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Model for thermal conductivity in nanoporous silicon from atomistic simulations
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By means of molecular dynamics simulations, we have studied heat transport in nanoporous silicon, finding
that the Eucken model, widely adopted in the description of thermal transport in macroporous systems, breaks
down when pores are nanometer-sized. Present atomistic results are used to inform an extension to this model,
effectively describing the relationship between thermal conductivity and interface density, here identified as
the key structural characteristic of a porous sample. Our model, validated against a range of pore sizes and
distributions, provides a robust framework for the interpretation of the atomistic results, as well as suggesting
how to estimate the average pore size through thermal transport measurements.
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I. INTRODUCTION

Among many other intriguing properties, porous Si (PS) is
characterized by a thermal conductivity κ up to three orders
of magnitude smaller than in crystalline Si (c-Si) [1] and by
the ease of increasing the concentration of charge carriers by
gas adsorption [2,3]. These features make it very promising
for thermoelectric conversion. PS is also a perfect candidate
for thermal insulation [4,5] and, therefore, is under extensive
investigation as a key energy material.

Several experimental studies have been performed, report-
ing a wide range of κ values, depending either on doping
and on fabrication techniques [6]. The lowest values 0.04 �
κ � 1.2 W m−1 K−1 have been achieved for p- and p+-doped
silicon in disordered porous samples with porosity varying
from 40% to 80% [7–9]. Tang et al. [10] instead focused
on the thermoelectric properties of samples with cylindrical
pores arranged in a hexagonal pattern, reporting that κ is
reduced by a factor 100 with respect to c-Si, reaching a
figure of merit of ZT ∼ 0.4. From a theoretical point of view,
Lee et al. [5,11] used a combination of classical molecular
dynamics (MD) and ab initio density functional theory to
study the thermoelectric properties of nano-PS, characterized
by periodically arranged circular and square pores, estimating
0.6 � κ � 2.5 W m−1 K−1, and ZT = 0.4. He et al. [1]
performed MD and lattice dynamics calculations in thin films
with cylindrical pores, showing that κ could be reduced up to
a factor 20 with respect to bulk c-Si.

Although the above scenario offers quite a number of
reliable determinations of κ in many PS samples differing
by morphology, a general picture is still missing in correlating
the heat transport properties to some overall feature related
to porosity. This is detrimental to understanding possible
general trends, as we indeed aim at in the present work. In
particular, comparatively little attention has been so far given
to characterize by atomistic simulations thermal transport in
samples with disordered porosity, a configuration closer to the
experimental situation. As a matter of fact, it is very unlikely to
obtain a real sample with an ordered array of pores especially
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when using etching fabrication processes which do not allow
to control the spatial and shape distribution of voids. This
work is addressed to fill this gap: atomistic simulations are
used to inform an effective model describing on a general
basis the relationship between κ and interface density (i.e.,
the ratio between porosity and average pore diameter). The
model here developed, including and extending the previous
Eucken model valid only for macroporous composites [12,13],
is applied to both ordered and random nano-PS structures,
providing a robust rationale to understand and predict κ values,
once the system morphology has been given.

II. BACKGROUND

A. Computational details

Thermal conductivity has been calculated in periodically
repeated simulation cells during the system approach to
equilibrium (occurred in a microcanonical MD run), pro-
ceeding from an initial nonequilibrium configuration where
the left and right halves of the simulation cell were set
at temperature T1 = 400 K and T2 = 200 K, respectively.
By computing on-the-fly the evolving temperature difference
�T (t) = 〈T1(t)〉 − 〈T2(t)〉 (where 〈· · · 〉 indicates the average
separately taken in the two half-cells), we straightforwardly
determined κ from

�T (t) = 〈T1〉 − 〈T2〉 =
∞∑

n=1

Cne
−α2

ntκ/ρCv , (1)

where ρ is the mass density and Cv is the specific heat of the
simulated system. Equation (1) is obtained by solving exactly
the heat equation, as extensively discussed elsewhere [16]. The
coefficients

Cn = 8(T1 − T2)
[cos(αnLz/2) − 1]2

α2
nL

2
z

(2)

and αn = 2πn/Lz are obtained for a system of length
Lz initially prepared in the configuration described above.
Typically, Eq. (1) is developed up to the n = 20 term. This
method, hereafter referred to as approach to equilibrium
molecular dynamics (AEMD), has been successfully applied
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to investigate thermal transport properties in nanostructured
Si-based systems [14–18].

The equations of motion have been integrated by the
velocity-Verlet algorithm with a time step as short as 2 fs
and simulations have been performed using the LAMMPS [19]
package and the environment dependent interatomic potential
(EDIP) [20]. This interaction scheme has been adopted since it
is accurate in describing noncrystalline forms of silicon, as in-
deed required for the present investigations. More importantly,
it has been elsewhere established its accuracy in predicting the
thermal transport properties of disordered silicon forms, like,
e.g., amorphous and nanocrystalline ones [16]. Finally, the
reliability of the present simulation protocol is also proved by
the good agreement found for the AEMD thermal conductivity
of c-Si with the Boltzmann transport equation prediction of
Refs. [21–23] based on the same EDIP potential, although the
actual value (i.e., κ = 294 W m−1 K−1) is somewhat larger
than the experimental one.

B. Sample generation

The bulk c-Si matrix has been modeled by a simulation cell
with length Lz varying in the range 24 nm � Lz � 136 nm
(see below) and fixed 13.6 × 13.6 nm2 section in the xy plane.
The resulting number of atoms varied therefore from 0.2 × 106

to 1.3 × 106, corresponding to simulation cells large enough
to reproduce all the main structural features of PS. We studied
two different kinds of system: ordered porous samples (OPS),
where the porosity is created by arranging a periodical array
of spherical pores, and random porous samples (RPS), with
randomly distributed, sized and shaped pores.

In general, the porosity

ϕ ≡ Vpores

Vsystem
(3)

is defined as the ratio between the total volume Vpores of the
regions where Si atoms have been removed and the system
volume Vsystem [24]. The porosity itself does not provide any
relevant information on the system morphology since, at least
for OPS, it depends on two parameters: the number of the
pores Np, and the pore diameter dp, i.e., ϕ = ϕ(Np,dp). For
example, the same given porosity ϕ can be obtained by creating
a large number of small pores or by just few larger ones. Three
examples of OPS are shown in Fig. 1, characterized by the
same porosity ϕ = 0.14, but different pore size dp. As we
will explain in the next section, the quantity that identifies
accurately the porous system and its inner surfaces is the
interface density �. In particular, we will show that the overall
thermal conductivity monotonically depends on �.

As for OPS, spherical pores with diameter dp were arranged
in a simple cubic lattice or in a thetragonal lattice: the array
of pores was created by assigning the positions of the center
of the pores and then by removing the atoms contained in the
sphere with radius dp/2 (see Fig. 1).

As for RPS, we added educated guesses to the above
procedure in order to enforce a twofold character of the
resulting spatial distribution of pores, namely: randomness
and uniformness. The uniform distribution of pores is not only
intended to mimic a typical experimental condition [6], but
it is also required by the assumption underlying the AEMD

FIG. 1. (Color online) Ordered porous Si samples with same
porosity ϕ = 0.14, but different pore diameter dp . Pictures show a
1.36-nm-thick longitudinal section. Heat flux is generated along the
z direction (see text).

method [16]. We also carefully equilibrated the RPS structure
by simulated annealing at 900 K temperature, followed by a
further equilibration at room temperature for a total simulation
time of 0.6 ns. This procedure allows inner surfaces to fully
relax towards a highly-defected structure, very similar to
amorphous silicon. In Fig. 2, we report the calculated ϕ along
the z direction of a typical RPS, showing that the deviation
around the preset value of ϕ = 0.30 is indeed very small.

Finally, we remark that when dealing with disordered
structures like RPS (which are shown in Fig. 3) configurational
averaging is requested in order to provide quantitative infor-
mation. Therefore, for each value of porosity, we averaged the
thermal conductivity over four different samples (with fixed
size and porosity).
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FIG. 2. (Color online) Red triangles: local porosity of a typical
random porous Si sample calculated along the z direction. Horizontal
solid line: average porosity. Shaded area: standard deviation for
porosity.
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FIG. 3. (Color online) Random porous Si samples with different
porosity ϕ. Pictures show a 1.36-nm-thick longitudinal section.
The zoomed frames provide additional details on the atomic scale
structure. We remark that the simulation cell is as thick as 13.6 nm
and, therefore, matter is not discontinuous. Heat flux is generated
along the z direction (see text).

C. Size effects

It is well known that in MD simulations performed on
cells with finite length Lz it occurs that κ = κ(Lz) due
to a fraction of the heat carriers having a mean free path
(MFP) longer than Lz [21,25]. Therefore really very large
cells (simulating the regime Lz → ∞) should be required
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FIG. 4. (Color online) Inverse thermal conductivity 1/κ vs in-
verse cell size 1/Lz for ordered porous Si samples with different
porosity. Symbols are typically as large as the standard deviation of
the calculated thermal conductivity.

for a single-run reliable prediction. This is obviously not a
valid approach, because of the overwhelming computational
workload required. A more practical solution provided in
Refs. [21,25] consists in performing a set of calculations for
increasing (but still affordable) values of Lz. Then, by plotting
1/κ versus 1/Lz, the thermal conductivity κ∞ for an ideally
infinite sample is obtained by extrapolating the simulation data
down to the 1/Lz → 0 limit. This extrapolation procedure is
good provided that one considers a set of Lz values at least
comparable with the maximum MFP of heat carriers in the
investigated system.

By adopting this procedure, we investigated size effects
in OPS by considering four values of porosity in the range
0.15 � ϕ � 0.45 and by calculating κ(Lz) for systems with
54.3 nm � Lz � 135.8 nm. The results are shown in Fig. 4
and also reported numerically in Table I. A linear 1/κ versus
1/Lz trend is found, although its slope is comparatively
much smaller than in c-Si [16], providing evidence that, for
the system dimensions here considered, size only marginally
affects thermal conductivity predictions. Consistently with
previous findings [1,26], this suggests that pores indeed
act as very efficient scatterers for heat carriers, causing a
considerable reduction of their mean free path.

TABLE I. Thermal conductivity κ for various ordered porous Si samples, differing in porosity ϕ, pore diameter dp , pore number Np and
size Lz. These data are also reported in Fig. 4.

κ (W m−1 K−1)

ϕ = 0.15 ϕ = 0.25 ϕ = 0.35 ϕ = 0.45
Lz (nm) Np dp = 3.0 nm dp = 3.5 nm dp = 3.9 nm dp = 4.3 nm

54.3 99 3.91 2.12 1.09 0.65
81.5 153 4.26 2.26 1.28 0.73
108.6 198 4.67 2.37 1.20 0.70
135.8 252 4.77 2.48 1.31 0.75

∞ 5.6 ± 0.2 2.78 ± 0.1 1.5 ± 0.1 0.8 ± 0.1
(extrapolated)
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TABLE II. Thermal conductivity κ for various random porous
Si samples, differing in porosity ϕ and size Lz. These data are
also reported in Fig. 5. The indicated errors reflect a configurational
average over 4 different samples. The average thermal conductivity
〈κ〉 is reported for any porosity.

κ (W m−1 K−1)

Lz ϕ = 0.15 ϕ = 0.25 ϕ = 0.35 ϕ = 0.45

24.4 3.2 ± 0.1 2.2 ± 0.5 0.8 ± 0.2 0.9 ± 0.3
32.6 3.5 ± 0.1 2.0 ± 0.5 1.2 ± 0.2 0.8 ± 0.3
40.7 4.8 ± 0.1 1.7 ± 0.5 0.8 ± 0.2 0.7 ± 0.3
54.3 3.1 ± 0.1 2.0 ± 0.5 1.0 ± 0.2 0.4 ± 0.3
81.5 5.8 ± 0.1 2.9 ± 0.5 0.9 ± 0.2 0.7 ± 0.3
108.6 4.3 ± 0.1 1.6 ± 0.5 1.0 ± 0.2 0.4 ± 0.3
135.8 4.6 ± 0.1 2.2 ± 0.5 1.2 ± 0.2 0.4 ± 0.3
〈κ〉 4.2 ± 1.0 2.1 ± 0.5 1.0 ± 0.2 0.6 ± 0.3

As for RPS, we explored a larger range of system sizes,
corresponding to 24.4 nm � Lz � 135.8 nm. The results are
summarized in Table II: interestingly enough, we observe a
really weak dependence of κ on Lz (even at very low porosity),
as confirmed by Fig. 5. The conclusion is straightforward:
a random distribution of unequally shaped and sized voids
fully inhibits the long-range features of any vibrational modes,
regardless the actual value of ϕ.

Based on the benchmark calculations described in this
section, we argue that in nanoporous silicon the estimation
of the thermal conductivity by AEMD is only marginally
affected (OPS), or even not at all affected (RPS), by the
selected length Lz of the simulation cell. Therefore we limited
the following investigations to just one reference system
size, namely Lz = 81.6 nm. This offers the best compromise
between numerical convenience and accuracy (as shown in
Figs. 4 and 5).
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FIG. 5. (Color online) Thermal conductivity κ as a function of
cell size Lz for random porous Si system with different porosity.
The horizontal solid lines (shaded area) represent the average values
(standard deviation).

TABLE III. Thermal conductivity κ for various ordered porous
Si samples with increasing porosity ϕ and pore diameter dp . The
number of pores is fixed at Np = 750.

ϕ dp (nm) κ (W m−1 K−1)

0.03 1.0 8.67
0.06 1.3 6.24
0.09 1.6 4.93
0.14 1.8 2.70
0.22 2.0 1.71
0.31 2.3 0.87
0.34 2.4 0.73

III. RESULTS AND DISCUSSION

A. κ versus porosity: ordered systems

As mentioned before, in OPS ϕ only depends on Np and
dp. Therefore we can vary the porosity either by fixing the
number of pores and by varying their diameter or, conversely,
by distributing a different number of equally sized pores.

The first option was exploited by generating seven different
samples with 0.03 � ϕ � 0.34, each containing as many
as Np = 750 identical pores (with suitable dimension to
accomodate any assigned porosity) arranged in a simple cubic
lattice. The second option, instead, was exploited by generating
a new set of seven different samples, where an increasing
number of pores was placed on a thetragonal lattice so to span
the 0.02 � ϕ � 0.27 porosity range. In this case, all pores
have the same dimension dp = 3.3 nm. For this second case
study, the procedure was also repeated by choosing dp =
5.0 nm. The results for the two procedures are summarized,
respectively, in Table III and in Tables IV and V. They compare
reasonably well with Ref. [10] where (despite the fact that
pores, arranged in an hexagonal regular pattern, have a much
larger average dimension ranging from 55 to 350 nm) samples
with ϕ = 0.35 are characterized by a thermal conductivity in
the range 1.73 W m−1 K−1 � κ � 10.23 W m−1 K−1.

The common feature is that the thermal conductivity of
OPS is greatly reduced with respect to the bulk crystalline
value. However, samples obtained by following the first
procedure have, on average, a much smaller κ , precisely:
as small as 50% or 30% of the corresponding one for
samples obtained by the second procedure with dp = 3.3 or
5.0 nm, respectively. Although these results are expected and
qualitatively explained by the presence of several internal

TABLE IV. Thermal conductivity κ for various ordered porous
Si samples with increasing porosity ϕ and number of pores Np . The
pore diameter is fixed at dp = 3.3 nm.

ϕ Np κ (W m−1 K−1)

0.02 18 22.22
0.05 36 11.01
0.09 72 6.15
0.14 108 4.61
0.18 144 3.75
0.23 180 3.22
0.27 216 2.96
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TABLE V. Thermal conductivity κ for various ordered porous Si
samples with increasing porosity ϕ and number of pores Np . The
pore diameter is fixed at dp = 5.0 nm.

ϕ Np κ (W m−1 K−1)

0.03 8 24.62
0.05 12 12.17
0.07 16 9.54
0.12 28 7.06
0.14 32 6.64
0.17 40 5.98
0.21 48 5.16

interfaces (at each matrix/pore boundary), which provide an
efficient phonon scattering mechanism, a more quantitative
picture is definitely needed in order to elaborate a rationale for
the observed trends.

B. Effective thermal conductivity in porous media

There have been many attempts to provide a general law
κ = κ(ϕ). The most widely referenced model was originally
proposed by Eucken, based on an effective medium approxi-
mation for two-phase porous media [12,13,27–29]. There, the
first and second phases are, respectively, the material forming
the host matrix and the embedded voids. By assuming that
the second phase is organized in spheres and that the distance
between the spheres is much larger than dp, the Eucken model
leads to the relation

κeff(ϕ) = κbulk
1 − ϕ

1 + ϕ

2

(4)

that accounts for the reduction of the thermal conductivity
κbulk of the first-phase material, caused by the presence
of the pores. Equation (4) accurately describes the thermal
conduction properties of composites with macropores, i.e.,
when the MFP of the vibrational modes of the pristine
(first phase) material is smaller than the typical pore size.
Conversely, in nanoporous materials (like those ones addressed
in the present investigation) the situation is just the opposite.
Furthermore, Eq. (4) is basically scale-invariant, as typical of
effective medium theories. Therefore it does not carry any
information about the dependence of thermal conduction on
structural details like, e.g., the pore size (as indeed reported
experimentally [30,31]). Any model aimed at improving the
Eucken one must fully exploit the above two features, namely:
the actual presence of pores (common to both macro- and
nanoporous systems) and their nanoscale features (which
additionally affect, through atomic-scale details).

As for the first issue, we adopt the standard picture that
the diffusion of microscopic heat carriers is affected by pores
as well as by their mutual scattering. A different maximum
mean free path for the carriers is therefore associated to
each scattering mechanism, respectively: 	pores and 	bulk.
While for systems obeying Eq. (4) it is easily found that
1/	pores = 2	bulk/ϕ, the evaluation of 	bulk requires an an-
harmonic lattice dynamics calculation. This second scattering
mechanism is the dominant one in the pristine material (i.e.,
in the first phase matrix with no voids). Applying Matthiesen

rule,

1

	eff
= 1

	bulk
+ 1

	pores
, (5)

we straightforwardly obtain the effective distance 	eff traveled
by heat carriers when both the above mechanisms limiting their
diffusion are properly taken into account.

As for nanoscale features, it is convenient to consider the
interface density � easily defined as

� = Npores

Vsystem
4π (dp/2)2 = 6ϕ

dp

. (6)

A new scattering length 	interface (associated to interface-
specific scattering events) is accordingly defined, that can be
written in the following form:

	interfaces = 1

Ncoll
= 4

�
= 2dp

3ϕ
, (7)

where

Ncoll = πd2
p

4

Npores

Vsystem
(8)

is the number of interface scattering events per unit length. We
remark that the factor πd2

p/4 is the cross section for scattering
at spherical pore of diameter dp. By adding this new scattering
contribution to Eq. (5), we eventually get for a nanoporous
system

	eff =
(

1

	bulk
+ 1

	bulk

ϕ

2
+ �

4

)−1

= 	bulk

1 + ϕ

2 + 3	bulk
2dp

ϕ
.

(9)
In order to proceed further, we remark that the thermal
conductivity of a homogeneous (i.e., containing no voids)
material with heat capacity Cv is usually approximated as

κ ∼ 1
3Cvvg	, (10)

where only the dominant heat carrier with MFP equal to 	 and
propagating with speed vg is considered. When considering
a (nano)porous material, the heat capacity can be usefully
replaced with an effective value Cv,eff = (1 − ϕ)Cv,bulk (where
Cv,bulk is the specific heat of the first-phase material), since the
heat capacity of the pores is negligible [32]. Furthermore,
the phonon group velocity is mostly determined by short-
range interactions and we can assume that is not that much
affected by the presence of the pores; this is confirmed
by MD simulations and lattice dynamics calculations [1].
In conclusion, under these assumptions and by combining
Eqs. (9) and (10), we eventually get

κeff(ϕ) = κbulk
1 − ϕ

1 + ϕ

2 + 3	bulk
2dp

ϕ
, (11)

which provides a simple, but very informative general expres-
sion for the effective thermal conductivity in a nanoporous
material. Interestingly enough, Eq. (11) not only contains
information about the pristine matrix (through κbulk and 	bulk

terms) and the overall porosity ϕ, but it also properly takes
into account the actual morphology of the pores through the
dp parameter. This feature represents a major step forward
since it makes Eq. (11) able to describe nanoporous systems,

054305-5
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FIG. 6. (Color online) Thermal conductivity κ as a function of
porosity ϕ in ordered porous Si samples with fixed number of pores.
Black solid line: effective model provided by Eq. (11). Red dashed
line: standard Eucken model provided by Eq. (4). Dots are typically
as large as the standard deviation on κeff . Symbols are typically as
large as the standard deviation of the calculated thermal conductivity.

at variance with Eq. (4), which is limited to macroporous
composites. Nevertheless, the functional form of κeff(ϕ) is the
same of the Eucken model: in fact it is worth noting that for
dp � 	bulk it reduces back to the Eucken model. The factor
β = 3	bulk

2dp
can be enclosed in a single parameter to be fit on

the results of AEMD simulations.
In Fig. 6, we report the κ values obtained by AEMD

(black squares) for OPS with fixed pores; the solid black curve
represents the effective thermal conductivity relation given in
Eq. (11) that has been used to fit the data and the red dashed
curve is the Eucken model. Fig. 6 clearly stands for the major
improvement of the present model to the conventional Eucken
one. The value for the β parameter obtained by fitting the
AEMD data is 55.3 ± 4.4. As dp is known for each point in
the plot, we can use β to calculate the values for 	bulk. This
order-of-magnitude estimate predicts 40 � 	bulk � 90 nm, in
nice agreement with Ref. [21] where the dominant contribution
to thermal conductivity in c-Si is calculated to come from
phonons with MFP as long as ∼102 nm.

In Fig. 7, we report a comparison between the two
different classes of OPS here investigated, namely, those
with fixed Np (black symbols) and those with fixed dp (red
and green samples). For both dp = 3.3 and 5.5 nm, the
agreement between calculated AEMD data and Eq. (11) is
definitely less good than by keeping Np fixed. This can be
explained considering the local morphology of the samples:
the structural relaxations at the pore/matrix interface result in
the formation of an amorphous or highly-defected spherical
shell surrounding the pore. The amount of defected matter
increases with growing pore diameter, as shown in Fig. 8.

We remark once again that the Eucken model for κeff(ϕ) has
been derived by assuming a two-phase composite structure,
while the observed defected/amorphous shell is, as far as the
propagation of heat carries is concerned, effectively a third
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FIG. 7. (Color online) Thermal conductivity κ as a function of
porosity ϕ in ordered porous Si samples with either fixed number of
pores Np (black squares) and fixed pore diameter dp = 3.3 nm (red
triangles) and dp = 5.0 nm (green dots). Solid lines: effective model
provided by Eq. (11). Symbols are typically as large as the standard
deviation of the calculated thermal conductivity.

phase: in the case of OPS with fixed Np, the agreement
is good because the pores are very small and there is little
defected medium, while in the case of OPS with fixed dp (both
values) the actual amount of a third-phase material is too large
to be neglected. This statement is validated by counting the
number (per pore) of atoms forming the third phase, as shown
in Fig. 9. Defect atoms have been identified by evaluating their
on-site energy, as calculated by the adopted EDIP potential:
while in an ideal c-Si lattice at room temperature atoms have
a configurational energy of about ∼−4.6 eV/atom, in the
highly defected shells this value is raised above −4.3 eV/atom.
Figure 9 clearly indicates that high-energy atoms have a much
smaller occurrence in OPS with fixed Np: in this case Eq. (11)
works at its best.

Another interesting feature of Fig. 7 worth of further
investigation is that the larger are the pores, the worst is
the agreement between calculated AEMD data and the model
provided by Eq. (11), as indicated by the reduced χ2 of the
fit reported in figure. Since κ ∼ (3	bulk/2dp)−1 it is obvious
that, for fixed porosity, the smaller are the pores the smaller is
the thermal conductivity. This is also related to the interface
density � = 6ϕ/dp: for a given value of porosity it increases
with decreasing pore diameter. In order to better point out this
issue, in Fig. 10, we report the thermal conductivity of six OPS
with same porosity ϕ = 0.28, but different pore number and
dimension. The corresponding values are listed in Table VI.
The main conclusion is that, although the porosity in these
system is constant, thermal transport is highly affected by
an increasing interface density to which the probability of
scattering is directly linked.

C. κ versus porosity: random systems

In RPS it is hard to define the position, size, and shape of
each pore. Therefore we rather characterize their nanoporous
structure by providing the distribution of the pore dimensions
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FIG. 8. (Color online) Detail of the microscopic structure nearby a typical spherical pore with increasing diameter dp . The yellow circle
identifies approximately the shell corresponding to the highly-defected region.

which, by construction, we set as a Gaussian distribution
with average value 〈dp〉 = 4.0 nm and a standard deviation
of 1.5 nm. Table VII lists the results for several RPS with
0.05 � ϕ � 0.50, showing, similarly to OPS, a monotonic
decrease in thermal conductivity by increasing porosity. A
direct comparison to experimental data is very hard, since
little information is available for samples characterized at
the nanoscale by a pore distribution similar to the one here
investigated. However, in Ref. [33], the thermal conductivity
in PS crystallites has been measured by the micro-Raman
technique reporting κ values well below 5 W m−1 K−1 for any
ϕ � 0.3. This is a further convincing argument supporting the
results here presented. We also remark that the κ = κ(ϕ) trend
there reported is very similar to our findings. Furthermore,
in Refs. [7,9], it is reported a thermal conductivity for
high-porosity samples lower than 2 and 1.5 W m−1 K−1,
respectively. Once again these results are in good agreement
with those ones reported in Table VII. Finally, in Ref. [35],
a direct measurement of thermal conductivity in p+-doped
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FIG. 9. (Color online) Number of defected atoms (per pore) as
a function of the pore diameter in ordered porous Si samples. Red
squares: systems with constant number of pores. Green dots (blue
triangles): systems with pore diameter fixed at dp = 3.3 nm (dp =
5.0 nm).

mesoporous silicon is reported with ϕ ∼ 0.5 as small as
1 W m−1 K−1 while, for a similar porosity, the rather different
value of 3.9 W m−1 K−1 is reported in Ref. [36], which further
indicates the large scattering of experimental data.

It is remarkable that, as shown in Fig. 11, the thermal
conductivity values in RPS are slightly larger than in OPS with
fixed Np, indicating a reduced interface density. This is due to
the fact that, since pores do not overlap, the interface density is
maximum in OPS. Furthermore, AEMD results for RPS are in
good agreement with Eq. (11). This suggests that, for samples
containing a random array of pores, κ is neither affected by
their actual shape, nor by their spatial distribution. As a further
sanity check for our calculations, we evaluated the average
pore diameter in RPS from the corresponding β parameter.
The result is 〈dp〉 = 4.3 ± 1.3 nm, fully consistent with the
values used during the sample generation. Incidentally, this
results suggests a possible practical procedure for estimating
the pore average size, indeed a relevant information hard to
get through thermal transport measurements [34].
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FIG. 10. Thermal conductivity κ as a function of the number
of pores Np (bottom horizontal scale) and pore diameter dp (top
horizontal scale) in ordered porous Si samples with ϕ = 0.28.
Symbols are typically as large as the standard deviation of the
calculated thermal conductivity.
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TABLE VI. Thermal conductivity κ for various ordered porous
Si samples with same porosity ϕ = 0.28, but varying number of pores
Np and pore diameter dp .

Np dp [nm] κ (W m−1 K−1)

6 11.0 7.00
28 6.6 1.75
108 4.2 1.36
224 3.3 0.78
500 2.5 0.83
1116 2.0 0.70

D. Beyond the Eucken model

All the present calculated AEMD data for whatever inves-
tigated system are in fact very accurately predicted by a model
where the key structural parameter is the interface density �.
By generalizing Eq. (11), we can cast κeff in the form

κeff(�) = κbulk
1 − dp�/6

1 + dp�/12 + 	bulk�/4
, (12)

where � now replaces all the structural parameters so far
considered. We stress that although the interface density has
been previously defined for spherical pores, it is actually
independent from their shape and it can be used to identify
universal trends in keff . We therefore argue that interface
density, rather than the overall porosity, is a more effective
quantity to fully describe thermal conductivity as a function
of system conformation. As a matter of fact, samples with
comparable interface density tend to have similar thermal
conductivities, although having a different porosity. This is
illustrated in Table VIII where systems with same porosity, but
unlike interface density, show remarkably different thermal
conductivity. On the other hand, when the interface density
is similar, then so is thermal conductivity, regardless of the
porosity.

In Fig. 12, we report κ for the whole set of samples studied
in this work (namely, any OPS and RPS) as a function of
interface density (top) and porosity (bottom). The two curves
are obtained by fitting the data using Eqs. (12) and (11) for �

TABLE VII. Thermal conductivity κ for various random porous
Si samples with increasing porosity ϕ. Reported errors reflect a
configurational average over four samples.

ϕ κ (W m−1 K−1)

0.05 9.8 ± 0.9
0.10 5.2 ± 0.3
0.15 4.6 ± 0.1
0.20 2.7 ± 0.4
0.25 2.0 ± 0.4
0.30 1.3 ± 0.5
0.35 0.9 ± 0.2
0.40 0.7 ± 0.2
0.45 0.5 ± 0.2
0.50 0.2 ± 0.1
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FIG. 11. (Color online) Thermal conductivity κ as a function of
porosity ϕ in random (red dots) and ordered (black squares) porous Si
samples. Solid lines: effective model provided by Eq. (11). Symbols
are typically as large as the standard deviation of the calculated
thermal conductivity.

and ϕ, respectively. The use of interface density, rather than
porosity, as the main structural parameter in Eq. (12) gives rise
to a more accurate fit of the data, as reflected by the reduced
χ2 values, respectively: χ2

� = 1.2 and χ2
ϕ = 3.5. The shaded

regions in Fig. 12 top and bottom represent the deviation of the
calculated AEMD data from the models provided by Eqs. (12)
and (11), respectively. The smaller area of the red region stands
for a better agreement, i.e., for the improved accuracy of the
extended Eucken model provided by Eq. (12) based.

IV. CONCLUSIONS

By nonequilibrium molecular dynamics simulations per-
formed on systems large enough to faithfully describe both
local scale and global structural features, we have investigated
how thermal conductivity in ordered and random nanoporous
silicon actually depends on porosity. In particular, we have
thoroughly characterized the effects of pore size, shape and
distribution on the resulting thermal transport properties. We
have further used atomistic simulations to inform an extended
version of the Eucken model, which is now valid both for
macroporous and nanoporous systems.

TABLE VIII. Thermal conductivity κ for three porous Si samples
differing by interface density �, pore diameter dp , pore number Np ,
and porosity ϕ.

� (nm−1) dp (nm) Np ϕ κ (W m−1 K−1)

0.153 11.0 6 0.28 7.0
0.840 2.0 1116 0.28 0.7
0.164 3.3 72 0.09 6.2
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FIG. 12. (Color online) Symbols: Thermal conductivity κ as
function of the interface density � (top panel) and porosity ϕ (bottom
panel) for all systems here investigated. Solid lines: effective model
provided by Eqs. (12) and (11) for the top and bottom panels,
respectively. Shaded area: the deviation of the calculated AEMD
data (symbols) from such models.

The main result of the present investigation is that the
thermal conductivity κ in nanoporous silicon does depend
on porosity, as well as it is affected by the interface density
�, namely by the ratio between porosity and average pore
diameter. Interestingly enough, � is identified as the real
key structural characteristic of a nanoporous sample, fully
determining its ability to transport heat.

A phenomenological effective model based on the interface
density as the main variable has been accordingly elaborated,
in accurate agreement with the present molecular dynamics
results and fully describing the trends in thermal conductivity
reduction due to the increase of the interface scattering
in nanoporous systems. Such an effective model provides
evidence that � is indeed a comparatively more effective
parameter in describing trends in κ than the overall sample
porosity. The agreement between the present simulation data
and the effective atomistic model here developed is very good,
suggesting a possible way to measure the average size of the
voids in a typical experimental nanoporous silicon sample.
The present improved basic understanding of thermal transport
properties in nanoporous silicon could allow to better tailor its
structural features in order to meet possible applications as a
key energy material, for instance, in thermoelectric production
or thermal insulation.
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