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Abstract

Container terminals are exchange hubs that interconnect many transporta-

tion modes and facilitate the flow of containers. Among other elements, ter-

minals include a yard which serves as temporary storage space. In the yard,

containers are piled up by cranes to form blocks of stacks. During the ship-

ment process, containers are carried from the stacks to ships following a given

sequence. Hence, if a high priority container is placed below low priority ones,

such obstructing containers have to be moved (relocated) to other stacks. Given

a set of stacks and a retrieval sequence, the aim in the Pre-marshalling Prob-

lem (pmp) is to sort the initial configuration according to the retrieval sequence

using a minimum number of relocations, so that no new relocations are needed

during the shipment. The objective in the Block Relocation Problem (brp)

is to retrieve all the containers according to the retrieval sequence by using a

minimum number of relocations. This paper presents a new unified integer pro-

gramming model for solving the pmp, the brp, and the Restricted brp (r-brp)

variant. The new formulations are compared with existing mathematical models

for these problems, as well as with other exact methods that combines combi-

natorial lower bounds and the branch-and-bound (B&B) framework, by using

a large set of instances available in the literature. The numerical experiments
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show that the proposed models are able to outperform the approaches based

on mathematical programming. Nevertheless, the B&B algorithms achieve the

best results both in terms of computation time and number of instances solved

to optimality.

Keywords: Integer programming, Container terminals, Pre-marshalling

problem, Block relocation problem
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1. Introduction

The container was introduced in the maritime transportation in the mid-

1950’s and since then it has become an essential element in the global intermodal

freight transportation. After sixty years, the global containerized trade already

reached an annual volume of 175 million TEUs (Twenty-foot Equivalent Unit).

According to recent United Nations reviews on maritime transport, above 80%

of the world merchandise trade is transported by sea vessels and around one

sixth of this volume is carried in containers (United Nations, 2015, 2016). The

acceptance of containers as a cargo unit is due to its relatively uniform build-

ing structure, which results in a reduction in cargo handling, also preventing

damages and losses and, additionally, allowing savings in transport time.

A key element in the whole maritime transportation chain, container termi-

nals serve as exchange hubs that interconnect transportation modes and facil-

itate the flow of containers. Typically, they are located in ports and connect

seaside and landside transports, such as sea vessels, barges, trains or trucks. In

addition the equipment required for handling the containers, the terminals also

include a storage yard, which acts as a temporary storage space and prevents

the need of synchronization between the transportation modes. The organiza-

tion and operation of terminals need to be carefully planned in order to cope

with the increasing demand and achieve acceptable customer service levels.

A container terminal can be divided in three main areas depending on the

operations performed and the modes of transport being employed, namely sea-
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side, landside, and storage yard. Taking these areas as a reference for the

flow direction, containers can be classified as import or (inbound) containers,

export (or outbound) containers, and transshipment containers (Kim & Park,

2003; Caserta et al., 2011a). Import containers arrive in the seaside area in

container vessels; once unloaded by quay cranes, they are moved to the stor-

age yard by internal vehicles and handled by yard cranes. Trains or external

trucks accessing the terminal through the landside area will carry them to their

final destination. Export containers follow a similar transportation chain, but

in reverse order. Transshipment containers are restricted to the seaside and the

storage yard areas; they are unloaded from a vessel and stored in the port yard

until they are loaded to another cargo boat. Figure 1 shows the elements that

comprise a container terminal together with the directions in which containers

can flow.

Figure 1: Container terminal organization and container flows directions.

The dwell times for containers stored in the yard differs from one type of

container to another. Trains and external trucks carrying export containers start
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to arrive in the port weeks before the shipment date; import containers stay in

the terminal yard until they are claimed by the customers, normally between 1

and 10 days (Kim & Park, 2003). The dwell time for transshipment containers

depends on the arrival and departure times of the intended vessels. The accuracy

and amount of available information varies accordingly to the type of container

(Caserta et al., 2011a). The loading sequence for export containers is already

known when the shipping process starts, whereas the retrieval sequence for

import containers is typically revealed during the delivery process. Customers

may arrive at the container terminal for the retrieval at any time.

The turnaround time of vessels, trains and external trucks is a key factor to

measure the efficiency of container terminals and therefore the customer service

levels and port competitiveness (Kim & Kim, 1999; Steenken et al., 2004). The

loading and unloading operations are the most time consuming and involve

specific and scarce resources like berth areas, cranes and internal vehicles. The

storage yard is another component in container terminals whose utilization has

to be well planned. The containers stored in the yard are frequently disposed

in such way that the available space is maximized. Savings in storage space is

achieved by arranging the containers in stacks instead of spreading them around

the yard. Nevertheless, this kind of arrangement demands specific handling

equipment and causes many bottlenecks, provided that obstructing or hindering

containers positioned in the topmost slots have to be moved while retrieving a

requested container or inserting new containers in the bottommost slots.

The storage yard area is mainly occupied by stack blocks organized as de-

picted in Figure 2. Containers are piled up to form stacks. Stacks are then

aligned to build a bay, and bays are put together to form a block. Inside the

stacks, each container is in a determined layer or tier. Thus, the precise loca-

tion or slot of a container is given by the block, bay, stack and tier number.

Moreover, each container can belong to a group g, which is defined according

to the container weight class, destination port, owner, or any other classifica-

tion criterion that can be used for identification during the retrieval process.

Physically, the maximum width and height of a bay are limited by the handling
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equipment. We assume that the containers in a bay are reached from the top

by yard cranes, e.g., rail mounted gantry cranes (RMG) or rubber tired gantry

cranes (RTG).

Figure 2: (a) Container storage block, and corresponding (b) bay representation.

Considering a bay composed of a given amount of export containers and

the respective shipment/loading plan, the question concerning the sequence of

operations required for retrieving the containers and which uses the minimum

number of relocations is modeled in two problems described in the literature, the

Pre-marshalling Problem (pmp) and the Block (Containers) Relocation Problem

(brp). The aim in the Pre-marshalling Problem is to transform the initial bay

configuration into another one by using a minimum number of relocations. No

retrievals are allowed during the sorting phase, and at the end of the process, all

containers can be retrieved in the order indicated by the shipment plan without

the need of new relocations. The objective in the Block Relocation Problem is

to retrieve all the containers one by one according to the loading plan using a

minimum number of relocations. In both problems it is assumed that no new

containers are being inserted in the bay. The pmp and brp are shown to be

NP-Hard (Caserta et al., 2011a, 2012).

Many authors in the literature include an additional restriction to the brp

concerning which containers can be relocated during the retrieval process. This

version of the brp is called Restricted BRP (r-brp), and it assumes that only

the containers positioned above the target containers can be relocated. This as-

sumption reduces the search space of the problem considerably and has allowed
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the development of efficient branch-and-bound (B&B) based exact methods.

Besides that, even if an optimal solution for the r-brp is sub-optimal for the

brp, it is still a valid solution and can be used as a good quality upper bound

in exact methods for brp.

This work presents a new unified mixed integer programming (MIP) model

for solving both problems. The main difference between the pmp and brp prob-

lems is the type of operation being performed. In this sense, the pre-marshalling

is the simplest, since it requires the containers to be relocated only. The pre-

marshalling formulation is extended into two models for the Block Relocation

Problem by incorporating retrieval constraints. In addition, we describe the

constraints necessary for our brp formulations to solve also the r-brp. The

models require an upper bound on the number of relocations necessary to solve

the problems. Hence, a simple greedy heuristic was developed for the pmp while

a simplified version of a B&B algorithm described in the literature for solving

the r-brp has been implemented and used to provide upper bounds for the brp.

Computational results carried on a large set of instances available in the litera-

ture are employed to gauge the effectiveness of the proposed models. The new

formulations are compared with most of the exact algorithms described in the

literature, which are both methods based on mathematical programming and

pure combinatorial approaches. These latter combine problem-specific combi-

natorial lower bound procedures, the branch-and-bound framework, node ex-

ploration dominance rules and primal heuristics. The numerical results show

that the proposed models for the pmp and unrestricted brp are able to out-

perform other existing formulations on these two problems, both in terms of

linear relaxation quality and number of solved instances. Nevertheless, the best

performance for the pmp and both brp variants is achieved by the combinato-

rial B&B based approaches, and r-brp tailored formulations. These methods

obtain the best results both in terms of number of instances solved to optimality

and computational time.

The paper is composed of four sections besides this introduction. Section 2

presents the related literature dealing with the Pre-marshalling and Block Relo-
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cation problems. Preference was given to works describing exact approaches. In

Section 3, after describing the notation employed in the paper, we present the

new pmp formulation, that is also the starting point for the two brp formula-

tions described in the subsequent subsections. In addition to the mathematical

models, in Section 3 we also describe procedures to compute upper bounds for

both problems. Section 4 describes the instance sets employed for benchmarking

the formulations and the respective computational results. Concluding remarks

are presented in Section 5.

2. Related Works

Considering the amount of works published on these problems, the pmp has

been less studied than the brp in the literature. Moreover, most of the so-

lution approaches published for the pmp are heuristics. Among the authors

proposing exact approaches, Expósito-Izquierdo et al. (2012) implemented an

A∗ search algorithm capable of solving instances of small size. The authors did

not propose further improvements to the basic A∗ framework, provided their

work focuses in the development of a new randomized greedy heuristic rely-

ing in a collection of rules and a new set of instances. In a subsequent, more

elaborate work, Tierney et al. (2016) also developed an exact procedure for the

pmp by further exploring the A∗ and IDA∗ frameworks. In order to reduce the

search space of the problem, the authors embedded in their algorithms domi-

nance rules and memory management procedures for preventing the inspection

of suboptimal solutions. The instance set of Caserta & Voß (2009) were used

for benchmarking their algorithms, and they are able to solve instances of small

to medium size. Recently, Tanaka & Tierney (2018), building upon the work

of Tierney et al. (2016), proposed an iterative depending B&B algorithm that

solves instances of medium and relatively large size. The lower bound pro-

cedures and branching rules embedded in their B&B method are similar to

those introduced in Tierney et al. (2016). Up to this date, these two algorithms

achieve the best results for the pmp in terms of instances solved to optimal-
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ity. van Brink & van der Zwaan (2014) proved complexity results for two pmp

variants in which the final configuration of the stacks is either explicitly defined

or sorted accordingly to a given rule, e.g., the containers should be sorted in

non-decreasing order with respect to the group they belong to, and the height

of the stacks is bounded. For the case in which the final configuration should be

sorted accordingly to a given rule, the authors presented a branch-and-price pro-

cedure that they benchmark in a large set of random generated instances with

grouped container priorities. The paper of Lee & Hsu (2007) is, to the best of

our knowledge, the only work, in the pre-marshalling literature, proposing a

mathematical programming approach to solve the pmp. The authors developed

an integer time-indexed multi-commodity network flow model for the pmp that

can solve small instances. In order to deal with larger instances, the authors

implemented a heuristic based on their formulation. All the methods proposed

by Lee & Hsu (2007), Tierney et al. (2016) and Tanaka & Tierney (2018) solve

the pmp by considering unique and grouped container priorities. Among the re-

cent heuristic approaches, Caserta & Voß (2009) proposed a heuristic based on

the Corridor Method. Lee & Chao (2009) developed a neighborhood search al-

gorithm, and Bortfeldt & Forster (2012) proposed a heuristic tree search proce-

dure. Jovanovic et al. (2015) implemented a deterministic version of the greedy

algorithm proposed by Expósito-Izquierdo et al. (2012), which is able to find

solutions of better quality than the original randomized version.

The brp literature is concentrated mainly in the r-brp considering unique

container priorities, and only a few papers deal with both problems: the r-

brp and the brp. The majority of the methods are based on the branch-

and-bound framework. The limitations imposed by the r-brp are the main

reason, since they considerably reduce the search space. Kim & Hong (2006);

Wu et al. (2010); Ünlüyurt & Aydin (2012); Expósito-Izquierdo et al. (2015),

and Tanaka & Takii (2016) proposed B&B algorithms for the r-brp. Caserta et al.

(2011b); Zhu et al. (2012); Expósito-Izquierdo et al. (2014), and Ku & Arthanari

(2016) proposed Dynamic Programming (DP) and A∗ based algorithms. The A∗

algorithms of Zhu et al. (2012) and Expósito-Izquierdo et al. (2014) are also able
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to solve the brp. Caserta et al. (2012) developed mathematical formulations

and complexity results for both the brp and r-brp. Expósito-Izquierdo et al.

(2015) and Zehendner et al. (2015) proposed corrections and improvements for

the r-brp model presented by Caserta et al. (2012). Galle et al. (2018) recently

put forward a new MIP formulation for the r-brp which explores a binary rep-

resentation that was initially described on the work of Caserta et al. (2009).

Compared to other formulations for the r-brp, they are now able to solve a

larger number of instances. With respect to the unrestricted version of the brp,

Petering & Hussein (2013) proposed a MIP formulation and a heuristic for the

problem; and recently, Tricoire et al. (2018) developed new lower bounding pro-

cedures, which were then incorporated within a B&B framework so as to obtain

an exact algorithm for solving the brp. The same authors also modified their

exact algorithm in order to have a B&B based heuristic capable of solving bigger

brp instances. Similarly, Tanaka & Mizuno (2018), improved on their previous

work for the r-brp, by developing a new exact B&B algorithm for the brp. In

addition to new lower bounding procedures, the authors also introduce several

dominance rules designed to eliminate unnecessary nodes during the tree explo-

ration. They report improved computational results for both the brp and the

r-brp on instance benchmarks from the literature. Up to this date, the new

B&B of Tanaka & Mizuno (2018) is the best exact algorithm for both problems.

Table 1 summarizes the main exact approaches for the brp and r-brp in

the literature. Most of these papers also describe heuristic algorithms that are

used to provide upper bounds and to solve the larger instances. The interested

reader on heuristic approaches can refer to Jovanovic & Voß (2014).

A recent survey and classification scheme for loading, unloading, and pre-

marshalling operations in stack storage contexts is proposed by Lehnfeld & Knust

(2014). For surveys on container terminals and their operations see Steenken et al.

(2004); Dekker et al. (2006); Vis & Roodbergen (2009); Carlo et al. (2013, 2014a,b).
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Table 1: Summary of the brp literature in exact methods.

BRP Version Container Priorities

Author and Year Restricted Unrestricted Unique Groups Method

Kim & Hong (2006) X X X B&B

Wu et al. (2010) X X B&B

Caserta et al. (2011b) X X Dynamic Program.

Caserta et al. (2012) X X X MIP model

Ünlüyurt & Aydin (2012) X X B&B

Zhu et al. (2012) X X X IDA∗ search

Petering & Hussein (2013) X X MIP model

Expósito-Izquierdo et al. (2014) X X X A∗ search

Expósito-Izquierdo et al. (2015) X X MIP model, B&B

Zehendner et al. (2015) X X MIP model

Ku & Arthanari (2016) X X Abstraction Method

Tanaka & Takii (2016) X X X B&B

Tricoire et al. (2018) X X B&B

Galle et al. (2018) X X MIP model

Tanaka & Mizuno (2018) X X X B&B

This work X X X X MIP models

3. Mathematical Models

To the best of our knowledge none of the exact approaches proposed in the

literature solves the brp in which the precedence among the containers is defined

by both unique containers and groups. In addition, the existing pmp formulation

relies on a complex combination of flows for representing the stacks and the

relocation of containers that seems to reduce its final performance. In this

section we present a pmp formulation that models the stacks and relocations in a

straightforward and direct way, which facilitates the incorporation of alternative

characteristics and limitations of the pmp or other related problems.

The following notations and definitions will be employed in the remaining of

this paper. Let S = {1, . . . , S} be a bay composed of S stacks. Each stack is

defined by a set of position H = {1, . . . , H} and can hold at most H uniformly

shaped containers. The total amount of containers in the bay is defined by N ,

and a pmp instance always has a feasible solution if N ≤ (S×H)−H. Moreover,
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each container belongs to a group g, where the set of groups G is defined as

G = {1, . . . , G}, (G ≤ N). The target group refers to containers of the group

tg ∈ {1, . . . , G} which must be retrieved next. Provided that stacks are the

storage structures being used, the Last In First Out (LIFO) policy has to be

respected, i.e., only the topmost containers can be directly reached by a crane.

Thus, to access a specific container, any hindering container above it has to be

moved to other stacks. Obstructing containers on top of target containers are

called mis-overlays (or deadlocks). Two kinds of operations can be performed

while moving containers within or outside of the bay, namely relocation and

retrieval. A relocation occurs when a container has to be moved from one stack

to another. It is assumed that containers can be relocated to other stacks only

and hence there exists enough space above the stacks to perform the necessary

relocations. A retrieval is performed when a container of the target group is

moved outside the storage space.

We now describe the models proposed for solving the pmp and the brp. They

are time-indexed binary formulations which make use of the set of discrete time

steps T = {1, . . . , T} for capturing each bay operation: either relocation or

retrieval. Three sets of binary variables are employed to represent the container

relocation moves and to track the changes in the bay layout after these oper-

ations: the movement variables y ∈ {0, 1} and z ∈ {0, 1} and the bay state

variables x ∈ {0, 1}. Variables z indicates from which slot a container is picked,

and variables y informs where it will be placed. They are defined as follows.

xt
gsh: equals 1 if there is a container of type g ∈ G in the slot h ∈ H of stack

s ∈ S at the end of time interval t ∈ T ∪ {0}, otherwise it is 0;

ytgsh: equals 1 if there is a container of type g ∈ G going into the slot h ∈ H

of stack s ∈ S during time interval t ∈ T , and 0 otherwise;

ztgsh: equals 1 if there is a container of type g ∈ G leaving the slot h ∈ H of

stack s ∈ S during time interval t ∈ T , and 0 otherwise;

The information concerning the initial bay configuration Cgsh is given at the
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beginning of the solving process, Figure 3 illustrates how the state variables x

are initialized and how a relocation move affects the variables from one time step

to another. The values assumed by the movement variables in each time step

are defined accordingly to the state variables, ztgsh ≥ xt−1
gsh − xt

gsh and ytgsh ≥

xt
gsh − xt−1

gsh . They represent the positive difference between two consecutive

time steps. Figure 4 shows how these movement variables are linked to the

state variables x.

Figure 3: Bay matrix representation and respective state variables xt
gsh

initialization (t = 0)

and relocation (t = 1).

Figure 4: Bay state variables xt
gsh

and respective movement variables zt
gsh

and yt
gsh

describing

a relocation (t = 1).

3.1. The Pre-marshalling Model (pmpm1)

In the pmp, the task is to transform the initial bay configuration into another,

usually unknown configuration, in which the containers are sorted accordingly
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to a given scheme, by using a minimum number of relocations. This objective

is addressed by Expression (1), where the cost of each relocation is constant.

(PMPm1) min z=

T∑

t=1

G∑

g=1

S∑

s=1

H∑

h=1

ytgsh (1)

The constraints are divided in two groups according to the variables involved

(bay state variables and/or movement variables). Hence, there are constraints

responsible for representing the stacks and keeping their consistency during the

entire process, and other constraints responsible for modeling the relocation

movements while observing the LIFO principle. The first group is presented

thereon.

x0
gsh = Cgsh g ∈ G , s ∈ S , h ∈ H (2)

G∑

g=1

xt
gsh ≤ 1 t ∈ T , s ∈ S , h ∈ H (3)

G∑

g=1

xt
gsh ≥

G∑

g=1

xt
gs(h+1) t ∈ T , s ∈ S , h ∈ H \ {H} (4)

S∑

s=1

H∑

h=1

xt−1
gsh =

S∑

s=1

H∑

h=1

xt
gsh t ∈ T , g ∈ G (5)

Constraints (2) initialize the bay state variables in time step 0 with a given

bay configuration; Constraints (3) assure that each bay slot is occupied by at

most one group, and Constraints (4) prevent the occurrence of empty spaces

among two occupied tiers within a stack. Equations (5) ensure that the amount

of containers in each group is kept constant for all time steps, provided relocation

is the only operation allowed in the pmp.

Two possibilities can be explored when defining the final configuration of

the stacks in the pmp. In the first case, the arrangement of each container

inside the bay is explicitly defined. Constraints (6) ensure the containers are

organized accordingly to a final configuration Fgsh provided as input data. Such

modeling constraints can be interesting in a practical scenario where a predefined

arrangement need to be achieved. For instance, when the containers have to be

located at a specific bay slot in the end of the sorting process due to operational
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constraints (e.g., cargo incompatibility, connection to power inlets, etc.).

xT
gsh = Fgsh g ∈ G , s ∈ S , h ∈ H (6)

In the second case, the stacks are sorted accordingly to a given rule, e.g., the

containers should be sorted in non-decreasing order (starting from the topmost

slot) with respect to the group they belong to. This is the sorting rule usually

adopted in the literature. Constraints (7) can be added to achieve this goal.

G∑

q=g

xT
qs(h−1) ≥ xT

gsh g ∈ G , s ∈ S , h ∈ H \ {H} (7)

The second group of constraints is the following.

G∑

g=1

S∑

s=1

H∑

h=1

ytgsh ≤ 1 t ∈ T (8)

G∑

g=1

S∑

s=1

H∑

h=1

ztgsh ≤ 1 t ∈ T (9)

xt
gsh + ztgsh = xt−1

gsh + ytgsh t ∈ T , g ∈ G , s ∈ S , h ∈ H (10)

G∑

g=1

S∑

s=1

H∑

h=1

zt−1gsh ≥
G∑

g=1

S∑

s=1

H∑

h=1

ztgsh t ∈ T \ {1} (11)

xt
gsh ∈ {0, 1} t ∈ T ∪ {0}, g ∈ G , s ∈ S , h ∈ H (12)

ytgsh ∈ {0, 1} t ∈ T , g ∈ G , s ∈ S , h ∈ H (13)

ztgsh ∈ {0, 1} t ∈ T , g ∈ G , s ∈ S , h ∈ H (14)

Constraints (8) and (9) limit the number of relocations that can take place

in each time step to at most one. Equations (10) assure that a container picked

up from the bay is put back. These constraints build the link between the

bay state variables and the movement variables. Notice that Equations (10)

alone do not suffice to prevent “empty” relocations, i.e., when, at the same time

step, a container is relocated to the stack from which it was picked up. As this

type of move can be considered valid relocations, they would make the solution

cost increase. Nevertheless, the solutions with such relocations are sub-optimal

and thus are avoided by the objective function, which forces the number of
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relocations to be kept minimal. In addition, such relocations can be prevented

by incorporating Constraints (19) in the formulation. The number of time steps

T is an upper bound to the optimal number of relocations. Therefore, there will

be time steps where no operation is performed. Constraints (11) force these idle

time steps to occur in the end of the process. Constraints (12), (13) and (14)

define the domain of all variables.

3.2. Strengthening the Proposed Model

The objective function (1) together with constraints (2)-(5), one of the fi-

nal configuration constraints (6) or (7), constraints (9)-(11), and the variable

domain constraints are enough to define a valid model for the Pre-marshalling

Problem. Nevertheless, this model can be strengthened by including constraints

to enforce the LIFO policy when relocating blocks from one stack to another.

Constraints (15) and (16) assure that blocks will be put in the available top

tiers of the stacks only, and Constraints (17) force the topmost containers to be

selected during a relocation.

G∑

g=1

ytgs1 ≤ 1−
G∑

g=1

xt−1
gs1 t ∈ T , s ∈ S , (15)

G∑

g=1

ytgs(h+1) ≤
G∑

g=1

(xt−1
gsh − xt−1

gs(h+1)) t ∈ T , s ∈ S , h ∈ H \ {H} (16)

G∑

g=1

ztgsh ≤
G∑

g=1

(xt−1
gsh − xt−1

gs(h+1)) t ∈ T , s ∈ S , h ∈ H \ {H} (17)

Constraints (18) prevent a container that was relocated in the previous time

step to be relocated again in the current time step. Cyclic and other transitive

moves are avoided by these constraints.

H∑

h=1

(yt−1gsh + ztgsh) ≤1 t ∈ T \ {1}, g ∈ G , s ∈ S (18)

To simplify and further strengthen the model a few modifications can be

done. Constraints (4) can be suppressed as they are implied by LIFO con-
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straints (15), (16), and (17). Constraints (3) can be replaced by Constraints (19).

G∑

g=1

(xt
gsh + ztgsh) ≤1 t ∈ T , s ∈ S , h ∈ H (19)

One of the weaknesses of this extended model, when the linear relaxation

is solved, concerns the movement flow variables z and y allowing flow fractions

going out from a bottom slot and coming into in a top slot of the same stack. The

constraints described below are devised in an attempt to avoid this behavior.

Constraints (20) ensure that a container cannot be both picked up and dropped-

off from/to the same stack. Similarly, Constraints (21) ensure that a container

g being dropped-off at stack s need to be picked up from a stack r ∈ S, r 6= s,

and conversely, Constraints (22) ensure that a container g being picked up from

stack s need to be dropped-off in a stack r ∈ S, r 6= s.

G∑

g=1

H∑

h=1

(ztgsh + ytgsh) ≤ 1 t ∈ T , s ∈ S (20)

H∑

h=1

ytgsh ≤
S∑

r=1

r 6=s

H∑

h=1

ztgrh t ∈ T , g ∈ G , s ∈ S (21)

H∑

h=1

ztgsh ≤
S∑

r=1

r 6=s

H∑

h=1

ytgrh t ∈ T , g ∈ G , s ∈ S (22)

The formulation proposed here depends on a parameter T , that is an upper

bound to the optimal value of the number of relocations needed to solve the

pmp. This is similar to the model presented by Lee & Hsu (2007), but can be

seen as a drawback of these models, since their solution time depends on this

parameter. During our experiments, we refer to the formulation composed of

the objective function (1) and constraints (2),(4),(5),(7), (9)-(19) as pmp model.

3.3. Estimating Parameter T for the pmp Model

In this section we describe a greedy heuristic employed to compute a valid

upper bound on the number of relocations necessary for solving the pmp. The

algorithm repeats the following three steps until a valid pmp configuration is

reached. Additional details are presented in Algorithm 3 (Appendix A).
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• Step 1 (Stack selection). If the procedure receives as input a stack, it starts

Step 2. Otherwise, the stack with the smallest number of containers is

selected. Ties are broken by choosing the stack with the highest container

index. If the chosen stack is already empty the algorithm proceeds to Step

3, otherwise, Step 2 is executed.

• Step 2 (Empty). The chosen stack is emptied by relocating its contain-

ers into other stacks with available space. The sorted stacks with avail-

able space are considered first, provided that no new mis-overlays will be

formed after the relocations. If no sorted stack is available, the unsorted

stacks with available space are then taken into account. The priority is

given to the stacks whose containers have indexes smaller than the con-

tainer being relocated. Finally, if none of these conditions is met, a sorted

stack with available space is exceptionally considered.

• Step 3 (Rebuild). The topmost containers with the highest indexes are

relocated back to the emptied stack. The last two tiers are not filled.

They are used as temporary space during Step 2.

The heuristic is executed S times. Each time it starts with a different

stack from {1, . . . , S}. The execution with the smallest number of relocations

is recorded and used as the upper bound for the parameter T .

3.4. The Block Relocation Model (brpm1)

The current and the next section present two brp formulations that are

extensions of the pmp model described above. While in the pmp the relocation

is the only operation being performed, the brp also requires containers to be

retrieved, i.e., containers are moved out of the bay. The containers leaving the

bay are placed in an output queue, which is responsible for dictating the order

in which the retrievals are performed. Hence, in addition to the bay state and

movement variables defined for the pmp (x, y, and z), this first brp model

employs two further sets of variables: wt
gn represent a queue of size N (i.e., the
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total amount of containers that will be retrieved); and the ktgn variables, which

represent the movement of containers from the bay to the queue. Therefore:

ktgn: equals 1 if a container of type g ∈ G leaves the bay and is placed in position

n ∈ {1, . . . , N} during time interval t ∈ T , and 0 otherwise;

wt
gn: equals 1 if a container of type g ∈ G is in position n ∈ {1, . . . , N} at the

end of time interval t ∈ T ∪ {0}, and 0 otherwise;

The order in which the containers will be retrieved from the bay is an input

parameter provided by the queue configuration Qgn. The most frequent objec-

tive function for the brp found in the literature is also to minimize the number

of relocations, as for the pmp.

The pmp objective function (1) together with Constraints (2), (4), (8), (9),

(11)-(14), (15)-(17) and (19), shown in expressions (23) and (24), are combined

with Constraints (25)-(38) to form a valid brp model.

(BRPm1) min z =

T∑

t=1

G∑

g=1

S∑

s=1

H∑

h=1

ytgsh (23)

s.t. (2), (4), (8), (9), (11)− (14), (15)− (17), (19) (24)

G∑

g=1

S∑

s=1

H∑

h=1

xT
gsh = 0 (25)

w0
gn = 0 g ∈ G , n ∈ {1, . . . , N} (26)

wT
gn = Qgn g ∈ G , n ∈ {1, . . . , N} (27)

G∑

g=1

wt
gn ≤ 1 t ∈ T , n ∈ {1, . . . , N} (28)

G∑

g=1

N∑

n=1

ktgn ≤ 1 t ∈ T (29)

G∑

g=1

wt
gn ≥

G∑

g=1

wt
g(n+1) t ∈ T , n ∈ {1, . . . , (N − 1)} (30)

N∑

n=1

wt
gn =

N∑

n=1

(wt−1
gn + ktgn) t ∈ T , g ∈ G (31)

wt
gn = wt−1

gn + ktgn t ∈ T , g ∈ G , n ∈ {1, . . . , N} (32)
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S∑

s=1

H∑

h=1

xt−1
gsh =

N∑

n=1

ktgn +

S∑

s=1

H∑

h=1

xt
gsh t ∈ T , g ∈ G (33)

xt
gsh + ztgsh ≥ xt−1

gsh + ytgsh t ∈ T , g ∈ G , s ∈ S , h ∈ H (34)

S∑

s=1

H∑

h=1

ytgsh +

N∑

n=1

ktgn =

S∑

s=1

H∑

h=1

ztgsh t ∈ T , g ∈ G (35)

G∑

g=1

S∑

s=1

H∑

h=1

ztgsh = 1 t ∈ {1, . . . , N} (36)

ktgn ∈ {0, 1} t ∈ T , g ∈ G , n ∈ {1, . . . , N} (37)

wt
gn ∈ {0, 1} t ∈ T ∪ {0}, g ∈ G , n ∈ {1, . . . , N} (38)

Constraints (25) ensure that the bay will be empty at the end of the re-

trieving process. Constraints (26) and (27) define the initial and final values for

the output queue variables, respectively. These constraints can be suppressed

when only a partial amount of the containers in the bay are planned to be re-

trieved. Constraints (28) allow at most one container in each queue slot, and

Constraints (29) limit the number of retrieved containers per time step to at

most one. Constraints (30) ensure that the retrievals will be performed ac-

cording to the order defined by the output queue. Constraints (31) and (32)

link the retrieval movement variables and the queue variables, and also ensure

the consistency of the queue from one time step to another. The consistency

Constraints (33) force the removal of a retrieved container from the bay. The

link among bay state variables, relocation variables, and retrieval variables is

defined in Constraints (34) and (35). Given that in this model the z variables

are employed to describe retrievals, in addition to relocations, and knowing

that the N containers in the brp bay have to be retrieved, Constraints (36)

forces that in the first N time steps there is one z variable that is equal one,

which remains true even if a relocation is being performed instead of a retrieval.

Constraints (37) and (38) specify the variable domains.

In the formulations presented so far at most one operation, either a reloca-

tion or a retrieval, can be performed per time step. Consequently, while the

parameter T in the pmp model is an upper bound in the number of relocations,
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for the brp, T is the sum of an upper bound of the number of relocations (indi-

cated with T̄ ) and N , the number of containers in the bay that will be retrieved,

i.e., T = T̄ + N . This is a modeling drawback present in formulation brpm1,

and in similar brp models in the literature. Therefore, the size of the models

grows fast according to the size of the input bays. The next formulation over-

comes this behavior by allowing as many retrievals as possible to be performed

together with relocations, although the limit of at most one relocation per time

step is still applied. Therefore, similarly to the pmp model, the parameter T

will be an upper bound in the number of relocations.

3.5. The Block Relocation Model (brpm2)

The second formulation for the brp requires a different set of variables. They

are different from the retrieval and queue variables defined for the previous brp

model. They are similar to the relocation variables ztgsh in the pmp model, and

they can be interpreted as relocations of containers to outside the bay. The

retrieval ordering will be achieved by constraints imposed on these variables.

ktgsh: equals 1 if the container of type g ∈ G is being removed from slot h ∈ H

of stack s ∈ S in time t ∈ T , 0 otherwise;

As for the previous brp formulation, the pmp objective function (1) and

Constraints (2), (4), (8), (9), (12)-(14), (15)-(17) and (20) are employed, as

shown in expressions (39) and (40), additionally to the new state, movement,

and retrieval constraints (41)-(50) in the new brpm2.

(BRPm2) min z =

T∑

t=1

G∑

g=1

S∑

s=1

H∑

h=1

ytgsh (39)

s.t. (2), (4), (8), (9), (12)− (14), (15)− (17), (20) (40)

G∑

g=1

S∑

s=1

H∑

h=1

xT
gsh = 0 (41)

G∑

g=1

xt
gsh + ktgsh ≤ 1 t ∈ T , s ∈ S , h ∈ H (42)
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S∑

s=1

H∑

h=1

xt−1
gsh =

S∑

s=1

H∑

h=1

(xt
gsh + ktgsh) t ∈ T , g ∈ G (43)

ztgsh + ktgsh = ytgsh + xt−1
gsh − xt

gsh t ∈ T , g ∈ G , s ∈ S , h ∈ H (44)

ktgsh ∈ {0, 1} t ∈ T , g ∈ G , s ∈ S , h ∈ H (45)

Constraints (41) ensure that the bay will be empty in the last time step, since

all containers should have been retrieved. Constraints (42) limit the amount

of containers in each slot and being retrieved to at most one, and consistency

Constraints (43) force a container that has been retrieved to be removed from the

bay. Constraints (44) build the link among bay variables, relocation variables,

and retrieval variables. Constraints (45) specify the variable domain.

The constraints designed to force the containers to be retrieved in a pre-

scribed order, usually from (1, . . . , G), are divided into two parts accordingly

to the occurrence of grouped containers or not. When the containers are not

grouped (i.e., G = N , which means that each container belongs to a unique

group), Constraints (46)-(48) are enough for enforcing the retrieval order.

S∑

s=1

H∑

h=1

ktgsh ≤
t∑

u=1

S∑

s=1

H∑

h=1

ku(g−1)sh t ∈ T , g ∈ G \ {1} (46)

ktgsh +

G∑

l=g+1

ktls(h+1) ≤ 1 t ∈ T ; g ∈ G \ {G}, s ∈ S , h ∈ H \ {H} (47)

ktgsh ≤ 1−

g−1∑

l=1

xt
ls(h−1) t ∈ T ; g ∈ G \ {1}, s ∈ S , h ∈ H \ {1} (48)

In cases where more than one container belongs to the same group (i.e.,

G < N) Constraints (48) are replaced by Constraints (49) and (50).

ktgsh ≤ 1−

g−1∑

l=1

xt
lsi t ∈ T , g ∈ G \ {1}, s ∈ S , h ∈ H \ {1}, i ∈ {1, . . . , (h− 1)}

(49)

ktgsh ≤ 1−

g−1∑

l=1

xt
lpi t ∈ T , g ∈ G \ {1}, s ∈ S , h ∈ H , p ∈ S , p 6= s, i ∈ H

(50)
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Constraints (46) prevent containers belonging to higher indexed groups to

be retrieved before containers of lower indexed groups. Constraints (47) avoid

two containers within the same stack to be retrieved at the same time step if the

container in the lower tier belongs to a lower indexed group. Constraints (48)

prevent higher indexed containers to be retrieved if they are placed immedi-

ately above lower indexed containers. Constraints (49) and (50) expand Con-

straints (48) and prevent a topmost container to be retrieved if there exists in

the bay a container that belongs to a lower indexed group. Note that Con-

straints (49) and (50) could be used for both cases, grouped and non-grouped

instances, though it would result in larger models with many redundant con-

straints for the latter case.

It is worth noting that despite being more compact, the linear relaxation

of this formulation is not as good as the previous brp model, as show by the

computational experiments in Section 4.

3.6. Restricted Block Relocation Models

The formulations brpm1 and brpm2 can be easily extended to solve the

r-brp as well, which is different from the brp which allows containers to be

relocated among any two stacks. The r-brp restricts the containers that can

be relocated to those that are above the target container that will be retrieved

next. Departing from our brp models, Constraints (51) can be added to brpm1

so that it can solve the r-brp. The same result can be obtained for brpm2 by

incorporating Constraints (52). The restricted version of brpm1 is denoted by

r-brpm1, and brpm2 as r-brpm2, respectively.

G∑

j=g+1

H∑

h=1

ztjsh ≤ wt−1
gg +

g∑

i=1

H∑

h=1

xt
ish t ∈ T ; g ∈ G \ {G}, s ∈ S (51)

G∑

j=g+1

H∑

h=1

ztjsh ≤
t∑

u=1

S∑

r=1

H∑

l=1

kugrl +

g∑

i=1

H∑

h=1

xt
ish t ∈ T ; g ∈ G \ {G}, s ∈ S

(52)

The relocation movement are divided in two parts: the pickups are modeled

by using the z variables and the drop-offs are captured by the y variables, we
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model the r-brp by describing constraints that deactivate the z variables for

all stacks but the one that contains the target container. Constraints (51) and

(52) forbid containers to be picked up from stacks not containing the container

g until its retrieval.

3.7. Estimating Parameter T for the brp Models

The procedure implemented for providing tight upper bounds on the number

of relocations (parameter T ) for the brp models is based on the B&B algorithm

for the Restricted BRP of Tanaka & Takii (2016). This algorithm can handle

the r-brp with unique and grouped container priorities. The branch-and-bound

implemented differs from the one presented in the paper of Tanaka & Takii

(2016) by using a simpler lower bounding method.

The lower bound employed was proposed by Kim & Hong (2006) and is valid

for both brp and r-brp. It is obtained by counting the number of deadlocks in

the bay. More precisely, given a stack s ∈ {1, . . . , S} and a retrieval sequence

π = (1, . . . , G), if there exists a container j below a container i in s and π(j) <

π(i) (i.e., the priority of j is greater than the priority i), then to retrieve j, the

container i will be relocated at least once. Figure 5 illustrates the lower bound

in a bay with containers belonging to G = 3 and retrieval priority π = (1, 2, 3),

all the containers marked in dark gray will be relocated to give access to the

containers of higher priority in the lower tiers. Algorithm 1 (Appendix A)

specifies the steps for counting the mis-overlays of a bay. The procedure has

complexity O(N), where N is the number of containers in the bay.

Algorithm 1 is used to compute the bay lower bound for the B&B procedure

detailed in Algorithm 4 (Appendix A). In our implementation the root node of

the B&B tree is initialized with the initial bay configuration and ub = +∞. The

tree is explored using the depth first search strategy in order to minimize the use

of memory and find feasible solutions fast. During the search, if the number of

relocations performed to arrive in the current configuration plus the lower bound

is greater than the incumbent solution, the node is fathomed and a new node is

selected. The incumbent solution is updated each time a smaller upper bound is
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Figure 5: Obstructing groups 2 and 3 are accounted in the brp lower bound.

found. New sub-problems (nodes) are created by selecting a stack s ∈ {1, . . . , S}

that contains a target container, if no fathoming condition is met. When the

target containers in s are not obstructed, they are retrieved and the search

proceeds with this node. Otherwise, if there are containers obstructing all the

target containers in the selected stack, another stack s′ ∈ {1, . . . , S}, s′ 6= s is

selected and the topmost container from s is relocated to s′, the lower bound is

updated and the search continues with this new node. During the search, when

a relocation is performed, instead of updating the lower bound by applying

Algorithm 1 in the entire bay, the lower bound is updated by considering only

the stack s′, thus reducing the computational overhead. This operation can be

done in O(h) comparisons, where h is the number of containers in the stack.

4. Computational Results

The proposed algorithms and models were coded in C/C++ (compiled with

the g++ 4.7.2 compiler) and executed on an Intel R© CoreTM i7-2600 3.40 GHz

CPU, with 8.0 GB of RAM running under GNU/Linux Debian 7.9 (kernel 3.2.0-

4-amd64). IBM CPLEX R© 12.6 was used as LP and MIP solver. A single thread

was employed during the experiments.

We evaluate the proposed model for the pmp over the two instances presented

in the paper of Lee & Hsu (2007) and the set of instances of Caserta & Voß

(2009). This latter has been used to assess the brp models as well. The original
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set is composed of 840 instances separated in 21 classes, each one containing 40

instances. The classes are characterized by the dimensions of the bay (S ×H).

For each bay, the first H ′ = (H−2) tiers of each stack are filled with containers,

which means a total of N = (S×H ′) containers. Each one of these N containers

has its position in the bay chosen at random and they are uniquely identified

from 1 to N , meaning that each bay is composed of G = N groups. The number

of stacks and filled tiers are S ∈ {3, 4, . . . , 10} and H ′ ∈ {3, 4, 5, 6, 10}; not all

combinations of these values were used. Caserta & Voß (2009) point out that

these bay settings are based on the physical limitations of typically used gantry

cranes. The instances used for our experiments with the brp formulations

were selected from a subset of Caserta & Voß (2009) instances in which the r-

brp branch-and-bound (see Algorithm 4 in Appendix A) could solve all the

40 problems in the class to optimality within 10 minutes of computation. A

total of 520 instances with S ∈ {3, 4, 5, 6, 7, 8} and H ′ ∈ {3, 4, 5} were selected.

The subset of 400 instances from Caserta & Voß (2009) benchmark, with S ∈

{3, 4, 5, 6, 7, 8} and H ′ ∈ {3, 4}, were employed for our experiments with the

pmp formulations.

Moreover, the Caserta & Voß (2009) instances selected above were trans-

formed into grouped brp instances using the procedure detailed in Algorithm 2

(Appendix A). Each container i = 1, 2, . . . , N in the bay is reassigned to a

group g ∈ {1, . . . , G} by applying the modulo operation. G ∈ {3, 4, 5} were

employed during our experiments.

Remark 1. Note that the optimal solution of any problem with groups built

as described in Algorithm 2 is a valid lower bound for the same problem with

a greater number of groups and therefore also for the original problem without

groups. This is true for both the brp and pmp.

The time horizon upper bounds (parameter T ) computed by the pmp heuris-

tic and the r-brp B&B are applied for both the proposed formulations and the

models from the literature during our experiments. We imposed a time limit of

one hour (3600s) for each instance. A time limit of 10 minutes (600s) has been
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imposed to the r-brp B&B (Algorithm 4) when solving each instance. The

other solver (i.e., CPLEX) parameters were left in their default values. The

following column headings are employed in Tables 2-A.8. Average results are

reported for each instance class and set.

- Instance: specifies the instance set name and dimensions (number of groups

(G) and bay size (S ×H)), respectively.

- Heur.: the average number of relocations provided by the heuristic algorithm.

- lb: the average linear relaxation cost of the instances whose the linear relax-

ation at the root node is solved within the time limit.

- lb t. (s): the average computational time in seconds for solving the linear

relaxation.

- #lb: the number of instances for which the corresponding formulation was

able to solve the linear relaxation within the time limit.

- lb* : the average linear relaxation cost of instances solved to optimality within

the time limit.

- feas.: the average best integer solution found. Average over the number of

instances for which the respective formulation finds a feasible integer so-

lution within the time limit.

- #feas : the number of instances in which the corresponding model was able

to find a feasible integer solution within the time limit.

- opt : the average optimal integer solution found. Average over the number

of instances for which the respective algorithm or formulation finds the

optimal solution within the time limit.

- opt t. (s): the average computational time in seconds for solving the respective

instance set to optimality.

- #opt : the number of instances in which the corresponding model was able to

solve to optimality within the time limit.
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4.1. Pre-marshalling Problem

The proposed formulation for the pmp has been compared with the model

described in (Lee & Hsu, 2007). In order to provide fair comparisons with the

work in the literature, we implemented their model and employed the same com-

putational settings during the experiments. In their paper, Lee & Hsu (2007)

executed experiments with two instances only, the first with small bay dimen-

sions (6 × 4) holding 14 containers distributed in 3 groups, and the second

with big bay dimensions (12× 5) holding 45 containers distributed in 6 groups.

In our experiments we evaluate their model also on the selected instances of

Caserta & Voß (2009). The comparisons between the two formulations are de-

tailed in Tables 2 and 3. In Table 2 we present the results concerning the linear

relaxations of the models and in table 3 we compare the results of the proposed

heuristic and the feasible/optimal solutions of the formulations.

Table 2: Computational results concerning the linear relaxations of the proposed pmp model

and the formulation of Lee & Hsu (2007) on the instances of Caserta & Voß (2009) and

Lee & Hsu (2007).

Instance Lee & Hsu pmpm1

Name G S H lb lb t. (s) #lb lb lb t. (s) #lb

data3-3 9 3 5 0.10 2.82 40 5.78 0.60 40

data3-4 12 4 5 0.03 4.86 40 6.71 1.72 40

data3-5 15 5 5 0.01 10.85 40 7.81 6.01 40

data3-6 18 6 5 0.00 194.89 40 9.27 5.27 40

data3-7 21 7 5 0.56 487.41 39 10.69 17.48 40

data3-8 24 8 5 1.51 1065.09 37 11.48 18.72 40

data4-4 16 4 6 0.02 28.25 40 10.20 27.86 40

data4-5 20 5 6 0.00 470.78 40 13.07 17.14 40

data4-6 24 6 6 1.41 987.48 39 14.66 48.56 40

data4-7 28 7 6 0.00 1874.44 38 17.12 57.78 40

data 6 4 3 6 4 0.20 1.67 1 6.75 0.18 1

data 12 5 6 12 5 1.61 776.45 1 26.41 10.17 1

Total 395 402
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In their paper, Lee & Hsu (2007) report that the solver took more than 24

hours to solve the small problem (i.e., 6x4) to optimality. In our experiments,

after one hour the process was interrupted and the gap was still above 40%.

On the other hand, the proposed model found the optimal solution in less than

20 seconds. Both models fail in solving the big instance within the time limit,

despite our model was still capable of finding a feasible solution.

In our experiments with the instances of Caserta & Voß (2009), the proposed

model found feasible integer solutions for 259/400 instances, and among those,

143 instances were proved optimal, while the model in literature only found

49/400 feasible solutions and proved the optimality for 30 of them. The new

model proved the optimality for the most part of the instances in the (3 × 3)

set from the Caserta & Voß (2009) benchmark in less than one minute (on

average). These results are explained by the fact that the proposed formulation

has much stronger linear relaxation bounds. Furthermore, while the quality

of the linear relaxation of the proposed formulation increases accordingly to

the size of the instance, the linear relaxation of the model in the literature

decreases to zero, as shown in Table 2. In addition, the time necessary to solve

the linear relaxations is smaller for the new model. The experiments also show

that the solution provided by the heuristic can have a considerable influence in

the solution process. Despite the good overall quality of solutions found by the

heuristic, the model shows, as expected, a worse performance for poor quality

heuristic solutions, even in the small instances, as the model size increases with

the parameter T estimated by the heuristic. The heuristic solved all instances

in less than one second. Despite the good results achieved by the new model

when compared with other MIP based approaches, we can verify in Table 3,

columns three and four, that the results obtained by the combinatorial B&B

of Tanaka & Tierney (2018) was capable of solving all instances to optimality

within the same time limit of one hour per instance. It is worthy to mention

that the success of their method is due to the combination of fast lower bound

calculation procedures and the many dominance rules applied for the selection

of nodes during the exploration of the B&B tree.
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Table 3: Computational results for the proposed pmp model and the formulation of Lee & Hsu (2007) on the instances of Caserta & Voß (2009) and

Lee & Hsu (2007).

BKSa Lee & Hsu pmpm1

Instance Heur. opt. #opt feas. #feas opt opt t. (s) #opt lb* feas. #feas opt opt t. (s) #opt

data3-3 10.58 8.78 40 7.86 29 6.63 574.53 19 5.78 8.78 40 8.78 42.79 40

data3-4 11.43 9.03 40 7.15 13 6.63 2039.65 8 6.65 9.03 40 8.90 460.67 39

data3-5 13.38 10.15 40 7.00 4 5.50 1969.31 2 6.89 10.50 40 8.78 386.84 27

data3-6 15.03 11.28 40 4.00 1 − − 0 8.32 11.97 39 9.24 844.32 17

data3-7 18.13 12.80 40 − 0 − − 0 8.97 14.18 33 10.00 1299.94 9

data3-8 19.48 13.53 40 − 0 − − 0 9.17 16.22 27 10.25 1943.94 4

data4-4 20.10 15.82 40 7.00 1 7.00 854.02 1 7.25 16.24 25 9.60 397.77 5

data4-5 24.08 17.85 40 − 0 − − 0 8.03 17.63 8 11.00 3330.81 1

data4-6 26.90 19.30 40 − 0 − − 0 − 18.60 5 − − 0

data4-7 31.20 21.82 40 − 0 − − 0 − − 0 − − 0

data 6 4 9.00 9.00 1 9.00 1 − − 0 6.75 9.00 1 9.00 17.26 1

data 12 5 45.00 ? ? − 0 − − 0 − 45.00 1 − − 0

Total 401 49 30 259 143

(Best Known Solution) BKSa: Tanaka & Tierney (2018)
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4.2. Block Relocation Problems

Considering that the numerical results in the work of Petering & Hussein

(2013) indicates that their brp model outperforms the formulation presented

by Caserta et al. (2012) both in terms of number instances solved and linear re-

laxation bounds, we decided to compare our brp formulations with their model.

As for the pmp case, we also implemented this model and employed the

same settings during our experiments in order to obtain fair comparisons. The

sole modification applied with respect to the original model is the objective

function. In our model, we minimize the number of relocations, while in their

formulation, they minimize the time step in which the last container leaves the

bay. Note that both models allow the objective function to be written in one of

these two forms without the need of additional variables. We chose to write the

objective function as the minimization of the number of relocations, as is done

also by Caserta et al. (2012). We do not consider in our brp comparisons the

formulations for the r-brp, e.g., Zehendner et al. (2015). As mentioned, the r-

brp is a special case of the brp that incorporates more restrictive assumptions.

These formulations can only be used to provide upper bounds for the brp.

Tables 4,5,A.7, and A.8 present the numerical results for the brp formula-

tions and also for the r-brp B&B algorithm (Algorithm 4 in Appendix A) on

Caserta & Voß (2009) instances. The results in Tables 4 and 5 are for the origi-

nal non-grouped instances, and the results in Tables A.7 and A.8 (Appendix A)

are for the transformed instances. As the models in the literature are not able

to handle brp instances with grouped priorities, Tables A.7 and A.8 show a

comparison among the new brp models and the r-brp B&B only. As for the

pmp experiments, we report the results for the linear relaxations and feasi-

ble/optimal solutions in separated tables, Tables 4 and A.7 and Tables 5 and

A.8, respectively.

Considering the original instances of Caserta & Voß (2009), Table 5 shows

that the new brpm1 formulation and the one of Petering & Hussein (2013) have

similar performance regarding the number of instances in which the linear re-

laxation is solved, nevertheless, brpm1 model achieves consistently better lower
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Table 4: Computational results concerning the linear relaxations of the proposed brp models

and the formulation of Petering & Hussein (2013) on the instances of Caserta & Voß (2009).

Instance Petering Model brpm1 brpm2

Name G S H lb lb t. (s) #lb lb lb t. (s) #lb lb lb t. (s) #lb

data3-3 9 3 5 2.74 1.95 40 3.52 1.56 40 2.11 0.85 40

data3-4 12 4 5 2.56 12.11 40 3.60 7.85 40 1.97 2.52 40

data3-5 15 5 5 2.57 65.87 40 3.95 34.66 40 1.89 6.08 40

data3-6 18 6 5 2.63 485.45 40 4.42 204.81 40 1.68 19.90 40

data3-7 21 7 5 2.57 1384.85 40 4.65 725.11 40 1.59 55.76 40

data3-8 24 8 5 2.62 3106.77 38 5.02 1702.46 40 1.17 168.34 40

data4-4 16 4 6 3.23 104.64 40 4.83 110.46 40 1.29 18.98 40

data4-5 20 5 6 3.52 988.68 40 5.54 543.26 40 0.94 129.93 40

data4-6 24 6 6 3.37 3069.55 38 5.81 1308.23 39 0.88 463.96 40

data4-7 28 7 6 3.05 2720.28 40 6.50 2632.07 36 0.68 1482.45 37

data5-4 20 4 7 3.98 1239.02 40 5.93 334.82 40 0.72 243.02 40

data5-5 25 5 7 3.96 3220.56 38 6.82 2001.51 38 0.50 1607.15 37

data5-6 30 6 7 3.86 2383.43 31 7.74 3258.55 30 0.38 2971.11 14

Total 505 503 488

bounds in average shorter execution times. brpm2 model is in average faster

than the other two formulations, however, it does not present good performances

in both linear relaxation bounds and number of instances solved. On the other

hand, analyzing the upper bounds results reported in Table 5 we see that brpm2

model, despite having the worse linear relaxation, outperforms the other two for-

mulations in terms of number of instances in which a feasible integer solution

is found within the time limit, number of proved optimal solutions and average

execution times. This is explained by the fact that it is more compact than the

brpm1 model, and thus its linear relaxations are solved faster, which allows the

solver to explore more nodes in the B&B tree in less time. In summary, the two

new brp formulations are able to find feasible solutions and prove optimality in

twice as many instances than the model in the literature.
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Nevertheless, as discussed for the pmp case, also for the brp the best exact al-

gorithms in the literature are those based on combinatorial lower bounds coupled

with the B&B framework, as we can verify in Table 5, columns three and four.

The B&B algorithms proposed by Tricoire et al. (2018) and Tanaka & Mizuno

(2018) were able to solve all the selected instances sets to optimality within

reduce computational times. Among these two works, Tanaka & Mizuno (2018)

present the best performance as they can solve all the instances from the

even larger Caserta & Voß (2009) benchmarking sets: data5-7 to data5-10, and

data6-6, while Tricoire et al. (2018) can solve to optimality all the 40 instances

of the sets up to data5-6 only. As for their algorithm for the pmp, the success

of the B&B method of Tanaka & Mizuno (2018) for the brp is due to the com-

bination of fast lower bound calculation procedures and the many dominance

rules applied for the selection of nodes during the exploration of the B&B tree.

Tables A.7 and A.8 present the results for the two new brp formulations and

the r-brp B&B in the instances of Caserta & Voß (2009) that were transformed

to include grouped priorities. Differently from the unique priorities case, the

models are able to better solve these instances, as indicated by the number of

instances in which a feasible solution is found, the number of optimal solutions

and the reduced computational effort. This behavior is due to the smaller

linear programs being generated when the containers are distributed in fewer

groups. At every three rows in Table A.8, we can observe that a decreasing

number of instances is solved as the bay size grows and also when the number

of container groups varies. Comparing to the r-brp B&B, as for the unique

priorities case, similar comments related to the quality of the solutions can

be devised, however the proportion of solved instances by the models is much

higher for the grouped priority instances. Similarly, despite brpm1 presents

much better linear relaxations, model brpm2 is able to solve more instances to

optimality within the specified time limit.

We report in Table 6 the results of the experiments with our r-brp models

and B&B algorithm (Algorithm 4) on the instances of Caserta & Voß (2009).
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As expected, due to its more restrictive assumptions, both methods were able

to solve substantially more instances than our brp models. The B&B algorithm

solved all the selected instances in reduced computational times (less than 5 sec-

onds on average). Similar to its brp equivalents (brpm1 and brpm2), r-brpm1

provides better linear relaxation bounds than r-brpm2. However, different from

the brp case, r-brpm1 was capable of solving almost 25% more instances to op-

timality than the r-brpm2 model. Furthermore, the lower bounds of r-brpm1

are tighter than those of brpm1. As for the brp, the quality of these bounds

decreases as the height of the stacks increases. When compared to the liter-

ature, the best linear programming based formulation for the r-brp was pro-

posed by Galle et al. (2018), and is followed by Zehendner et al. (2015), which

is an improved version of the r-brp model of Caserta et al. (2012). In both

works, their implementation employs preprocessing mechanisms for eliminating

variables. Despite we do not apply any type of preprocessing, our best r-brp

model still performs reasonably well, solving more than 75% of the instances.

Improvements can be achieved by considering similar preprocessing mechanisms.

However, as for the previous problems, up to this date the best exact algorithms

for the r-brp are based on the B&B framework. In fact, the best method for

the r-brp is the one proposed by Tanaka & Mizuno (2018), which is also the

best for the brp. Their algorithm is capable of solving all the instances on

Table 6 to optimality in reduced computational times.

5. Concluding Remarks

This paper studied the Pre-marshalling Problem (pmp) and the Block Relo-

cation Problem (brp). We developed a new integer programming model for the

pmp in which the container priorities can be defined individually or for groups

of containers. Based on the pmp formulation, we derived two new models for

the brp and its variant, the Restricted brp (r-brp). We also implemented a

new greedy heuristic for the pmp and a branch-and-bound algorithm for the

r-brp. We evaluated the proposed formulations and algorithms on randomly
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generated instances available in the literature and also compared them with the

best existing mathematical models for each problem. The computational exper-

iments showed that our pmp formulation outperforms the mathematical model

in the literature both in terms of linear relaxation quality and number of in-

stances solved to optimality. The proposed model was able of solving five times

more instances. Similar results were obtained for the two new brp proposed

formulations. Despite the proportion of solved instances was not as expressive

as for the pmp case, we were still able to solve twice more instances than the

model in the literature. Despite the good computational results obtained when

strictly compared with other MIP based formulations, the models introduced

in this work are not the best exact methods available for these problems. The

best performance on the pmp, and both brp variants have been achieved by ap-

proaches that incorporates fast combinatorial lower bound procedures within the

B&B framework, as well as other computational improvements to speed up the

search. The success of such methods is due to speed in which new lower bounds

can be computed in each node of the B&B, normally they can be re-computed

in constant time. Meanwhile, for MIP approaches, the linear relaxation of the

models has to be computed in each node, and this can be a very time con-

suming task. Nevertheless, the performance of methods based on mathematical

programming is expected to improve over time according new developments are

incorporated into MIP solvers. Future research directions could include other

relaxation techniques than the one based on linear programming, for example,

column generation approaches. It would also be interesting to investigate these

problems with new containers being allowed to enter the bay during the sorting

and retrieval processes, or to consider more integrated contexts that combine

stack sorting problems and crane scheduling and routing problems.
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Table 5: Computational results for the proposed brp models and the formulation of Petering & Hussein (2013) on the instances of Caserta & Voß

(2009).

r-brp BKSa Petering Model brpm1 brpm2

Instance opt opt #opt feas. #feas opt opt t. (s) #opt lb* feas. #feas opt opt t. (s) #opt lb* feas. #feas opt opt t. (s) #opt

data3-3 5.00 4.98 40 4.98 40 4.98 71.56 40 3.52 4.98 40 4.98 6.02 40 2.11 4.98 40 4.98 2.50 40

data3-4 6.18 6.03 40 5.71 34 5.08 1080.55 24 3.60 6.03 40 6.03 221.22 40 1.97 6.03 40 6.03 192.85 40

data3-5 7.03 6.85 40 5.95 20 3.75 944.60 4 3.82 6.74 39 6.30 444.93 33 1.98 6.77 39 6.54 408.47 37

data3-6 8.40 8.28 40 5.00 3 3.00 2064.42 1 3.95 7.43 23 6.20 1151.00 15 2.21 8.05 37 6.58 438.59 19

data3-7 9.28 9.10 40 − 0 − − 0 4.53 7.50 12 6.50 2023.41 4 2.20 8.45 31 7.21 831.52 14

data3-8 10.65 10.30 40 − 0 − − 0 − 9.00 3 − − 0 1.79 9.41 17 7.00 1038.05 1

data4-4 10.20 9.73 40 7.25 4 − − 0 4.59 9.42 31 8.24 1557.51 17 1.69 9.07 28 8.20 811.63 20

data4-5 12.95 12.25 40 − 0 − − 0 5.43 10.11 9 9.50 3420.77 2 1.64 9.90 10 8.80 1595.18 5

data4-6 14.03 13.23 40 − 0 − − 0 − 9.33 3 − − 0 2.25 8.80 5 7.50 802.82 2

data4-7 16.13 15.38 40 − 0 − − 0 − − 0 − − 0 − − 0 − − 0

data5-4 15.43 14.70 40 − 0 − − 0 4.29 10.33 6 8.00 2068.11 3 1.58 9.50 6 8.00 1301.17 3

data5-5 18.85 17.43 40 − 0 − − 0 − − 0 − − 0 − − 0 − − 0

data5-6 22.08 20.80 40 − 0 − − 0 − − 0 − − 0 − − 0 − − 0

Total 520 101 69 206 154 253 181

(Best Known Solution) BKSa: Tanaka & Mizuno (2018), Tricoire et al. (2018)
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Table 6: Computational results for the proposed r-brp models on the instances of Caserta & Voß (2009).

r-brp Lit.a r-brpm1 r-brpm2

Instance opt #opt lb* feas. #feas opt opt t. (s) #opt lb* feas. #feas opt opt t. (s) #opt

data3-3 5.00 40 4.98 5.00 40 5.00 0.50 40 1.79 5.00 40 5.00 2.41 40

data3-4 6.18 40 5.98 6.18 40 6.18 3.41 40 1.77 6.18 40 6.18 27.17 40

data3-5 7.03 40 6.66 7.03 40 7.03 34.98 40 1.92 7.03 40 7.03 123.42 40

data3-6 8.40 40 8.03 8.40 40 8.40 37.32 40 1.91 8.45 40 8.24 457.02 38

data3-7 9.28 40 8.92 9.28 40 9.28 63.41 40 1.92 9.05 38 8.55 652.77 31

data3-8 10.65 40 10.13 10.65 40 10.65 184.14 40 1.37 10.24 34 9.38 1995.07 21

data4-4 10.20 40 8.60 10.20 40 10.20 402.58 40 1.68 10.25 40 9.71 525.19 34

data4-5 12.95 40 11.24 12.87 39 12.87 304.27 39 1.65 11.68 25 10.50 1328.35 16

data4-6 14.03 40 12.20 14.03 39 13.42 566.25 31 1.37 12.71 21 10.00 1563.52 8

data4-7 16.13 40 13.80 15.66 35 15.00 675.90 30 1.03 12.40 5 10.00 2060.36 1

data5-4 15.43 40 11.28 14.94 35 13.62 1138.77 26 1.59 12.83 18 11.18 1254.36 11

data5-5 18.85 40 13.70 18.11 28 16.15 1077.66 13 0.00 15.50 2 0.00 0.00 0

data5-6 22.08 40 16.28 21.12 17 18.33 1510.41 6 0.00 0.00 0 0.00 0.00 0

Total 520 473 425 343 280

Lit.a: Galle et al. (2018), Tanaka & Mizuno (2018), Tanaka & Takii (2016), Zehendner et al. (2015)
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Appendix A. Pseudocodes and Additional Results

Algorithm 1: Compute brp lower bound.

1 Procedure BRP-LB(bay)

2 LB ← 0;

3 for (stack id← 1, 2, . . . , S) do

4 smaller Block ← bay[stack id][1];

5 for (tier id← 2, . . . , height(bay[stack id])) do

6 if bay[stack id][tier id] 6= ∅ then

7 if bay[stack id][tier id] > smaller Block then

8 LB ← LB + 1;

9 else

10 smaller Block ← bay[stack id][tier id];

11 end if

12 end if

13 end for

14 end for

15 return LB;

Algorithm 2: Transform Caserta & Voß (2009) instances into grouped

brp instances using original container information.

1 Procedure Instance Converter(bay, G)

2 for (stack id← 1, 2, . . . , S) do

3 for (tier id← 1, 2, . . . , height(bay[stack id])) do

4 if (bay[stack id][tier id] mod G = 0) then

5 bay[stack id][tier id]← G;

6 else

7 bay[stack id][tier id]← (bay[stack id][tier id] mod G);

8 end if

9 end for

10 end for

41



Algorithm 3: Heuristic algorithm for the pmp.

1 PMP Heuristic(bay, stack id)

2 relocations = 0;

3 while (there exists mis-overlays in bay) do

4 if (stack id = ∅ or there is no mis-overlays in bay[stack id]) then // Step 1.

5 min Amount = H;

6 for (s = 1, . . . , S) do

7 if (height(bay[s]) < min Amount and there is mis-overlays in bay[s])

then

8 min Amount = height(bay[s]);

9 stack id = s;

10 else

11 if (bay[s] = min Amount) then

12 Select the stack holding the container with highest index;

13 end if

14 end if

15 end for

16 end if

17 if (height(bay[stack id]) > 0) then // Step 2.

18 while (bay[stack id] is not empty) do

19 Select a stack s′ ∈ {1, . . . , S}, s′ 6= stack id, with available space and in

which a relocation from stack does not create a deadlock;

20 If such stack does not exist, select s′ with available space, unsorted stacks

first;

21 Relocate the top container from s′ to stack id;

22 relocations = relocations+ 1;

23 end while

24 else // Step 3.

25 Build a list, sorted in non-increasing order, with all topmost containers;

26 while (height(bay[stack id]) ≤ H − 2) do

27 Relocate the containers from the list to the emptied bay[stack id];

28 Add the new topmost container, if it exists, in the list;

29 relocations = relocations+ 1;

30 end while

31 end if

32 stack id = ∅;

33 end while

34 return relocations;
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Algorithm 4: branch-and-bound algorithm for the r-brp.

1 R-BRP branch-and-bound(bay, previous TargetBlock, blocks Left, ub, lb,

relocations, depth)

2 if (relocations+ lb > ub) then

3 return; // Fathoming

4 end if

5 if (relocations < ub) and (blocks Left = 0) then

6 ub = relocations; // Update best bound

7 Store incumbent solution;

8 return; // Fathoming

9 end if

10 if (blocks Left > 0) then

11 if (there exists a stack s in bay with a target block available for retrieval) then

12 Retrieve the target block from s;

13 if (All blocks belonging to the current target group have been retrieved) then

14 previous TargetBlock stores the current target group;

15 The target group is updated to the next group;

16 end if

17 R-BRP BranchBound(bay, previous TargetBlock, blocks Left− 1, ub, lb,

relocations, depth+ 1);

18 else

19 for (s = 1, . . . , S) do

// Find a stack s in bay with an obstructed target block

20 if (stack s has a target block) then

21 for (s′ = 1, . . . , S) do

// Find a stack s′ in bay with available space

22 if (s 6= s′) then

23 Move an obstructing block from s to s′;

24 Update lb; // If no new mis-overlay is generated in s′:

lb = lb− 1.

25 R-BRP BranchBound(bay, previous TargetBlock,

blocks Left, ub, lb, relocations+ 1, depth+ 1);

26 end if

27 end for

28 end if

29 end for

30 end if

31 end if

32 return;
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Table A.7: Computational results concerning the linear relaxations of the proposed brpmodels

using converted instances of Caserta & Voß (2009).

Instance brpm1 brpm2

Name G S H lb lb t. (s) #lb lb lb t. (s) #lb

data3-3-3 3 3 5 2.29 0.34 40 1.52 0.50 40

data3-3-4 4 3 5 2.50 0.59 40 1.44 0.91 40

data3-3-5 5 3 5 2.86 0.83 40 1.44 1.61 40

data3-4-3 3 4 5 2.48 1.08 40 1.85 1.22 40

data3-4-4 4 4 5 2.74 1.53 40 1.72 2.06 40

data3-4-5 5 4 5 2.80 2.48 40 1.59 3.83 40

data3-5-3 3 5 5 2.59 2.46 40 2.10 2.16 40

data3-5-4 4 5 5 2.72 3.87 40 1.72 5.22 40

data3-5-5 5 5 5 3.07 5.58 40 1.61 10.20 40

data3-6-3 3 6 5 2.58 5.23 40 2.18 4.06 40

data3-6-4 4 6 5 2.84 8.85 40 1.91 10.46 40

data3-6-5 5 6 5 3.24 15.34 40 1.51 24.88 40

data3-7-3 3 7 5 2.93 9.76 40 2.36 10.00 40

data3-7-4 4 7 5 3.07 15.58 40 2.12 21.71 40

data3-7-5 5 7 5 3.33 29.36 40 1.63 54.55 40

data3-8-3 3 8 5 2.92 14.57 40 2.33 14.15 40

data3-8-4 4 8 5 3.54 39.85 40 1.84 65.79 40

data3-8-5 5 8 5 3.55 52.26 40 1.54 105.01 40

data4-4-3 3 4 6 3.01 3.92 40 2.14 4.32 40

data4-4-4 4 4 6 3.47 6.23 40 1.66 9.12 40

data4-4-5 5 4 6 3.53 12.39 40 1.28 22.72 40

data4-5-3 3 5 6 3.33 10.35 40 2.13 10.10 40

data4-5-4 4 5 6 3.74 22.74 40 1.44 30.69 40

data4-5-5 5 5 6 3.91 29.82 40 1.37 60.68 40

data4-6-3 3 6 6 3.54 23.06 40 2.11 29.50 40

data4-6-4 4 6 6 3.99 50.86 40 1.64 78.43 40

data4-6-5 5 6 6 4.10 74.25 40 1.29 171.27 40

data4-7-3 3 7 6 3.74 49.76 40 2.13 53.62 40

data4-7-4 4 7 6 4.35 132.10 40 1.38 308.72 40

data4-7-5 5 7 6 4.42 213.34 40 1.02 627.54 39

data5-4-3 3 4 7 3.72 12.05 40 1.92 12.17 40

data5-4-4 4 4 7 4.03 23.55 40 1.31 31.24 40

data5-4-5 5 4 7 4.68 43.86 40 0.97 85.72 40

data5-5-3 3 5 7 3.98 35.91 40 1.83 34.28 40

data5-5-4 4 5 7 4.32 65.67 40 1.40 93.16 40

data5-5-5 5 5 7 4.88 133.36 40 0.92 317.78 40

data5-6-3 3 6 7 4.38 78.02 40 1.85 97.63 40

data5-6-4 4 6 7 4.80 200.49 40 0.98 400.06 40

data5-6-5 5 6 7 5.40 399.47 40 0.62 1375.28 39

Total 1560 1558
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Table A.8: Computational results for the proposed brp models using converted instances of

Caserta & Voß (2009).

r-brp brpm1 brpm2

Instance opt lb* feas. #feas opt opt t. (s) #opt lb* feas. #feas opt opt t. (s) #opt

data3-3-3 3.25 2.29 3.23 40 3.23 1.34 40 1.52 3.23 40 3.23 1.34 40

data3-3-4 3.78 2.50 3.75 40 3.75 1.50 40 1.44 3.75 40 3.75 4.84 40

data3-3-5 4.10 2.86 4.10 40 4.10 2.53 40 1.44 4.10 40 4.10 7.53 40

data3-4-3 3.85 2.48 3.85 40 3.85 6.96 40 1.85 3.85 40 3.85 6.16 40

data3-4-4 4.43 2.74 4.43 40 4.43 9.39 40 1.72 4.43 40 4.43 18.33 40

data3-4-5 4.93 2.80 4.90 40 4.90 51.34 40 1.59 4.90 40 4.90 71.51 40

data3-5-3 4.58 2.59 4.58 40 4.58 50.01 40 2.10 4.58 40 4.58 25.12 40

data3-5-4 4.95 2.63 4.95 40 4.68 244.98 38 1.71 4.95 40 4.59 147.47 37

data3-5-5 5.88 3.03 5.83 40 5.72 255.70 39 1.63 5.85 40 5.63 531.70 38

data3-6-3 5.15 2.44 5.15 40 4.66 250.90 35 2.19 5.15 40 4.92 155.32 38

data3-6-4 6.15 2.67 6.15 40 5.45 507.65 29 1.92 6.15 40 5.89 405.24 37

data3-6-5 7.15 2.97 7.15 40 6.04 1024.83 26 1.73 7.13 40 6.07 578.10 27

data3-7-3 6.55 2.59 6.55 40 5.32 734.80 25 2.40 6.55 40 6.00 400.16 33

data3-7-4 6.93 2.75 6.78 37 5.58 891.08 19 2.25 6.93 40 6.21 492.31 29

data3-7-5 7.63 2.74 7.03 32 5.14 475.74 14 1.90 7.62 39 5.61 615.82 18

data3-8-3 6.55 2.56 6.44 39 4.94 754.12 18 2.29 6.55 40 6.03 376.92 33

data3-8-4 8.40 2.75 8.06 35 5.67 889.68 9 1.98 8.50 40 6.68 926.39 19

data3-8-5 8.20 3.14 7.94 34 5.71 998.37 7 1.87 8.15 39 6.56 1149.85 16

data4-4-3 6.45 2.96 6.43 40 6.21 381.84 38 2.17 6.43 40 6.21 223.01 38

data4-4-4 7.65 3.40 7.58 40 7.25 394.66 36 1.71 7.58 40 7.25 613.47 36

data4-4-5 8.73 3.31 8.30 37 7.57 684.82 28 1.49 8.50 38 7.29 567.00 24

data4-5-3 7.83 2.85 7.39 36 6.14 1066.43 21 2.29 7.83 40 6.87 509.06 31

data4-5-4 9.33 3.18 8.00 27 6.88 1097.80 16 1.85 9.48 40 7.10 645.75 20

data4-5-5 9.30 3.38 8.66 29 7.17 1019.81 12 1.65 9.33 39 7.07 1213.38 14

data4-6-3 9.33 2.82 8.56 32 6.17 754.87 6 2.21 9.11 38 7.35 617.46 20

data4-6-4 10.18 3.44 8.89 19 6.50 1312.83 4 2.08 9.89 35 7.25 891.29 8

data4-6-5 10.30 3.24 7.94 16 6.60 2294.44 5 1.77 9.50 30 7.33 1214.30 12

data4-7-3 10.30 2.57 8.74 23 5.00 361.58 2 2.78 10.11 38 7.36 1011.14 11

data4-7-4 12.10 − 11.00 2 − − 0 − 12.13 32 − − 0

data4-7-5 12.18 3.63 9.14 7 7.00 3365.66 1 1.48 10.53 19 7.00 350.53 1

data5-4-3 9.65 3.43 9.15 33 8.14 1114.44 21 2.15 9.75 40 8.35 552.88 26

data5-4-4 10.35 3.82 9.11 27 7.86 1070.52 14 1.69 9.53 34 7.82 815.30 17

data5-4-5 11.95 3.74 9.94 18 8.13 1075.42 8 1.91 10.89 27 7.17 611.12 6

data5-5-3 11.05 2.90 9.00 22 6.50 1484.84 4 2.26 10.78 36 8.19 973.33 16

data5-5-4 12.03 2.98 9.17 6 6.00 915.13 1 2.26 11.22 23 8.60 1067.46 5

data5-5-5 13.55 − 11.14 7 − − 0 1.71 11.31 13 7.00 864.40 1

data5-6-3 12.68 2.96 9.91 11 7.00 2730.50 1 2.72 11.87 31 7.50 535.34 2

data5-6-4 14.55 − 10.50 2 − − 0 2.74 13.60 15 7.00 1249.35 1

data5-6-5 15.63 − 10.50 2 − − 0 − 13.20 5 − − 0

Total 1133 757 1371 894
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