Università degli Studi di Cagliari

DOTTORATO DI RICERCA

Scienze e Tecnologie Chimiche Ciclo XXIX

SYNTHESIS AND CONSECUTIVE REACTIONS OF α-AMINOCYCLOBUTANONE DERIVATIVES
 CHIM/06

Presentata da:
Coordinatore Dottorato
Tutor

Nicola Melis
Prof. Stefano Enzo
Dr. Angelo Frongia

Università degli Studi di Cagliari Università degli Studi di Sassari

DOTTORATO DI RICERCA

Scienze e Tecnologie Chimiche Ciclo XXIX

SYNTHESIS AND CONSECUTIVE REACTIONS OF $\alpha-A M I N O C Y C L O B U T A N O N E ~ D E R I V A T I V E S ~$

CHIM/06

Presentata da:
Nicola Melis
Coordinatore Dottorato
Tutor
Prof. Stefano Enzo
Dr. Angelo Frongia

Table of Contents

Abstract III
List of Publications IV
1 Introduction 1
$1.1 \quad \alpha$-Amino Ketones 1
1.2 Synthesis of amino ketones 3
1.3 α-Aminocarbonyls via asymmetric protonation 15
References 21
2 Research Project 27
References 30
3 Synthesis of a-benzylamino cyclobutanones 31
References 40
4 Synthesis of cyclobutanone α-amino acid esters 43
References 49
5 Synthesis of Tryptamines 53
References 61
6 Synthesis and post-functionalisation of silylated bicyclic oxetanes 64
References 87
7 Experimental Part 89
7.1 General Methods 89
7.2 Experimental data 90
7.3 Crystal Structures 137
7.4 NMR spectra 146
7.5 Chiral HPLC Chromatograms 236
7.6 GC-MS Chromatograms 267
References 293
8 Acknowledgements 295

Abstract

This thesis deals with the development and the application of new synthetic methodologies in organic chemistry.

The first part (chapter 3) describes an organocatalytic enantioselective synthesis of α-(benzylamino)cyclobutanones. Such products have been achieved by employing a tandem condensation/intramolecular rearrangement/proton transfer reaction and starting from racemic α-hydroxycyclobutanone and a selection of benzylamines. This reaction sequence afforded the products in good to high yields with moderate to high enantioselectivities.

In the second part (chapter 4) a practical method for the synthesis of optically active cyclobutanones α-aminoacid esters is presented, via an organocatalytic asymmetric condensation reaction between racemic α hydroxycyclobutanone and chiral N -alkyl- α-amino acid ester derivatives.

In chapter 5, an original synthetic protocol for the preparation of highly functionalized tryptamines from α-hydroxycyclobutanone and secondary arylamines via a solvent-free Brønsted acid catalysed two-step reaction sequence is reported.

Finally, chapter 6 reports the synthesis of novel bicyclic oxetanes though Paternò-Büchi reaction and their preliminary evaluation as intermediates for postfunctionalization reactions.

Keywords - carbocycles, organocatalysis, amines, tryptamines, tandem sequence, rearrangement, Paternò-Büchi, oxetane, ring-expansion, ring-fission

List of Publications

I. Organocatalyzed tandem process involving asymmetric protonations as a stereo-defining step.
A. Frongia, F. Secci, N. Melis, Comptes Rendus Chimie, 2015, 18, 4, 456-467;
II. Catalytic enantioselective synthesis of α-(benzylamino) cyclobutanones
N. Melis, L. Ghisu, R. Guillot, F. Secci, D. J. Aitken, A. Frongia, Eur. J. Org. Chem., 2015, 20, 4358-4366;
III. Organocatalytic asymmetric condensation/keto-enol tautomerisation tandem reaction: access to cyclobutanone α-amino acid ester derivatives.
A. Frongia, N. Melis, I. Serra, F. Secci, P. P. Piras, P. Caboni, Asian J. Org. Chem. 2014, 3, 4, 378-381;
IV. Synthesis of functionalized tryptamines by Brønsted acid catalysed cascade reactions.
N. Melis, F. Secci, T. Boddaert, D. J. Aitken, A. Frongia, Chem. Commun., 2015, 51, 83, 15272-15275;
V. Fused bicyclic oxetane scaffold: a versatile intermediate for post-functionalisation reactions.
N. Melis, A. Luridiana, R. Guillot, F. Secci, A. Frongia, T. Boddaert, D. J. Aitken, A. Frongia, Manuscript in preparation.

1 Introduction

$1.1 \quad \alpha$-Amino Ketones

α-Amino ketones have a very common structure, which can be found in a large number of natural products and synthetic drugs. Moreover, due to the fact that their structural motif O-C-C-N is a recurrent sequence in nature, α-amino ketones hold an important role in organic synthesis and have been frequently used as building blocks in the total synthesis of biologically relevant compounds. ${ }^{[1]}$

Figure 1.1 shows a selection of representative bioactive both natural and synthetic α-amino ketones. For example, 5 -aminolevulinic acid is the first compound in the porphyrin biosynthesis pathway, which lead to the synthesis of heme structure in mammals and chlorophyll in plants respectively. This compound was discovered in 1953 by Shemin and its biosynthesis was the first to be described among this class. ${ }^{[2]}$ Aminoacetone is another important α-amino ketone which have a significant role in the metabolism. In fact it is overproduced in patients with diabetes mellitus and cri-du-chat syndrome ${ }^{[3]}$ and enters in the biosynthesis pathway of Azinomycin B, a natural antitumor agent. ${ }^{[4]}$

Gelsemoxonine ${ }^{[5]}$ and cathinone ${ }^{[6]}$ are two natural α-amino ketones isolated respectively from Gelsemium elegans and the plant Khat. Cathinone induce the release of dopamine and acts as an inhibitor of the re-uptake of epinephrine, norepinephrine and serotonin in the central nervous system. Cathine and norephedrine are also found in the plant and they derived from cathinone by means of a diastereoselective bioreduction of the carbonyl group.

It is not surprising that the α-amino ketone scaffold has been chosen as a key intermediate for the development of several synthetic drugs and bioactive molecules. In particular, the general skeleton of cathinone has inspired the design
of a large number of substituted cathinones which can be used as biologically active molecules. Among this class of derivatives, bupropion is used for the treatment of depression and as a smoking cessation aid. It acts as a norepinephrine-dopamine reuptake inhibitor (NDRI) and as nicotine antagonist.

5-aminolevulinic acid

Cathinone

Amino acetone

(-)-Gelsemoxonine

Bupropion

Ephedrone

Pyrovalerone

Amfepramone

Keto-ACE

Ketamine

Prasugrel

Figure 1.1 - Biologically relevant α-amino ketones.

Ephedrone was commercialised in the '30s as an anti-depressant but nowadays the detention and consumption is illegal or highly regulated worldwide. Pyrovalerone and amfepramone are two others substituted cathinones used as pharmaceuticals for the treatment of chronic fatigue or lethargy and in the management of obesity, respectively. Pharmaceutical drugs containing an α amino ketone motif include also structure which are different from cathinone unit, such as keto-ACE, an efficient agent for hypertension treatment, ${ }^{[7]}$ ketamine, which is used as anesthetic, ${ }^{[8]}$ and prasugrel, used to prevent thrombosis due to its antiaggregant properties in combination with low dose of aspirin. In addition,
some α-amino ketones have been targeted for biological application, such as a probe for the reactivation of the protein p53 in cancer ${ }^{[9]}$ or as a psychomotor stimulant in rats. ${ }^{[10]}$

Moreover, the O-C-C-N structural motif could be found in complex natural products like penicillin, quinine, seretide and Cortisatin A (Figure 1.2), and used as intermediates for the synthesis of drugs and natural nitrogen containing heterocycles, as in the case of the total synthesis of Dragmacidin F developed by the Stoltz's group in 2004. ${ }^{[11]}$

Penicillin

Quinine

(Salmeterol)

Cortisatin A

Figure 1.2 - Biologically active molecules which could be related to α-amino ketone precursors.

1.2 Synthesis of amino ketones

In light of their importance in medicinal and synthetic organic chemistry, the development of robust and general methods for the preparation of this class of substrate is fundamental, especially for what concerns asymmetric approaches. However, it is mandatory to take in consideration the stability and shortcomings in the synthesis of α-aminoketones. For example, during the preparation of such derivatives it is common to observe inter- and intra-molecular self-condensation reactions with unprotected nitrogen and the carbonyl moiety. In fact, selfcondensation of α-aminoketones to form substituted pyrazine is one of the oldest reactions still in use in the chemistry of heterocyclic compounds (StaedelRugheimer, Gutknecht or Gastaldi pyrazine synthesis). ${ }^{[12]}$ In addition, the nature
of the nitrogen protecting group play often a significant influence on the reactivity of the carbonyl moiety and the relatively high acidity of the proton in a position make these derivatives prone to be epimerized.

Scheme 1.1 - General synthetic routes to α-amino ketones.

Scheme 1.1 reports the main methodologies developed for the synthesis of α-amino ketones. One of the most classical methods starts from α-halo ketones which can be easily transformed to the corresponding α-amino derivatives by means of a nucleophilic substitution or metal-mediated couplings. α-Halo ketone derivatives can be obtained by insertion of a bromine in the α position of a ketone moiety using bromine or N -bromosuccinimide (NBS) with and without radical initiator, ${ }^{[13]}$ through hydroxybromination-oxidation of the corresponding alkene ${ }^{[14]}$ or by hydration of suitable halo alkynes ${ }^{[15]}$. In addition, some elegant direct α amination of ketones have been recently reported by MacMillan et al, ${ }^{[16]}$ via Cu catalysis, and Guo et al, ${ }^{[17]}$ using ammonium iodide as catalyst and percarbonate as a co-oxidant (Scheme 1.2).

Scheme 1.2 - Metal-free direct α-amination of ketones.

Both of these examples involve the formation of a transient α-halo ketone as the reactive intermediate but, unfortunately, the use of α-halo ketones as starting materials presents some disadvantages when certain combination of ketone and amine are required by the synthetic protocol.

In literature are reported a number of asymmetric approaches involving α halo ketones. Starting from enantiomerically enriched α-halo ketones, the synthesis of the corresponding amino ketone can be achieved by displacing the halogen atom with an amine. In this case the nucleophilic substitution occurs via $\mathrm{S}_{\mathrm{N}} 2$ mechanism with complete inversion of stereochemistry. This stereospecific approach was described for the preparation of chiral quaternary stereocenter starting from α-keto esters. ${ }^{[18]}$ Recently Géant et al described the synthesis of chiral 1,2-aminoalcohol containing heterocycles starting from α-bromo- α 'sulfinylketones. In this work, the stereochemical information of the sulfoxide moiety control the chirality of the formed stereocenter during the nucleophilic substitution of bromine with dibenzylamine. The chiral sulfoxide moiety can be easily removed by cleavage of the C-S bond after the 1,4-stereoinduction in order to obtain the corresponding enantiopure α-amino ketone (Scheme 1.3). ${ }^{[19]}$

Scheme 1.3 - Asymmetric synthesis of α-aminoketones starting from chiral α -bromo- α '-sulfinylketones.

Enantioselective synthesis of α-azido ketones has been reported starting from ketones in four synthetic steps (Scheme 1.4). This approach is based on the synthesis of diastereomerically pure α-silyl- α '-iodo ketones and the subsequent nucleophilic substitution of the halogen with an azide. A fluoride-mediated
cleavage of the silicon-carbon bond lead to the α-azido ketone without racemisation. ${ }^{[20]}$ Reduction of the azide functionality lead to the desired α aminoketone.

SAMP/RAMP hydrazone method

Scheme 1.4 - Synthesis of enantiopure α-azido ketones starting from simple ketones.

Reductive amination of ketones is a common method extensively described in literature for the formation of C-N bond. ${ }^{[21]}$ As an expansion of this methodology, α-amino ketones can be synthetized from 1,2-diketones through a selective reductive amination of only one of the two carbonyl functions (Scheme 1.5).

Scheme 1.5-Reductive amination of ketones and 1,2-diketones.

However, such approach present some disadvantages that are strictly related to the substitution pattern of the starting material. In fact, this type of reaction with non-symmetric diketones typically lead to a mixture of regioisomers. The achieved regioselection is substrate specific and is difficult to predict and control.

Natural α-amino acids and derivatives are perfect starting substrates in the synthesis of α-amino ketones and aldehydes. ${ }^{[22]}$ As a common rule, this methodology requires the protection of the amine function and the transformation of the carboxylic acid function before the ketonization process.

Another general method for the preparation of optically pure α-amino ketones from α-amino acids is the addition of Grignard or organolithium reagents to N -protected amino acid. In this approach, the nature of the protecting group plays a very important role in the preservation of the optical purity of the starting material. ${ }^{[23]}$

Scheme 1.6 - Mechanistic steps of RLi addition to N-protected amino acids.

The good outcome of this procedure depends on the stabilizing effect of both the nitrogen protecting group and the nature of the metallic species of the anionic intermediate. In fact, the formation of a stable transient trianion (Scheme 1.6) prevents the racemisation and/or the over-reaction of the reaction product.

Klix et al. developed a multigram-scale methodology based on these findings. ${ }^{[24]}$ This procedure involve the generation of the carboxylate derivative using lithium hydride followed by the addition of a Grignard reagent to afford the corresponding ketone. Another very similar multigram-scale has been developed by Florjancic et al. starting from N-Boc protected α-amino acids to prepare the hydrochloride salt of the corresponding N-unprotected α-amino ketone. ${ }^{[25]}$

Some approaches require derivatization of the carboxylic function before the ketonization reaction and the corresponding esters are probably one of the most used acid derivatives in this regard. For example, N-Pf (9-phenyl-9-fluorenyl) protected amino acid in their oxazolidinone forms has been reported to be excellent substrates for organolithium reagent addition (Scheme 1.7), in which the Pf protecting group is able to act as a ligand for the Li+ by a cation-m interaction thus stabilising the intermediate. ${ }^{[26]}$

Scheme 1.7-Synthesis of α-aminoketones from N-Pf protected amino acids

More recently, De Luca et al. reported another procedure starting from N-protected α-amino acids in the presence of 2-chloro-4,6-dimethoxy[1,3,5]triazine (CDMT), N-methylmorpholine (NMM), Grignard reagent and stoichiometric amount of copper iodide. In this two-step approach, the α-amino ketone is formed by reaction of the α-amino acid with the triazine derivative and followed by the addition of the Grignard reagent catalysed by copper (I) iodine (Scheme 1.8). ${ }^{[27]}$

Scheme 1.8 - Two-step synthesis of enantiopure α-amino ketones.
α-Amino acids ester derivatives are substrate of choice also for the synthesis of more functionalised α-amino ketones such as α-amino- α '-chloro ketones through the formation and subsequent acidolysis of the corresponding α^{\prime}-diazo ketones or by direct functionalization of amino ketones via an in situ generated chloromethyllithium. ${ }^{[28]}$ With the same logic, α-amino- β-ketophosphonates can be obtained by the addition of lithium dimethyl methylphosphonate, ${ }^{[29]}$ while, the addition of p-tolyl sulfoxides ${ }^{[30]}$ or acetonitrile ${ }^{[31]}$ led to the corresponding α-amino-β-ketosulfoxides and α-amino keto nitriles respectively (Scheme 1.9).

Scheme 1.9-Synthesis of α-amino ketone derivatives from α-amino esters.

Also α-amino amides and α-amino chlorides have been used as starting material for the synthesis of α-amino ketone. In this context, Weinreb amides are the most widely used amides because they react with nucleophiles (Grignard reagents, organolithium, LiAlH_{4} or other metal-hydride complexes) with little or no overaddition (Scheme 1.10). ${ }^{[32]}$

Scheme 1.10 - Synthesis of enantiopure α-amino ketones via grignard addition to
Weinreb amides.
On the other hand, α-amino chlorides have been used as starting material for synthesizing enantiopure α-amino ketones mostly via Friedel-Craft acylation reaction. ${ }^{[23 a, ~ 33]}$

The use of natural amino acids limits the scope of this approach as a consequence of the restricted library of such compound concerning both the substituent pattern and stereochemistry. Therefore, the access to α-amino ketones bearing different substituents or complementary stereochemical information require the ad hoc synthesis of the starting material. In these cases, the methodology is often not convenient due to the long and complex procedure for achieving enantiopure unnatural amino acids.

Oxime sulfonates can be converted into α-aminoketones using the Neber rearrangement. ${ }^{[34]}$ Discovered in 1926, this rearrangement can be utilised for the synthesis of a wide range of α-aminoketones through the intermediate formation of an azirine ring which is converted to the desired product by hydrolysis (Scheme 1.11).

Scheme 1.11 - Neber rearrangement of oxime sulfonates.

However, only few examples of asymmetric Neber rearrangement have been reported in literature using chiral auxiliaries, ${ }^{[35]}$ cinchona alkaloids ${ }^{[36]}$ and phase-transfer catalysts. ${ }^{[37]}$

Scheme 1.12 - Asymmetric Neber rearrangement using a C_{2}-symmetric phase transfer catalyst.

Interestingly, the use C_{2}-symmetric chiral quaternary ammonium bromide as asymmetric phase-transfer catalyst provided important experimental evidences for understanding the mechanism of this transformation (Scheme 1.12). Nevertheless, with this approach it is not possible to access N-substituted α-amino ketones and this shortcoming represents a serious limitation of the methodology.
α-Amino ketones can be prepared starting from epoxides through their aminolysis (Scheme 1.13). In this regard, Stevens et al. reported the reaction of
phenyl epoxy esters with secondary amines at high temperature, succeeding to prepare a library of phenyl amino ketones in high yields. ${ }^{[38]}$ In this area, Satoh et $a l$. reported the synthesis of α-amino ketones starting from easily accessible $\alpha, \beta-$ epoxy sulfoxides. Both of these strategies cannot be considered general methodologies for achieving such compounds due to the limited substrate scope and the lack of an asymmetric version.

Scheme 1.13 - Aminolysis of electron poor substituted epoxide derivatives.

Among the numerous methods that have been developed, electrophilic α amination of carbonyl compounds is the most widely applied enantioselective technology (Scheme 1.14). ${ }^{[39]}$ The electrophilic aminating agent is a synthetic equivalent of the " $R_{2} N^{+}$" synthon that can react with a carbanion (such as an organometallic species or enolates) or a C-H-activated aromatic derivatives.

Scheme 1.14 - Electrophilic amination of ketones.

Chloramine, O-protected hydroxylamines, sulfonamides and azodicarboxylates are some examples of very commonly used electrophilic
nitrogen source in this type of reaction. In this context, several synthetic strategies have been reported for the generation of C-N bonds.

Organometallic species (Grignard reagents, organozinc, zirconium derivatives, etc...) have been successfully employed in such cross-coupling reactions using both transition metal catalysts ($\mathrm{Pd}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Co}$) and metal-free approaches. Despite the extensive studies accomplished in this field, organoboron derivatives remain the most popular coupling reagents due to their generally high yields and selectivity, mild reaction conditions and substrate scope. ${ }^{[40]}$

C-H activation has been principally studied focusing on the formation of C-C connectivities, but also the generation of C-N bonds has been explored. ${ }^{[4]]}$ In fact, this approach has two main advantages: substrates for this type of reaction are typically more readily available than the corresponding halide and a stoichiometric amount of organometallic derivative is no longer required. In this regard, rhodium is the most commonly used metal for activating the C-H bond and its ability has been deeply studied. A large number of aminated products has been successfully prepared using rhodium-based complexes as catalysts, but palladium, ruthenium and copper catalysed amination have also been reported. ${ }^{[42]}$ Of particular interest is the electrophilic amination of enolates due to the fact that the reaction product can be easily transformed into unnatural α-amino carbonyl derivatives. ${ }^{[43]}$

The amination of carbonyl compounds has been extensively studied particulary using azodicarboxylate as aminating agent. This reagent lead to α hydrazine derivatives which are easily converted to the corresponding amine through deprotection-hydrogenation. This strategy has been also studied in its asymmetric version using enantiopure aminating agents, chiral catalysts and chiral auxiliary such as oxazolidinones. ${ }^{[44]}$

One of the first asymmetric examples has been described by Evans and coworkers using a chiral magnesium complex, ${ }^{[45]}$ but several enantioselective catalytic variants has been developed and successfully explored. In this context, the organocatalysed process which involves the use of proline and azodicarboxylates represented the first example of an α-amination reaction that
required a non-toxic, inexpensive catalyst which is commercially available in both enantiomeric forms (Scheme 1.15). ${ }^{[46]}$

Scheme 1.15 - Proline-catalysed α-amination of aldehydes.

As a result, the use of other organocatalysts extended the methodology to the preparation of a wide variety of α-amino aldehydes and ketones. However, since these synthetic protocols typically demand a high catalyst loading, many efforts are reported in literature to find recoverable or more efficient catalysts.

Scheme 1.16 - Organocatalytic α-amination of aldehyde by means of a catalytic resinsupported peptide.

Recently, a resin-supported peptide has been employed by Kudo and Tanaka for the asymmetric organocatalysed α-amination of aldehydes (Scheme 1.16). ${ }^{[47]}$ The reported catalytic method allowed the preparation of α-amino alcohols in high yields and enantioselectivity. Moreover, the catalyst could be reused up to 10 times without loss of catalytic activity.

Another important advance in this area has been accomplished by Kim and Lim. ${ }^{[48]}$ In this work, aromatic ketones has been aminated by using a combination of a BINOL-derived organocatalyst and triflic acid in a low catalyst loading (respectively 2.5\% and 5\%) affording the corresponding products in good yield and enantioselectivity (Scheme 1.17).

Scheme 1.17 - Organocatalytic enantioselective α-amination of aromatic ketones.

Toste research group very recently reported the synthesis of almost enantiopure α-amino- α-alkyl and α-amino- α-aryl cyclic ketones from α-substituted ketones and azodicarboxylate by means of chiral phosphoric acid catalysis (Scheme 1.18).[49] This procedure represents an elegant and straightforward method for the preparation of such derivatives and showed excellent results in terms of yields and enantioselectivity, other than a wide substrate scope regarding the ketone moiety.

Scheme 1.18 - Synthesis of optically active quaternary α-amino ketones catalysed by phosphoric acid.

Besides that, the majority of this type of chemistry is applied on very reactive carbonyl intermediates such as 1,3-dicarbonyls and α-cyanoacetates. ${ }^{[43 a, ~ 50] ~ L e s s ~}$ reactive carbonyl compounds has been used in enamine catalysis ${ }^{[46,51]}$ or activated by their conversion to the corresponding silyl enol ethers, ${ }^{[52]}$ metal enolates ${ }^{[53]}$ and enamides. ${ }^{[54]}$

In addition, this particular synthetic approach represents one of the few examples in which a quaternary stereocenter linked to a nitrogen atom is
generated by means of enantioselective α-amination. Among others, both the works reported by Yamamoto ${ }^{[53 b]}$ et al and Terada ${ }^{[55]}$ et al are particularly relevant in this field of research (Scheme 1.19). In the first example, a tin enolate has been aminated with nitrosobenzene via silver catalysis affording the optically active α disubstituted derivative in excellent yield and good enantioselectivity. In the second example, Terada and co-workers reported the use of chiral organosuperbase as catalyst for the α-amination of cyclic aromatic ketones with excellent enantioselection.
a)

only example
94\% yield, 77% e.e.
b)

up to 98% e.e.
Scheme 1.19 - Synthesis of optically active quaternary α-aminoketones reported by Yamamoto (a) and Terada (b).

Nevertheless, despite the extensive use, electrophilic α-amination still has some limitations. In fact, the substrate scope has so far remained relatively narrow and, in particular, its application for the asymmetric α-amination of ketones has remained modest.

1.3α-AMINOCARBONYLS VIA ASYMMETRIC PROTONATION

Asymmetric protonation of a transient prochiral species generated in situ from a synthetic operation, in the absence of metal components, are of great value because structurally complex optically active compounds can be obtained with high catalytic efficiency, stereoselectivity and atom economy. The most of these methods are based on protonation of a transient enol or enolate equivalents
prepared through a nucleophilic addition to an α-substituted α, β-unsaturated carbonyl compound or to a ketene derivative, and surprising results have been obtained. In contrast, only a few examples based on process involving intramolecular rearrangement have been reported.

In 2007, Rueping et al. developed the first Brønsted acid-catalysed asymmetric tandem cyclization-protonation reaction (Nazarov cyclization), which provides a number of different cyclopentenones in good yields and with high enantioselectivities (67-78\% ee) (Scheme 1.20). The proposed mechanism of this transformation involves the formation of a transient enolate by a 4π electrocyclization followed by a chiral phosphoric acid diester-promoted kinetic protonation. In addition, it should be noted that this process employed a low catalyst loading of only $5 \mathrm{~mol} \% .{ }^{[56]}$

Scheme 1.20 - Enantioselective Nazarov cyclization tandem sequence.
In a later report, the same research group showed that acyclic ether derivatives could also be used in organocatalyzed Nazarov cyclizations. This finding resulted in an operationally attractive method for the synthesis of simple cyclopentenone derivatives without any fused tetrahydropyrane ring. ${ }^{[57]}$

In 2009, Bolm et al. developed the enantioselective protonation of a transient enediol prepared by an intramolecular Cannizzaro-type rearrangement of hydrated arylglyoxal yielding optically active mandelic acid methyl ester derivatives with up to 83% ee (Scheme 1.21). ${ }^{[58]}$

Scheme 1.21 - Cannizzaro-type rearrangement/protonation tandem sequence.

This novel process was catalyzed by a cinchona alkaloid dimer in combination with an achiral thiol. The catalyst could be easily recovered and reused without significant loss of chemical yield or enantioselectivity.

Nakamura and Hayashi reported a highly enantioselective protonation of ester enolates prepared via phospha-Brook rearrangement (Scheme 1.22). In this work, 3.0 equivalent of diphenyl phosphite reacted with an ethyl phenylglyoxalate in the presence of cinchona alkaloids catalyst and a stoichiometric amounts of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to afford a transient phosphonyloxy enolate followed by an enantioselective protonation. A series of optically active phosphoric esters having secondary alcohols were achieved with good yield and excellent enantioselectivities using commercially available cinchona alkaloids. ${ }^{[59]}$

Scheme 1.22 - Phospha-Brook/Enantioselective protonation tandem sequence.

In this context, Frongia's research group investigated the enantioselective organocatalytic rearrangement of α-acyloxy- β-ketosulfides to α-acyloxy thioesters derivatives which involves the generation of a transient enolate though a proton abstraction from a terminal carbon by means of cinchona alkaloids, followed by an in situ enantioselective protonation (Scheme 1.23). [60]

Scheme 1.23 - Organocatalyzed enantioselective rearrangement of α-acyloxy- β-ketosulphides to α-acyloxy-thioesters.

Remarkably, high levels of yields and good to high enantioselectivities were observed for the products arising from the reaction of a range of α-acyloxy- β ketosulfides. It is noteworthy that the Pummerer reaction of β-ketosulfoxides, followed by acyl migration is one of the most useful methods for the preparation of α-acyloxy thioesters which can be easily transformed into sulfur-free biologically active products, such as α-hydroxy acids, amides, esters without racemization.

Then, as a logical extension of the work, they have also demonstrated that the same concept could be applied to the preparation of the corresponding chiral a-amino thioester derivatives in good yield and with moderate enantioselectivities. ${ }^{[61]}$ The method was based on an unprecedented and conceptually novel chiral Brønsted base/Brønsted acid catalyzed tandem condensation-intramolecular rearrangement-protonation. Although the degree of enantioselectivity observed for this reaction was moderate, these preliminary results formed the basis for further developments (Scheme 1.24).

Scheme 1.24 - Organocatalyzed enantioselective rearrangement of α-acyloxy- β -keto-sulphides to α-acylamino-thioesters.

As a matter of fact, in the same context, very recently they have reported the first attempts towards a catalytic and enantioselective Amadori-Heyns type rearrangement and its application for the synthesis of optically active α-amino ketones. The Amadori-Heyns rearrangements, better known in carbohydrate and food chemistry, allows for simple and selective introduction of an amine onto C-1 of an α-hydroxy carbonyl moiety and does not require any protecting group manipulation. ${ }^{[62]}$

A mechanism involving a tandem condensation-intramolecular rearrangement-proton transfer reaction catalysed by cinchona alkaloids has been proposed. The products have been isolated in good to high yields and up to 81\% ee (Scheme 1.25). ${ }^{[63]}$

The studied methodology complements among the others, the alternatives recently reported based on the enantioselective "electrophilic α-amination" of carbonyl compounds;[44i, 50b, 64] and result as another example of the more appreciate potential of cinchona scaffolds to induce stereocontrol in organocatalytic reactions. Most notably, the scope of the reaction could be extended to the first catalytic enantioselective synthesis of α-amino cyclobutanones from the readily available α-hydroxy cyclobutanone and N -alkyl-
anilines. ${ }^{[65]}$ Moderate to high enantioselectivities (up to 81% ee) were obtained with a series of N -methylanilines with different substitution patterns.

Scheme 1.25 - Enantioselective condensation/protonation tandem sequence for the synthesis of α-aminoketones.

Scheme 1.26 - Enantioselective condensation/protonation tandem sequence for the synthesis of α-arylalkylamino cyclobutanones.

In this case, the reaction could be rationalized by assuming the mechanism shown in Scheme 1.26. The biscinchona alkaloid catalyses the generation of an 1,2-enaminol from the α-hydroxy cyclobutanone and an N-alkyl-aniline followed
by an in situ enantioselective enol-keto tautomerisation. Water-mediated proton transfer provides the product and releases the catalyst back into the cycle. It is noteworthy that simple optically active α-amino cyclobutanones are more difficult to access by direct electrophilic α-amination. ${ }^{[66]}$

Furthermore, synthetic methods which rely on the use of cyclobutane based structural moiety are of considerable value, because these compounds are key scaffolds of a large number of natural products and versatile building blocks in organic synthesis owing to their inherent ring strain. ${ }^{[67]}$

References

[1] S. Baktharaman, R. Hili, A. K. Yudin, Aldrichimica Acta 2008, 41, 109119.
[2] D. Shemin, Harvey Lectures 1956, 50, 258-284.
[3] E. J. H. Bechara, F. Dutra, V. E. S. Cardoso, A. Sartori, K. P. K. Olympio, C. A. A. Penatti, A. Adhikari, N. A. Assunção, Comparative Biochemistry and Physiology - C Toxicology and Pharmacology 2007, 146, 88-110.
[4] V. Sharma, G. T. Kelly, J. Foulke-Abel, C. M. H. Watanabe, Organic Letters 2009, 11, 4006-4009.
[5] L.-Z. Lin, G. A. Cordell, C.-Z. Ni, J. Clardy, Phytochemistry 1991, 30, 1311-1315.
[6] R. Brenneisen, H. U. Fisch, U. Koelbing, S. Geisshusler, P. Kalix, British Journal of Clinical Pharmacology 1990, 30, 825-828.
[7] A. T. Nchinda, K. Chibale, P. Redelinghuys, E. D. Sturrock, Bioorganic \& Medicinal Chemistry Letters 2006, 16, 4612-4615.
[8] C. Jamora, M. Iravani, American Journal of Therapeutics 2010, 17, 511515.
[9] M. C. Myers, Wang, J. A. Iera, J.-k. Bang, T. Hara, S. i. Saito, G. P. Zambetti, D. H. Appella, Journal of the American Chemical Society 2005, 127, 6152-6153.
[10] S. M. Aarde, P. K. Huang, K. M. Creehan, T. J. Dickerson, M. A. Taffe, Neuropharmacology 2013, 71, 130-140.
[11] N. K. Garg, D. D. Caspi, B. M. Stoltz, Journal of the American Chemical Society 2004, 126, 9552-9553.
[12] T. Chiba, H. Sakagami, M. Murata, M. Okimoto, The Journal of Organic Chemistry 1995, 60, 6764-6770.
[13] aS. S. Arbuj, S. B. Waghmode, A. V. Ramaswamy, Tetrahedron Letters 2007, 48, 1411-1415; bK. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi, T. Horaguchi, Chemical Communications 2004, 470471.
[14] Q. Jiang, W. Sheng, C. Guo, Green Chemistry 2013, 15, 2175-2179.
[15] L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang, W. He, The Journal of Organic Chemistry 2013, 78, 9190-9195.
[16] R. W. Evans, J. R. Zbieg, S. Zhu, W. Li, D. W. C. MacMillan, Journal of the American Chemical Society 2013, 135, 16074-16077.
[17] Q. Jiang, B. Xu, A. Zhao, J. Jia, T. Liu, C. Guo, The Journal of Organic Chemistry 2014, 79, 8750-8756.
[18] K. Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S. Iwasa, Journal of the American Chemical Society 2012, 134, 9836-9839.
[19] P.-Y. Géant, E. Grenet, J. Martínez, X. J. Salom-Roig, Tetrahedron: Asymmetry 2016, 27, 22-30.
[20] D. Enders, D. Klein, Synlett 1999, 6, 719-720.
[21] a) A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff, R. D. Shah, The Journal of Organic Chemistry 1996, 61, 3849-3862; b) S. Kobayashi, H. Ishitani, Chemical Reviews 1999, 99, 1069-1094; c) S. Gomez, J. A. Peters, T. Maschmeyer, Advanced Synthesis and Catalysis 2002, 344, 1037-1058; d) R. I. Storer, D. E. Carrera, Y. Ni, D. W. MacMillan, Journal of the American Chemical Society 2006, 128, 84-86; e) L. Rubio-Pérez, F. J. Pérez-Flores, P. Sharma, L. Velasco, A. Cabrera, Organic letters 2009, 11, 265-268; f) T. C. Nugent, M. El-Shazly, Advanced Synthesis \& Catalysis 2010, 352, 753-819; g) W. Wen, Y. Zeng, L.-Y. Peng, L.-N. Fu, Q.-X. Guo, Organic letters 2015, 17, 39223925.
[22] a) J. M. Concellón, H. Rodríguez-Solla, Current Organic Chemistry 2008, 12, 524-543; bM. T. Reetz, Chemical Reviews 1999, 99, 1121-1162.
[23] avT. F. Buckley, H. Rapoport, Journal of the American Chemical Society 1981, 103, 6157-6163; b) C. G. Knudsen, H. Rapoport, Journal of Organic Chemistry 1983, 48, 2260-2266.
[24] R. C. Klix, S. A. Chamberlin, A. V. Bhatia, D. A. Davis, T. K. Hayes, F. G. Rojas, R. W. Koops, Tetrahedron Letters 1995, 36, 1791-1794.
[25] A. S. Florjancic, G. S. Sheppard, Synthesis 2003, 2003, 1653-1656.
[26] a) M. R. Paleo, F. J. Sardina, Tetrahedron Letters 1996, 37, 3403-3406; b) M. R. Paleo, M. I. Calaza, F. J. Sardina, Journal of Organic Chemistry 1997, 62, 6862-6869.
[27] L. De Luca, G. Giacomelli, A. Porcheddu, Organic Letters 2001, 3, 15191521.
[28] a) T. Ye, M. A. McKervey, Chemical Reviews 1994, 94, 1091-1160; bvT. Ye, M. A. McKervey, Tetrahedron 1992, 48, 8007-8022; c) A. Albeck, R. Persky, Tetrahedron 1994, 50, 6333-6346; d) S. Sengupta, D. S. Sarma, D. Das, Tetrahedron Asymmetry 1999, 10, 1653-1659; e) J. Barluenga, B. BaraganA, A. Alonso, J. M. Concellon, Journal of the Chemical Society, Chemical Communications 1994, 969-970; f) J. Barluenga, B. Baragana, J. M. Concellon, The Journal of Organic Chemistry 1995, 60, 6696-6699. a) S.-K. Chung, D.-H. Kang, Tetrahedron: Asymmetry 1997, 8, 30273030; b) L. F. Captain, X. Xia, D. C. Liotta, Tetrahedron Letters 1996, 37, 4293-4296.
[30] a) F. Yuste, B. Ortiz, A. Carrasco, M. Peralta, L. Quintero, R. SánchezObregón, F. Walls, J. L. García Ruano *, Tetrahedron: Asymmetry 2000, 11, 3079-3090; b) F. Yuste, A. Díaz, B. n. Ortiz, R. Sánchez-Obregón, F. Walls, J. L. G. a. Ruano, Tetrahedron: Asymmetry 2003, 14, 549-554.
[31] a) A. R. Haight, T. L. Stuk, J. A. Menzia, T. A. Robbins, Tetrahedron Letters 1997, 38, 4191-4194; b) T. L. Stuk, A. R. Haight, D. Scarpetti, M. S. Allen, J. A. Menzia, T. A. Robbins, S. I. Parekh, D. C. Langridge, J.-H. J. Tien, The Journal of Organic Chemistry 1994, 59, 4040-4041.
[32] a) S. Nahm, S. M. Weinreb, Tetrahedron Letters 1981, 22, 3815-3818; b) Z. H. Zhou, Y. L. Tang, K. Y. Li, B. Liu, C. C. Tang, Heteroatom Chemistry 2003, 14, 603-606; c) A. Gomtsyan, R. J. Koenig, C. H. Lee, Journal of Organic Chemistry 2001, 66, 3613-3616; d) J. Liu, N. Ikemoto, D. Petrillo, J. D. Armstrong lii, Tetrahedron Letters 2002, 43, 8223-8226; e) M. T. Reetz, M. W. Drewes, K. Lennick, A. Schmitz, X. Holdgrün, Tetrahedron: Asymmetry 1990, 1, 375-378; f) R. H. Boutin, H. Rapoport, Journal of Organic Chemistry 1986, 51, 5320-5327.
[33] D. E. McClure, B. H. Arison, J. H. Jones, J. J. Baldwin, Journal of Organic Chemistry 1981, 46, 2431-2433.
[34] R. F. Parcell, J. P. Sanchez, The Journal of Organic Chemistry 1981, 46, 5229-5231.
[35] I. P. Piskunova, A. V. Eremeev, A. F. Mishnev, I. A. Vosekalna, Tetrahedron 1993, 49, 4671-4676.
[36] a) M. M. H. Verstappen, G. J. A. Ariaans, B. Zwanenburg, Journal of the American Chemical Society 1996, 118, 8491-8492; b) F. Palacios, A. M. Ochoa de Retana, J. I. Gil, J. M. Ezpeleta, The Journal of Organic Chemistry 2000, 65, 3213-3217; c) F. Palacios, A. M. Ochoa de Retana, J. I. Gil, Tetrahedron Letters 2000, 41, 5363-5366.
[37] T. Ooi, M. Takahashi, K. Doda, K. Maruoka, Journal of the American Chemical Society 2002, 124, 7640-7641.
[38] a) C. L. Stevens, C. H. Chang, The Journal of Organic Chemistry 1962, 27, 4392-4396; b) C. L. Stevens, R. D. Elliott, B. L. Winch, Journal of the American Chemical Society 1963, 85, 1464-1470; c) C. L. Stevens, M. E. Munk, C. H. Chang, K. G. Taylor, A. L. Schy, The Journal of Organic Chemistry 1964, 29, 3146-3151.
[39] a) C. Greck, J. P. Genêt, Synlett 1997, 1997, 741-748; b) P. Dembech, G. Seconi, A. Ricci, Chemistry - A European Journal 2000, 6, 1281-1286; c) M. Corpet, C. Gosmini, Synthesis 2014, 46, 2258-2271; d) E. Ciganek, in Organic Reaction, John Wiley \& Sons, Inc., 2009, pp. 1-366.
[40] a) H. C. Brown, W. R. Heydkamp, E. Breuer, W. S. Murphy, Journal of the American Chemical Society 1964, 86, 3565-3566; b) M. V. Rangaishenvi, B. Singaram, H. C. Brown, The Journal of Organic Chemistry 1991, 56, 3286-3294; c) N. Matsuda, K. Hirano, T. Satoh, M. Miura, Angewandte Chemie 2012, 124, 3702-3705; d) R. P. Rucker, A. M. Whittaker, H. Dang, G. Lalic, Angewandte Chemie International Edition 2012, 51, 3953-3956; e) C. Zhu, G. Li, D. H. Ess, J. R. Falck, L. Kürti, Journal of the American Chemical Society 2012, 134, 18253-18256; f) S. V. Pronin, M. G. Tabor, D. J. Jansen, R. A. Shenvi, Journal of the American Chemical Society 2012, 134, 2012-2015.
[41] a) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angewandte Chemie International Edition 2012, 51, 10236-10254; b) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angewandte Chemie International Edition 2012, 51, 8960-9009; c) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chemical Society Reviews 2011, 40, 4740-4761; d) J. Du Bois, Organic Process Research \& Development 2011, 15, 758-762; e) B. J. Stokes, T.
G. Driver, European Journal of Organic Chemistry 2011, 2011, 40714088; f) F. Collet, R. H. Dodd, P. Dauban, Chemical Communications 2009, 5061-5074; g) M. Zhang, A. Zhang, Synthesis 2012, 44, 1-14.
[42] a) T. Kawano, K. Hirano, T. Satoh, M. Miura, Journal of the American Chemical Society 2010, 132, 6900-6901; b) N. Guimond, C. Gouliaras, K. Fagnou, Journal of the American Chemical Society 2010, 132, 69086909; c) M. Wasa, J.-Q. Yu, Journal of the American Chemical Society 2008, 130, 14058-14059; d) Y. Tan, J. F. Hartwig, Journal of the American Chemical Society 2010, 132, 3676-3677.
[43] a) A. M. R. Smith, K. K. Hii, Chemical Reviews 2011, 111, 1637-1656; b) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chemical Reviews 2007, 107, 5471-5569.
[44] a) M. A. Brimble, C. H. Heathcock, The Journal of Organic Chemistry 1993, 58, 5261-5263; b) D. A. Evans, T. C. Britton, R. L. Dorow, J. F. Dellaria, Tetrahedron 1988, 44, 5525-5540; c) W. Oppolzer, R. Moretti, Helvetica Chimica Acta 1986, 69, 1923-1926; d) M. Marigo, K. Juhl, K. A. Jørgensen, Angewandte Chemie 2003, 115, 1405-1407; e) A. Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A. Jørgensen, Angewandte Chemie 2002, 114, 1868-1871; f) H. Mitchell, Y. Leblanc, The Journal of Organic Chemistry 1994, 59, 682-687; g) R. O. Duthaler, Angewandte Chemie International Edition 2003, 42, 975-978; h) C. Thomassigny, D. Prim, C. Greck, Tetrahedron Letters 2006, 47, 1117-1119; i) C. Greck, B. Drouillat, C. Thomassigny, European Journal of Organic Chemistry 2004, 2004, 1377-1385.
[45] D. A. Evans, S. G. Nelson, Journal of the American Chemical Society 1997, 119, 6452-6453.
[46] B. List, Journal of the American Chemical Society 2002, 124, 5656-5657.
[47] T. Tanaka, K. Akagawa, M. Mitsuda, K. Kudo, Advanced Synthesis \& Catalysis 2013, 355, 294-296.
[48] Y. J. Lim, D. Y. Kim, Bulletin of the Korean Chemical Society 2013, 34, 1955-1956.
[49] X. Yang, F. D. Toste, Journal of the American Chemical Society 2015, 137, 3205-3208.
[50] a) A. Vallribera, R. Maria Sebastian, A. Shafir, Current Organic Chemistry 2011, 15, 1539-1577; b) T. Vilaivan, W. Bhanthumnavin, Molecules 2010, 15, 917-958; c) F. Zhou, F.-M. Liao, J.-S. Yu, J. Zhou, Synthesis 2014, 46, 2983-3003; d) C. Xu, L. Zhang, S. Luo, Angewandte Chemie International Edition 2014, 53, 4149-4153; e) T. Zhang, L. Cheng, L. Liu, D. Wang, Y.-J. Chen, Tetrahedron: Asymmetry 2010, 21, 2800-2806; f) M. Terada, K. Amagai, K. Ando, E. Kwon, H. Ube, Chemistry-A European Journal 2011, 17, 9037-9041; g) F. Zhou, M. Ding, Y. L. Liu, C. H. Wang, C. B. Ji, Y. Y. Zhang, J. Zhou, Advanced Synthesis \& Catalysis 2011, 353, 2945-2952; h) Z. Yang, Z. Wang, S. Bai, X. Liu, L. Lin, X. Feng, Organic letters 2011, 13, 596-599; i) H. Nelson, J. Patel, H. Shunatona, F. Toste, Chemical Science 2015, 6, 170-173.
[51] a) A. Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A. Jørgensen, Angewandte Chemie International Edition 2002, 41, 17901793; b) H. Vogt, S. Vanderheiden, S. Bräse, Chemical Communications 2003, 2448-2449; c) T. Baumann, H. Vogt, S. Bräse, European journal of organic chemistry 2007, 2007, 266-282; d) A. Desmarchelier, H. Yalgin,
V. Coeffard, X. Moreau, C. Greck, Tetrahedron Letters 2011, 52, 44304432; e) A. Theodorou, G. N. Papadopoulos, C. G. Kokotos, Tetrahedron 2013, 69, 5438-5443; f) J.-Y. Fu, Q.-C. Yang, Q.-L. Wang, J.-N. Ming, F.Y. Wang, X.-Y. Xu, L.-X. Wang, The Journal of organic chemistry 2011, 76, 4661-4664; g) N. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig, K. A. Jørgensen, Journal of the American Chemical Society 2002, 124, 6254-6255; h) T.-Y. Liu, H.-L. Cui, Y. Zhang, K. Jiang, W. Du, Z.-Q. He, Y.-C. Chen, Organic letters 2007, 9, 3671-3674; i) Y. Hayashi, S. Aratake, Y. Imai, K. Hibino, Q. Y. Chen, J. Yamaguchi, T. Uchimaru, ChemistryAn Asian Journal 2008, 3, 225-232; j) W. Li, X. Liu, X. Hao, X. Hu, Y. Chu, W. Cao, S. Qin, C. Hu, L. Lin, X. Feng, Journal of the American Chemical Society 2011, 133, 15268-15271.
[52] a) D. A. Evans, D. S. Johnson, Organic letters 1999, 1, 595-598; b) Y. Yamashita, H. Ishitani, S. Kobayashi, Canadian Journal of Chemistry 2000, 78, 666-672; c) J.-L. Liang, X.-Q. Yu, C.-M. Che, Chemical Communications 2002, 124-125; d) P. Mizar, T. Wirth, Angewandte Chemie International Edition 2014, 53, 5993-5997.
[53] a) A. Yanagisawa, R. Miyake, K. Yoshida, Organic \& biomolecular chemistry 2014, 12, 1935-1941; b) N. Momiyama, H. Yamamoto, Journal of the American Chemical Society 2004, 126, 5360-5361.
[54] a) L. Chang, Y. Kuang, B. Qin, X. Zhou, X. Liu, L. Lin, X. Feng, Organic letters 2010, 12, 2214-2217; b) F. Drouet, C. Lalli, H. Liu, G. Masson, J. Zhu, Organic letters 2010, 13, 94-97.
[55] T. Takeda, M. Terada, Journal of the American Chemical Society 2013, 135, 15306-15309.
[56] M. Rueping, W. leawsuwan, A. P. Antonchick, B. J. Nachtsheim, Angewandte Chemie International Edition 2007, 46, 2097-2100.
[57] S. Raja, W. Ieawsuwan, V. Korotkov, M. Rueping, Chemistry - An Asian Journal 2012, 7, 2361-2366.
[58] E. Schmitt, I. Schiffers, C. Bolm, Tetrahedron Letters 2009, 50, 31853188.
[59] M. Hayashi, S. Nakamura, Angewandte Chemie International Edition 2011, 50, 2249-2252.
[60] aF. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Advanced Synthesis \& Catalysis 2010, 352, 2955-2960; bF. Capitta, N. Melis, F. Secci, G. Romanazzi, A. Frongia, Journal of Sulfur Chemistry 2014, 35, 649-660.
[61] F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Organic \& Biomolecular Chemistry 2012, 10, 490-494.
[62] a) T. M. Wrodnigg, B. Eder, in Glycoscience: Epimerisation, Isomerisation and Rearrangement Reactions of Carbohydrates (Ed.: A. E. Stütz), Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 115-152; b) L. A. Paquette, J. E. Hofferberth, in Organic Reactions, John Wiley \& Sons, Inc., 2004; c) T. M. Wrodnigg, C. Kartusch, C. Illaszewicz, Carbohydrate Research 2008, 343, 2057-2066.
[63] A. Frongia, F. Secci, F. Capitta, P. P. Piras, M. L. Sanna, Chemical Communications 2013, 49, 8812-8814.
[64] E. Erdik, Tetrahedron 2004, 60, 8747-8782.
[65] D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941-945.
[66] P. Kotrusz, S. Alemayehu, Š. Toma, H. G. Schmalz, A. Adler, European journal of organic chemistry 2005, 2005, 4904-4911.
[67] a) N.-Y. Fu, S.-H. Chan, H. N. C. Wong, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 357-440; b) E. Lee-Ruff, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 281355; c) J. Salaün, Georg Thieme Verlag, Stuttgart, 2004; d) F. Secci, A. Frongia, P. P. Piras, Molecules 2013, 18, 15541-15572; e) D. J. Aitken, A. M. Bernard, F. Capitta, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Organic \& biomolecular chemistry 2012, 10, 5045-5048; f) D. J. Aitken, F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2012, 23, 727-730; g) F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2011, 2011, 89-93; h) D. J. Aitken, F. Capitta, A. Frongia, D. Gori, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Synlett 2011, 2011, 712-716.

2 Research Project

This thesis is the outcome of the project "Synthesis and consecutive reactions of α-aminocyclobutane derivatives" which was part of the recent research program of our research group. We have previously dealt with the development of new intramolecular rearrangement/protonation reactions and synthetic methods based on transformation of strained organic compounds.

Figure 2.1 - Our previously described examples of condensation/enantioselective protonation tandem sequence strategy for the synthesis of α-hetero atom functionalised carbonyl compounds.

As a matter of fact, in 2010, our group reported an enantioselective organocatalytic rearrangement of α-acyloxy- β-ketosulfides to α-acyloxy thioesters. ${ }^{[1]}$ The broad lines of these rearrangements involve deprotonation of the
starting materials by a chiral Brønsted base, giving rise to transient enolates that subsequently undergo a tandem intramolecular acyl migration/enantio-selective protonation sequence to furnish the desired enantioenriched α-acyloxythioesters. After this work, we disclosed asymmetric tandem amine condensation/intramolecular acyl migration/protonation reaction sequences with the same α-acyloxy- β-ketosulfides and various primary amines. ${ }^{[2]}$ In addition, the same strategy has been applied in the synthesis of optically active α aminoketones starting from α-hydroxyketones by an unprecedented asymmetric Amadori-Heyns-like rearrangement using primary arylamines. ${ }^{[3]}$ Subsequently, we focused on α-hydroxycyclobutanone as a representative strained cyclic hydroxyketone using N-alkylanilines. ${ }^{[4]}$ It is important to point out that in all the examples previously reported the substrate scope seemed to be limited to weakly nucleophilic aromatic amines.

Scheme 2.1 - Planned reactions starting from racemic α-hydroxycyclobutanone.

Thus, as a continuation of our previous work, we decided to further develop these discoveries applying the methodology to the enantioselective synthesis of more challenging fully aliphatic α-amino cyclobutanones using benzylamines and amino acids. In addition, we then sought to demonstrate the potential of α-amino cyclobutanone derivatives as synthetic precursors of more complex molecules such as biologically important tryptamines exploring new post functionalization reactions.

19

22

17
Paternò-Büchi [2+2] photoaddition

15
$+$

16a

Scheme 2.2 - Synthesis of cyclic α-hydroxypentanones 19 and 22.

Then, as a further development of this methodology would involve the use of other challenging cyclic α-hydroxyketones in collaboration with the $\mathrm{CP}^{3} \mathrm{~A}$ research group at the Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) of Université Paris-Sud (France), under the supervision of Prof. David J. Aitken and Dr. Thomas Boddaert, we tried to develop a general approach to such derivatives
based on the Paternò-Buchi [2+2] cycloaddition between cyclic silyl enol ethers and aldehyde under UV irradiation.

References

[1] F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Advanced Synthesis \& Catalysis 2010, 352, 2955-2960.
[2] F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Organic \& Biomolecular Chemistry 2012, 10, 490-494.
[3] A. Frongia, F. Secci, F. Capitta, P. P. Piras, M. L. Sanna, Chemical Communications 2013, 49, 8812-8814.
[4] D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941-945.

3 SYNTHESIS OF α-BENZYLAMINO

CYCLOBUTANONES

Chiral α-aminocyclobutanes are useful intermediates in organic synthesis because of their inherent ring strain and reactivity. ${ }^{[1]}$ They have been used for the preparation of a large variety of chemically and biologically interesting synthetic compounds. ${ }^{[2]}$ In addition, the α-aminocyclobutane moiety is found in a number of natural product structures. ${ }^{[3]}$ It is the prevalence of α-aminocyclobutane derivatives that makes the search and design of efficient methods for their preparation of considerable interest. Despite this, only few methods exist that allow for their direct asymmetric synthesis. ${ }^{[4]}$

In this context, as mentioned in the introductory chapter, we developed a novel synthetic strategy for the asymmetric assembly of α-(arylamino)cyclobutanones. ${ }^{[5]}$ An important aspect of this approach was the unconventional manner in which the nitrogen-containing group is stereoselectively introduced to the carbocyclic ring, which is complementary to an alternative approach based on the asymmetric electrophilic α-amination of carbonyl compounds. ${ }^{[6]}$ This novel procedure was achieved by an unprecedented and conceptually new tandem condensation/intramolecular rearrangement/enantioselective proton transfer procedure, ${ }^{[7]}$ resulting in a useful route for the preparation of optically active α aminocyclobutanones that are beyond the reach of established amination strategies (Scheme 3.1).

Therefore, in order to further develop this approach we sought to apply the synthetic methodology to the enantioselective construction of fully aliphatic α (benzylamino)cyclobutanones. With regard to enantioselective control, benzylamines are challenging partners because of their high reactivity.

Scheme 3.1 - Key steps in the organocatalytic enantioselective tandem condensation/keto-enol tautomerization for the synthesis of optically active α-aminocyclobutanones.

In contrast with our previous work in which weakly nucleophilic anilines were employed, ${ }^{[5,7 m]}$ the enhanced nucleophilicity of the benzylamines makes the noncatalyzed (and thus racemic) reaction a competitive pathway. If this reaction is as fast as the catalysed one, the asymmetric induction will be compromised.

The reaction between α-hydroxycyclobutanone (1) and dibenzylamine (2a) under different conditions to give adduct 3a (Table 3.1) has been examined as a model. As we suspected, the higher nucleophilic character of benzylamines make the reaction proceed with moderate conversion also in absence of any catalytic species in 1,4-dioxane at room temperature for 3 h (Table 3.1, Entry 1). Under the same conditions, we carried out the reaction with (DHQD) ${ }_{2}$ PYR as the catalyst and we isolated the desired product 3 a in 81% yield with encouraging enantioselectivity (71:29 e.r.; Table 3.1, Entry 2). Moreover, employing the pseudoenantiomeric catalyst (DHQ) ${ }_{2}$ PYR, the enantiomer of the product has been obtained even with a slightly lower selectivity (Table 3.1, Entry 3). In an effort to improve the enantioselectivity, several other catalysts were evaluated (Table 3.1,

Entries 4-8), but they were less rewarding concerning yield and selectivity than (DHQD) ${ }_{2} \mathrm{PYR}$ and (DHQ) ${ }_{2} \mathrm{PYR}$.

Table 3.1 - Optimization of reaction conditions.

| | | |
| :---: | :---: | :---: | :---: | :---: |
| (DHQD) 2 PYR (20 mol \%) | | |
| 1,4-dioxane, R.T. | | |

[a] Isolated yield after chromatography. [b] Enantiomeric ratio (e.r.) was determined by HPLC analysis using a chiral stationary phase column [c] Reaction carried out with molecular sieves ($4 \AA ; 0.6 \mathrm{~g}$) at $0^{\circ} \mathrm{C}$.

By screening different solvents (Table 3.1, Entries 9-11), we discovered that the initial use of 1,4-dioxane had been fortuitous, although the use of ethyl acetate gave almost equally favourable results. It is worth to notice that the reaction conditions that had provided good to high enantioselectivity in the previous study with anilines ${ }^{[5]}$ had no effect on the enantiocontrol of this model reaction (Table 3.1, Entry 12).

Having established that the appropriate reaction conditions are obtained by employing (DHQD) ${ }_{2}$ PYR as catalyst and 1,4-dioxane as solvent, we next investigated the scope of this transformation by varying the substituent pattern on the dibenzylamine partner of the tandem sequence (Figure 3.1).

3b Y: 82\%, 3 h e.r.: 86:14

3c $Y: 92 \%, 3 \mathrm{~h}$
e.r.: $87: 13$
e.r.: 87:13

3g Y: 89\%, 0.5 h e.r.: 79:21

3d Y: 90\%, 0.5 h e.r.: 86:14

3e Y: 69\%, 3 h e.r.: 80:20

$3 i \mathrm{Y}: 77 \%, 0.5 \mathrm{~h}$ e.r.: 78:22

3h Y: 92\%, 0.5 h e.r.: 76:24

3m Y: 89\%, 0.5 h e.r.: 69:31

Figure 3.1 - Substrate scope of the tandem sequence by using mono-substituted dibenzylamines.

Good enantioselectivities were obtained by a series of dibenzylamines with electron-withdrawing groups on the aromatic ring. Dibenzylamines $\mathbf{2 b} \mathbf{- 2 h}$, with electron-withdrawing substituent at the para position, afforded the expected α -
amino cyclobutanones 3b-3h in high yields (up to 94\%) with enantioselectivities up to 87:13 e.r. A representative meta-substituted dibenzylamine (i.e., 2i) performed almost equally well (77\% yield, 78:22 e.r.), whereas ortho-substituted dibenzylamine 2j furnished the desired product $\mathbf{3} \mathbf{j}$ in a diminished 48% yield and with an enantiomeric ratio of only $56: 44$. Dibenzylamines $\mathbf{2 k} \mathbf{k} \mathbf{2 m}$, which bear one electron-donating substituent at the para position, also afforded in good yields the corresponding adducts $\mathbf{3 k} \mathbf{k} \mathbf{3} \mathbf{m}$ under the optimized reaction conditions. These products, however, were obtained with lower enantioselectivities (from 69:31 to 75:25 e.r.).

Figure 3.2 - Substrate scope of the tandem sequence by using disubstituted dibenzylamines.

Of particular note, bis(para-substituted) dibenzylamines that contain electron-withdrawing groups were tolerated and gave good to high chemical yields with high enantioselectivities (Figure 3.2). Indeed, by using dibenzylamines 2o2t as substrates, we obtained the corresponding α-(dibenzylamino)cyclobutanones 3o-3t up to $91: 9$ e.r. in 59-85\% yields. Importantly, by using a
dibenzylamine with an electron-donating substituent on one aryl group and an electron-withdrawing group on the other, compound $\mathbf{2 n}$ provided comparable results in terms of efficiency and stereoselectivity.

The absolute configuration of compound $\mathbf{3 0}$ was unambiguously determined to be (R) by single-crystal X-ray diffraction analysis (Figure 3.3). The absolute configurations of the other products of the series $\mathbf{3 a} \mathbf{-} \mathbf{3} \mathbf{t}$ were assumed to possess (R) configuration by analogy to compound 30 .

Figure 3.3 - X-ray crystallographic structure of compound 30 (CCDC-1054222).

To further explore the substrate scope of the reaction with alkyl amines, N alkylbenzylamines $\mathbf{4 a} \mathbf{- 4 g}$ have been examined under the optimised conditions (Figure 3.4). Various N-alkyl groups such as methyl (i.e., 4a), ethyl (i.e., 4b), phenethyl (i.e., 4d), (ethoxycarbonyl)ethyl (i.e., 4f) as well as more sterically hindred isopropyl group (i.e., 4c) provided the corresponding products in good to high yields (79-93\%). A lower yield (48\%) has been obtained only for the N -allyl derivative $\mathbf{4 e}$, even with prolonged time of reaction (48 h).

Furthermore, since products $\mathbf{5 a - 5 f}$ were obtained with low selectivity, and this aspect of the reactivity remains a challenge to control. However, we observed that N-benzylglycine ester $\mathbf{4 g}$ performed as a more successful partner than its homologue $\mathbf{4 f}$ and afforded the desired product $\mathbf{5 g}$ in high yield (93\%) and an improved enantioselection (78:22 e.r.). Substrates $\mathbf{4 h} \mathbf{- 4 k}$, which have an electron-withdrawing group $\left(\mathrm{NO}_{2}\right)$ at the para position of the aromatic ring, performed perceptibly better than the non-substituted series $\mathbf{4 a - 4 f}$ and gave products $\mathbf{5 h} \mathbf{- 5 k}$ with enhanced enantioselection (from 62:38 to 78:22 e.r.).

5a Y: 93\%, 0.5 h
e.r.: 55:45

5b Y: 84\%, 0.5 h e.r.: 54:46

5f Y: 77\%, 2 h e.r.: 61:39

5c $\mathrm{Y}: 75 \%, 1 \mathrm{~h}$
e.r.: $56: 46$

$\mathbf{5 g ~ Y : ~ 9 3 \% , ~} 2 \mathrm{~h}$ e.r.: 78:22

5d Y: 88\%, 1.8 h e.r.: 56:44

5h Y: 72\%, 2.7 h e.r.: 66:34

Figure 3.4 - Substrate scope of the tandem sequence by using N-alkyl benzylamines.

These results show that steric factors as well as the electronic character of the N-alkyl group of the benzylamine partner dramatically affect the stereochemical outcome of the reaction. Moreover, the presence of an electronwithdrawing group at the para position of the aromatic ring seems to be required to observe some enantioselection. Reactions with benzylamines that have electron-withdrawing groups at the para position generally proceed with better enantioselectivity, which might suggest an anionic character to the cyclobutane carbon atom that is being protonated, reminiscent of an asymmetric protonation. Such mechanism might, therefore, be an alternative to the one we suggest in Scheme 3.1.

Refocusing to dibenzylamine derivatives, we decided to examine the influence of a pre-existing stereogenic center on the stereochemical outcome of the reaction. In fact, considering the chirality of both the secondary amine and the catalyst match and mismatched effect can be clearly observed. ${ }^{[8]}$

Scheme 3.2 - Diastereomeric approach to the synthesis of a-dibenzylamino cyclobutanones using (S) and (R) optically pure dibenzylamines.

As shown in Scheme 3.2, with optically pure benzylamines $\mathbf{6 a}$ and ent-6a, a moderate match/mismatch effect between the amine and the catalyst was detected. In both cases, no significant improvement to the stereoselectivity of the catalyzed reaction of dibenzylamine $\mathbf{2 a}$ (Table 3.1, Entry 2) has been observed. However, as already pointed out with series 3 and 5, the introduction of an electron-withdrawing group $\left(\mathrm{CF}_{3}\right)$ at the para position of the aromatic ring (i.e., $\mathbf{6 b}$
and ent-6b, Scheme 3.3) led to a considerable enhancement of the stereoselection respect to non-substituted amines.

Scheme 3.3 - Diastereomeric approach to the synthesis of a-dibenzylamino cyclobutanones using (S) and (R) optically pure dibenzylamines bearing a para- CF_{3} substituent in one aromatic ring.

In fact, the desired α-(benzylamino)cyclobutanones $\mathbf{7 b} / \mathbf{7}^{\prime} \mathbf{b}$ were afforded in 81:19 diastereomeric ratio (d.r.) and ent-7b/ent-7b in $91: 9$ d.r., respectively, by using $30 \mathrm{~mol} \%$ of (DHQD) ${ }_{2}$ PYR or (DHQ) ${ }_{2}$ PYR. It should be also noted that the reaction of either dibenzylamine $\mathbf{6 a}$ or ent-6b without a catalyst proceeded with almost no intrinsic stereochemical preference, which clearly suggests a catalystbased control of the stereoselection.

In conclusion, we described a simple and practical methodology for synthesizing highly functionalized α-(benzylamino)cyclobutanones. Such derivatives has been obtained by using a condensation/intramolecular rearrangement/enantioselective protonation tandem sequence in their optically active form. The reaction sequence started from readily available racemic α hydroxycyclobutanone and benzylamines and it was catalysed by cinchona alkaloid derivatives to afford the products in good to high yields and with moderate to high stereoselctives. Moreover, the reaction proved to be compatible with the employment of substituents and other functional groups. Finally, a preliminary investigation on the effect of a pre-existent element of chirality in the substrate for a diastereselective approach has been made.

From N. Melis, L. Ghisu, R. Guillot, P. Caboni, F. Secci, D. J. Aitken and A. Frongia, Catalytic Enantioselective Synthesis of α-(Benzylamino)cyclobutanones. Eur. J. Org. Chem., 2015, 4358-4366.

Copyright © 2015 by John Wiley \& Sons, Inc. Reprinted by permission of John Wiley \& Sons, Inc.

References

[1] a) J. C. Namyslo, D. E. Kaufmann, Chemical reviews 2003, 103, 14851538; b) E. Lee-Ruff, G. Mladenova, Chemical reviews 2003, 103, 14491484; c) N.-Y. Fu, S.-H. Chan, H. N. C. Wong, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 357-440; d) E. Lee-Ruff, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 281355; e) F. Secci, A. Frongia, P. P. Piras, Molecules 2013, 18, 1554115572.
[2] a) T. Araki, T. Ozawa, H. Yokoe, M. Kanematsu, M. Yoshida, K. Shishido, Organic letters 2012, 15, 200-203; b) T. Araki, Y. Manabe, K. Fujioka, H. Yokoe, M. Kanematsu, M. Yoshida, K. Shishido, Tetrahedron Letters 2013, 54, 1012-1014; c) T. Ishikawa, Heterocycles 2012, 85, 2837-2877; d) T. Ozawa, M. Kanematsu, H. Yokoe, M. Yoshida, K. Shishido, The Journal of organic chemistry 2012, 77, 9240-9249; e) E. V. Filippova, L.
A. Weston, M. L. Kuhn, B. Geissler, A. M. Gehring, N. Armoush, C. T. Adkins, G. Minasov, I. Dubrovska, L. Shuvalova, Journal of Biological Chemistry 2013, 288, 10522-10535; f) T. Meiresonne, S. Mangelinckx, N. De Kimpe, Organic \& biomolecular chemistry 2011, 9, 7085-7091; g) E. Mayans, A. Gargallo, Á. Álvarez-Larena, O. Illa, R. M. Ortuño, European Journal of Organic Chemistry 2013, 2013, 1425-1433; h) V. Declerck, D. J. Aitken, Amino Acids 2011, 41, 587-595; i) H. Awada, S. Robin, R. Guillot, O. Yazbeck, D. Naoufal, N. Jaber, A. Hachem, D. J. Aitken, European Journal of Organic Chemistry 2014, 2014, 7148-7155; j) W. Mansawat, C. Vilaivan, Á. Balázs, D. J. Aitken, T. Vilaivan, Organic letters 2012, 14, 1440-1443.
[3] a) V. M. Dembitsky, Journal of natural medicines 2008, 62, 1-33; b) Q. Zhou, B. B. Snider, Organic Letters 2011, 13, 526-529; c) J. E. Baldwin, R. M. Adlington, M. F. Parisi, H.-H. Ting, Tetrahedron 1986, 42, 25752586; d) R. M. Adlington, J. E. Baldwin, R. H. Jones, J. A. Murphy, M. F. Parisi, Journal of the Chemical Society, Chemical Communications 1983, 1479-1481; e) D. Belluš, B. Ernst, Angewandte Chemie International Edition in English 1988, 27, 797-827.
[4] a) P. Kotrusz, S. Alemayehu, Š. Toma, H. G. Schmalz, A. Adler, European journal of organic chemistry 2005, 2005, 4904-4911; b) L. Ghosez, G. Yang, J. R. Cagnon, F. Le Bideau, J. Marchand-Brynaert, Tetrahedron 2004, 60, 7591-7606; c) F. Mahuteau-Betzer, L. Ghosez, Tetrahedron 2002, 58, 6991-7000; d) L. Ghosez, F. Mahuteau-Betzer, C. Genicot, A. Vallribera, J. F. Cordier, Chemistry-A European Journal 2002, 8, 34113422; e) F. Capitta, A. Frongia, J. Ollivier, D. J. Aitken, F. Secci, P. P. Piras, R. Guillot, Synlett 2015, 26, 123-126; f) F. Secci, A. Frongia, M. G. Rubanu, M. L. Sechi, G. Sarais, M. Arca, P. P. Piras, European Journal of Organic Chemistry 2014, 2014, 6659-6675; g) D. J. Aitken, A. M. Bernard, F. Capitta, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Organic \& biomolecular chemistry 2012, 10, 5045-5048; h) D. J. Aitken, F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2012, 23, 727-730; i) D. J. Aitken, F. Capitta, A. Frongia, D. Gori, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Synlett 2011, 2011, 712716; j) F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2011, 2011, 89-93.
[5] D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941-945.
[6] a) M. Corpet, C. Gosmini, Synthesis 2014, 46, 2258-2271; b) F. Zhou, F.M. Liao, J.-S. Yu, J. Zhou, Synthesis 2014, 46, 2983-3003; c) A. Russo, C. De Fusco, A. Lattanzi, Rsc Advances 2012, 2, 385-397; d) H. Nelson, J. Patel, H. Shunatona, F. Toste, Chemical Science 2015, 6, 170-173; e) T. Kano, F. Shirozu, K. Maruoka, Journal of the American Chemical Society 2013, 135, 18036-18039.
[7] a) N. De Kimpe, L. Mones, R. Verhe, L. De Buyck, N. Schamp, Tetrahedron Letters 1982, 23, 789-792; b) N. De Kimpe, L. D'Hondt, L. Mones, Tetrahedron 1992, 48, 3183-3208; cA. Adams, N. De Kimpe, Chemical reviews 2006, 106, 2299-2319; d) B. Xu, S. F. Zhu, X. D. Zuo, Z. C. Zhang, Q. L. Zhou, Angewandte Chemie International Edition 2014, 53, 3913-3916; e) B. Xu, S. F. Zhu, X. L. Xie, J. J. Shen, Q. L. Zhou, Angewandte Chemie International Edition 2011, 50, 11483-11486; f) E.

Schmitt, I. Schiffers, C. Bolm, Tetrahedron Letters 2009, 50, 3185-3188; g) J. T. Mohr, A. Y. Hong, B. M. Stoltz, Nat Chem 2009, 1, 359-369; h) A. Claraz, S. Oudeyer, V. Levacher, Current Organic Chemistry 2012, 16, 2192-2205; i) S. Oudeyer, J. F. Brière, V. Levacher, European Journal of Organic Chemistry 2014, 2014, 6103-6119; j) A. Frongia, F. Secci, N. Melis, Comptes Rendus Chimie 2015, 18, 456-467; k) F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Advanced Synthesis \& Catalysis 2010, 352, 2955-2960; I) F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Organic \& Biomolecular Chemistry 2012, 10, 490-494; m) A. Frongia, F. Secci, F. Capitta, P. P. Piras, M. L. Sanna, Chemical Communications 2013, 49, 8812-8814; n) F. Capitta, N. Melis, F. Secci, G. Romanazzi, A. Frongia, Journal of Sulfur Chemistry 2014, 35, 649660.
[8] N. Krause, S. Ebert, A. Haubrich, Liebigs Annalen 1997, 1997, 24092418.

4 SYNTHESIS OF CYCLOBUTANONE α-AMINO ACID ESTERS

Despite their importance due to the presence of two contiguous functions on a four-membered carbocyclic ring compound, ${ }^{[1]} \alpha$-amino cyclobutanones have been rarely targeted in asymmetric synthesis. ${ }^{[2]}$ The most common way to synthesize α-aminocyclobutanone derivatives uses the condensation of the requisite amine with α-hydroxycyclobutanone or its bis-trimethylsilylated enol ether derivative. ${ }^{[3]}$ In previous research, ${ }^{[4]}$ we have observed that a-hydroxycyclobutanone 1 was a substrate of choice in organocatalyzed ${ }^{[5]}$ condensation reactions with N-alkyl-substituted anilines to provide enantioenriched α-arylaminocyclobutanones in the presence of cinchona alkaloids as catalysts.

Scheme 4.1 - Key steps in the organocatalytic asymmetric tandem conden-sation/keto-enol tautomerization sequence for the synthesis of optically active α-aminocyclobutanones.

Thus, in continuation of our work, we envisioned that our method could be applied to an attractive and more challenging stereoselective synthesis of cyclobutanone α-amino acid ester derivatives by the condensation/keto-enol tautomerization tandem reaction between α-hydroxycyclobutanone and a chiral N-alkyl- α-amino acid ester derivative (Scheme 4.1).

In addition, as the development of efficient methods for the construction of optically active α-amino ketone derivatives remains a significant task in organic chemistry, ${ }^{[6]}$ the stereoselective synthesis of α-amino cyclobutanones from fully aliphatic amines, such as α-amino acid esters, was particularly interesting as it would offer the possibility of testing the capacity and limits of our recently reported method in this stimulating and exciting research topic. ${ }^{[7]}$

We first chose the reaction of α-hydroxycyclobutanone 1 with N-allyl-Lphenylalanine methyl ester 8a as a model reaction for catalyst screening and evaluation. The starting α-amino acid ester derivative 8 was prepared from the corresponding readily available α-amino acid according to literature procedures. ${ }^{[8]}$ All reactions were carried out at room temperature in a sealed vial in toluene as solvent. It is worth noting that in the absence of catalyst, the reaction took place with moderate conversion and with no diastereoselectivity, which shows clearly that the stereochemical outcome of the reaction does not seem to be affected by the intrinsic chirality of the α-amino acid ester derivative (reagent control, entry 1 , Table 4.1).

On the basis of this result, we speculated that a suitable catalyst would be able to control the terminal stereoselective protonation step ${ }^{[9]}$ of the tandem sequence without suffering match-mismatch processes ${ }^{[10]}$ due to the simultaneous presence of a stereogenic center previously installed during the initial deracemizing condensation reaction between the α-hydroxycyclobutanone 1 and the corresponding chiral α-amino acid ester derivative 8. We initially examined the effects of an achiral tertiary amine catalysts, such as 4dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO), and imidazole, on the reactivity and selectivity of the reaction, and the result are listed in Table 4.1.

Table 4.1 - Initial study: Catalyst screening and evaluation

	(L)-8a		
Entry	Catalyst	$\begin{aligned} & \text { Yield (\%) } \left.{ }^{[a]}\right] \\ & 9 a+9 a^{\prime} \end{aligned}$	$\begin{aligned} & \text { d.r. }{ }^{[b]} \\ & 9 a: 9 a^{\prime} \end{aligned}$
1	none	44	50:50
2	DMAP	84	41:59
3	DABCO	88	58:42
4	Imidazole	60	55:45
5	Quinidine	73	32:68
6	Quinine	56	46:54
7	β-isocupreidine	80	54:46
8	(DHQD)2 ${ }_{2}$ PHAL	69	31:69
9	(DHQ)2PHAL	68	78:22
10	(DHQD) $2^{2} \mathrm{AQN}$	77	30:70
11	(DHQ) ${ }_{2} \mathrm{AQN}$	66	73:27
12	(DHQD) ${ }_{2} \mathrm{PYR}$	73	34:66
13	(DHQ)2 ${ }_{2} \mathrm{PYR}$	84	81:19
14	Hydroquinidine 4-chlorobenzoate	69	29:71

[a] Isolated total yield after chromatography. [b] The d.r. values were determined by ${ }^{1} \mathrm{H}$-NMR analysis.

Pleasingly, the expected products 9a/9'a were formed in high yield (84\%), although, with low asymmetric induction (d.r.=41:59) when DMAP was used as catalyst (Entry 2, Table 4.1). Interestingly, the reaction with DABCO displayed excellent reactivity giving the desired products with a complementary diastereoisomeric ratio (Entry 3, Table 4.1), whereas the reaction with imidazole provided 9a/9'a in lower yield and with almost no stereoselectivity (Entry 4, Table 4.1). The catalyst screening was next extended to cinchona alkaloids. ${ }^{[11]}$ To our delight, quinidine (Entry 5, Table 4.1) showed a promising level of asymmetric
induction, whereas quinine (Entry 6, Table 4.1) and β-isocupreidine (Entry 7, Table 4.1) gave somewhat lower diastereoselectivity. Further catalyst evaluation screened a variety of bis-cinchona alkaloids under similar reaction conditions (Entries 8-14, Table 4.1).

(L)-8

Yield: 65\%, 24h d.r.: 80:20

d.r.: 82:18
 d.r.: 78:22

9e / 9'e
Yield: 62%, 24 h
d.r.: 72:28

9f / 9'f
Yield: 64\%, 24h
d.r.: 71:29

Figure 4.1 - Identification of the optimal R_{1} and R_{2}. Yields are given for isolated material after column chromatography. The d.r. values were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

The highest selectivity was obtained with (DHQ) ${ }_{2}$ PYR (Entry 12, Table 4.1), which provided the desired α-amino cyclobutanones $9 a / 9$ 'a in 81:19 d.r.

Further optimization with variations on the ester moiety of the starting amino acid ester derivative ($\mathbf{8 b} \mathbf{-} \mathbf{d}$) does not affect the stereochemical outcome of the reaction (Figure 4.1). Replacing the protecting group on nitrogen with a benzyl (8f)
or 2-nitrobenzyl (8e) group resulted in a slightly decreased diastereoselectivity (Figure 4.1).

Table 4.2 - Influence of solvent on stereoselectivity

Toluene, R.T., 24 h
1

(L)-9a

Entry	Solvent	$\begin{aligned} & \text { Yield (\%) } \left.{ }^{[a]}\right] \\ & 9 a+9 a{ }^{\prime} \end{aligned}$	$\begin{aligned} & \text { d.r. }{ }^{[b]} \\ & 9 a: 9 a, \end{aligned}$
1	THF	72	86:14
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	67	83:17
3	MeOH	77	63:37
4	DMF	67	71:29
5	1,4-dioxane	85	93:07
6	Ethyl acetate	85	81:19
7	1,4-dioxane	70	88:12
8	1,4-dioxane	70	85:15
9	1,4-dioxane	66	89:11

[a] Isolated total yield after chromatography. [b] The d.r. values were determined by ${ }^{1} \mathrm{H}$-NMR analysis.

Furthermore, we also performed a solvent screening using (DHQ) ${ }_{2}$ PYR as a catalyst (Table 4.2). The stereoselectivity was slightly enhanced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF (Entries 1-2, Table 4.1), while the use of 1,4-dioxane further increased the d.r. to $93: 7$ (Entry 5, Table 4.2). The use of higher catalyst loadings as well as molecular sieves or different concentrations was not particularly advantageous (Entries 7-9, Table 4.2).

Remarkably, changing the stereochemistry of (L)- N -allyl phenylalanine methyl ester from (L)-8a to (D)-8a (Scheme 4.2) led to a switch in the diastereoselectivity in favour of ent-9'a with the formation of the corresponding
products in 82% yield and very low d.r. (ent-9a/ent-9'a=45:55). On the other hand, access to ent-3a was achieved also by changing the stereochemistry of both the catalyst and amino acid ester derivative (Scheme 4.2).

Indeed, the reaction of (D)- N-allyl phenylalanine methyl ester in combination with (DHQD) ${ }_{2}$ PYR (the pseudoenantiomer of (DHQ) ${ }_{2}$ PYR) as the catalyst proceeded in an impressive highly stereoselective complementary fashion (d.r.: ent-9a/ent-9'a=93:7). ${ }^{[12]}$

Scheme 4.2 - Diastereoselective access to ent-9a/ent-9'a.

As a matter of fact, because the absolute configuration of the starting amino acid is the opposite, the newly formed stereocenter in the major diastereoisomer has the opposite configuration to that of the major isomer that was obtained from (L)- N-allyl phenylalanine methyl ester (L)-8a using (DHQ) ${ }_{2} \mathrm{PYR}$ as catalyst. Therefore, interestingly, our method has equally high stereocontrol in favour of 9 a or ent-9a with either (L)- and (D)-amino acid ester derivatives simply by tuning the chirality of the catalyst. ${ }^{[13]}$ Subsequently, the substituent tolerance of α-amino acid ester derivative 8 was preliminary investigated in a series of condensation reactions under the optimized conditions (Figure 4.2). The reactions of $\mathbf{8 g}, \mathbf{8 h}$, and $\mathbf{8 i}$ proceeded in moderate to high yields and in each case, one diastereoisomer always predominated, with d.r. values in the range 84:16-86:14.

To summarize, we have reported an organocatalytic and stereoselective entry to optically active cyclobutanone aamino acid ester derivatives, via a tandem condensation/keto-enol tautomerization, that are beyond the reach of established amination methods. Given the potential value of chiral α-amino cyclobutanes as
building blocks in organic synthesis, ${ }^{[14]}$ studies aimed at further expanding the scope of this approach as well as towards their transformation are currently in progress in our laboratory.

Figure 4.2 - Scope of α-amino acid ester derivatives 8 .

From A. Frongia, N. Melis, I. Serra, F. Secci, P. P. Piras, P. Caboni, Organoatalytic Asymmetric Condensation/Keto-Enol Tautomerization Tandem Reaction: Access to Cyclobutanone α-Amino Acid Ester Derivatives, Asian J. Org. Chem., 2014, 378-381. Copyright © 2015 by John Wiley \& Sons, Inc. Reprinted by permission of John Wiley \& Sons, Inc.

References

[1] a) J. C. Namyslo, D. E. Kaufmann, Chemical reviews 2003, 103, 14851538; b) E. Lee-Ruff, G. Mladenova, Chemical reviews 2003, 103, 14491484; c) N.-Y. Fu, S.-H. Chan, H. N. C. Wong, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 357-440; d) E. Lee-Ruff, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 281-

355; e) F. Secci, A. Frongia, P. P. Piras, Molecules 2013, 18, 1554115572; f) D. J. Aitken, F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2012, 23, 727-730; g) D. J. Aitken, A. M. Bernard, F. Capitta, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Organic \& biomolecular chemistry 2012, 10, 5045-5048; h) D. J. Aitken, F. Capitta, A. Frongia, D. Gori, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Synlett 2011, 2011, 712-716; i) F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2011, 2011, 89-93.
[2] a) P. Kotrusz, S. Alemayehu, Š. Toma, H. G. Schmalz, A. Adler, European journal of organic chemistry 2005, 2005, 4904-4911; b) L. Ghosez, G. Yang, J. R. Cagnon, F. Le Bideau, J. Marchand-Brynaert, Tetrahedron 2004, 60, 7591-7606; c) F. Mahuteau-Betzer, L. Ghosez, Tetrahedron 2002, 58, 6991-7000; d) L. Ghosez, F. Mahuteau-Betzer, C. Genicot, A. Vallribera, J. F. Cordier, Chemistry-A European Journal 2002, 8, 34113422.
[3] N. Armoush, P. Syal, D. P. Becker, Synthetic Communications 2008, 38, 1679-1687.
[4] D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941-945.
[5] D. W. MacMillan, Nature 2008, 455, 304-308.
[6] a) S. Baktharaman, R. Hili, A. K. Yudin, Aldrichimica Acta 2008, 41, 109119; b) J.-P. Genet, C. Greck, D. Lavergne, in Modern Amination Methods, Wiley-VCH Verlag GmbH, 2007, pp. 65-102; c) E. Erdik, Tetrahedron 2004, 60, 8747-8782; d) C. Greck, B. Drouillat, C. Thomassigny, European Journal of Organic Chemistry 2004, 2004, 13771385; e) J. M. Janey, Angewandte Chemie International Edition 2005, 44, 4292-4300; f) J. M. Janey, Angewandte Chemie 2005, 117, 4364-4372; g) T. Vilaivan, W. Bhanthumnavin, Molecules 2010, 15, 917-958; h) A. M. R. Smith, K. K. Hii, Chemical Reviews 2011, 111, 1637-1656; i) M. R. Paleo, M. I. Calaza, F. J. Sardina, Journal of Organic Chemistry 1997, 62, 6862-6869; j) F. Colpaert, S. Mangelinckx, B. Denolf, N. De Kimpe, The Journal of organic chemistry 2012, 77, 6023-6032; k) N. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig, K. A. Jørgensen, Journal of the American Chemical Society 2002, 124, 6254-6255; I) G. Dessole, L. Bernardi, B. F. Bonini, E. Capito, M. Fochi, R. P. Herrera, A. Ricci, G. Cahiez, The Journal of organic chemistry 2004, 69, 8525-8528.
a) N. De Kimpe, L. Mones, R. Verhe, L. De Buyck, N. Schamp, Tetrahedron Letters 1982, 23, 789-792; b) N. De Kimpe, L. D'Hondt, L. Mones, Tetrahedron 1992, 48, 3183-3208; c) A. Adams, N. De Kimpe, Chemical reviews 2006, 106, 2299-2319; d) F. Van Lancker, A. Adams, N. De Kimpe, Journal of agricultural and food chemistry 2012, 60, 46974708; e) E. Schmitt, I. Schiffers, C. Bolm, Tetrahedron Letters 2009, 50, 3185-3188.
[8] a) S. Bera, G. Panda, ACS Combinatorial Science 2012, 14, 1-4; b) J. H. Cho, B. M. Kim, Tetrahedron Letters 2002, 43, 1273-1276.
[9] a) J. T. Mohr, A. Y. Hong, B. M. Stoltz, Nat Chem 2009, 1, 359-369; b) L. Duhamel, P. Duhamel, J.-C. Plaquevent, Tetrahedron: Asymmetry 2004, 15, 3653-3691; c) A. Claraz, S. Oudeyer, V. Levacher, Current Organic Chemistry 2012, 16, 2192-2205; d) T. O. Poisson, Sylvain, J. F. Brière, V. Levacher, in Enantioselective Organocatalyzed Reactions I (Ed.: R.

Mahrwald), Springer Netherlands, 2011, pp. 67-106; e) F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Advanced Synthesis \& Catalysis 2010, 352, 2955-2960; f) F. Capitta, A. Frongia, P. P. Piras, P. Pitzanti, F. Secci, Organic \& Biomolecular Chemistry 2012, 10, 490-494; g) A. Frongia, F. Secci, F. Capitta, P. P. Piras, M. L. Sanna, Chemical Communications 2013, 49, 8812-8814; h) X. Tian, C. Cassani, Y. Liu, A. Moran, A. Urakawa, P. Galzerano, E. Arceo, P. Melchiorre, Journal of the American Chemical Society 2011, 133, 17934-17941; i) N. Fu, L. Zhang, J. Li, S. Luo, J. P. Cheng, Angewandte Chemie International Edition 2011, 50, 11451-11455; j) N. Fu, L. Zhang, J. Li, S. Luo, J.-P. Cheng, Angewandte Chemie 2011, 123, 11653-11657; k) N. Fu, L. Zhang, S. Luo, J. P. Cheng, Chemistry-A European Journal 2013, 19, 15669-15681.
[10] N. Krause, S. Ebert, A. Haubrich, Liebigs Annalen 1997, 1997, 24092418.
[11] a) C. E. Song, Cinchona alkaloids in synthesis and catalysis: ligands, immobilization and organocatalysis, John Wiley \& Sons, 2009; b) T. Marcelli, H. Hiemstra, Synthesis 2010, 2010, 1229-1279; c) Y. Chen, P. McDaid, L. Deng, Chemical reviews 2003, 103, 2965-2984; d) E. M. Yeboah, S. O. Yeboah, G. S. Singh, Tetrahedron 2011, 67, 1725-1762; e) P. Melchiorre, Angewandte Chemie International Edition 2012, 51, 9748-9770; f) P. Melchiorre, Angewandte Chemie 2012, 124, 9886-9909.
[12] E. M. Carreira, L. Kvaerno, Classics in stereoselective synthesis, John Wiley \& Sons, 2009.
[13] a) M. Amat, E. Ghirardi, L. Navío, R. Griera, N. Llor, E. Molins, J. Bosch, Chemistry-A European Journal 2013, 19, 16044-16049; b) B. Wang, F. Wu, Y. Wang, X. Liu, L. Deng, Journal of the American Chemical Society 2007, 129, 768-769; c) M. Luparia, M. T. Oliveira, D. Audisio, F. Frébault, R. Goddard, N. Maulide, Angewandte Chemie International Edition 2011, 50, 12631-12635; d) M. Luparia, M. T. Oliveira, D. Audisio, F. Frébault, R. Goddard, N. Maulide, Angewandte Chemie 2011, 123, 12840-12844; e) Y. Huang, A. M. Walji, C. H. Larsen, D. W. MacMillan, Journal of the American Chemical Society 2005, 127, 15051-15053; f) A. Nojiri, N. Kumagai, M. Shibasaki, Journal of the American Chemical Society 2009, 131, 3779-3784; g) S. Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira, Science 2013, 340, 1065-1068; h) M. T. Oliveira, M. Luparia, D. Audisio, N. Maulide, Angewandte Chemie International Edition 2013, 52, 13149-13152; i) M. T. Oliveira, M. Luparia, D. Audisio, N. Maulide, Angewandte Chemie 2013, 125, 13387-13390; j) E. E. Maroto, S. Filippone, M. Suárez, R. Martínez-Álvarez, A. de Cózar, F. P. Cossío, N. Martín, Journal of the American Chemical Society 2014, 136, 705-712.
[14] a) Q. Zhou, B. B. Snider, Organic Letters 2011, 13, 526-529; b) T. Araki, T. Ozawa, H. Yokoe, M. Kanematsu, M. Yoshida, K. Shishido, Organic letters 2012, 15, 200-203; c) T. Araki, Y. Manabe, K. Fujioka, H. Yokoe, M. Kanematsu, M. Yoshida, K. Shishido, Tetrahedron Letters 2013, 54, 1012-1014; d) T. Ozawa, M. Kanematsu, H. Yokoe, M. Yoshida, K. Shishido, Heterocycles: an international journal for reviews and communications in heterocyclic chemistry 2012, 85, 2927-2932; e) T. Ozawa, M. Kanematsu, H. Yokoe, M. Yoshida, K. Shishido, The Journal of organic chemistry 2012, 77, 9240-9249; f) E. V. Filippova, L. A. Weston, M. L. Kuhn, B. Geissler, A. M. Gehring, N. Armoush, C. T. Adkins, G.

Minasov, I. Dubrovska, L. Shuvalova, Journal of Biological Chemistry 2013, 288, 10522-10535; g) E. Mayans, A. Gargallo, Á. Álvarez-Larena, O. Illa, R. M. Ortuño, European Journal of Organic Chemistry 2013, 2013, 1425-1433; h) T. Meiresonne, S. Mangelinckx, N. De Kimpe, Organic \& biomolecular chemistry 2011, 9, 7085-7091; i) C. Fernandes, S. Faure, E. Pereira, V. Théry, V. Declerck, R. Guillot, D. J. Aitken, Organic letters 2010, 12, 3606-3609; j) S. Celis, E. Gorrea, P. Nolis, O. Illa, R. M. Ortuno, Organic \& biomolecular chemistry 2012, 10, 861-868; k) V. Declerck, D. J. Aitken, Amino Acids 2011, 41, 587-595.

5 Synthesis of Tryptamines

Given the ease of its preparation ${ }^{[1]}$ and the chemical reactivity bestowed by the presence of two adjacent functional groups on a strained four-memberedring, ${ }^{[2]} \alpha$-hydroxycyclobutanone 1 has considerable potential as a building block for organic synthesis. Some notable applications include ring cleavage and methylation to furnish an ester-aldehyde, ${ }^{[3]}$ one-pot Wittig reaction-acetalization leading to an oxabicyclo[3.2.0]heptane, ${ }^{[4]}$ preparation of methylenecyclobutane nucleoside analogues ${ }^{[5]}$ and stereoselective organocatalyzed aldol condensation reactions in the presence of L-amino acids. ${ }^{[6]}$

Very recently, our group described that α-hydroxycyclobutanone 1 was a substrate of choice for organocatalyzed condensation reactions with amines, providing access to optically active α-aminocyclobutanones. ${ }^{[7]}$ Previous studies had reported that the cyclobutanone motif can act as an electrophilic acceptor for intramolecular nucleophilic addition in a ring closure-ring fission process, when a Brønsted acid catalyst is used. ${ }^{[8]}$ Moreover, this behaviour should be enhanced if a cyclobutyliminium species is involved. ${ }^{[9]}$ This observation led us to speculate that the reaction of α-hydroxycyclobutanone 1 with two equivalents of a secondary arylamine 10 might deliver a one-pot cascade-reaction ${ }^{[10]}$ assembly of the tryptamine molecular scaffold. According to our hypothesis (Scheme 5.1), a Brønsted acid catalyst ${ }^{[11]}$ should promote the formation of the corresponding α aminocyclobutanone 11 from 1 and one equivalent of 10. Subsequent acidmediated condensation with a second equivalent of 10 should furnish the corresponding 2-cyclobutyliminium A which undergoes intramolecular ring closure to B. Rearrangement by an acid-induced "depart-and-return" process ${ }^{[8 b]}$ via C should lead to a tryptamine 12.

Scheme 5.1 - Rational design for the synthesis of tryptamines via a Brønsted acid-catalyzed cascade reaction.

To test our hypothesis we first examined the reaction between a-hydroxycyclobutanone 1 and N-methyl aniline 10a, conducted under reflux in toluene using $20 \mathrm{~mol} \%$ of PTSA as the catalyst. We were delighted to find that the desired tryptamine product 12a could be isolated from the reaction mixture in 55\% yield (Table 5.1, entry 1). Changing the solvent from toluene to 1,4-dioxane, EtOH or EtOAc did not bring any appreciable improvement in the chemical yields (Table 5.1, entries 2-4). However, a higher conversion was observed in solvent-free conditions at room temperature (Table 5.1, entry 5), providing 12a in 67% yield. Other Brønsted acid catalysts were evaluated in solvent-free conditions: HI (Table 5.1, entry 6) gave a comparable result to that obtained using PTSA, whereas $\mathrm{HBr}, \mathrm{HCl}, \mathrm{MsOH}$ and TFA performed less efficiently (Table 5.1, entries 7-10). Further evaluation of the solvent-free reaction conditions using a higher and lower catalyst loading (Table 5.1, entries 11-12) indicated that the optimum yield of 12a was obtained in the presence of $20 \mathrm{~mol} \%$ of PTSA.

Table 5.1 - Optimization of reaction conditions.

 rac-1				
Entry	HX (mol \%)	Solvent	Temp	$\begin{gathered} \text { Yield (\%) }{ }^{[a]} \\ \text { 12a } \end{gathered}$
$1{ }^{[b]}$	PTSA (20)	Toluene	Reflux	55
2	PTSA (20)	1,4-dioxane	Reflux	38
3	PTSA (20)	EtOH	Reflux	30
4	PTSA (20)	EtOAc	Reflux	48
5	PTSA (20)	Neat	R.T.	67
6	HI (20)	Neat	R.T.	65
7	HBr (20)	Neat	R.T.	50
8	HCl (20)	Neat	R.T.	42
9	MsOH (20)	Neat	R.T.	36
10	TFA (20)	Neat	R.T.	61
11	PTSA (10)	Neat	R.T.	53
$12^{[\mathrm{c}]}$	PTSA (35)	Neat	R.T.	62

[a] Isolated yield after chromatography. [b] The reaction conducted at room temperature after 7 days gave 12a in 52% yield associated with a significant amount of the corresponding aminocyclobutanone 11a (25\% yield).

With the optimized reaction conditions in hand, we next examined the reaction scope using a series of secondary arylamines 10; results are summarized in Figure 5.1. A reasonable substituent tolerance in arylamines 10 emerged, allowing access to a variety of highly functionalized tryptamines 12 with diverse ring-substituent patterns. N-Methyl arylamines $\mathbf{1 0 b}-\mathbf{g}$ bearing electron-donating groups at the para-position furnished the corresponding tryptamines $\mathbf{1 2 b} \mathbf{- g}$ in 45-60\% yield. Similarly, meta-substituted aniline 10h gave a good yield (81\%) of the corresponding tryptamine as an inseparable mixture of the two regioisomers $\mathbf{1 2 h}+\mathbf{1 2 h}$ '. In contrast, aniline 10i bearing a methoxy substituent at the orthoposition failed to produce the

120 Y: 32\% EtOOC
12p Y: 80\%

Figure 5.1 - Exploration of substrate scope with a selection of N -alkyl arylamines.
corresponding tryptamine 12i. In the latter case, the only compound isolated from the reaction was the intermediate α-aminocyclobutanone 11i with 35% yield.

N -Methyl arylamines 10j and 10k (Figure 5.1) bearing electron-withdrawing groups at the para-position also underwent the tandem reaction to give tryptamines $\mathbf{1 2 j}$ (23%) and $\mathbf{1 2 k}$ (48%). In the former case, the major product was the intermediate α-aminocyclobutanone 11 j (45%). Other N-alkyl anilines were examined using the optimized reaction conditions: anilines 101 and 10 n with primary alkyl and allylic substituents respectively furnished the corresponding tryptamines with good yields (60 and 73\%), while an aniline 10m with a secondary alkyl substituent gave the corresponding tryptamine $\mathbf{1 2 m}$ with a more moderate yield (37\%). The N-carboethoxymethyl aniline $\mathbf{1 0 0}$ gave tryptamine 120 in 32% yield, showing tolerance of the ester functional group. Interestingly, the best result was obtained using tetrahydroquinoline 10p which provided the corresponding tryptamine 12p in 80% yield. N-Ethyl-1-naphthylamine 10q was also examined but tryptamine 12q was isolated only in trace amounts.

Scheme 5.2 - Control experiments in order to confirm the mechanism and the formation of intermediate 11 in the tandem sequence.

Some control experiments were carried out in order to probe the reaction mechanism (Scheme 5.2). Treatment of α-hydroxycyclobutanone 1 with one equivalent of N-methyl aniline 10a and $20 \mathrm{~mol} \%$ of PTSA gave α-amino cyclobutanone 11a, isolated with 75% yield after 4 h reaction time. Subsequently, 11a was treated with one equivalent of 10a in the presence of PTSA ($20 \mathrm{~mol} \%$),
which led smoothly to the expected tryptamine 12a within 4 days, in 63% isolated yield.

These observations support the working mechanistic hypothesis described in Scheme 5.1. In fact, it can be reasoned that the first step of the sequence involves the formation of the α-aminocyclobutanone intermediate 11 which subsequently undergoes a tandem ring closure-ring fission process to form 12. The observed formation of $\mathbf{1 1 i}$ and $\mathbf{1 1 j}$ during the respective reactions involving 10 i and 10 j is consistent with this proposal.

On the basis of the proposed mechanism, we considered that the reaction process should be tested for the synthesis of tryptamines derived from two different N-alkyl anilines 10 and 10', by employing one equivalent of each of these reagents sequentially in the one-pot procedure. Thus, in the presence of PTSA (20 mol\%), a-hydroxycyclobutanone 1 was treated with one equivalent of an N methylaniline 10 then, after 4 hours, one equivalent of a different N-methylaniline 10' was added and the reaction left to proceed for 4 days. Three such 10/10' aniline combinations were examined, considering in each case both of the possible sequential order roles.

These results are summarized in Scheme 5.3 and Table 5.2. In every case, the anticipated "hetero-assembly" tryptamine product 13, with the first-added aniline incorporated as the indole core, was indeed obtained ($5-44 \%$ yield). However, the isomeric tryptamine 14 with the second-added aniline incorporated as the indole core was also obtained ($2-18 \%$ yield). Furthermore, a significant amount of the "homoassembly" tryptamines 12 and 12' were formed (12-39\%). A plausible explanation is that the condensation of the initially formed α-aminocyclobutanone 11 with the second aniline 10' might generate cyclobutenediamine \mathbf{D}, which is the common intermediate in an acid-catalyzed equilibration of two α-aminocyclobutyliminium species \mathbf{A} and \mathbf{A}^{\prime}.

Table 5.2 - Synthesis of tryptamines derived from two different anilines through a sequential one pot procedure.

[a] Reaction products were inseparable using standard chromatographic methods; conversions were calculated from analytical GC-MS data. [b] The reaction between 11a and 10p,carried out over 4d in the presence of PTSA, exhibits a similar trend: 12a(19\%) / 12p(17\%) / 13ap(5\%) / 14ap(50\%) / 10a (6\%) / 10p (3\%).

Since these cations are in equilibrium with the corresponding cyclobutanones (11 and 11') and free anilines (10 and $\mathbf{1 0}^{\prime}$) respectively, any combination of $\mathbf{1 1}$ or $\mathbf{1 1}^{\prime}$ with an aniline $\mathbf{1 0 '}^{\prime}$ or 10 now becomes possible, so that four different intramolecular ring closure-ring fission processes (via $\mathbf{A}, \mathbf{A}^{\prime}, \mathbf{A}^{\prime \prime}$ or $A^{\prime \prime \prime}$) can be envisaged, leading to tryptamines 13, 14, 12 and 12' respectively. If cation \mathbf{C} is indeed an intermediate in the "depart-and-return" rearrangement process (Scheme 5.1), it cannot be excluded that any free aniline, 11 or 11', could be incorporated in the final tryptamine structure at this late stage. Further mechanistic studies will be required to resolve this issue.

Scheme 5.3 - Synthesis of tryptamines derived from two different anilines through a sequential one pot procedure.

In summary, a new solvent-free Brønsted acid catalysed cascade reaction has been established, allowing access to highly substituted tryptamines from simple starting materials in a one-pot metal-free and solvent-free process under mild conditions. To the best of our knowledge, there are no literature reports of the construction of an indole skeleton using the present strategy. ${ }^{[12]}$ Therefore, the use of a four-carbon synthon to provide the indole C2, C3 and the two exocyclic centres in a tryptamine synthesis is highly original, ${ }^{[13]}$ since most synthetic methods involve modifications of other preformed indole derivatives. ${ }^{[14]}$ It is noteworthy that indoles react with cyclobutanone derivatives in the presence of a Lewis acid in a quite different fashion, to give hydrocarbazoles. ${ }^{[15]}$ Tryptamines are of great importance due to their wide-ranging biological activities leading to applications in medicinal chemistry and recreational use, ${ }^{[16]}$ as well as serving as intermediates for the preparation of more complex heterocyclic structures. This concise approach for the assembly of tryptamine derivatives should lend itself to the creation of natural productinspired molecular-complexity compound collections. ${ }^{[17]}$

Reproduced from N. Melis, F. Secci, T. Boddaert, D. J. Aitken and A. Frongia, Synthesis of functionalized tryptamines by Bronsted acid catalysed cascade reactions, Chem. Comm., 2015, 51, 15272-15275 with permission from The Royal Society of Chemistry.

References

[1] J. Bloomfield, J. Nelke, Organic Synthesis 1988, 167-172.
[2] a) J. C. Namyslo, D. E. Kaufmann, Chemical reviews 2003, 103, 14851538; b) E. Lee-Ruff, G. Mladenova, Chemical reviews 2003, 103, 14491484; c) N.-Y. Fu, S.-H. Chan, H. N. C. Wong, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 357-440; d) E. Lee-Ruff, in The Chemistry of Cyclobutanes, John Wiley \& Sons, Ltd, 2006, pp. 281355; e) F. Secci, A. Frongia, P. P. Piras, Molecules 2013, 18, 15541-
[3] M. Ohno, I. Oguri, S. Eguchi, The Journal of Organic Chemistry 1999, 64, 8995-9000.
[4] R. W. Saalfrank, W. Hafner, J. Markmann, A. Welch, K. Peters, H. Georg von Schnering, Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences 1994, 49, 389-406.
[5] S. Danappe, A. Pal, C. Alexandre, A.-M. Aubertin, N. Bourgougnon, F. Huet, Tetrahedron 2005, 61, 5782-5787.
[6] a) D. J. Aitken, F. Capitta, A. Frongia, D. Gori, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, M. Spiga, Synlett 2011, 2011, 712-716; b) D. J. Aitken, F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2012, 23, 727730.
[7] a) D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941945; b) A. Frongia, N. Melis, I. Serra, F. Secci, P. P. Piras, P. Caboni, Asian Journal of Organic Chemistry 2014, 3, 378-381; c) N. Melis, L. Ghisu, R. Guillot, P. Caboni, F. Secci, D. J. Aitken, A. Frongia, European Journal of Organic Chemistry 2015, 2015, 4358-4366.
[8] a) A. M. Bernard, C. Floris, A. Frongia, P. P. Piras, Synlett 2002, 796-798; b) A. M. Bernard, C. Floris, A. Frongia, P. P. Piras, F. Secci, Tetrahedron 2004, 60, 449-457.
[9] F. Capitta, A. Frongia, J. Ollivier, P. P. Piras, F. Secci, Synlett 2011, 2011, 89-93.
[10] a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angewandte Chemie International Edition 2006, 45, 7134-7186; b) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angewandte Chemie 2006, 118, 7292-7344; c) C. Grondal, M. Jeanty, D. Enders, Nature chemistry 2010, 2, 167-178; d) S. B. Jones, B. Simmons, A. Mastracchio, D. W. MacMillan, Nature 2011, 475, 183-188; e) C. J. Chapman, C. G. Frost, Synthesis 2007, 2007, 121; f) X. Yu, W. Wang, Organic \& biomolecular chemistry 2008, 6, 20372046; g) B. Westermann, M. Ayaz, S. S. van Berkel, Angewandte Chemie International Edition 2010, 49, 846-849; h) H. Pellissier, Advanced Synthesis \& Catalysis 2012, 354, 237-294; i) A. Grossmann, D. Enders, Angewandte Chemie International Edition 2012, 51, 314-325; j) C. M. Volla, I. Atodiresei, M. Rueping, Chemical reviews 2013, 114, 2390-2431. a) T. Akiyama, J. Itoh, K. Fuchibe, Advanced Synthesis \& Catalysis 2006, 348, 999-1010; b) S. J. Connon, Angewandte Chemie International Edition 2006, 45, 3909-3912; c) M. Terada, Synthesis 2010, 2010, 19291982; d) A. Zamfir, S. Schenker, M. Freund, S. B. Tsogoeva, Organic \& biomolecular chemistry 2010, 8, 5262-5276; e) M. Rueping, B. J. Nachtsheim, W. Ieawsuwan, I. Atodiresei, Angewandte Chemie International Edition 2011, 50, 6706-6720.
a) M. Inman, C. J. Moody, Chemical Science 2013, 4, 29-41; b) D. F. Taber, P. K. Tirunahari, Tetrahedron 2011, 67, 7195-7210.
[13] a) O. René, B. P. Fauber, Tetrahedron Letters 2014, 55, 830-833; b) T. Bidylo, M. Yurovskaya, Chemistry of heterocyclic compounds 2008, 44, 379-418; c) I. Grandberg, T. Zuianova, N. Afonina, T. Ivanova, Doklady Akademii nauk SSSR 1967, 176, 583-585.
[14] a) S. Bartolucci, M. Mari, A. Bedini, G. Piersanti, G. Spadoni, The Journal of organic chemistry 2015, 80, 3217-3222; b) R. F. Salikov, A. Y. Belyy, Y. V. Tomilov, Tetrahedron Letters 2014, 55, 5936-5939.
[15] M. Kawano, T. Kiuchi, S. Negishi, H. Tanaka, T. Hoshikawa, J. i. Matsuo, H. Ishibashi, Angewandte Chemie 2013, 125, 940-944.
[16] a) A. M. Araújo, F. Carvalho, M. de Lourdes Bastos, P. G. de Pinho, M. Carvalho, Archives of toxicology 2015, 89, 1151-1173; b) A. J. Kochanowska-Karamyan, M. T. Hamann, Chemical reviews 2010, 110, 4489-4497; c) R. Cao, W. Peng, Z. Wang, A. Xu, Current medicinal chemistry 2007, 14, 479-500.
[17] A. Danda, K. Kumar, H. Waldmann, Chemical Communications 2015, 51, 7536-7539.

6 SYNTHESIS AND POST-FUNCTIONALISATION OF SILYLATED BICYCLIC OXETANES

The scope of the condensation/asymmetric protonation tandem sequence for the preparation of α-amino ketones has been studied almost exclusively with regards to the substitution pattern of the amine moiety. ${ }^{[1]}$ On the other hand, only few α-hydroxyketone derivatives has been tested in the methodology. Consequently, with the aim of further study the substrate scope of the tandem sequence focusing on the ketone partner, we looked for a general and straightforward method for the synthesis of cyclic α-hydroxyketones. This part has been conducted in $C^{3} A$ group of ICMMO (Université Paris-Sud) under the supervision of Prof. David J. Aitken and Dr. Thomas Boddaert and with the help of Alberto Luridiana.

As mentioned in Chapter 2, we identify in the Paternò-Büchi reaction between a cyclic silyl enol ether and benzaldehyde (16a) a good strategy to obtain such class of derivatives. In fact, we hypothesized that the bicyclic photoadduct 17 could undergo to a base-induced rearrangement that led to α-benzyloxyketones 19 (Scheme 6.1). Moreover, in order to develop a more general methodology, α-benzyl- α-hydroxyketones 22 could be prepared starting from the same 17 photoadduct through hydrogenolysis and subsequent oxidation.

The Paternò-Büchi reaction is a [2+2]-cycloaddition between an alkene and a carbonyl compound to form the corresponding oxetane. ${ }^{[2]}$ Woodward-Hoffmann rules on pericyclic reactions classify the formation of the four-membered ring substructure prohibited via thermic activation due to the non-conservation of orbital symmetry. Therefore, such transformation can be carried out only under photochemical control through the formation of an excited state. The reaction occurs between a photoexcited carbonyl group and a ground state alkene. In particular, the light-absorbing carbonyl species undergoes n, π^{*} transition which
involve the excitation of an oxygen non-bonding electron to the first excited singlet state S_{1}.

19

22

Paternò-Büchi
[2+2] photoaddition

15

16a

Scheme 6.1 - Retrosynthetic plan for synthesizing α-hydroxyketones 17 and 18 via rearrangement or hydrogenolysis of bicyclic Paternò-Büchi photoadducts.

Transition to the more stable triplet excited state T_{1} cannot happen directly from the ground state because it would involve a spin forbidden excitation, but it can occur nonradiatively via intersystem crossing (ISC) from S_{1}. Hence, the triplet excited state carbonyl species reacts with the alkene at the ground state to afford the oxetane with the involvement of a 1,4-biradical intermediate (Figure 6.1) and recombination of it. ${ }^{[3]}$
a) (b)

$$
E \uparrow \begin{aligned}
& - \\
& \frac{\uparrow}{\square}
\end{aligned}
$$

T_{1}

c)

1,4-biradical
intermediate

Figure 6.1 - a) Schematic electron occupation diagram for $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and T_{1}. b) Molecular state diagram for excitation of carbonyl compounds. c) General mechanism of Paternò-Büchi reaction.

Despite the applications described on open chain silyl enol ether derivatives in combination with aldehydes and ketones for oxetane synthesis with PaternòBüchi reaction, ${ }^{[4]}$ no examples of cyclic silyl enol ethers are reported in literature to the best of our knowledge. For this reason, we started with the optimisation of the reaction condition with such cyclic substrate to synthesize the cyclic photoadduct 17. The corresponding OTMS silyl enol ether of cyclopentanone 15a has been chosen as model substrate and we started with a solvent screening. Therefore, Paternò-Büchi reaction between the silyl enol ether 15a and distilled benzaldehyde 16a (2:1 ratio) was initially carried out by using the Rayonet RPC200 photochemical reactor by the Southern New England Ultraviolet Co. with 300 nm lamp. Despite the formation of the expected photoadduct 17, due to the low reproducibility of results we decided to conduit the reaction between 15 and 16a has been conducted in a 250 mL pyrex reactor using a 400 W Hg-vapor lamp (300350 nm) with a selection of solvents (Table 6.1).

We performed the reaction in acetonitrile, benzene, toluene, trifluorotoluene and cyclohexane (Entries 1-5, Table 6.1) and we isolated the two diastereomeric photoadduct products by column chromatography. Despite the high yields reported for this reaction with open chain silyl enol ethers, we obtain at our best a comprehensive 42% yields of $\mathbf{1 7}$ by employing acetonitrile as solvent.[4a]

Table 6.1 - Paternò-Büchi solvent screening and evaluation.

Because of the several by-products formed during the reaction, we decided to test the stability of the starting materials, as shown in Figure 6.2.

a) $15 a$
b)

Figure 6.2 - Stability tests of starting materials 15 a and 16 a .

Degradation of $\mathbf{1 5 a}$ to cyclopentanone and other derivatives occurred during irradiation under the same experimental conditions of the reaction. Furthermore, 15a and 16a do not react without irradiation and no β-hydroxyketone derived from Mukaiyama aldol reaction has been observed. Though, also in the latter case, some cyclopentanone as degradation product of $\mathbf{1 5 a}$ has been observed.

In addition to the observed instability, benzaldehyde 16a undergoes to photoinduced electron transfer (PET) under irradiation (Scheme 6.2). In fact, we observed the formation of some products that come from PET mechanism, such as the diol I formed by dimerization of benzaldehyde radical and derivatives such as the acetal derivatives II and III. ${ }^{[5]}$ Some other products, such as IV, has been hypothesized based on high resolution mass analysis. Interestingly, apolar solvents that are supposed to minimize the PET side reaction (e.g. benzene and cyclohexane) performed less efficiently than a polar solvent as acetonitrile.

Observed by mass analysis

Isolated product

Scheme 6.2 - Paternò-Büchi side products.

In an effort to improve the efficiency of the reaction by using less sensitive starting material, we performed some tests by using OTBS silyl enol ether 15b in acetonitrile and trifluorotoluene (Entries 6-7, Table 6.1) with disappointing results
in terms of yields of $\mathbf{1 7 b}$. Therefore, keeping acetonitrile as the optimal solvent choice, we scaled up the reaction in 1 L vessel. Working on a larger scale was unfortunately less efficient, probably due to the prolonged reaction time, but provide grams of products 17a (Entry 8, Table 6.1).

In all our attempts photoadducts 17 has been obtained with a complete regioselectivity and a diastereomeric ratio (d.r.) that ranged from 65:35 to 55:45, always in favour of exo-17. The regioselectivity of the Paternò-Büchi reaction is determined by electronic effects. In fact, the umpolung of the $\mathrm{C}-\mathrm{O}$ bond of the photoexcited carbonyl compound induces the formation of the new O-C bond between the oxygen atom and the more electron rich Carbon atom of the alkene partner. For this reason, the second regioisomer of the photoadduct 17 is not formed. Concerning the diastereoselectivity of the reaction, the mechanism of the Paternò-Büchi reaction led to the formation of the bicyclic fused ring junction with a cis configuration only and the exo/endo ratio could be explained by a steric hindrance control. Indeed, as exposed previously by Bach, Abe and Griesbeck in similar studies, ${ }^{[6]}$ the Paternò-Büchi reaction on electron-rich α, α-disubstituted alkene partners favours the formation of the less congested biradical intermediate.

With the optimised conditions in hands, we started to investigate the substrate scope of the reaction by employing six- and seven-membered ring ketone derivatives (15c and 15d respectively), and two representative ketones (acetone 16e and benzophenone 16f). As shown in Figure 6.3, the reaction proved to be extremely substrate dependent. In fact, only 15c led to the corresponding photoadduct 17c even with a 5% yield, whereas in the other examples no reaction occurred.

17c
exolendo: 64:36
Yield: 5\%

17d
no reaction

17e
no reaction

17f
no reaction

Figure 6.3-Preliminary investigation on the substrate scope of the reaction.

With pure exo- and endo- photoadducts 17a in our hands, we proceeded with the post-functionalization of such derivatives focusing our attention firstly on the desilylation step.

Scheme 6.3 - Deprotection of exo-17a and endo-17a with TBAF in THF.

Silyl deprotection of both endo-17a and exo-17a bicyclic photoadducts were carried out under typical tetra-n-butylammonium fluoride (TBAF) conditions in THF (Scheme 6.3). It has to be noted that contrary to Bach, treatment of $\mathbf{1 7}$ with potassium carbonate in MeOH left it unchanged. ${ }^{[7]}$ Both substrates led to the corresponding deprotected alcohols endo-18 and exo-18 with 83% and 77% yield respectively.

Figure 6.4 - X-ray crystal structure of exo-18. In a) angle values are showed while in b) the orientation shows clearly the flat structure of the oxetane moiety.

A crystal sample of both exo-18 and endo-18 were obtained by slow evaporation of chloroform and they were suitable for X-ray analysis (Figure 6.4 and Figure 6.5 respectively) in order to confirm the relative stereochemistry of the derivative.

These substrates crystallize in monoclinic crystal system and the structure shows clearly the configuration of the bicyclic compound and the almost perfectly flat oxetane system. Moreover, it is interesting to notice that the angles of the fourmembered ring of the oxetanes have values that ranged from $85,13^{\circ}$ to $92,68^{\circ}$. These atypical values for a sp^{3}-hybridized carbon are related to the inherent strain of the oxetane moiety and this can be reflected in the reactivity and stability of such derivatives.

Figure 6.5 - X-ray crystal structure of endo-18 in two different orientations.

Then, we proceeded with the synthesis of diastereochemically pure 1,2-diols via palladium-based hydrogenonlysis. The hydrogenation step should occur equally on both exo- and endo- diastereomers because of the breaking of the O Bn bond, which bears the stereocenter that differentiate them. Hence, since the other two stereocenters have the same relative configuration and they are not affected by the hydrogenolysis process, diastereochemically pure trans-1,2-diol 21 can be selectively obtained. Moreover, OTMS protecting group is reported to have a limited stability under classic hydrogenation conditions, such in the case of Bach's studies on oxetanols. ${ }^{[8]}$ For this reason, hydrogenolysis was performed starting directly from the silylated photoadduct 17.

Hydrogenation step has been carried out under classic hydrogenolysis condition and the results are reported in Table 6.2. The reaction of exo-17a in methanol using Pd/C as catalyst led to the expected 1,2-diol 21 in only 59% yield
(Entry 1, Table 6.2). By using ethyl acetate as solvent for carrying out the reaction, diol 20 was afforded with longer time of reaction (26h) but with a cleaner crude and improved yields (Entry 2-3, Table 6.2, respectively 77\% for exo-17a and 97\% for endo-17a).

Table 6.2 - Hydrogenolysis of 17a to diastereochemically pure 1,2-diols 21.

Entry	Substrate	Catalyst	Conditions'	Solvent	Yield 20 (\%)
$\mathbf{1}$	exo-17a	$\mathrm{Pd} / \mathrm{C}(8)$	$\mathrm{RT}, 4 \mathrm{~h}$	MeOH	59%
$\mathbf{2}$	exo-17a	Pd / C	$\mathrm{RT}, 26 \mathrm{~h}$	AcOEt	77%
$\mathbf{3}$	endo-17a	Pd / C	$\mathrm{RT}, 26 \mathrm{~h}$	AcOEt	97%
$\mathbf{4}$	exo-17a	Pd / C	$\mathrm{RT}, 2.5 \mathrm{~h}$	AcOEt	quant. ${ }^{[\mathrm{ab}}$
$\mathbf{5}$	exo-17a	$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$	$\mathrm{RT}, 26 \mathrm{~h}$	AcOEt	quant.
$\mathbf{6}$	exo-18	Pd / C	$\mathrm{RT}, 4 \mathrm{~h}$	AcOEt	quant.

[a] A 50:50 mixture of deprotected and monoprotected diol has been observed by ${ }^{1} \mathrm{H}$-NMR analysis of the crude.

By stopping the reaction after 2.5 hours, NMR analysis of the crude showed a 50:50 mixture of deprotected and monoprotected diol (21 and 20 respectively, entry 4, Table 6.2), which demonstrate clearly that the TMS group in not stable under these conditions and that is not possible to perform the hydrogenolysis selectively. Even with $\mathrm{Pd}(\mathrm{OH})_{2}$ instead of $\mathrm{Pd}(0)$, the TMS was completely deprotected and the diol 21 was obtained quantitatively after 26h (entry 5, Table 6.2). $\mathrm{Pd} / \mathrm{C}-$ catalysed hydrogenolysis of exo-18 was performed in ethyl acetate and the corresponding diol 21 was afforded quantitatively in 4h (Entry 6, Table 6.2). Nonetheless, the instability of OTMS functionality under hydrogenolysis conditions and the high efficiency of the reaction make convenient the one-pot procedure directly from 17 rather than a two-step deprotection/hydrogenolysis sequence. Derivative $\mathbf{2 1}$ crystallizes in tetragonal crystal system and the X-ray analysis confirms the trans relative configuration of the 1,2-diol (Figure 6.6).

Figure 6.6 - X-Ray crystal structure of trans-1,2-diol derivative 21.

The synthesized 1,2-diol 21 should be easily converted to the corresponding a-benzyl-a-hydroxyketone 22 by means of oxidation of the secondary alcohol. Literature reports some efficient procedures for oxidizing similar vicinal diol derivatives to hydroxyketones. ${ }^{[9]}$

Scheme 6.4 - Oxidation of 21 to α-substituted- α-hydroxyketone 22.

In our case, we performed the reaction using 2-iodoxybenzoic acid (IBX) as oxidant species ${ }^{[10]}$ and we were able to afford the corresponding α-hydroxyketone 22 in a non-optimized 65\% yield.

According to our planned strategy, a series of experiments dedicated to induce a base-catalysed rearrangement of 18 were conducted in order to afford our second target ketone: the α-benzyloxycyclopentanone 19. Consequently, exo18 was treated under several basic conditions as reported in Table 6.3.

Some experiments with bases and additives were performed with the purpose to make the base or the substrate more reactive. Entry 10 (Table 6.3) refers to the reaction with ${ }^{\text {tBuOK }}$ in presence of 18 -crown- 6 , which is able to complex K^{+}cation and make the base more reactive.

Table 6.3-Screening of basic condition for the rearrangement of exo-18.

Entry	Base	Solvent	Conditions'	\mathbf{Y} (\%)
1	$\mathrm{K}_{2} \mathrm{CO}_{3}(1,5 \mathrm{eq})$	MeOH	RT, $50{ }^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$	-
2	$\mathrm{K}_{2} \mathrm{CO}_{3}(1,5 \mathrm{eq})$	Acetone	RT, $50{ }^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$	-
3	$\mathrm{NaOH}(1,5 \mathrm{eq})$	MeOH	RT, $50{ }^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$	-
4	$\mathrm{KOH}(1,5 \mathrm{eq})$	Toluene	RT, $50{ }^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$	-
5	$\left.{ }^{\text {tBuOK (}} 1,5 \mathrm{eq}\right)$	${ }^{\text {t }} \mathrm{BuOH}$	RT	-
6	${ }^{\text {tBuOK (}} \mathbf{2 , 5 \mathrm { eq }}$)	THF	RT, $50{ }^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$	-
7	DIPEA (1,5 eq)	MeOH	RT	-
8	DBU (1,5 eq)	MeOH	RT	-
9	$\mathrm{NaH}(1,5 \mathrm{eq})$	THF	RT, $50{ }^{\circ} \mathrm{C}$	-
$10^{[a]}$	${ }^{\text {tBuOK (}} 1,5 \mathrm{eq}$)	THF	RT	-
$11^{[\mathrm{b}]}$	$\mathrm{NaH}(2,5 \mathrm{eq})$	THF	RT	$26^{[c]}$
$12^{[d]}$	${ }^{\text {n }} \mathrm{BuLi}$ (1; 2 and 4 eq)	THF	$0^{\circ} \mathrm{C}$	-

[a] 18-crown-6 has been used for K^{+}complexation. [b] $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added in order to activate the oxetane ring through coordination. [c] The reported yield is referred to product 25 after purification by flash chromatography. [d] Some epimerization of starting material was observed.

[^0]In entry 11 (Table 6.3) the reaction was carried out in presence of NaH and BF_{3} diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ as a coordinating Lewis acid in order to activate the oxetane system by weakening the O-C bond. Among these trials, no reaction has been observed with crown ether but, on the other hand, by using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ the reaction afforded a new product in 26% yield. Surprisingly, the new-formed product is not the expected one but it denotes a different reactivity of the substrate exo-18.

This new product has been identified as the derivative 25 by full NMR characterisation and X-ray analysis of a suitable monocrystal. Compound 25 crystallizes in monoclinic crystal system by slow evaporation of chloroform and Xray analysis of the crystal sample allow us to unambiguously determine the correct structure of product 25 as the 2-phenylcyclohex-2-enone (Figure 6.7).

25

Figure 6.7 - X-ray diffraction structure of derivative 25.

Since the product was obtained exclusively when a Lewis acid $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ was employed, we speculated that an acid-promoted rearrangement was involved. Such rearrangement product should be an alcohol which can afford 25 through dehydration. According to this hypothesis, $\mathbf{2 5}$ is formed via a one-pot desilylation/ring fission-ring expansion/dehydration tandem sequence. From a mechanistic point of view, the Lewis acid could bond with both of the oxygen atoms of the bicyclic oxetanol and, between the two, the alcohol function should be a better Lewis base. Despite that, we believe that an equilibrium between the two coordination types is possible and, moreover, only the complexation of the oxetane oxygen make the system evolve further.

We therefore focused our attention on testing acid derivatives in order to enhance the efficiency of the transformation and to prove the presence of
intermediates in the reaction. Table 6.4 summarizes the attempts made in this direction. Due to the instability of OTMS protecting group under acidic condition, we decided to start from the protected photoadduct exo-17a. Firstly, we confirmed the formation of $\mathbf{2 5}$ by employing $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ only and we isolated the product in 23% yield (Entry 1, Table 6.4), similarly to what obtained from exo-18 with $\mathrm{NaH} / \mathrm{BF}_{3}$. $\mathrm{Et}_{2} \mathrm{O}$ (Entry 11, Table 6.3). A catalytic amount of TMSCI in MeOH is known to produce HCl in situ and remove silyl protecting group. This reaction has been tested and afforded the same compound 25 in 29\% yield (Entry 2, Table 6.4). With the aim of a better control of the reaction, these entries were repeated at $0^{\circ} \mathrm{C}$ and in both cases the product has been isolated in a diminished 20% yield (Entries 3-4, Table 6.4).

Table 6.4 - Screening of acid conditions for the rearrangement of exo-17.

Entry	Substrate	Acid	Solvent	Conditions	Yield
1	exo-17a	$\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$	MeOH	0.024 M, RT, 4h	23\%
2	exo-17a	TMSCI (cat)	MeOH	0.024 M, RT, 5h	29\%
3	exo-17a	$\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$	MeOH	$0.024 \mathrm{M}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	20\%
4	exo-17a	TMSCI (cat)	MeOH	$0.024 \mathrm{M}, 0^{\circ} \mathrm{C}$, 2h	20\%
5	exo-17a	TFA (130 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.19 \mathrm{M}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$	57\%
6	exo-17a	TFA (130 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.08 \mathrm{M}, 0^{\circ} \mathrm{C}, 26 \mathrm{~h}$	78\%
7	exo-17b	TFA (130 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.19 \mathrm{M}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$	74\%
8	exo-18	TFA (130 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.08 \mathrm{M}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	63\%
9	endo-17a	TFA (130 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.08 \mathrm{M}, 0^{\circ} \mathrm{C}, 26 \mathrm{~h}$	64\%
10	exo-17a	TFA (6.8 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.19 \mathrm{M}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$	33\%
11	exo-17a	TFA (3 eq)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.19 \mathrm{M}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h}$	24\%

We therefore performed the reaction with TFA as Brønsted acid and we were able to isolate enone 25 in 57% yield (Entry 5, Table 6.4). An increased yield
(78\%, entry 6, Table 6.4) has been obtained when the reaction was repeated in more diluted conditions. The reaction has been tested starting from OTBS derivative exo-17b and the deprotected photoadduct exo-18 (Entries 7-8, Table 6.4) isolating 25 in 74% and 63% yield respectively.

Same condition has been applied by Bach and his co-workers on nonbicyclic silyloxy oxetanes (Scheme 6.6a). ${ }^{[11]}$ By using TFA they promoted two different rearrangements involving migration of two different bonds (a and b in Scheme 6.6a). In fact, the silyloxy oxetane B1 afforded the product B2 following path a), by migration of tert-butyl group to the benzylic position in 54% yield, and the β-hydroxyketone $\mathbf{B 3}$ following the path b) by migration of the $\mathrm{CH}_{2}-\mathrm{OH}$ group to the benzylic position in 15% yield. Both of these rearrangements implicate the fission of oxetane ring and they are reported to be in competition.

a) b) path
b)

Scheme 6.6 - a) Reactivity of silyloxy oxetanes reported by Bach and co-workers. In presence of TFA, two products derived from two different migration mechanisms have been observed. b) Acid-induced rearrangement products assuming that exo-17a shows the same reactivity of B1 in Bach's work.

Starting from these considerations and assuming the same reactivity of the case described by Bach et al, by using the synthesized bicyclic photoadducts 17a two products should be observed as well, as shown in Scheme 6.6b. Starting from our bicyclic derivatives, the product of such rearrangements have six-membered rings due to the fact that both a) and b) bonds are part of a second cycle. Interestingly, as already shown in Table 6.4, the only product of the reaction is the enone $\mathbf{2 5}$, which is formed by acid-mediated dehydration of trans- or cis- alcohol (23 and 24 respectively). Hence, silyloxy oxetane exo-17a shows an inverted selectivity and an intrinsic preference towards path b) and, more interestingly, no traces of α-hydroxyketone $\mathbf{2 6}$ was observed.

Bach's further investigation on this reaction by employing Lewis acids led to a better understanding of the two involved migration processes. ${ }^{[12]}$ In this work, Bach group pointed out the great influence of the solvent and the Lewis acid species, and they were able to optimise conditions to favour selectively both migration paths. More specifically, a strong Lewis acid such as AICl_{3} promotes the rearrangement through b) pathway and shows a selectivity for B3 derivatives. Whereas a complete selectivity in favour of path a) was observed by employing TiCl 4 , relatively weaker, in a coordinating polar solvent such as diethyl ether.

Moreover, for each migration process both the free and the silyl protected alcohol were obtained, which derives from silyl migration. The nature of Lewis acid and the solvent was reported to influence the ratio between the products of silyl migration and cleavage competitive reactions. A mechanism based on the reported experimental evidences has been proposed assuming the existence of two competitive pathways (Scheme 6.7).

The Lewis acid (L.A.) activates the oxetane ring by coordination of the oxygen oxetane atom. This adduct can directly react following path a) or, in alternative, the opening of the oxetane moiety can occur to form the corresponding benzylic carbocation. In the latter case, the intermediate would yield selectively the migration product formed through path b). Previous investigations reported on literature suggest that migration of the alkyl group (path a) would be disfavoured via carbocation intermediate and, on the other hand, with such intermediate no hydroxymethyl migration (path b) would be favoured.

concerted mechanism

B3b

Scheme 6.7-Mechanistic hypothesis proposed by Bach.

So, with these considerations in mind, we tested Lewis acids on the synthesized bicyclic derivative 17. AlCl_{3} has been chosen as the suitable Lewis acid for this investigation due to the fact that, according to Bach's work, it should favour the observed migration via path b). All the tests were carried out at $-78^{\circ} \mathrm{C}$ with the aim of avoiding dehydration with a better control of the transformation and these results are reported in Table 6.5.

Photoadduct exo-17a reacts easily in presence of AICl_{3} and by NMR analysis of the crude, alcohols $\mathbf{2 3}$ and $\mathbf{2 4}$ were formed in a 97:3 ratio (Entry 1, Table 6.5) with 60% yield. This attempt shows clearly the complete selectivity towards path
b) migration products and, more interestingly, an excellent diastereoselectivity in favour of the trans isomer 23. A prolonged reaction of exo-17a under the same conditions led to a less efficient transformation (d.r. 85:15) and the major isomer 23 has been isolated in only 27% yield (Entry 2, Table 6.5). By employing a reduced amount of Lewis acid ($1,5 \mathrm{eq}$, entry 3 , Table 6.5) we were able to achieve the same level of diastereoselectivity in favour of trans-alcohol 23 and to isolate it in 70% yield. The desilylated bicyclic adduct exo-18 showed to be slightly less diastereoselective and trans-23 and cis-24 are formed in 89:11 ${ }^{1} \mathrm{H}$-NMR ratio. Both 23 and $\mathbf{2 4}$ has been isolated, along with enone 25 as the dehydration product (Entry 4, Table 6.5). It has to be noted that no silylated product was obtained even if we started with exo-17a.

Table 6.5 - AlCl_{3}-mediated rearrangement of bicyclic photoadduct 17.

[a] The ratio has been determine by integration of ${ }^{1} \mathrm{H}$-NMR signals on the crude spectrum and is referred to $\mathbf{2 3 : 2 4 : 2 3 b}: 24 \mathrm{~b}$.

We therefore tested the reactivity of the endo-17a isomer and the corresponding desilylated alcohol endo-18 (Entries 5-6, Table 6.5). The endo isomer exhibit the same complete selectivity towards path b) and no product derived from the alkyl migration has been observed. Though, differently from the exo isomer, cis-24 is the major product of the migration showing an inverted diastereoselectivity. Moreover, when the reaction is carried out starting from the silylated endo-17a, a 50:50 mixture of cis-24 and the corresponding TMSprotected derivative cis-24b has been observed. Interestingly, the reaction of alcohol endo-18 led to the same comprehensive ratio 1:2 trans/cis of endo-17a.

In both cases, exo-17 and endo-17, due to the instability of the rearrangement product, enone 25 has been isolated in 10-13\% yield even if the amount of enone in the crude was always lower than 5%.

Figure 6.8 - X-ray crystal structure of derivative trans-23.

The isolated trans-23 crystallise in the orthorhombic crystal system and Xray analysis of a suitable monocrystal gave us the crystal structure of the derivative, as shown in Figure 6.8. Interestingly, this compound trans-23 crystallise as a conglomerate, which means that the two enantiomers of it crystallise separately. It has to be noted that only 5% of X-ray structure of racemic mixtures are conglomerates.

On the base of these results, some consideration can be made. Since Bach's work already pointed out the involvement of a carbocation intermediate in the observed hydroxymethyl migration, we would expect to observe the same behaviour. Nevertheless, exo-17a showed a surprisingly high stereoselectivity for involving a planar intermediate such as a carbocation. On the contrary, a concerted mechanism would imply an equal and inverted selectivity when endo17a is used as starting material. Moreover, the approach of the Lewis acid can
have an important effect on the reactivity. In fact, the exo and endo lone pairs of the O-atom in both the isomers of $\mathbf{1 8}$ are differently accessible due to the presence of the phenyl ring and this difference should be considered in the coordination interaction with the Lewis acid. From a steric point of view, we would expect that an endo approach of the Lewis acid is favourite for the exo-18 isomer, while endo18 favour the coordination from the exo lone pair.

By analogy with Bach's proposal, a first hypothetic mechanisms could explain these interesting experimental results via a carbocation intermediate (Scheme 6.8).

First proposal based on a carbocationic mechanism:

Scheme 6.8 - Limit case hypothesis for a pure carbocationic mechanism.

The proposed mechanism is based on the different relative stability of the exo- and endo- conformer of the carbocation intermediate. The two conformers can interconvert each other by means of a single bond rotation, which should be slow due to steric hindrance and low temperature effects. Reaction of exo-17a yields the carbocation intermediate with the most stable conformation and, consequently, it affords 23 with high diastereoselection. On the other hand, opening of endo-17a forms the less stable conformer of the carbocation intermediate which it starts to convert to its more stable exo conformation. When the migration occurs in the less stable conformer, the product of the reaction is cis-24, otherwise the rotation of the single bond led to the formation of trans-23. As a consequence of that, reaction of endo-17a shows a minor selectivity in comparison of the same reaction performed on exo-17a.

This mechanistic hypothesis should be considered as a limit case for a pure carbocation mechanism in opposition to the corresponding pure concerted limit case mechanism (Scheme 6.9).

Second proposal based on a concerted mechanism:

Scheme 6.9 - Limit case hypothesis for a pure concerted mechanism.

In this other case, migration of the bond takes place without ionic intermediates and it induces the opening of the oxetane ring moiety. Moreover, the process should occur in an extremely stereoselective manner that strictly depends on the configuration of the starting material. Therefore, exo-17 would led to trans-23, whereas endo-17 to the formation of cis-24.

The high diastereoselectivity to trans-23 observed with exo-17 could support a pure concerted mechanism. Furthermore, the relatively low selection (2:1 cis:trans) observed with endo-17 can be explained assuming the presence of parasite side mechanisms.

Both of these limit cases fail to explain some experimental results and the mechanism of such transformation is still under investigation. In particular, the carbocationic proposal is in contrast with the high stereoselection observed in the rearrangement of exo-17, while a pure concerted mechanism failed to explain the low selectivity of the other isomer.

Table 6.6-Preliminary tests at different temperatures on endo-18.

Entry	Substrate'	L.A. (equiv.)	Time	Temperature	Ratio $^{[\mathrm{a}]}$
$\mathbf{1}$	endo-18	$\mathrm{AlCl}_{3}(1.5)$	45 min	$-20^{\circ} \mathrm{C}$	$35: 65^{[\mathrm{b}]}$
$\mathbf{2}$	endo-18	$\mathrm{AlCl}_{3}(1.5)$	45 min	$-78^{\circ} \mathrm{C}$	$32: 68$
$\mathbf{3}$	endo-18	$\mathrm{AlCl}_{3}(1.5)$	2.5 h	$-90^{\circ} \mathrm{C}$	$25: 75$

[a] The ratio has been determine by integration of NMR signals on the crude spectrum and is referred to $\mathbf{2 3 : 2 4}$. [b] Large amount of enone is obtained.

In a preliminary attempt on investigating the mechanism, we performed some tests at different temperature on endo-18 in order to see how the trans/cis ratio would be affected (Table 6.6). The ratio obtained at $-20^{\circ} \mathrm{C}$ need to be analysed with caution due to the large amount of enone obtained at $-20^{\circ} \mathrm{C}$. But we clearly observed a higher selectivity at $-90^{\circ} \mathrm{C}$ in favour to the cis-isomer than at $-78^{\circ} \mathrm{C}$, with only traces of enone. Unfortunately, the enhanced selectivity is compatible
with both limit mechanisms (concerted and via carbocation) that could be hypothesized for the reaction. Indeed, a low temperature such as $-90^{\circ} \mathrm{C}$ should limit both the bond rotation of a carbocation intermediate and disfavour side mechanisms if the process is concerted. Both cases are compatible with an enhance selectivity towards cis-24.

In all our attempts to obtain trans-23 (Table 6.5), NMR yields have always been higher than the isolated one after flash column because dehydration occurs during purification to form $\mathbf{2 5}$. For this reasons, we attempted the subsequential MOM protection of trans- 23 directly from the crude reaction mixture of exo-17a and AICl_{3}. MOM -protected trans alcohol 27 was isolated in 39% yield in two steps reaction, as shown in Scheme 6.10.

Scheme 6.10 - Synthetic path for trans-27 in two subsequential steps without isolating the alcohol intermediate.

MOM derivative trans-27 crystallizes in triclinic crystal system by slow evaporation of chloroform. X-Ray analysis of the sample confirms the structure of the product and its correct relative stereochemistry (Figure 6.9). Surprisingly this compound trans-27, closely related to the compound trans-23 did not crystallise as a conglomerate.

Figure 6.9 - Crystal structure of trans-27.

Finally, we decided to preliminary investigate the effect of titanium chloride on the outcome of the reaction. Indeed, according to Bach's previous studies, it would favour the migration through path a (Scheme 6.6).

The reaction has been performed on both exo- and endo- isomers. In both cases, the other migration product has not been observed and, among traces of 23 and 24, only a 50:50 mixture of two chlorinated diastereomers 28 and 29 were observed and isolated as the major products (Figure 6.10).

Figure 6.10- TiCl4-induced rearrangement on exo- and endo- isomers of 18

Chlorinated diols 28 and 29 are formed though a non-selective ringfission/chlorination tandem sequence reaction. Derivative 29 crystallize in monoclinic crystal system and the X -Ray structure is reported in Figure 6.11.

Figure 6.11 - Crystal structure of 29.

In conclusion, the synthesis of novel bicyclic oxetanes 17 though Paternò-Büchi reaction has been performed and post-functionalization reactions of such intermediates has been evaluated. The desired α-hydroxyketone 22 was
successfully synthesized and, starting from the same intermediate 17, several scaffolds have been afforded such as bicyclic oxetanols 18, trans-1,2-diols 21, 28 and $\mathbf{2 9}$, substituted cyclic ketones $\mathbf{2 3}, \mathbf{2 4}, 25$ and 27 , proving the importance and versatility of this substrate.

16

22
Oxidation \uparrow

21

23, 24, 27

28, 29

References

[1] a) A. Frongia, F. Secci, F. Capitta, P. P. Piras, M. L. Sanna, Chemical Communications 2013, 49, 8812-8814; b) D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941-945.
[2] a) J. Porco, S. L. Schreiber, Comprehensive Organic Synthesis 1992, 2, 151-192; b) M. D'Auria, R. Racioppi, Current Organic Chemistry 2009, 13, 939-954; c) M. Auria, R. Racioppi, Molecules 2013, 18, 11384.
[3] S. C. Freilich, K. S. Peters, Journal of the American Chemical Society 1981, 103, 6255-6257.
[4] a) T. Bach, Tetrahedron Letters 1991, 32, 7037-7038; b) T. Bach, Liebigs Annalen 1995, 1995, 855-865; c) T. Bach, K. Jödicke, K. Kather, J. Hecht, Angewandte Chemie International Edition in English 1995, 34, 2271-

2273; d) F. Vogt, K. Jödicke, J. Schröder, T. Bach, Synthesis 2009, 2009, 4268-4273.
[5] T. Bach, J. Schröder, The Journal of Organic Chemistry 1999, 64, 12651273.
[6] a) T. Bach, K. Jödicke, Chemische Berichte 1993, 126, 2457-2466; b) M. Abe, Journal of the Chinese Chemical Society 2008, 55, 479-486; c) A. G. Griesbeck, M. Abe, S. Bondock, Accounts of chemical research 2004, 37, 919-928; dA. G. Griesbeck, H. Mauder, S. Stadtmueller, Accounts of chemical research 1994, 27, 70-75.
[7] T. Bach, K. Kather, The Journal of Organic Chemistry 1996, 61, 39003901.
[8] a) T. Bach, Liebigs Annalen 1995, 1995, 1045-1053; b) T. Bach, Tetrahedron Letters 1994, 35, 1855-1858.
[9] a) G. Iwasaki, M. Sano, M. Sodeoka, K. Yoshida, M. Shibasaki, The Journal of Organic Chemistry 1988, 53, 4864-4867; b) R. Curci, L. D'Accolti, A. Detomaso, C. Fusco, K. i. Takeuchi, Y. Ohga, P. E. Eaton, Y. Chi Yip, Tetrahedron Letters 1993, 34, 4559-4562; c) V. Cornel, in Encyclopedia of Reagents for Organic Synthesis, John Wiley \& Sons, Ltd, 2001; d) P. Kraft, W. Eichenberger, D. Frech, European Journal of Organic Chemistry 2005, 2005, 3233-3245; e) M. Bierenstiel, P. J. D'Hondt, M. Schlaf, Tetrahedron 2005, 61, 4911-4917; f) O. Onomura, H. Arimoto, Y. Matsumura, Y. Demizu, Tetrahedron Letters 2007, 48, 86688672; g) J. M. William, M. Kuriyama, O. Onomura, RSC Advances 2013, 3, 19247-19250.
[10] J. D. More, N. S. Finney, Organic Letters 2002, 4, 3001-3003.
[11] T. Bach, K. Kather, Tetrahedron 1994, 50, 12319-12328.
[12] T. Bach, F. Eilers, The Journal of Organic Chemistry 1999, 64, 80418044.

7 Experimental Part

7.1 General Methods

All reagents and solvents were of commercial grade and were used without further purification, with the exception of MeCN which was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was dried over activated alumina, and THF which was distilled from sodium/benzophenone. Flash chromatography was performed on columns of silica gel ($35-70 \mu \mathrm{~m}$) or 230-400 mesh silica gel 60 (0.040-0.063 mm). Analytical thin-layer chromatography was carried out on commercial 0.25 mm silica gel plates which were visualized by UV fluorescence at 254 nm then revealed using a phosphomolybdic acid solution (10% in EtOH) or a p-anisaldehyde solution. Retention factors (R_{f}) are given for such TLC analyses. Melting points were obtained in open capillary tubes and are uncorrected. Optical rotations were measured using a 10 cm quartz cell; values for [$\alpha]_{\mathrm{D}}{ }^{\top}$ were obtained with the D-line of sodium at the indicated temperature T, using solutions of concentration (c) in units of $\mathrm{g} \cdot 100 \mathrm{~mL}^{-1}$. Fourier-transform Infrared (IR) spectra were recorded for neat samples using an ATR diamond accessory; maximum absorbances (v) are given in cm^{-1}. Nuclear magnetic resonance (NMR) data were acquired on a spectrometer operating at $500 / 400 / 360 / 300 / 250 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$, and at 121/101/90/75/63 MHz for ${ }^{13} \mathrm{C}$. Chemical shifts (δ) are reported in ppm with respect to tetramethylsilane ($\delta=0 \mathrm{ppm}$). Splitting patterns for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR signals are designated as: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintuplet), broad singlet (br. s) or m (multiplet). Coupling constants (J) are reported in Hz. High-resolution mass spectrometry (HRMS) data were recorded using on a spectrometer equipped with an electrospray ionization source either in positive or negative mode as appropriate, with a tandem Q-TOF analyzer. Enantiomeric excesses of α-benzylamino cyclobutanones were determined by HPLC, using a Daicel Chiralpak AD-H, Chiralcel OJ, Phenomenex Lux Cellulose1 analytical column with i-PrOH/hexane as eluent, using authentic racemic samples for reference comparison.

7.2 EXPERIMENTAL DATA

Dibenzylamines (2)

Benzylamines 2a, 2q, 2s were purchased and used without further purification. Benzylamines $\mathbf{2 b},{ }^{[1]} \mathbf{2 c},{ }^{[2]} \mathbf{2 d},{ }^{[2]} \mathbf{2 e},{ }^{[3]} \mathbf{2 f},{ }^{[3]} \mathbf{2 g},{ }^{[4]} \mathbf{2 h},{ }^{[5]} \mathbf{2 i},{ }^{[6]} \mathbf{2 j},{ }^{[7]} \mathbf{2 k},{ }^{[2]}$ $\mathbf{2 l},{ }^{[5]} \mathbf{2 m},{ }^{[2]} \mathbf{2 n},{ }^{[8]} \mathbf{2 \mathbf { o }},{ }^{[8]} \mathbf{2 r},{ }^{[9]} \mathbf{2 s},{ }^{[9]} \mathbf{2 t},{ }^{[10]}$ were prepared according to literature procedures. The spectroscopic data are in accordance with those presented in literature.

$\mathbf{2 p}$ was synthesized by reductive amination. ${ }^{[11]} p$ Nitrobenzaldehyde ($1 \mathrm{mmol}, 0.151 \mathrm{~g}$) and p-trifluoro methylbenzylamine (1.06 $\mathrm{mmol}, 0.185 \mathrm{~g}$) were mixed in $\mathrm{MeOH}(5 \mathrm{~mL})$ at room temperature. The mixture was stirred at room temperature for 4 h , until the aldimine formation was completed. The aldimine in MeOH was carefully treated with solid $\mathrm{NaBH}_{4}(0.06 \mathrm{~g}, 1.6 \mathrm{mmol})$. The reaction mixture was stirred for 60 min and quenched with 1 M NaOH . The product was extracted with ether. The ether extract was washed with saturated aqueous NaCl and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated and the residue was purified by column chromatography (silica gel, mixture of hexane/ethyl acetate, $3: 1 \rightarrow 1: 1$). - Yield 71%, yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 8.19 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.92 (s, 2H), 3.88 (s, 2H), 1.85 (brs, 1H). ${ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 147.89, 147.26, 144.00, 128.76, 128.41, 127.09, 125.54 (q, J = 3.2 Hz), 123.79, 52.81, 52.47. MS m/z: 309 [M+1 (42)], 291 (15), 174 (41), 159 (100), 136 (29), 109 (20), 91 (19).

α-DIBENZYLAMINOCYCLOBUTANONES (3)

General Procedure for organocatalysed a-benzylamination of ahyDROXYCYCLOBUTANONES: To a solution of freshly distilled α -
hydroxycyclobutanone ($0.058 \mathrm{~g}, 0.669 \mathrm{mmol}$) and (DHQD) ${ }_{2}$ PYR (0.0395 g , 0.0448 mmol) in dry 1,4-dioxane (0.5 mL) at room temperature was added the dibenzylamine (0.224 mmol) dropwise, and the resulting mixture was stirred for $0.5-18 \mathrm{~h}$. The crude reaction mixture was directly loaded onto a silica gel column without aqueous workup, and the pure products were obtained by flash column chromatography (silica gel; hexane/ether, 5:1 1:1). The racemates were synthesized by using 4-(dimethylamino)pyridine (DMAP) as a catalyst.

3a - Yellow oil ($48 \mathrm{mg}, 81 \%$ yield). IR (neat): 3087, 3058, 3028, 2930, 2844, 2812, 1778, 1653, 1495, 1453, 1400, 1374, 1069, 1026 $\mathrm{cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{29}=+19.2\left(\mathrm{c}=2.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.37(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}$, 1 H), 3.76 ($d, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.63(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.70(\mathrm{dt}, \mathrm{J}=19.5,9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59$ (ddd, J = 14.9, $7.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-1.95 (m, 2 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 209.97,138.91,129.00,128.44,127.31,76.66,55.14,40.71$, 14.94. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+1]+266.1559$; found 266.1558. The enantiomeric ratio (71:29) was determined by HPLC (Chiracel OJ column; hexane/iPrOH, $90: 10$; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.74 \mathrm{~min}$ (major), $t_{R}=21.83 \mathrm{~min}$ (minor).

3b - Yellow oil ($61 \mathrm{mg}, 82 \%$ yield). IR (neat): 3031, $2831,1778,1617,1492,1449,1420,1325,1164,1124,1105,1062,1019 \mathrm{~cm}^{-1}$. $[\alpha]_{\mathrm{D}}{ }^{27}=+20.1\left(\mathrm{c}=3.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.56(\mathrm{~d}, \mathrm{~J}=8.2$ Hz, 2 H), 7.49 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37-7.28$ (m, 4 H), 7.25 (dd, J = 9.6, 4.3 Hz , $1 \mathrm{H}), 4.32-4.21$ (m, 1 H), 3.81 (d, J = $14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (dd, J = 28.1, 13.8 Hz , 2 H), 3.63 ($\mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81-2.68 (m, 1 H), 2.67-2.57 (m, 1 H), 2.16-
1.94 (m, 2 H). ${ }^{13} \mathrm{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 209.40,143.30,138.41,129.09$, 128.98, 128.54, 127.52, 125.39 ($q, ~ J=3.8 \mathrm{~Hz}$), 76.65, 55.37, 54.71, 40.80, 15.09. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+1]^{+} 334.1413$; found 334.1426. The enantiomeric ratio (86:14) was determined by HPLC (Phenomenex Lux Cellulose1 column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.43 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=12.32 \mathrm{~min}$ (minor).

3c - Yellow oil (64 mg, 92\% yield). IR (neat): 3022, $2841,1774,1604,1518,1495,1456,1348,1262,1105,1069 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{29}=+10.9$ ($\mathrm{c}=5.46, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.16(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.27(\mathrm{dd}, \mathrm{J}=10.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=18.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{qd}, \mathrm{J}=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 209.03,147.04,138.03,129.43,128.96,128.59$, 127.65, 123.69, 76.68, 55.63, 54.56, 40.85, 15.22. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]^{+} 311.139$; found 311.1394. The enantiomeric ratio (87:13) was determined by HPLC (Chiracel OJ column; hexane/iPrOH, 90:10; flow rate: 1.0mL $\min ^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=41.52 \mathrm{~min}\left(\right.$ major), $\mathrm{t}_{\mathrm{R}}=36.36 \mathrm{~min}($ minor $)$.

3d - Yellow oil ($58 \mathrm{mg}, 90 \%$ yield). IR (neat): 3031, $2831,2231,1774,1610,1499,1456,1371,1075,1023 \mathrm{~cm}^{-1} \cdot[\alpha]_{D^{27}}=+12.3(\mathrm{c}=$ 5.49, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.59(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, J = $4.3 \mathrm{~Hz}, 5 \mathrm{H}$), $4.26(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=14.4$ Hz, 1 H), 3.77-3.67 (m, 2 H), 3.63 (d, J = 13.5 Hz, 1H), 2.80-2.70 (m, 1 H), 2.68$2.58(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{qd}, \mathrm{J}=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(126$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 209.12,144.90,138.10,132.26,129.40,128.93,128.55,127.58$, 118.99, 111.12, 76.64, 55.53, 54.79, 40.81, 15.15. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+1]+291.1492$; found 291.1497. The enantiomeric ratio (86:14) was determined by HPLC (Chiralpak AD-H column; hexane/iPrOH, 95:5; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}-1 ; ~ \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=22.76 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=26.78 \mathrm{~min}$ (minor).

3e - Yellow oil ($50 \mathrm{mg}, 69 \%$ yield). IR (neat): 3031, 2956, 2890, 1774, 1722, 1614, 1574, 1492, 1436, 1387, 1282, 1190, 1170, 1111, 1075, $1023 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{20}=+17.1\left(\mathrm{c}=4.90, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 7.99(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ (ddd, J=18.4, 8.7, $5.9 \mathrm{~Hz}, 5 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (dd, J = 22.9, $13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.62 (d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (ddd, J = 19.5, $10.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66-2.55 (m, 1 H), 2.13-1.94 (m, 2 H). ${ }^{13}$ C-NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 209.50,167.09,144.49,138.43,129.75,129.24,128.96,128.80$, 128.48, 127.44, 76.61, 55.32, 54.85, 52.14, 40.74, 15.03. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+1]^{+} 324.1594$; found 324.1602. The enantiomeric ratio (80:20) was determined by HPLC (Chiralpak AS-H column; hexane/iPrOH, 99:1; flow rate: 1.0 $\mathrm{mL} \mathrm{min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=25.70 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=32.21 \mathrm{~min}($ minor $)$.

3f - Pale yellow oil ($73 \mathrm{mg}, 94 \%$ yield). IR (neat): 3025, 2844, 1778, 1653, 1591, 1489, 1449, 1403, 1374, 1249, 1164, 1072, 1010 $\mathrm{cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{27}=+16.5\left(\mathrm{c}=6.29, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.45-7.40$ (m, 2 H), 7.35-7.28 (m, 5 H), 7.24 (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76-3.67$ (m, 2 H), $3.59(t, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.71 (ddd, J = 18.3, 10.5, $9.3 \mathrm{~Hz}, 1$ H), 2.65-2.55 (m, 1 H), 2.10-1.94 (m, 1 H$) .{ }^{13} \mathbf{C}-$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 209.59,
138.55, 138.01, 131.53, 130.62, 128.94, 128.48, 127.42, 121.08, 76.55, 55.16, 54.46, 40.75, 15.01. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}[\mathrm{M}+1]^{+} 344.0644$; found 344.0651. The enantiomeric ratio ($80: 20$) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $t_{R}=20.28 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=21.62 \mathrm{~min}$ (minor).

3 g - Pale yellow oil ($59 \mathrm{mg}, 89 \%$ yield). IR (neat): $3025,2838,2812,1774,1597,1492,1449,1400,1371,1259,1164,1095,1075$, $1016 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{27}=+19.4\left(\mathrm{c}=5.46, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta: 7.36-$ 7.22 (m, 9 H), 4.30-4.21 (m, 1 H), 3.73 (dd, J = 13.7, $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.60 (dd, J = 13.7, $3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.78-2.66 (m, 1 H), 2.66-2.55 (m, 1 H), 2.11-1.94 (m, 2 H). ${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 209.67, 138.59, 137.49, 133.00, 130.27, 128.96, 128.59, 128.49, 127.42, $76.55,55.15,54.41,40.75$, 14.98. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{CINO}[\mathrm{M}+1]^{+} 300.115$; found 300.115. The enantiomeric ratio (79:21) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.99 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=9.45 \mathrm{~min}$ (minor).

3h - Pale yellow oil ($58 \mathrm{mg}, 92 \%$ yield). IR (neat): $3064,2841,1778,1604,1509,1449,1374,1220,1157,1092,1072 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{24}$ $=+14.7\left(\mathrm{c}=5.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.32(\mathrm{dt}, \mathrm{J}=17.8,7.5$ Hz, 7 H), $6.99(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.60$ (dd, $J=13.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.71 (ddd, J = 19.5, 10.8, 2.0 Hz, 1 H), 2.65-2.55 (m, 1 H), 2.11-1.93 (m, 2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 209.77$, 163.19, 161.24, 138.72, 134.58 (d, J = 3.2 Hz), 130.49, 130.43, 128.96, 128.47, 127.38, 115.32,
115.15, 76.57, 55.10, 54.37, 40.75, 14.96. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}$ [M+1]+ 284.1445; found 284.1452. The enantiomeric ratio (76:24) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/ $\mathrm{iPrOH}, 99: 1$; flow rate: $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=10.36 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.96 \mathrm{~min}($ minor $)$.

$3 \mathbf{i}$ - Yellow oil ($53 \mathrm{mg}, 77 \%$ yield). IR (neat): 3071, $3025,2838,1778,1528,1449,1351,1075,1023 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{25}=+8.4(\mathrm{c}=4.98$, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, J = 7.7 Hz, 1 H), $7.49(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 5 \mathrm{H}), 4.28(\mathrm{t}, \mathrm{J}=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82-2.71 (m, 1 H), 2.70-2.60 (m, 1 H), 2.13 (qd, J = 10.7, 4.6 Hz , $1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 209.02,148.49,141.46$, 138.06, 134.95, 129.38, 129.00, 128.61, 127.62, 123.57, 122.46, 76.68, 55.56, 54.47, 40.87, 15.30. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]^{+} 311.139$; found 311.1399. The enantiomeric ratio (78:22) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 95:5; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $t_{R}=16.11 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=17.18 \mathrm{~min}$ (minor).

3j - Yellow oil ($33 \mathrm{mg}, 48 \%$ yield). IR (neat): 3064, $3025,1778,1528,1495,1456,1354,1200,1179,1065 \mathrm{~cm}^{-1} \cdot[\alpha]_{D^{27}}=-13.1(\mathrm{c}=$ 2.28, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.81$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (dd, J $=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.26 (m, 5 H), 4.27-4.20 (m, 1 H), 4.15 ($\mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 ($\mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.77(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1$ H), 3.64 (d, J = $13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76-2.66 (m, 1 H), 2.65-2.56 (m, 1 H), 2.06 (ddd, J $=18.4,13.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 209.33, 149.80, 138.09,
134.46, 132.84, 131.24, 128.97, 128.52, 128.08, 127.52, 124.45, 76.74, 56.34, 51.83, 40.73, 15.03. HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]+311.139$; found 311.1396. The enantiomeric ratio (56:44) was determined by HPLC (Chiralpak AD-H column; hexane/ $\mathrm{iPrOH}, 98: 2$; flow rate: $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=22.66$ \min (major), $\mathrm{t}_{\mathrm{R}}=26.86 \mathrm{~min}$ (minor).

3k - Yellow oil ($51 \mathrm{mg}, 79 \%$ yield). IR (neat): 3028, 2982, 2926, 2812, 1778, 1515, 1492, 1449, 1371, 1253, 1200, 1170, 1115, 1075, $1026 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{24}=+17.7\left(\mathrm{c}=5.31, \mathrm{CHCl}_{3}\right) . \mathbf{1 H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.36$ (d, J = 7.0 Hz, 2 H), $7.30(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=8.1,4.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.11$ (d, J = 7.8 Hz, 2 H), 4.27 (ddd, J = 9.4, 4.5, 2.2 Hz, 1 H), 3.73 (t, J = $14.0 \mathrm{~Hz}, 2$ H), 3.65-3.55 (m, 2 H), 2.73-2.63 (m, 1 H), 2.58 (dddd, J = 9.2, 7.9, 5.4, 2.4 Hz, 1 H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 210.04$, 138.99, 136.87, 135.74, 129.11, 128.97, 128.96, 128.40, 127.24, 110.11, 76.61, 55.00, 54.82, 40.68, 21.23, 14.90. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+1]^{+}$ 280.1696; found 280.1697. The enantiomeric ratio (75:25) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: 1.0 $\mathrm{mL} \mathrm{min}-1 ; ~ \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.84 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.69 \mathrm{~min}$ (minor).

31 - Yellow oil ($62 \mathrm{mg}, 91 \%$ yield). IR (neat): 3058, $3015,2959,1781,1650,1518,1495,1456,1371,1216,1072 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{27}=+14.5$ (c = 5.90, CHCl 3). 1H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, J = 14.3, $7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.25-7.20 (m, 1 H), 7.16 (d, J = 8.0 Hz, 2 H), 4.334.26 (m, 1 H), 3.75 (t, J = $14.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67-3.56 (m, 2 H), 2.88 (dt, J = 13.8, 6.9 Hz, 1 H), 2.74-2.64 (m, 1 H), 2.58 (dddd, J = 17.3, 9.2, 5.4, 2.5 Hz, 1 H), 2.09-
1.96 (m, 2 H), 1.23 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 210.08$, 147.93, 139.04, 136.14, 128.97, 128.90, 128.40, 127.24, 126.45, 76.64, 55.05, 54.81, 40.68, 33.91, 24.15, 14.87. HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+1]^{+}$ 308.2009; found 308.2004. The enantiomeric ratio (70:30) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: 0.8 $\mathrm{mL} \mathrm{min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.52 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=8.86 \mathrm{~min}($ minor $)$.

3m - Pale yellow oil ($59 \mathrm{mg}, 89 \%$ yield). IR (neat): 2956, 2933, 2838, 1778, 1614, 1512, 1456, 1374, 1302, 1246, 1177, 1108, 1069, $1033 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{28}=+14.6\left(\mathrm{c}=5.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.36$ (d, J = 7.0 Hz, 2 H), 7.33-7.20 (m, 5 H), 6.85 (d, J = $8.7 \mathrm{~Hz}, 2 H$), 4.36-4.16 (m, 1 H), 3.78 (s, 3 H), $3.77-3.67$ (m, 1 H), 3.59 (dd, J = $23.4,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75$2.64(\mathrm{~m}, 1 \mathrm{H}), 2.59$ (dddd, J = 17.3, 9.2, 5.3, 2.4 Hz, 1 H), 2.07-1.97 (m, 2 H$) .{ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}) $\delta: 210.10,158.96,139.02,130.82,130.16,128.97$, 128.41, 127.25, 113.83, 76.57, 55.37, 54.95, 54.48, 40.70, 14.90. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}$296.1645; found 296.1649. The enantiomeric ratio (69:31) was determined by HPLC (Chiracel OJ column; hexane/iPrOH, 90:10; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=17.75 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=19.74 \mathrm{~min}$ (minor).

3n - Pale yellow oil ($73 \mathrm{mg}, 90 \%$ yield). IR (neat): 3008, 2844, 1778, 1617, 1591, 1522, 1325, 1249, 1164, 1121, 1108, 1065, 1039, $1019 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{27}=+15.0\left(\mathrm{c}=6.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.57 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.27 (t, J = $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84-3.77 (m, 4 H), 3.70 (dd, J = $13.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.58 (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.69 (m, 1 H), 2.68-2.58 (m,

1 H), 2.14-1.96 (m, 2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 209.55, 159.12, 143.44, 130.31, 130.17, 129.06, 125.36 (q, J = 3.8 Hz), 113.93, 76.57, 55.39, 54.74, 54.54, 40.80, 15.08. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+1]^{+} 364.1519$; found 364.1515. The enantiomeric ratio ($86: 14$) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 97:3; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $t_{R}=13.79 \mathrm{~min}$ (major), $t_{R}=15.33 \mathrm{~min}$ (minor).

30 - White solid (71 mg, 80\% yield); m.p. 95$98^{\circ} \mathrm{C} . \operatorname{IR}$ (Nujo): 2975, 2838, 1784, 1621, 1419, 1325, 1162, 1120, 1104, 1068, $1019 \mathrm{~cm}^{-1} \cdot[\alpha] \mathrm{D}^{21}=+12.2\left(\mathrm{c}=7.65, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.57$ (d, J = 8.1 Hz, 4 H), 7.47 (d, J = $8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 4.29-4.23 (m, 1 H), 3.81 (d, J = 14.1 Hz, 2 H), 3.70 (d, J = $14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.83-2.71 (m, 1 H), 2.70-2.60 (m, 1 H), 2.12 (qd, J = 10.7, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08-1.98 (m, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 208.90, 142.76, 129.97, 129.71, 129.08, 125.48 (q, J = 3.8 Hz), 76.64, 54.97, 40.87, 15.20 ppm. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NO}[\mathrm{M}+1]+402.1287$; found 402.1317. The enantiomeric ratio ($91: 9$) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $t_{R}=8.48 \mathrm{~min}($ major $), t_{R}=8.12 \mathrm{~min}($ minor $)$.

3p - Yellow oil (53 mg, 63\% yield). IR (neat): 2976, 2844, 1774, 1620, 1604, 1525, 1348, 1325, 1157, 1118, 1105, 1062, 1019 $\mathrm{cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{21}=+4.0\left(\mathrm{c}=4.43, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.17(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, J = 8.0 $\mathrm{Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=10.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{tt}, \mathrm{J}=16.2$, $8.3 \mathrm{~Hz}, 4 \mathrm{H})$, 2.85$2.74(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{qd}, \mathrm{J}=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.09-1.98(m,
$1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}) $\delta: 208.53,147.53,146.44,142.40,142.39$, 129.44, 129.08, 125.57 (q, J = 3.8 Hz), 123.79, 76.63, 55.17, 54.79, 40.93, 15.33. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]+379.1264$; found 379.1276. The enantiomeric ratio (88:12) was determined by HPLC (Phenomenex Lux Cellulose1 column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=28.71$ \min (major), $\mathrm{t}_{\mathrm{R}}=26.67 \mathrm{~min}$ (minor).

3q - Colorless oil ($47 \mathrm{mg}, 59 \%$ yield). IR (neat): 2966, 2844, 2227, 1778, 1620, 1610, 1420, 1325, 1164, 1121, 1102, 1069, 1019 $\mathrm{cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{22}=+3.8\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.61(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.44 (m, 4 H), 4.29-4.20 (m, 1 H), 3.81 (d, J = 14.5 Hz, 2 H), 3.71 (dd, J = 14.2, 3.1 Hz, 2 H), 2.79 (ddd, J = 19.6, $10.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72-2.61 (m, 1 H), 2.14 (qd, J = 10.6, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-1.97 (m, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 208.65, 144.35, 142.48, 142.47, 132.36, 129.39, 129.06, 125.52 ($q, J=3.8 \mathrm{~Hz}$), 118.86, 111.39, 76.59, 55.08, 55.02, 40.89, 15.25. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+1]^{+} 359.1366$; found 359.1361. The enantiomeric ratio (90:10) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\text {R }}$ $=29.10 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=26.39 \mathrm{~min}$ (minor).

$3 \mathbf{r}$ - Colorless oil ($68 \mathrm{mg}, 85 \%$ yield). IR (neat): 2930, 2838, 1778, 1623, 1492, 1417, 1371, 1325, 1161, 1121, 1105, 1065, 1016 $\mathrm{cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{22}=+13.4\left(\mathrm{c}=6.82, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.57(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28(\mathrm{~s}, 4 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.82-$ 3.56 (m, 4 H), 2.80-2.70 (m, 1 H), 2.68-2.59 (m, 1 H), 2.14-2.04 (m, 1 H), 2.00 (dd, J = 19.7, 9.6 Hz, 1 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 209.12,142.98,136.97$,
133.26, 130.25, 129.06, 128.70, 125.45 (q, J = 3.8 Hz), 76.54, 54.74, 54.67, 40.84, 15.14. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+1]^{+} 368.1023$; found 368.1031. The enantiomeric ratio (91:9) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): t_{R} $=11.61 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=11.09 \mathrm{~min}$ (minor).

3s - Colorless oil ($64 \mathrm{mg}, 82 \%$ yield). IR (neat): 2831, 1778, 1620, 1604, 1509, 1420, 1325, 1226, 1161, 1124, 1105, 1069, 1016 $\mathrm{cm}^{-1} \cdot[\alpha]_{D^{22}}=+16.1\left(\mathrm{c}=6.43, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.57(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (dd, J = 8.4, $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=$ 8.7 Hz, 2 H), 4.29-4.20 (m, 1 H), 3.70 (ddd, J = 53.5, 38.2, $13.8 \mathrm{~Hz}, 4 \mathrm{H}$), 2.802.70 (m, 1 H), 2.68-2.58 (m, 1 H), 2.14-1.96 (m, 2 H). ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ठ: 209.24, 163.29, 161.34, 143.11, 134.09 (d, J = 3.1 Hz), 130.51, 130.44, 129.06, 125.43 (q, J = 3.7 Hz), 115.46, 115.29, 76.54, 54.68, 54.61, 40.84, 15.10. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{NO}[\mathrm{M}+1]^{+} 352.1319$; found 352.1346. The enantiomeric ratio (90:10) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.08 \mathrm{~min}$ (major), $t_{R}=7.54 \mathrm{~min}($ minor $)$.

3t - Yellow oil ($75 \mathrm{mg}, 85 \%$ yield). IR (neat): 2953, 2835, 1778, 1722, 1617, 1440, 1417, 1321, 1282, 1164, 1105, 1069, 1019 $\mathrm{cm}^{-1} \cdot[\alpha] \mathrm{D}^{20}=+10.4\left(\mathrm{c}=7.49, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.99(\mathrm{~d}, \mathrm{~J}=$ 8.0 Hz, 2 H), 7.57 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (dd, J = 18.5, $8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 4.25 (t, J $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.76 (ddd, J = 19.3, 10.6, 1.5 Hz, 1 H), 2.69-2.58 (m, 1 H), 2.17-1.96 (m, 2 H). ${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 209.01, 167.01, 143.92, 142.83, 129.85, 129.47,
129.07, 128.81, 125.45 (d, J = 3.1 Hz), 76.61, 55.09, 54.89, 52.18, 40.83, 15.16. HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+1]^{+}$392.1468; found 392.1489. The enantiomeric ratio (90:10) was determined by HPLC (Phenomenex Lux Cellulose1 column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=21.30$ \min (major), $\mathrm{t}_{\mathrm{R}}=19.73 \mathrm{~min}$ (minor).

N-AlKyl-benzylamines (4)

Alkyl-benzylamines $\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 c}, \mathbf{4 d}, \mathbf{4 e}, \mathbf{4 f}, \mathbf{4 g}$, were purchased and used without further purification. Benzylamines $\mathbf{4 h},{ }^{[12]} \mathbf{4 i},{ }^{[13]} \mathbf{4 j},{ }^{[14]} \mathbf{4 k},{ }^{[15]}$ were prepared according to literature procedures. The spectroscopic data are in accordance with those presented in literature.

$\alpha-N-A L K Y L-B E N Z Y L A M I N O$ CYCLOBUTANONES (5)

General Procedure for organocatalysed a-benzylamination of aHYDROXYCYCLOBUTANONES: To a solution of freshly distilled α hydroxycyclobutanone ($0.058 \mathrm{~g}, 0.669 \mathrm{mmol}$) and (DHQD) ${ }_{2}$ PYR (0.0395 g , $0.0448 \mathrm{mmol})$ in dry 1,4 -dioxane $(0.5 \mathrm{~mL})$ at room temperature was added the alkylbenzylamine (0.224 mmol) dropwise, and the resulting mixture was stirred for $0.5-18 \mathrm{~h}$. The crude reaction mixture was directly loaded onto a silica gel column without aqueous workup, and the pure products were obtained by flash column chromatography (silica gel; hexane/ether, $5: 1$ 1:1). The racemates were synthesized by using 4-(dimethylamino)pyridine (DMAP) as a catalyst.

5a - Yellow oil (39 mg, 93\% yield). IR (neat): 3028, 2982, 2792, 1778, 1643, 1495, 1453, 1403, 1075, $1059 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{26}=+6.5$ (c $\left.=3.36, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.32(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{dd}, \mathrm{J}$ $=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 1 \mathrm{H})$, 2.74-2.65 (m, 1 H), 2.29 (s, 3 H), 2.07 (ddd, J=19.1, 12.6, $7.1 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathbf{C}-\mathbf{N M R}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 208.63,138.12,129.24,128.44,127.39,78.91,59.65,41.07$, 38.57, 14.79. HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+1]+190.1226$; found 190.1214.

The enantiomeric ratio (55:45) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}\right)$: tr $=8.87 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.50 \mathrm{~min}$ (minor).

5b - Yellow oil ($38 \mathrm{mg}, 84 \%$ yield). IR (neat): 2969, 1778, 1640, 1499, 1453, 1394, 1377, 1065, $1026 \mathrm{~cm}^{-1} .[\alpha] \mathrm{D}^{27}=+6.8(\mathrm{c}=2.94$, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.36-7.32 (m, 2 H), 7.31 (dd, J = 10.0, 4.8 Hz, 2 H), 7.26-7.22 (m, 1 H), 4.27 (tt, J = 10.8, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (d, J = 13.7 Hz , 1 H), 3.66 (d, J = $13.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.69 (m, 1 H), 2.69-2.57 (m, 3 H), 2.09 (ddd, $J=20.7,10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (ddd, J = 10.8, $9.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.07 (t, J = 7.1 $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}$: 209.88, 139.12, 128.99, 128.38, 127.19, $77.50,54.44,45.19,40.66,15.55,12.61$. HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+1]^{+}$ 204.1382; found 204.1406. The enantiomeric ratio (54:46) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: 1.0 $\mathrm{mL} \mathrm{min}{ }^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=9.26 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.52 \mathrm{~min}($ minor $)$.

5c: Colourless oil ($36 \mathrm{mg}, 75 \%$ yield). IR (neat): 2969, 2926, 1781, 1633, 1499, 1459, 1394, 1371, 1279, 1174, 1128, $1059 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{32}$ $=+6.8\left(\mathrm{c}=3.48, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.36(\mathrm{dd}, \mathrm{J}=7.6,0.6 \mathrm{~Hz}$, $2 H$), 7.29 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{td}, \mathrm{J}=8.6,2.1 \mathrm{~Hz}, 1$ H), $3.69(q, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{dt}, \mathrm{J}=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H})$, 2.59-2.50 (m, 1 H), 2.18-2.05 (m, 1 H), 2.03-1.92 (m, 1 H), 1.05 (d, J = 6.6 Hz , $3 \mathrm{H}), 1.02$ (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 211.13,140.55$, 128.48, 128.30, 126.95, 74.33, 51.18, 49.67, 40.52, 20.08, 19.83, 17.42. HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+1]^{+} 218.1539$; found 218.1532. The enantiomeric ratio (56:44) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane $/ \mathrm{iPrOH}, 98: 2$; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=6.64 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=7.34 \mathrm{~min}$ (minor).

5d - Yellow oil ($65 \mathrm{mg}, 88 \%$ yield). IR (neat): 3031, 2976, 1778, 1649, 1607, 1495, 1459, 1157, $1072 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{29}=+6.0(\mathrm{c}=3.62$, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.36-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H})$, 7.21-7.15 (m, 1 H), 7.15-7.10 (m, 2 H), 4.31 (ddt, J = 10.7, 8.6, 2.3 Hz, 1 H), 3.84 (d, J = 13.7 Hz, 1 H), 3.75 (d, J = $13.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.90-2.69 (m, 5 H), 2.60 (dddd, $J=17.3,10.0,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (ddd, J = 20.8, $10.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.97 (ddd, $\mathrm{J}=10.8,9.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 209.67,140.19,138.93$, 128.98, 128.87, 128.46, 128.45, 127.31, 126.13, 77.80, 55.21, 53.32, 40.60, 34.41, 15.74. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+1]^{+} 280.1696$; found 280.1701. enantiomeric ratio (56:44) was determined by HPLC (Chiracel OJ column; hexane/iPrOH, 90:10; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.50 \mathrm{~min}$ (major), $t_{R}=12.14 \mathrm{~min}($ minor $)$.

5e - Colourless oil (23 mg, 48\% yield). IR (neat): 2979, 1778, 1640, 1499, 1453, 1420, 1354, 1220, 1170, 1069, $1026 \mathrm{~cm}^{-1}$. 1H-NMR (400 MHz, CDCl_{3}) $\delta: 7.29-7.14$ (m, 5 H), 5.79 (ddt, J = 16.7, $\left.10.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.22-$ 4.99 (m, 2 H), 4.35-4.14 (m, 1 H), 3.68 (d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (d, J = 13.6 Hz , 1 H), 3.30-2.95 (m, 2 H), 2.73-2.60 (m, 1 H), 2.53 (dddd, J = 17.3, 9.8, 4.7, 2.5 $\mathrm{Hz}, 1 \mathrm{H}$), 2.06-1.88 (m, 2 H). ${ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 209.85, 138.83, 135.68, 129.06, 128.43, 127.29, 118.10, $77.05,54.88,54.27,40.66,15.36$. HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+1]^{+} 216.1383$; found 216.1387. The enantiomeric ratio (51:49) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: $0.5 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.58 \mathrm{~min}$ (major), $t_{R}=12.08 \mathrm{~min}$ (minor).

$5 f$ - Colourless oil (47 mg, 77\% yield). IR (neat): 2979, 1781, 1728, 1646, 1495, 1449, 1397, 1374, 1253, 1187, 1075, $1029 \mathrm{~cm}^{-1} .[\alpha]_{D^{29}}$ $=+7.1\left(\mathrm{c}=4.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.35-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.31-$ 4.20 (m, 1 H), 4.32-4.21 (m, 2 H), 4.10 ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (d, J = 13.9 Hz , 1 H), $3.70(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.60$ (dddd, J = 17.3, 10.0, 4.6, 2.5 Hz, 1 H), 2.54-2.41 (m, 2 H), 2.09 (qd, J = 10.8, 4.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 209.54,172.46,138.69,128.86,128.43,127.35,77.51,60.51,55.10,47.09$, 40.51, 33.32, 15.75, 14.29. HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+1]^{+}$276.1594; found 276.1593. The enantiomeric ratio (61:39) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 98:2; flow rate: 1.0 mL $\min ^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.34 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=14.42 \mathrm{~min}$ (minor).

5 g - Colourless oil (54 mg, 93\% yield). IR (neat): 2982, 1778, 1732, 1659, 1499, 1456, 1377, 1197, 1161, 1079, 1029, 1000 $\mathrm{cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{27}=+29.8\left(\mathrm{c}=4.95, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.35(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (dd, J = 10.0, $4.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28-7.23$ (m, 1 H), 4.49-4.40 (m, $1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1$ H), 3.46 (d, J = $17.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.72-$ 2.57 (m, 1 H), 2.20 (qd, J = 10.7, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.02 (dt, J = 19.4, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 207.85,171.38,137.98$, 129.20, 128.46, 127.50, 77.09, 60.56, 55.30, 51.86, 40.71, 17.14, 14.33. HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+1]^{+} 262.1438$; found 262.1442. The enantiomeric ratio (78:22) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: $0.9 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=15.25 \mathrm{~min}$ (major), $t_{R}=15.96 \mathrm{~min}$ (minor).

5h - Yellow oil (42 mg, 72\% yield). IR (neat): 2972, 1778, 1600, 1518, 1456, 1394, 1341, 1216, 1190, 1128, 1111, 1062, 1010 $\mathrm{cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{22}=+16.7\left(\mathrm{c}=3.59, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.24-8.06$ (m, 2 H), 7.56 (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.90-$ 2.68 (m, 2 H), 2.67-2.48 (m, 1 H), 2.18 (qd, J = 10.8, 4.3 Hz, 1 H), 2.06-1.87 (m, $1 \mathrm{H}), 1.06$ (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.04 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: 210.13, 148.90, 147.19, 128.89, 123.60, 74.21, 50.81, 50.50, 40.74, 20.16, 19.66, 17.63. HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]+263.139$; found 263.1377. The enantiomeric ratio (66:34) was determined by HPLC (Chiralpak AS-H column; hexane/ $\mathrm{iPrOH}, 95: 5$; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.69$ \min (major), $\mathrm{t}_{\mathrm{R}}=12.96 \mathrm{~min}($ minor $)$.

$5 \mathbf{i}$ - Yellow oil (54 mg, 93\% yield). IR (neat): $3077,2976,1778,1600,1515,1341,1203,1174,1111,1069,1016 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{23}$ $=+18.6\left(\mathrm{c}=5.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.17(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.83 (ddt, J = 16.8, 10.2, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (ddd, J = 9.6, 8.5, $3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.40-4.25 (m, 1 H), 3.81 ($q, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.23 (dd, J = 14.2, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (dd, J = 14.2, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87-2.73 (m, 1 H), 2.73-2.58 (m, 1 H), 2.16 (qd, J = 10.8, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-1.92 (m, 1 H). ${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 208.92,147.13,134.89,129.40,123.68,118.67$, 54.69, 54.13, 40.78, 15.73. HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]+261.1234$; found 261.1239. The enantiomeric ratio (78:22) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: 1.0 mL $\min ^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=78.49 \mathrm{~min}\left(\right.$ major), $\mathrm{t}_{\mathrm{R}}=21.51 \mathrm{~min}($ minor $)$.

$5 \mathbf{j}$ - Pale yellow oil ($43 \mathrm{mg}, 63 \%$ yield). IR (neat): 2963, 2930, 2861, 1778, 1640, 1604, 1522, 1469, 1348, 1177, 1115, 1072, 1013 $\mathrm{cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{20}=+5.9\left(\mathrm{c}=5.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.17(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $4.28(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=14.8$ Hz, 1 H), 3.76 (d, J = $14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87-2.42 (m, 4 H), 2.15 (qd, J = 10.6, 4.4 Hz, 1 H), 2.05-1.81 (m, 1 H$), 1.54-1.17$ (m, 6 H$), 0.86$ (t, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}) $\delta: 209.26,147.64,129.29,123.64,112.71,77.68,54.73$, 51.93, 40.70, 29.42, 27.20, 22.61, 15.65, 14.12. HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]^{+}$291.1703; found 291.1693. The enantiomeric ratio (67:33) was determined by HPLC (Phenomenex Lux Cellulose-1 column; hexane/iPrOH, 99:1; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.94 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=13.17 \mathrm{~min}$ (minor).

5k - Yellow oil (29 mg, 36\% yield). IR (neat): 2933, 2858, 1778, 1604, 1522, 1449, 1394, 1341, 1266, 1203, 1174, 1128, 1108, 1069, $1013 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{22}=+14.5\left(\mathrm{c}=2.47, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.16$ (d, J = 8.7 Hz, 2 H), 7.56 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.58-4.41 (m, 1 H), 3.91-3.76 (m, $2 \mathrm{H}), 2.88-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{tt}, \mathrm{J}=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (qd, J = 10.8, 4.3 Hz, 1 H), 2.18 (qd, J = 10.8, 4.3 Hz, 1 H), 2.01-1.88 (m, 1 H), $1.87-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-0.96(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.33,149.23,147.18,128.75,123.60,75.25,59.92,50.89$, 40.49, 31.10, 30.75, 26.16, 17.85. HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+1]^{+}$ 303.1703; found 303.1700. The enantiomeric ratio (62:38) was determined by HPLC (Chiralpak AS-H column; hexane/iPrOH, 98:2; flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; \lambda=$ $254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=15.01 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=19.67 \mathrm{~min}($ minor $)$.

Enantiopure dibenzyLamines (6)

Homochiral dibenzylamines 6a and ent-6a were purchased and used without further purification. Enantiopure dibenzylamines $\mathbf{6 b},{ }^{[16]}$ ent-6b, ${ }^{[16]}$ were prepared according to literature procedures. The spectroscopic data are in accordance with those presented in literature.

DibenzyLamino cyclobutanones (7)

ent-7a/ent-7a: Colourless oil (50 mg, 81\% yield, inseparable 71:29 mixture of diastereomers). IR (neat): 3028, 2972, 1778, 1597, 1495, 1449, 1400, 1377, 1207, 1177, 1128, 1092, 1059, $1029 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 7.57-7.10 (m, 20 H$), 4.36-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.71$ (m, 6 H), 2.71-2.58 (m, 2 H), 2.58-2.43 (m, 2 H), 2.10 (dd, J = 19.4, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (qd, $J=10.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (qd, $J=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (quint, $J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.43(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 211.31,210.11,140.08,139.99,139.91,129.01$, 128.78, 128.45, 128.37, 128.29, 127.74, 127.73, 127.23, 127.20, 127.00, 126.97, $74.86,74.33,56.67,56.35,51.93,51.90,41.23,39.99,17.40,16.55,16.16,15.09$. HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+1]+280.1696$; found 280.169.

ent-7b/ent-7b - Yellow oil (62 mg. 81\% yield, inseparable 91:9 mixture of diastereomers). IR (neat): 2976, 1781, 1620, 1495, 1449, 1420, 1381, 1321, 1203, 1164, 1124, 1111, 1065, $1019 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{26}=$ -21.6 ($\mathrm{c}=3.05, \mathrm{CHCl}_{3}$). 1H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.61-7.54 (m, 10 H), 7.38 (d, J = 7.6 Hz, 4 H), 7.35-7.27 (m, 3 H), 7.23 (dd, J = 13.1, 5.7 Hz, 1 H), 4.32 (dd,
$J=10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=13.3,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.80 ($q, ~ J=14.3 \mathrm{~Hz}, 4 \mathrm{H}$), 2.75-2.63 (m, 2 H), 2.62-2.49 (m, 2 H), 2.05 (dd, J = 16.7, $9.6 \mathrm{~Hz}, 4 \mathrm{H}$), 1.95 (dd, J = 10.7, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80(\mathrm{t}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ (d, J = 6.8 Hz, 3 H), 1.39 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 210.59, 209.59, 144.57, 144.47, 144.41, 143.04, 142.85, 129.10, 128.85, 128.45, 128.42, 127.66, 127.25, 127.20, 125.40 (q, J = 3.8 Hz), 125.33 (q, J = 3.8 Hz), $74.86,74.40,57.34,56.96,51.66,51.57,41.27,40.17,17.57,16.66,16.60,15.35$. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F} 3 \mathrm{NO}[\mathrm{M}+1]^{+} 348.157$; found 348.1583.

PROTECTED α-AMINO ACIDS (8)

The starting α-amino acid ester derivatives $\mathbf{8 a},{ }^{[17]} \mathbf{8 c},{ }^{[18]} \mathbf{8 d},{ }^{[19]} \mathbf{8 e},{ }^{[20]} \mathbf{8 f},{ }^{[20]}$ $\mathbf{8 g},{ }^{[17]} \mathbf{8 h},{ }^{[17]}$ were prepared from the corresponding α-amino acid according to literature procedures. The spectroscopic data are in accordance with those presented in literature.

8b was prepared according to the literature procedure. ${ }^{[17]}$ - Colourless oil (63\% yield). IR (neat): 3330, 3029, 2981, 1731, 1644, 1496, 1455, 1267, 1192, $1029 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{23}=+17.7$ (c 2.029, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.10-1.14(\mathrm{~m}, 3 \mathrm{H}), 2.93$ (ddd, 2H, J=6.5 Hz, J = $13.5 \mathrm{~Hz}), 3.10(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=14.0 \mathrm{~Hz}), 3.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=14.0$ Hz), 3.51 (t, 1H, J = 7.0 Hz), 4.06 (ddd, 2H, J = $2.5 \mathrm{~Hz}, \mathrm{~J}=7.0 \mathrm{~Hz}, \mathrm{~J}=14.0 \mathrm{~Hz}$), $5.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}), 5.11$ (d, 1H, J = 17.0 Hz), 5.76-5.83 (m, 1H), 7.16-7.19 (m, 3H), 7.23-7.24 (m, 2H). ${ }^{13}$ C-NMR ($124 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 14.0, 39.7, 50.5, 60.4, 62.0, 116.2, 126.5, 128.2, 129.1, 136.1, 137.2, 174.4. MS m/z: 160 [${ }^{+}+73$ (69)], 142 (100), 114 (18), 91 (47), 68 (26), 41 (43).

8i was prepared according to the literature procedure. ${ }^{[17]}$ Yellow oil (10\% yield). IR (neat): 3332, 3064, 2953, 2939, 1735, 1642, 1467, $1207 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{21}=+7.6\left(\mathrm{c} 2.368, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 1.80 (br s, 1H), 2.71 (ddd, 2H, J = $6.0 \mathrm{~Hz}, \mathrm{~J}=13.6 \mathrm{~Hz}, \mathrm{~J}=19.6 \mathrm{~Hz}$), 3.12 (dd, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=13.6 \mathrm{~Hz}$), $3.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=14.0 \mathrm{~Hz}), 3.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $=6.4 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.2 \mathrm{~Hz}), 5.83$ (ddd, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=10.8 \mathrm{~Hz}, \mathrm{~J}=22.8 \mathrm{~Hz}$), 7.23-7.26 (m, 1H), 7.30-7.31 (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(124 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 34.1,36.6,50.4,51.8,59.9,116.5,127.0$, 128.4, 128.8, 135.9, 137.8, 173.9. MS m/z: 206 [M+-59 (22)], 174 (4), 128 (100), 91 (70), 68 (24), 41 (34).

Cyclobutanone α-Amino acid derivatives (9)

General Procedure for α-amination of α-hydroxy cyclobutanones: To a solution of freshly distilled α-hydroxycyclobutanone 1 ($0.669 \mathrm{mmol}, 0.058 \mathrm{~g}$), (DHQ) 2_{2} PYR ($0.0448 \mathrm{mmol}, 0.0395 \mathrm{~g}$) in dry 1,4-dioxan (0.5 mL) at room temperature was added the N-allyl- α-amino acid ester derivative 8 (0.224 mmol), and the mixture was stirred for 24 h . The crude reaction mixture was directly loaded on silica gel column without aqueous work-up and pure products were obtained by flash column chromatography (silica gel, mixture of petroleum ether/ether, $5: 1 \rightarrow 1: 1$).

9a - Spectral data worked out from the 93:7 inseparable mixture of two diastereomers 9a/9'a. Yellow oil ($55 \mathrm{mg}, 85 \%$ yield). IR (neat): 2952, 1781, 1734, 1644, 1496, 1454, $1196 \mathrm{~cm}^{-1} .[\alpha]_{D^{22}}=-107.8$. (c 2.022, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.01$ (quint., $1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}$), 2.14 (ddd, $1 \mathrm{H}, \mathrm{J}=4.5$ $\mathrm{Hz}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=21.5 \mathrm{~Hz}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, 1 \mathrm{H}$,
$J=6.0 \mathrm{~Hz}, \mathrm{~J}=13.5 \mathrm{~Hz}), 3.05(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=13.5 \mathrm{~Hz}), 3.28(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, \mathrm{~J}=15.0 \mathrm{~Hz}$), $3.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=14.5 \mathrm{~Hz}), 3.59-3.63(\mathrm{~m}, 1 \mathrm{H})$, 3.61 (s, 3H), 4.64 (t, 1H, J = 10.0 Hz), 5.08 (d, 1H, J = 10.0 Hz), 5.17 (d, 1H, J = $17.0 \mathrm{~Hz}), 5.62-5.70(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (124 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.7,36.2,40.2,51.4,51.9,63.0,74.2,117.9,126.3,128.2,129.1$, 129.2, 135.8, 137.7, 173.1, 209.1. MS m / z (the same for the two diastereomers): 259 [M+-28 (6)], 228 (21), 200 (33), 168 (73), 131 (21), 91 (94), 41 (100). HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 287.1521$, found 288.1594.

9b - Spectral data worked out from the 80:20 inseparable mixture of two diastereomers $9 \mathbf{b} / \mathbf{9}^{\prime} \mathbf{b}$. Pale yellow oil ($44 \mathrm{mg}, 65 \%$ yield); pale IR (neat): 3064, 2979, 2932, 1782, 1728, 1603, 1496, 1455, 1163 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.17(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.03$ (quint., $1 \mathrm{H}, \mathrm{J}=$ $9.6 \mathrm{~Hz})$, 2.16 (ddd, $1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{~J}=10.4 \mathrm{~Hz}, \mathrm{~J}=20.8 \mathrm{~Hz}$), 2.53-2.59 (m, 1H), 2.66-2.77 (m, 1H), 2.94 (dd, 1H, J = 6.0 Hz, J = 13.6 Hz), 3.04 (dd, 1H, J = 9.2 $\mathrm{Hz}, \mathrm{J}=13.6 \mathrm{~Hz}), 3.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{~J}=14.0 \mathrm{~Hz}), 3.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}$, $J=14.0 \mathrm{~Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{~J}=8.4 \mathrm{~Hz}), 4.07(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.67$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 4.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.2 \mathrm{~Hz}), 4.60-4.73$ (m, 1H), 7.17-7.20 (m, 3H), 7.24-7.27 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.0$, 15.9, 36.4, 40.2, 51.9, 60.4, 63.1, 74.2, 117.8, 126.3, 128.1, 129.2, 135.9, 137.8, 172.7, 209.2. MS m/z (the same for the two diastereomers): 273 [M+-28 (12)], 244 (24), 228 (26), 200 (65), 182 (100), 158 (18), 91 (41), 41 (57). HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 301.1677$, found 302.1750 .

9c - Spectral data worked out from the 82:18 inseparable mixture of two diastereomers 9c/9'c. Pale yellow oil ($44 \mathrm{mg}, 54 \%$ yield). IR (neat): 3064, 3030, 2928, 1781, 1731, 1497, 1455, 1159, $1067 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl3) $\delta: 1.91$ (quint., $1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$), 2.04 (ddd, $1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}$, $J=10.8 \mathrm{~Hz}, \mathrm{~J}=21.6 \mathrm{~Hz}), 2.48-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $6.4 \mathrm{~Hz}, \mathrm{~J}=13.6 \mathrm{~Hz}$), 3.06 (dd, 1H, J = $9.2 \mathrm{~Hz}, \mathrm{~J}=13.6 \mathrm{~Hz}$), 3.27 (dd, $1 \mathrm{H}, \mathrm{J}=7.2$ $\mathrm{Hz}, \mathrm{J}=14.4 \mathrm{~Hz}$), $3.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{~J}=14.4 \mathrm{~Hz}$), 3.66 (dd, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$, $J=8.8 \mathrm{~Hz}), 4.64(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 5.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8$ $\mathrm{Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz}), 5.59-5.71(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}$, 5 H), 7.30-7.34 (m, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.8,36.3,40.2,51.9,63.1$, $66.3,74.1,117.9,126.3,128.2,128.40,128.45,128.5,129.2,135.8,136.0,137.6$, 172.5, 209.2. MS m/z: 204 [M+159 (54)], 160 (47), 119 (6), 91 (100), 41 (11). HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 363.1834$, found 364.1909.

9d - Spectral data worked out from the 78:22 inseparable mixture of two diastereomers 9d/9'd. Pale yellow oil ($47 \mathrm{mg}, 64 \%$ yield). IR (neat): 3064, 2977, 2932, 1783, 1722, 1603, 1455, 1393, $1149 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl3) ס: 1.35 (s, 9H), 2.04 (quint., 1H, J = 9.6 Hz), 2.18 (ddd, $1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{~J}=10.4 \mathrm{~Hz}, \mathrm{~J}=20.8 \mathrm{~Hz}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.6$ $\mathrm{Hz}, \mathrm{J}=11.6 \mathrm{~Hz}), 2.90(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=13.2 \mathrm{~Hz}$), $3.01(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}$, $J=13.2 \mathrm{~Hz}), 3.33(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=9.2 \mathrm{~Hz}), 4.68$ (t, 1H, J = 8.8 Hz), $5.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}), 5.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8 \mathrm{~Hz}), 5.63-5.75$ (m, 1H), 7.16-7.19 (m, 3H), 7.23-7.27 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: 16.1$, 27.9, 36.5, 40.2, 52.0, 63.5, 74.2, 80.8, 117.7, 126.2, 128.1, 129.3, 136.1, 137.9,
172.1, 209.5. MS m/z (the same for the two diastereomers): 301 [$\mathrm{M}^{+}-28$ (6)], 244 (36), 228 (38), 200 (100), 154 (88). 91 (34), 41 (48). HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 329.1990$, found 330.2060 .

9e - Spectral data worked out from the 72:28 inseparable mixture of two diastereomers 9e/9'e. Pale yellow oil ($53 \mathrm{mg}, 62 \%$ yield). IR (neat): 3028, 2951, 1780, 1734, 1525, 1454, 1354, 1165, $1070 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.06$ (quint., $1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$), 2.25 (ddd, $1 \mathrm{H}, \mathrm{J}=4.0$ $\mathrm{Hz}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~J}=21.2 \mathrm{~Hz}$), 2.50-2.63 (m, 1H), 2.72-2.83 (m, 1H), $2.96(\mathrm{dd}, 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}, \mathrm{~J}=13.6 \mathrm{~Hz}$), 3.05 (dd, 1H, J = $7.6 \mathrm{~Hz}, \mathrm{~J}=13.6 \mathrm{~Hz}$), $3.38(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 7.2 Hz), 3.65 (s, 1H), $4.0(\mathrm{ABq}, 2 \mathrm{H}, \mathrm{J}=19.6 \mathrm{~Hz}, \mathrm{~J}=36.0 \mathrm{~Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{~J}=15.6 \mathrm{~Hz}), 4.72(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.19-7.26$ ($\mathrm{m}, 4 \mathrm{H}$), 7.29-7.38 (m, 2H), 7.38-7.44 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 16.2$, $35.9,40.5,48.9,51.6,63.6,74.1,124.0,126.5,127.7,128.3,129.1,129.2,130.8$, 132.8, 133.8, 137.3, 172.8, 208.0. MS m/z (the same for the two diastereomers): 255 [M ${ }^{+}-127$ (36)], 223 (100), 136 (55), 78 (26). HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ $(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 382.1528$, found 383.1601.

9f: Spectral data worked out from the 71:29 inseparable mixture of two diastereomers 9f/9'f. Pale yellow oil ($48 \mathrm{mg}, 64 \%$ yield). IR (neat): 3028, 2951, 2855, 1781, 1733, 1603, 1496, 1454, $1195 \mathrm{~cm}{ }^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.06$ (quint., $1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}$), 2.21 (ddd, 1H, J = 4.5 $\mathrm{Hz}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{~J}=21.0 \mathrm{~Hz}), 2.51-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, 1 \mathrm{H}$, $J=7.0 \mathrm{~Hz}, \mathrm{~J}=13.5 \mathrm{~Hz}$), 3.06 (dd, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=13.5 \mathrm{~Hz}$), $3.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 7.0 Hz), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{ABq}, 2 \mathrm{H}, \mathrm{J}=14.0 \mathrm{~Hz}, \mathrm{~J}=36.0 \mathrm{~Hz}), 4.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$
8.5 Hz, J = 10.0 Hz), 7.04-7.05 (m, 2H), 7.19-7.25 (m, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (124 MHz , CDCI3) ס: 15.6, 36.1, 40.5, 51.5, 52.5, 62.0, 74.3, 126.2, 127.1, 128.14, 128.18, $128.8,129.2,137.4,138.1,173.2,208.8$. MS m / z (the same for the two diastereomers): 309 [$\mathrm{M}^{+}-28$ (12)], 278 (10), 218 (30), 146 (57), 91 (100). 73 (12), 41 (6). HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 337.1677$, found 338.1749.

9 g - Spectral data worked out from the 85:15 inseparable mixture of two diastereomers $9 \mathrm{~g} / \mathbf{9}^{\prime} \mathbf{g}$. Colourless oil ($30 \mathrm{mg}, 64 \%$ yield). IR (neat): 2980, 2951, 2946, 1782, 1734, 1640, 1458, 1166, $1070 \mathrm{~cm}^{-1}$. $[\alpha]_{\mathrm{D}}{ }^{23}=-120.2$. (c 2.063, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.31(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.06$ (quint., $1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}$), $2.16(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{~J}=10.5 \mathrm{~Hz}, \mathrm{~J}=21.0 \mathrm{~Hz}$), 2.52-2.59 (m, 1H), 2.67-2.75 (m, 1H), $3.30(t, 2 H, J=5.5 H z), 3.57(q, 1 H, J=7.0 H z), 3.69$ (s, 3H), 3.72 (dd, $1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{~J}=21.0 \mathrm{~Hz}$), $4.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=10.0$ $\mathrm{Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 5.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=17.5 \mathrm{~Hz}), 5.77-5.85(\mathrm{~m}$, 1H). ${ }^{13}$ C-NMR ($124 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 15.6,16.1,40.1,51.5,51.7,56.4,74.0,117.1$, 136.1, 174.4, 209.6. MS m / z (the same for the two diastereomers): $183\left[\mathrm{M}^{+}-28\right.$ (16)], 152 (30), 124 (100), 96 (27), 73 (27). 56 (47), 41 (57). HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 211.1208$, found 212.1281.

9h - Spectral data worked out from the 84:16 inseparable mixture of two diastereomers $9 \mathbf{h} / \mathbf{9}$ 'h. Pale yellow oil ($52 \mathrm{mg}, 91 \%$ yield). IR (neat): 2959, 2928, 1784, 1734, 1458, 1369, 1164, $1072 \mathrm{~cm}^{-1} .[\alpha]_{\mathrm{D}}{ }^{22}=-113.3$. (c 2.24, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.89$ (t, $6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), 1.48-1.61 (m, 3H), 1.70 (ddd, $1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{~J}=13.0 \mathrm{~Hz}$), 2.05 (dd, $1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{~J}=19.0 \mathrm{~Hz}$), 2.14 (ddd, 1H, J = 4.5 Hz, J = 10.5 Hz, J = 21.0 Hz), 2.51-2.57 (m, 1H), 2.70 (ddd, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=11.0 \mathrm{~Hz}$), $3.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{~J}=14.0 \mathrm{~Hz}$), 3.31 (dd, 1H,
$J=5.4 \mathrm{~Hz}, \mathrm{~J}=14.0 \mathrm{~Hz}), 3.45(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0$ $\mathrm{Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.0 \mathrm{~Hz}), 5.71-5.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (124 MHz, CDCl_{3}) $\delta: 15.8,21.9,22.8,24.3,38.8,40.2,51.3,52.0,59.2$, 73.9, 117.7, 136.2, 174.4, 209.6. MS m / z (the same for the two diastereomers): 225 [$\mathrm{M}^{+}-28$ (7)], 194 (17), 166 (100), 96 (28), 73 (13). 56 (20), 41 (45). HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 253.1677$, found 254.1751 .

$9 \mathbf{i}$ - Spectral data worked out from the 86:14 inseparable mixture of two diastereomers 9i/9'i. Pale yellow oil ($39 \mathrm{mg}, 53 \%$ yield). IR (neat): $3062,2951,1780,1733,1641,1494,1453,1198,1165,1070 \mathrm{~cm}^{-1} \cdot[\alpha]_{\mathrm{D}}{ }^{22}=-50.5$. (c 1.425, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.96$ (quint., $1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}$), 2.09 (ddd, 1H, J = $4.0 \mathrm{~Hz}, \mathrm{~J}=10.5 \mathrm{~Hz}, \mathrm{~J}=20.5 \mathrm{~Hz}$), 2.51-2.59 (m, 1H), 2.66 (dd, 1H, $J=6.0 H z, J=13.5 \mathrm{~Hz}), 2.79(d d, 1 H, J=9.0 \mathrm{~Hz}, \mathrm{~J}=13.5 \mathrm{~Hz}), 3.24-3.26(\mathrm{~m}, 2 \mathrm{H})$, 3.53 (dd, 1H, J = $6.0 \mathrm{~Hz}, \mathrm{~J}=9.0 \mathrm{~Hz}$), 3.72 (s, 3H), 3.70 (dd, 2H, J = $1.0 \mathrm{~Hz}, \mathrm{~J}=$ $13.5 \mathrm{~Hz}), 4.46$ (dd, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=10.0 \mathrm{~Hz}), 5.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=10.5$ $\mathrm{Hz}), 5.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{~J}=17.0 \mathrm{~Hz}), 5.74-5.81(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.30-7.31 (m, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(124 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 15.7,30.8,36.6,40.2,51.7$, 61.2, 74.1, 118.1, 127.0, 128.46, 128.48, 128.8, 135.7, 138.0, 172.4, 208.6. MS m / z (the same for the two diastereomers): 274 [M+-59 (5)], 246 (5), 214 (16), 168 (29), 91 (100). 65 (16), 41 (25). HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+1) \mathrm{m} / \mathrm{z}$ 333.1398 , found 334.1461 .

N-ALKYLANilines (10)

The starting N -alkylanilines 10a-q were purchased and used without further purification for the reaction.

α-ALKYLARYLAMINO CYCLOBUTANONES (11)

The α-alkylarylamino cyclobutanone 11a was prepared according to literature procedures. The spectroscopic data are in accordance with those presented in literature. ${ }^{[21]}$

$11 i$ - Colourless oil ($34 \mathrm{mg}, 35 \%$ yield). The spectroscopic data are in accordance with those presented in literature. ${ }^{[21]}{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta: 6.98$ (ddd, $\mathrm{J}=15.2,7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.93-6.80$ (m, 2H), 4.92 (tt, J = 10.7, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (s, 3H), 2.83 (s, 3H), 2.81 - 2.71 (m, 1H), 2.65 (dddd, J = $17.3,9.9,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.09$ (m, 2H).

11j - Yellow oil (42 mg, 45\% yield). IR (neat): 3047, 2961, 2928, 2831, 2213, 1785, 1605, 1519, 1399, 1384, 1320, 1179, 1123, 1077 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.54-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.14 (dd, J = 12.8, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 - 2.91 (m, 1H), 2.95 (s, 3H), 2.83 (dddd, J = 17.7, 10.1, 4.6, 2.4 Hz, 1H), 2.47 (ddd, J = 14.7, 10.6, 4.4 Hz, 1H), 2.14 (dt, J = $19.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}^{\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 204.98,151.36,133.62,120.12, ~}$ 112.80, 99.82, 73.06, 41.10, 34.00, 16.89. HRMS (ESI) Calcd. For $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ $(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z} 223.0842$, found 223.0839 .

TRyPTAMINES (12)

General procedure for the synthesis of tryptamines: A mixture of arylamine 10 (0.930 mmol), freshly distilled α-hydroxycyclobutanone 1 (0.465 $\mathrm{mmol})$, and PTSA (0.093 mmol) was stirred at room temperature for 6 days. The crude reaction mixture was directly loaded on silica gel column without aqueous work-up and pure products were obtained by flash column chromatography (silica gel, mixture of hexane/ether, $10: 1 \rightarrow 1: 1$).

12a - Yellow oil (82 mg, 67\% yield). IR (neat): 3057, 3027, 2937, 2882, 2822, 1601, 1508, 1474, 1377, $1328 \mathrm{~cm}^{-1}$. ${ }^{\mathbf{H}} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: $7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17$ $-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ ($\mathrm{s}, 3 \mathrm{H}$), $3.67-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 149.19,137.18,129.38,128.06,126.67,121.73,118.98,118.93$, 116.16, 112.45, 112.32, 109.37, 53.89, 38.53, 32.71, 22.34. MS m/z: 264 [M+(19)], 144 (11), 120 (100), 105 (3). HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z}$ 265.1699, found 265.1693.

12b - Yellow oil ($69 \mathrm{mg}, 51 \%$ yield). IR (neat):
3015, 2916, 2863, 1620, 1522, 1494, $1378 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 7.36 (s, 1H), 7.18 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (t, J = $8.7 \mathrm{~Hz}, 3 \mathrm{H}$), 6.81 (s, 1H), 6.72 (d, J = 8.5 Hz, 2H), 3.71 (s, 3H), 3.59 (dd, J = 9.1, 6.6 Hz, 2H), 2.96 (d, J = 8.1 $\mathrm{Hz}, 2 \mathrm{H}$), 2.93 (s, 3H), 2.47 (s, 3H), 2.27 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ 147.25, 135.62, 129.90, 128.27, 128.08, 126.72, 125.45, 123.32, 118.68, 112.80, 111.97, 109.07, 54.18, 38.72, 32.76, 22.12, 21.66, 20.38. MS m/z: $292\left[\mathrm{M}^{+}(18)\right]$, 158 (9), 134 (100), 119 (5). HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / z$ 293.2012, found 293.2005 .

12c - Yellow oil ($88 \mathrm{mg}, 59 \%$ yield). IR (neat): 3015, 2962, 2926, 2868, 1617, 1522, 1491, 1453, $1377 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: 7.39(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 3 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.71$ (s, 3H), $3.63-3.57$ (m, 2H), $3.00-2.95$ (m, 2H), 2.94 (s, 3H), 2.76 ($q, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.57 ($\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.30(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), $1.22(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.45$, $135.78,134.88,132.05,128.70,128.26,126.69,122.32,117.45,112.71,112.18$, 109.16, 54.14, 38.68, 32.75, 29.21, 27.94, 22.25, 16.71, 16.09. HRMS (ESI) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 321.2325$, found 321.2317.

12d - Yellow oil ($73 \mathrm{mg}, 45 \%$ yield). IR (neat): 2957, 2926, 2868, 1615, 1519, 1491, 1453, $1378 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~s}$, 1 H), 6.73 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.71 (s, 3H), $3.67-3.54$ (m, 2H), 2.97 (dd, J = 9.0, $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.93 (s, 3H), 2.76-2.62 (m, 2H), $2.58-2.42$ (m, 2H), 1.69 (dd, J = $15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.61 (dd, J = 15.1, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.97 (t, J = 5.6 Hz, 3H), 0.94 (t, $\mathrm{J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.42,135.78,133.21,130.46$, 129.30, 128.18, 126.63, 122.82, 118.19, 112.58, 112.14, 109.03, 54.13, 38.65, 38.44, 37.21, 32.74, 25.54, 25.03, 22.27, 14.09, 14.05. HRMS (ESI) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 349.2638$, found 349.2621.

12e - Yellow oil (104 mg, 59\% yield). IR (neat): 3015, 2954, 2924, 2858, 1615, 1522, 1491, 1456, 1373, 1355 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.37(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 1 \mathrm{H})$, $7.11-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.56$ (m, 2H), $3.01-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.49(\mathrm{~m}$, $2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{tq}, \mathrm{J}=14.6,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 0.95$ ($\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.92(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.41$, 135.77, 133.41, 130.65, 129.25, 128.21, 126.62, 122.79, 118.12, 112.61, 112.15, 109.03, 54.14, 38.64, 35.98, 34.74, 34.70, 34.17, 32.73, 22.60, 22.55, 22.29, 14.19, 14.16. HRMS (ESI) Calcd. For $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / z$ 377.2951, found 377.2935.

12f - Orange oil (94 mg, 55\% yield). IR (neat): 2954, 2906, 2870, 1615, 1523, 1489, 1362, 1297, $1254 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.31$ (ddd, J = 9.0, 7.7, $2.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.23 (d, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.57(\mathrm{~m}$, 2H), $3.05-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 1.41$ (s, 9H), 1.32 (s, 9H). ${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.00,141.79,138.80,135.40,127.81,126.54$, 126.16, 120.03, 114.72, 112.53, 112.16, 108.88, 54.03, 38.53, 34.72, 33.86, 32.70, 32.13, 31.72, 22.27. HRMS (ESI) Calcd. For $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 377.2951$, found 377.2942.

12g - Yellow oil ($91 \mathrm{mg}, 60 \%$ yield). IR (neat): 2989, 2939, 2904, 2833, 1622, 1575, 1511, 1494, 1459, 1426, 1247, 1226, $1176 \mathrm{~cm}^{-1} .^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.18(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=2.4$ Hz, 1H), $6.93-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 3.71 (s, 3H), 3.56 (dd, J = 8.9, 6.6 Hz, 2H), $2.97-2.91$ (m, 2H), $2.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (126 MHz, CDCl_{3}) $\delta: 153.88,151.71,144.28,132.61,128.37,127.20$, $115.05,114.58,112.10,111.89,110.11,101.03,56.15,56.01,54.86,39.21$, 32.92, 22.16. HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 325.1911$, found 325.1900 .

12h+12h': Inseparable 85:15 mixture of two regioisomers. Yellow oil ($111 \mathrm{mg}, 81 \%$ yield). IR (neat): 3040, 3030, 2914, 2858, 2815, 1602, 1580, 1499, 1475, 1378, 1327, 1247, 1226, 1176 cm^{-1}. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.49(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.17-$ 7.10 (m, 3H), 7.08 (dd, J = 3.0, $2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95 (dd, J = 8.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.86-$ $6.82(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.63-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.55-6.50(\mathrm{~m}, 2 \mathrm{H})$, 3.70 (s, 3H), 3.69 (s, 3H), $3.65-3.57$ (m, 4H), 3.15 (dd, J = 8.7, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.99$ - 2.95 (m, 2H), 2.94 (s, 3H), 2.93 (s, 3H), 2.73 (s, 3H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 2.31 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 149.36, 149.29, 139.03, 138.98, 137.60, 137.53, 131.55, 130.91, 129.23, 126.94, 126.47, 126.04, 125.96, 121.74, 120.72, 120.68, 118.67, 117.18, 117.12, 113.15, 113.11, 112.36, 109.58, 109.37, 107.45, 107.29, 55.11, 53.92, 38.55, 38.52, 32.79, 32.61, 24.19, 22.44, 22.12, 22.09, 22.00, 20.48. HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 293.2012$, found 293.2007.

12j - White solid ($33 \mathrm{mg}, 23 \%$ yield). MP: 154-158º. IR (nujol): 3015, 2934, 2906, 2851, 2218, 1605, 1522, 1486, 1388, 1350, $1174 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.87(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (ddd, $J=5.2,4.2,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{3} \mathbf{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 151.34,138.59,133.68,129.16,127.62,124.83,124.37$, 112.92, 111.44, 110.40, 102.22, 97.60, 53.13, 38.74, 33.03, 22.42. HRMS (ESI) Calcd. For $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 315.1604$, found 315.1593.

12k - Yellow oil ($59 \mathrm{mg}, 48 \%$ yield). IR (neat): 3058, 2939, 2823, 1628, 1612, 1580, 1511, 1489, 1426, 1355, $1179 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.21-7.13$ (m, 2H), 6.95 (ddd, J = 14.3, 6.8, 2.4 $\mathrm{Hz}, 3 \mathrm{H}$), $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.69-6.60(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=8.7,6.6 \mathrm{~Hz}$, 2H), 2.91 ($\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.88 (s, 3H). ${ }^{13} \mathbf{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.94$, 156.60, 154.26, 145.98, 133.81, 128.36, 115.69 (d, J = 22.0 Hz), 113.61 ($\mathrm{d}, \mathrm{J}=$ $7.1 \mathrm{~Hz}), 112.31$ (d, J = 4.5 Hz$), 110.15(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}), 109.97(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz})$, 103.75 (d, J = 23.2 Hz), 54.47, 39.02, 32.99, 22.20. HRMS (ESI) Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 301.1511$, found 301.1506 .

120

31 - Yellow oil (137 mg, 73\% yield). IR (neat): 3055, 3025, 2954, 2926, 2856, 1597, 1504, 1469, 1368, 1191 cm^{-1}. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (d, J = 7.9 Hz , 1H), 7.27 - 7.19 (m, 3H), 7.11 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (s, 1H), 6.74 (d, J = 8.6 Hz , 2 H), 6.65 (t, J = 7.2 Hz, 1H), 4.05 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.63-3.54$ (m, 2H), $3.31-$ 3.22 (m, 2H), $3.05-2.97$ (m, 2H), 1.79 (dd, J = 14.0, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.62-1.52$ (m, 2H), $1.29(d, J=3.6 \mathrm{~Hz}, 12 \mathrm{H}), 0.88$ (dd, J = 6.7, $4.2 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.09,136.45,129.44,128.11,125.56,121.54$, 119.04, 118.80, 115.41, 112.37, 111.88, 109.57, 52.06, 51.34, 46.36, 31.89, 31.60, 30.44, 27.52, 27.02, 26.86, 23.06, 22.83, 22.69, 14.20, 14.16. MS m/z: 404 [${ }^{+}$(11)], 331 (2), 228 (2), 214 (4), 190 (100), 120 (16), 106 (8). HRMS (ESI) Calcd. For $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2}(\mathrm{M}+1) m / z 405.3264$, found 405.3246 .

12m - Yellow oil ($68 \mathrm{mg}, 37 \%$ yield). IR (neat): 3058, 2931, 2856, 1597, 1504, 1461, 1448, 1360, 1343, 1300, 1214, $1156 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.63$ (d, J = $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29-7.22$ (m, 2H), 7.20 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.11 (ddd, J = 7.9, 7.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (tt, J = 11.9, 3.7 Hz, 1H), 3.61 (tt, J = 11.5, 3.4 Hz, 1H), 3.53-3.46 (m, 2H), 3.03 - 2.96 (m, 2H), $2.16-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.66(\mathrm{~m}, 10 \mathrm{H}), 1.56-1.23(\mathrm{~m}, 7 \mathrm{H})$, 1.15 (qt, J = 12.6, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.69,135.96$, 129.43, 128.04, 121.62, 121.36, 119.20, 118.89, 115.94, 112.94, 112.73, 109.61,
57.60, 55.14, 46.08, 33.73, 31.02, 26.48, 26.17, 25.85, 25.67. HRMS (ESI) Calcd. For $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2}(\mathrm{M}+1) m / z$ 401.2951, found 401.2939.

12n - Yellow oil (104 mg, 60\% yield). IR (neat): 3080, 3012, 2959, 2924, 2868, 1617, 1519, 1486, 1451, 1377, $1189 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.17$ (m, 1H), 7.07 (t, J = 6.9 Hz, 3H), 6.87 (s, 1H), 6.72 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.95 (ddd, J = 22.4, 10.5, 5.4 Hz , 1 H), 5.85 (ddt, J = 17.0, 10.1, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.25-4.98$ (m, 4H), 4.63 (d, J = 5.4 $\mathrm{Hz}, 2 \mathrm{H}$), 3.90 (d, J = $4.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.68-3.53$ (m, 2H), 3.02 (dd, J = 9.2, 6.6 Hz , $2 \mathrm{H}), 2.76(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.21 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.46,135.15,135.01$, 134.85, 133.91, 131.84, 128.67, 128.46, 125.58, 122.36, 117.54, 117.19, 115.97, 112.50, 109.52, 53.65, 51.81, 48.85, 29.16, 27.89, 23.16, 16.59, 16.05. HRMS (ESI) Calcd. For $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2}(\mathrm{M}+1) \mathrm{m} / z$ 373.2638, found 373.2626.

120 - Yellow oil (60 mg, 32\% yield). IR (neat): 3060, 2979, 2934, 1749, 1602, 1506, 1464, 1368, 1262, 1194, $1027 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: $7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.17$ $-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, 2H), $4.19-4.13(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=8.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.05$ (m, 2H), 1.26 (dd, J = $7.8,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.45,168.78,147.85,137.03,129.48,128.30$,
126.28, 122.36, 119.66, 119.24, 117.06, 113.70, 112.10, 109.17, 61.79, 61.06, 53.36, 52.93, 47.87, 23.40, 14.37, 14.31. HRMS (ESI) Calcd. For $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z} 431.1941$, found 431.1926.

12p - Orange oil (118 mg, 80\% yield). IR (neat): 3040, 2931, 2881, 2851, 2841, 1602, 1575, 1504, 1476, 1453, 1345, 1247, 1211, $1194 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.43$ (dd, J = 8.0, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (td, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=7.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{dd}$, $J=7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{td}, \mathrm{J}=7.3,1.0$ Hz, 1H), $4.17-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.99$ ($\mathrm{m}, 2 \mathrm{H}$), 2.97 ($\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.75(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.99$ - 1.79 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 145.17,134.68,129.32,127.29$, 125.52, 123.89, 122.42, 121.86, 119.34, 118.58, 116.57, 115.50, 112.60, 110.66, 77.42, 77.16, 76.91, 52.64, 49.59, 44.00, 28.37, 24.85, 23.07, 22.39, 22.23. MS m/z: 316 [M $\left.{ }^{+}(20)\right], 170$ (9), 146 (100), 130 (4). HRMS (ESI) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2}$ $(\mathrm{M}+1) \mathrm{m} / \mathrm{z} 317.2012$, found 317.2006 .

SilyL enol ethers (15)

General procedure A for the synthesis of OTMS silylenolether $15^{[22]}$

To a dispersion of anhydrous (dried under high vacuum at $90^{\circ} \mathrm{C}$ for 12 h) Nal (1.25 equiv.) in distilled acetonitrile were added the ketone (1 equiv.) followed by $\mathrm{Et}_{3} \mathrm{~N}$ (1.25 equiv.). Then TMSCI (1.14 equiv.) was added drop wise and the solution was stirred at room temperature for 1 h . Pentane was added and the two layers solution was vigorously stirred for 10 minutes. The two layers were then separated and the acetonitrile phase was extracted with pentane. The combined pentane phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated under reduced pressure to give the crude silyl enol ether 15, which was used without further purification.

General procedure B for the synthesis of OTBS silylenolether $15^{[23]}$

To a solution of the ketone (1 equiv.) in distilled acetonitrile were added $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv.), then TBSCI (1.5 equiv.) and anhydrous (dried under high vacuum at $90^{\circ} \mathrm{C}$ for 12 h) Nal (1.5 equiv.). The reaction was stirred overnight at room temperature. Pentane and an aqueous saturated solution of NaHCO_{3} were added and the solution was vigorously stirred. The two phases were separated and the acetonitrile/aqueous phase was extracted with petroleum ether. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel to afford the requisite silyl enol ether 15.

15a - According to the general procedure \mathbf{A} using $\mathrm{NaI}(64 \mathrm{mmol}$, $9.55 \mathrm{~g}, 1.25$ equiv.), cyclopentanone ($51 \mathrm{mmol}, 4.28 \mathrm{~g}, 4.50 \mathrm{~mL}, 1$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($64 \mathrm{mmol}, 6.45 \mathrm{~g}, 8.88 \mathrm{~mL}, 1.25$ equiv.) and TMSCI ($58 \mathrm{mmol}, 6.31 \mathrm{~g}, 7.42 \mathrm{~mL}$, 1.14 equiv.) in 80 mL of acetonitrile, the crude product 15 a was obtained as a colourless oil ($6.48 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\mathrm{\delta}: 4.64$ - 4.57 (m, 1H), 2.31 - 2.19 (m, 4H), 1.91 - 1.77 (m, 2H), $0.20(\mathrm{~s}, \mathrm{~J}=1.9 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.16(\mathrm{C}), 102.24(\mathrm{CH}), 33.65\left(\mathrm{CH}_{2}\right), 28.87\left(\mathrm{CH}_{2}\right), 21.46$ $\left(\mathrm{CH}_{2}\right), 0.14\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+/ESI-): unstable.

15b - According to the general procedure \mathbf{B} using $\mathrm{NaI}(49 \mathrm{mmol}$, $7.42 \mathrm{~g}, 1.5$ equiv.), cyclopentanone ($33 \mathrm{mmol}, 2.77 \mathrm{~g}, 2.91 \mathrm{~mL}, 1$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(49$ mmol, $5.00 \mathrm{~g}, 6.90 \mathrm{~mL}, 1.5$ equiv.) and TBSCI ($49 \mathrm{mmol}, 7.46 \mathrm{~g}, 1.5$ equiv.) in 70 mL of acetonitrile, the flash chromatography on silica gel (PE/AcOEt/Pyridine 98:1:1) gave the product 15b as a colourless oil (4.75g, 73\% yield). Rf (100\% Petroleum ether): 0.70; IR (ATR) cm^{-1} : 2955, 2857, 1646, 1470, 1342, 1251, 1183,

922, 835, 778. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.65-4.58(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}$, 4H), 1.91 - 1.79 (m, 2H), 0.92 (s, 9H), 0.15 (s, 6H). HRMS (ESI+/ESI-): unstable. No ${ }^{13} \mathrm{C}$ NMR was made for this already known and characterised compound. ${ }^{[24]}$

15c - According to the general procedure \mathbf{A} using NaI (64 mmol , $9.55 \mathrm{~g}, 1.25$ equiv.), cyclohexanone ($51 \mathrm{mmol}, 4.99 \mathrm{~g}, 5.27 \mathrm{~mL}, 1$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($64 \mathrm{mmol}, 6.45 \mathrm{~g}, 8.88 \mathrm{~mL}, 1.25$ equiv.) and TMSCI ($58 \mathrm{mmol}, 6.31 \mathrm{~g}, 7.42 \mathrm{~mL}$, 1.14 equiv.) in 80 mL of acetonitrile, the crude product 15 c was obtained as a colourless oil ($8.00 \mathrm{~g}, 94 \%$ yield). Rf (100\% Petroleum ether): 0.60 ; IR (ATR) cm^{-} ${ }^{1}$: 2932, 2856, 2839, 1669, 1366, 1250, 1184, 988, 894, 837; ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: $4.87-4.79(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.56-$ 1.41 (m, 2H), 0.15 (s, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.39$ (C), 104.23 (CH), $30.00\left(\mathrm{CH}_{2}\right), 23.91\left(\mathrm{CH}_{2}\right), 23.28\left(\mathrm{CH}_{2}\right), 22.46\left(\mathrm{CH}_{2}\right), 0.38\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+/ESI): unstable.

15d - According to the general procedure A using NaI (64 mmol, $9.55 \mathrm{~g}, 1.25$ equiv.), cycloheptanone ($51 \mathrm{mmol}, 5.70 \mathrm{~g}, 1$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(64$ mmol, $6.45 \mathrm{~g}, 8.88 \mathrm{~mL}, 1.25$ equiv.) and TMSCI ($58 \mathrm{mmol}, 6.31 \mathrm{~g}, 7.42 \mathrm{~mL}, 1.14$ equiv.) in 80 mL of acetonitrile, the crude product 15d was obtained as a colourless oil ($7.42 \mathrm{~g}, 79 \%$ yield). Rf (100% Petroleum ether): 0.50 ; IR (ATR) cm^{-} ${ }^{1}$: 2920, 2842, 1659, 1250, 1228, 1167, 1125, 894, 881, 838, 751; ${ }^{1} \mathrm{H}-\mathrm{NMR}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.01(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.45(\mathrm{~m}, 4 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 156.15(\mathrm{C}), 108.82(\mathrm{CH}), 35.67\left(\mathrm{CH}_{2}\right), 31.70\left(\mathrm{CH}_{2}\right), 27.95\left(\mathrm{CH}_{2}\right), 25.50\left(\mathrm{CH}_{2}\right)$, $25.38\left(\mathrm{CH}_{2}\right), 0.40\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+/ESI-): unstable.

General procedure C for the Paternò-Büchi Reaction

A 60 mM solution of silyl enol ether 15 (2 equiv.) and benzaldehyde 16a (1 equiv.) in the appropriate degassed solvent (with an argon stream for 30 min) was placed in a cylindrical immersion photochemical reactor. The solution was irradiated for 6 h with a 400 W medium-pressure Hg lamp fitted with a Pyrex® filter and a water-cooling jacket. The reaction was followed by ${ }^{1} \mathrm{H}$ NMR and the reaction mixture was concentered under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel to afford the requisite photoadducts endo-17 and exo-17.

Paternò-Büchi Reaction between 15a and 16a:

According to the general procedure \mathbf{C} using the silylenolether $\mathbf{1 5 a}$ (24 mmol , 3.74 g , 2 equiv.) and benzaldehyde $\mathbf{1 6 a}$ ($12 \mathrm{mmol}, 1.22 \mathrm{~mL}, 1$ equiv.) in distilled and degassed acetonitrile (200 mL), the flash chromatography on silica gel ($\mathrm{PE} / E \mathrm{t}_{2} \mathrm{O} 98: 2 \rightarrow 94: 6$) gave the products endo-17a as a pale yellow oil (261 mg , 8% yield) and exo-17a as a pale yellow oil ($1.06 \mathrm{~g}, 34 \%$ yield).

endo-17a - Rf (90:10 PE/Et 2 O): 0.90; IR (ATR) $\mathrm{cm}^{-1}: 2954$, $2878,1252,1200,1142,1131,992,967,902,836,738,700 .{ }^{1} \mathrm{H}-$ NMR $(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.50-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.93$ (m, 1H), $1.82-1.59$ (m, 4H), $1.48-1.36$ (m, 1H), 0.24 (s, 9H). ${ }^{13} \mathrm{C}-$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 138.49(\mathrm{C}), 128.14(\mathrm{CH}), 127.13(\mathrm{CH}), 124.73(\mathrm{CH}), 90.63(\mathrm{CH}), 90.49$ $(\mathrm{CH}), 86.14(\mathrm{C}), 34.84\left(\mathrm{CH}_{2}\right), 32.36\left(\mathrm{CH}_{2}\right), 24.04\left(\mathrm{CH}_{2}\right), 2.06\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, m/z 285.1281, found 285.1270.

exo-17a - Rf (90:10 PE/Et ${ }_{2}$ O): 0.7. IR (ATR) cm^{-1} : 2956, 2879, 1335, 1252, 1236, 1201, 968, 927, 898, 837, 748, 696. ${ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.50-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.13$ (m, 2H), $2.12-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}),-0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(91 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: $139.45(\mathrm{C}), 127.87(\mathrm{CH}), 127.85(\mathrm{CH}), 127.81(\mathrm{CH}), 92.62(\mathrm{CH}), 91.96$ $(\mathrm{CH}), 84.83(\mathrm{C}), 39.12\left(\mathrm{CH}_{2}\right), 33.13\left(\mathrm{CH}_{2}\right), 24.16\left(\mathrm{CH}_{2}\right), 1.50\left(\mathrm{CH}_{3}\right)$. HRMS $(\mathrm{ESI}+)$: Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right), \mathrm{m} / \mathrm{z}$ 285.1280, found 285.1270.

Paternò-Büchi Reaction between 15b and 16a:

According to the general procedure \mathbf{C} using the silylenolether 15 b (24 mmol , $4.75 \mathrm{~g}, 2$ equiv.) and benzaldehyde 16 a ($12 \mathrm{mmol}, 1.22 \mathrm{~mL}, 1$ equiv.) in distilled and degassed acetonitrile (200 mL), the flash chromatography on silica gel ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 98: 2 \rightarrow 94: 6$) gave the products endo-17b as a yellow oil ($38 \mathrm{mg}, 1 \%$ yield) and exo-17b as a yellow oil ($203 \mathrm{mg}, 6 \%$ yield).

endo-17b - Rf (90:10 PE/Et ${ }_{2} \mathrm{O}$): 0.60; IR (ATR) cm^{-1} : 2956, 2879, 1251, 1141, 1131, 992, 966, 886, 837, 737, 701. ${ }^{\mathbf{H}} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: $7.43-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.55(\mathrm{C}), 128.20(\mathrm{CH}), 127.14(\mathrm{CH}), 124.66(\mathrm{CH})$, $90.83(\mathrm{CH}), 90.73(\mathrm{CH}), 86.04(\mathrm{C}), 34.79\left(\mathrm{CH}_{2}\right)$, $32.39\left(\mathrm{CH}_{2}\right), 25.80\left(\mathrm{CH}_{3}\right), 24.03$ $\left(\mathrm{CH}_{2}\right), 18.04(\mathrm{C}),-2.54\left(\mathrm{CH}_{3}\right),-2.57\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right), \mathrm{m} / \mathrm{z} 305.1931$, found 305.1922 .

exo-17b - Rf (90:10 PE/Et $\left.{ }_{2} \mathrm{O}\right):$ 0.47. IR (ATR) $\mathrm{cm}^{-1}: 2952$, 2929, 2856, 1462, 1332, 1237, 1200, 1137, 991, 972, 926, 834, 773, 696. ${ }^{1} \mathrm{H}-$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H})$, $5.04(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.62(\mathrm{~m}$, 2H), $0.58(\mathrm{~s}, 9 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}),-0.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(91 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 139.54$ (C), 127.85 (CH), $127.34(\mathrm{CH}), 126.71(\mathrm{CH}), 92.05(\mathrm{CH}), 91.66(\mathrm{CH}), 84.40(\mathrm{C})$, $39.06\left(\mathrm{CH}_{2}\right), 33.23\left(\mathrm{CH}_{2}\right), 25.39\left(\mathrm{CH}_{3}\right), 23.76\left(\mathrm{CH}_{2}\right), 17.74(\mathrm{C}),-2.94\left(\mathrm{CH}_{3}\right),-3.04$ $\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, m/z 305.1931, found 305.1922.

Paternò-Büchi Reaction between 15c and 16a:

According to the general procedure \mathbf{C} using the silylenolether $15 \mathbf{c}$ (24 mmol , 4.08 g , 2 equiv.) and benzaldehyde 16a ($12 \mathrm{mmol}, 1.22 \mathrm{~mL}$, 1 equiv.) in distilled and degassed acetonitrile (200 mL), the flash chromatography on silica gel $\left(\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 98: 2 \rightarrow 94: 6\right)$ gave the products endo-17c as a pale yellow oil (44 mg , 1% yield) and exo-17c as a pale yellow oil ($117 \mathrm{mg}, 4 \%$ yield).

endo-17c - Rf (90:10 PE/Et $\left.{ }_{2} \mathrm{O}\right)$: 0.52. IR (ATR) cm^{-1} : 2937, 2865, 1722, 1451, 1250, 1204, 1130, 1093, 894, 837, 750. ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: 7.44 - $7.26(\mathrm{~m}, 5 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.89$ (m, 1H), 1.78 - $1.44(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.12(\mathrm{~m}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (63 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 138.85(\mathrm{C}), 128.17(\mathrm{CH}), 127.34(\mathrm{CH}), 125.48(\mathrm{CH}), 90.50(\mathrm{CH})$, $84.07\left(\mathrm{CH}_{2}\right), 76.70(\mathrm{C}), 30.95\left(\mathrm{CH}_{2}\right), 26.74\left(\mathrm{CH}_{2}\right), 20.19\left(\mathrm{CH}_{2}\right), 19.98\left(\mathrm{CH}_{2}\right), 2.39$ $\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right), \mathrm{m} / \mathrm{z} 277.1618$, found 277.1583.

exo-17c - Rf (90:10 $\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}\right):$ 0.4. IR (ATR) cm^{-1} : 2952, 2929, 2856, 1462, 1332, 1237, 1200, 1137, 991, 972, 926, 834, 773, 696. ${ }^{1} \mathrm{H}-$ NMR (250 MHz, CDCl 3) ס: 7.45 - 7.26 (m, 5H), 5.34 (s, 1H), 4.94 (s, 1H), 2.01 1.76 (m, 5H), 1.68 - 1.52 (m, 3H), -0.17 (s, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 139.16 (C), $127.88(\mathrm{CH}), 127.46(\mathrm{CH}), 127.25(\mathrm{CH}), 90.92(\mathrm{CH}), 87.09(\mathrm{CH})$, $74.75(\mathrm{C}), 35.91\left(\mathrm{CH}_{2}\right), 26.42\left(\mathrm{CH}_{2}\right), 19.50\left(\mathrm{CH}_{2}\right), 18.14\left(\mathrm{CH}_{2}\right), 1.79\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right), \mathrm{m} / \mathrm{z} 277.1618$, found 277.1609.

DEPROTECTED BICYCLIC OXETANES (18)

General procedure D for silylated group removal

To a solution of the endo-17a or exo-17b (1 equiv.) in anhydrous THF was added a solution of TBAF in THF (1M, 1.5 equiv). The reaction was stirred under argon for 4 h at $0^{\circ} \mathrm{C}$ and then quenched with water. The resulting mixture was diluted with AcOEt and the two phases were separated. The organic phase was washed with water (2 times) and the resulting aqueous phase was extracted with AcOEt (3 times). The combined organic phases were then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel to afford the requisite alcohol endo18 or exo-18.

endo-18 - According to the general procedure \mathbf{D} using the cycloadduct endo-17a ($1.09 \mathrm{mmol}, 284.2 \mathrm{mg}, 1$ equiv.) and a solution of TBAF ($1.64 \mathrm{~mL}, 1.5$ equiv.) in anhydrous THF (11 mL), the flash chromatography on silica gel (PE/Et2O 80:20 \rightarrow 50: 50) gave the products endo-18 as colourless
crystal (173 mg, 83\% yield). Rf (50:50 PE/Et2O): 0.30. IR (ATR) $\mathrm{cm}^{-1}: 3719,3372$, 2952, 1499, 1297, 1109. MP: 81-83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta: 7.42-7.22$ (m, 5H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dd}, \mathrm{J}=13.1,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(91 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.92$ (C), $128.33(\mathrm{CH}), 127.37(\mathrm{CH}), 124.45(\mathrm{CH}), 91.75(\mathrm{CH}), 90.34(\mathrm{CH}), 84.97\left(\mathrm{CH}_{2}\right)$, $33.96\left(\mathrm{CH}_{2}\right)$, $32.45\left(\mathrm{CH}_{2}\right)$, $24.41\left(\mathrm{CH}_{2}\right)$. HRMS (ESI-): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}(\mathrm{M}-$ H^{+}), m/z 189.0911, found 189.0921 .

exo-18 - According to the general procedure \mathbf{D} using the cycloadduct endo-17a ($0.38 \mathrm{mmol}, 100 \mathrm{mg}, 1$ equiv.) and a solution of TBAF (0.57 $\mathrm{mL}, 1.2$ equiv.) in anhydrous THF (4 mL), the flash chromatography on silica gel ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 80:20) gave the products exo-18 as colourless crystal ($55 \mathrm{mg}, 77 \%$ yield). Rf (80:20 PE/Et2O): 0.21. IR (ATR) $\mathrm{cm}^{-1}: 3399,2958,1453,1329,1231$, $1125,1101,1073,957,922,750,696$. MP: 67-70 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: $7.51-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddt, J=19.1, $12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: 137.68(\mathrm{C}), 129.04(\mathrm{CH}), 128.52(\mathrm{CH}), 126.25(\mathrm{CH}), 93.65(\mathrm{CH}), 90.81$ $(\mathrm{CH}), 82.75\left(\mathrm{CH}_{2}\right), 37.11\left(\mathrm{CH}_{2}\right), 33.32\left(\mathrm{CH}_{2}\right), 23.73\left(\mathrm{CH}_{2}\right)$. HRMS (ESI-:): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right), \mathrm{m} / \mathrm{z}$ 189.0921, found 189.0925.

SUBSTITUTED HYDROXYPENTANONES PRODUCTS $(21,22)$

trans-21 - Representative procedure on exo-17a: To a solution of exo-17a ($0.38 \mathrm{mmol}, 100 \mathrm{mg}$, 1 equiv.) in EtOAC (10 mL) under argon was added the $\mathrm{Pd} / \mathrm{C} 10 \%$ (50 mg). The reaction mixture was stirred under H_{2} atmosphere for 26 h and then filtered through a pad of celite $®$ and rinced with

EtOAC. The solvent was removed under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel (90:10 PE/Et ${ }_{2} \mathrm{O}$ \rightarrow 90:10 DCM/AcOEt) to afford the requisite diol 21 as a colourless crystal (56 $\mathrm{mg}, 77 \%$ yield). Rf (50:50 PE/Et 2 O): 0.2. MP: $71-73^{\circ} \mathrm{C}$. IR (ATR) $\mathrm{cm}^{-1}: 3377$, 3329, 2922, 2849, 1732, 1490, 1395, 1295, 1079, 979, 702; ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: $7.55-7.12(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06,2.84(\mathrm{ABq}, \mathrm{J}=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.29-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (63 MHz, CDCl3) ס: 137.89 (C), 130.49 (CH), 128.56 (CH), $126.67(\mathrm{CH})$, $83.62(\mathrm{C}), 78.96(\mathrm{CH}), 40.86\left(\mathrm{CH}_{2}\right), 35.56\left(\mathrm{CH}_{2}\right), 32.88\left(\mathrm{CH}_{2}\right), 20.24\left(\mathrm{CH}_{2}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right), \mathrm{m} / \mathrm{z} 215.1043$, found 215.1040.

22 - To a solution of diol 21 ($0.2 \mathrm{mmol}, 40 \mathrm{mg}, 1$ equiv.) in EtOAC (4 mL) under argon was added the IBX ($0.62 \mathrm{mmol}, 174 \mathrm{mg}, 3$ equiv.). The reaction mixture was stirred under reflux for 7 h and then filtered through a pad of celite and rinced with EtOAC. The solvent was removed under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel (50:50 $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$) to afford the requisite ketone 22 as a white solid (26 $\mathrm{mg}, 65 \%$ yield). Rf (50:50 PE/Et ${ }_{2} \mathrm{O}$): 0,3. MP: $71-72{ }^{\circ} \mathrm{C}$. IR (ATR) $\mathrm{cm}^{-1}: 3428$, 2921, 1702, 1500, 1310, 1096, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz}, \mathrm{CDCl} 3) \delta: 7.37-7.27$ (m, 3H), $7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}$, $1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.73(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(91 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 219.42$ (C), 135.48 (C), 130.41 (C), $130.34(\mathrm{CH}), 128.54(\mathrm{CH}), 128.48(\mathrm{CH}), 127.09(\mathrm{CH})$, $79.37(\mathrm{C}), 42.00\left(\mathrm{CH}_{2}\right), 35.06\left(\mathrm{CH}_{2}\right), 34.38\left(\mathrm{CH}_{2}\right), 17.15\left(\mathrm{CH}_{2}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2 \mathrm{Na}}(\mathrm{M}+\mathrm{Na}+$), m/z 213.0990, found 213.0892.

Brønsted acid-catalysed rearrangement (25)

25 - Representative procedure on endo-17a: To a solution of endo-17a ($0.27 \mathrm{mmol}, 70 \mathrm{mg}$, 1 equiv.) in anhydrous dichloromethane (4 mL) at $0^{\circ} \mathrm{C}$, TFA ($34.7 \mathrm{mmol}, 4.0 \mathrm{~g}, 2.7 \mathrm{~mL}, 130$ equiv.) was added dropwise and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was then concentrated under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 90: 10$) to afford the requisite enone 25 as a colorless crystal ($29 \mathrm{mg}, 64 \%$ yield). $\mathbf{R f}$ ($50: 50 \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$): 0.6. MP: 91-93 ${ }^{\circ} \mathrm{C}$. IR (ATR) $\mathrm{cm}^{-1}: 3718,3372,2932,3856,2839,1669,1366,1264,1250,1184$, 988, 837. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}$, 1 H), $2.65-2.59$ (m, 2H), 2.56 (dd, J = 10.4, $5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13 (dt, J = 12.5, 6.2 $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 198.06$ (C), 148.08 (CH), 140.53 (C), $136.68(\mathrm{C}), 128.74(\mathrm{CH}), 128.10(\mathrm{CH}), 127.67(\mathrm{CH}), 39.18\left(\mathrm{CH}_{2}\right), 26.72\left(\mathrm{CH}_{2}\right)$, $23.04\left(\mathrm{CH}_{2}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, m/z 173.0961, found 173.0956.

ALCla Lewis acid-catalysed rearrangement (23, 24, 24b)

General procedure E for AlCl_{3} Lewis acid-catalysed rearrangement

To a solution of protected or deprotected cycloadduct 17a or 18 (1 equiv.) in anhydrous dichloromethane was added the AICl_{3} (1.5 or 3 equiv.) at $-78^{\circ} \mathrm{C}$. After the appropriate time at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with water and extracted with dichloromethane (3 times). The combined organic phase was washed with an aqueous saturated solution of NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel to afford the requisite trans- or cis-alcohol 23 or 24.

Rearrangement from exo-17a:

According to the general procedure E using exo-17a ($0,27 \mathrm{mmol}, 70 \mathrm{mg}, 1$ equiv.) and $\mathrm{AICl}_{3}\left(0,40 \mathrm{mmol}, 53 \mathrm{mg}, 1.5\right.$ equiv.) in distilled DCM (7 ml) at $-78^{\circ} \mathrm{C}$,
the flash chromatography on silica gel ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 80: 20 \rightarrow 40: 60$) gave the transalcohol 23 as a colourless crystal ($36 \mathrm{mg}, 70 \%$ yield).

Rearrangement from exo-18:

According to the general procedure E using exo-18 ($0,22 \mathrm{mmol}, 42 \mathrm{mg}, 1$ equiv.) and $\mathrm{AlCl}_{3}(0,33 \mathrm{mmol}, 43 \mathrm{mg}, 10.5$ equiv.) in distilled DCM (5 ml) at -78 ${ }^{\circ} \mathrm{C}$, the flash chromatography on silica gel ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 80:20 $\rightarrow 40: 60$) gave the trans-alcohol 23 as a colourless crystal ($29 \mathrm{mg}, 62 \%$ yield), the cis-alcohol 24 as a colourless oil ($3 \mathrm{mg}, 10 \%$ yield) and the enone 25 as a colourless crystal (4 mg , 10\% yield).

Rearrangement from endo-17a:

According to the general procedure E using endo-17a (0,25 mmol, $68 \mathrm{mg}, 1$ equiv.) and $\mathrm{AICl}_{3}\left(0,37 \mathrm{mmol}, 50 \mathrm{mg}, 1.5\right.$ equiv.) in distilled DCM (7 ml) at $-78^{\circ} \mathrm{C}$, the flash chromatography on silica gel (PE/Et2O 80:20 \rightarrow 40:60) gave the transalcohol 23 as a colourless crystal ($19 \mathrm{mg}, 38 \%$ yield) the cis-alcohol 24 as a colourless oil ($10 \mathrm{mg}, 13 \%$ yield) and the protected cis-alcohol 24b as a pale yellow oil ($7 \mathrm{mg}, 13 \%$ yield).

Rearrangement from endo-18:

According to the general procedure \mathbf{E} using endo-18 ($0,3 \mathrm{mmol}, 57 \mathrm{mg}, 1$ equiv.) and $\mathrm{AlCl}_{3}\left(0,45 \mathrm{mmol}, 60 \mathrm{mg}, 1.5\right.$ equiv.) in distilled DCM (6 ml) at $-78^{\circ} \mathrm{C}$, the flash chromatography on silica gel ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 80: 20 \rightarrow 40: 60$) gave the transalcohol 23 as a colourless crystal ($13 \mathrm{mg}, 22 \%$ yield), the cis-alcohol 24 as a colourless oil ($27 \mathrm{mg}, 47 \%$ yield) and the enone 25 as a colourless crystal (6 mg , 10% yield).

trans-23-Rf (50:50 PE/Et $\left.{ }_{2} \mathrm{O}\right): ~ 0.05$. MP: $93-94{ }^{\circ} \mathrm{C}$; IR (ATR) cm^{-1} : 3463, 3052, 3030, 2944, 2862, 1698, 1400, 1321, 1022, 750, 735; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.43-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{td}, \mathrm{J}=10.4$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H})$, $2.19-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(91 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ס: 134.70 (C), 129.92 (CH), 128.96 (CH), 127.95 (CH), 74.96 (CH), 67.15 $(\mathrm{CH}), 41.05\left(\mathrm{CH}_{2}\right), 33.11\left(\mathrm{CH}_{2}\right), 20.92\left(\mathrm{CH}_{2}\right)$, the quaternary carbonyl is missing; HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right), \mathrm{m} / \mathrm{z} 213.0886$, found 213.0888.
 cis-24 - Rf (50:50 PE/Et2O): 0.2; IR (ATR) $\mathrm{cm}^{-1}: 3437,3030$, 2944, 2870, 1706, 1598, 1122, 698. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: $7.26(\mathrm{~s}, 5 \mathrm{H})$, 4.32 (d, J = 2.4 Hz, 1H), 3.74 (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60-2.49$ (m, 1H), $2.50-2.37$ (m, 1H), 2.37 - 2.21 (m, 1H), 2.11 (m, 1H), $2.03-1.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (91 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 208.20(\mathrm{C}), 136.16(\mathrm{C}), 130.01(\mathrm{CH}), 128.61(\mathrm{CH}), 127.45(\mathrm{CH})$, $74.51(\mathrm{CH}), 62.13(\mathrm{CH}), 41.85\left(\mathrm{CH}_{2}\right), 32.11\left(\mathrm{CH}_{2}\right), 21.03\left(\mathrm{CH}_{2}\right)$. HRMS $(\mathrm{ESI}+)$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, m / z 213.0891, found 213.0891.

"OTMS cis-24b - Rf (50:50 PE/Et 2 O): 0.65. ${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}$ (250 MHz , CDCl3) ס: 7.59 - $7.20(\mathrm{~m}, 10 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.20-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.50-0.99(\mathrm{~m}, 3 \mathrm{H})$, -0.17 (s, 9H). HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na}$), m/z 285.1287, found 285.1283. The high instability of this compound and the small isolated amount of it did not allow long ${ }^{13} \mathrm{C}$ NMR experiment and IR analysis.

ACID-CATALYSED REARRANGEMENT-PROTECTION SEQUENCE (27)

27 - To a solution of exo-17a ($0.19 \mathrm{mmol}, 50 \mathrm{mg}, 1$ equiv.) in anhydrous dichloromethane (3 mL) at $-78{ }^{\circ} \mathrm{C}, \mathrm{AICl}_{3}(0.57 \mathrm{mmol}, 76.3 \mathrm{mg}, 3$ equiv.) was added. After 1.5 h , the reaction was quenched with water and extracted with dichloromethane (3 times). The combined organic phase was washed with an aqueous saturated solution of NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude mixture, which was directly dissolved in dichloromethane (0.5 mL). Then the reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and the DIPEA ($0.38 \mathrm{mmol}, 49.1 \mathrm{mg}, 0.066 \mathrm{~mL}$, 2 equiv.) and the $\mathrm{MOMCI}(0.57 \mathrm{mmol}, 45.9 \mathrm{mg}, 0.043 \mathrm{~mL}$, 3 equiv.) were added. The reaction mixture was stirred at room temperature overnight and then quenched with a 1 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane (3 times). The combined organic phases were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give the crude mixture, which was purified by flash chromatography on silca gel (PE/Et ${ }_{2} \mathrm{O}$ 90:10 $\rightarrow 80: 20$) to afford the requisite protected trans-alcohol 27 as a colourless crystal ($17 \mathrm{mg}, 39 \%$ yield). Rf (50:50 PE/Et2O): 0.4; IR (ATR) cm^{-1} : 2944, 2869, 2820, 1707, 1499, 1455, 1264, 1170, 1142, 1091, 1020, 919, 748, 696; MP: 49-50º ${ }^{\circ}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.48$ - 7.28 (m, 3H), 7.26 - 7.07 (m, 2H), $4.60-$ 4.47 (m, 1H), $4.35-4.19$ (m, 1H), 4.03 (td, J = 10.0, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (d, J = 10.0 Hz, 1H), 3.09 - 2.75 (m, 3H), $2.66-2.33$ (m, 3H), 2.14 (d, J = $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-$ 1.54 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 207.78$ (C), 136.34 (C), 129.67 (CH), $128.43(\mathrm{CH}), 127.21(\mathrm{CH}), 95.11\left(\mathrm{CH}_{2}\right), 79.37(\mathrm{CH}), 64.85(\mathrm{CH}), 55.29\left(\mathrm{CH}_{3}\right)$, $41.06\left(\mathrm{CH}_{2}\right)$, $31.39\left(\mathrm{CH}_{2}\right)$, $20.76\left(\mathrm{CH}_{2}\right)$. HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{3}(\mathrm{M}$ $\left.+\mathrm{Na}^{+}\right), \mathrm{m} / \mathrm{z}$ 257.1148, found 257.1148.

TICL4 LEWIS ACID-CATALYSED REARRANGEMENT $(\mathbf{2 8}, \mathbf{2 9)}$

General procedure F for TiCL_{4} Lewis acid-catalyzed rearrangement

To a solution of deprotected cycloadduct 18 (1 equiv.) in anhydrous diethylether was added the TiCl_{4} (3 equiv.) at $-78{ }^{\circ} \mathrm{C}$. After 7 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with water and extracted with dichloromethane (3 times). The combined organic phase was washed with an aqueous saturated solution of NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude mixture, which was purified by flash chromatography on silica gel to afford a mixture of products, with a large majority of the compounds 28 and 29 and traces of the alcohol 23 or 24.

This procedure is non-optimised and the reactions were performed on the endo-18 and exo-18 on very small scale, consequently no exploitable yields can be interpreted from these reactions. However, the crucial information of theses reactions is the non-formation of the others isomers (path a).

28 - Colourless oil. Rf (50:50 PE/Et ${ }_{2} \mathrm{O}$): 0,4. ${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}(360$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 138.85(\mathrm{C}), 128.77(\mathrm{CH}), 128.60(\mathrm{CH}), 128.43(\mathrm{CH}), 86.49$ $(\mathrm{C}), 77.90(\mathrm{CH}), 68.16(\mathrm{CH}), 37.28\left(\mathrm{CH}_{2}\right), 34.10\left(\mathrm{CH}_{2}\right), 20.53\left(\mathrm{CH}_{2}\right)$; HRMS: Unstable.

29 - Colourless crystal; Rf (50:50 PE/Et2O): 0,5. MP: 108$109{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.50(\mathrm{dt}, \mathrm{J}=4.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.29$ (m, 3H), $5.36(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.61$ (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(91 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 128.78(\mathrm{CH}), 128.68(\mathrm{CH}), 128.37(\mathrm{CH})$, $79.57(\mathrm{CH}), 66.66(\mathrm{CH}), 34.19\left(\mathrm{CH}_{2}\right), 32.80\left(\mathrm{CH}_{2}\right), 21.84\left(\mathrm{CH}_{2}\right)$; HRMS: Unstable.

7.3 Crystal Structures

X-ray diffraction data of compound 30 were collected using a Kappa VENTURE PHOTON 100 Bruker diffractometer with l $\mu \mathrm{S}$ microfocus graphitemonochromated CuK α radiation ($=1.54178 \AA$). The crystal was mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flash-frozen in a nitrogen-gas stream at 100 K . The temperature of the crystal was maintained at the selected value (100 K) by means of a 700 series Cryostream cooling device to within an accuracy of $\pm 1 \mathrm{~K}$. The data were corrected for Lorentz polarization and absorption effects. The structures were solved by direct methods using SIR-97 ${ }^{[25]}$ and refined against F^{2} by fullmatrix least-squares techniques using SHELXL-97 ${ }^{[26]}$ with anisotropic displacement parameters for all non-hydrogen atoms. All calculations were performed by using the Crystal Structure crystallographic software package WINGX. [27]

The crystal data collection and refinement parameters are given in Table 7.1). The absolute configuration was determined by refining the Flack parameter ${ }^{[28]}$ using 1631 quotients $[(I+)-(I-)] /[(I+)+(I-)]$.

CCDC 1054222 contains the supplementary crystallographic. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/Requestastructure.

Table 7.1

Compound	30
CCDC dep. number	1054222
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{NO}$
Formula weight	401.35
Crystal size (mm^{3})	$0.21 \times 0.19 \times 0.17$
Crystal system	Monoclinic
Space group	C 2
	$a=22.1466(8) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$b=5.7422(2) \AA \quad \beta=117.0540(10)^{\circ}$
	$c=16.4690(6) \AA \quad \gamma=90^{\circ}$
Cell volume (${ }^{3}$)	496.57
Z	4
T (K)	100(1)
F_{000}	824
$\mu\left(\mathrm{mm}^{-1}\right)$	1.131
θ range (${ }^{\circ}$)	3.013-74.480
Reflection collected	24100
Reflection unique	3737
$\mathrm{R}_{\text {int }}$	0.0148
GOF	1.067
Refl. Obs. (1 > $2 \sigma(\mathrm{l})$)	3724
Parameters	253
wR2 (all data)	0.0827
R value ($1>2 \sigma(\mathrm{l})$)	0.0319
Largest diff. peak and hole (e- \AA^{3})	-0.339; 0.342

Compound
CCDC dep. number Empirical formula

Formula weight
Wavelenght (A) Crystal system Space group

Unit cell dimensions

Cell volume (\AA^{3})
Z
T (K)

Index ranges
θ range (${ }^{\circ}$)
Reflection collected
Data / restraints / parameters

Goodness-of-fit on F^{2}
Final R indices [$\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
endo-18
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$
190.23
0.71073 Å

Monoclinic
P 2 ${ }_{1} / \mathrm{C}$
$a=9.3250(7) \AA \quad \alpha=90^{\circ}$
$b=10.1283(7) \AA \beta=112.494(2)^{\circ}$
$c=11.2521(8) \AA \quad \gamma=90^{\circ}$
981.87

4
100(1)
$-15 \leq h \leq 15$
$-16 \leq k \leq 16$
$-18 \leq 1 \leq 18$
2.364-35.074

42955
4340 / 0 / 128
1.061
$R 1=0.0387, w R 2=0.1028$
$R 1=0.0483, w R 2=0.1085$

Structure not deposited yet in CCDC.

Compound
CCDC dep. number
Empirical formula
Formula weight
Wavelenght (Å)
Crystal system
Space group

	$a=9.4521(6) \AA$
Unit cell dimensions	$\quad \alpha=90^{\circ}$
$b=6.0497(4) \AA$	$\beta=93.299^{\circ}$
$c=8.6983(6) \AA$	$\gamma=90^{\circ}$

Cell volume (\AA^{3}) $\quad 496.57(6)$
Z 2
T (K) 100(1)

Index ranges $\quad-8 \leq k \leq 8$
θ range $\left({ }^{\circ}\right) \quad 2.158-30.559^{\circ}$
Reflection collected 8514
Data / restraints / parameters

Goodness-of-fit on F^{2}
Final R indices
[$\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$
R indices (all data)
$-13 \leq h \leq 13$ $-12 \leq I \leq 12$
1.044
exo-18
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$
190.23
0.71073 Å

Monoclinic
Pc
$a=9.4521(6) \AA \quad \alpha=90^{\circ}$
$b=6.0497(4) \AA \beta=93.299^{\circ}$
$c=8.6983(6) \AA \quad \gamma=90^{\circ}$

2668 / 2 / 128
$R 1=0.0400, w R 2=0.0853$
$R 1=0.0511, w R 2=0.0910$

Structure not deposited yet in CCDC.

Compound
trans-21

CCDC dep. number	-
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$
Formula weight	192.25
Wavelenght (A)	0.71073 A
Crystal system	Tetragonal
Space group	$P-42{ }_{1} \mathrm{c}$
	$a=10.5136(6) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$b=10.5136(6) \AA \beta=90^{\circ}$
	$c=18.9071(12) \AA \quad \gamma=90^{\circ}$
Cell volume (\AA^{3})	2089.9
Z	8
T (K)	100(2)
	$-15 \leq h \leq 15$
Index ranges	$-15 \leq k \leq 158$
	$-27 \leq 1 \leq 27$
θ range (${ }^{\circ}$)	$2.154-30.626^{\circ}$
Reflection collected	73674
Data / restraints / parameters	3220 / 0 / 131
Goodness-of-fit on F^{2}	1.079
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0445, w R 2=0.1129$
R indices (all data)	$R 1=0.0650, w R 2=0.1263$

Structure not deposited yet in CCDC.

Compound trans-23

CCDC dep. number	
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$
Formula weight	190.23
Wavelenght (Å)	0.71073 Å
Crystal system	Orthorhombic
Space group	$P 2,2{ }_{2}{ }_{1}$
	$a=5.3916(3) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$b=9.4754(5) \AA \beta=90^{\circ}$
	$c=19.0524(11) \AA \quad \gamma=90^{\circ}$
Cell volume (${ }^{3}$)	973.34
Z	4
T (K)	100(1)
	$-5 \leq h \leq 7$
Index ranges	$-8 \leq k \leq 8$
	$-27 \leq 1 \leq 27$
θ range (${ }^{\circ}$)	$2.138-30.700^{\circ}$
Reflection collected	23795
Data / restraints / parameters	3031 / 0 / 128
Goodness-of-fit on F^{2}	1.057
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0397, w R 2=0.1000$
R indices (all data)	$R 1=0.0485, w R 2=0.1057$

Structure not deposited yet in CCDC.

Compound 25

CCDC dep. number	-
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$
Formula weight	172.22
Wavelenght (Å)	0.71073 Å
Crystal system	Tetragonal
Space group	$P 21 / c$
	$a=6.0341(3) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$b=12.1361(8) \AA \beta=101.429^{\circ}$
	$c=12.5201(8) \AA \quad \gamma=90^{\circ}$
Cell volume (\AA^{3})	898.67
Z	4
T (K)	293(2)
	$-8 \leq h \leq 8$
Index ranges	$-17 \leq k \leq 17$
	$-17 \leq 1 \leq 17$
θ range (${ }^{\circ}$)	$2.360-30.696^{\circ}$
Reflection collected	39433
Data / restraints / parameters	2786 / 0 / 118
Goodness-of-fit on F^{2}	1.079
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0415, w R 2=0.1040$
R indices (all data)	$R 1=0.0642, w R 2=0.1111$

Structure not deposited yet in CCDC.

Compound 27

CCDC dep. number	-
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$
Formula weight	234.28
Wavelenght (A)	0.71073 A
Crystal system	triclinic
Space group	P-1
	$a=7.6327(5) \AA \quad \alpha=90.229^{\circ}$
Unit cell dimensions	$b=8.8953(6) \AA \beta=90.495^{\circ}$
	$c=9.3689(6) \AA \quad \gamma=104.24^{\circ}$
Cell volume (A^{3})	616.52
Z	2
T (K)	100(1)
	$-10 \leq h \leq 10$
Index ranges	$-11 \leq k \leq 12$
	$-11 \leq 1 \leq 13$
θ range (${ }^{\circ}$)	$2.174-30.59^{\circ}$
Reflection collected	14291
Data / restraints / parameters	3667 / 0 / 155
Goodness-of-fit on F^{2}	1.090
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0385, w R 2=0.1136$
R indices (all data)	$R 1=0.0440, w R 2=0.1237$

Structure not deposited yet in CCDC.

Compound
29

CCDC dep. number	-
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClO}_{2}$
Formula weight	226.69
Wavelenght (A)	0.71073 Å
Crystal system	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$
	$a=11.0121(8) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$b=18.2457(14) \AA \beta=108.114^{\circ}$
	$c=11.8328(9) \AA \quad \gamma=90^{\circ}$
Cell volume (\AA^{3})	2259.7
Z	8
T (K)	100(1)
	$-15 \leq h \leq 15$
Index ranges	$-26 \leq k \leq 26$
	$-16 \leq 1 \leq 16$
θ range (${ }^{\circ}$)	$2.232-30.599^{\circ}$
Reflection collected	115796
Data / restraints / parameters	6934 / 0 / 278
Goodness-of-fit on F^{2}	1.097
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0713, w R 2=0.1422$
R indices (all data)	$R 1=0.1265, w R 2=0.1572$

Structure not deposited yet in CCDC.

7.4 NMR SPECTRA

3a

3f

$3 i$

3j

3m

3p

3q

$3 r$

$3 t$

5a

5c

5e

$5 f$

5j

5k

7a/7'a (67:33)

7b/7’b (81:19)

(L)-8b

(L)-8i

ppm (f1)

9a/9'a

ent-9a/ent-9'a

9b/9'b

9c/9'c

9d/9'd

9e/9'e

9f/9'f

9g/9'g

9h/9'h

9i/9'i

$11 i$

11j

12a

12c

12d

$12 e$

(

12g

$12 h+12 h^{\prime}$

12k

12m

12n

120

12p

12q

${ }^{1} \mathrm{H}$-NMR of the inseparable reaction products

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the inseparable reaction products

${ }^{1} \mathrm{H}$-NMR of the inseparable reaction products

15b

15c

15d

endo-17a

exo-17a

endo-17b

exo-17b

endo-17c

exo-17c

endo-18

exo-18

21

trans-23

cis-24

27

7.5 Chiral HPLC Chromatograms

3a

Chiracel OJ column
(hexane/i-PrOH: 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$)

3b
Phenomenex Lux Cellulose-1 column
(hexane/i-PrOH = 98:2, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$)

3c

Chiracel OJ column
Hexane/i-PrOH $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$)

3d
Chiralpak AD-H column
hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$3 e$

Chiralpak AS-H column
hexane/i-PrOH $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$3 f$

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

3 g

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH = 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

3h

Phenomenex Lux Cellulose-1 column
hexane/i- $\mathrm{PrOH}=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$3 i$

Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

3j

Chiralpak AD-H column
hexane $/ \mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

362 mV	t	Qua Sta Nor $\begin{array}{r}\text { No } \\ 1 \\ 2 \\ \hline 2\end{array}$	titation m dard compo lization:		$\begin{aligned} & \text { slute co } \\ & 00 \\ & \text { Area } \\ & \% \\ & 47.71 \\ & 52.29 \\ & \hline 100.00 \end{aligned}$	cent Nam	
ch1							
5	15		$20 \quad 25$	30	35	40	

3k

Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

31

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=99: 1$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

3m

Chiracel OJ column
hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

3n

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH = 97:3, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

30

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

3p
Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

1500 mV		Quantitation method: Standard component: Normalization:			Absolute concentration No100.00		
		No $\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} \text { Retention } \\ \text { min } \\ 25.55 \\ 27.84 \end{array}$	Area $\begin{array}{r} \mathrm{mV} * \mathrm{sec} \\ 37049.010 \\ 36064.611 \end{array}$	Area $\begin{aligned} & 50.67 \\ & 49.33 \end{aligned}$		
		2	40.00	73113.621	100.00		
ch1							
5	10	15	20	25	30	35	min

3q

Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$3 r$

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$3 s$

Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

724 mV			titation me dard compon Retention min 7.54 8.08 25.00	thod: Abs ent: No 100 Area mV*sec 1142.666 10021.491 11164.157	$\begin{aligned} & \text { lute co } \\ & 00 \\ & \text { Area } \\ & 10.24 \\ & 89.76 \\ & \hline 100.00 \end{aligned}$	centration Name
ch1						
		10		15	20	min

3t

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH = 98:2, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

5a

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$)

839 mV	6		titation met dard compone alization:	thod: Abs ent:No 100 Area $m V^{*}$ sec 6248.668 6252.756 12501.424	$\begin{aligned} & \text { lute c } \\ & 00 \\ & \text { Area } \\ & 89 \\ & 49.98 \\ & 50.02 \\ & \hline 100.00 \end{aligned}$	centration Name
chl						

$626 \mathrm{mV}$		titation me dard compon alization:		$\begin{aligned} & \text { olute co } \\ & \text { Area } \\ & \text { o } \\ & 55 \\ & 55.33 \\ & 44.67 \\ & \hline 100.00 \end{aligned}$	centration Name
ch1					
. 5	10		15	20	min

5b

Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$)

5c Phenomenex Lux Cellulose-1 column (hexane/i-PrOH = 98:2, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$

5d
Chiracel OJ column
hexane/i- $\mathrm{PrOH}=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

5e
Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=98: 2$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$5 f$

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH = 98:2, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

5 g

Phenomenex Lux Cellulose-1 column
hexane $/ \mathrm{i}-\mathrm{PrOH}=99: 1$, flow rate $0.9 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

5h

Chiralpak AS-H column
hexane/i-PrOH = 95:5, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

$5 i$

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH = 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

5j

Phenomenex Lux Cellulose-1 column
hexane/i-PrOH $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

5k

Chiralpak AS-H column
hexane/i-PrOH $=98: 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$

7.6 GC-MS Chromatograms

GC-MS analysis of the crude reaction mixture

peak \#	$\begin{aligned} & \mathrm{R} \cdot \mathrm{~T} . \\ & \mathrm{min} \end{aligned}$	$\begin{array}{r} \text { first } \\ \text { scan } \end{array}$	\max scan	last scan	$\begin{aligned} & \text { PK } \\ & \text { TY } \end{aligned}$	peak height	$\begin{aligned} & \text { corr. } \\ & \text { area } \end{aligned}$	$\begin{aligned} & \text { corr. } \\ & \% \text { max. } \end{aligned}$	\% of total
1	2.880	65	70	185	M3	644722	177467477	16.43%	6.374%
2	4.355	185	198	557	M3	209029	329276190	30.49\%	11.826%
3	20.200	1571	1573	1644	M	3698120	642252755	59.46%	23.067%
4	21.099	1644	1651	1674	M	3554848	286058255	26.48\%	10.274%
5	21.376	1674	1675	1729	M2	2445472	269151296	24.92 \%	9.667%
6	22.136	1729	1741	1905	M2	4480440	1080105674	100.00\%	38.793\%

GC-MS analysis of the crude reaction mixture

GC-MS analysis of the crude reaction mixture

GC-MS analysis of the crude reaction mixture

121

GC-MS analysis of the crude reaction mixture

GC-MS analysis of the crude reaction mixture

References

[1] J. Zheng, T. Roisnel, C. Darcel, J. B. Sortais, ChemCatChem 2013, 5, 2861-2864.
[2] C. Gaeta, C. Talotta, P. Neri, Chemical Communications 2014, 50, 99179920.
[3] C. Cheng, M. Brookhart, Journal of the American Chemical Society 2012, 134, 11304-11307.
[4] A. B. Enyong, B. Moasser, The Journal of organic chemistry 2014, 79, 7553-7563.
[5] A. Prikhod'ko, O. Walter, T. A. Zevaco, J. Garcia-Rodriguez, O. Mouhtady, S. Py, European Journal of Organic Chemistry 2012, 2012, 3742-3746.
[6] K. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, Journal of the American Chemical Society 2004, 126, 14342-14343.
[7] A. D. Mills, M. Z. Nazer, M. J. Haddadin, M. J. Kurth, The Journal of organic chemistry 2006, 71, 2687-2689.
[8] Y. M. Yamada, H. Tabata, M. Ichinohe, H. Takahashi, S. Ikegami, Tetrahedron 2004, 60, 4087-4096.
[9] S. V. Ley, M. H. Bolli, B. Hinzen, A.-G. Gervois, B. J. Hall, Journal of the Chemical Society, Perkin Transactions 1 1998, 2239-2242.
[10] C. Johnsen, P. C. Stein, K. A. Nielsen, A. D. Bond, J. O. Jeppesen, European Journal of Organic Chemistry 2011, 2011, 759-769.
[11] A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff, R. D. Shah, The Journal of organic chemistry 1996, 61, 3849-3862.
[12] A. R. Surrey, M. K. Rukwid, Journal of the American Chemical Society 1955, 77, 3798-3801.
[13] M. J. MacDonald, C. R. Hesp, D. J. Schipper, M. Pesant, A. M. Beauchemin, Chemistry-A European Journal 2013, 19, 2597-2601.
[14] S. A. Gamage, D. P. Figgitt, S. J. Wojcik, R. K. Ralph, A. Ransijn, J. Mauel, V. Yardley, D. Snowdon, S. L. Croft, W. A. Denny, Journal of medicinal chemistry 1997, 40, 2634-2642.
[15] N. Fleury-Brégeot, J. Raushel, D. L. Sandrock, S. D. Dreher, G. A. Molander, Chemistry-A European Journal 2012, 18, 9564-9570.
[16] S.-y. Shirai, H. Nara, Y. Kayaki, T. Ikariya, Organometallics 2009, 28, 802809.
[17] S. Bera, G. Panda, ACS Combinatorial Science 2012, 14, 1-4.
[18] F. Teraoka, K. Fuji, O. Ozturk, T. Yoshimura, T. Kawabata, Synlett 2011, 2011, 543-546.
[19] P. H. H. Hermkens, T. G. v. Dinther, C. W. Joukema, G. N. Wagenaars, H. C. J. Ottenheijm, Tetrahedron Letters 1994, 35, 9271-9274.
[20] J. H. Cho, B. M. Kim, Tetrahedron Letters 2002, 43, 1273-1276.
[21] D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, Advanced Synthesis \& Catalysis 2014, 356, 941-945.
[22] A. Y. Hong, M. R. Krout, T. Jensen, N. B. Bennett, A. M. Harned, B. M. Stoltz, Angewandte Chemie 2011, 123, 2808-2812.
[23] F. C. E. Sarabèr, A. Baranovsky, B. J. M. Jansen, M. A. Posthumus, A. de Groot, Tetrahedron 2006, 62, 1726-1742.
[24] J. Orban, J. V. Turner, B. Twitchin, Tetrahedron Letters 1984, 25, 50995102.
[25] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. Moliterni, G. Polidori, R. Spagna, Journal of Applied Crystallography 1999, 32, 115-119.
[26] G. Sheldrick, Acta Crystallographica Section A 2008, 64, 112-122.
[27] L. J. Farrugia, Journal of Applied Crystallography 1999, 32, 837-838.
[28] S. Parsons, H. Flack, Acta Crystallographica Section A: Foundations of Crystallography 2004, 60, s61-s61.

8 AckNOWLEDGEMENTS

First of all, my sincere gratitude goes to my supervisor Dr. Angelo Frongia for his guide, support and for the helpful advices he gave me during the three years we spent working together. Thank you very much for your confidence in me your patience and, last but not least, the opportunity of working on these interesting and intriguing subjects.

Likewise, I would like to thank Dr. Francesco Secci, who has been twice my supervisor in my previous academic experiences and gave me the tools for starting this experience. Moreover, thank you for making yourself always at disposal for discussing and giving advices even when you got rid of me.

My sincere gratefulness goes also to Prof. David J. Aitken and to Dr. Thomas Boddaert who have hosted me during the ten months I spent in $C P^{3} A$ group of the ICMMO (Université Paris-Sud). I also take the chance to thank all the people I met and worked with. I am really grateful for your welcoming, the discussions we had, the time we spent together and - why not - all your mockeries. I honestly couldn't have wished for more.

In particular, I would like to express my deepest indebtedness to Thomas who has been a marvelous step-supervisor and I really enjoyed to work with. Your enthusiasm, help, motivation and many encouragements played a crucial role during my stay in $C P^{3} A$ group, both professionally and personally. It has been a real pleasure.

I owe a special thanks to Alberto Luridiana, who spent a period in $\mathrm{CP}^{3} \mathrm{~A}$ group and continued working on the project from where I left. Thanks for the late skype calls and discussions, support and for your precious help: your contribution has been essential.

I would like to thank all the PhD students of the ICMMO for allowing me to be part of your group since the beginning and for the nice moments and jokes. A special mention, though, goes to Mathieu for the numerous discussion about chemistry and life in general, for his suggestions, support and all the fun we had. Thank you very much, I'm really grateful to you.

Three years could be really long and exhausting without good colleagues. Thanks to all the current and former PhD students and post-docs for having enriched this experience. In particular, above all, those who started the PhD at the same time as I had. We helped, supported and encouraged each other. It would have been much harder without you. Moreover, I would like to express my appreciation to all the colleagues and students who spent time working in the lab in Cagliari. Thanks for the talks and all the moments we spent together in the lab.

Finally, I would like to thank friends and family for the support, encouragements and, particularly, your immense patience.

The present Ph.D. thesis is based on my three-years research at the University of Cagliari (Italy). It is submitted as a requirement for obtaining the Ph.D. degree with the further certificate of Doctor Europaeus. The whole research has been financed by M.I.U.R. (Ministero dell'Istruzione, dell'Università e della Ricerca), University of Cagliari, Fondazione Banco di Sardegna and Sardinia Regional Government (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007-2013-Axis IV Human Resources, Objective I.3, Line of Activity I.3.1).

[^0]: Scheme 6.5 - Hypothesized epimerizing mechanism for exo-18 with n-BuLi

