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Abstract: This paper proposes a replicable methodology to enhance the accuracy of the
photogrammetric reconstruction of large-scale objects based on the optimization of the procedures
for Unmanned Aerial Vehicle (UAV) camera image acquisition. The relationships between the
acquisition grid shapes, the acquisition grid geometric parameters (pitches, image rates, camera
framing, flight heights), and the 3D photogrammetric surface reconstruction accuracy were studied.
Ground Sampling Distance (GSD), the necessary number of photos to assure the desired overlapping,
and the surface reconstruction accuracy were related to grid shapes, image rate, and camera framing
at different flight heights. The established relationships allow to choose the best combination of grid
shapes and acquisition grid geometric parameters to obtain the desired accuracy for the required
GSD. This outcome was assessed by means of a case study related to the ancient arched brick
Bridge of the Saracens in Adrano (Sicily, Italy). The reconstruction of the three-dimensional surfaces of
this structure, obtained by the efficient Structure-From-Motion (SfM) algorithms of the commercial
software Pix4Mapper, supported the study by validating it with experimental data. A comparison
between the surface reconstruction with different acquisition grids at different flight heights and the
measurements obtained with a 3D terrestrial laser and total station-theodolites allowed to evaluate
the accuracy in terms of Euclidean distances.

Keywords: accuracy; Ground Sampling Distance; Structure-from-Motion algorithms; acquisition
grid optimization; Digital Surfaces Models

1. Introduction

Automated photogrammetry using UAV image acquisition for digital surface reconstruction has
become more widespread in recent years. This can be attributed to the enhanced performance of
UAV [1–3] and to the development of different computer vision algorithms [4] and computational
techniques, which have greatly speeded up the processing time and the quality of the reconstruction [5–7].

These techniques have been used for different purposes, including shape detection [8,9] and 3D
surface reconstruction of large-scale elements, where a high number of photos is necessary, such as
natural environments and geographical configurations [10–12], buildings and urban textures [13–15],
archaeological sites [16,17], and industrial installations [18,19]. In many of these applications, there is
an urgent need for the reconstruction of 3D structures from the 2D images collected from a UAV
camera quickly and with a great accuracy.

When a UAV is used simply as a platform to acquire images along with a pre-programmed grid
and the GPS-enabled trajectory is at a predetermined frame rate [20], it is likely that the acquisition
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of more images and/or their integration with other images may be necessary to obtain the required
accuracy in the three-dimensional reconstruction [21]. When both the dimensions of the object being
reconstructed and the accuracy increase, the computational time of the algorithms also increases
significantly, thus limiting them to high-speed reconstruction applications.

Researchers have proposed the use of improved algorithms for different situations based on
early SfM algorithms [22]. A variety of SfM strategies have emerged, including incremental [23,24],
hierarchical [25], and global [26–28] approaches. Actually, the procedures developed in the computer
vision community have focused more on the speed of the implemented procedures and on the success
in image orientation.

To the knowledge of the authors, no scientific work up to now has presented systematic
data concerning the improvement of results in a photogrammetric reconstruction against different
acquisition grid shapes and acquisition grid geometric parameters (pitches, image rates, camera
framing, flight heights).

The goal of the research was to determine the relationship between acquisition grid shapes,
acquisition grid geometric parameters, and the accuracy obtained in the 3D reconstruction of large
objects’ surfaces. The parameters investigated were therefore the grid geometric parameters: pitches,
image rates, camera framing, and flight heights. The simplest three types of grids shapes (rectangular,
elliptical, and cylindrical) were intended to be compared each other by studying, for each of them,
the influence of pitches, image rates, camera framing, and flight heights on the accuracy of the surfaces’
reconstruction. The study highlighted how much Ground Sampling Distance (GSD), the necessary
number of photos to assure the desired overlapping, and the surface reconstruction accuracy were
related to grid shapes, image rate, and camera framing at different flight heights (15 m, 20 m, 30 m,
40 m, and 50 m).

The case study of the Bridge of the Saracens in Adrano (Sicily), a valuable example of Roman
architecture characterized by an elongated longitudinal shape, geometric singularities, multiple and
variously inclined features, and different lighting levels, offered relevant results referring to the
examined relationships to support the methodology by validating it with experimental data.

Images, obtained by a CMOS 12 MP sensor, were used in Pix4Dmapper version 3 commercial
software to generate dense point clouds. Function Based Method (FBM) [29] and Area Based Matching
(ABM) [30,31] algorithms were employed to evaluate the degree of overlapping in the image acquired.
Some cutting edge matching techniques with binary descriptors were used to quickly and accurately
match keypoints.

The quality of Digital Surfaces Models (DSM) obtained from UAV image acquisitions was
evaluated by comparing the photogrammetric reconstructions to the data acquired by the 3D laser
scanner and total station-theodolites.

The paper presents the following structure divided into five sections, excluding the introduction.
Section 1 is devoted to a description of the materials and methods used. In the Section 2, the process
of image acquisition and surface reconstruction models are illustrated. In the Section 3, by means
of a statistical synthesis of the surface reconstruction data, the relationship between acquisition grid
shapes, acquisition grid parameters, and accuracy in 3D reconstruction is analyzed and discussed.
Final considerations and conclusions are drawn in Sections 4 and 5, respectively.

2. Materials and Methods

The fieldwork involved the following steps: acquisition, reconstruction, and analysis sessions.
Initially, the aerial photo shooting was performed with different grid geometric parameters and
configurations. For the aerial photogrammetric acquisition, an amateur UAV Hexacopter with Lipo 4S
cells (4000 mha, 14.4 V, 576 Wh—over 20 min autonomy) was used (Figure 1a,b)
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Figure 1. (a) UAV platform; (b) batteries and camera; (c) gimbal and camera; (d) LCD screen on the 
radio control; (e) laser scanner Konica Minolta 9v-I; (f) Geodimeter 480 total station-theodolites. 

The control board was an Ardupilot APM 2.6 with Arducopter 3.1.5 flying software and a PC 
Mission Planner ground station. The board was equipped with a gyroscope, an accelerometer, a 
magnetometer, a barometer which supplied the processor with 3D data concerning position and 
acceleration, and an electric speed controller (ESC) HobbyKing F30 (HK, Hong Kong, China) for the 
brushless motor. 

An action camera GoPro Hero 4 (Woodman Labs, San Francisco, CA, USA) Black Edition 
(Figure 1c) was positioned beneath the drone on a ‘Gimbal’ support. This support allowed the 
camera to rotate along three axes (pitch, roll, yaw) controlled by a digital board and manoeuvred by 
brushless motors which could dampen any drone shift keeping the camera motionless. The camera 
had a CMOS 12 MP 1/2.9″ solid-state sensor which could even sense electromagnetic data, so it was 
also possible to check the radiometric data in the image pixels. A video transmitter provided real 
time shots on a 7″ LCD monitor incorporated into the radio control unit (Figure 1d). The UAV 
platform and camera characteristics are summarized in Tables 1 and 2, respectively. 

Table 1. UAV Platform. 

Technical Specifications Value/Typology 
Frame Hexacopter 
Engine T-Motors 2216 (RoHS, Hong Kong, China) 

Engine size [mm] Φ27.8 × 34 
Engine Weight [g] 75 

Idle current@10v [A] 0.04 
Batteries Lipo 4S—4000 mha 

Max Power [Wh] 576 
Rotors Nylon10 × 5 pitch 

GPS uBlox LEA6H 
Flying software Arducopter 3.1.5 
UAV Weight [g] 1120 

Table 2. GoPro Hero 4 Black Edition. 

Parameter Value 
Sensor CMOS 12 MP 1/2.9″ 

Focal length (Fl) [mm] 15.5 
Sensor width (SW) [mm] 16.8 
Sensor length (Sl) [mm] 22.4 

ISO sensitivity 80–6400 
Lens range f/2.0–f/5.9 

Burst shooting [fps] 2.3 
Weight [g] 198 

Figure 1. (a) UAV platform; (b) batteries and camera; (c) gimbal and camera; (d) LCD screen on the
radio control; (e) laser scanner Konica Minolta 9v-I; (f) Geodimeter 480 total station-theodolites.

The control board was an Ardupilot APM 2.6 with Arducopter 3.1.5 flying software and a PC
Mission Planner ground station. The board was equipped with a gyroscope, an accelerometer,
a magnetometer, a barometer which supplied the processor with 3D data concerning position and
acceleration, and an electric speed controller (ESC) HobbyKing F30 (HK, Hong Kong, China) for the
brushless motor.

An action camera GoPro Hero 4 (Woodman Labs, San Francisco, CA, USA) Black Edition
(Figure 1c) was positioned beneath the drone on a ‘Gimbal’ support. This support allowed the
camera to rotate along three axes (pitch, roll, yaw) controlled by a digital board and manoeuvred by
brushless motors which could dampen any drone shift keeping the camera motionless. The camera
had a CMOS 12 MP 1/2.9” solid-state sensor which could even sense electromagnetic data, so it was
also possible to check the radiometric data in the image pixels. A video transmitter provided real time
shots on a 7” LCD monitor incorporated into the radio control unit (Figure 1d). The UAV platform and
camera characteristics are summarized in Tables 1 and 2, respectively.

Table 1. UAV Platform.

Technical Specifications Value/Typology

Frame Hexacopter
Engine T-Motors 2216 (RoHS, Hong Kong, China)

Engine size (mm) Φ27.8 × 34
Engine Weight (g) 75

Idle current@10v (A) 0.04
Batteries Lipo 4S—4000 mha

Max Power (Wh) 576
Rotors Nylon10 × 5 pitch

GPS uBlox LEA6H
Flying software Arducopter 3.1.5
UAV Weight (g) 1120

Table 2. GoPro Hero 4 Black Edition.

Parameter Value

Sensor CMOS 12 MP 1/2.9”
Focal length (Fl) (mm) 15.5

Sensor width (SW) (mm) 16.8
Sensor length (Sl) (mm) 22.4

ISO sensitivity 80–6400
Lens range f/2.0–f/5.9

Burst shooting (fps) 2.3
Weight (g) 198
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GPS LEA6H (uBlox, Thalwil, Switzerland) with Ground Station PC Mission Planner software
(version 1) converted a discrete number of points into geo-referenced coordinates (GRC) by generating
waypoint acquisition grids. In this way, it was possible to define different configurations of 3D grids.
From each GRC, an image was acquired [32]. Figure 2a shows an example of a rectangular waypoint
acquisition grid at a flight height of 40 m. The numbers in the figure indicate the points in which the
drone started, finished, and changed its trajectory. Figure 2b shows, instead, an elliptical waypoint
acquisition grid at a flight height (hv) of 30 m.
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from image collections captured by UAVs. The method employed for mosaicking images was 
Bundle Block Adjustment (BBA) with SfM algorithms [33]. Each image has six exterior parameters: 
the camera’s position along with its roll, pitch, and yaw angles, which mapped each scene point (x, y, 
z) to the corresponding image point (x’, y’). The parameters of these equations were as follows: (xc, yc, 
zc) was the camera’s position and (mij) was the rotation matrix 3 × 3 defined by the roll, pitch, and 
yaw angles of the camera. There were more fixed parameters: (xp, yp) was the main point, whereas fx 
and fy were focal length ratios. The focal points and focal lengths, along with the distortion and 
radius of the radial lens, were determined by a calibration procedure before each acquisition flight. 

By means of the described method, 20 different polygonal meshes were generated in 
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For rectangular camera grid acquisitions, different camera framing orientations were used, 
obtaining two different image collection sets. The first set of images was acquired by vertically 
oriented aerial photo shooting, which will hereinafter be referred to as the “Rectangular Grid with 
Vertical Camera” (RGVC). The RGVC was capable of generating orthomosaic image collections. The 
second image collection set was acquired by a camera oriented differently for each image using a 
gimbal and action camera, which will hereinafter be referred to as the “Rectangular Grid with 
Oscillating Camera” (RGOC). 

Figure 2. Waypoint acquisition grids: (a) Rectangular at hv = 40 m; (b) Elliptical at hv = 30 m;
(c) Cylindrical hv = 40 m.

The commercial software Pix4Dmapper was used to create a polygonal mesh of the surface from
image collections captured by UAVs. The method employed for mosaicking images was Bundle Block
Adjustment (BBA) with SfM algorithms [33]. Each image has six exterior parameters: the camera’s
position along with its roll, pitch, and yaw angles, which mapped each scene point (x, y, z) to the
corresponding image point (x’, y’). The parameters of these equations were as follows: (xc, yc, zc) was
the camera’s position and (mij) was the rotation matrix 3 × 3 defined by the roll, pitch, and yaw angles
of the camera. There were more fixed parameters: (xp, yp) was the main point, whereas f x and f y were
focal length ratios. The focal points and focal lengths, along with the distortion and radius of the radial
lens, were determined by a calibration procedure before each acquisition flight.

By means of the described method, 20 different polygonal meshes were generated in
correspondence of 20 different waypoint acquisition grids by combining three different acquisition grid
shapes (rectangular, elliptical, and cylindrical), five flight heights (15 m, 20 m, 30 m, 40 m, and 50 m),
and different camera framing. The relationship between acquisition grid shapes and acquisition grid
geometric parameters, as well as GSD and 3D reconstruction accuracy at a certain image overlap value,
was determined.

For rectangular camera grid acquisitions, different camera framing orientations were used,
obtaining two different image collection sets. The first set of images was acquired by vertically oriented
aerial photo shooting, which will hereinafter be referred to as the “Rectangular Grid with Vertical
Camera” (RGVC). The RGVC was capable of generating orthomosaic image collections. The second
image collection set was acquired by a camera oriented differently for each image using a gimbal
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and action camera, which will hereinafter be referred to as the “Rectangular Grid with Oscillating
Camera” (RGOC).

The image collection sets in elliptical and cylindrical camera grid acquisitions were made
exclusively by a camera oriented differently for each image, and will hereinafter be referred to as the
“Elliptical Grid” (EG) referring to the first acquisition grid, and the “Cylindrical Grid” (CG) referring
to the second acquisition grid.

In the case study of the bridge surface reconstruction, the accuracy of the obtained twenty surface
reconstructions was evaluated with the data acquired using a 3D laser scanning device Konica Minolta
9v-I (Konica Minolta, Ramsey, NJ, USA), precision ≤2 mm (Figure 1e), and a total station Geodimeter
480 (Geoglobex, Monza, Italy), distance accuracy ≤3 mm (Figure 1f).

3. Image Acquisition and Surface Reconstructions

3.1. Image Acquisition

In the case study of the bridge surface reconstruction, the aerial image acquisition phases are
illustrated as follows. Aerial image acquisitions were made with RGVC, RGOC, EG, and CG at five
flight heights: 15 m, 20 m, 30 m, 40 m, and 50 m. The acquisition pitches p (m) in the grids forming the
waypoints (Figure 3) were a function of the required Ground Sampling Distance (GSD) (cm/pixel) and
overlap. They were calculated according to the following Equation (1) [34]:

p =

(
ImWp × GSD

100

)
× (1 − overlap) (1)

where ImWp was the image width [pixel]. When the acquired images had a different length and
width (ImL and ImW), it was necessary to define two different pitches to have a constant value of the
overlap along the two orthogonal directions in the acquisition grids (Width Overlap and Length Overlap).
In the RGVC considering the longitudinal extension as the reference point and positioning the grids
as shown in Figure 2a, it was possible to determine the longitudinal pitch (pl) and (orthogonal to the
first) a transversal pitch (pt), which ensured a constant overlap value of 66% (Figure 3). In Figure 3 are
highlighted three areas, respectively represented with blue, orange and green colour, corresponding
to different acquired images and the zone of their overlap, which defines the length and width of
overlapping. The dots represent the subsequent positions of the UAV from which the three images
were acquired. In the present study, in which the image dimensions in pixel (ImLp and ImWp) were
4000 pixels and 3000 pixels, respectively, the following acquisition pitch p values were established:

pl =

(
ImLp × GSD

100

)
× (1 − overlap) =

(
4000 × GSD

100

)
× 33.3 (2)

pt =

(
ImWp × GSD

100

)
× (1 − overlap) =

(
3000 × GSD

100

)
× 33.3 (3)

where GSD (cm/pixel) was calculated according to the following Equation (4) as a function of hv:

GSD =
hv × Sw × 100

Fl × ImW
(4)

In this equation, Sw was the sensor width and Fl was the focal length (See Table 2). Therefore,
in RGVC, an exactly constant value of the overlap value equal to 66% along the two orthogonal
directions (Table 3a) was obtained.
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Table 3. (a) GSD, overlaps, and pitches in RGVC; (b) GSD, overlaps, and pitches in RGOC; (c) GSD,
overlaps, and pitches in EG; (d) GSD, overlaps, and pitches in CG.

(a)
hv (m) GSD (cm/pixel) ImW (m) ImL (m) W. Over. (%) L. Over. (%) pt (m) pl (m)

15 0.36 10.8 14.5 66.0% 66.0% 3.7 4.9
20 0.54 16.3 21.7 66.0% 66.0% 5.5 7.4
30 0.90 27.1 36.1 66.0% 66.0% 9.2 12.3
40 1.26 37.9 50.6 66.0% 66.0% 12.9 17.2
50 1.63 48.8 65.0 66.0% 66.0% 16.6 22.1

(b)
hv (m) ϑr(◦) GSD (cm/pixel) ImW (m) ImL (m) W. Over. (%) L. Over. (%) pt (m) pl (m)

15
0.0 0.36 10.8 14.5 66.0% 66.0% 3.7 4.9
4.0 0.36 10.9 14.5 66.0% 66.1% 3.7 4.9

25.5 0.40 12.0 16.0 66.0% 69.3% 4.1 4.9

20
0.0 0.54 16.3 21.7 66.0% 66.0% 5.6 7.5
9.9 0.55 16.5 22.0 66.0% 66.0% 5.6 7.5

31.2 0.63 19.0 25.3 66.0% 70.5% 6.5 7.5

30
4.0 0.93 28.0 37.3 66.0% 66.0% 9.5 12.3

25.6 1.00 30.0 40.1 66.0% 68.3% 10.2 12.3

40
6.1 1.32 39.6 52.8 66.0% 66.0% 13.5 17.2

35.6 1.43 42.8 57.1 66.0% 68.5% 14.6 17.2

50
7.2 1.71 51.2 68.3 66.0% 66.0% 17.4 22.1

28.7 1.85 55.6 74.1 66.0% 68.7% 18.9 22.1

(c)
hv (m) ϑe(◦) GSD (cm/pixel) ImW (m) ImL (m) Tan. Over. (%) Trans. Over. (%) ptan (m)

15
23.2 0.41 12.3 16.4 66.0% 66.1% 4.2
35.0 40.76 15.3 20.4 66.0% 78.3% 5.2

20
27.7 0.67 20.1 26.8 66.0% 66.0% 6.8
38.7 0.77 23.0 30.7 66.0% 80.3% 7.8

30
33.6 1.15 34.4 45.9 66.0% 66.1% 11.7
41.3 1.28 38.3 51.1 66.0% 80.1% 13.0

40
38.7 1.69 53.6 71.5 66.0% 66.0% 17.2
42.4 1.79 50.7 67.6 66.0% 79.8% 18.2

50
38.7 2.15 64.5 86.1 66.0% 66.0% 21.9
43.0 2.30 69.0 92.0 66.0% 80.6% 23.5

(d)
hv (m) ϑe(◦) GSD (cm/pixel) ImW (m) ImL (m) W. Over. (%) L. Over. (%) pt (m) pl (m)

15
0.0 0.36 10.8 14.5 66.0% 66.0% 3.7 4.9

90.0 0.43 13.0 17.3 66.0% 71.7% 4.4 4.9

20
0.0 0.54 16.3 21.7 66.0% 66.0% 5.5 7.4

90.0 0.61 18.4 24.6 66.0% 70.0% 6.3 7.4

30
0.0 0.90 27.1 36.1 66.0% 66.0% 9.2 12.3

90.0 0.98 29.3 39.0 66.0% 68.5% 10.0 12.3

40
0.0 1.26 37.9 50.6 66.0% 66.0% 12.9 17.2

90.0 1.34 40.1 53.5 66.0% 67.8% 13.6 17.2

50
0.0 1.63 48.8 65.0 66.0% 66.0% 16.6 22.1

90.0 1.70 50.9 67.9 66.0% 67.4% 17.3 22.1

In RGOC, EG, and CG, the values of grid shapes and acquisition pitches p were established to
ensure overlap values close to 66% along the two orthogonal directions. These values of overlap close
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to 66% in RGVC, RGOC, EG, and CG ensured that each keypoint was captured in at least three different
shots (Figure 4), thus avoiding the risk of insufficient feature overlaps across images in post-flight
image processing, as well as the subsequent risk of failure in 3D reconstruction. This result is also
reported in other research projects [35], to ensure full coverage in aerial laser scanning.Sensors 2018, 18, 2815 6 of 17 
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Figure 4. Common keypoint in three sequentially captured images in EG at hv = 30 m.

In the RGOC, the overlap value equal to 66% was imposed along the transversal direction,
determining the values of transversal pitches (pt). Using longitudinal pitches (pl) equal to RGVC,
it was checked that the value obtained along the longitudinal direction was never less than 66%
(Table 3b). The gimbal rotation ϑr around the horizontal axis parallel to the longitudinal direction was
synchronized with the transverse distance x (m) of the UAV platform in relation to the center line and
with the flight height hv (m) according to Equation (5):

ϑr = tan−1 x − wo/2
hv − ho

(5)

where ho (m) stands for the object height and wo (m) stands for the object width (Figure 5).
In EG (Figure 6), the overlap value equal to 66% was imposed along the tangential direction

(Tangential Overlap), thus obtaining the value of the tangential pitch (ptan), and it was checked that the
overlap value obtained along the transversal direction (Transversal Overlap), orthogonal to the first,
was never less than 66% (Table 3c). In EG, the gimbal rotation ϑe around the tangential axis to the
elliptic orbit was synchronized with the minimum distance ρ from the acquired object according to the
following Equation (6):

ϑe = tan−1 ρ

hv − ho
(6)
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Equation (6) was also used to determine the values of the ellipses axis at the various flight heights.
In particular, the axis lengths were chosen to obtain a value of the gimbal rotation ϑe around the
tangential axis close to 30◦ at point A and close to 40◦ at point L. It was seen that these values allowed
us to obtain both the overlap values (tangential and transversal) close to 66% at the same time.

In CG, the gimbal rotation ϑc around the horizontal axis parallel to the longitudinal axis
was synchronized with the radial direction of the cylindrical trajectory according to the following
Equation (7) (Figure 7):

ϑc = tan−1 x − wo/2
hv − ho/2

(7)
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By replacing the minimum distance from the bridge (dmin) in Equation (1) with the value hv,
pitch values that ensured overlap values close to 66% were determined. In Figure 8, the waypoint at
hv = 40 m is shown. Values of GSD overlap and pitches are shown in Table 3d.
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Figure 8. Waypoint in CG at hv = 40 m.

Table 4 shows the geometric parameters (grid pitches, width, and length) in RGVC, RGOC, EG,
and CG. The number of photos (n. GRC) for each acquisition set in order to obtain the overlap values
close to 66% is also reported.

Table 4. Geometric characteristics of: RGVC, RGOC, EG, and CG.

RGVC—Rectangular Grid with Vertical Camera RGOC—Rectangular Grid with Oscillating Camera

hv (m) pt (m) pl (m) Width (m) Length (m) n. GRC hv (m) pt (m) pl (m) Width (m) Length (m) n. GRC

15 3.7 4.9 14.8 73.5 80 15 3.7;
4.1 4.9 15.5 73.5 80

20 5.5 7.4 22 81 60 20 5.6;
6.5 7.4 24.1 81 60

30 9.2 12.3 27.6 86 32 30 9.5; 10 12.3 41.7 86 40

40 12.9 17.2 38.7 103.2 28 40 13.5;
14.6 17.2 59.4 103.2 35

50 16.6 22.1 49.8 110.5 24 50 17.4;
18.9 22.1 77.1 110.5 30

EG—Elliptical Grid CG—Cylindrical Grid

hv (m) ptan (m) Width (m) Length (m) n. GRC hv (m) pt (m) pl (m) Width (m) Length (m) n. GRC

15 4.2; 5.2 26 80 36 15 3.7;
4.4 4.9 30 73.5 208

20 6.8; 7.8 36 90 28 20 5.5;
6.3 7.4 40 81 144

30 11.7; 13 56 110 22 30 9.2; 10 12.3 60 86 88

40 17.2; 18.2 76 130 20 40 12.9;
13.6 17.2 80 103.2 70

Figure 9 shows the EG at 30 m and the RGVC at 50 m.
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3.2. Surface Reconstruction

Once the image collections for the reconstruction were acquired, the system almost automatically
calibrated the cameras based on the exchangeable image file (EXIF) information, also reported in [7],
and the Fisheye lens camera model (Pix4D), found in the images, and the GCPs aligned them into the
3D space and produced a complete and single mesh using SfM algorithms. The reconstruction of the
surface is based on the following steps:

1. Algorithm searches for matching points by analyzing all the acquired images. Matching
techniques with binary descriptors, together with FBM and ABM, are employed to identify
features irrespective of their position, scale, and rotation. Studies on the performance of such
feature descriptors are given in [36].

2. Matching points, as well as approximate values of the image position and orientation provided
by Ardupilot APM 2.6, are used in BBA (Bundle Block Adjustment) [37,38] to reconstruct the
exact position and orientation of the camera for every acquired image.

3. Based on this reconstruction, the matching points are verified and their 3D coordinates are
calculated. The geo-reference system used is uBlox LEA6H with Groundstation PC Mission
Planner software (version 1), based on GPS measurements from the UAV Ardupilot APM 2.6
during the flight.

4. Those 3D points are interpolated to form a triangulated irregular network in order to obtain
a polygonal mesh of surfaces (Figure 10a,b) [39,40]. At this stage, a dense 3D model can increase
the spatial resolution of the triangle structure [41].

5. The polygonal mesh of surfaces is used to project every image pixel, obtaining a mapped texture
surface (Figure 10d), and to calculate the georeferenced orthomosaic [42].
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Figure 10. Surface reconstruction: (a) polygonal mesh of surfaces; (b) polygonal mesh visualized with
shade; (c) nurbs surface; (d) mapped texture surface.

In detail, from the 3D feature points calculated by the SfM, the mesh data were obtained by using
Delaunay triangulation. Then, the mesh was used as an outline of the object, which was projected
onto the plane of the images to get the estimated depth maps. These maps were optimized and
corrected using the pixel matching algorithm based on the patch. Finally, dense point cloud data
were obtained by fusing these depth maps. From the detected accurate cloud points, a 3D polygonal
mesh was obtained (point 4 of previous reconstruction steps). The polygonal mesh obtained can be
easily transformed, through open source algorithms, into a nurbs surface (Figure 10c) for different
applications. Figure 10 shows some steps of the described procedure in the case study of the bridge
surface reconstruction (CG at hv = 15 m).
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The flowchart relative to the reconstruction algorithm is summarized in Figure 11. Within the
blocks highlighted in yellow, the equivalent open source algorithm is shown.
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deviation between the mesh obtained with Pix4Dmapper and the point cloud obtained with 3D laser 
scanning. 

The ICP algorithm, implemented in Meshlab, was used to align each partial view obtained with 
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Figure 11. Flowchart of the main steps of the surface reconstruction algorithm.

In the Reference [43], it is possible to find the necessary information to also implement the
reconstruction algorithms used in open source software, for obtaining results similar to those of the
commercial software. In the same paper, the matching features algorithm written in pseudocode can
be found.

4. Reconstructions Accuracy Evaluation

The accuracy evaluation of the 20 reconstructions in the case study of the bridge was performed by
measuring two reference shapes: the pounding upper surface (pus) and the south side of the north-east
surveyed arch (arc) of the bridge. Using the terrestrial laser scanner and the total station-theodolites,
the coordinates of 29 keypoints on the pounding upper surface (Figure 12a) and the coordinates of
11 keypoints on the south side of the north-east surveyed arch (Figure 12b) were acquired.
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Figure 12. (a) 29 keypoints on the pounding upper surface; (b) 11 keypoints on the south side of the
north-east arch.

The choice of these two shapes, being on two mutually orthogonal positions, allowed the right
accuracy evaluation of the reconstructions entirely along the three dimensions. Such shapes had,
indeed, a favorable spatial distribution, which allowed an accurate validation of the length, width,
and height and the reconstructed profile evaluation of the arch. Six of these points (outlined with green
markers in Figure 10a) were those used as GCPs.

The partial scans were acquired by positioning the scanner’s sensor plane parallel to the upper
surface. The comparison was carried out using Meshlab [44] and CloudCompare [45–48] open source
software. Moreover, Meshlab was used to align the partial scans with the 3D model produced by
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Pix4Dmapper. Instead, the CloudCompare software was employed to estimate the surface deviation
between the mesh obtained with Pix4Dmapper and the point cloud obtained with 3D laser scanning.

The ICP algorithm, implemented in Meshlab, was used to align each partial view obtained with
the 3D laser scanning with the Pix4Dmapper triangular mesh model. In order to compare the two data
types, the cloud-to-mesh distance function offered by CloudCompare was selected as it was considered
as more robust to local noise. The cloud-to-mesh distance function computed the distances between
each vertex of the point cloud to the nearest triangle of the mesh surface. The distance between the
two was calculated as follows. In cases where the orthogonal projection of the vertex laid inside
the surface defined by a triangle, then the distance between the vertex and its point of intersection
on the surface was calculated. Accuracy (acc) was measured by evaluating these distances between
the obtained points and the homologous points in the 3D reconstructions. For a precise accuracy
evaluation, for both the two shapes, the accuracy was evaluated by introducing the standard deviation
(σ) of such differences for a typical length of the shape (Equations (8) and (9)). With reference to
the pounding upper surface (pus), the typical distance considered was the mean value ABmean of the
14 distances AxBx (x = 1, 2, . . . 14), and for the arch (arc), the observed typical distance was the mean
value Rmean of the 11 rays Ry (y = A, B, . . . M).

accpus =
14

σAB × ∑14
x=1

(
AxBxmeasured − AxBxrecontruction

) =
1

σAB × ABmean
for x = 1, 2, . . . 14 (8)

accarc =
11

σR × ∑M
y=A

(
Ry measured − Ry reconstruction

) =
1

σAB × Rmean
for x = A, B, . . . M (9)

Figure 13 shows the mean distance (cm) and standard deviation distances (σAB; σR) calculated in
cm in the case of surface reconstruction with CG at hv = 15 m.
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Table 5. Error in mean distances and its standard deviations in cm in the 20 surface reconstructions. 

Acq. Grid 
Tipology 𝑨𝑩𝒎𝒆𝒂𝒏 𝝈𝑨𝑩 𝒂𝒄𝒄𝒑𝒖𝒔 𝑹𝒎𝒆𝒂𝒏 𝝈𝑹 𝒂𝒄𝒄𝒂𝒓𝒄 Acq. Grid 

Tipology 𝑨𝑩𝒎𝒆𝒂𝒏 𝝈𝑨𝑩 𝒂𝒄𝒄𝒑𝒖𝒔 𝑹𝒎𝒆𝒂𝒏 𝝈𝑹 𝒂𝒄𝒄𝒂𝒓𝒄 

RGVC 15 m 0.65 1.8 0.85 1.08 2.9 0.35 EG 15 m 0.45 1.1 2.02 0.70 1.7 0.84 
RGVC 20 m 1.07 1.9 0.49 1.69 2.9 0.20 EG 20 m 0.78 1.2 1.07 1.26 1.7 0.47 
RGVC 30 m 1.71 1.9 0.31 2.70 3.0 0.12 EG 30 m 1.28 1.2 0.65 2.03 1.8 0.27 
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Figure 13. Error in mean distances (cm) and its standard deviation distances (cm) distribution graphs
in CG at 15 m: (a) pounding upper surface; (b) south side of the north-east surveyed arch.

In Table 5, the values of the mean error distance (ABmean; Rmean) and standard deviation distances
(σAB; σR) expressed in cm in the 20 reconstructions are shown. These values enabled us to measure
the accuracy through each of the 20 reconstructions which were taken into consideration in the
present work.
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Table 5. Error in mean distances and its standard deviations in cm in the 20 surface reconstructions.

Acq. Grid Tipology ABmean σAB accpus Rmean σR accarc Acq. Grid Tipology ABmean σAB accpus Rmean σR accarc

RGVC 15 m 0.65 1.8 0.85 1.08 2.9 0.35 EG 15 m 0.45 1.1 2.02 0.70 1.7 0.84
RGVC 20 m 1.07 1.9 0.49 1.69 2.9 0.20 EG 20 m 0.78 1.2 1.07 1.26 1.7 0.47
RGVC 30 m 1.71 1.9 0.31 2.70 3.0 0.12 EG 30 m 1.28 1.2 0.65 2.03 1.8 0.27
RGVC 40 m 2.73 2.0 0.18 6.17 3.0 0.05 EG 40 m 1.87 1.3 0.41 4.76 1.8 0.12
RGVC 50 m 3.36 2.1 0.14 8.38 3.1 0.04 EG 50 m 2.50 1.3 0.31 6.43 1.8 0.09

RGOC 15 m 0.54 1.2 1.54 0.6 1.9 0.88 CG 15 m 0.31 0.40 4.67 0.5 0..0 2.30
RGOC 20 m 0.93 1.3 0.83 1.03 2.0 0.50 CG 20 m 0.52 0.58 2.77 0.84 1.1 1.09
RGOC 30 m 1.48 1.4 0.48 1.58 2.1 0.30 CG 30 m 0.82 0.74 1.53 1.30 1.1 0.70
RGOC 40 m 2.14 1.4 0.33 2.98 2.2 0.15 CG 40 m 1.15 0.80 1.09 2.95 1.1 0.31
RGOC 50 m 2.60 1.5 0.26 3.96 2.2 0.11 CG 50 m 1.54 0.80 0.81 3.97 1.2 0.21

In particular, the mean error of distances (ABmean; Rmean) indicated the mean value of the accuracy
of every acquisition method, and the standard deviation error of distances (σAB; σR) indicated the
extent of the error distribution. The most accurate reconstructions were those characterized by smaller
values of mean error for distance and smaller values of standard deviation error. Table 5 shows values
of accpus (cm) and accarc (cm) evaluated in cm with Equations (8) and (9), respectively.

When considering a comparison of the 20 different types of surface reconstruction related to the
number of photos used (n. GRC) and the mean value of GSD offered by each of them, the following
parameters were calculated ξ (cm2) by multiplying the accuracy acc by GSD and the number of photos
(n. GRC):

ξpus = accpus × GSD × n.GRC (10)

ξarc = accarc × GSD × n.GRC (11)

The inferior values of these parameters allowed us to improve the accuracy and the speed of
reconstruction at the same time. In Table 6, the values of the products ξ (cm2) for the 20 different types
of surface reconstruction are shown.

Table 6. ξ factors for the 20 surface reconstructions.

Acq. Grid Tipology ξ pus (cm2) ξarc (cm2) Acq. Grid Tipology ξ pus (cm2) ξarc (cm2)

RGVC 15 m 24.7 4.2 EG 15 m 33.5 13.9
RGVC 20 m 15.9 3.6 EG 20 m 21.5 9.4
RGVC 30 m 8.9 2.6 EG 30 m 17.4 7.3
RGVC 40 m 6.5 1.9 EG 40 m 14.3 4.1
RGVC 50 m 5.5 1.5 EG 50 m 12.3 3.5

RGOC 15 m 47.1 26.7 CG 15 m 369.0 165.3
RGOC 20 m 29.3 17.7 CG 20 m 230.2 90.5
RGOC 30 m 18.7 11.5 CG 30 m 126.5 57.8
RGOC 40 m 16.0 7.3 CG 40 m 98.8 28.1
RGOC 50 m 13.7 6.1 CG 50 m 81.0 21.0

The parameters ξ enabled us to qualify every method which was analyzed in this study, regardless
of the value of GSD, which did not include the acquisition orientation, and the position in relation to
the part in acquisition.

5. Data Comparison and Discussions

The comparative analysis of the data obtained from the twenty reconstructions highlighted some
interesting points of discussion and provided useful information for the photogrammetric surface
reconstruction of large-scale objects. In all the reconstructions which were studied, the accuracy
resulted in Gaussian-like distributions. The accuracy was always proportional to GSD, but the number
of the images which needed to be acquired to obtain the desired accuracy varied according to the
grid shapes and the acquisition parameters utilized. Normalizing at one the sum of the two factors
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(ξpus + ξarc = ξ), it appeared clear (Figure 14) that the acquisition with CG enabled us to obtain a quality
of the reconstruction highly superior at all the flight heights. In Figure 14 the values of ξ factor as
normalized for the grid shapes at 15 m flight height were showed in green colors. The values of ξ

factor normalized for the grid shapes at 20 m flight height were showed in blu colors. The values of ξ

factor normalized for the grid shapes at 30 m flight height were showed in brown colors. The values
of ξ factor normalized in the grid shapes at 40 m flight height were showed in red colors and lastly
the values of ξ factor normalized in the grid shapes at 50 m flight height were showed in grey colors.
On average, the CG grid shape improved the accuracy by more than a factor of six/seven.
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The image overlaps were proportional to flight height and inversely proportional to grid pitch
studied. The synergic effects of grid shapes, grid pitch, and camera framing, instead, could not always
be predicted and their right combination might provide an advanced accuracy in photogrammetric
surface reconstruction.

The equations from (1) to (7) permitted us to correlate GSD, flight altitudes, and overlap with one
another. In particular, it was possible to use such equations to locate the flight heights, which assured
the desired values of GSD and overlap.

The acquisition with a single RGVC did not often suffice to reach the desired accuracy. In fact,
although it produced acceptable values of GSD, it lacked greatly in the acquisition of surfaces
orthogonal to the shot direction, as well as the side wall of the bridge.

Moving on from the acquisition with RGVC to the acquisition with RGVO, it was possible to keep
the transversal overlap steady (66%) when increasing the transversal pitch. This occurred according to
Equation (1), at the expense of GSD. Moreover, the rotation of the camera of the angle ϑr according to
Equation (5), involved an increase of the longitudinal overlap.

Similar to image overlap, the surface deviation values and the distances between feature points
appeared to be inversely proportional to flight height and highly dependent on grid acquisition type.
Overlap in the acquisitions with constant grid pitch seemed to be extremely variable, especially in the
elliptical grid. In the acquisition around the bridge with elliptical grids, some efficiency in terms of
number of images against the surface area being covered was lost.

The conducted analysis allowed us to check that all reconstructions contained errors proportional
to flight height, but this was true, especially for RGVC. This acquisition, being one of the most used
types, provided the worst results both in terms of accuracy (acc) and parameter ξ.
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The acquisition with CG allowed us to get the best results. This kind of grid, thanks to the modern
technologies and to a good GPS system, was easily implementable with a high accuracy in a system of
acquisition by UAV.

6. Conclusions

A replicable and generalizable methodology was illustrated in order to improve the quality
of the 3D digital surface reconstruction of large-scale objects by the photogrammetric technique.
Using commercial software (Pix4Dmapper) based on the Structure-from-Motion algorithms,
the existing relationships between the grid shapes, the acquisition grid parameters, the image overlap,
and the accuracy of reconstruction were evaluated and discussed. The proposed relationships enabled
us to obtain the appropriate selection of flight heights, acquisition grid shape, and camera framing in
correspondence to a pre-established overlap value and required GSD.

The experiments conducted on the reconstruction of the Bridge of the Saracens in Adrano (Sicily)
illustrated the effectiveness of the developed methodology, which enhanced the 3D reconstruction
of a highly complex architectural structure with the desired accuracy. The errors of surface
reconstruction were evaluated statistically using measures with a 3D laser scanner and total
station-theodolites measurements.

The experimental results indicated that in large-scale objects characterized by an elongated
longitudinal shape, geometric singularities, and multiple and variously inclined features, the proposed
method could improve the accuracy, increasing the speed of reconstruction at the same time by more
than a factor of six/seven. The authors believe that it might be interesting to apply the study to more
complex acquisition grid shapes (i.e., a zig-zag grid).
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