If the threshold is too high, the 

variance is large because few data are included in the sample and, consequently, large differences in 

the quantile estimates might be obtained. Finally, the problem becomes further complicated whether 

other issues are included in the analysis; for instance, representation of the covariate relationship, 

uncertainty measurement related to the threshold choice, necessity of automated selection 

procedure, etc.. 

 

Commonly, a practical recommendation, having a general consensus, consists to set the threshold as 

low as possible in order to maximise the sample size, by using the diagnostic approach proposed by 

Coles 2001; although it is known that this classical procedure can neither be objective, being rather 

somewhat subjective, nor it is not uncommon the case where a threshold cannot be uniquely defined 

(see for example Figure 1 and the corresponding explanation reported by Scarrot and McDonalds 

2012, paragraph 2.1). Basically, whenever the threshold is set as low as possible (at a reasonable 

value), the attention is focused on strengthening the variance at the expense of a higher bias. An 

equally valid alternative is, on the other hand, to favour bias by selecting a higher reasonable 

threshold which, in turn, can be more representative of extreme samples and, so, more tailored to 

the right tail. It must be further stressed that they are both consistent with the theory. In this work 

both alternatives were analysed, without assigning a priori a preference to one of them. 

 

Operationally, a total of three threshold selection methods was chosen, by discriminating between 

some state-of-the-art fixed-threshold diagnostic procedures and a multiple-threshold-method 

(Deidda, 2010). First, the higher threshold is assumed to be represented by selecting a fixed number 

of sea storm per year (i.e. between two and five sea storms per year), as proposed by Mazas and 
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Hamm (2011), which might be seen as a rule of thumb, but it can also be assumed particularly 

tailored to the application of the GP-Poisson model. Second, the automated procedure proposed by 

Thompson et al. (2009), based on both the parameter-invariance characteristic of GP distribution 

and on the maximum likelihood property, has been considered. Finally, a multiple-threshold-

method has been used and slightly adapted to our dataset. In this last case, in fact, only wave height 

within a significant directional sector should be chosen and, in addition, with the purpose of using a 

dataset as much as possible equal to the original method presented by the author, the independency 

should be slightly relaxed: that is, only daily maxima falling into the main directional sector were 

considered, at the expense of the de-clustering method used herein (i.e. the sea storm definition). 

1.1.4 Parameter estimation and plotting position formula 

Although one may argue that uncertainty associated with the choice of the parameters estimation 

method is less important than other uncertainty sources – such as threshold selection, independency, 

homogeneity –, it is also true that a certain degree of correlation exist between each of these 

elements. Moreover, the side effect of sample size is directly linked with the overall performance of 

each parameter estimation method. For instance, it is widely known the bad performance of the 

maximum likelihood (ML) method for small sample (e.g. n ≤ 25, n being the sample size). 

 

On the other hand, despite ML is the best unbiased, efficient and consistent estimator, other 

estimators can either denote comparable statistical performances or even outperform the ML results, 

for some of the properties above. Furthermore, some methods are usually computationally more 

tractable than the ML method as they require less frequent recourse to iterative procedures. Finally, 

neither the GEV, GPD, and WBL family appear to be insensitive to the parameter estimation method 

nor each parameter estimation method is completely valid on the whole domain of each cumulative 

distribution function adopted in this study. 

 

Madsen et al (1997a) proposed a comparison between the L-moment (LM), method-of-moments 

(MOM), and probability-weighted-method (PWM), within the AM-GEV and POT-GP approach, 

with a total of six model combinations. It was advised against the use of the ML procedure for small 

sample size, while a selective applications of MOM, ML and PWM was recommended, depending 

on the value assumed by the shape parameter. Analogously, Akram and Hayat (2014) compared the 

small sample performance of several estimator – LM, ML, MOM, ordinary-least-squares (OLS), 

modified ML, modified MOM, and maximum-product-of-spacing (MPS) – of three-parameter WBL 

distribution. Albeit the best estimator is influenced by the shape parameter range, the LM method is 

found to be the lead in small samples as it was almost always close to the best method of 

estimation. These findings are also consistent with the numerical difficulties inherent in the ML 

method application within the three-parameter WBL distribution proven by other authors 

(Cousineau 2009 , Mazas et al. 2014). 

 

Last but not least, it should be highlighted the importance of the plotting position formula. Unlike 

some authors severely criticized the plotting position usefulness (Makkonen 2005), in this work the 

view and recommendation of many others (Cunnane 1978, Goda 2010) were followed. The 

plotting-position rule is usually adopted to plot the sample on the probability diagram and is 

sometimes called the empirical distribution function. In addition, it is actively present in several 

best-fit model methods and, although not frequently done, it should be selectively assigned 
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depending on both the parameter estimation method and the cumulative distribution function, in 

order to ensure an appropriate balance with respect to other elements. With that purpose, useful 

choices might be addressed by considering unbiased plotting position formulas (Goda 2010, Goda 

2011a). 

 

To sum up, the parameter estimators are evaluated by considering the maximum likelihood method 

(Coles 2001), the L-moments method (Hosking and Wallis 1990, Goda 2010), the ordinary least-

squares (OLS) method (Goda 2010), and the maximum product of spacing (MPS) method (Cheng 

and Amin 1983). In addition, the plotting position formulas considered in this study are: i) the 

Hazen formula (Hazen 1914) whether ML and MPS method are used, regardless the cumulative 

distribution function family; ii) the unbiased Weibull plotting position (Goda 1988) for the OLS 

method if referred to the WBL family; iii) the unbiased plotting position proposed by Goda (2011a) 

in case of the LM (and possibly PWM) method and for each cumulative distribution function family. 

1.1.5 Best-fit model selection 

It is important to check the adequacy of models upon which inferences are based. Models vary in 

the complexity and strengths of their assumptions, and model-checking needs vary correspondingly. 

Even when no covariate are present, rather large samples are often needed before the superiority of 

one model over another in terms of fit is indicated. In the simplest case a model may involve a 

single random variable, X, with cumulative distribution function, F(x). The main problems are often 

to check whether some specific form, Fo(x), is consistent with observed data, and whether 

assumptions about observations Xi being independent and identically distributed are satisfactory. 

 

Informal methods of model checking emphasize graphical procedures such as probability and 

residual plots. These diagnostic tools are the probability-probability-plot (PP-plot) and quantile-

quantile-plot (QQ-plot), as discussed and used in Coles (2001), or, for example, the probability plot 

correlation (PPC) method (Filliben 1973, 1975, Goda 2011a,b). In most cases, the variation 

inherent in graphical summaries is substantial, even when data are generated by the assumed model. 

Therefore, even if graphical methods and model expansion satisfy the majority of practical model-

checking needs, other procedures may sometimes be more useful. For instance, formal tests are 

sometimes the only way to carry out the model checking. 

 

In this work, both diagnostic, parametric and non-parametric best-fit metrics are used to assess the 

model performance. In particular, the so-called minimum residual of correlation coefficient (MIR) 

computed on both pp-plot and qq-plot, as well as the probability plot correlation coefficient (PPC) 

method, both proposed by Goda (2010), are devoted to synthesize the graphical (probabilistic) part 

of the model fit. On the other hand, the Akaike-information-criteria (AIC, Akaike 1973) and the 

Bayesian-information-criteria (BIC, Schwarz 1978) are used when the information matrix for 

maximum likelihood estimates can be computed (i.e. in case of using the ML and MPS estimator). 

In addition, the Monte Carlo based approach is used to compute confidence intervals, bias and root 

mean square error of parameter and quantile estimator, plus an improved version of the so-called 

error norm criteria, proposed by Li et al. (2008), which provides a weight factor to be used in order 

to emphasize the fit on the specific part of the distribution (i.e. the right tail if the analysis is mainly 

devoted to extreme events estimation). In this last case, it should also be stressed that the original 

version of the error norm criteria was improved, by assuming the empirical cumulative distribution 
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function equal to a consistent unbiased plotting position formula, Finally, if the LM estimator is 

considered, the diagram ratio plot is proved to be another useful diagnostic way to quickly analyse 

the adequateness of the fit (Hosking and Wallis, 1997). 

1.2  Coastal numerical modelling overview 

In the following paragraphs, some general characteristics of phase-averaged and phase-resolving 

models will be described, while the mathematic formulations may be found in standard textbooks, 

e.g. Komen et al. (1994), Vreugdenhil (1994), Dingemans (1997), Mei (2005), Svendsen (2007), 

Holthuijsen (2007). Moreover, some general reviews of wave propagation and surf-zone modelling 

in coastal engineering are described in in Svendsen and Putrevu (1996) and in Liu and Losada 

(2002), respectively, as well as a general historical review on the water wave theory is reported in 

Craik (2004). 

1.2.1. Phase-averaged models 

Spectral phase-averaged models are fundamentally based on describing the evolution of the energy 

density spectrum under the assumptions of zero-mean, quasi-homogeneous, quasi-stationary, 

Gaussian stochastic process possessing ergodicity (Komen et al. 1994, Holtuijsen 2007, Goda 

2010). To a large extent, the wave field prediction simulated by phase-averaged models is assumed 

to be characterized by uniformly-distributed random phases, while the attention is addressed to 

simulating modifications of the energy density spectrum (Holtuijsen 2007). 

 

A general spectral wave-model classification into first, second and third generation type can be 

represented by analysing the modelling of nonlinear wave-wave interactions. In first generation 

models, nonlinear energy transfers are treated implicitly through the wind-wave interaction and 

dissipation terms. Second generation models represent wave-wave interactions by means of 

parametric formulations, i.e. by applying a reference spectrum to redistribute the energy over the 

frequencies. Finally, third generation models are focused on modelling explicitly the nonlinear 

energy transfer, such that the spectral energy balance equation is solved without constraints on the 

shape evolution of the wave spectrum, although it is necessary for computational economy to make 

both analytic and numerical approximations. 

 

Conventional third generation stochastic wave-models are based on the action balance equation, 

which is also known as the radiative transfer equation, the transport equation, the kinetic equation; 

also, the name Boltzmann equation is used when solely the quadruplets wave-wave interactions 

effect is considered (Komen et al. 1994). The equation describes propagation through a non-

homogeneous medium (i.e. variable depth, currents, etc…), which conserves total wave action as an 

adiabatic invariant, balanced by a sum of source terms describing the generation, evolution and 

dissipation of the variance density. 

 

Over the last two-three decades, numerous phase-averaged models have been developed, such as 

WAM (WAMDI group, 1988, Komen et al 1994), TOMAWAC (Benoit et al 1996), WAVEWATCH 

III (Tolman 2009), SWAN (Booij et al. 1999), and MIKE 21-SW (Sorensen et al 2004), among 

others. In this list, SWAN is particularly suitable to model near-shore areas, because it incorporates 

formulations for both deep water and shallow water zones, i.e. generation by wind, whitecapping, 

quadruplets and triad nonlinear wave-wave interactions, dissipation due to bottom friction, and 
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depth-induced wave breaking. A summary of the state-of the-art in third-generation wave modelling 

is proposed by The WISE Group (2007). 

1.2.2. Phase-resolving models 

Only a subset of the wide variety of phase-resolving models mentioned previously (i.e. see 

Introduction) is suitable for efficient use in practical applications, depending on the computational 

resources and CPU time needed to be run. A further problem can be represented by the amount of 

input/output data to manage. To date, an even smaller number of such models are available in 

commercial software packages, with graphical user interfaces (GUI) enabling a more efficient use. 

Fundamentally, the following model taxonomy of phase-resolving models can be introduced: 

 Non-hydrostatic models (Reynold-averaged Navier-Stokes equations, RANS, and related 

approximations) 

- 3D 

- 2D in the vertical plane (2DV); 

- 2D in the horizontal plane (2DH) 

- 1D 

 Boussinesq type models (Boussinesq type equation, BTE) 

- 2D in the horizontal plane (2DH) 

- 1D 

 Hydrostatic models (Non-Linear-Shallow-Water Equations, NLSWE) 

- 2DH  

- 1D 

Obviously, three-dimensional models based on the RANS are expected to be the most performing 

Nonetheless, because only the simulation of inundated areas is of concern in coastal flooding 

problems, rather than the details of the velocity field in itself (which might be required and highly 

valuable in different types of problems), and because the computational burden required to run such 

models when applied to even a relatively narrow coastal area, approximations to the complete 3D 

equations according to the alternative formulations listed above are sought for. In particular, 2DH e 

1DH formulations differ as to representation of dispersive and nonlinear properties, with the former 

related to non-hydrostatic pressure distribution. 

In the following, strengths and weaknesses of the various type of most commonly used models – 

that is, those based on classical numerical integration methods as, fundamentally, finite differences, 

finite elements or finite volumes – are presented. Therefore, meshless methods as SPH (Monaghan 

1992, Dalrymple et al. 2001, Gotoh et al. 2004, Shao 2010, Shao et al. 2006) or Lattice-Boltzmann 

methods are not analyzed in this work. 

1.2.3. Non-hydrostatic models 

Non-hydrostatic, 3D models, being based on the RANS equations, enable detailed representation of 

the velocity and pressure fields in turbulent, rotational flows in geometrically complex 

computational domains. The need for accurate representation of turbulence dynamics, particularly 

in the presence of wave breaking, requires representation of turbulence generation, transport and 

decay, thus requiring use of turbulence sub-models, mainly based on the k- formulation. 

 

A crucial point in 3D models is related to the representation of the free surface. Models based on 

representation of the water elevation as a 1 to 1 function of the horizontal plane coordinates do not 
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allow for a detailed representation of plunging breakers, nor of the related air entrainment in the 

water mass. However, this can be accomplished via with proper free surface tracking techniques, 

such as the level-set method (Osher and Sethian 1988), the marker-and-cell (MAC) method (Harlow 

and Welch 1965), and the Volume Of Fluid (VOF, Hirt and Nichols 1981) technique, with this 

latter, that is based essentially on computing density variations in the cells of the computational 

mesh and subsequent reconstruction of the air-water interface, being the most currently used. Non-

hydrostatic 3D models were used by Choi et al. (2007), Choi et al. (2008), Christensen (2006), 

Lynett e Liu (2005) for runup simulation on fixed bottom. 

 

Models of this kind have been used for simulation of fluid interaction with a permeable structure, 

based on averaged equations on control volumes (VARANS, Lara et al. 2010) or on definition of 

porosity coefficients (Hur and Mizutani 2003, Hur et al 2004, Hur et al. 2008). Therefore, in 

principle, such models are able to take into account filtration in a permeable bottom when 

simulating runup on beaches. 

 

Fully 3D models require using a large number of layers in order to provide correct representation of 

non-hydrostatic pressure distribution, laying in the range 20 to 120 in the cases examples above. 

The resulting huge dimensions of the computational problem require significant computing 

resources, preferably consisting of parallel machines or clusters of PCs, and large CPU times. 

 

Depending on the specific problem at hand, 2DV non-hydrostatic models are often used (SKYLLA, 

Van Gent et al. 1994, Iwaa et al.1996; COBRAS, Lin and Liu 1998, Liu et al. 1999, Hsu et al. 2002; 

IH-2VOF, Losada et al. 2008, Lara et al. 2008, Guanche et al. 2009). In principle, such models are 

suitable to represent cylindrical waves only, as those generated in laboratory flumes, to which they 

are indeed typically applied. 

 

Nonetheless, such models have been recently applied to simulate wave runup on natural beaches to 

produce flood hazard maps, e.g. Tomás et al. (2016) with application to the entire Spanish coastal 

perimeter. It is to be noted that the computational burden (10 to 40 hours of CPU time per hour of 

real time simulated on a single transect), has required to drastically reduce the number of 

simulations for such a large-scale application, resorting to a clustering procedure on dimensionless 

terrain profiles. The authors themselves indicate a limitation of the 2DV model to cases not 

including bays, estuaries or artificial basins. Moreover, it is plausible that the drawbacks of the 2DV 

formulation might be significant in the presence of bathymetries/topographies that are irregular in 

the longshore direction. 

 

Aiming at increasing computational efficiency, 3D models have been proposed in the literature that 

are able to represent wave propagation with a reduced number of layers, using different and 

independent velocity profiles in each layer (Lynett 2002a,b, Hsiao et al. 2005) or a collocation of 

pressure in the mesh cell different than the usual, cell centered one (SWASH, Stelling and Zijlema 

2003, Zijlema and Stelling 2005, 2008, Zijlema et al 2011b, Smit et al 2013). Such models assume 

a 1 to 1 water level-horizontal coordinate relation, do not use the VOF method and must therefore 

represent the shoreline advancement on a dry bed with a specific wetting & drying algorithm. 
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Whenever simulations aim at representing global features of wave propagation – namely, the 

extension of flooded areas – such models represent a valuable alternative to 3D models of the 

previous type. When run with a few layers, the dispersion properties of such models make them 

fundamentally equivalent to 2DH Boussinesq models. 

 

2DH non-hydrostatic models are obtained as a special case of 3D models like SWASH, using only 

one layer. Beside SWASH, XBEACH is also based on the same 2DH formulation (Roelvink et al. 

2009). Both models can be further used in 1D version. 

 

Zijlema et al. (2011b) present accurate results obtained with SWASH using one layer for both 

schematic test cases with analytic solution and laboratory tests, with 1D or 2D geometry. In 

particular, 2D laboratory tests pertain to solitary wave and N-wave runup, these latter representing a 

typical initial condition for tsunami simulation. For the solitary wave, the accuracy of results 

slightly decays with increasing wave steepness. As to computational times, simulations of real time 

duration of 40 s on scale model on a 500×600 mesh required 1489 s with a single processor and 63 

s on a cluster of 32 64-bit AMD processors (1.8 GHz, 4 MB L2 cache). 

1.2.4. NLSWE models 

When dealing with wave propagation in the nearshore area, as is the case for coastal flooding 

simulation, the concern is on the properties of long waves, that is waves with length L much larger 

than the water depth d ( = d/L << 1) – hence the equivalent term of shallow water waves. Models 

based on the potential flow hypothesis can be distinguished depending on the non-linearity 

parameter  = H/d, where H is the wave height. Following Svendsen (2007): 

 



 
 

   

  
  

     linear shallow water waves

      oussines       
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Models based on either the non-linear shallow water equations (NLSWE) or the Boussinesq-type 

equations (BTE) have been proposed in the literature for use in the nearshore area. 

 

The NLSWE are mathematically equivalent to the Euler equations for compressible flows; they are 

strictly valid in shallow water because are non-dispersive models, or in other terms, are generally 

valid for the limit of nearly horizontal flows, where the vertical accelerations may be neglected and 

thus pressure distributions in verticals are hydrostatic (Falconer 1993). Nonetheless, near wave 

breaking, where the wave height H becomes of the same order as the water depth d, although the 

pressure distribution is locally highly non-hydrostatic, based on Svendsen (2007) classification, the 

NLSWE represent the long wave theory most suitable to describe the wave conditions. In particular, 

in the inner surf zone the waves tend to display a steep front similar to those in a moving hydraulic 

jump, which is consistently represented by the discontinuity in the NLSWE solution associated to 

the development of a shock wave, due to the hyperbolic property of the equations. 

 

In fact the NLSWE are widely used in commercial codes due to their reliability, robustness, 

accuracy and proven effectiveness, but mainly for simulation of rapidly varied purely translation 
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waves, as those produced by, e.g., dam break. Models based on the NLSWE yield accurate 

reproduction of broken wave propagation and runup, including possible further inland propagation. 

Energy dissipation associated to wave breaking need not be simulated with ad hoc models, it being 

inherently represented in the solution by virtue of momentum conservation across the moving shock 

(in fact the energy dissipation in a bore represents the base for breaking models used in spectral 

models, e.g. Battjes & Janssen 1978). Godunov type, shock capturing methods are mainly used for 

the numerical solution of the NLSWE (Toro 2001, LeVeque 2002), based on exact or approximate 

solution of the Riemann problem for systems of conservation laws, in conjunction with flux- or 

slope-limiters near steep fronts to suppress spurious oscillations. 

 

NLSWE models turn out to be computationally efficient and cheap when simulating a train of a 

large number of waves, which is needed to a reliable computation of the statistical indices, namely 

the usual 2% runup, and may represent at least a reasonable practical alternative to more complex 

models. 

 

The capability of NLSWE models to simulate wave runup and overtopping of structures was first 

assessed by Kobayashi & Wurjanto (1989), Kobayashi & Wurjanto (1992) and Kobayashi & 

Raichle (1994) with the RBREAK model. That model widely underestimated the water depth above 

the top of the structure as well as the overtopping flow rate, as compared with laboratory results by 

Saville (1955). For the same test, Dodd (1998) also obtained markedly underestimated results as to 

the flow rate, particularly for steep waves. Inaccuracies on the wave setup were ascribed to poor 

representation of complex nonlinear interactions in the surf area. More recently, Kobayashi et al. 

(2010) have improved the model introducing a probabilistic representation of the NLSWE. 

 

Titov and Sinolakis (1995) proposed a variable-space-step NLSWE model for simulation of solitary 

waves on beaches. The model yields results from good to excellent for both breaking and non-

breaking waves, when compared to analytic solutions and laboratory tests, with exception for the 

case of plunging breaker, which is shifted offshore. Moreover, maximum runup is slightly 

underestimated for breaking waves. Results are equivalent to those of obtained by Zelt (1991) with 

a BTE model for non-breaking waves and slightly smaller for breaking waves, but at a remarkably 

smaller computational cost. 

 

Verification of the AMAZON model (Hu et al. 2000) against analytical solutions and laboratory data 

of structure overtopping for both monochromatic and random waves showed inaccuracies compared 

to measurements, particularly for random waves. Moreover, sensitivity of results to specification of 

bottom friction was analyzed. 

Puleo et al. (2002) compare results from 2DV e NLSWE (Rbreak2) models. Results for the water 

levels in the surf area are equally good for the two models, although with substantially different 

computational efforts, whereas larger differences can be observed in the velocity values, as could be 

expected. 

 

Wave runup is the result of contributions from frequencies in the range of incident wave motion and 

in the infragravity range, which are generated in the surf area, with these latter being predominant in 

dissipative beaches, characterized by small values of the Iribarren number. The capability of the 

NLSWE (Rbreak) model of reproducing satisfactorily infragravity waves and energy decay at the 
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swell frequencies due to breaking was demonstrated by Raubenheimer et al. (1996) and 

Raubenheimer (2001). Larger discrepancies were observed between simulated and computed 

velocities. 

 

Soldini et al. (2013) used Brocchini et al. (2001) NLSWE model to analyze the effect of different 

representation of the bathymetric/topographic profiles on computed runup of both random waves 

and wave packets associated to infragravity waves. It is shown that equivalent results are obtained 

assuming a natural profile, a theoretical equilibrium profile (Dean 1990), or an even simpler profile 

composed of two linear segments with different slopes in the submerged and emerging beach. 

 

2DH models based on the NLSWE were proposed by Brocchini et al. (2001). Liu et al. (1995) and 

Hubbard & Dodd (2002). Liu et al. (1995) test their model on the laboratory test presented by 

Briggs et al. (1995) for wave runup of a solitary wave, obtaining good results for the measured 

levels and, in particular, for the maximum runup of nonbreaking wave. 

 

The adaptive OTT-2D model by Hubbard & Dodd (2002) yields good results for the most 

demanding of the test cases presented by Thacker (1981), with asymmetric level and velocity 

distributions, and very good results for the Briggs et al. (1995) test case as to water levels and 

maximum runup and for a test case with non-orthogonal incidence on a structure slope, with 

exception for the overtopping flow rates. The use of adaptive mesh reduces the CPU time in a ratio 

5:1 to 10:1 compared to non-adaptive meshes. 

 

A general review of strengths and limits of the NLSWE in reproducing coastal flows can be found in 

Brocchini and Dodd (2008). The authors discuss the relations between physical phenomena to be 

represented, equations, numerical schemes and most representative test cases to be used for model 

validation. 

 

As mentioned before, the suitability of NLSWE models for simulation of surf zone hydrodynamics 

and inland flooding suggests coupling with a spectral model for wave propagation from offshore. 

McCabe et al. (2011) have recognized the switching from the spectral model to the NLSWE model 

to be optimal for Hm0/d  0.65, where Hm0 is the spectral significant wave height, upon comparison 

of computed R2% setup with the laboratory measurements by Mase (1989). Moreover, McCabe & 

Stansby (2010) obtained better results using a coupled spectral-NLSWE model than using a coupled 

Boussinesq-NLSWE. 

1.2.5. Boussinesq models 

According to Svendsen (2007) classification, the Boussinesq-type equations (BTE) represent, in 

their original formulation, models for weakly non-linear long waves (Peregrine 1967, Benjamin 

1972). The BTE are deduced through a Taylor series development along the vertical of the velocity 

potential or of the horizontal component of velocity at a specific elevation from the bottom, and 

order of magnitude analysis of the resulting terms. In the classical BTE theory the curvature of 

streamlines in the vertical plane is described through a vertical velocity, the magnitude of which 

increases linearly from zero at the bed to a maximum at the free surface. More generally, the 

velocity profile is approximated by a polynomial expansion as a function of the vertical coordinate, 

which at lower order has a parabolic form. In this theory, therefore, the pressure is not longer 
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hydrostatic, but the vertical component of motion can be integrated out of the equations of motion 

to reduce the three-dimensional description to a two-dimensional one. 

 

Even in low-order formulations, the BTEs are characterized by the presence of derivatives of order 

larger than two, resulting in a specific difficulty in their numerical solution related to both the 

discretization itself or such high-order derivatives and the need for high order discretization of low-

order derivatives, so as to have the high-order derivatives appearing in the expression of the 

truncation error to vanish. 

 

Since the pioneering work of Boussinesq (1872), much effort has been addressed on BTE 

improvement. After Peregrine’s (1967) resuming to low-dispersive BTEs valid in uneven bottom, a 

huge number of BTE models have been defined so far, with the aim of enhancing both their 

dispersive and nonlinear characteristics, related to the  and  parameters, respectively. In-depth 

historical and relatively recent reviews may be found in Dingemans (1997), Kirby (1997, 2003), 

Madsen and Schäffer (1998, 1999), Madsen and Fuhrman (2010), and Brocchini (2013). 

 

Main contributions to the improvements of dispersive and non-linear properties are due to Witting 

(1984), Madsen et al. (1991), Madsen and Sørensen (1992), Nwogu (1993), Schäffer and Madsen 

(1995), Madsen and Schäffer (1998, 1999), Green and Nahgdi (1976), Wei et al. (1995), Gobbi and 

Kirby (1999), Gobbi et al. (1999, 2000), Lynett et al. (2002), Madsen et al. (2003), Musumeci et al. 

(2005), Madsen et al. (2006), Chen (2006), Chazel et al. (2010), Bonneton et al. (2011), Zhang et al. 

(2013), Donahue et al. (2015, 2016), Beji and Nadaoka (1996), Kirby et al. (1997), Chen et al. 

(2001), Lynett and Liu (2004), Madsen et al.(2006), Shi et al.(2012a, b). 

 

The derivation of the BTE through series development has naturally led to seeking for better 

properties increasing the order of formal accuracy of the equations, leading to increasing the 

number of equations and the maximum order of the derivatives therein (Agnon et al. 1999, Madsen 

et al. 2002,2003). One of the main downside to the BTE models is the generally need of prescribing 

a separate wetting and drying and moving shoreline algorithm (i.e. Madsen et al. 1997, Kennedy et 

al 2000, Brocchini et al 2002), as well as an ad hoc breaking model, the onset of breaking being 

represented via limiting values of the wave steepness, of the H/d ratio or of the vertical velocity at 

the free surface (Karambas and Koutitas 1992, Schäffer et al. 1993, Madsen et al 1997c, 1997d, 

Kennedy et al 2000, D’Alessandro and Tomasicchio, 2008, Tonelli and Petti 2009, 2010, among 

others). 

 

For simulating broken wave propagation and related turbulence role, models based on turbulent 

viscosity (Zelt 1991; Karambas e Koutitas 1992; Wei et al 1995; Kennedy et al. 2000), surface 

roller (Brocchini et al. 2002, Schäffer et al. 1993, Madsen et al. 1997a,b, Sørensen et al. 1998) and 

on vorticity models (Veeramony e Svendsen 2000) have been proposed. 

 

Hybrid models have been formulated more recently, based on low-order BTE up to the onset of 

breaking and on the NLSWE shoreward, to take advantage of the mentioned properties of these 

latter in representing broken waves and propagation over dry bed (Bonneton et al. 2011, Fang et al. 

2014, Ha & Cho 2015, Orszaghova et al. 2012, 2014, Shi et al. 2012a, 2012b, 2013, Tehranirad et 
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al. 2011, Tonelli & Petti 2009, 2010, 2012, 2013, McCabe et al. 2013, Erduran 2005, 2007, Kazolea 

& Delys 2013). 

 

Nevertheless, general achievements in BTE modelling of wave transformation have been nowadays 

widely recognized, since BTE research have undergone rapid developments, i.e. focusing on wave-

current interaction (Chen et al. 1998), wave run-up (Fuhrman and Madsen 2008), tsunami 

simulation (Kirby et al. 2013), etc... 

 

As per the BTE applied to wave runup simulation, computational results have been presented by 

Donahue et al. (2016), Dutykh et al. (2011), Furham & Madsen (2008), Geist et al. (2009), Liang et 

al. (2013), Lo Re et al. (2012, 2014), Lynett et al. (2002), Madsen et al. (1997c, 1997d), McCabe & 

Stansby (2010), McCabe et al. (2013), Park & Cox (2015), Roeber et al. (2010), Tsung et al. (2012), 

Zelt (1991), Zhang et al. (2014), Kennedy et al. (2000). Although some of the above models enjoy 

the most advanced dispersive and non-linear properties, ensuring very good results when compared 

to solutions in closed form and laboratory measurements, they suffer from the same limitations 

presented for the 2DV models, or even worse due to the only approximate non-hydrostatic behavior, 

when applied to transects extracted from markedly irregular topographies alongshore, as also 

pointed out by Geist et al. (2009). 

 

2DH modelling with the BTE suffers from some more problems in the computation of propagation 

over dry bed. The fully nonlinear COULWAVE (Lynett et al. 2002) model suffers from instability 

in the test by Thacker (1981) for free oscillations of long waves; however, it yields good results for 

the laboratory test by Briggs et al. (1995) of solitary wave propagation and runup over a conical 

island. The fully non-linear model by Furham & Madsen (2008) is also unstable for the Thacker 

(1981) test, whilst performs well for the Briggs et al. (1995) test. Kazolea et al. (2012) obtain a 

good reproduction of this latter test with a weakly non-linear and weakly dispersive formulation on 

unstructured mesh. For the same test, Wang et al. (2006) and Zhang et al. (2016) do not show 

comparisons as to the extent of the flooded areas computed with, respectively, meshless and 

rotational Boussinesq-Green-Naghdi models. 

 

It is to be noted, however, that tests with solitary waves can be considered representative (and not 

even completely representative) of tsunamis waves rather than wind waves, and that the Briggs et 

al. (1995) considered a relatively regular bathymetry/topography. Application of COULWAVE to 

simulate a natural event with irregular bottom (Cheung et al. 2003) has provided significant 

discrepancies between computed and measured limits of the flooded areas. The same model has 

been applied by Geist et al. (2009) to simulation of a landslide-generated tsunami, but only in its 

weakly nonlinear version; a simulation with the fully nonlinear 1D version with higher resolution 

revealed significant differences with the results of 2D simulations. However, no comparison with 

field data is presented. Results by Liu et al. (2010) with the meshless model by Wang & Liu (2006) 

in the simulation of a real tsunami in the Indian Ocean display a bad reproduction of measured 

water levels in the sea and a noticeable overestimation of flooded areas. 

 

As to CPU times required for simulations on the Briggs et al. (1995), 20 s of real time simulation by  

Furham e Madsen (2008) on a 234×201 mesh with 0.15×0.15m squared cells took 11800 s (3.3 h) 

with a single 3.2 GHz Pentium 4 processor; 18 s of real time simulation by Kazolea et al. (2012) on 
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unstructured mesh with 52191 nodes, with cell sides in the range 0.07 m to 0.2 m, required 1980 s 

(33 min) on a single core of a single 2.4 GHz Intel Core 2 Quad Q6600 processor. 

1.3  Discussion of BTE and NHE models applied to coastal flooding problems 

From the consideration presented above, at the moment it seems that fully 3D models are unsuitable 

to be considered for application to real case studies due to the huge amount of computational 

resources and CPU time needed to run them. 2DV non-hydrostatic models might be an effective 

alternative for use in runup simulation on very regular bathymetries/topographies, due to their 

capability of inherently representing wave breaking with the VOF technique. Nonetheless they still 

remain very time consuming tools, which are not suitable for application to topographies that are 

irregular in the longshore direction – which is not at all unusual. 

Therefore, one naturally looks at Boussinesq models and non-hydrostatic models using a small 

number of layers (whose equations are identified as NHE hereafter) as a suitable alternative for 

practical applications, at least for the case of narrow bays or artificial basins but also with an even 

wider scope. One of the fundamental objective of both model types, in the last two-three decades, 

has been to improve and to extend the phase-resolving modelling in (relatively) deep water, or, in 

other terms, to represent adequately a larger range, as well as better interactions of frequencies 

inside the wave spectrum. This is accomplished by increasing the order of derivatives in BTE 

models, while improvements in NHE models are obtained by (moderately) increasing the number of 

layers (Stelling and Zijlema 2003). However, neither the BTE nor the NHE are suitable for use up 

to the offshore for efficient computations, which calls for coupling one of the two kind of models 

with a spectral model cover the gap from the offshore to the nearshore, providing boundary 

conditions to the phase-resolving model. In addition, 2DH Boussinesq models suffer from problems 

in simulation of wave propagation over a dry bed, so that one has to resort to NLSWE in the 

nearshore, whereas NHE models are accurate and efficient in this respect. 

The above considerations led us to formulate as an operational tool a model coupling a spectral 

model from the offshore to the outer edge of the nearshore and a NHE model in the nearshore. 

 

In fact, NHE wave-flow models are widely accepted as equally valid and competitive alternative to 

BTE modelling (i.e., Zijlema et al 2011b, Ma et al 2012, Cui et al. 2012, 2014, and references 

quoted therein). As stated by Zijlema et al. (2011a) NHE models may be identified as a compromise 

between the capabilities of BTE modelling and operational-based requirements for numerical 

robustness, simplicity, ease of use and economy. A review of non-hydrostatic computing can be 

found in Zijlema and Stelling (2005). Stelling and Zijlema (2003) showed that the NHE models can 

be more efficient by representing the vertical domain with an edge based finite difference scheme. 

Additionally, Zijlema and Stelling (2008) showed that wave breaking can be accurately modelled 

by NHE model without using a separate breaking model. Moreover, Smit et al (2013) have further 

extended the efficiency of the breaking model by reducing locally the non-hydrostatic equations to 

the hydrostatic ones, once the rate of change of the free-surface exceeds a pre-determined threshold; 

hence, by mimicing the shock-capturing characteristic of the NLSWE, according to the hybrid BTE-

NLSWE approach, and implementing a wave breaking initiation criterion similar to the criterion 

used in Kennedy et al. (2000). 
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2 Extreme value Theory 

Following Goda (2011a), GEV, GP and WBL distribution family have been assumed to be 

representative for all possible marginal parent distributions within the statistical inference 

framework regarding coastal engineering studies. 

Formally, the GEV and WBL distributions have three parameters of shape (denoted in this study by 

k), scale (A) and location (B), whereas the GP distribution must be considered a two-parameters 

distribution family. Although the GP distribution can be expressed as a function of the same three 

parameters (i.e. when L-moments method is used), strictly speaking only two of them are 

independent. As a matter of fact, in the so-called fixed-threshold approach, it is required to identify 

the exceedances by choosing an appropriate threshold u, which is not strictly properly a parameter 

of the distribution and cannot be considered a true distribution parameter. 

In this chapter, the basic characteristics of BM and POT approach are presented, by introducing the 

cumulative distribution function, F(x), the quantile function expressed in term of reduced variate, 

  , and the respective return value,   , for associated return period, T, for each of GEV, GP and 

WBL family distribution, as well as for the GP-Poisson model, and the GP-MTM model. Formally, 

two equivalent expressions of GEV and GP family may be considered, by changing the sign of the 

shape parameter; herein it is chosen to adopt the Hosking and Wallis (1997), Madsen et al. (1997a), 

Goda (2011 a, b) convention, among others. 

Secondly, the fixed-threshold methods used in this study are discussed, namely the automated 

detection method of Thompson (2009) and the empirical approach based on the fixed mean rate 

value proposed by Mazas and Hamm (2011). In addition, the most known fixed-threshold 

procedures are included, i.e. the mean-residual-life and the diagnostic method based on the 

threshold stability property, both proposed by Coles (2001). Finally, the main characteristics of the 

multiple-threshold-method proposed by Deidda (2010) are reported. 

2.1.Basics of Extreme Value theory 

The extreme value theory (EV) provides similarities with the central limit theorem. Classical EV 

theory is concerned substantially with distributional properties of the maximum 

 

                                     (2.1) 

 

of n independent and identically distributed (iid) random variables,       
 , as n becomes large. 

 

The Extremal Types Theorem (Coles 2001- Theorem 3.1) defines the possible limiting forms for the 

distribution of   under linear normalizations. Formally, one shall be concerned with conditions 

under which, for a suitable sequence of normalizing constants        and     , 

 

             
 
     .                     (2.2) 

 

Basically, it is stated that if for some sequences of normalizing constants        and     , the 

quantity           has a non-degenerate limiting distribution function     , (e.g. for every 

max-stable distribution     ), then   must have one of just three possible forms – the well-known 

three extreme value distributions, FT-I, FT-II, and, FT-III (Fisher and Tippet 1928, Gnedenko 

1942). 
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It can be proven (Jenkinson, 1955, Coles 2001 - Theorem 3.1.1) that the GEV distribution subsumes 

each of these three possible types; in fact, FT-I, FT-II, and FT-III are respectively equivalent to 

GEV distribution with shape parameter k = 0, k < 0, k > 0. 

 

On the other hand, if the BM has approximate distribution GEV, then the threshold excesses have a 

corresponding approximate distribution within the GP family (see for example Coles 2001 - 

Theorem 4.1). Moreover, this duality GP-GEV may be stated by the parameters correlation, due to 

the fact that the GP parameters           are uniquely determined by those of the associated GEV 

distribution of BM           ; as a matter of fact, the shape parameter is the same, whereas the 

scale parameters of both distributions are related by                . 

2.2  The generalized extreme value (GEV) distribution 

The GEV distribution was first introduced by Jenkinson (1955). The cumulative distribution 

function of the GEV is given by 

 

             

 
 
 

 
           

   

 
     

         
   

 
 

   
    

                  (2.3) 

 

where the support is        , if    , or        , if     , whereas        

results when    . The shape parameter may be used to model a wide range of tail behaviours. 

The case     is that of an exponentially decreasing tail, while     is that of a polynomially 

decreasing tail function, corresponding therefore to a long-tailed parent distribution; finally,     

is the case of a finite upper endpoint and hence is short-tailed. 

It should be noted that there exists a number of non-regular situations associated with k, for instance 

the mean only exists for     , while the variance for        and there may be problems when 

the second and higher moments do not exist to obtain the likelihood estimator. Nonetheless, the 

experience with real-world data suggests that the condition            is almost always 

satisfied in practical applications. Some of these problems may be circumvented by adopting other 

estimators and estimation methods different from the ML (see for example Hosking et al. 1985, 

Madsen et al 1997). 

 

The GEV combines three simpler distributions into a single form, allowing a continuous range of 

possible shapes that includes all three of the simpler distribution. The three cases covered by the 

GEV distribution are often referred as the Types I, II, and III. Each type corresponds to the limiting 

distribution of block maxima from a different class of underlying distributions. Distributions whose 

tails decrease exponentially lead to the Type I; distributions whose tails decrease as a polynomial 

lead to the Type II; distributions whose tails are finite lead to Type III. 

 

Types I, II, and III are sometimes also referred to as the Gumbel, Fréchet, and Weibull types, though 

this terminology can be slightly confusing. The Type I (Gumbel) and Type III (Weibull) cases 

actually correspond to the mirror images of the usual Gumbel and WBL distributions, respectively 
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reported in equations (2.6) and (2.7). Finally, the Type II (Fréchet) case is equivalent to taking the 

reciprocal of values from a standard Weibull distribution. 

 

In terms of reduced variate, the quantile function is given by 
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P being the non-exceedance probability. 

The corresponding return value for an associate return period T is expressed by 
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2.3  The Weibull (WBL) distribution 

The Weibull distribution was first published in 1939 (Weibull 1939) for description of breaking 

strength of materials. It has been widely adopted in extreme waves analysis in many occasions 

(Mathiesen et al, 1994, Goda 2010). 

The cumulative distribution function of the WBL distribution (Weibull 1951) is given by 

 

                     
   

 
 

 
                            (2.6) 

 

It can be considered either a lower bounded or an upper unbounded distribution and it can be 

skewed either positively or negatively. The shape parameter governs the tail behaviour: in 

particular, the distribution becomes broader with decreasing k, with an attitude to generate heavier 

extremes. The case whit     demonstrates behaviour similar to the Lognormal and Pearson-III 

distributions, whereas the case with     is the Exponential distribution. Moreover, with this value 

of the shape parameter, it can be shown (Cunnane 1973) that the WBL distribution becomes 

asymptotically the Gumbel distribution 

 

                     
    

 
                      (2.7) 

 

where  

 

                                 (2.8) 

 

and λ is the mean rate of occurrences, counted as the averaged number of events per year, and is 

assumed to represent the Poisson-parameter. 
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In addition, the WBL family is related to the GEV family, because it can be considered a reverse 

GEV distribution with parameters 

 

                                    (2.9) 

 

Schematically 

 

                                              (2.10) 

 

In terms of reduced variate, the quantile function is expressed by 

 

                                          (2.11) 

 

Therefore, the return value associated with the return period T is equal to 

 

         
 

 
          

 

                    (2.12) 

 

A detailed overview of the parameter estimation methods used for the WBL distribution may be 

found in Akram and Hayat (2014). Although the ML estimator is usually considered the best 

statistical estimator, in terms of unbiasedness, effectiveness and consistency, the authors have 

demonstrated that other estimators can be considered either adequately representative or even better 

than the maximum likelihood method. As a matter of fact, both for analytical, numerical and 

statistical reasons the LM method tends to outperform the ML estimator. The LM estimator for the 

WBL family are reported in Goda et al (2009), which added these formulations to the FORTRAN 

program “lmoments” proposed by Hosking and Wallis (1990), following the book of the same 

authors (Hosking and Wallis 1997). In addition, it may be demonstrated how the MPS method is 

further better than the ML estimator, because it has a wider range of validity. Finally, the Ordinary-

Least-Square (OLS) method defined by Goda (2010) is found to have same unbiasedness of the ML 

method, when its use is associated with an unbiased plotting-position formula (Goda et al. 1988). 

Moreover, an Extended-Least-Square (ELS) method, reported in Goda (2010) as well, is found to be 

comparable in terms of effectiveness with respect to the ML method. 

 

To sum up, for the WBL distribution several parameter estimation methods exists; hence, if the 

sample size effect has a great impact on the analysis, it will be better to carry out a comparison 

between their performances, without choosing a priori one of them. 

2.4  The generalized Pareto (GP) distribution 

The cumulative distribution function of the generalized Pareto (GP) distribution, introduced by 

Pickands (1975), is given by 
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where the support for x is       for     and           for    . It must be 

stressed that the GP is a two-parameter distribution – being A the scale parameter, while k the shape 

parameter –, because the threshold value, u, has to be specified before the fitting (e.g., the fix-

threshold approach). Moreover, even in the case of three-parameter-GP distribution, when a 

location parameter B is added to the usual aforementioned form (e.g. as proposed by Hosking and 

Wallis (1997) and largely adopted by Goda (2011a, b) or Mazas et al (2014)), it should still be 

considered as a two-parameter distribution, only two of them being independent from time to time. 

Secondly, as previously denoted, it should be paid attention to the dual convention usually 

considered in literature, which is related to the shape parameter sign (    ), leading to two 

equivalent formulations. In the present work, the k parameter sign and, hence, the corresponding 

formulation, will be generally adopted, according, among others, to Goda (2011b). 

The shape parameter k controls the tail behaviour of the distribution, hence the aptitude to originate 

heavier or weaker (i.e. flatter) tails or larger or smaller quantiles estimates. If k < 0 the GP 

distribution is unbounded and heavy-tailed and it leads to the so-called Pareto distributions, whereas 

it is bounded and light-tailed if k > 0, with an upper bound value equal to        . When k = 0 

the distribution has the ordinary exponential form with mean A, while the case with k = 1 yields to 

the uniform distribution on        . 

 

Two important features are relevant to the analysis of extreme events. First, a truncated GP 

distribution remains a GP distribution; that is, if the GP distribution is assumed to be applied for the 

threshold level   , then for a higher threshold,      , the distribution of the exceedance given 

     is 

 

          
          

       
 

 
 
 

 
        

    

                           

      
    

           
 
   

   

             (2.14) 

 

which is a GP distribution with the same shape parameter k and a different scale parameter equal to 

           , if    . 

 

Second, if a set of n independent and identically distributed random variables, 

       
            is considered, where n has a Poisson distribution with mean , than    

           
                ; that is the extreme events follow a GEV distribution, with the 

same shape parameter and with scale and location parameters linked by theoretical relationship (e.g. 

see §2.6). Actually, this is a fundamental connection between the GP-Poisson model and the GEV 

family, which may also be referred to as the GP-GEV model relationship. 

 

In terms of reduced variate, the P-quantile of the GP is defined as 
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The return value corresponding to the return period T is defined as 

 

         
 

 
  

 
 
 

 
            

 

 
        

  
 

 
       

 

 
  

 
      

               (2.16) 

 

As mentioned before, only two parameters need to be estimated. Estimation of the parameters of the 

GP distribution is considered by Hosking and Wallis (1997, 1990, 1987, 1985). The ML estimation 

is determined by Grimshaw (2003), whereas the MPS estimator is defined by Cheng and Amin 

(1983). 

2.5  The GP-Poisson model 

Following Madsen et al. (1997) the relation between the GP-Poisson model and the GEV family 

will be derived. The starting point is represented by the relationship between the cumulative 

distribution function of POT data, F(x), assumed both GP- and Poisson-distributed, and the 

cumulative distribution function of annual maxima, G(x). Specifically, the Poisson distribution 

describes the probability of the event that occurs t times in a given time duration, K, when the mean 

rate of occurrence is λ: 

 

     
  

  
                                          (2.17) 

 

The probability that      among t POT data in a year does not exceed the value x is given by 

 

                                             
                  (2.18) 

 

where       denotes the probability of the event  . 

By substituting equations (2.17) and (2.13) into equation (2.18), Madsen et al. (1997a) proposed the 

cumulative distribution function of the AM data derived from the parent of GP distribution, showing 

its duality with the GEV distribution  

 

           

 
 
 

 
           

    

       

         
    

   
   

    

 ,               (2.19) 

 

where the scale parameter of the GEV distribution is given by 

 

       ,                     (2.20) 

 

while the location parameter    of the GEV distribution is equal to 
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 .                 (2.21) 

 

It is interesting to observe that this expression is equivalent to the GP-GEV relation stated by Coles 

(2001, pg. 75, eq. 4.3) and presented before (§2.2). In fact, by considering the sign convention, 

      , and rearranging the terms in the above equation, it may be shown that  

 

                              ,               (2.22) 

 

where it is highlighted the equivalence between GP and GEV distributions. 

 

Finally, the T-year event based on the AM data is defined as the return value 

 

   

 
 
 

 
               

 

 
     

   
  

 
          

 

 
  

 
    

 .               (2.23) 

2.6  The fixed-threshold methods 

Several concerns have been raised about the threshold selection in the GP-POT modelling (i.e. 

Scarrot and MacDonald 2012), this still being indeed an open question. The difficulty arises 

because of the trade-off between making the threshold high enough to ensure the GP approximation 

valid, but not so high to result in too small number of exceedances for accurate estimation of the 

parameters. In this paragraph, two well-known methods, which are closely related to the GP 

characteristics presented before, are going to be introduced. They are both based on the fitting of 

models across a range of different thresholds and according to Coles (2001) may be defined either 

an exploratory technique or a diagnostic assessment of the stability of parameters estimates. 

 

In more detail, the first method is the so-called mean residual life plot, which depends on the 

expectation of the GP excesses and on the property of parameters threshold-invariance. It is 

theoretically known that if the GP constitutes a valid model for the excesses over the optimal 

threshold, the expectation of the GP excesses is a linear function of the threshold. Assuming the 

sample mean of the threshold excesses as an empirical estimate of the expectation of the excesses 

and provided GP distribution is a valid model for these excesses, the mean residual life plot is the 

locus of points 

 

        
 

 
        

                              (2.24) 

 

where, n represents the number of excesses over the threshold u, while xmax denotes the largest of 

the xi random sample. 

 

The second procedure implies to estimate the model at a range of thresholds, by analysing the 

concepts of parameters threshold-invariance; that is, if a GP distribution provides a reasonable 
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model for excesses of a threshold   , then excesses of a higher threshold u should follow a GP 

distribution, where the shape parameters of the two distribution are the same, whereas the scale 

parameters are analytically related. Formally, it follows that the scale parameter changes linearly 

with u unless k = 0, that is 

 

                                 (2.25) 

 

Coles (2001, pg 83) proposed a re-parameterization of the GP scale parameter by the expression 

 

                                  (2.26) 

 

in order to highlight the constancy of the GP parameters with respect to the threshold. Hence, if    

is a valid threshold for excesses to follow the GP distribution, then both estimates of the shape and 

scale parameters,    and   , should be constant above   . The optimal threshold,     should be 

consequently selected as the lowest value of a range of thresholds for which the estimates remain 

near-constant (i.e. up to the sampling variability). 

 

The third method that is going to be defined is still based on the GP characteristics, but it permits an 

automated selection of the optimal threshold over a range of valid values by using the maximum 

likelihood estimation and a goodness of fit test. In addition, an uncertainty quantification based on 

bootstrap technique and an extension to express the covariate influence on the threshold selection –

for instance, the effect of the cosine of wave directions with respect to a sample of excesses 

constitutes by significant wave heights – can be included (Thompson et al. 2009). 

The procedure presented by the authors is focused on the right tail of the distribution. They 

proposed to set a uniformly spaced sequence of possible threshold values      
                  

between the median and un upper threshold, which is assumed to be equal to the 98% empirical 

quantile or coincident with the 100
th

-order threshold whether the number of excesses greater than un 

is lower than 100. For each potential threshold the GP is fitted using the ML technique and the 

differences in the modified scale parameters for neighbouring thresholds are calculated 

 

                                             (2.27) 

 

By assuming asymptotic normality and provided these scale differences being GP-distributed, that 

is the expected values of ML estimates is centred around zero, the procedure requires, simply, to 

define a sample of scale differences and test the consistency with a goodness-of-fit under the 

following null hypothesis 

 

                                                  (2.28) 

 

For each threshold, a sample of these scale differences can be obtained by increasing the threshold 

increment by increment and testing the H0 hypothesis by a Pearson    test with a 0.2 significance 

level. The optimal threshold is found to be the first not rejected threshold. 
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2.7  The multiple-threshold-method 

The multiple-threshold-method (MTM) is proposed by Deidda (2010) and, in general, it can be 

assumed as a mixture model because it is based on fitting the entire dataset source by a single 

distribution (i.e. the GP distribution). It is tailored to rain data and its performances are 

demonstrated to be flexible and robust in tackling problems involving samples constitutes by 

rounded-off data and, for these cases, even more suitable than the fixed-threshold approach. In this 

work, its applicability to wave data is tested, where some drawbacks may arise because of either the 

effect of directionality or the de-clustering procedure adopted herein. Therefore, its application is 

restricted to the total sample wave data within the main directional sector. 

 

As done before for the GP, GEV and WBL, the purpose is to report, firstly, the expression of the 

cumulative distribution function and the corresponding quantile function, whereas, successively, the 

essential characteristics of the method are briefly defined. 

The starting point is addressed to re-parameterize the GP distribution in equation (2.13) using 

estimates obtained with any threshold u, in order to obtain a simple threshold-invariant three-

parameter distribution function which may assure a perfect overlapping with the GP fitted on the 

exceedances over any threshold larger than the presumed optimum one. For this purpose, according 

to the same symbols used by the author, but conforming to the sign convention used herein, the 

following formulation is assumed 

 

                

 
 

          
 

 
                                     

       
 

 
 
   

   

              (2.29) 

 

where a modified shape parameter is found to be defined by the same relationship that are 

characteristic of the GP-Poisson model 

 

                             (2.30) 

 

On the other hand, the survival function (i.e. the probability to observe excesses of u) is determined 

through the following expression 

 

   
  

 
 

 
 
 

 
       

 

  
                                      

      
 

  
 
   

    

                 (2.31) 

 

where 

 

               
  

 
                   (2.32) 

 

represents the estimator of the probability to observe an exceedance of the threshold u, while N is 

the sample size (including the zeros) and Nu is the number of excesses above the threshold u. 
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On the same time, assuming x as an independent and identically distributed random variable, it is 

straightforward to obtain the relationship between the distribution function of annual maxima, G(x), 

the threshold-invariant GP parameterization and the yearly return period, T; namely 

 

                  
 

 
                 (2.33) 

 

where          is the average number of days in a year. The corresponding quantile function for 

the T-year return period is given by: 

  

   

 
  
 

  
       

     
 

 
 
   

  
                                     

 
  

 
  

     
 

 
 
   

  
 

 

      

                (2.34) 

 

Finally, a hierarchical procedure is provided to evaluate the so-called Multiple-Threshold-Method 

(MTM) estimates, which are denoted as   ,   
 , and   

 . 

To a close extent, the shape, α, and scale, ξ, estimates on the excesses over a range of thresholds u, 

as well as the    estimates, are firstly computed; then, the    and    are evaluated by using 

equations (2.30) and (2.31). At this point, the author suggestion is to prescribe a set of thresholds 

values, ranging from the lowest to the largest value where the estimates can be assumed stable, in 

order to achieve an even more reliable MTM estimates. In fact, the MTM approach is subsequently 

carried out by formally considering the following set of steps: 

 

i) the MTM estimate   of the shape parameter is assumed to be equal to the median of the ξ 

estimates within the previously fixed range of threshold; 

 

ii) the MTM estimate   
  of the scale parameter is obtained as the median of modified scale 

parameters   
  estimates, function of both the   estimate and the new    estimates, conditioned to 

the same   estimate obtained at the previous step, on the same suggested range of thresholds; 

 

iii) finally, the MTM estimate   
  is the median of new values of   , conditioned to the MTM 

estimates    and   
  obtained at previous steps, and denoted as   

 , within the same range of 

thresholds. 

2.8  Best-fit metrics 

Diagnostic, parametric and non parametric best-fit metrics are used to assess the model 

performance. Herein, three metrics used to assess the model performance are introduced: the Error 

Norm (EN, Li et al. 2008), the Akaike Information Criteria (AIC, Akaike 1973), the Bayesian 

Information Criteria (BIC, Schwarz 1978), and the bias and root-mean-square-error (RMSE) 

measures. Basically, the lower the criterion the better the fit. 
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According to Li et al. (2008) the Error Norm (EN) can be expressed by 

 

                  
 

   
 

 
        

 
 ,                 (2.35) 

 

where,          
 are the ordered data            , in increasing magnitude, h is a weight-

parameter, which controls the emphasis of the fitting algorithm to the sample. The equation (2.35) 

corresponds to the Kolmogorov-Smirnov test when h = 1.0, and equal emphasis is addressed to both 

halves of the rank ordered distribution. If h <1, emphasis is assigned to the lower tail, whereas for h 

> 1.0, it is focused on the upper tail, so on the extreme events. Practically, the equation (2.35) can 

be assumed as a measure of the maximum deviation between the empirical cdf    (i.e. the plotting 

position), and the probabilistic model obtained with optimised parameters   . 

 

In this work, an improved version of this metric is assumed. Basically, it is to be noted that the first 

term on the equation is the Weibull formula, which is biased and not suitable for distribution used 

herein (e.g. Cunnane 1978). Therefore, unbiased estimator are employed, by using an ad hoc 

plotting position formula    (e.g. §1.2.4), according to 

 

                          
 
                   (2.36) 

 

where         is the probabilistic model, while the other terms are identical to those expressed in 

the previous equation. 

 

By assuming a series of B replicates, i.e. generated from a Monte Carlo procedure, or from a re-

sampling technique, an improved estimator of the         is introduced by the author, by 

computing the expected value of the error norm. Applying to equation (2.36).gives 

 

                                  
 
                    (2.37) 

 

where             and     is the expectation operator. 

 

AIC is founded on information theory and gives the model providing the best compromise between 

bias and variance. Introducing the likelihood of the fit, L, the number of parameters of the 

distribution,   , and assuming the sample size N large enough (i.e. asymptotic condition), AIC is 

given by: 

 

             .                    (2.38) 

 

It can be interpreted as the sum of two terms, the first one measuring bias and the second one 

measuring variance. 

 

Under the same assumptions as AIC, BIC is formally defined as: 
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                                    (2.39) 

 

Basically, AIC penalizes the number of parameters less strongly than does BIC. 

 

Finally, bias and RMSE are computing by using a Monte Carlo procedure and are known to provide 

an overall measures of the performance of an estimator   . In particular, the bias of an estimator    of 

  is given by  

 

                                            (2.40) 

 

while the RMSE is obtained as 

 

                 
 

          
 

        .                (2.41) 
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3 Long-term climate analysis 

Generally, wave climate analysis requires a large amount of data to ensure the statistical 

significance; unfortunately, spatial and temporal wave records are usually limited with respect to 

other Earth Science area, e.g. Hydrology. In the Mediterranean Sea and in our study area, the 

problem of having representative and effective data is amplified. Typically, three main data sources 

can be employed: (a) scalar or directional wave buoys, moored at specific locations; (b) satellites; 

(c) wave generation models. The best solution lies in the combined use of all sources In this work, 

the analysis are primarily restricted to available database, i.e. related to (a) and (c) types. 

 

As a matter of fact, the orography characterizing the Northern Mediterranean side is very articulated 

and the presence of large island and protruding peninsulas constitutes a deep obstacle to an accurate 

and reliable simulations with wave generation models (Cavaleri and Bertotti 2004). On the other 

hand, one of the few existing wave atlas (e.g. the WW-Medatlas project, Medatlas Group, 2004) is 

not appropriate to perform extreme wave computation, since classical wave parameters are 

primarily reported on frequency tables of joint occurrences. Despite some solutions to this problem 

should be reasonable alleviated by adopting ad hoc chain of models, e.g. as one recently proposed 

by Mentaschi et al. (2013), the attention in this work is primarily focused on employing open source 

archives and data recorded by wave buoys. Notwithstanding, two consideration should be remarked. 

First, well-known global atmospheric reanalysis dataset, namely ERA-interim (provided by the 

European Centre of Medium Weather Forecast ECMWF) and NOAA WAVEWATCH III CFSR 

Reanalysis Hindcast (provided by the North Oceanic and Atmospheric Administration) are not 

totally suitable in that area, since wave fields are inherently underestimated due to known 

underestimation of the wind fields. Second, wave buoy data are clearly more difficult to correct, in 

spite of being more reliable. 

 

In this chapter, a general overview of the study area, as well as the available data set are presented. 

After a short description of the dataset, the quality control check is synthetically introduced and the 

application to wave and wind dataset is described. Then, both long-term wave- and anemometric-

climate are reported. 

 

Pre- and post-processing checking operations have been carried out on each database, by 

implementing a comprehensive, semi-automated, graphical and numerical tool on a Matlab project. 

A complete automatic implementation is not achieved, since a semi-automatic graphical control is 

reputed necessary to adequately scrutinised anomalous data, according to WMO (2009) 

suggestions. In addition, long-term statistics are automatically classified either in graphical (e.g. 

wave climate-rose, wind-rose, sea storm polar plot, fetch distributions) or in tabular (e.g. bi-variate 

histograms, sea-storm classification, quality control report) form. Herein, only graphical results are 

included. 

 

After this mandatory checking, the dataset correctness can be reasonable assumed valid to perform 

the EV analysis (Repetto and Solari 2011). 



 Long-term climate analysis 49 

 

 

3.1  Study area 

Fig. 3.1 depicts a general overview of the Sardinia Island, localized in the Western Mediterranean 

Sea, and a summary of the available dataset, which is constituted by wave, wind, and pressure data, 

having non-homogeneous spatial distribution and heterogeneous time scales. 

 

Globally, the database at disposal is constituted by 12 data series. In detail: 

 

 three wave data series are collected from The Italian National Wave Measurement Network 

(Rete Ondametrica Nazionale, RON), recorded by Alghero, Siniscola-Capo Comino, 

Cagliari-Capo Boi directional wave buoys, respectively moored on the Northern, Eastern 

and Western Sardinian deep water (light blue cross markers in Fig. 3.1, see also Tab. 3.1). 

 

 nine wind and pressure data series are acquired from the Italian National Civil Aviation, 

meteo (Ufficio Generale per la Meteorologia - Ente Nazionale Aviazione Civile, UGM-

ENAV) network (blue circle markers in Fig. 3.1, see also Tab. 3.2). 

 

Wave RON data consists of 3- or 1/2-hourly bulk spectral parameters: significant wave height 

(       ), mean wave direction (          ), peak wave period (      ) and mean wave period 

(      ). 

 

Wind data are a collection of three-hourly (i.e. synop messages) wind speed (       , mean wind 

direction (          ) and air pressure (       ) data. 

 

Additionally, it is deemed useful to include open source data with the purpose of extending the 

whole dataset, by overcoming both the spatial lack of data and the limited temporal extension. 

Therefore, data computed by WAM and WAVEWATCH III models were downloaded; namely:  

 

 an archive of three-integral wave parameters – the overall significant wave height (hs, m), 

the peak period (tp, s), and the average direction at the peak period (dp, °N) – extracted from 

the NOAA-NCEP’s model, and covering about 30 years (1979-2008) at 3 hourly intervals 

on 1/6 degree resolution grid in the Mediterranean Sea (red triangle markers in Fig. 3.1); 

 a longer but coarser dataset constituted by four integral wave parameters – significant wave 

height (SWH, m), mean wave direction (MWD, °), mean wave period (MWP, s), peak period 

of 1D spectra (P1PS, s) – from the ECMWF’s model, covering about 35 years (from 1979-

2014) at 6 hourly intervals on 1 degree resolution grid in the Mediterranean (green disk 

markers in Fig. 3.1). 

 

In Tabs. 3.1 and 3.2 a summary of RON wave buoy and wind station is reported. In particular, each 

station is identified by a WMO (World Meteorological Organization) code, and some terms related 

to time extension: i.e., time period, effective annual extension and effective duration. Finally, wind 

measurement stations are also classified according to the ICAO (Airport Code Aviation 

Organization) code. 
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Tab 3.1 Summary of RON wave buoys. 

RON wave buoy WMO CODE Time Period KAM (year) KPOT (year) 

Alghero 61213 1989-2014 24.666 17.347 

Cagliari 61221 2002-2011 4.225 3.286 

Capo Comino 61212 2007-2014 4.740 3.604 

 

Tab 3.2. Summary of wind stations. 

UGM-ENAV 

Wind Station 
WMO CODE ICAO CODE Time Period KAM (year) KPOT (year) 

Alghero 16520 LIEA 1951-2013 60.84 46.40 

Capo Bellavista 16550 LIEB 1951-2013 61.99 55.82 

Capo Caccia 16522 LIEH 1975-2013 28.62 24.48 

Capo Carbonara 16564 LIEC 1951-2013 59.03 40.20 

Capo Frasca 16539 LIEF 1962-2013 50.80 40.55 

Capo San Lorenzo 16542 LIEL 1980-2013 24.10 4.92 

Elmas 16560 LIEE 1980-2013 24.53 22.73 

Guardiavecchia 16506 LIEG 1980-1997 13.90 9.32 

Olbia 16531 LIEO 1969-2013 10.32 8.34 

 

 
Fig. 3.1 Map of the study area and overview of data-source locations. In particular, these symbols are used: RON buoy data 

(light blue cross markers); ERA-interim grid points (green disc markers); NOAA grid points (red triangle markers); UGM-

ENAV (blue circle markers). 
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Basically,     and      are computed as a function of the station efficiency,           , 

which, in turn, is the key result of the data quality control analysis (§3.3). According to Goda 

(2010),     and      are assumed to be tailored for AM or POT extreme analysis computing, 

respectively. 

3.2  The RON Italian network 

The RON network was constituted by 15 real-time directional buoys distributed along the Italian 

coasts (Bencivenga et al. 2012, The Italian Wave Atlas 2004). Shortly, data had been collected 

since 1989 by using 8 pitch-roll Datawell Wavec buoys dislocated at 8 measurement stations 

(Alghero included); in 1999 two more stations, equipped with particle-following Datawell 

Waverider buoys, were added and the remaining five buoys (particle-following Axys Triaxis buoys) 

had been displaced in between 2001-2002 (Capo Comino – Siniscola included) and 2007 (Cagliari – 

Capo Boi included); in addition, also the other 10 buoys were changed to Triaxys type. Finally, 

since 2009 Watchkeeper buoys were moored in each location. Lastly, the RON network was 

completely dismissed in December 2014. 

 

It is to be remarked that until 1998 data were transmitted in semi-real time and were generally 

recorded in three-hourly series and every half-hour for limited time intervals, i.e. when storm peak 

wave heights exceeded a station-dependent-threshold value (e.g.            – Alghero buoy). 

Between 1999 and 2001 an improved data recording based on a real-time data transmission system 

was experimented. In the 2002 the network was restructured and upgraded and data were measured 

in real-time every thirty minutes. Finally, in 2009 a new network architecture was employed, based 

on a real-time transmission and half-hour data measurement. 

 

Unfortunately, only three buoys are moored along the Sardinian coasts (i.e. light blue cross markers 

in Fig. 2.1). It is to be noted that spatial density of the wave buoys over the Sardinian coast are 

much less than sufficient, since the Northern part is totally un-detected, the Eastern and Southern 

part are almost under-detected, while the Western part is the best equipped, but still not sufficiently 

covered. Furthermore, an inherent limitation should be stressed, which is associated to the reduced 

temporal extension (see Tab. 3.1, Figs. 3.2-3.4, 3.7-3.9). Unlike Cagliari and Capo Comino wave 

buoys, temporal extension of Alghero wave buoy is assumed to be reasonable sufficient to perform 

extreme wave analysis computation (Chapter 4). Nevertheless, it is to be remarked that other 

difficulties arise, since the Alghero dataset is obtained by using three different instruments; hence, 

homogeneity need to be verified and eventually relaxed. 

3.3  Data quality control 

Data quality control is essential and becomes mandatory at the aim of obtaining validate dataset and 

rigorous statistical, numerical and physical results. 

 

First of all, reliability, homogeneity, and representative criteria have been verified, to a large or less 

extent, for each dataset. A substantial part of the work has been addressed on analysing different 

data verification trustworthiness, on the basis of diversified procedures, due to the distinct physical 

behaviour of the considered variables. 
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Fig. 3.2 General overview of wave data originally recorded by the RON –Alghero wave bouy. 

 

Fig. 3.3 General overview of wave data originally recorded by the RON – Capo Comino wave buoy. 
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Fig. 3.4 General overview of wave data originally recorded by the RON – Cagliari wave buoy. 

 

According to Baffo et al. (2005a) suggestions, as well as following the WMO (2009) guidelines and 

slightly adapting the procedure proposed by Repetto and Solari (2011) for wind data, at least two 

main classes of control can be employed: 

 

a) a weak-climatic control, which is based on assigning minimum and maximum non-

exceeding threshold values, in order to restrict each dataset field to a physically allowable 

level. In this way, clearly erroneous values can be quickly and simply deleted; 

b) a consistency-climatic-control, finer and more elaborate than the previous one, which 

involves a mutual comparison of different variables at an adequate space-time scale; it is 

carried out for all doubt values either falling outside to the physical limits (previous defined) 

or denoting abnormal behaviour. In this way, the so-called outliers, or spikes, or unusual 

items, i.e. data characterized by suspicious values or significantly incorrect, are identified. 

Furthermore, other typologies can be included as well; namely: i) an internal consistency 

control, based on comparison of two or more variables at the same instant time; ii) a 

temporal consistency control, where the time persistency between different climatic events 

is analyzed; iii) a spatial consistency control, which represents the natural spatial variation 

of the climatic data (Baffo et al 2005b). 

 

Both type of controls are used to correct either wave or wind dataset. Furthermore, wave data were 

further scrutinised with respect to anomalous values occurring due to device transmission 

malfunctioning, measurement errors, un-moorings, missing information, according to ISPRA 

(2004) guidelines. 
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A MATLAB project has been implemented, with the aim of providing an automated computational 

procedure useful to the whole pre- and post-processing data-quality-control analysis. Specifically, 

the consistency-quality-checking requires a semi-automated-graphical approach, according to the 

WMO (2009) suggestions. As a matter of fact, the graphical control is the less subjective procedure 

to affirm whether a suspicious value is or not a true outlier. Obviously, is unthinkable to apply the 

graphical control to all points of the dataset, as for computational reasons as for practical 

convenience. 

 

The station efficiency is evaluated as a function of: total number of expected observations (NDA), 

total number of observations actually recorded (NDP), total number of missing data (NDM), total 

number of temporal gaps (NDG), total number of errors (NDE) and total number of observations 

removed (NDR) in the studied time period. Basically, four efficiency parameters can be computed: 
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3.4  Correction of RON dataset 

Two examples of graphical controls applied to the RON - Alghero wave dataset are reported in Fig. 

3.5, 3.6. In Fig. 3.5 an internal climatic control is performed, by comparing the set of significant 

wave height, wave mean direction, peak and mean wave period, at a same instant time t on a 2-

days-moving-window, i.e. ranging between             hours. The controlled value (red circle 

point) is above the threshold value (red continuous line,    = 5.0 m) between three-hourly (    

   ) or half-hourly (       ) data. Despite some high oscillations on the mean wave direction 

and wave period recorded as null, the value is assumed to be valid; thus, a correction on the wave 

period is performed (a nearest neighbour value is assigned). 

 

In Fig. 3.6 is shown an example of the internal consistency climatic control. In such situation, wave 

data is cross-controlled by employing other data sources. A comparison between wind field 

measured by three nearby anemometric stations (i.e. Alghero, Capo Caccia and Capo Frasca), as 

well as wave field simulated by the WAM model (ERA Interim archive) is provided. An erroneous 

sea storm the day after the effective sea storm may be easily noted. 

 

A global synthesis of the whole correction is proposed graphically and analytically. In particular, 

splitting up the information in homogenous periods, a summary is provided in Tab. 3.3. 

Specifically, start and end time, actual and potential number of observations, total efficiency, 

effective annual extension and effective duration are shown for each period. 
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Fig. 3.5 RON Alghero - internal climatic control. From top to bottom are displayed the significant wave height, the mean 

wave direction and the peak and the mean period, on a (2 days)-moving window, focusing on a 1999 storm event (known as 

The Christmas Event). The red circle marker identifies the point under control. 

 

 
 
Fig. 3.6 RON Alghero – internal consistency climatic control. It is shown a comparison between RON-Alghero wave data (left 

and right upper panel), wind field measured by nearby anemometric stations (i.e. Alghero, Capo Caccia and Capo Frasca, 

left lower panel), and wave field simulated by the WAM model (ERA Interim archive, right lower panel). 
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Fig. 3.7 Overview of corrected RON – Alghero-significant wave height dataset 

 

 
Fig. 3.8 Overview of corrected RON – Capo Comino-significant wave height dataset 
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Fig. 3.9 Overview of corrected RON – Cagliari significant wave height dataset. 

 

The global efficiency for each station is computed as weight-averaged of the total efficiency for 

each homogeneous period, assuming weights equal to the actual number of observation (NDA) and 

excluding long-term temporal gap. On the whole, values greater than 0.70 are obtained for each 

station. 

 

Despite a fairly adequate efficiency is given by RON-Capo Comino and RON-Cagliari wave buoys, 

a drastic short duration is also evident, which is assumed not to be consistent for providing reliable 

extreme wave model inter-comparison. Therefore, a deeply application of the EV methodology, as 

described in the previous chapters, is carried out by considering exclusively the RON-Alghero data 

set. 

Tab 3.3 Summary of RON dataset correction. 

 Start time (UTC) End time (UTC) NDA NDP    
    

(year) 

     

(year) 

RON Alghero        

I period 01/07/1989 00:00 15/06/2002 09:30 37860 32346 0.8544 12.957 11.070 

II period 15/06/2002 10:00 28/02/2014 23:30 205276 110044 0.5361 11.709 6.277 

Tot 01/07/1989 00:00 28/02/2014 23:30 432436 304120 0.7033 24.666 17.347 

RON Capo Comino        

I period 21/05/2002 17:30 12/09/2005 12:00 58069 39275 0.6764 3.312 2.24 

II period 01/02/2010 09:00 07/07/2011 17:30 25025 23913 0.9556 1.427 1.364 

Tot 21/05/2002 17:30 07/07/2011 17:30 83094 63188 0.7604 4.740 3.604 

RON Cagliari        

I period 07/02/2007 08:30 02/03/2008 19:00 18693 10904 0.5833 1.066 0.622 

II period 15/12/2009 11:30 06/09/2010 16:00 12729 10993 0.8636 0.726 0.627 

III period 27/10/2011 14:00 31/03/2014 23:30 42643 35705 0.8373 2.432 2.037 

Tot 07/02/2007 08:30 31/03/2014 23:30 74065 57602 0.7777 4.225 3.286 



 Long-term climate analysis 58 

 

 

3.5  Sea storm definition, selection and classification 

A sea storm is usually defined as a sequence of sea-states characterised by values of spectral wave 

parameters (e.g. Hm0, θwave, Tp, Tm0*) that vary gradually within a given interval. The concept of sea 

storm is suitable to perform a preliminary de-clustering of wave data (e.g. Mathiesen et al 1994, 

Corsini et al. 2004, Mazas and Hamm 2011). In addition, it can be adequately used in view of the 

ascertainment of  peak-storm-independency. 

In this work a sea-storm is assumed to be represented according to the definition given by Corsini et 

al. (2004) and by slightly adapting some of the driven parameters. Thereby, a sea storm is a time 

series of sea states characterised by: 

 wave height persistence over the threshold of             (which may be assumed 

representative of the background noise value on the Mediterranean Sea, e.g. Boccotti 2000), 

for more than 12 consecutive hours; 

 wave height decay below the threshold      for less than 12 consecutive hours; 

 Original direction belonging to a determinate angular sector (i.e. ± 30° with respect to the 

initial direction). 

 

In order to increment the sample size, it is chosen a threshold value (           ) to represent 

the Cagliari buoy. An example of sea storm definition and detection is depicted in Fig. 3.10. 

 

In particular, once extracted, the sea storm sequence is classified, summarised through a set of 

values and parameters (i.e. starting and ending time, recorded values and statistical measures, gap 

percentage, ...), and stored into a file. In addition, another type of graphical control is implemented 

in order to check the goodness of anomalous sea storm values, i.e. outliers. 

 

Once classified, the application of AM or POT approach require to identify each sea storm by its 

wave peak characteristics, i.e.                       . In particular, the peak employed to 

perform the extreme wave analysis is slightly different from the value recorded. Basically, the 

operation proposed by Goda, (2010, §10.1.2.C) to be used for wave profiles is adopted, by applying 

a parabolic fitting with a curve formed by three points                      . The aim is to 

eliminate the underestimation of the true maximum between two discrete sampling points. 

 

Finally, according to the POT approach, a series of independent and identically distributed random 

peak is to be selected. First of all, herein, sample independency is assumed to be verified by 

imposing a fixed time interval between two consecutive sea storms. This value can be strictly 

calculated on the basis of the auto-correlation function of the observed time series; by imposing a 

weak independence between two consecutive storms (i.e. a correlation coefficient with a value 

equal to 0.4), a time interval of 48 hours is generally obtained. Therefore, it is chosen to assume a 

time interval equal to 48 hours, which is a common value recommended in literature (i.e. Mathiesen 

et al. 1994) and found to be valid on the Alghero dataset (for a shorter time series) also by other 

authors (e.g. Pisocopia et al. 2002b). 

 

Tab 3.4 shows the number of independent sea storm identified for each RON wave buoy. 

Furthermore, initial (     
  

) and final (     
   

  directions of homogeneous directional sector are 
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indicated. In particular, these last values are selected according to Corsini et al. (2004), as remarked 

in the next paragraph. 

Tab 3.4 RON dataset. Homogeneous directional sector for each RON wave buoy: intial direction (    
  

 °N), final direction 

(    
   

°N), number of independent significant peak wave height (N, ev). 

 RON Alghero RON Capo Comino RON Cagliari 

    
   (°N) 170 220 275 170 350 55 115 350 110 200 110 

    
   

 (°N) 225 275 335 335 55 115 170 170 170 265 265 

N (ev) 17 95 632 744 30 13 36 79 53 55 114 

 
Fig. 3.10 RON Alghero: sea storm example. It is depicted a sea storm recorded during the so-called The Christmas Event. This 

representation is used to perform graphical control on the ascertainment of sea-storm validity 

3.6  Long-term wave climate 

In Fig. 3.11 a summary of the wave climate roses and sea-storm polar plots are depicted, while 

geographical and effective fetch distributions are displayed in Fig. 3.12 for each RON wave buoy. 

In particular, all buoys denote at least a bi-modal wave climate tendency, while the most energetic 

behaviour is evident on the North-West sector (Alghero buoy). On the other hand, it is to be noted 

that the limited sample size inherent to both Cagliari and Capo Comino RON buoys yield a lower 

number of sea storms and a less reliability than those provided by the Alghero RON wave buoy. 

According to Corsini et al. (2004), homogeneous directional sectors are identified by combining 

these three wave climate characteristics (Figs. 3.11 and 3.12). It is to be remarked that directional 

cluster values reported in Tab. 3.4 are subsequently used to perform the EV model inter-comparison 

(see Chapter 4). 
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Fig. 3.11 Wave climate rose (on the left) and sea storm – polar plot (on the right). Alghero RON buoy, Capo Comino RON 

buoy, Cagliari – Capo Boi RON buoy are located on the Norhern, Eastern and Southern part, respectively. 

 

 

 

 

 

 

 

 

 

 
Fig. 3.12 Geographical- and effective-fetch distributions. Alghero RON buoy (upper right figure), Capo Comino RON buoy 

(upper left figure), Cagliari –Capo Boi RON buoy (lower figure). 
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Fig. 3.13 Comparison between NOAA-ERA dataset for two of the common grid points 40 °N - 08 °E and 41 °N - 08 °E (first 

two rows of 4 plots) and between 40,50 °N - 08,00 °E NOAA grid point - RON Alghero wave buoy (last two rows of 4 plots). 
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3.7  Comparison between RON and NOAA wave dataset 

In this paragraph, a brief comparison between RON and NOAA dataset is carried out and the 

correlation NOAA-RON in the Northern-Western (NW) part of the study area will be introduced, 

since it is going to be the subject of the EV analysis.  

Formally, a deterministic time-domain analysis is performed at synchronous time instants between 

two grid points common to both NOAA and ERA dataset (40,00 °N 08,00 °E and 41,00 °N 08,00 

°E grid points), as well as between the Alghero wave buoy and three of the most-closed NOAA grid 

points (40,50 °N 08,17 °E; 40,50 °N 08,00 °E; 40,67 °N 08,00 °E). Essentially, this approach is 

based on the comparison of the physical quantity of interest at specific time frames. In particular, 

the comparison is performed by applying a linear regression analysis and by using some classical 

statistical indexes – i.e. correlation coefficient (R), normalised bias (NBI), root-mean-square error 

(RMSE) and scatter index (SI) –, either for all data recorded/computed in the same specific instant 

time or for single peak storm events happened at most within a ±12 hours-time window. 

In Figure 3.13 are shown some of the results obtained. The first two rows of 4 plots are referred to 

the NOAA-ERA interim comparison, while, for sake of economy, only the best fitted comparison 

between NOAA-RON Alghero is displayed in the other group of 4 plots.  

Generally, NOAA dataset would seem to be more suitable with respect to ERA interim data for at 

least two reasons. First, it denotes a better spatial coverage along the Sardinian coasts, due to a finer 

spatial resolution (see Fig. 3.1), although it is to be pointed out that the overall temporal extension 

is shorter than that provided by the ERA interim dataset. Second, the peak storms are found to be 

higher than those recorded in the ERA interim database. As a matter of fact, in Fig. 3.13 the first 

two plots in the first row depict the comparison between all significant wave heights computed by 

each model (NOAA and ERA) in the same specific instant time and regardless of direction, while 

the other two plots in the second row display the results of a simple linear regression model 

between synchronous peak storms within the directional sector 170 – 335 °N (which is the primary 

directional sector for the RON-Alghero wave buoy), and detected over a ±12 hours-time window. 

From all of this plots it can be seen as the ERA interim database produces an underestimation of the 

significant wave height with respect to the NOAA dataset (the normalised bias is always negative). 

On the other hand, the other four plots in Fig. 3.13 show an underestimation of the NOAA data 

(best fit grid point 40,50 °N–08,00 °E) with respect to the RON significant wave height. The 

comparison is carried out for all data within the directional sector 170-335 °N, as well as for peak 

storms enclosed in two homogenous (220-275 °N and 275-335 °N) and in the total directional 

sector (170-335°N). Although results confirm the well-known underestimation (BIASn < 0) of the 

hindcast data in the Northern Mediterranean (e.g. Cavaleri et al. 2004), it is interesting to observe a 

fairly good relationship between NOAA and RON data, which, on the other hand, would seem more 

than comparable (and even with a better correlation) with similar results obtained by Bosom and 

Jiménez (2011) on grid-points closed to the Catalan Coast (NW Mediterranean).  

Finally, numerical results for the most closed two or three NOAA grid points with respect to each of 

the three RON wave buoys are presented in Tab. 3.5-3.7. In Tab. 3.5, it can be observed a high 

correlation between NOAA and RON-Alghero datasets (           ), although it can also be 

appreciated the inherent underestimation (      . In this case, the best fitting is obtained by 

considering the 40,50 °N-08,00 °E grid point. On the other hand, the limited temporal extension of 
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both RON-Capo Comino (Tab. 3.6) and RON-Cagliari (Tab. 3.7) wave buoys generally reduce the 

number of concurrent events, though a high and good correlation with NOAA data can still be 

noticed in the first and second buoy, respectively. In addition, some positive bias can be generally 

observed in Tab. 3.7, for two of the three NOAA grid points closed to the RON-Cagliari wave buoy 

(i.e. 39,00 °N-09,33 °E and 39,00 °N-09,50 °E). Nevertheless, it should also be pointed out as the 

RON-Cagliari data (see Fig. 3.1) are likely to be influenced by the shelter effect, hence the 

associated wave transformation, caused by the Capo Carbonara headland. 

Tab 3.5 Numerical results of the comparison between peak storms computed/recorded by NOAA and RON-Alghero wave 

buoy, within a ±12 hours-time window. 

 275-335 °N 220-275 °N 170-335 °N 

 40.50°N 

08.17 °E 

40.50 °N 

08.00 °E 

40.67 °N 

08.00 °E 

40.50°N 

08.17 °E 

40.50 °N 

08.00 °E 

40.67 °N 

08.00 °E 

40.50°N 

08.17 °E 

40.50 °N 

08.00 °E 

40.67 °N 

08.00 °E 

n 328 383 383 43 49 46 377 440 440 

R 0.9388 0.9492 0.9420 0.8435 0.8792 0.8708 0.9293 0.9484 0.9404 

NBI -0.3137 -0.0175 -0.1761 -0.1550 -0.0970 -0.0979 -0.3056 -0.1747 -0.1762 

RMSE (m) 0.3187 0.3705 0.3840 0.4581 0.4518 0.4636 0.3400 0.3715 0.3852 

SI 0.3376 0.2138 0.2211 0.2112 0.1739 0.1759 0.3347 0.2147 0.2214 

Tab 3.6 Numerical results of the comparison between peak storms computed/recorded by NOAA and RON-Capo Comino 

wave buoy, within a ±12 hours-time window. 

 350-55 °N 55-115 °N 115-170 °N 350-170 °N 

 40.67°N 

10.00 °E 

40.50 °N 

10.00 °E 

40.67°N 

10.00 °E 

40.50 °N 

10.00 °E 

40.67°N 

10.00 °E 

40.50 °N 

10.00 °E 

40.67°N 

10.00 °E 

40.50 °N 

10.00 °E 

n 13 13 2 3 10 10 28 28 

R 0.8371 0.8491 - 0.9809 0.9255 0.9365 0.8674 0.8587 

NBI -0.1446 -0.1868 - -0.2136 -0.1057 -0.0961 -0.1363 -0.1553 

RMSE (m) 0.5558 0.5037 - 0.1807 0.2826 0.2697 0.4244 0.4112 

SI 0.2105 0.2344 - 0.2173 0.1415 0.1344 0.1917 0.2067 

Tab 3.7 Numerical results of the comparison between peak storms computed/recorded by NOAA and RON-Cagliari wave 

buoy, within a ±12 hours-time window. 

 110-170 °N 200-265 °N 110-265 °N 

 
39.00°N 

09.17 °E 

39.00 °N 

09.33 °E 

39.00 °N 

09.50 °E 

39.00°N 

09.17 °E 

39.00 °N 

09.33 °E 

39.00 °N 

09.50 °E 

39.00°N 

09.17 °E 

39.00 °N 

09.33 °E 

39.00 °N 

09.50 °E 

n 83 85 88 9 20 24 94 107 115 

R 0.8716 0.8834 0.8865 0.6797 0.5605 0.5255 0.8828 0.8881 0.8709 

NBI -0.0272 0.0165 0.0341 -0.0545 0.0509 0.1296 -0.0286 0.0238 0.0555 

RMSE (m) 0.1885 0.1921 0.2004 0.0912 0.1617 0.1973 0.1812 0.1844 0.2022 

SI 0.1222 0.1208 0.1286 0.1076 0.1404 0.2054 0.1209 0.1239 0.1449 

3.8  Correction of wind dataset 

In this paragraph a summary of the wind data set correction is given. In Figs. 3.14 and 3.15 are 

depicted graphical results related to the correction of the wind data set. In Fig. 3.15 are displayed: 

the total number of anomalous values removed (red plus marker) and held (green plus markers), as 

defined after the graphical control. 

An overall summary is given in Fig. 3.15 and Tab 3.8, where each station is identified by both 

WMO and ICAO code (see Tab 3.2) and are included: number of absolute wind calms (LVO, i.e. 

             ); number of relative wind calms (LV1, i.e                     
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       ); number of variable directions (LD99,         ); number of potential data (NDA); 

number of effective data (NDP); number of missing data (NDM); number of temporal gap (NDG); 

number of suspicious absolute calm removed (NDR1); number of suspicious directions removed 

(NDR2); number of errors (NDE); global station efficiency   ; percentage of gaps   ; percentage 

of removed data   ; percentage of errors   .  

Finally, the wind roses are displayed for each station considered in Figs. 3.16-3.18.  

Tab 3.8. Final summary of the wind data correction 

 
16520 16550 16522 16564 16539 16542 16560 16506 16531 

 
LIEA LIEB LIEH LIEC LIEF LIEL LIEE NULL LIEO 

LV0 12380 14823 3936 7315 7176 3092 4274 985 1058 

LV1 5017 552 538 247 368 2 919 226 1049 

LD99 1481 147 0 50 84 62 21 5 0 

NDA 177788 181143 83618 172477 148423 70434 71664 40626 30162 

NDP 135568 163113 71535 117460 118489 14364 66409 27227 24369 

NDM 42220 18030 12083 55017 29934 56070 5255 13399 5793 

NDG 13890 11818 7224 49609 23252 50273 224 11812 2995 

NDR1 24460 5798 3790 4268 6239 1188 4940 397 2777 

NDR2 1707 0 0 3 0 0 0 0 0 

NDE 2163 415 1071 1137 443 4609 91 1190 21 

   76.25% 90.05% 85.55% 68.10% 79.83% 20.39% 92.67% 67.02% 80.79% 

   7.81% 6.52% 8.64% 28.76% 15.67% 71.38% 0.31% 29.08% 9.93% 

   14.72% 3.20% 4.53% 2.48% 4.20% 1.69% 6.89% 0.98% 9.21% 

   1.22% 0.23% 1.28% 0.66% 0.30% 6.54% 0.13% 2.93% 0.07% 

 
Fig. 3.14 UGM-ENAV Alghero. Global synthesis of the correction phase.  
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Fig. 3.15 Summary of wind data correction. Symbols on the horizontal axis are referred to the wind station-ICAO code (see 

Tab. 3.2). 

 

 

Fig. 3.16 Wind rose – South-East coast: Elmas, Capo Carbonara, Capo S. Lorenzo, Capo Bellavista 
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Fig. 3.17 Wind rose – Northern coast (left panel): Alghero, Capo Caccia; Northern – West coast (right panel): Alghero, Capo 

Frasca 

 
Fig. 3.18 Wind rose – Nort-East coast: Olbia, Guardiavecchia 
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4  Extreme Value model intercomparison 

In this Chapter, the extreme wave analysis on data recorded by the RON Alghero buoy is going to 

be discussed. A comparison of principal best-known extreme value methodologies (as introduced in 

Chapter 2 and by extending the work of Ventroni 2016a) is carried out, with the cross-purpose of 

analysing the GP and WBL performances. In particular, both graphical and numerical results are 

provided, with the first one mainly focused on the significant wave height within the total 

directional sector (170-335) °N, while the second one are presented for each homogeneous sector. 

4.1  Threshold selection methods 

In Fig. 4.1, both the fixed-threshold selection methods and the MTM approach, with values 

computing by means of the ML method, are presented. The first group of subplots on the left, 

displays the fixed-threshold selection procedure adopted herein (§2.7). Starting from the upper 

panel, the following elements are shown: (i) the mean residual life plot, (ii) the shape parameter and 

(iii) the modified scale parameter (Eq. 2.26) as requested by the GP-parameter-stability; (iv) the 

Thompson et al. (2009)’s parameter (Eq. 2.27); (v) the mean rate, λ. All steps are depicted over a 

uniformly distributed range of thresholds, as suggested to compute (iv) (i.e. from the median, 3.30 

m, till un upper value, 7.0 m). In each subplot, the vertical red line shows the threshold value 

(       m) corresponding to     ev/year (Mazas and Hamm 2011). In addition, the vertical 

blue line represents the threshold value         m) according to the automated threshold method 

(Thompson et al. 2009). 

 

On the other hand, the right part of Fig. 4.1 depicts the MTM-hierarchical procedure (Deidda 2010) 

for a greater range of threshold values, i.e.        , performed on a sample constituted by daily 

maximum wave heights. The first subplot from the top, shows the shape-parameter (ξ) estimates, 

where the    MTM estimate (=0.23) is the median value within a range of thresholds, which are 

selected according to a parameter-stability criterion (e.g. an interval from 2.9 till 6.1m seems to be 

the most suitable). The second and third subplots display the    and    estimates (Eqs. 2.30 and 

2.31). In the fourth subplot the   
  estimates conditioned to the   MTM estimates is reported, where 

the horizontal line represents the median value   
 MTM (= 2.56) estimates. In the fifth subplot the 

  
 estimates conditioned to both   and   

  estimates is depicted, where the   
  MTM estimate is the 

median of   
 values. It is worthwhile underlying two main considerations. 

Fig. 4.1 RON Alghero buoy, sector (170-335) °N – ML method: example of threshold selection methods. The set of subplots on 

the left displays the fixed-threshold selection procedure adopted herein (§2.6), while the group of subplots on the right 

represents the MTM hierarchical procedure (§2.7). 
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Fig. 4.2 RON Alghero buoy, sector (170-335) °N: summary of survival functions. Each figure depicts the sample (blue points), 

the best-fit model (red continuous line) and the values of return values for a set of 2, 5, 10, 20, 50, 100, 200, 500-yearly-return 

periods (blue cross markers) The group of figures on the left is related to the ML method, while the MPS method is 

considered on the right. The first row is obtained by applying the automated threshold selection method proposed by 

Thompson et al. (2008). The second row is obtained by using the MTM approach. The third row is related to the a threshold 

value equal to 5 storms per year, as well as the last row but with respect to WBL. 
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First, the MTM procedure requires to determine a practical range of thresholds to be used for 

computing the median values of the MTM estimators; usually, a different range must be prescribed 

for each homogeneous directional cluster. Second, a much higher CPU time is required in order to 

generate a set of (quasi-) random sample through the Monte Carlo method. 

 

Fig. 4.2 displays a group of survival functions (i.e. the exceeding probability) obtained by using 

either the ML (group of figures on the left) or the MPS (group of figures on the right) estimators, 

for each fixed-threshold method and for the MTM approach. Specifically, the first row from the top 

shows the GP-ML and GP-MPS pair obtained by assuming a fixed threshold        m, i.e. 

according to (iv); the second group of figures represents the results of the MTM approach, namely 

GP-MTM-ML and GP-MTM-MPS; the third row depicts the GP-ML and GP-MTM results by 

fixing        m, whereby according to     ev/year. Finally, the WBL-ML and WBL-MPS 

results are reported in the last row, from the sample selected with the same threshold as in the 

previous case. Basically, it should be stressed the different behaviour of the GP- and WBL-upper 

limit, which leads to obtain lower quantiles for the GP distribution.  

4.2  Confidence bounds and return values. 

Generally, results reported in this paragraph, which are mainly referred to the excesses above the 

threshold        m, may be split up in three parts. First of all, it is assumed that the threshold 

value selected is the most suitable to perform the comparison between several parameter estimation 

methods. As a matter of fact, it should be stressed that this may be carried out whether the bias 

inherent to the threshold selection is assumed to be negligible for each parameter estimation 

method, since the value of the threshold is selected over an ML- (or MPS-) estimators range. On the 

other hand, such fixed-threshold approach is assumed to be suitable to perform the GP-POI 

modelling (e.g. according to Mazas and Hamm 2011), as well as the comparison with the AM 

approach. 

 

A second general overview of some fixed threshold values is depicted in Fig. 4.3. Basically, five 

values are shown, even if only two of them are used in this study; namely: the dispersion index (i.e. 

the ratio between the variance and the expectation of the number of peaks, u = 6.31 m); an 

automated mean residual life threshold (u = 5.80 m) – obtained by means of a simple algorithm 

taking into account the slope change - variance combination, i.e. similar to that proposed by Sartini 

et al. (2015) –; the highest threshold value corresponding to a mean rate     ev/year (u = 6.95 m), 

whilst the other two are related to the algorithm of Thompson et al. (2009) (u = 3.30 m) and to 

    ev/year (u = 5.91 m). 

 

Consequently, a set of 8 combinations between parameter estimation methods – cumulative 

distribution functions are considered, namely: ML-GP, LM-GP, MPS-GP, PWM-GP and ML-

WBL, LM-WBL, MPS-WBL, OLS-WBL, whether the threshold is fixed equal to the value, i.e. u = 

5.91 m. 

 

Return values corresponding to return period (T) and relative confidence intervals, about the total 

directional sector (170-335) °N, are shown in Fig. 4.4. Additionally, two type of confidence bounds 

are reported; both are based on 1000 synthetic samples provided by the Monte Carlo procedure. In 

the first method, the 90% confidence intervals are obtained by using percentile estimates adjusted 
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according to the recommendations of Coles and Simiu (2003), i.e. an ad hoc bias correction is 

applied. The second method represents the RMSE-curves computed from the same set of empirical 

samples. Principally, some general aspects can be qualitatively identified by analysing these results. 

 

First, it is evident how the quantile functions depend on the parameter estimation methods, as well 

as on the plotting position formula adopted. It is also interesting to observe the bad performances of 

ML-WBL and MPS-WBL, which are probably due to either small sample size or because of the 

plotting position used. Evidently, the Hazen plotting position can be assumed a biased estimator for 

the WBL distribution. Notwithstanding, the Weibull plotting position is found to provide 

unsatisfactory results as well. On the whole, the WBL-OLS seems to be reasonable adequate to 

describe this data set, probably because of the unbiased plotting position used. 

 

Second, a same order of uncertainty appears to be consistent with the pair of LM estimators, since 

comparable confidence bounds are provided by both GP-LM and WBL-LM. 

 

Third, the GP distribution is upper limited in all cases, and a quantile-saturation feature can be 

noted on larger return periods. It is evident, consequently, that the GP-related values are lower than 

the values provided by the WBL distribution. 

 

Additionally, the GP-POI model performance can be evaluated by giving a comparison with the 

GEV-AM approach. It should be remarked that the confidence intervals are computed according to 

Madsen et al. (1997), Goda (2011b) and Silva et al. (2012), since for this case it should be taken 

into account the λ-Poisson parameter uncertainty. A total of 8 plots is reported in Fig. 4.5, namely 4 

combinations – ML-GP-GEV, LM-GP-GEV, MPS-GP-GEV, PWM-GP-GEV – for two directional 

sectors – (170-335) °N and (275-335) °N. Moreover, other 6 combinations are reported in Fig. 4.6 

by applying the AM approach; i.e. ML-GEV, LM-GEV, MPS-GEV and ML-WBL, LM-WBL, 

OLS-WBL. 

 

 

Fig. 4.3 Fixed-threshold methods - RON Alghero, Sector (170-335) °N. From left to right are shown values 

computed by ML and MPS method, respectively. Each group of figures depicts the mean residual life plot (upper 

panel), the modified scale parameter (middle panel) and the shape parameter (lower panel) with the associated 

95% confidence interval, as well as the mean rate (continuous green line), measured by the vertical left axes 

values. Five vertical lines are shown in each panel, with values representing: i) the automated threshold selection 

of Thompson et al (2009) (dotted black colour); ii) an automated mrl value (dotted green colour); iii) the Poisson 

dispersion index (dotted magenta colour); iv) the mean rate equal to 5 and v) 2 (dotted red colours) ev/year. 
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Fig. 4.4 RON Alghero buoy, sector (170-335) °N: summary of quantiles and confidence bounds for some estimators. The 

group of figure on the left is related to the GP results, whilst the WBL outcomes are displayed on the right. 

 



 Extreme Value model intercomparison 73 

 

 

 

Fig. 4.5 RON Alghero buoy: summary of quantiles and confidence bounds for some estimators within the GP-POI model. On 

the left sector (170-335) °N results are reported, while the (275-335) °N outcomes are displayed on the right. 
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Fig. 4.6 RON Alghero buoy, AM approach: summary of quantile functions and confidence intervals. It is to be noted that the 

AM sample of the total sector (170-335) °N are coincident with the most energetic sector values, i.e.( 270-335) °N. On the left 

are shown the GEV-AM results, while WBL outcomes are displayed on the right. 

 

Starting from Fig. 4.5, it can be noted that the ML and LM methods are the best for each sector, 

since they yield narrower confidence intervals than those provided by the MPS-GP, PWM-GP 

cases. On the other hand, from Fig. 4.6, it may be observed as narrower confidence intervals are 

computed with the GEV-AM models. As in the previous case, the LM estimator denotes the most 

suitable set-up between GP and WBL CDFs. 

 

Lastly, some further issues can be expressed with respect to estimator performances. Specifically, 

LM can be assumed the best reliable estimator, since is proved to be the less sensitive to the 

presence of outliers and to the sample size effect, as well as the one with the best numerical 

characteristics, due to its lowest CPU time and ease of implementation. 
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The OLS method is intended to represent the so-called Goda method (Goda 2010). Herein, a 

comparison between several methods can be defined, as given by Li et al. (2012) and by Sartini et 

al. (2015). However, in the present work, the Goda method is extended by including an 

optimization procedure based on the diagnostic Probability Plot Correlation Coefficient (Filliben 

1973, 1975; PPCC), as applied by (Goda 2011a), in order to find the best shape parameter between 

a set of prescribed values (ranging from 0.5 till 2). Moreover, the confidence intervals are computed 

based on the Monte Carlo method, instead of using empirical formulas (e.g. Goda 2010). On the 

whole, the quantiles computed are found to be reasonable, as well as the ease of implementation is 

acceptable. However, the required CPU time to perform the Monte Carlo procedure is much higher 

than the LM case. 

4.3  Comparison of best-fit methods 

For sake of economy, only figures related to the LM estimator are reported, although same type of 

graphics are obtained for each combination. In Figs 4.7, 4.8 a summary of the PP-plot and QQ-plot, 

is shown. It can be seen as LM-GP and WBL-GM are equally valid and reasonable adequate to 

describe the RON-Alghero data set. 

 

A quantitative summary is given in Tabs. 4.1, 4.2 for each CDF-estimator combination. 

Specifically, it is assumed to primarily focus the results of the Monte Carlo procedure, represented 

in terms of bias (Eq. 2.40) and root mean square error (Eq. 2.41), on the 50-year and 100-year 

quantile estimates, while minor attention should be attributed for greater quantiles because of low 

sample size and due to the clearly different behaviour of the CDF right tails. 

 

In Tab. 4.1, GP-ML turns out to be the best for both AIC and BIC metrics, although slightly 

sensible difference may be observed with respect to the WBL values. Both MIR-QQ and MIR-PP 

diagnostic procedures lead to assume GP-LM as the best-fit model. Furthermore, the EN metrics 

provides the best-fit values to WBL-MBS (h = 1.00), and to WBL-LM (h = 1.25 and h = 1.50). 

Finally, GP-LM denotes the lowest bias, while RMSE values are the tightest for GP-POI-ML. 

 

 
Fig. 4.7 RON Alghero buoy, Sector (170-335) °N: pp-plot. 
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Fig. 4.8 RON Alghero buoy, Sector (170-335) °N: qq-plot. 

 

In Tab. 4.2., GEV-ML outperforms the other two combinations according to AIC and BIC metrics. 

The diagnostic QQ-plot is in favour of GEV-LM, while both PP-plot and all EN values prescribe 

WBL-LM as the best-fit model. Finally, bias is lower in case of WBL-LM, whilst RMSE is in 

favour of GP-POI-ML. 

 

In the light of these results, both models, GP and WBL, seems to be reasonable adequate to describe 

the extreme wave behaviour of this dataset. On balance, it may be assumed that: (a) LM is the best 

estimator; (b) WBL-LM and GP-LM are proved to be the best-fit model whether the EN metrics or 

the BIAS values are used to quantify the goodness of the analysis. 

 
Tab 4.1 RON Alghero buoy, Sector (170-335) °N: summary of diagnostic and parametric best-fit metrics. Results obtained 

from a sample of excesses above the threshold u = 5.91 m. 

 u=5.91 m GP-ML GP-MPS GP-LM WBL-ML WBL-MPS WBL-LM WBL-OLS 

 AIC 186.851 187.474  187.252 188.408   

 BIC 194.179 194.802  194.580 195.736   

 MIR-QQ 0.0011 0.0014 0.0013 0.0061 0.0064 0.0033 0.0024 

 MIR-PP 0.0011 0.0009 0.0009 0.0013 0.0012 0.0014 0.0019 

 1.00 0.0705 0.0690 0.0662 0.0579 0.0595 0.0602 0.0687 

EN, h= 1.25 0.0669 0.0640 0.0531 0.0599 0.0604 0.0523 0.0593 

 1.50 0.0668 0.0636 0.0544 0.0637 0.0643 0.0542 0.0605 

BIAS H50 -0.1398 0.3503 0.0154 -0.1398 0.3380 0.0491 0.0417 

 H100 -0.1553 0.4423 0.0335 -0.1553 0.4086 0.0600 0.0585 

RMSE H50 0.4515 0.8385 0.6346 0.7067 0.9783 0.6559 0.6342 

 H100 0.5258 1.0401 0.7653 0.8223 1.1617 0.7707 0.7502 
 

Tab 4.2 RON Alghero buoy, Sector (170-335) °N: summary of diagnostic and parametric best-fit metrics. Results obtained 

from a sample of excesses above the threshold u = 5.91 m (GP-POI) and from a sample of annual maxima (GEV and WBL). 

 AM 
GP-

POI-ML 

GEV-

ML 

WBL-

ML 

GP-POI-

MPS 

GEV-

MPS 

GP-

POI-LM 

GEV-

LM 

WBL-

LM 

WBL-

OLS 

 AIC 186.851 55.349 58.097 187.474 56.204     

 BIC 194.179 58.183 60.931 194.802 59.037     

 MIR-QQ 0.0120 0.0066 0.0195 0.0168 0.0065 0.0164 0.0065 0.0063 0.0093 

 MIR-PP 0.0078 0.0066 0.0145 0.0070 0.0063 0.0071 0.0063 0.0064 0.0074 

 1.00 0.5656 0.1018 0.1197 0.5543 0.0989 0.5475 0.0917 0.0912 0.1040 

EN, h= 1.25 0.5761 0.1074 0.1239 0.5889 0.1044 0.5760 0.0968 0.0952 0.1083 

 1.50 0.5901 0.1137 0.1271 0.6042 0.1115 0.5905 0.1027 0.1006 0.1121 

BIAS H50 -0.1373 -0.140 0.4751 0.3891 0.3045 0.0624 0.0563 0.0450 0.1351 

 H100 -0.1544 -0.141 0.6749 0.4924 0.4298 0.0973 0.1088 0.0676 0.2016 

RMSE H50 0.4420 0.4608 1.0599 0.8738 0.8776 0.6482 0.5375 0.4916 0.6204 

 H100 0.5150 0.5978 1.3443 1.0961 1.2412 0.7879 0.7017 0.5760 0.7609 
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4.4   Final summary 

In this paragraph, a final quantitative summary is reported in Tabs.         . The set of 

parameters and quantile estimations, as well as bias and RMSE are given for each combination 

herein considered and for each homogenous sector. 

 

A summary of the best-fit metrics for both the homogeneous sectors (275-335) °N and (220.275) °N 

is provided in Tabs.         .  

 

It is found that both GP-LM and WBL-LM are reasonable valid as the best-fit model for the most 

energetic sector (Tab. 4.9). Generally, GP-LM can be considered the best model for both MIR-PP 

and MIR-QQ parameters and, in addition, is characterized by the less RMSE values, while WBL-

LM leads to the less biased quantiles. 

 

On the other hand, a different behaviour is evident on the other directional sector (Tab. 4.13), since 

WBL-OLS may be assumed as the best-fit model for this case. In addition, it is to be noted that an 

exponential distribution is probably the true distribution for this sector (i.e. the WBL shape 

parameter is approximately equal to one, while the GP shape parameter is almost equal to or less 

than zero). 

Tab 4.3 RON Alghero buoy, Sector (170-335) °N: summary of parameters and quantiles estimations. POT sample with u = 

5.91m. 

u=5.91m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 8.29 8.28 8.35 8.35 8.32 8.26 8.25 

5 8.88 9.12 9.05 9.24 8.99 8.99 8.92 

10 9.24 9.74 9.49 9.89 9.41 9.51 9.40 

20 9.54 10.35 9.88 10.53 9.77 10.01 9.85 

50 9.85 11.15 10.31 11.37 10.17 10.64 10.42 

100 10.03 11.74 10.58 11.99 10.42 11.10 10.83 

200 10.18 12.32 10.82 12.61 10.64 11.55 11.23 

500 10.34 13.09 11.08 13.42 10.88 12.13 11.74 

A 1.42 1.11 1.34 1.14 1.36 1.30 1.40 

k 0.29 1.10 0.21 1.09 0.23 1.30 1.41 

B 5.91 5.93 5.91 5.92 5.90 5.80 5.74 

Tab 4.4 RON Alghero buoy, Sector (170-335) °N: summary of quantiles and parameters bias. POT sample with u = 5.91m. 

u=5.91m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 -0.0213 -0.0049 0.0497 0.0688 0.0018 0.0147 -0.009 

5 -0.0596 0.0017 0.1104 0.1333 -0.0047 0.0214 -0.0005 

10 -0.0877 0.0094 0.1705 0.1893 -0.0050 0.0282 0.0096 

20 -0.1128 0.0189 0.2415 0.2504 0.0000 0.0364 0.0221 

50 -0.1398 0.0339 0.3503 0.3380 0.0154 0.0491 0.0417 

100 -0.1553 0.0469 0.4423 0.4086 0.0335 0.0600 0.0585 

200 -0.1667 0.0611 0.5415 0.4826 0.0567 0.0718 0.0767 

500 -0.1763 0.0816 0.6822 0.5850 0.0945 0.0888 0.1029 

A 0.0530 -0.0143 -0.0094 0.0042 0.0300 0.0267 0.0027 

k 0.0404 -0.0034 -0.0295 -0.0227 0.0146 0.0327 0.0250 

B  0.0095  0.0007  -0.0163 -0.0114 
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Tab 4.5 RON Alghero buoy, Sector (170-335) °N: summary of quantiles and parameters RMSE. POT sample with u = 5.91m. 

u=5.91m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 0.1807 0.2428 0.2197 0.2777 0.2179 0.2163 0.1972 

5 0.2290 0.3590 0.3285 0.4440 0.2881 0.3186 0.2959 

10 0.2859 0.4566 0.4505 0.5903 0.3710 0.4108 0.3876 

20 0.3541 0.5607 0.6020 0.7501 0.4752 0.5120 0.4891 

50 0.4515 0.7067 0.8385 0.9783 0.6346 0.6559 0.6342 

100 0.5258 0.8223 1.0401 1.1617 0.7653 0.7707 0.7502 

200 0.5982 0.9418 1.2588 1.3532 0.9012 0.8897 0.8704 

500 0.6893 1.1049 1.5725 1.6171 1.0853 1.0521 1.0347 

A 0.2175 0.1154 0.1910 0.1261 0.2260 0.1897 0.2144 

k 0.1143 0.0848 0.1138 0.1134 0.1180 0.2014 0.2467 

B  0.0200  0.0211  0.1049 0.1414 

Tab 4.6 RON Alghero buoy, Sector (170-335) °N: summary of parameter and quantiles estimations. AM sample (GEV and 

WBL) and POT sample (GP-ML) with u = 5.91m, , while the interval ∆u=(2.9,6.1) m is used for the GP-MTM model. 

 ML MPS LM OLS 

AM GP-POI GEV GP-MTM WBL GP-POI GEV GP-MTM GP-POI GEV WBL WBL 

2 8.04 8.05 8.12 7.79 8.07 8.02 8.19 8.05 7.63 7.63 7.57 

5 8.82 8.81 8.80 8.83 8.97 8.93 8.93 8.93 8.65 8.66 8.60 

10 9.22 9.20 9.16 9.49 9.46 9.40 9.33 9.39 9.14 9.13 9.14 

20 9.53 9.49 9.45 10.10 9.86 9.79 9.67 9.77 9.52 9.50 9.60 

50 9.84 9.79 9.76 10.84 10.30 10.20 10.04 10.18 9.92 9.91 10.12 

100 10.03 9.97 9.95 11.37 10.58 10.45 10.27 10.43 10.16 10.17 10.47 

200 10.18 10.11 10.12 11.87 10.82 10.66 10.47 10.65 10.37 10.41 10.80 

500 10.34 10.25 10.30 12.51 11.08 10.90 10.70 10.88 10.59 10.69 11.19 

A 0.90 0.889  1.676 0.96 0.993  0.95 0.927 2.997 2.027 

k 0.29 0.298  1.429 0.21 0.238  0.23 0.247 3.109 2.000 

B 7.72 7.740  6.491 7.73 7.675  7.72 7.701 5.368 6.254 

Tab 4.7 RON Alghero buoy, Sector (170-335) °N: summary of parameter and quantiles bias. AM sample (GEV and WBL) 

and POT sample (GP-ML) with u = 5.91m, while the interval ∆u=(2.9,6.1) m is used for the GP-MTM model. 

 ML MPS LM OLS 

AM GP-POI GEV GP-MTM WBL GP-POI GEV GP-MTM GP-POI GEV WBL WBL 

2 -0.004 0.035 -0.035 -0.090 0.035 -0.013 -0.036 -0.014 -0.002 -0.021 -0.042 

5 -0.049 -0.036 -0.057 -0.031 0.113 0.053 -0.060 -0.008 -0.016 -0.016 -0.034 

10 -0.081 -0.083 -0.071 0.086 0.184 0.107 -0.076 0.005 -0.011 -0.001 0.005 

20 -0.108 -0.117 -0.084 0.238 0.266 0.178 -0.090 0.025 0.009 0.017 0.055 

50 -0.137 -0.140 -0.099 0.475 0.389 0.305 -0.107 0.062 0.056 0.045 0.135 

100 -0.154 -0.141 -0.109 0.675 0.492 0.430 -0.118 0.097 0.109 0.068 0.202 

200 -0.167 -0.128 -0.118 0.888 0.604 0.584 -0.128 0.137 0.175 0.091 0.272 

500 -0.178 -0.089 -0.128 1.188 0.762 0.842 -0.140 0.198 0.282 0.123 0.370 

A -0.026 -0.022 0.012 -0.275 0.040 0.074 0.012 -0.003 -0.015 0.688 -0.251 

k 0.043 0.078 0.066 -0.263 -0.034 0.004 0.064 0.001 -0.001 0.942 -0.234 

B 0.007 0.048 -0.013 0.187 0.018 -0.037 -0.014 -0.014 0.004 -0.710 0.203 
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Tab 4.8 RON Alghero buoy, Sector (170-335) °N: summary of parameter and quantiles RMSE. AM sample (GEV and WBL) 

and POT sample (GP-ML) with u = 5.91m, while the interval ∆u=(2.9,6.1) m is used for the GP-MTM model. 

 ML MPS LM OLS 

AM GP-POI GEV GP-MTM WBL GP-POI GEV GP-MTM GP-POI GEV WBL WBL 

2 0.198 0.255 0.146 0.237 0.217 0.263 0.1593 0.224 0.247 0.254 0.228 

5 0.234 0.252 0.203 0.365 0.323 0.285 0.2270 0.288 0.264 0.278 0.298 

10 0.284 0.270 0.247 0.519 0.452 0.363 0.2790 0.372 0.297 0.324 0.367 

20 0.348 0.328 0.290 0.726 0.616 0.530 0.3311 0.480 0.373 0.389 0.461 

50 0.442 0.461 0.344 1.060 0.874 0.878 0.3986 0.648 0.538 0.492 0.620 

100 0.515 0.598 0.384 1.344 1.096 1.241 0.4480 0.788 0.702 0.576 0.761 

200 0.587 0.768 0.420 1.650 1.340 1.712 0.4954 0.935 0.895 0.663 0.915 

500 0.678 1.059 0.465 2.079 1.696 2.567 0.5544 1.135 1.190 0.781 1.135 

A 0.085 0.177 0.038 0.381 0.111 0.215 0.0385 0.100 0.168 2.523 0.486 

k 0.115 0.255 0.232 0.315 0.115 0.234 0.2320 0.117 0.192 3.377 0.407 

B 0.191 0.249 0.077 0.235 0.199 0.258 0.0942 0.211 0.240 2.457 0.378 

 

Tab 4.9 RON Alghero buoy, Sector (275-335) °N: summary of diagnostic and parametric best-fit metrics. Results are 

obtained from a sample of excesses above the threshold u = 5.88 m. 

 u=5.88 m GP-ML GP-MPS GP-LM WBL-ML WBL-MPS WBL-LM WBL-OLS 

 AIC 189.62 189.04  192.09 198.86   

 BIC 196.43 197.01  199.49 200.26   

 MIR-QQ 0.0204 0.0024 0.0015 0.0086 0.0096 0.0036 0.0027 

 MIR-PP 0.0062 0.0010 0.0010 0.0017 0.0016 0.0016 0.0023 

 1.00 0.5612 0.0622 0.0527 0.0588 0.0587 0.0526 0.0584 

EN, h= 1.25 0.5995 0.0617 0.0540 0.0621 0.0626 0.0544 0.0596 

 1.50 0.6333 0.0635 0.0570 0.0656 0.0668 0.0574 0.0618 

BIAS H50 -0.1562 0.4274 0.0476 -0.0345 0.3635 -0.0127 0.035 

 H100 -0.1769 0.5476 0.0806 -0.0370 0.4436 -0.0076 0.048 

RMSE H50 0.4823 0.9482 0.0476 0.8067 1.1035 0.6678 0.630 

 H100 0.5650 1.2045 0.0806 0.9435 1.3193 0.7871 0.744 

 

Tab 4.10 RON Alghero buoy, Sector (275-335) °N: summary of quantiles and parameters estimations. POT sample  with u = 

5.88m. 

u=5.88m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 8.25 8.31 8.32 8.39 8.32 8.26 8.24 

5 8.88 9.23 9.06 9.38 9.01 9.01 8.93 

10 9.26 9.93 9.55 10.12 9.44 9.54 9.41 

20 9.59 10.61 9.98 10.86 9.81 10.05 9.87 

50 9.94 11.51 10.49 11.84 10.22 10.70 10.45 

100 10.16 12.19 10.82 12.57 10.48 11.18 10.87 

200 10.35 12.86 11.12 13.31 10.71 11.64 11.27 

500 10.55 13.75 11.47 14.28 10.95 12.24 11.79 

A 1.35 1.09 1.27 1.11 1.38 1.33 1.44 

k 0.25 1.04 0.17 1.01 0.22 1.30 1.42 

B 5.88 5.88 5.88 5.88 5.82 5.72 5.64 
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Tab 4.11 RON Alghero buoy, Sector (275-335) °N: summary of quantiles and parameters bias. POT sample  with u = 5.88m. 

u=5.88m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 -0.0205 -0.0132 0.0579 0.0681 -0.0150 -0.0171 -0.003 

5 -0.0616 -0.0210 0.1296 0.1367 -0.0126 -0.0197 0.003 

10 -0.0932 -0.0260 0.2020 0.1977 -0.0029 -0.0194 0.011 

20 -0.1227 -0.0301 0.2896 0.2653 0.0141 -0.0175 0.020 

50 -0.1562 -0.0345 0.4274 0.3635 0.0476 -0.0127 0.035 

100 -0.1769 -0.0370 0.5476 0.4436 0.0806 -0.0076 0.048 

200 -0.1934 -0.0388 0.6808 0.5284 0.1195 -0.0013 0.062 

500 -0.2092 -0.0402 0.8757 0.6469 0.1787 0.0086 0.082 

A 0.0532 -0.0036 -0.0111 0.0019 0.0043 0.0138 0.0164 

k 0.0412 0.0111 -0.0337 -0.0206 0.0033 0.0349 0.0331 

B 0.0000 0.0036 0.0000 0.0007 0.0000 -0.0206 -0.0179 

Tab 4.12RON Alghero buoy, Sector (275-335) °N: summary of quantiles and parameters RMSE. POT sample with u = 5.88m. 

u=5.88m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 0.1834 0.2640 0.2245 0.2994 0.8277 0.2137 0.203 

5 0.2377 0.3987 0.3421 0.4868 -0.0126 0.3185 0.300 

10 0.3001 0.5126 0.4804 0.6536 -0.0029 0.4137 0.389 

20 0.3748 0.6347 0.6586 0.8377 0.0141 0.5184 0.488 

50 0.4823 0.8067 0.9482 1.1035 0.0476 0.6678 0.630 

100 0.5650 0.9435 1.2045 1.3193 0.0806 0.7871 0.744 

200 0.6463 1.0855 1.4910 1.5465 0.1195 0.9108 0.862 

500 0.7494 1.2801 1.9158 1.8624 0.1787 1.0799 1.024 

A 0.2069 0.1162 0.1847 0.1241 0.2214 0.1916 0.2288 

k 0.1115 0.0806 0.1117 0.0973 0.1176 0.2036 0.2413 

B 0.0000 0.0141 0.0000 0.0158 0.0000 0.1112 0.1542 

Tab 4.13RON Alghero buoy, Sector (220-275) °N: summary of diagnostic and parametric best-fit metrics. Results obtained 

from a sample of excesses above the threshold u = 3.05 m. 

 u=3.05 m GP-ML GP-MPS GP-LM WBL-ML WBL-MPS WBL-LM WBL-OLS 

 AIC 79.79 80.38  79.52 80.46   

 BIC 84.37 84.10  84.96 85.04   

 MIR-QQ 0.0035 0.0105 0.0054 0.0059 0.0079 0.0052 0.0035 

 MIR-PP 0.0031 0.0029 0.0030 0.0032 0.0035 0.0030 0.0043 

 1.00 0.7092 0.0887 0.0790 0.0866 0.0866 0.0823 0.0899 

EN, h= 1.25 0.6127 0.0892 0.0793 0.0920 0.0919 0.0818 0.0882 

 1.50 0.5384 0.0933 0.0827 0.0974 0.0977 0.0843 0.0898 

BIAS H50 -0.279 2.725 0.105 -0.048 1.266 0.0215 -0.016 

 H100 -0.309 4.708 0.237 -0.042 1.658 0.0581 0.000 

RMSE H50 1.351 5.854 1.620 1.298 2.613 1.4704 1.2286 

 H100 1.854 10.356 2.303 1.586 3.394 1.8756 1.5380 
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Tab 4.14 RON Alghero buoy, Sector (220-275) °N: summary of parameters and quantiles estimations. POT sample  with u = 

3.05 m. 

u=3.05m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 4.56 4.53 4.56 4.60 4.55 4.55 4.61 

5 5.52 5.62 5.76 5.87 5.61 5.61 5.61 

10 6.22 6.48 6.77 6.89 6.41 6.42 6.34 

20 6.91 7.36 7.88 7.94 7.23 7.23 7.05 

50 7.78 8.53 9.53 9.39 8.31 8.30 7.97 

100 8.42 9.44 10.92 10.51 9.14 9.11 8.65 

200 9.04 10.35 12.46 11.66 9.98 9.93 9.33 

500 9.83 11.57 14.74 13.21 11.09 11.01 10.21 

A 1.14 1.05 1.01 1.09 1.13 1.13 1.28 

k 0.04 0.92 -0.14 0.86 -0.01 0.99 1.11 

B 3.05 3.05 3.05 3.04 3.00 3.00 2.91 

 

Tab 4.15 RON Alghero buoy, Sector (220-275) °N: summary of parameters and quantiles bias. POT sample  with u = 3.05m. 

u=3.05m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 0.017 -0.016 0.056 0.089 0.020 -0.0047 0.005 

5 -0.057 -0.036 0.262 0.303 0.004 -0.0206 -0.017 

10 -0.130 -0.045 0.607 0.533 0.000 -0.0209 -0.025 

20 -0.202 -0.049 1.223 0.816 0.019 -0.0100 -0.026 

50 -0.279 -0.048 2.725 1.266 0.105 0.0215 -0.016 

100 -0.309 -0.042 4.708 1.658 0.237 0.0581 0.000 

200 -0.305 -0.032 7.879 2.093 0.450 0.1053 0.023 

500 -0.227 -0.013 15.103 2.731 0.895 0.1833 0.062 

A 0.103 -0.020  0.034  0.0456 0.076 

k 0.090 0.013  -0.038 0.031 0.083 0.110 

B  0.013  0.0019  -0.041 -0.061 

 

Tab 4.16RON Alghero buoy, Sector (220-275) °N: summary of parameters and quantiles RMSE. POT sample with u = 3.05m. 

u=3.05m GP-ML WBL-ML GP-MPS WBL-MPS GP-LM WBL-LM WBL-OLS 

2 0.266 0.283 0.311 0.332 0.312 0.278 0.275 

5 0.398 0.508 0.699 0.727 0.483 0.479 0.442 

10 0.579 0.715 1.380 1.171 0.685 0.711 0.631 

20 0.849 0.950 2.643 1.725 0.994 1.004 0.865 

50 1.351 1.298 5.854 2.613 1.620 1.470 1.229 

100 1.854 1.586 10.356 3.394 2.303 1.876 1.538 

200 2.487 1.893 18.108 4.263 3.218 2.321 1.872 

500 3.587 2.326 37.893 5.542 4.901 2.968 2.348 

A 0.346 0.209 0.288 0.239 0.336 0.323 0.370 

k 0.233 0.110 0.265 0.143 0.209 0.314 0.342 

B  0.028  0.028  0.161 0.213 
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4.5  Conclusions 

Firstly, some general issues can be expressed with respect to the threshold selection methods 

adopted herein. Since the shape parameter of the GP distribution is generally always positive, i.e. 

the distribution is upper limited, no significant differences are found on quantile estimation 

provided by each methodology; although an exception is given by the (220-275) °N sector, where 

an exponential distribution seems to be fairly adequate to describe the associated extreme 

behaviour. Consequently, the comparison may be focused on describing some related numerical 

features, e.g. the ease of implementation or either the computational burden, as well as on practical 

characteristic, such as the ability of being automated. In particular, it is found that the MTM method 

is the less favourable on the side of computational time, at least with respect to the MPS and ML 

methods. Probably, an optimization to reduce CPU time may be achieved by implementing the 

MTM approach with other estimators (e.g. the LM method, as done by Deidda 2010 and Hellies 

2016). On the other hand, even from the practical perspective, related to the coastal dataset-

modelling process, it is found that a range of thresholds have to be fixed for each directional sector; 

hence, the applicability would seem relatively reduced in case of multiple applications on large 

dataset. 

 

Secondly, regarding the parameter estimation method, it seems to be more convenient to choose the 

LM estimator since it provides the better statistical justification and the less differences in the 

quantile estimation between the two probabilistic models (GP or WBL). Basically, it is a confirm of 

the low sample size peculiarity, as reported in Akram and Hayat (2014) and previously stated (in 

§1.1.4). In addition, it is proved to be more robust than the ML or MPS methods with respect to the 

presence of potential outliers. Last but not least, it is relatively simple to implement with respect to 

others methods, and, most of all, it requires less CPU time to carry out the Monte Carlo approach. 

 

In the light of the results obtained, it seems not to be straightforward providing a final answer about 

the most suitable probabilistic model representation (i.e. GP or WBL), or better, it should not be 

expressed a priori. The GP-POT approach is clearly more attractive on several perspectives, ranging 

from theoretical to analytical one; nevertheless, the lack of the asymptotic validity, the wider 

sensitivity of parameter estimation, and, last but not least, the different behaviour of the right tail 

inherent to both models, required to address the answer into the practical, or engineering, area: 

namely, choosing the safest results is more favourable than assuming the best-fit model exclusively 

on statistical ground. Surely, the lower the simple size, the greater is the uncertainty and the 

statistical metrics are not sufficient to achieve a final answer. Since the sample size are lower, much 

more a multi-distribution approach is favourable. 

 

In conclusion, if one had to choose a larger quantile, it would be more close to the engineering 

practice, where a safety reason should be followed, because neither the best-fit model nor the 

statistical test have demonstrated an evident outperform of one model with respect to the other (i.e. 

according to the advice of Mazas and Hamm 2011 and Goda et al 2010). 
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5 Coupled numerical model 

In this chapter, an overview of the governing equations that can be solved by the SWAN and 

SWASH programs will be briefly given; then, the main elements of the coupled model will be 

introduced and the validation with respect to laboratory data will be provided. 

5.1  SWAN model 

Simulating WAves Nearshore (SWAN, Holtuijsen 2007) is a third-generation spectral model that 

solves the spectral density evolution equation (Booij et al. 1999, Ris et al. 1999). SWAN computes 

random, short-crested, wind-generated waves in coastal regions and it is driven by imposing 

boundary condition provided by local winds and wave input. 

The model describes the evolution of the action density, defined as the ratio of the energy density 

spectrum to the relative angular frequency (               ), numerically solving with an 

implicit scheme the spectral action balance equation, which in Cartesian co-ordinates reads (Booij 

et al. 1999): 

 
  

  
                  

    

  
 

    

  
     ,                    (5.1) 

 

where ω and θ are the wave angular frequency and the wave propagation direction, respectively. 

The left-hand side is the kinematic part of this equation. The first term in the left-hand side is the 

local rate of change of wave action density spectrum in time; the second term denotes the 

propagation of wave energy in two-dimensional physical space, with cg the group velocity and V the 

ambient current; the other two terms represent the energy shift due to depth-induced and current-

induced refraction with propagation velocity   ,    in the spectral ω- and θ-space, respectively. The 

right-hand side contains the dynamic part of the equation, where Stot is a source/sink term 

representing numerous physical processes that generate, dissipate and redistribute wave energy. 

Specifically, six processes contribute to Stot: 

 

                               .                 (5.2) 

 

These terms denote, respectively, energy input by wind, nonlinear transfer of wave energy through 

three-wave and four-wave interactions, wave decay due to whitecapping, bottom friction and depth-

induced wave breaking. These physical processes in SWAN are implemented following various 

formulations; i.e., wave generation is described as the sum of linear and exponential growth term 

according to the reasonance mechanism of Phillips (1957) and a feed-back mechanism of Miles 

(Miles 1957); dissipation of energy due to white-capping is computed with the pulse-based model 

of Hasselman et al. (1974), or by the saturation-based model proposed by Van der Westhuysen et al. 

(2007); bottom-dissipation is represented with the empirical JONSWAP model of Hasselmann et al. 

(1973), the drag-law model of Collins (1972), or the eddy-viscosity model of Madsen et al. (1988); 

depth-induced wave breaking is defined by the bore model of Battjes and Janssen (1978), or by the 

model proposed by Thornton and Guza (1983); the quadruplet wave-wave interactions are 

computed with the DIA of Hasselman et al. (1985), or with the XNL approach proposed by Van 

Vledder and Bottema (2003); the triad wave-wave interactions with the Lumped Triad 

Approximation (LTA) of Eldeberky (1996) or by the Stochastic Parametric model based on 

Boussinesq equations (SPB) method proposed by Becq-Girard et al. (1999). Additionally, SWAN 
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takes into account diffraction in restrict sense, by considering a phase-decoupled approach, as 

described in Holthuijsen et al. (2003). Finally, the wave-induced set-up of the mean surface can be 

computed, based on exact shallow water equations in 1D mode, whilst in 2D cases an approximate 

formulation is adopted since the effects of wave-induced currents are ignored (SWAN Technical 

documentation, page 79). Recently, new formulation have been added, with respect to triad 

computations, wave-breaking models, and new default calibrated parameters values (see Salmon et 

al. 2014, 2015 and Zijlema et al. 2012). 

In order to obtain a unique solution of equation (5.1), boundary conditions should be provided. The 

incoming wave components at the seaward boundaries are specified by a directional spectrum, 

where the shape of spectrum could be defined as JONSWAP spectrum, Pierson-Moskowitz 

spectrum, Gaussian-shaped frequency spectrum, or simulated results provided by external model 

predictions or other data sources (Holthuijsen 2007). The land boundaries are fully absorbing for 

wave energy leaving the geographical domain. The frequency spectrum is split up into deterministic 

prognostic and analytical diagnostic parts. The prognostic part is limited by a fully absorbing 

boundaries, in the range between minimum,     , and maximum,     , frequencies, whereas a 

            diagnostic tail is added above the high-frequency cut-off, which is necessary to 

simulate nonlinear wave-wave interactions and for computing integral wave parameters. No 

boundary condition are needed in the directional space. 

 

SWAN is provided in stationary and optionally non-stationary mode, and can be applied in 

Cartesian, curvilinear or spherical co-ordinates (SWAN Technical Manual). 

The numerical scheme is an implicit scheme, unconditionally stable and not subject to Courant 

criteria (both in geographical and spectral space). Mainly, three type of schemes can be used: first 

order BSBT, second order SORDUP and second order Stelling and Leendertse (S&L, Stelling and 

Leendertse 1992) schemes; a detailed overview can be found in Rogers et al. (2002) and in the 

SWAN Technical Documentation. In particular, SORDUP and S&L are the default scheme for 

stationary and non-stationary computations, respectively. 

The overall algorithm of solution is based on a four-direction Gauss-Seidel iteration technique 

(Booij et al. 1999, Zijlema and Van der Westhuysen, 2005). The code is provided either in 

structured or unstructured mode (Zijlema 2009), as well as it is extended to the parallel framework 

(Zijlema 2010). 

 

Lastly, SWAN can be further improved by considering the coupling with other models, such as the 

circulation ADCIRC (ADvanced CIRCulation model; Luettich and Westerink 2004) model, the 

morphological COHERENS model, or, the Boussinesq TRITON (Groeneweg et al. 2004) model. 

The SWAN + SWASH coupling is developed by using these types as general guidelines. 

5.2  SWASH model 

SWASH (an acronym of Simulating WAves till SHore, Zijlema et al. 2011b) is an operational, 

general-purpose, public domain model intended to be used for simulating wave fields, rapidly 

varied shallow water flows, as well as large-scale flows and transport phenomena driven by tidal, 

wind and buoyancy forces, in coastal waters. The model has been developed based on the work of 

Stelling and Zijlema (2003), Stelling and Duinmeijer (2003), Zijlema and Stelling (2005, 2008). It 

can be assumed as a multi-layered, non-hydrostatic, free-surface, rotational wave-flow model, 

which solves numerically the Reynolds-averaged Navier-Stokes equations for an incompressible 
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fluid, as well as, optionally, the equations for conservative transport of salinity, temperature and 

suspended load for both cohesive and non-cohesive sediment. 

 

The governing three-dimensional, primitive variable equations describing constant density, free 

surface flows can be derived from the Navier-Stokes equations after turbulent averaging and under 

the assumption that the pressure is composed by hydrostatic and non-hydrostatic terms. The 

resulting equations are the nonlinear shallow water equations with the addition of a vertical 

momentum equation and non-hydrostatic pressures in horizontal momentum equations. In lieu of 

simplify the exposition, although either curvilinear or spherical coordinates are implemented, the 

equations are introduced in terms of Cartesian coordinates; moreover, a 2D vertical plan is 

considered, while the extension to full 3D is straightforward (i.e. Zijlema and Stelling 2005, 2008). 

The set of continuity and momentum equations reads 

 
  

  
 

  

  
                          (5.3) 

 
  

  
  

  

  
  

  

  
  

 

 

         

   
 

    

  
 

    

  
                   (5.4) 

 
  

  
  

  

  
  

  

  
  

 

 

         

  
 

    

  
 

    

  
                    (5.5) 

 

where t is time, x is a horizontal coordinate, located at the still water level, and z is the vertical 

coordinate with the z-axis pointing upwards;          and          are, respectively, the 

horizontal and vertical velocity; ρ is fluid density, ph and pnh are the hydrostatic and non-hydrostatic 

pressure components, respectively, and τxx, τxz, τzx, τzz are turbulent stresses. The domain is bounded 

vertically by the free surface at     and the bottom at       The hydrostatic pressure is 

expressed in terms of the free surface elevation as            so that            and 

         with                    , and g being the gravitational acceleration. A detailed 

description of the non-hydrostatic term,    , is given in Zijlema et al. (2011) and Zijlema and 

Stelling (2003). 

Kinematic boundary conditions are prescribed at the free surface and bottom; given by 

 

       
  

  
  

  

  
                       (5.6) 

 

          
  

  
                        (5.7) 

 

These boundary conditions ensure that particles laying on the free surface or on the fixed bottom do 

not leave those surfaces. 

 

By integrating equation (5.3) over the water depth,      , and using the kinematic conditions, 

equations (5.6-5.7), the free surface condition is obtained 
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 Coupled numerical model 87 

 

 

At the free surface the dynamic boundary condition is constant atmospheric pressure (i.e. zero 

relative pressure,         ) and no shear stresses. Since the vertical grid spacing usually does 

not allow for solving the dynamics of the boundary layer, a bottom friction term is added to the near 

bottom layer, and included to the horizontal momentum equation (5.4), based on a quadratic friction 

law 

 

     
    

 
                        (5.9) 

 

where   is the depth averaged velocity and    is a dimensionless friction coefficient. For typically 

depth-averaged calculations, the drag coefficient can be determined from the Chézy number, C, or 

the Manning number, n, or assuming a constant value 

 

   
 

                         (5.10) 

 

   
   

                           (5.11) 

 

Alternatively, the logarithmic wall law based on a Colebrook-White formulation may be applied, 

where a distinction should be made between smooth and rough beds.  

 

The turbulence is modelled with several turbulence models, by prescribing separately the eddy 

viscosity for the vertical      and the horizontal      transport. The turbulent stresses are 

represented in a diffusive manner by assuming the Boussinesq approximation, whereby in the multi-

layered case is written  

 

           
   

   
 

   

   
                

   
               

  
             

  
              (5.12) 

 

where i, j are indices that represent the horizontal x, y directions and z is the vertical direction. 

In particular, three different horizontal eddy viscosity models are available: a constant viscosity, the 

Smagorinsky model (Smagorinsky, 1963) and the Prandtl mixing length hypothesis; whilst vertical 

mixing can be modelled by using either a constant value (at low resolutions) or the standard     

closure model approximation (Launder and Spalding 1974) whether high vertical resolution is used. 

 

Appropriate boundary conditions need to be imposed at the open and closed boundaries of the 

computational domain. At the offshore boundary incoming, regular and irregular waves are 

introduced by prescribing a vertical profile of horizontal velocities (Zijlema et al. 2011b, Smit et al. 

2013 – Appendix B), eventually including a second-order weakly-nonlinear contribution (Rijnsdorp 

et al. 2014). These velocities are obtained from time-or Fourier series for each point on the 

boundary, or by imposing a wave spectrum, which is synthesized by using the single-summation 

method (Miles 1989). Additionally, to simulate entering waves and to allow frequency energy leave 

the domain, a weakly-reflective condition acting on outgoing waves is adopted (Blayo and Debreu 

2005), assuming that incoming and outgoing waves are perpendicular to the boundary. 
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5.2.1 Numerical implementation 

The physical domain is discretized on a structured, Arakawa C-staggered grid with constant grid 

size in the horizontal planes; whilst, either a depth-averaged or multi-layered mode can be 

employed in vertical, by splitting-up the computational domain in K fixed, terrain-following layers 

with a spatially varying thickness (sigma plane), between the free-surface and the fixed bottom, or 

by imposing a distribution of vertical layers with fixed thickness (z-grid). The numerical 

implementation is typically based on an explicit, second order (in space and time) finite difference 

method that conserves both mass and momentum at numerical level (according to Stelling and 

Duinmeijer 2003). 

 

Basically, SWASH provides numerous options for space discretization and time integration of the 

governing equations. For a complete overview reference is made to the SWASH manual. 

 

The time integration of equations (5.3-5.5) are typically based on an explicit leapfrog scheme (or 

better, on a slightly modified version which employs staggering in time) in conjunction with a 

second order explicit time step for advection, a first order implicit time step for the non-hydrostatic 

part, and a first-order explicit time step for the viscosity term (Zijlema et al. 2011b). Furthermore, 

the bottom friction term expressed by equation (5.9) is approximated implicitly, to enhance the 

robustness of the model. Alternatively, unconditional stability can be achieved and beneficial to 

large-scale applications (i.e. tidal flows), since time discretization may be carried out using an 

explicit time stepping for horizontal advective and viscosity terms, semi-implicit time stepping 

using the θ-method for both surface levels, pressure gradients and free-surface condition (Zijlema 

and Stelling 2005). 

 

In the surf zone, SWASH intrinsically accounts for the energy dissipation of a breaking wave, at a 

rate analogous to that of a bore, and is able to reproduce accurately the actual location of incipient 

wave breaking (Zijlema and Stelling 2008). This is due to the shock-capturing property rooted in 

the momentum-conservative advection scheme used in SWASH (Stelling and Duinmeijer 2003). 

However, high vertical resolution (      layers) is required to achieve such accurate results, 

whereas at low resolution (    layers) wave breaking is generally delayed. Therefore, the so-

called Hydrostatic front Approximation (HFA) may be alternatively used to capture wave breaking 

with only a few vertical layers, where a (local) reduction to the NLSWE equation is performed (Smit 

et al. 2013). In this approach, wave breaking is initiated when the vertical velocity of the free 

surface exceed a threshold ratio of the shallow water wave celerity (i.e.         ). The pressure 

at the wave front is then forced to be hydrostatic. Wave breaking is terminated when         

   . The lower value   is called persistence parameter, while   is called the maximum steepness 

parameter. 

 

Acceptable frequency dispersion can be achieved by using only a few layers, due to the Keller-box 

scheme employed for the approximation of the vertical gradient of the non-hydrostatic pressure 

(Stelling and Zijlema 2003). Introducing the wave number k, the angular frequency  , it may be 

shown that with K vertical equidistant layers the frequency dispersion is represented with a 

          Padé expansion in      of the expression for the phase velocity     (Zijlema and 

Stelling 2008). This implies that one, two and three layers are sufficient to compute linear 
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dispersive waves, respectively, up to    0.5, 8 and 16, with a relative error of at most 1% in phase 

velocity. Alternatively, a classical explicit, central differencing scheme may be adopted for 

computing the vertical pressure gradient if a high vertical resolution is needed. It should be noted 

that these approximations contain the most computational intensive part of the code. Briefly, a 

Poisson equation linking the non-hydrostatic pressure correction at a grid point to its neighbors is 

obtained as a final stage of the pressure correction technique employed. The solution of this Poisson 

equation is carried out by employing either the SIP, in the case of depth-averaged mode, or the 

BiGGSTAB preconditioned with an ILU, in the case of multi-layered mode. Further details can be 

found in Zijlema and Stelling (2005). In spite of reducing the computational effort devoted to 

inverting the Poisson pressure matrix, since one of the last version of the model (SWASH 3.14AB) 

the stencil of the pressure equation (i.e. the number of pressure unknowns per water column) can be 

diminished, with the purpose of reducing the rank of the Poisson matrix. Nevertheless, a non-

equidistant layer distribution needs to be sought to balance the less accuracy concerning the wave 

dispersion, in spite of having a more efficiency in terms of CPU time. 

 

Finally, the reliable and simple wet-dry approach presented in Stelling and Duinmeijer (2003) is 

implemented. This method tracks the shoreline motion by ensuring non-negative water depths and 

using the upwind water depths in the momentum flux approximations. 

 

Lastly, the following CFL condition based on the Courant number     is given 

 

   
           

  
                       (5.13) 

 

since the time integration is of explicit type and strict conformity of stability criteria for a stable 

solution is required. In particular, a dynamically adjusted time step controlled by the Courant 

number is implemented in SWASH, i.e.                 . Therefore, the time step is either half 

or doubled so that the new value always lies within this range. Moreover, an additional stability 

condition is required due to the explicit treatment of viscosity terms; such that a second time step 

restriction should be imposed, according to 

 

   
   

   
,                      (5.14) 

 

Since this time step restriction is typically very local but more severe than the CFL condition (Eq. 

5.13), a constraints on the maximum of the eddy viscosity is adopted at each time step by the 

model., i.e. 

 

          
   

   
 .                     (5.15) 
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5.3   SWAN + SWASH model 

5.3.1 Coupling implementation 

A code producing a single executable is implemented, where SWAN (version 41.10) is the master 

model and SWASH (version 4.01) subroutines are packed into a library (either static or dynamic) 

called inside the SWAN main time loop. It is a one-way coupling, not taking into account the 

seaward-directed reflected waves computed by the phase resolving model, which, consequently, 

cannot affect the action balance equation model. 

 

The model components run sequentially in time on structured, Cartesian (or curvilinear) meshes, 

with SWAN acting on a larger domain extended up to offshore, whereas the SWASH domain is 

typically located in the nearshore, possibly including the emerging beach terrain. However, it is to 

be pointed out that the SWASH domain can be properly modified according to the type of 

application, such that an extension of the computational domain at most equal to the SWAN domain 

may be adopted. 

 

The coupling takes place at the seaward (offshore and/or lateral) SWASH open boundary, where: (i) 

the spectra computed by SWAN are prescribed; (ii) wave trains are synthesized by a single 

summation method (Miles 1989), which produces a quasi-homogeneous wave variance (Miles and 

Funke 1989); (iii) the horizontal velocity normal to the boundary, computed using the linear theory, 

is prescribed (Zijlema et al 2011b, Smit et al 2013); (iv) a weakly reflective boundary condition is 

added to prevent spurious outgoing oscillations (Verboom and Slob 1984; Verboom and Segal 

1986; Vreugdenhil 1994, Section 5.4; Blayo and Debreu 2005; Smit et al. 2013, Appendix B). 

Eventually, the weak-nonlinear, second-order velocity may be prescribed; hence, the contribution of 

incident bound ig-waves can be added to the SWAN spectra (Rijnsdorp et al 2014). In addition, in 

the last version of the coupled model (SWAN-4110 + SWASH-4.01), SWASH may also be forced by 

a band-pass filtered (i.e. pass band            ,   being the incident peak frequency) Fourier 

series of levels directly obtained from the SWAN spectra, and imposing, subsequently, the 

horizontal velocity profile as uniformly-distributed. This option is found to be fairly adequate for 

simulations in shallow and very shallow waters, where it appears insufficient to adopt exclusively 

the hyperbolic profile; moreover, some spurious low-frequency motion are most likely to be 

generated because of the combined effect between the breaking process, which governs the energy 

dissipation in this zone, and the presence of sub-harmonic triad interactions, either reflected off the 

beach and eventually freely re-reflected off at the inner coupling point between the two model 

components. Finally, the wave-induced setup calculated as option by SWAN either in a (geographic) 

1D or 2D case, as briefly reported before (§5.1, see SWAN Technical documentation, page 79), may 

be easily included in the coupled model and so passed to the SWASH domain. 

5.3.2 SWASH wave-maker 

In his paragraph the attention will be focused on the main characteristics of the wave generating 

boundary condition within the coupled SWAN-SWASH model. 

 

Incident irregular waves at the open boundaries are, usually, represented by realisations of zero-

mean, stationary, random Gaussian stochastic process. The surface-elevation time series,          
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at the wavemaker               can be obtained as a linear superposition of N regular wave 

components 

 

                             
 
   ,                 (5.16) 

 

where         are the couple amplitude – phase of the    - wave component having frequencies    

and directions   , while                      is the wave number, related to the wave frequency 

by the dispersion relationship              . In particular, it is to be noted as SWASH uses its 

own dispersion relation when at most three equidistant layers with variable thickness (i.e. sigma 

plane) and the Keller-Box scheme are used; this approximate relation is known to be more 

consistent with the model, particularly for relatively high frequencies. 

The target wave spectrum (i.e. the SWAN spectrum with a logarithmic frequency distribution in the 

coupled model) is divided into N frequency bands with uniform spacing, i.e.         from 

           till                                   where    is the peak 

frequency,   is the Nyquist frequency and     is the cut-off frequency. The Nyquist frequency 

represents the higher frequency value when the incident spectrum is defined by one of the classical 

parametric form (JONSWAP, Pearson Moskowitz or TMA, e.g. see Holthuijsen 2007), whereas the 

cut-off frequency is the frequency at which the so-called evanescent modes are generated. 

Specifically, these evanescent modes will be removed by SWASH when the offshore weakly-

reflective boundary condition and the hyperbolic velocity profile are imposed and if and only if the 

dispersive properties of the model (governed by the number of layers K) are not sufficient. To avoid 

repetition of the incident wave conditions, the frequency band is set equal to the reciprocal of the 

duration of the simulation, T, i.e.        (T is assumed to be equal to the SWAN time step in the 

coupled model). Obviously, the more T is increased or    is reduced, the more the waves computed 

with this method are consistent with the continuous target wave spectrum, but the more 

computational intensive will be the simulation. Furthermore, values of these parameter are limited 

by the angular and the frequency resolution of the wave-maker. 

 

The amplitudes and directions of each wave component can be selected in various ways according 

to the particular synthesis method used. Two methodologies are usually available and are denoted 

as the single and double summation methods. The main drawback of the double summation model 

is that a spatially inhomogeneous wave field is produced when finite duration time records are 

considered. In practice, the phase difference between wave components with same frequencies but 

propagating in different directions is no longer random but locked. In other words, for each of the 

frequencies   , a number of wave fronts (equal to the number of directional bins) are generated, 

with different directions   , but having the same fre uency and leading to a “phase locking”, i.e. 

there exists (at least) couple of waves having the same frequency    but different phase     and, 

eventually different directions of propagation   . According to Jeffreys (1987), the resulting wave 

field is therefore spatially non-homogenous and non-ergodic since it presents nodes and antinodes. 

This means, in other words, that the wave field will have different statistical properties from one 

point to another. 
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In both cases, the amplitudes and directions are chosen to approximate a target directional spectrum, 

according to 

 

                 ,                    (5.17) 

 

where      is the desired frequency spectrum and        is the directional spreading function 

(Kuik et al. 1988, Goda 2010), eventually expressed as function of the wave frequency. The 

frequency spectra can be assigned by the classical JONSWAP, Pierson-Moscowitz (PM) and TMA 

spectrum (see Holthuijsen 2007) as pointed out before, while the directional spreading function is of 

the type: 

 

                                    (5.18) 

 

where, θ is the azimuth measured counter-clockwise from the principal wave direction, assumed to 

be represented by the peak wave direction   ; m (-) is the spreading coefficient given by   

                 and related to the directional standard deviation, DSPR (rad), as proposed 

by Kuik et al. (1988) – see also Appendix A of the SWAN User Manual; D0 is a constant given by 

 

               
    

    
 
  

 

 
 

  

 
  

    
 

 
 
 

      
                       

   
 

  
  

 

  
                    

               (5.19) 

 

which satisfy the normalization condition, and   denotes the Gamma function. For example, by 

setting m = 10 the directional spreading function is calculated as shown by the solid line in Fig. 5.1. 

The cumulative value of D(θ) is also shown in the same figure as the dashed line and it is used by 

the single-summation method as specified later. From this cumulative distribution of D(θ), is 

observed that the wave energy is principally contained in the angular range and the directional 

spreading of wave energy is narrower around the spectral peak frequency. 

 
Fig.  5.1 Example of directional spreading function. 
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Each frequency band corresponds to a long crested wave with direction     and spatially varying 

amplitude, obtained deterministically from the wave spectrum      , which reads 

 

            ,                     (5.20) 

 

so that, the target spectrum is match exactly, while the propagation angles are selected at random 

according to the cumulative distribution of        (Miles 1989). Usually, within a narrow 

frequency band, all components have approximately the same amplitude but the probability of 

obtaining a given propagation angle will be the greatest at the peak of the spreading function. The 

wave angle is selected by a random number    being uniformly distributed between 0 and 1 

through the cumulative distribution of the directional distribution function, i.e. 

 

                                       
 

 
.                 (5.21) 

 

Goda (2010) reported a numerical procedure for solving this problem, since the inverse solution of 

the cumulative distribution cannot be obtained analytically. Firstly, the random number is assigned 

to each frequency and the spreading function         is initially integrated for the full range of 

wave angles so as to evaluate the normalization constant G0. Then, the integration of the second 

equation is made step by step until the value         equals   , which is assigned to each 

frequency, and finally, the value of    is assumed to be equal to the angle obtained by this 

procedure. 

 

Generally, waves are generated in SWASH by prescribing a local velocity profile normal to the 

boundary, either by imposing a wave spectrum along the boundary or starting from time series 

directly assigned for each point on the boundary. 

In the first case, SWASH allows to specify either unidirectional (Zijlema et al. 2011b) or 

multidirectional (Smit et al. 2013, Appendix B) waves, in both depth-averaged or multi-layered 

mode (namely, by computing the layered-averaged velocity through integration over each layer). 

The expression of the velocity and flux boundary condition along the cross-shore direction can 

properly be obtained from the surface elevation using the linear transfer function (i.e. Goda 2010, 

page 364) and by assuming the total local horizontal velocity    equal to a superposition of the 

incident (or target) velocity signal    and a velocity signal of the reflected waves   . In particular, 

all of these velocities are assumed to be perpendicular to the boundary. 

For instance, the expression of the depth averaged case for unidirectional waves is given by  

 

               
           

       
  

 

 
              

 

 
  

   ,              (5.22) 

 

where            is the random phase uniformly distributed between 0 and 2π. The sign in the 

equation (5.22) – also used in the equations (5.23) and (5.26) – depends on the location of the 

boundary. The minus sign refers to an inflow velocity at the eastern and northern boundaries, 

whereas the plus sign is related to an inflow velocity at the western and southern boundaries. 
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Furthermore, in the 2D case and for short-crested waves with a prescribed directional distribution 

(assumed constant along the boundary), the normal velocity at the boundary is given as 

 

                   
           

       
                                 

 
   ,          (5.23) 

 

where it is assumed that incoming and outgoing waves are perpendicular to the boundary and that 

reflected waves are small amplitude shallow water waves, which implies, essentially, that the high 

frequency energy has dissipated in the domain to the extent that it may be neglected when it leaves 

the domain. The depth averaged horizontal velocity of reflected waves is then computed based on 

the surface elevation of outgoing waves, which is obtained by subtracting the surface elevation due 

to the incident waves ηt from the instantaneous surface elevation   computed by SWASH. The 

reflected wave contribution is detected by using the radiation condition in combination with the 

mass conservation (Vreugdenhil (1994, Section 5.2; Blayo and Debreu 2005) 

 

   
   

 
                           (5.24) 

 

where       is taken as the shallow water phase velocity. 

 

On the other hand, the incident signal for a time series or a Fourier series can be given by  

 

                      
                     (5.25) 

 

where N is the number of Fourier components,    is the mean water level, and          are the 

amplitude, the angular frequency and local random phase lag of the n
th

-component. Hence, SWASH 

can alternatively be forced by imposing the following weakly-reflective boundary condition 

(Zijlema et al. 2011b) 

 

     
 

 
                            (5.26) 

 

It should be noted that for highly nonlinear irregular waves in shallow water, the velocity boundary 

conditions based on the hyperbolic profile (Equations 5.22, 5.23) would have to be modified to take 

into account the presence of lower and higher frequency wave components induced by nonlinear 

interactions between the primary wave components. It is known the Second-order Stokes theory 

cannot accurately describe the shape of cnoidal-type waves in shallow water when the Ursell 

parameter is large. Moreover, the weakly-nonlinear (and weakly-reflective) second-order boundary 

condition is neither valid in the surf zone nor in deep water, since it is generally derived under the 

assumption of small amplitude waves (i.e.      ), and because the computation of the depth-

averaged second-order velocity amplitude is obtained under the hypothesis of long wave response 

restricted in shallow water (      ), where           is the difference wave number of 

two primary waves         (see Rijnsdorp et al. 2014 for a detailed derivation). In addition, the 

weakly-reflective condition is not more valid, since the dissipation produced by the high frequency 

energy inside the domain cannot be assumed sufficient to be neglected. 
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On balance, shallower is the coupling point, the less valid are the hypothesis of hyperbolic profile at 

the wave-maker, and more spurious waves are created on the SWASH domain. For all of these 

reasons, a combination between a Fourier series and uniform velocity profile may be expressly and 

alternatively used (i.e. Equations 5.25, 5.26) in the coupled model. 

5.3.3 Parallelization strategy 

Both SWAN and SWASH have been already extended to the parallel framework (i.e. Zijlema 2010, 

Zijlema et al. 2011b), by using the domain decomposition on distributed computer system with each 

processor having its own private memory. In both models a balanced, static strip-wise partitioning 

is employed, where the whole computational domain is split up into a number of contiguous, non-

overlapping strips, along the x- or y-axis, with each of them being assigned to a different processor. 

This is a case of single program multiple domain (SPMD) programming model, since the same 

algorithm performs an all available processors. In the SWASH model, also an orthogonal recursive 

bisection (ORB) is available in case of 2D multi-layered mode. Message passing is implemented by 

a high level communication library MPI, where either point-to-point or collective communications 

have been employed. 

 

Although an emerging practice is to couple heterogeneous models through a generic framework – 

for instance, the Modelling Coupling Toolkit (MCT, Larson et al. 2005, Jacob et al. 2005, Warner et 

al. 2008) –, it seemed to be more convenient acting on the source code of both models, because it is 

likely to produce more effective results. Specifically, it was chosen to develop the parallel 

implementation according to ADCIRC + SWAN coupled model approach (Dietrich et al 2011). 

Highly-localized and efficient communication were achieved in ADCIRC + SWAN, because parallel 

simulations utilize identical sub-meshes; fundamentally, intra-model communication is inter-core 

and occurs merely on adjacent sub-meshes edges, while inter-model communication is intra-core. 

Although its proven highly-scalable performances, this scheme cannot be completely followed in 

SWAN + SWASH, because, to save computational time, it is necessary to have grids with different 

dimensions and resolutions. Nevertheless, adequate local characteristic and efficiency can be 

reached as well. Communication between models (intra-model) can be passed through local 

memory or cache, without the need for any network-based inter-core communication. 

 

In order to compile and link the coupled code, some conflicts between SWAN and SWASH-related 

routines were solved. As a matter of fact, both models share the same general structure, including: 

(i) subroutines and functions that are perfectly identical as to code name; (ii) slightly different subs 

and functions performing essentially the same tasks having the same name; (iii) many variables 

with the same names representing different items that must be kept distinct, e.g. arrays mapping the 

domains of each of the two models. To cope with this problem, it was decided to have the main 

program of one of the two codes as the main program of the coupled code, treating the second one 

as a system of subroutines of the first. Namely, it was chosen to have SWAN as the main program, 

whilst SWASH was packed into a library, static or dynamic, that can be called inside the SWAN 

main time loop. To this aim, editing the name of the routines having same meaning but slightly 

different codes was mandatory in order to avoid conflicts inside the common executable. 
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Once the action density is computed by SWAN, the sending and receiving processes within the 

coupled model may be carried out by using either an off-line or an on-line approach (it is 

worthwhile underlying that it is a double option implemented into the single executable of the 

coupled model). Formally, new modules and subroutines were added to the original source code of 

both models. As a rule, the spectra calculated by SWAN are sent to SWASH through file read/write, 

in the off-line case. On the other hand, a shared data structure (Fortran 90 derived data type) is 

employed to assure the online data exchanging. 

 

From the parallel coupled model perspective, it is chosen to adopt a multiple program multiple data 

(MPMD) paradigm, based on the modular construction provided by MPI, and supported via the 

related-communicator mechanism. According to Foster (2003), three general forms of composition 

are available: sequential, parallel and concurrent. Specifically: i) in sequential composition, two 

model components execute in sequence on the same set of processors; ii) in parallel composition, 

two program components execute concurrently on disjoint set of processors; iii) in concurrent 

composition, two model components execute on potentially non-disjoint set of processors. 

 

Basically, the MPI’s MPMD programming model means that the full generality of concurrent 

component is not generally available. 

 

The sequential composition is supported by the MPI_COMM_DUP function, which is able to create 

a new communicator comprising the same process group but a new context to ensure that the 

communication performed for different purposes are not confused. On the other hand, the 

MPI_COMM_SPLIT supports the parallel compositions, where new communicator is created with 

just a subset of a given group of processors, while the MPI_INTERCOMM_CREATE constructs an 

intercommunicator, which links processes in two groups. In this work, it is chosen to employ the 

first type of modular construction, since it seems appropriate to leave the whole group of processors 

to each program. In this way, the communication is localized, because inter-model communication 

happens on the same core and it is kept on the serial part of the code, while intra-model happens 

intra-communicator. 

 

Further work is needed to be done with respect to the mapping of both grids. Up to now, domain 

decomposition of both models is carried out separately, and one model does not know the sub-

domain managed by the other. Therefore, the action density computed by some cores inside SWAN, 

need to be passed globally to all sub-domains of SWASH and some improvements are needed. For 

instance, it seems useful implementing something similar to the intra-coupler communication, as the 

corresponding data storage and decomposition, employed by the MCT coupler (Jacob et al. 2005); 

namely, it should be implemented a common mapping of decomposition grids of both models, in 

order to perform the action density computation and the wave synthesized generation between the 

solely sub-domains actually involved in the sending and receiving tasks. Unfortunately, the task is 

not so trivial, because a substantial modifications of the SWASH reading boundary conditions 

subroutine is required. Nonetheless, the ADCIRC+SWAN parallel structure cannot be adapted as 

well, because it is tailored to grids having the same size and dimensions. On the other hand, some 

improvements may be achieved by focusing the implementation on the virtual topology feature, 

which is an inherent MPI communicator characteristic. 
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Notwithstanding the above-mentioned improvements will be necessary, preliminary analysis have 

been carried out on a simplified test case with a single 2.60 GHz Intel Core i7 – 4720 HQ 8 

processor, having 16 GB of memory, showing that the online/offline coupled model extension 

(SWAN+SWASH) with one executable is capable to reduce the CPU time with respect to the 

“manual” procedure of using two separate executable (i.e. separated SWAN and SWASH models). 

One of the next tasks will be to measure the parallel performance of the coupled model on a 

dedicated cluster. 

 

Hence, to sum up, higher efficiency is expected to be achieved by further optimizing the online 

coupling in the parallel mode. 

5.3.4 Non-stationary implementation 

A further improvement is implemented by adding the option for computing a non-stationary 

simulation. The coupling procedure, between two models having substantially different 

computational time steps, is generally performed admitting that the results obtained by the model 

with the larger time step, and used to force the other model, are kept constant during the 

computations in between the coupling interval. An exemption may be considered the two-way 

ADCIRC + SWAN coupled model, where ADCIRC extrapolates the radiation stress from SWAN 

both at the beginning of the current interval and at the beginning of the previous interval for each 

time step of the whole simulation (Dietrich et al. 2011). 

 

Herein, the idea is to force SWASH open boundaries with cyclic-(quasi-stationary) spectra 

computed by SWAN, either assuming an averaged status or a final sea state, with the aim of 

representing better the mean wave conditions simulated on the whole coupling period. Basically, 

the averaged or the final status may be assessed by requiring an interpolation of the SWAN spectra 

computed at the beginning and at the end of the coupling interval (excluding the first coupling 

interval, which can be assumed as a spin-up time of the coupled model). This can be done using the 

procedure already implemented in SWAN (SWAN Technical Documentation page 66). In practice, 

the interpolation between two spectra is done (i) normalizing the spectra by averaged frequency and 

direction, (ii) interpolating and transforming back; thereby, no reduction of the spectral peaks would 

happened. 

 

Figure 5.2 depicts a schematic overview of the non-stationary procedure implemented in the 

coupled-code. Specifically, the SWAN model is run first, and the coupling interval is taken to be 

equal to the SWAN time step, since the SWAN sweeping solution can take much larger time steps 

than SWASH, which is Courant-time-step limited due to its explicit formulation. 
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Fig. 5.2 Schematic representation of the non-stationary, online coupling and detail overview of the    coupling interval. The 

coupling interval (      ) is set equal to the SWAN time step (      ). Scales of the SWASH time step (       ) are 

enlarged, since its value is much more lower than the SWAN time step.      
  and     

  stand for the action density at the end 

and at the beginning of the    - coupling interval, where        . Finally, W is a weight-factor, which can assume only 

values equal to 0.5 or 1.0, to determine whether SWASH is forced by the final sea state or by an averaged status of the action 

densities computed by SWAN in the k-th coupling interval, according to the interpolation              
        

   

 

5.3.5 Validation of the coupled numerical model 

In the following paragraphs, a validation of the coupled SWAN+SWASH model for nearshore 

application is provided, by using laboratory data of unidirectional random wave runup on a gentle, 

smooth and impermeable slope (Mase 1989). Two main groups of results are going to be presented, 

which are related to simulations carried out with two different versions of the coupled model. The 

first is linked with the issues presented in Ventroni et al. (2016b,c), which is based on a previous 

version of the coupled model (i.e. SWAN 4101+SWASH 3.14), whilst the second one is obtained by 

employing an improvement of the coupling, as well as a more recent version of the two model 

components (i.e. SWAN 4110 + SWASH 4.01). Anyhow, the purpose of both group of simulations is 

the same and at least twofold. 

 

First, given the heavy computational requirements of phase-resolving modelling, an interesting 

solution in setting up the coupled model is represented by the optimal location of the inner 

boundary, so as to reduce as much as possible the SWASH domain and related computational burden 

without losing the outcome’s accuracy and reliability. Namely, the trade-off is between having the 

inner boundary far enough from the shore to represent the wave nonlinearity wherever significant, 

but not as much as to include areas of large wave dispersion, requiring too many layers to be 

represented. 
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Second, it appears interesting comparing the results of the online coupling with those obtained by 

McCabe et al. (2010, 2011), which used the same tests to investigate the best location within an 

offline–coupling between SWAN and a NLSWE model, as well as between SWAN and a BTE 

model.  

 

The above procedure was carried out manually, with use of distinct codes for the spectral and the 

phase-resolving models. Higher efficiency is expected to be achieved by the online coupling, 

resulting in one code and one executable, for seamlessly simulating wave evolution from generation 

to runup and land inundation. To this aim, SWAN, SWASH, and SWAN + SWASH model runs 

were carried out. 

5.3.6 Mase’s (1989) test description 

Mase (1989) studied random wave runup for a range of wave conditions and four test slopes of a 

model beach. The experimental setup can be seen in Figure 1 of Mase & Iwagaki (1984), while a 

schematic view is depicted in Fig. 5.3 (last subplot of each panel). Model results have been 

compared with four of the random wave runup laboratoty tests, with bed slope 1:20 and water depth 

at the wavemaker dwm=0.45 m. A Pierson-Moscowitz spectrum was imposed at the wavemaker, 

with values of significant wave height Hwm, and peak period Tp as reported in Tab. 5.1, where 

representative wave length at the wavemaker, Lwm, related depth-to-wavelength ratio, (d/L)wm, and 

equivalent deepwater significant wave height Hdw and wavelength Ldw are also shown. The SWASH 

numerical model is set-up along a one-dimensional flume of length 25 m, with horizontal resolution 

and time step shown in Tab. 5.1. In particular, at least 20 points per wave length for waves up to 

    are chosen, fp=1/Tp being the peak frequency. SWASH was run for a duration of 1200 s, with 

spin-up time of 300 s. 

Tab 5.1 Parameters of incident waves for the Mase (1989) tests. Ks is the shoaling coefficient based on linear wave theory 

 
Hdw

’ 

(m) 

Hwm 

(m) 

Ks 

(-) 

Tp 

(s) 

Ldw 

(m) 

Lwm 

(m) 

(d/L)wm 

(-) 

x 

(m) 

t 

(s) 
Breaker type 

TEST A 0.0477 0.0495 1.037 2.50 9.758 4.998 0.111 0.020 0.002 Plunging 

TEST B 0.0639 0.0618 0.968 2.00 6.245 3.884 0.086 0.020 0.002 Spilling 

TEST C 0.0793 0.0734 0.930 1.67 4.337 3.120 0.069 0.015 0.001 Spilling 

TEST D 0.0990 0.0914 0.915 1.25 2.440 2.122 0.047 0.010 0.001 Spilling 

5.3.7 SWAN4101, SWASH 3.14 and SWAN 4101 + SWAS H3.14 set-up and results 

SWAN, SWASH and SWAN + SWASH model runs were carried out. Following McCabe et al. 

(2011), the SWAN model is run without nonlinear interactions (quadruplets and triads) and bottom 

friction, but activating the depth-induced wave breaking (Battjes & Janssen, 1978) and including 

the wave-induced setup. The lower and upper boundaries in frequency space, subdivided in 200 

frequencies, are generally chosen equal to 0.5fp and 3fp, respectively. However, in the coupled 

model simulations using SWASH with one layer, a lower value for the upper limit is chosen, in the 

range (2. - 2.5)fp, in order to introduce only accurate harmonics in the phase-resolving model. In 

fact, based on an approximate dispersion relation, using one layer, SWASH is accurate up to a 

kd=2.9 for primary waves (k = wave number), with a relative error in the normalized wave celerity 

c/(gd)
1/2

 of at most 3%. Finally, a cos
800

(θ) directional distribution is used. 
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The SWASH model is run throughout the entire domain using four different configurations for each 

test cases: (i) one vertical layer, (ii) the same as (i) including incident bound waves (Rijnsdorp et al. 

2014) at the wavemaker boundary, (iii) two and (iv) three vertical layers. The default values for the 

maximum steepness parameter (α=0.6) and the persistence parameter (=0.3), found after 

calibration by Smit et al. (2013), were set in the, so called, hydrostatic front approximation, used to 

simulate depth-induced wave breaking in accurate way even with few layers. Furthermore, a 

threshold value of 0.1 mm was set in each run to represent the minimum inundation depth, while 

turbulence and bottom friction are neglected. 

 

Finally, the SWAN+SWASH model is run by using five different random seeds for the generation of 

time series at the SWASH open boundary, in order to take account for sensitivity of runup to the 

random input phases, and choosing six or seven coupling points, with values of Hm0/d (as computed 

by SWAN) in the range 0.1–0.6. In these cases, the SWASH model is run with one and two layers, 

with a total of 250 runs. 

 

In Figure 5.3 the significant wave height and the wave-induced setup are shown, normalized with 

respect to the depth at the wave-maker, as well as the fraction of breaking waves as computed by 

SWAN. This latter is helpful in choosing the coupling points, considered within the coupled model, 

which are shown in the last subplot. 

 

Comparison between the measured and calculated runup statistics R2%, R1/10 and R1/3 will be shown 

by using the relative error, (RModel – RMase)/RMase. 

Figure 5.4 shows the relative errors in runup statistics R2%, R1/3 and R1/10 with respect to Mase’s 

experimental data, as a function of the surf similarity parameter ξwm = m/(Hwm/L0)
1/2

 calculated with 

SWASH throughout the computational domain in three different configurations: with a single layer, 

a single layer accounting for bound waves at the wavemaker, and with three layers. Note that tests 

A to D are in the order of decreasing wm. 

 

Figure 5.5 depicts the relative errors with respect to the experimental data, calculated with the 

coupled SWAN + SWASH model as a function of the nonlinearity parameter at the coupling point, 

Hm0/d, to investigate how the location of the coupling point influences the accuracy of results with 

respect to the complete phase-resolving run. The errors of the coupled model were computed as 

average values over five runs with randomly phased wave trains prescribed as boundary condition 

of SWASH, generated from the same action density spectrum computed by SWAN. Each run was 

performed using the SWASH model with a single layer, in order to test the accuracy of the coupled 

model with the less computationally expensive configuration. 

 

From comparison between Figures 5.4-5.5, it can be seen that results in the coupled model can be 

improved varying the location of the coupling point. For example, the model performance in Test D 

is enhanced either using more layers, but increasing the computational time, or choosing a coupling 

point closer to the shore, with a significantly lower computational effort. 

On the other hand, it is apparent that the choice of the coupling point is not unique for the wave 

conditions analyzed, nor the error–Hm0/d curves are monotone. 
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The optimal coupling point depends also on the accuracy of the SWAN spectral modelling. 

However, it seems that a common value of Hm0/d  0.55 might be chosen for test cases B, C, D, 

while a lower value of Hm0/d  0.3 appears to be the best in Test A, differing from the other tests as 

to breaker type (see Tab. 5.1). These values are lower than McCabe et al. (2011) results, where a 

value of Hm0/d  0.65 was found to represent the optimal switching point in their SWAN+NLSWE 

model. This is probably due to SWASH being still able to represent some degree of wave dispersion 

even with one layer compared to the fully non-dispersive NLSWE formulation. 

 

Figure 5.6 depicts a summary of relative errors between experimental data and SWASH runs (panel 

P1), SWAN + SWASH run using SWASH with one (panel P2) and two layers (panel P3). 

 

Although the effect of increasing the number of layers is apparent, more layers should be chosen to 

ensure adequate modelling of the phase differences between the representative wave components, 

including shorter waves. Furthermore, results using one layer are most affected by the so-called 

evanescent modes, especially for the lower peak period. On the other hand, the largest errors appear 

when two layers are used. 

 

To sum up, simulations are shown to be reasonably effective with the single SWASH model used 

throughout for sufficiently large peak periods, and in a broader peak period range with the coupled 

model, for the wave conditions studied. 

5.3.8 SWAN4110, SWASH 4.01 and SWAN 4110 + SWAS H4.01 set-up and results 

In this paragraph, a different set-up for the single SWASH model is used. First of all, only the 

depth-averaged-NHE mode is considered and the bottom friction and both vertical and horizontal 

turbulence are included in order to enhance the stability of the model. The best results in terms of 

relative errors with respect to experimental runup data was obtained with a bed friction coefficient, 

cf, calculated with n = 0.011 m
1/3

s
-1

. In addition, both a background viscosity of 1 × 10
-4

 m
2
/s and a 

horizontal viscosity 2.5 × 10
-4

 m
2
/s were added as a fixed value. 

 

Computations with SWAN are carried out with two main configurations, by activating or not the 

Lumped Triad Approximation (LTA of Eldeberky 1996) for computing triad wave-wave 

interactions. Furthermore, the depth-induced wave breaking model of Battjes and Janssen (1978) 

and also the source term for bottom friction – the eddy-viscosity model of Madsen et al. (1988) with 

a constant equivalent roughness length scale of the bottom (kn = 0.00015 m) –, are used. The last 

value is consistent with the Manning coefficient assumed for the SWASH model. 

 

Finally, the coupled model is run by using the best SWASH set-up, and by using both SWAN 

configurations, i.e. with and without nonlinear interactions. In addition, SWASH is run both in non-

hydrostatic depth-averaged (SWAN-NHE) and hydrostatic depth-averaged (SWAN-NLSWE) mode 

and is forced with the pass-band Fourier levels computed online from the SWAN spectra (Equation 

5.25) and by imposing an uniform profile (Equation 5.26). In particular, results are found to be 

reasonable accurate and more stable than the previous case. 
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Fig. 5.3 SWAN results. Computed wave height (first panel) and setup (second panel), normalized with respect to the 

wavemaker depth, fraction of breaking waves (third panel) and coupling points along the bottom profile (last panel), for each 

test case. 

 
Fig. 5.4 Errors in runup statistics, compared with Mase's (1989) results, with SWASH model used throughout the domain, 

with one, or three layers, and with one layer plus bound waves at the wavemaker, as a function of the surf similarity 

parameter, wm 
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Fig. 5.5 Errors in runup statistics for the coupled SWAN+SWASH model, compared with Mase's (1989) laboratory results, as 

a function of Hm0/d at coupling location. Errors are mean values of 5 randomly phased wave trains prescribed as boundary 

conditions of SWASH, generated from the same action density spectrum computed by SWAN. 

 

 
 
Fig. 5.6 Error in runup statistics (R2%, R1/10, R1/3), compared with Mase’s (1989) laboratory results: SWASH run throughout 

the domain (panel P1); SWAN + SWASH with 1 layer (panel P2) and 2 layers (panel P3). In panel P1: T1 = run with single 

layer, T2 = single layer plus bound waves at wavemaker; T3 = two layers, and T4 = three layers. Panel P2 and panel P3 

represent errors as a function of the nonlinear parameter Hm0/d. Errors are computed as mean values resulting from 5 

randomly phased wave trains prescribed as boundary conditions of SWASH, generated from the same action density 

spectrum computed by SWAN. 
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The results are presented in Figures 5.7 5.10, in terms of curves of the relative error for runup 

statistics R2%, R1/3 and R1/10 with respect to Mase’s experimental data, calculated, as in the previous 

case, as average values over five runs with different random seeds. In particular four different 

model combinations are considered: (i) SWAN+SWASH-NHE, i.e. without triads and with non-

hydrostatic version of SWASH (Fig. 5.7); (ii) SWAN-LTA+SWASH-NHE, i.e. with triads computed 

and with non-hydrostatic version of SWASH (Fig. 5.8); (iii) SWAN+SWASH-NLSWE, i.e. without 

triads in SWAN and with the hydrostatic non linear shallow water version of SWASH (Fig. 5.9); (iv) 

SWAN-LTA+SWASH-NLSWE, with triads computed in SWAN and non linear shallow water version 

of SWASH (Fig. 5.10). 

 

In general, from comparison with respect to the previous results (i.e. Fig. 5.6), it can be immediately 

seen as the behavior of the errors is much more regular and also more closed to the shallow water, 

i.e. very low errors (          
  0.05) can be appreciated within the interval Hm0/d = 0.6 ÷ 0.7 for 

each of the four (i)÷(iv) combinations. Furthermore, it is interesting to observe as the wave 

conditions denote a consistent feature, since the optimal coupling point is approached with the same 

regular trend for each combination. In addition, it is to be pointed out as the overall stability of the 

simulation is highly improved with respect to the previous case, the reason being the different type 

of open boundary condition adopted. 

 

On the other hand, it is interesting to compare the behavior of the errors with respect to the 

computation of nonlinear interactions with the SWAN model, as well as with regard to the use of 

NLSWE or NHE versions. First of all, from comparison between (i)-(ii) and (iii)-(iv) it appears that 

the errors have a regular trend for both cases without triads, since a better tendency and lower error 

values appear with respect to the LTA computations. Secondly, the optimal coupling point appears 

to be located shallower in the NLSWE case (iii), whereas is more outward for the NHE option (i). 

These results are consistent with the different performance of these models, since SWASH being 

still able to represent some degree of wave dispersion even with one layer compared to the fully 

non-dispersive NLSWE formulation.  

5.3.9 Final discussion 

In the present study, an online, one-way coupling between the SWAN and SWASH numerical models 

has been introduced. Results shown in this chapter appear to be reasonably in good agreement with 

the set of runup statistics of random wave experimental data, either using SWASH or the coupled 

model with the NHE or NLSWE configuration. 

 

It is shown that the SWASH domain can be reduced shifting the coupling point shorewards, 

consequently reducing the computational effort, while still obtaining reliable results.  

The choice of the optimal coupling point is found to be dependent on the wave conditions analyzed, 

with a common location expressed by the value Hm0/d  0.3-0.55, whether a previous coupling is 

adopted, whereas a much more regular tendency can be appreciated by the last improvements and 

by using a newer different versions of the model components. At this purpose, it should be 

emphasized the importance of both nonlinear effects and spectral wave model accuracy in very 

shallow water, where instabilities might arise due to wave-maker algorithm characteristic, which is 

based on linear wave theory and horizontal bottom, and because of increased wave reflection. 



 Coupled numerical model 105 

 

 

 
Fig. 5.7 Errors in runup statistics for the coupled SWAN 41.10 + SWASH 4.01 model, compared with Mase's (1989) 

laboratory results, as a function of Hm0/d at coupling location. Errors are mean values of 5 randomly phased wave trains 

prescribed as boundary conditions of SWASH. SWAN + SWASH-NHE combination, where SWAN is run without triads, 

whereas SWASH is run in non-hydrostatic mode with one layer. 

 
Fig. 5.8 Errors in runup statistics for the coupled SWAN 41.10 + SWASH 4.01 model, compared with Mase's (1989) 

laboratory results, as a function of Hm0/d at coupling location. Errors are mean values of 5 randomly phased wave trains 

prescribes as boundary condition of SWASH. SWAN-LTA + SWASH-NHE combination. SWAN is run by computing triads, 

whereas SWASH is run in non-hydrostatic mode with one layer. 
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Fig. 5.9 Errors in runup statistics for the coupled SWAN 41.10 + SWASH 4.01 model, compared with Mase's (1989) 

laboratory results, as a function of Hm0/d at coupling location. Errors are mean values of 5 randomly phased wave trains 

prescribed as boundary conditions of SWASH. SWAN + SWASH-NLSWE. SWAN is run without triads, whereas SWASH is 

run in hydrostatic mode. 

 
Fig. 5.10 Errors in runup statistics for the coupled SWAN 41.10 + SWASH 4.01 model, compared with Mase's (1989) 

laboratory results, as a function of Hm0/d at coupling location. Errors are mean values of 5 randomly phased wave trains 

prescribed as boundary conditions of SWASH. SWAN-LTA+ SWASH-NLSWE. SWAN is run with triads, whereas SWASH 

is run in hydrostatic mode. 
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Further evaluations may be made including the contribution of incident (bound) infragravity-waves 

at the inner coupling point. On the other hand, different SWAN configurations as to triplete 

interactions and depth-induced breaking modelling (Salmon et al. 2015), might be used to validate 

the results. 
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6 Conclusions 

In this study, both peculiarities and main characteristics associated with two fundamental coastal 

flooding perspectives have been analysed. In particular, the extreme value analysis is an essential 

starting point to compute the offshore boundary conditions, as well as numerical modelling is 

required to simulate wave propagation, transformation and wave inundation from offshore up to the 

shore. 

 

First of all, the set of procedures for assessing the extreme offshore sea state is addressed by 

combining both the statistical inference and the EV theory. Secondly, an online coupled model is 

implemented, with the purpose of obtaining an operational model chain for computing, seamlessly 

and accurately, an extreme sea state from offshore up to the shore. 

 

From the statistical viewpoint, the general validity of EV theory is partially governed by the 

combination between sample size and asymptotical hypothesis. According to the classical inference 

approach, a multi distribution analysis is performed, by assuming three main distributions (GEV, 

GP, and WBL) to be representative for all possible marginal parent distributions within either the 

POT, AM or PP methods. Within the POT context, a de-clustering methodology based on the sea 

storm definition is employed to assure sample independency, which is enhanced by selecting only 

peak wave heights 48 hours apart; then, a combination between long-term wave climate and fetch 

distribution is considered in order to identify homogeneous directional clusters. Three different 

threshold selection methods are used within the POT framework, namely: the automated procedure 

proposed by Thompson et al. (2009), the approach of Mazas and Hamm (2011) based on assuming 

a fixed value of storm peaks per year; the multiple threshold method (Deidda, 2010) tailored to rain 

data, which is slightly adapted to wave sample, with respect to directionality and to independency 

elements. Furthermore, three main parameter estimation methods are employed – maximum 

likelihood (ML), maximum product of spacing (MPS), L-moments (LM), for each distribution –; in 

addition, the ordinary least square (OLS) method proposed by Goda (2010) is considered and 

associated to the WBL distribution. Finally, the best-fit model is determined by either diagnostic, 

parametric or non-parametric metrics, represented by the minimum residual of correlation 

coefficient (MIR) computed on both pp-plot and qq-plot, the Akaike-information-criteria (AIC) and 

the Bayesian-information-criteria (BIC), an improved version of the so-called error norm criteria, 

proposed by Li et al. (2008), and, finally, bias and root mean square error of parameter and quantile 

estimations obtained by the Monte Carlo technique. Lastly, the uncertainty associated with 

parameters and quantiles estimation (i.e. confidence intervals) is evaluated by using the Monte 

Carlo approach previously mentioned. 

 

Comparison between different theoretical methodologies are provided and applied to the most 

reliable wave buoy dataset, with the primarily cross-purpose of analysing GP and WBL 

performances. In fact, the driving reason may be linked to the considerable problem posed by 

authoritative authors. In practice, it is demonstrated that the GP distribution can lead to dangerously 

low return values when the analysis is carried out for a very short period (Mazas and Hamm 2011), 

such that the GP distribution is not recommended for engineering applications (Goda et al. 2010). 
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As a general results of this work, it is assumed that one would be more close to the engineering 

criterion whenever a larger quantile has to be chosen for a very short period (which, unfortunately, 

is almost always the routine in Coastal Engineering), where safe design criteria rather than perfect 

statistical fits must be considered, since neither the best-fit model nor the statistical test have 

demonstrated an evident outperform of one model with respect to the other. 

 

On the other hand, analysis of some intermediate, but critical, steps is interesting as well. Three-fold 

considerations can be defined. First, a comparison between mono-threshold and the MTM threshold 

selection methods is carried out. Second, a comparison between different estimators is performed 

with respect to both parameters and quantiles estimations. Finally, some parametric and non-

parametric best-fit methodologies are compared. 

 

With respect to the threshold selection methods, some general issues can be focused on numerical 

and practical features. In particular, it is found that the MTM method is the most computational 

expensive and, even from the practical perspective related to the coastal dataset modelling, may be 

recognized to be the less favourable, since the applicability appears to be hindered for multiple 

applications on large dataset. As a matter of fact, the automated threshold method proposed by 

Thompson et al. (2009), as well as the Mazas and Hamm (2011)’s advice, are assumed to be a 

pragmatic automated, simple and computationally inexpensive choice. 

 

Regarding the parameter estimation methods, it seems to be more convenient to choose the LM 

estimator since it generally provides both the best statistical justification and the less differences in 

the quantile estimations among GP and WBL models. In addition, it is assumed to be the most 

reliable and robust in tackling problems involving low sample size and outliers. Last but not least, it 

is found to be relatively simple to implement with respect to others methods, and, most of all, it 

requires less CPU time to carry out the Monte Carlo technique. 

 

With reference to best-fit metrics, it is found that they sometimes are mutually conflicting, 

therefore, as a general rule, it appears always more appropriate to carry out a comparison among 

different typologies instead of using a single metric. 

  

Finally, it is worthwhile underlying that a long term analysis is provided, as well as a deep 

correction of the original dataset, before the extreme value application. In particular, a 

comprehensive semi-automated, graphical and numerical methodology is implemented on Matlab 

routines to aid these preliminary steps. In addition, the extreme value computation is also linked to 

such previously implemented wave climate analysis and quality control tools. For this purpose, 

some external facilities, such as the WAFO toolbox (WAFO-group, 2011), have been added to the 

whole project, in order to compute different parameter estimation methods for either GP, GEV, or 

WBL distributions. Nonetheless, the fixed-threshold methods (adapted from the work of Thompson 

et al. 2009, Coles 2001, and Mazas and Hamm 2011), the MTM threshold methods (based on the 

procedure proposed by Deidda 2010), the LM method (based on the LMOMENT Fortran routine 

implemented by Hosking and Wallis 1997, as well as on the work of Goda 2010, 2011 with respect 

to the WBL LM estimators), the best-fit model selection (principally Coles 2001 and Li et al 2008), 

the Monte Carlo approach, as well as the set of pre- and post-processing functions have been 

specifically implemented as a final result of this work. 
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The second purpose of the present study is to introduce an online coupling mechanism between 

SWAN and SWASH models, with the aim of obtaining a unique operational model to be used for 

computing, seamlessly and efficiently, the wave evolution, from offshore up to the shore, including 

wind-wave generation, nonlinear wave-wave interactions, offshore and near-shore dissipations. 

 

Despite excellent wave-dispersion and noticeable nonlinearity have been nowadays reached, the 

computational burden of phase-resolving models is still excessive to consider application outside 

the near-shore area as a routine in operational models. Therefore, a phase-averaged approach might 

be adopted there, at expense of an overall decreasing of accuracy, but with still good provisional 

results at a lower computational price. A reasonable solution would be to carry out practical 

application using phase-resolving models in synergy with spectral models, where the first is reduced 

to nearshore zones, while the second is extended to larger areas. To a large extent, the 

computational cost required to propagate wave from offshore to near-shore would be largely 

reduced, while the accuracy in surf zone should be well-described by the phase-resolving model. 

 

From the practical viewpoint, the coupling is obtained forcing the open offshore and lateral 

boundaries of the SWASH domain by directional random wave fields generated through the 

embedded wave-maker algorithm included in the SWASH code, based on the action density spectra 

computed by SWAN. This assures the continuity of the information, while preventing spurious 

reflection of outgoing waves. 

 

Both models can be run either on Cartesian or curvilinear structured grids with different spatial 

resolutions, with the SWAN domain being typically larger than the SWASH domain. Stationary and 

non-stationary versions have been implemented, where SWAN and SWASH run sequentially in time. 

The SWAN model is run first, and the coupling interval is taken to be equal to the SWAN time step, 

since the SWAN sweeping solution algorithm can take much larger time steps than SWASH, which is 

Courant-time-step limited due to its explicit formulation. In addition, in the non-stationary case, the 

SWASH model can be forced either with the final sea state or through an averaged status, which 

might be able to ensure mean wave conditions for the whole coupling period. 

 

A validation of the coupled model with laboratory data is provided. Numerical results indicate a 

fairly good agreement of computed runup statistics with data from unidirectional random wave 

laboratory tests. The coupled model proved effective in reducing the SWASH domain extent, thus 

reducing the overall modelling effort, while retaining outcomes’ accuracy, suggesting that it can be 

a comprehensive and valuable tool for both engineering and scientific purposes. The choice of the 

optimal coupling point is found to be dependent on both the wave conditions and the model 

configuration, as well as on the type of open boundary condition used to force the SWASH model at 

the inner boundary. In particular, a common value of Hm0/d ≈ 0.55 is identified to be the best for 

three test cases (characterized by a spilling breaker), while a lower value of Hm0/d ≈ 0.30 is 

recognized for the case with a plunging breaker, whether a hyperbolic profile is chosen to force the 

SWASH model. On the other hand, better results are obtained with an improvement of the coupling, 

by using a more recent version of the model components (i.e. SWAN 41.10 and SWASH 4.01) and 

by forcing SWASH through a band-pass filtered Fourier series of levels, automated obtained from 

the SWAN spectra, and imposing, subsequently, the horizontal velocity profile as uniformly-

distributed. This option is found to be fairly adequate for simulations in shallow and very shallow 
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waters. In addition, a high stability is achieved in the coupling and a high degree of flexibility is 

obtained since SWASH may be run both in non-hydrostatic depth-averaged (SWAN-NHE) and 

hydrostatic depth-averaged (SWAN-NLSWE) mode. In both cases, very low errors (less than 5 %) 

are found within the interval Hm0/d = 0.6 ÷ 0.7 and, most of all, a consistent trend is noted for the 

wave conditions analyzed, which is independent on the model combination adopted. Moreover, 

results are found to be consistent with the different performance of SWASH-NHE and SWASH-

NLSWE. Finally, it is to be noted that these values are comparable with results obtained by McCabe 

et al. (2011), where a value of Hm0/d ≈ 0.65 was found to represent the optimal switching point in 

their SWAN+NLSWE model. Nonetheless, it is worthwhile underlying that neither ad hoc 

smoothing of the bathymetry is pursued herein nor a manual procedure is needed to pass the SWAN 

spectra at the coupling point, in contrast to McCabe et al. (2011). This is reasonable due to the 

different type of wave-maker and boundary conditions adopted, as well as to the different type of 

coupling (i.e. offline SWAN + NLSWE). 

 

Running a wider variety of test cases with different model configurations is required to fully 

validate the proposed approach. For instance, further evaluations can be made by including the 

contribution of incident (bound) infragravity waves at the coupling point. On the other hand, 

different SWAN configurations as to different depth-induced wave breaking and triplet interactions, 

might be used to further validate the results. 

 

Furthermore, it is to be remarked that SWASH domain may be selectively assigned and extended up 

to the SWAN domain. In this sense, a similar procedure as stated by Diaz-Hernandez et al. (2015) 

may be achieved. Shortly, the authors have modified analytically the offshore SWAN spectra to 

include the energy input associated with infra-gravity waves, in order to obtain a full spectrum of 

short and ig-waves; then, a hybrid clustering-numerical wave propagation downscaling technique is 

forced with the computed full spectra to produce a set of nearshore boundary conditions. As a 

matter of fact, such approach may be automatically carried out by the coupled-model, whether the 

coupling point is located in intermediate water and the weakly-nonlinear second order contribution 

is included at the inner boundary between both models. 

 

On the other hand, the MPI (Message Passing Interface) modularity has provided key aspects to the 

parallel implementation of the coupled model. Although an emerging practice is to couple 

heterogeneous models through a generic framework – for instance, the Modelling Coupling Toolkit 

(MCT, Larson et al. 2005, Jacob et al. 2005, Warner et al. 2008) –, it seemed to be more convenient 

working on the source code of both models. Specifically, it was chosen to develop the parallel 

implementation according to ADCIRC + SWAN coupled model approach (Dietrich et al 2011). 

Although its proven highly-scalable performances, this scheme cannot be completely followed in 

SWAN + SWASH, because, to save computational time, it is necessary to have grids with different 

dimensions and resolutions. Nevertheless, adequate local characteristic and efficiency can be 

reached as well. Communication between models (intra-model) can be passed through local 

memory or cache, without the need for any network-based inter-core communication. 

 

On the whole, it is assumed to be more appropriate to duplicate the standard MPI communicator, 

without adding other inter-communicators. Basically, each model component was already 

developed within the parallel framework, so the MPI’s MPMD (Multiple Program Multiple Data) 
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parallel paradigm can be generally adopted to implement a unique parallel code, while ensuring 

safety and local characteristics. It is also to be noted that a series of tests on a specific cluster should 

be carried out to better evaluate the parallel performance. 

 

Last but not least, the phase-averaged – phase-resolving paradigm obtained by the SWAN+SWASH 

coupling, can be conveniently employed to simulate large-scale flow and transport phenomena 

driven by tidal, wind and buoyancy forces. In principle, this can be done due to the meteorological, 

baroclinic forcing and solute transport extensions included in the SWASH code. At this purpose, a 

tight coupling may be further implemented, where also levels and velocities computed by SWASH 

can be passed to SWAN at each time step. 

 

Alternatively, other extensions can be obtained by adding SWAN + SWASH to other classes of 

coupled models, i.e. the SWAN + ADCIRC model (Dietrich et al. 2011), the SWASH-SPH model 

(i.e. Altomare et al. 2015, Crespo et al. 2015), in order to obtain a more efficient and comprehensive 

modelling of coastal areas. 
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