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Abstract6

Background: Networks

Q1

whose nodes have labels can seem complex. Fortunately, many have substructures that
occur often (“motifs”). A societal example of a motif might be a household. Replacing such motifs by named
supernodes reduces the complexity of the network and can bring out insightful features. Doing so repeatedly may
give hints about higher level structures of the network. We call this recursive process Recursive Supernode Extraction.

7

8

9

10

Results: This paper describes algorithms and a tool to discover disjoint (i.e. non-overlapping) motifs in a network,
replacing those motifs by new nodes, and then recursing. We show applications in food-web and protein-protein
interaction (PPI) networks where our methods reduce the complexity of the network and yield insights.
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Conclusions: SuperNoder is a web-based and standalone tool which enables the simplification of big graphs based
on the reduction of high frequency motifs. It applies various strategies for identifying disjoint motifs with the goal of
enhancing the understandability of networks.
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compression
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Background19

Imagine describing a road map with words alone. The
Q2

20

task would be difficult and unclear to most people. Net-21

works provide a far better representation of any data22

representing interrelationships. However, because the size23

of modern networks (for example, in social science) can24

extend to thousands, millions, or even billions of nodes,25

networks themselves need to be abstracted for the sake of26

intelligibility and insight.27

As in other disciplines, a way to reduce the size of the28

problem is to discover similar components and give them29

a common name. Linguists do this when they categorize30

parts of speech (noun, verb, adverb etc). Biologists do this31

when they group animals into species and families. In net-32

works, we will do this by finding connected labeled sub-33

components that are isomorphic in label and topology.34

Formally, this entails finding common subgraphs or motifs35

that occur with a certain frequency.36
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09124 Cagliari, Italy
Full list of author information is available at the end of the article

Much research has proposed algorithms that aim at 37

finding frequent motifs [1–5]. The motivation is usu- 38

ally to gain insights about metabolic and protein-protein 39

interactions, ecological food-webs, social networks, col- 40

laboration networks, information networks of interlinked 41

documents and products [6–14]. 42

Most of this work does not distinguish between motifs 43

that overlap and motifs that do not. However, this dis- 44

tinction can be critical for understandability. For example, 45

households are a convenient abstraction in social graphs 46

because they are disjoint whereas friendship motifs do 47

not tend to be. For networks whose motifs are not nat- 48

urally disjoint, identifying disjoint motifs may help to 49

understand network structure (e.g. cliques in friendship 50

networks). One work that has done this is [15] which 51

showed algorithms to find edge-disjoint motifs in unla- 52

beled networks. Our work focuses on node-disjoint motifs 53

(which share neither nodes nor edges) in labeled net- 54

works. The usefulness of labels is intuitive as we will see in 55

our examples and node-disjoint motifs are readily decom- 56

posable. We also present promising algorithms to make 57

this process reasonably fast even for sizeable networks. 58
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International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
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Once disjoint motifs of a certain size k have been iden-59

tified, each such motif can be collapsed into a supernode,60

which is a single node that inherits all the connections and61

properties of the motifs. This procedure can be performed62

recursively in order to find motifs on graphs consisting63

of a combination of nodes and super-nodes. Figure 1F1 64

shows an example where motifs have been collapsed into65

supernodes.66
Thus, our tool SuperNoder finds disjoint motifs on a67

base graph G1, reducing G1 to a new graph G2, and then68

recursively repeats the procedure to find G3, G4, and so69

on. SuperNoder attempts to find the most possible dis-70

joint frequent motifs of a given size in a target network in71

each stage of the process. We present several techniques72

to achieve this goal.73

Orthogonally, the SuperNoder tool can take input nodes74

at different layers in a label hierarchy. For example in75

phylogeny, there is a hierarchy of species, genus, family,76

kingdom. Relationships that may be obscure at a low level77

may be clearer at a high level (e.g. felines eat rodents).78

This paper makes three contributions:79

• Efficient algorithms to find disjoint supernodes in80

labeled networks, including networks already81

containing supernodes, yielding a recursive algorithm.82
• A tool incorporating these algorithms that is free to83

the community.84
• Example applications to show the usefulness of the85

approach.86

Frequent (based on the possibly overlapping F1

Q3

87

measure) motifs have been shown to give insights88

in regulatory [16], food-web [17–19], and social sci-89

ence [20, 21] networks. Reduction methods aim at

Q4

90

minimizing the loss of information while maximizing 91

the understandability, often establishing which com- 92

ponents are less interesting for the behavior of net- 93

works. Recent studies have focused on finding high- 94

order clusterings [22, 23]. However, most of this research 95

has focused on modeling graphs without considering 96

node labels, despite the fact that many networks have 97

them. Moreover, they usually consider overlapping motifs, 98

therefore, a single node can belong to several pat- 99

terns, making further analysis (and understandability) 100

difficult. 101

An early compression graph method was proposed 102

by [24] where the authors show how finding substruc- 103

tures and merging them in vertexes for compressing 104

data. Our approach builds on theirs, but their approach 105

does not find all substructures that occur nor does it 106

attempt to find the most highly repetitive subgraphs 107

which are the best candidates for capturing subgraph 108

regularities. 109

Our work also draws inspiration from [15] where the 110

authors propose two methods to find disjoint motifs 111

under the F2 frequency measure (where two graphs are 112

disjoint if they do not share a common edge). First, they 113

propose a method to find motifs based on a small set of 114

patterns, and then give methods to find non-overlapping 115

motifs solving the Maximum Independent Set (MIS) 116

problem. They invented their own method for finding fre- 117

quent motifs and did not choose to compare their method 118

with state-of-the-art motif-finding techniques [25–30]. 119

By contrast, we have chosen to base our approach on 120

the motif-finding algorithm of [25] because of its sim- 121

ple implementation and promising results [31]. As in [15], 122

the second phase of our algorithm uses an overlap graph, 123

Fig. 1 Example of motifs collapsed into supernodes in a Protein-Protein Interaction network. a The original nodes of the network. b The new nodes
of the network after two motifs of size three have been collapsed
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and we have explored some heuristics to deal with larger124

overlap graphs beyond what they used.125

While we do contribute algorithms for finding disjoint126

motifs given a collection of already found motifs, we do127

not advance the state of the art in finding the motifs128

themselves. Instead, our work builds on top of an exist-129

ing overlapping motif finding algorithm which has been130

compared and studied many times in literature [31].131

The remainder of this paper is organized as fol-132

lows. “Implementation” section describes the proposed133

approach. “Results” section describes the biological134

datasets we have used, shows an example application135

of SuperNoder to the yeast network, and analyzes136

both the performance and quality of SuperNoder137

on real networks. “Conclusions” section gives per-138

spectives on the problem and future directions.139

“Availability and requirements” section reports where the140

tool can be found with its essential requirements. Finally,141

“Abbreviations” section lists abbreviations we use in the142

paper.143

Implementation144

Labeled networks or graphs are formally characterized by145

a triple G = (N , E, L) where N denotes a set of nodes, E146

denotes a set of edges (pairs) e = (ni, nj) ∈ N , and L is a147

mapping from N to some set of labels. Edges represent an148

application-dependent relationship. For instance, an edge149

may connect two nodes representing people if the people150

are friends.151
We say that a graph is undirected if every edge from n to152

n′ implies the existence of an edge from n′ to n. Otherwise153

the graph is said to be directed. A subgraph is a connected154

component GS = (NS, ES) such that NS ⊆ N and ES ⊆ E155

if there exists a path from each ni ∈ NS to each nj ∈ NS. A156

k − subgraph is a subgraph with k nodes.157
Two subgraphs S1, S2 are isomorphic if (i) there exists a158

bijective function f : NS1 → NS2 such that for each pair159

(ni, nj) ∈ ES1 ↔ (f (ni), f (nj)) ∈ ES2 and (ii) for all k, the160

label of nk . L(nk) is the same as L(f (nk)). To count the161

number of occurrences of a given subgraph, three differ-162

ent measures can be used [32]. The first measure, named163

F1, is the count of each subgraph regardless of whether it164

overlaps with others. The second one, named F2, avoids165

overlaps of subgraphs if they share at least an edge (or166

equivalently a connected pair of nodes). The last one,167

named F3, requires that two subgraphs share no nodes. F3168

is therefore, the most strict criterion of disjointness (and169

is the one used in this paper). We define the frequency of170

a subgraph S1 in G as the number of occurrences of S1 in171

G. We call subgraphs k −motifs if they have k nodes occur172

over a threshold t using the F1 measure.173

The SuperNoder pipeline consists of the following steps:174

1 Solicit a size s from the user corresponding to the175

number of nodes each motif should have.176

2 Solicit a threshold t from the user corresponding to 177

the number of times that a motif should be present to 178

be considered. (In the future, we may add specific 179

shapes of motifs or specific motifs labels, as further 180

filters in addition to threshold.) 181

3 Search for all possible motifs on the input network 182

meeting threshold t, using the F1 measure (i.e. 183

allowing overlaps). Call that set M. 184

4 Search for the maximum number of non-overlapping 185

motifs from M. 186

5 Collapse non-overlapping motifs into supernodes. 187

6 Repeat steps 2 through 5 until satisfied. 188

In this section we provide details of our tool for accom- 189

plishing these tasks. 190

Input network and motifs finding 191

SuperNoder requires two series of data as an input: 192

• A list of node rows, where each row represents a 193

node by means of a unique ID and a label separated 194

by a blank space. 195
• A list of edge rows, where each row consists of two 196

node IDs separated by a blank space. 197

SuperNoder uses the Randomized Enumeration algo- 198

rithm [25] for the purpose of motif finding. The result of 199

the algorithm is a set of all possible undirected motifs in 200

the network, allowing overlaps. 201

Motif count and thresholding 202

To count motifs, we implemented a function to compute 203

isomorphisms between subgraphs similar to the one of 204

Cordella and colleagues [33]. First, the algorithm takes 205

the labels of subgraph nodes and counts how many nodes 206

have the same label. Second, for each label it computes 207

the sum of in-degrees and the sum of out-degrees (i.e. for 208

each node label, it computes ln,i,o, where n is the number of 209

nodes with label l, i is the sum of in-degree of nodes with 210

label l, and o is the sum of out-degree of nodes with label l). 211

Finally, it sorts these labels using the lexicographic order 212

and computes their hash. If the number of subgraphs hav- 213

ing hash value h is greater than the user-given threshold 214

t, then all such subgraphs are checked to see how many 215

are in fact isomorphic. If, after the check, the number is 216

greater than t, then those subgraphs pass the initial filter 217

to be a motif and thus belong to the “frequent motif set”. 218

Thus the frequent motif set may contain different topolo- 219

gies, e.g. at least t stars of size s, at least t paths of length s, 220

and so on. 221

Finding disjoint motifs 222

Our methods to find disjoint motifs, given the potentially 223

overlapping frequent motif set, uses the concept of an 224

overlap graph. An overlap graph is a pair (M, E) where M 225
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is the set of motifs and there is an edge between motif226

m1 and motif m2 if they share at least one node in the227

original graph. (In the case of recursive reduction, the228

original graph at reduction i is the one produced from the229

graph at reduction i-1, containing both normal nodes and230

supernodes.)231

We briefly present an overview of our heuristics for232

finding disjoint motifs here, but the full pseudo-code is233

available in the github site containing the SuperNoder234

source code as well.235

H1 (Greedy Elimination). This simple but effective236

heuristic finds disjoint motifs by using a Maximal Inde-237

pendent Set technique. Given the frequent motif set M238

and a user-given parameter n, randomly shuffle the poten-239

tially overlapping motif instances from the frequent motif240

set M. For each motif instance m, if the motif instance241

overlaps no other motif instances of M, then output it.242

Otherwise remove it and all its edges from the overlap243

graph. Because this approach is naively greedy, SuperN-244

oder tries n (parameter given by the user) different ran-245

dom shufflings to try to obtain the greatest number of246

disjoint motifs.247

H2 (Ramsey) Heuristic-2 exploits both sampling and248

the Ramsey method whose functions can be seen in [34].249

Given the list of motif instances M and a number k,250

the heuristic (i) takes disjoint subsets of size k from M251

and constructs the induced subgraph of the overlap net-252

work from each subset. (ii) On each subgraph, it performs253

the Ramsey algorithm obtaining a MISsubgraph. (iii) Then,254

it merges all MISsubgraphs into a reduced list of motif255

instances which takes the role of M. The algorithm repeats256

steps (i) through (iii) until there are no more overlaps and257

outputs the resulting set of motifs.258

H3 (Ranked Elimination). Heuristic-3 assigns to each259

(possibly overlapping) motif instance m a degree equal to260

the sum of degrees of the nodes in m ignoring the edges261

between nodes in m (i.e. the sum of the degrees of the262

nodes in m pertaining to edges that connect to nodes out-263

side m). The algorithm then orders the motif instances264

in ascending order of degree so calculated, forming a list265

called MotifDegree. For each node n in the original graph,266

find the first motif instance in MotifDegree and discard267

all other motifs in MotifDegree containing n. This pro-268

cess yields a new list called PotentialSuperNodes. Then269

traverse this PotentialSuperNodes list, preserving motif270

instances having no overlaps and deleting motif instances271

that have higher degrees when there are overlaps.272

H4 (Repeated Ranked Elimination). This approach is273

an improvement over H3, because H3 misses some motif274

instances when one or more overlapping motif instances275

are removed and the nodes of the removed motif instances276

then have no chance to be included in any other motif277

instances. Given as input the list of motif instances M278

found using the Randomized Enumeration method seen279

above, build the MotifDegree list as in Heuristic-3. For 280

each node n, the motif instance m ∈ MotifDegree with 281

the lowest degree that contains n is copied to a list of 282

potential supernodes, called PotentialSuperNodes. All the 283

motif instances in PotentialSuperNodes with no over- 284

laps are considered valid. Then, for each pair {m′, m′′} 285

of overlapping motif instances in PotentialSupernodes, 286

discard the motif instance with the higher degree. Con- 287

tinue until there are no more motif instances. Now 288

consider all the nodes Norphan that are not in any dis- 289

joint motif instance found so far and consider motif 290

instances based on the F1 measure that apply to nodes 291

of Norphan. Repeat the above procedure to generate more 292

disjoint motif instances. Repeat until there are no more 293

nodes in Norphan. 294

H5 (Sampled Ranked Elimination). This heuristic uni- 295

fies sampling with the overlap graph approach. After the 296

sampling is done as for the Ramsey algorithm, the heuris- 297

tic constructs an overlap graph on the surviving motif 298

instances. The heuristic considers the motif instances in 299

ascending order by degree in the overlap graph. If a motif 300

instance has no edges, then put it in the result. If a motif 301

instance m1 has an edge with another motif instance m2, 302

then remove the motif instance with the largest degree 303

(Table 1). T1304

Network reduction 305

After the non-overlapping motif instances have been 306

found, each one is collapsed into a supernode, preserving 307

the external connections of the original nodes of motifs. 308

The label of each supernode is the concatenation of labels 309

of its member nodes in alphabetical order. The new net- 310

work can be saved as an output using the same format as 311

the input network and the whole pipeline can be iterated

Q5

312

on it. 313

Results 314

The test networks 315

We demonstrate SuperNoder on three different labeled

Q6

316

biological networks: 317

Table 1 Summary of the characteristics of the heuristics t1.1

t1.2Heuristic Overlap Order Random Sampling
t1.3ID graph Ramsey by degree approach approach

t1.4H1 - - - V -

t1.5H2 V V - - V

t1.6H3 - - V V -

t1.7H4 - - V V -

t1.8H5 V - V V V

The symbol V indicates that the heuristic exploits that characteristic, - if not. H1 =
Greedy Elimination. H2 = Ramsey. H3 = Ranked Elimination. H4 = Ranked
Replacement. H5 = Sampled Ranked Elimination

t1.9
t1.10
t1.11
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Fig. 3 An example of four supernodes built using SuperNoder with motifs of size three on the yeast network. From left to right, labels of original
nodes, labels of the fifth level hierarchy, labels of the third level hierarchy. On the third level, many proteins share the same pattern and these
patterns are often disjoint

• A food-web subnetwork of Florida bay network1 [35]318

with 93 nodes and 960 edges.319
• A Protein-Protein Interaction (PPI) network of yeast2320

[36] with 2361 nodes and 7182 edges.321
• A PPI network of Arabidopsis3 [37] with 18167 nodes322

and 10928 edges.323

Food-web network. The original nodes have labels that324

represent animals or plants (e.g. predatory chanodichthys,325

dinoflagellates, coral bryaninops, etc.). We have mapped326

the network using a taxonomy4, retrieving for each node327

genus, family, order, class, phylum, and kingdom. From the328

original network we have removed species that did not329

have higher phylogenetic categories.330

Protein-Protein Interaction networks. In a Protein-331

Protein Interaction (PPI) network, each node represents332

a different protein. For the higher-level categorization of333

PPI networks, we have employed the ontology annota-334

tions available at this link5. First, we have retrieved the335

Gene Ontology (GO) term that belongs to Biological Pro-336

cesses (BPs) and that has the lowest (i.e. most empirically337

based) evidence code for each protein. Second, we have338

traversed the ontology go-basic6 starting from each GO339

term in our network to the GO term which represents all340

Biological Processes. Since each GO term can have more341

than one parent, we have chosen the GO term with the342

lowest (i.e., most conclusive) evidence code going up in343

the hierarchy. More precisely, given a label of a node l, we 344

retrieve a GO term g with the lowest evidence code. Let 345

{g1, g2, ..., gn} be the parents of g, then we choose the gi 346

with 1 ≤ i ≤ n with the lowest evidence code, building 347

a hierarchy l, g, gi. Then, we repeat the same operation as 348

long as the GO term which represents all Biological Pro- 349

cesses (BPs) has not been yet reached. In doing so, we have 350

built a taxonomy that can enable the analysis of protein 351

functions. 352

Use case 353

In the analysis of biological networks, interactions often occur 354

between proteins of the same class [38]. SuperNoder can 355

find these relations when high level functional classes are 356

considered, highlighting frequent related processes and 357

simplifying their identification. 358

To show how SuperNoder may help to simplify net- 359

works, we focus on the yeast network, and explain how 360

higher levels of the Gene Ontology (GO) terms enable the 361

abstraction of protein functions allowing SuperNoder to 362

reduce the network complexity. The motivation is simple: 363

at a lower level in the hierarchy of GO terms there may be 364

no motifs that occur more than t times for a moderately 365

large t. At higher levels, there might be. In the example, 366

the yeast network has been mapped onto five levels of the 367

GO terms hierarchy. To be considered a motif, a subgraph 368

has to occur at least 50 times, i.e. with threshold t = 50. 369

Table 2 An example of a hierarchical exploration of the yeast network t2.1

t2.2th Original L5 L4 L3 L2 L1

t2.3Motifs 25 0 290 292 319 377 389

t2.4Nodes 25 2361 1781 1776 1607 1583 1333

t2.5Edges 25 7182 5234 5305 5018 5020 5322

t2.6Motifs 50 0 240 236 304 388 390

t2.7Nodes 50 2361 1841 1889 1585 1361 1581

t2.8Edges 50 7182 5339 5429 5029 5347 4990

The table reports the number of found motifs, the number of nodes and edges, when the network is mapped to different levels of the GO terms hierarchy and then reduced.
At higher levels (L1 is higher level than L2 etc) more motifs pass the threshold

t2.9
t2.10
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Fig. 4 Figures show samples of the yeast network with 25 nodes mapped with original and GO terms labels of our yeast GO hierarchy, and where
supernodes have been found by means of SuperNoder. a Original network with 25 nodes and 83 edges. b Network reduced on low level GO terms
hierarchy (19 nodes and 67 edges). c Network reduced on high level GO terms hierarchy (11 nodes and 43 edges)

Figure 3 shows a motif of size three in each row that areF3 370

mapped on the base level (gene labels), the fifth-level (L5)371

and the third-level (L3) hierarchy labels (i.e. in ascend-372

ing order of abstraction). More motifs appear at higher373

levels in the hierarchy (i.e. first on L5 and then on L3 lev-374

els). In fact, with L5 labels the triples in row 2 and row375

3 are isomorphic. When L3 labels are used, all triples are376

isomorphic, thus becoming relevant motifs. Those triples377

are collapsed into supernodes thus forming a new simpli-378

fied network. Supernodes indicate proteins that belong to379

the same class helping biologists with the analysis of basic380

interactions.381

As a specific case study, focus on motifs com-382

posed of proteins (YNL306W, YDR175C, YBR251W ) and383

(YGR156W, YKR002W, YLR115W ). Analyzing the net-384

work on the base labels, there are not supernodes, since385

they do not show common features in the labeled graph.386

Already at lower hierarchical levels (i.e. L5), the motifs387

GO terms are abstracted into functions, viz, macro-388

molecule biosynthetic process and cellular macromolecule389

metabolic process respectively. At hierarchical level L3,390

the proteins in this example have the label GO:0071704391

which indicates that their proteins are related to organic392

substance metabolic process. At that level, we find out393

that organic substance metabolic process (GO:0071704)394

covers an important role into the yeast network, and395

that is mainly composed of macromolecule biosyn-396

thetic process (GO:0009059), cellular macromolecule397

metabolic process (GO:0044260) and protein metabolic398

process (GO:0019538). This shows an example of how399

Table 3 Rows list the number of all motifs, the threshold applied
in our experiments and the number of motifs that meet that
threshold when L3 labels are considered and motifs have size 3

t3.1
t3.2
t3.3

t3.4 Network N motifs Threshold N repetitive motifs

t3.5 Food-Web 20283 5 5085

t3.6 Yeast 96444 50 49294

t3.7 Arabidopsis 268437 100 155185

our tool can help biologists understand the behav- 400

ior of proteins (with frequent motifs) belonging to the 401

same class. 402
The higher the hierarchy levels, the larger the number of 403

relevant motifs that can be used to further reduce the cur- 404

rent network (an example of this behavior can be observed 405

in Table 2). In addition, higher level labels enable higher T2406

thresholds, sometimes leading to the discovery of very 407

frequent motifs. For example, connections of proteins in 408

Fig. 4a do not show functionalities but those become F4409

evident at higher hierarchical levels 4b and 4c. For exam- 410

ple, the frequent relation between proteins which have 411

GO:0044237, GO:0044237, GO:0044237 as GO terms that 412

are showed in Fig. 4c are only detectable at that level of 413

the hierarchy. Finally, images 4b and 4c show that the 414

reduction at a high level of abstraction enables a better 415

understandability of the network. 416

Performance 417

In this section, we report the time performance, the num- 418

ber of disjoint motifs and the reduction ability of our 419

heuristic algorithms. The time performance is based on 420

the wall clock time required for the execution of the 421

heuristics on all relevant motifs. The number of disjoint 422

motifs is the number of motifs found by each algorithm. 423

The reduction ability is the extent of reduction of net- 424

works. All experiments have been performed considering 425

motifs with size = 3 and size = 5 (i.e. having three nodes 426

in the original graph and three nodes or supernodes after 427

each step of the recursion). H1 has been performed with 428

Table 4 Rows list the number of all motifs, the threshold applied
in our experiments and the number of motifs that meet that
threshold when L3 labels are considered and motifs have size 5

t4.1
t4.2
t4.3

t4.4Network N motifs Threshold N repetitive motifs

t4.5Food-Web 26841 5 407

t4.6Yeast 188733 50 11550

t4.7Arabidopsis 425895 100 14474
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Fig. 5 SuperNoder heuristics performance on the food-web network considering motifs of size 3 and 5 in terms of (a) the number of unique motifs
found (b) the running time

five shufflings. H2 and H5 adopted subsets of the overlap429

graphs consisting of 1000 motif nodes. In our simulations,430

we chose different thresholds in different networks, as431

shown in Tables 3 and 4. The reason is that certain thresh-T3
T4

432

olds make no sense for certain networks. For example, a433

threshold of 100 for our food-web network is meaningless434

because no motifs occur that frequently.435

Food-web network436

Figure 5 reports the performance of the heuristics appliedF5 437

on the food-web network. In this case, heuristics H1, H2438

and H5 which exploit repetitive random approaches (H1),439

sampled overlap graph (H2 and H5), and H4 show bet-440

ter performance than others in finding disjoint motifs.441

Heuristics H3 shows a poor reduction factor on this net-442

work. The reason is that there are many motifs with the443

same sums of degrees, so degree-based heuristics do not444

work well. Heuristic H1 is the fastest. This holds regard- 445

less of motif size. In fact, overall, heuristic H1 is both fast 446

and has a good reduction factor. 447

Yeast network 448

Figure 6 shows the performance on the yeast network. In F6449

contrast to the food-web network, heuristics H2 and H5 450

based on the sampled overlap graph do not obtain the best 451

reduction factor. In this case, heuristic H4 enjoys a greater 452

reduction factor. Although heuristics H2 and H5 can find 453

a large number of disjoint motifs, they require excessive 454

time to find a solution, hence, their use on a network of 455

this size might be avoided. The heuristics H1 and H3 are

Q7

456

still the fastest. 457

Arabidopsis network 458

Experimental results on arabidopsis networks are similar 459

to those on the yeast network and the same considerations 460

Fig. 6 SuperNoder heuristics performance on the yeast network considering motifs of size 3 and 5 in terms of (a) the number of unique motifs
found (b) the running time
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Fig. 7 SuperNoder heuristics performance on the Arabidopsis network considering motifs of size 3 and 5 in terms of (a) the number of unique
motifs found (b) the running time

hold. Note that the arabidopsis network is a Protein-461

Protein Interaction network like the yeast network but is462

very different in term of size.463

Observations from the Experiments464

Heuristic H1 achieves the best time performance and465

finds a large number of disjoint motifs though not always466

the maximum number. Heuristic H4 which is slower can 467

sometimes find more disjoint motifs so should be con- 468

sidered if time is available. The size of motifs and the 469

threshold also matter. Larger motifs entail the processing 470

of more data, but there are fewer repetitive motifs (i.e. 471

motifs that exceed the threshold) so the overall time is 472

sometimes less. 473

Fig. 8 Reduction performance on five iterations on the food-web network (a) motifs of size 3 without threshold (b) motifs of size 3 with threshold
(c) motifs of size 5 without threshold (d) motifs of size 5 with threshold
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Fig. 9 Reduction performance on five iterations on the yeast network (a) motifs of size 3 without threshold (b) motifs of size 3 with threshold (c)
motifs of size 5 without threshold (d) motifs of size 5 with threshold

In summary, heuristic H1 shows good performance on474

all types of network since its greedy approach is fast. The475

resulting reduction may not however be best. Heuristics476

H2 and H5 which employ sampling are useful for those477

networks whose overlap graphs are very large. The size478

of samples can be chosen according to the available com-479

putational resources to balance the execution time and480

memory use. Heuristic H2 should show better reduction481

performance than H5 when there are few distinct motifs482

degree values. By contrast, H3 and H4 should be useful for 483

all those networks that have many distinct motifs degree 484

values, because motifs having less probability to overlap 485

are detected faster. 486

Reduction 487

Figures 8 and 9 show the extent of graph reduction on F8
F9

488

the food-web and yeast networks respectively. Unsurpris- 489

ingly, lowering the threshold generates more F1 motifs, 490

Fig. 10 Reduction in size of the food web network mapped on the species order (e.g. kingfisher mapped on coraciiformes). a The original network.
b The network reduced after 1 iteration. c The network reduced after 2 iterations



UN
CO

RR
EC

TE
D

PR
O

O
F

Dessì et al. BMC Bioinformatics _#####################_ Page 10 of 12

Fig. 2 SuperNoder web application

increasing the number of F3 motifs and reducing the net-491

work size. In our example networks, after a few iterations,492

the networks are no longer reduced. When this plateau-493

ing happens depends entirely on the data. In addition,494

the threshold and the motif size both affect the reduc-495

tion factor, because a small motif has a higher prob-496

ability of occurring more often (see Tables 3 and 4).497

This is well illustrated by our tests where motifs of498

size 3 show a greater reduction than motifs of size 5.499

For an illustration of the extent of reduction, con-500

sider Fig. 10 where (a) shows the original food webF10 501

network, (b) after one iteration and (c) after two502

iterations.503

Tool description504

Figure 2 shows the graphical interface of SuperNoder505

that users without programming skills can adopt to ana-506

lyze networks. On the left, users can use a panel to507

create nodes, in the center there is one panel to create508

edges, and, on the right, a list of parameters the user509

can set. With the first option users can choose the size510

of motifs they are interested in. The minimum value is511

3. The next option is related to the heuristic that should512

be employed to find disjoint motifs. The user can also513

choose the type of network: direct or undirect. The fourth514

parameter is the threshold which represents the min-515

imum value each motif should meet to be considered516

over-represented (it corresponds to the threshold t of the517

SuperNoder pipeline algorithm). The last required param-518

eter is the number of iterations. In addition, if the user519

selects the H1 heuristic, he/she can set the number of520

repetitions to be executed, specific for H1. If the user521

selects either the H2 or H5 heuristic, he/she can also 522

choose the size of samples. When the Submit network but- 523

ton is clicked, the SuperNoder pipeline will be run and 524

results will be printed and shown online (but not saved 525

anywhere). 526

The output consists of two sections (nodes and edges) 527

for each chosen iteration using the same input format. 528

Supernodes are indicated by the tag #supernode. 529

The code has been developed in Python 3.6 using 530

NetworkX7 library. SuperNoder functionalities operate 531

on graphs using the standard NetworkX format. The web 532

interface is provided by a python server which runs on 533

a Docker8 container. Last but not least, SuperNoder is 534

hosted on a GitHub9 page and distributed as a Docker file 535

with the source code freely available under GPLv3 License. 536

Conclusions 537

SuperNoder enables the simplification and compression 538

of graphs based on high frequency motifs. By identifying 539

disjoint motifs, SuperNoder enhances understandability 540

as the network is reduced. This paper describes and 541

compares various algorithms on real networks, both to 542

show the benefits of the approach and to find high- 543

performing algorithms. SuperNoder has been developed 544

in Python, it can either be installed on local machines 545

or used through its online web interface. Future work

Q8

546

includes enhancing performance yet further by using 547

Graphical Processing Units. 548

Availability and requirements 549

Project name: SuperNoder 550
Project homepage: http://glab.sc.unica.it:8080/ 551
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Github link: https://github.com/danilo-dessi/SuperNoder552

-v1.0553
Operating system(s): Platform independent554
Programming language: Python555
Other requirements: Docker556
License: GPLv3.557
Any restrictions to use by non-academics: nothing.558

Endnotes559
1 https://snap.stanford.edu/data/Florida-bay.html560
2 http://vlado.fmf.uni-lj.si/pub/networks/data/bio/561

yeast/yeast.htm562
3 http://interactome.dfci.harvard.edu/A_thaliana/563

index.php?page=download564
4 https://ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/565
5 http://www.geneontology.org/page/download-566

annotations567
6 http://www.geneontology.org/page/download-568

ontology569
7 https://networkx.github.io/570
8 https://www.docker.com/571
9 https://github.com/danilo-dessi/SuperNoder-v1.0572
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