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Chapter 1

Introduction

Markov chains and, their more general version, semi-Markov processes have

been widely used in the econophysics community because they provide a very

flexible and efficient tool in modeling problems that cover up a wide range

of different disciplines. Recently, there has been an increasing attention in

the application of this type of models in finance and the actuarial sciences.

This thesis aims to offer one more step in this direction. Two issues, one

concerning the actuarial field and the other concerning the financial time

series modeling, will be discussed.

Since their first introduction in the fifties, semi-Markov processes have

had a rising attention of researchers as they offer a more general approach

than the simple Markov chain. In the actuarial field, Markov and semi-

Markov processes are very useful and many issues may be described by defin-

ing various states and estimating probabilities of transiting from one state to

the other. In insurance, for instance, if we consider a simple model of a whole-

life insurance, the states of a participant could be defined as state 1 = Alive

and state 2 = Dead where the probability of transiting from one state to

the other is the force of mortality.

1



CHAPTER 1. INTRODUCTION

A new branch based on Markov processes is also developing in the recent

literature of financial time series modeling. This branch can be divided in

two sub-branches that present two conceptually different approaches: one

consists in using the Markov approach to introduce an element of switching

between states of the market while in the other, a modified Markov process is

constructed in order to consider implicitly the main stylized facts of financial

time series.

This thesis, apart from this introduction, is organized in five more chap-

ters. In Chapter 2 a brief introduction of stochastic processes and in partic-

ular of Markov chains is offered in order to define, also, the mathematical

language and the basic definitions that will be used in the following chapters.

In Chapter 3 an overview of the literature on Markov processes applied

to the actuarial sciences and in modeling financial time series is reported. A

particular model, called the Indexed semi-Markov chain or ISMC is delin-

eated. This model, in particular, belongs to the second sub branch mentioned

above. The model is used to describe, through a Markov approach, the evo-

lution in time of intra-day price returns of quoted firms. Two other more

sophisticated versions of this model are also briefly introduced.

In Chapter 4, a first step in trying to model the salary evolution through

a Markov approach is made. In particular, a semi-Markov model with back-

ward recurrence time is proposed to describe salary lines of participants of

an Italian Private Pension Scheme of the First Pillar. The semi-Markovian

hypothesis is tested by applying a statistic test defined in the recent litera-

ture.

In Chapter 5 the ISMC is resumed and a new technique, based on the

change point approach is proposed for the discretization of the Index pro-

cess of the model. The theoretical framework is set and the methodology is

2



CHAPTER 1. INTRODUCTION

applied to high frequency price return dynamics of a quoted Italian firm.

In the last Chapter, the conclusions of the work are summarized.

3



Chapter 2

Markov Chains and

semi-Markov models

2.1 Introduction to probability

In studying real world phenomenon, very often, the quantities we are inter-

ested in do not present a sure predictability for the future. In building a

model to describe such phenomenon it is necessary to take into account of

the possibility of randomness by attributing a probabilistic nature. This is

why, such a model is referred to as a probability model.

2.1.1 Probability and conditional events

The most intuitive way to define probability is through its frequentist inter-

pretation. In this approach, the probability of a random event denotes the

relative frequency of occurrence of an experiment’s outcome, when repeating

the experiment a large number of times.

To better illustrate such concepts, let us suppose we are performing an

experiment whose outcome is not predictable in advance as for example, the

4
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roll of a fair dice. Although the outcome is not predictable, we know however

the possible outcomes of such experiment.

Definition 1 The set of all possible outcomes of an experiment is known as

the sample space and is usually denoted with Ω. Each element of Ω is called

an elementary event and is usually denoted with ω.

In the experiment of the rolling of a dice we have the state space Ω:

Ω = {1, 2, 3, 4, 5, 6}

made up of the six possible numbers of the face of the dice that are all the

elementary events of the experiment.

Any subset of the sample space Ω is defined as an event and is usually

denoted with E. In our example, a generic event might be defined as E =

{2, 4, 6} denoting the case that an even number appears after the roll of the

dice.

Considering any two events E and F of a sample space Ω, we can define:

• E ∪F , the union event, that consists of all outcomes that are either in

E and/or in F ;

• E ∩F or EF , the intersection event, that consists of all outcomes that

are both in E and F ;

• EC , the complement event of E, that consists of all outcomes in the

sample space that are not in E.

Let us now give a formal definition of probability for a given event E of Ω.

First, we need to define a σ-algebra A that satisfies the following properties:

• ∅ ∈ A - The empty set belongs to A

5
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• E1, E2, · · · ∈ A ⇒
⋃∞
i=1Bi ∈ A - A is closed under numerable union

• B ∈ A ⇒ EC = Ω|E ∈ A - A is closed under complementation

Definition 2 Given a state space Ω and the relative σ-algebra A , a measure

of probability P is a function that associates to each element of A a value in

the interval [0, 1]:

P : A → [0, 1]

and satisfies the following properties:

• 0 ≤ P(E) ≤ 1,∀E ∈ A ;

• P(Ω) = 1

• A1, A2, . . . ,∈ A , is a sequence of mutually exclusive events,⇒ P(
⋃∞
i=1 Ai) =∑∞

i=1 Ai and this property holds for all finite subsets of Ai.

Sometimes the probabilistic evaluation of an event E is subordinated to a

specific set of information available H. This is a concept known as conditional

event and is denoted by E|H. Let us suppose that H is an event for which

P(H) > 0. Then, the conditional probability of E given H, written P(E|H),

is calculated considering that we already know that the event H is true:

P(E|H) =
P(E ∩H)

P(H)

That can be written as:

P(E ∩H) = P(E|H)P(H)

or

P(E ∩H) = P(H|E)P(E)

6
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2.1.2 Random variables

In performing an experiment, often, what we are interested in is some func-

tion of the outcome and not the outcome itself. Consider, for example in

the tossing of two dices we are often interested in the sum of the dices and

not the actual outcome of each. This means that, for each possible realiza-

tion ω ∈ Ω, it is possible to associate a number X(ω) that represents the

numerical value of that particular realization. These quantities, are known

as random variable.

In order to give a formal definition of a random variable, it is necessary

to introduce the σ-algebra of Borel.

Definition 3 The Borel σ-algebra of R, usually denoted by A (R), is the

smallest σ-algebra that can be obtained from all opened intervals of the real

numbers through unions and intersections.

Definition 4 A real valued function X defined on Ω such that X : Ω → R

is said to be a random variable if for every Borel set B ∈ B(R), we have that

X−1(B) = (ω : X(ω) ∈ B) ∈ A

A random variable X, is called a discrete random variable if it can take a

finite number of real values x1, x2, . . . . In this case, it exists a function PX(·)

defined as

PX(x) = P(X = x)

This function is called the probability mass function and has the following

properties:

• 0 ≤ P(X = xi) ≤ 1;

•
∑∞

i=1 P(X = xi) = 1

7
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A particular and very important example of a discrete random variable,

is the indicator function of a set E ∈ A :

1E(ω) =

{
1 if ω ∈ E

0 if ω /∈ E

A random variable X is called an absolutely continuous random variable

if it can assume all the possible real values of an interval [a, b], which can

also be an open interval. In this case it exist a function fX , known as the

probability density function that has the following properties:

• f(x) ≥ 0, ∀x ∈ R;

•
∫
R f(x)dx = 1

• for each set B ∈ B(R)

P(X ∈ B) =

∫
B

f(x)dx

8
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2.2 Basic notions on stochastic processes

A stochastic process {Xt, t ∈ T} is a collection of random variables. That

is, for each t ∈ T , Xt is a random variable defined on a probability space.

The index t is often interpreted as time and as a consequence, Xt is usually

referred to as the state of the process at time t. Formally:

Definition 5 A stochastic process is a family of random variables X =

{Xt, t ∈ T} defined on the probability space (Ω,A ,P).

The set T is called the index set of the process. When T is a countable

set, the stochastic process is said to be a discrete-time process. If T is an

interval of the real line, the stochastic process is said to be a continuous-time

process.

The state space of a stochastic process is defined as the set of all possible

values that the random variables Xt can assume. Let us denote the state

space with S. It is possible that each random variable Xt has its own state

space St. In this case, S will be defined as S = ∪t∈TSt.

Given that, the random variables are defined as measured functions from

Ω to R, a stochastic process can be interpreted as a collection:

{Xt(ω), ω ∈ Ω, t ∈ T}

Fixed ω, if we vary t ∈ T , we obtain a trajectory of the stochastic process,

while if we fix t and vary ω ∈ Ω we have the random variable that describes

the process at time t.

2.2.1 The Random Walk

The first and most simple example of a stochastic process is the random walk.

An example of a simple random walk is the case of a particle that moves at

9
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unit intervals, a step forward or a step backward with movements that are

mutually independent.

Let us give a more formal definition of this process. For each unit of

time n = 1, 2, 3, . . . , let Xn be a dichotomous random variable that assumes

value equal to 1 with a probability p and a value of −1 with a probability of

q = 1− p :

Xn =

{
+1 p

−1 q

Let us also assume that Xn are independent. This means that, at each

instant of time n1, the particle can move a step forward or backward with

a probability of p and q = 1 − p, respectively. Moreover the movement of

the particle at each unit of time does not depend on the previous or future

moves.

From this random variable, it can be defined, for each unit of time n:

Sn = X1 +X2 + · · ·+Xn−1 +Xn

This is also a random variable that represents the position (or level) of

the particle after n steps. From the above definition, it can be easily seen

that:

Sn = X1 +X2 + · · ·+Xn−1 +Xn = Sn−1 +Xn, for n = 1, 2, 3, . . .

The last equation shows how the random walk might be considered as a

particular case of an homogeneous Markov Chain.

1For convention, we will use the index t ∈ R in the continuous case and the index n ∈ N

when the observed time is a countable set.

10
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2.3 Markov Chains and semi-Markov models

In this section we will present a general description of a particular class of

stochastic processes. Their main characteristic is a specific type of depen-

dence that will be presented shortly.

Let us consider a sequence of real random variables X0, X1, . . . , Xn, . . . ,

that we indicate in a more compacted form as {Xn, n ≥ 0}. Each Xn can

assume values in a finite state space that we will denote with S.

Definition 6 (Markov Property) A stochastic process {Xn, n ≥ 0}, where

Xn is defined in a finite set S, satisfies the Markov property when:

P(Xk+n = j|(Xn = in∩Xn−1 = in−1∩· · ·∩X0 = i0)) = P(Xn+k = j|Xn = in)

for each n and k and for each state j, i0, . . . , in−1, in ∈ S

The Markov property states that the future state of the process Xn+k

depends solely on the current value Xn and not on the previous values

X0, X1, . . . , Xn−1. This is commonly known as a “loss of memory” of the

process.

Definition 7 (Markov Chain) A discrete stochastic process Xn, n ≥ 0, de-

fined in a finite state space S, is a Markov Chain if it satisfies the Markov

property such that, for each n ≥ 0 and for i0, i1, . . . , ın ∈ S :

P(Xn+k = j|Xn = in, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+k|Xn = in)

= p
(k)
ij (n) (2.1)

where p
(k)
ij (n) is called the transition probability and it denotes the probability

of the process in state i at time n to go to the state j at time n+ k.

11
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A finite-state Markov chain is a Markov chain in which S is finite or

countable. In Eq. 2.1, if we consider k = 1, we have the one-step transi-

tion probability that is usually denoted with pij(n) instead of p
(1)
ij (n). If we

consider the transition probability to be independent of the time n such that:

pij(n) = pij

we have the time homogeneous Markov chain. This concept can be easily

extended to the case of k ≥ 1. In fact, if a Markov chain is time homogeneous,

then the probability p
(k)
ij (n), ∀k > 1, does not depend on time n.

If an homogeneous Markov chain has a finite number of states, the one

step probability transition can be represented through a square stochastic

matrix.

Definition 8 Let {Xn, n ≥ 0} be a Markov chain with a finite state space.

The transition probability matrix, denoted in general with P , is a stochastic

matrix whose generic element is given by:

Pij = P(Xn = j|Xn−1 ∈ [0, 1]), i, j ∈ S.

The transition matrix should satisfy the following properties:

• Pij ≥ 0 for i, j ∈ S

•
∑

j∈S Pij = 1 for i, j ∈ S

The first property states that each element of the matrix is non negative

while the second states that the sum of all the elements of each row is equal

to 1. This condition expresses the fact that in a Markov chain, at each unit

time n, there is necessary a transition to one of the states.

12
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2.3.1 Transition probability after n steps

In the study of Markov chains, we are often interested in knowing the proba-

bility of passing from one state to another in a certain lapse of time i.e. after

a certain number of steps k:

P
(k)
ij = P(Xk = j|X0 = i) k = 2, 3, . . . (2.2)

The process can go from state i to state j by crossing different interme-

diate states. In this case it is useful the following equation:

Theorem 1 (Chapman-Kolmogorov Equation) Let {Xn, n ≥ 0} be a Markov

chain. For each pair of integers n and m and for each pair of states it results

that:

P
(n+m)
ij =

∑
r∈S

P
(n)
ir P

(m)
rj (2.3)

The Chapman-Kolmogorov equation, expressed in a matricial form, can

be useful to show that in a time homogeneous Markov chain with a finite

number of states, the transition matrix after n steps is equal to the n-th

power of the transition matrix.

Theorem 2 Let {Xn, n ≥ 0} be a time homogeneous Markov chain. It re-

sults that:

P (k) = P k (2.4)

From the Chapman-Kolmogorov equation, the following important prop-

erties can be derived:

• P (n+m)
ij ≥ P

(n)
ik P

(m)
kj ∀i, j, k ∈ S

• P (n∗m)
ij ≥

[
P

(n)
ij

]m ∀n,m ≥ 1 ∀i, j, k ∈ S

13
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It is possible to calculate also the distribution of the process at a certain

time unit n ≥ 0. Let

π0(i) ≡ P(X0 = i), i ∈ S

[∑
j∈S

π0(j) = 1

]
be the initial state probability vector of the chain. We can define the proba-

bility at a generic time n the same way:

πn(i) ≡ P(Xn = i), i ∈ S

[∑
j∈S

π(j) = 1

]
The probability distribution at time 0 can be used to obtain the transition

probability after n steps through the following theorem:

Theorem 3 Given an homogeneous Markov chain with a transition proba-

bility matrix P and initial distribution π0, it results that:

πn = π0P
n

and, in general:

πn = πkP
n−k

Often it is useful to analyze the asymptotic behavior of the process, i.e.

P
(n)
ij , when n → ∞. Let us first define an invariant 2 distribution for a

Markov chain.

Definition 9 A distribution π is an invariant distribution of a Markov chain

if:

π = πP

This means that, given an initial distribution π, after one step (or after

n arbitrary steps) the marginal probability distribution is always π:

πP n = πPP n−1 = πP n−1 = · · · = πP = π (2.5)

2The terms equilibrium, stationary or steady state are sometimes used to mean the

same thing

14
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Chapter 3

Literature review on Markov

processes in finance and

insurance

3.1 Markov processes in the actuarial field

Markov chains (MC) and semi-Markov processes (SMP) have been used in a

vast variety of disciplines such as physics, engineering, environmental sciences

etc. Semi-Markov processes have been introduced in the fifties independently

by Levy (1954), Takács (1954) and Smith (1953) and can be considered as

a generalization of a Markov Process in which the waiting time distribution

function can be of any type. This characteristic makes the SMP more flexible

in addressing different problems. Recently, there has been an increasing

attention in the application of Markov processes in finance and actuarial

sciences.

Probably, the first works on semi-Markov models applied to the actuarial

sciences are those of Janssen (1966), in which an Homogeneous semi-Markov

16
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model (HSMP) is used, and Hoem (1969). In Iosifescu Manu (1972), the Non

Homogeneous semi-Markov models (NHSMP) are defined and studied for the

first time. In Hoem (1972), the author describes a number of demographic

and actuarial examples which may be modeled through the time Non Homo-

geneous semi-Markov model. Further, in Janssen and De Dominicis (1984)

the basic definitions and properties of non homogeneous semi-Markov pro-

cesses with a finite number of states are given. The model is applied to

the study of a social pension problem and, in particular, to the case of the

calculation of premiums for insurance against professional diseases.

Other applications of semi-Markov in insurance problems are given in

Sahin and Balcer (1979) and in Balcer and Sahin (1986). In the paper of

Balcer and Sahin (1983), the author develops a stochastic theory to describe a

pension scheme dynamics based on a semi-Markov reward process(HSMRP).

Under a number of simplifying assumptions, the employment patterns are

described by a two-state semi-Markov process identifying the individual as

having (state 1) or not having (state 2) a coverage by a pension plan. The

reward function is then constructed in order to convert pensionable service

to pension benefits and pension costs. A number of basic functions are con-

structed and analyzed in terms of the impact on lifetime pension benefits to

plan types, vesting rules, coverage rate and portability.

In Janssen and Manca (1997), it is presented for the first time the General-

ized Discrete Time Non Homogeneous semi-Markov Reward (GDTNHSMRP)

model for pension funds in which, by introducing two time variable, it was

possible to consider simultaneously the age and seniority. The authors,

through this stochastic time model, take into account economic, financial and

demographic evolution factors. The choice of discrete time is justified by the

fact that the management of a pension fund is mainly on a yearly basis, the

17
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non homogeneity is observed on the age and seniority of the member since all

the other parameters are age dependent and lastly, the semi-Markov model

is chosen because transition states, transition times, costs and contributions

have to be modeled simultaneously. The non-homogeneous reward processes

were defined, with an application in health insurance, in De Dominicis and

Manca (1986).

These first works have been further developed in Janssen and Manca

(2002, 2006) where it is shown how to apply continuous time semi-Markov

reward processes in multiple life insurance. In Stenberg et al. (2006b), the

previous results are further improved by developing a method for the calcu-

lation of not only the expectations but also of higher order moments for the

accumulated rewards. The method is applied to a database of persons with

silicosis problems. Six states are defined according to the disability degree

and transition between states are supposed to occur after a visit to the doc-

tor. Also, a technique for checking the ”semi-Markov”, i.e. that the sojourn

times are not geometrically distributed, is introduced.

NHSMP transition probabilities can be generalized by using a backward

environment, i.e. the transition probabilities are also dependent on the time

of entrance into a given state. An application of these models in insurance

can be found in Stenberg et al. (2006a, 2007). In D’Amico et al. (2009a) it is

presented for the first time a general formula of a discrete time NHSMP with

initial and final backward stochastic processes. The model is applied to the

study of a sample of insured population with a policy of LTC (Long-Term

Care). A complete study of continuous time homogeneous backward semi-

Markov process was reported in Howard (1971) and successively in Limnios

and Oprisan (2012). Further, in D’amico et al. (2013) it is presented a reward

semi-Markov model with an initial and final backward recurrence applied

18



CHAPTER 3. LITERATURE REVIEW ON MARKOV PROCESSES IN
FINANCE AND INSURANCE

to the study of disability. The reward structure permits to determine the

equations for the prospective and retrospective mathematical reserves.
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3.2 Markov models in finance

The use of Markov processes in modeling financial time series can be sub

divided in two main branches. The first one uses a switching between states

technique while the second one is based on models that endogenously consider

stylized facts of time series.

Since the first paper of Hamilton (1989) suggested a Markov switching

technique as a method for modeling non-stationary time series, this approach

has successively been widely used in the study of stocks and foreign exchange

markets analysis. The first to employ a Markov-Switching autoregressive

process (MS-AR) have been Turner et al. (1989) and Chu et al. (1996). In

the first paper, a model of the stock market in which the excess return is

drawn from a mixture of two normal densities is introduced. The market is

assumed to switch between two states, which in turn determine which of the

two normal distributions is used to generate the excess return for the specific

period. The state is assumed to be generated by a first-order Markov process.

In the second paper, the linkage between the stock market volatility and

regime shifts in the stock market returns is analyzed. A Markov-Switching

model is applied to the time series of monthly stock market returns and

variation in volatility in different return regimes is examined. The authors

find that the stock returns are best characterized by a model that contains

six regimes. They find a non linear and asymmetric relationship between

returns and volatility, i.e. the volatility is higher in negative return regimes

than in positive return regimes.

This approach has been further developed in Schaller and Norden (1997).

The authors find a strong evidence of switching behavior in stock market re-

turns for a variety of different specifications (more precisely they considered

switching in means, in variance and in both mean and variance). By apply-
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ing new test to the results of Turner et al. (1989), they show that the new

hypothesis of no switching can be rejected in the period since World War

II. In Nishiyama (1998), a Markov-switching model is applied to examine

discrete shifts in regime in equity markets from 1976 to 1991 in five countries

(Germany, Japan, USA, United Kingdom and Canada). The author con-

cludes that stock returns are time varying, that the conditional variance is

state-dependent and that markets vary widely in frequency of regime shifts

and persistence.

Other application can be found in Ismail and Isa (2008), which uses a

two regime MS-AR model to capture regime-switching behavior in both the

mean and the variance of the Malaysian equity market. They conclude that

the MS-AR model is able to capture the timing of regime shifts occurring

during the period 1974–2003 and generated by the 1974 oil shock, 1987 stock

market crash and the Asian financial crisis of 1997. Wang and Theobald

(2008) implement an MS-AR model to investigate the regime switching be-

havior of six Asian emerging stock markets over the period 1970–2004. They

conclude that there are two or three volatility states for the selected stock

markets. Moreover, they find that switching between regimes is associated

with international, as well as country specific, events that lead to fluctuating

levels of confidence within these markets. Using a similar approach, Moore

and Wang (2007) study stock returns for new EU member states of Czech

Republic, Hungary, Poland, Slovenia and Slovakia. Evidence is found that

the entry to EU appears to be associated with a reduction of volatility in

unstable emerging markets.

Other authors proposed more advanced techniques. In Cai (1994), a

Markov-ARCH model which incorporates the features of both Markov switch-

ing regime model and ARCH model is developed. The model is used to ex-
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amine the issue of volatility persistence in the monthly excess returns of the

three-month T-bill using the period 1964-1991. This model has been used

also in Hamilton and Susmel (1994), in Edwards and Susmel (2003) and in

Brunetti et al. (2008). In the latter, exchange rate turmoil are analyzed by

using a Markov-switching GARCH model. The authors distinguish between

two different regimes: a “calm” regime characterized by low exchange rate

changes and low volatility, and a “turbulent” regime characterized by high

exchange rate devaluation and high volatility.

In Kanas (2005) a Markov Switching Vector Autoregressive model (MS-

VAR) is used to explore whether there are linkages in volatility regimes be-

tween the Mexican currency market and six emerging equity markets, namely,

Mexico, Brasil, Argentina, Thailand, Hong Kong, and Hungary. The au-

thors conclude that the MS-VAR-based correlation coefficients between the

Mexican currency market and each equity market do not result significantly

higher during the high-volatility regime, thereby indicating that the volatility

regime dependence can be interpreted as evidence of interdependence rather

than contagion. Kanas and Kouretas (2007) examine the short-run and long-

run relationship between the parallel and official markets for US dollars in

Greece using a bivariate Markov Switching Vector Error Correction Model

(MS-VECM).

In Henry (2009) the impact of volatility in the London interbank market

on equity returns with data observed over the period January 1980 - August

2007. The model used for equity returns is a two regime Markov-Switching

Exponential GARCH model in which one regime is consistent with a high-

mean, low variance state and the other regime appears to be a low-mean,

high variance state. In the first case, which appears to be the dominant

one, volatility responds persistently but symmetrically to news while in the
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second one the conditional variance of returns responds asymmetrically and

without persistence to news.

In more recent studies, Markov-switching regimes methodology has been

used in Mandilaras and Bird (2010) to model movements and contagion in the

foreign exchange markets of the European Monetary System. The authors

find that most foreign exchange markets correlations increase during the crisis

state. In order to detect contagion in the EMS, they considered Denmark and

Italy as the source countries (Denmark for rejecting the Maastricht Treaty

and Italy because of accumulated competitiveness problems). They found

that the Denmark indeed exported its volatility to Ireland and Belgium and

that contagion effects appear to exist between Italy and Denmark as well. In

Walid et al. (2011) a Markov-switching EGARCH model is used to investigate

the dynamic linkage between stock price volatility and exchange rate changes

for four emerging countries over the period 1994-2009 by using weekly data.

The authors conclude that there is a strong evidence that the relationship

between stock and foreign exchange markets is regime dependent.

As mentioned, the models described so far belong to the first sub branch

of a more general approach based on Markov processes for financial series. In

the following paragraphs models that belong to the second sub-branch will

be briefly presented while in the next section a particular model of this type

will be described in details.

The first application of semi-Markov processes in the theory of Option

pricing can be found in Janssen et al. (1997). The authors show a new

model as an alternative of the classical CRR (Cox-Ross-Rubinstein) by us-

ing a discrete time Markov approach and a finite number of possible values

of the embedded asset. The case of an European and an American option

are considered. Also, the authors consider both the case in which the un-
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derlying asset follows an homogeneous Markov chain and an homogeneous

semi-Markov process, the latter considered both in the continuous and in

the discrete time. In Kijima (2013), an extension of the Binomial Model

to include the possibility that the transition probabilities are state depen-

dent is considered. In D’Amico et al. (2009b) it is assumed that the log

returns of the underlying asset follows a discrete time and finite state space

HSMP. The values of European and American options, as well as their bare

risks, are determined. The prices and risks obtained depend explicitly on the

waiting-time distributions of the asset and they are duration dependent.

The possibility of using the semi-Markov approach for the study of intra-

day asset price dynamics has been hypothesized in D’Amico and Petroni

(2012a). The authors examined the possibility of using a semi-Markov model

for the study of high frequency financial data. In particular, a time homo-

geneous semi-Markov process was used to model the dynamics of intra-day

price returns while a Markov-chain was used to model the overnight returns.

The authors showed that these models are able to reproduce some stylized

empirical facts such as for example the absence of autocorrelations in returns

and the gain/loss asymmetry. In the paper, the authors also showed that the

autocorrelation in the square of returns was higher compared to the Markov

model but it was still too small compared to the empirical one.

In D’Amico and Petroni (2011), a new model, called the ”Indexed semi-

Markov Model” or ISMC, is proposed for modeling asset price returns. More

precisely, the intra-day returns (up to one minute frequency) are described

by a discrete time homogeneous semi-Markov process where a memory index

is introduced in order to take account of market volatility. The authors

hypothesize that the kernel of the semi-Markov process depends on the level

of volatility in the market. The index process was defined as a moving average
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of the reward accumulation process linked to the Markov Renewal Process

of the price returns. The authors concluded that the semi-Markov kernel is

influenced by the past volatility and that the model was able to reproduce

quite well the behavior of market returns: uncorrelated returns and long

correlation of the square of returns.

Since that first work, the ISMC model has been improved further. In

D’Amico and Petroni (2012b) the Weighted-Index semi-Markov model was

introduced where the Index process was calculated as an exponentially weighted

index while in D’Amico and Petroni (2014) a bivariate model where the in-

dexed semi-Markov process is used to reproduce simultaneously two stocks

is applied.

In the following Section, the main finding of the latter works will be

presented and the ISMC model will be described in details.

25



CHAPTER 3. LITERATURE REVIEW ON MARKOV PROCESSES IN
FINANCE AND INSURANCE

3.3 The model for price returns

In the following section we will briefly summarize the main characteristics of

the Markov model proposed in D’Amico and Petroni (2012a) for the modeling

of price returns. The authors hypothesize that the process of asset price

returns, and in particular intra-day price returns, can be described through

the semi-Markov approach while the overnight returns can be described by a

discrete time homogeneous Markov chain. This different choice is supported

by the fact that the intra-day returns are determined while the market is

opened and prices can be influenced almost immediately by a possible new

flow of information while for the later (the overnight returns) the accumulated

flow of information during the closing time of the market is reflected in the

opening price of the successive day.

If S(t) is assumed to describe the process of asset prices of quoted firms

then let Z(t) be the intra-day return at time t while we let X(t) be the

overnight return. The time variable t ∈ {0, 1, . . . , nd} where n is the number

of unit periods during the day (i.e. minutes) and d is the number of days.

Then, the process of price returns can be defined as follows:

W (t) =

 Z(t) if (k − 1)n < t < nk

X(t) if t = nk
(3.1)

where k = 1, 2, ..., d

and Z(t) = S(t+1)−S(t)
S(t)

is calculated over a time interval of length 1,

also, X(t) = S(t+1)−S(t)
S(t)

for t = nk, k = 1, 2, ..., d.

As mentioned above, we let Z(t) be a discrete time semi-Markov model

defined in the finite state space

E = {−zmin∆, . . . ,−2∆,−∆, 0,∆, 2∆, . . . , zmax∆}

and kernel b = (bij(γ)), ∀i, j ∈ E and γ ∈ IN.
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The kernel has the following probabilistic interpretation:

P [Zn+1 = z, Tn+1 − Tn ≤ γ|σ(Zh, Th), h ≤ γ, Zn = i] =

P [Zn+1 = z, Tn+1 − Tn ≤ γ|Zn = i] = bij(γ)
(3.2)

and it results pij = lim
γ→∞

bij(γ); i, j ∈ E, γ ∈ IN where P = (pij) is the

transition probability matrix of the embedded Markov chain Z(n).

On the other hand, we consider X(t) as a discrete time homogeneous

Markov chain with the same state space and transition probability matrix

T = (ti,j)i,j∈E.

Let Mt(τ) be the accumulation factor from t to t+ τ and it is given by

Mt(τ) =
τ−1∏
k=0

(1 +W (t+ k)) . (3.3)

which takes value in the set

SPτ = {x ∈ IR : x =
τ−1∏
k=0

(1 + i(t+ k)) , i(t+ k) ∈ E}.

The relation between Mt(τ) and the price S(t) is given by the following

equation:

Mt(τ) =
S(t+ τ)

S(t)
. (3.4)

In order to compare results obtained through the Markov modeling and

real data two characteristics have been considered: the first passage time

distribution (ftp) and the autocorrelation function.

We recall that the first passage time for an investment made at time t at

price S(t), is defined as the time interval τ = t′− t, t′ > t, where the relation

Mt(τ) ≥ ρ is fulfilled for the first time. We will denote the first passage time

as λρ(t). Then

λρ(t) = min{τ ≥ 0;Mt(τ) ≥ ρ}.
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Since it is assumed that the semi-Markov process Z(t) is time homoge-

neous, the first passage time can be denoted with λρ(t) = λρ. For each time

t, let

Ri(v, t||ρ) = P (λρ > t|(i, v))

where i ∈ E denotes the state of the return and v ∈ IN the time length of

being in this state, both of them considered at time zero.

Let us define by Ri,j(v, t||w, ρ), ∀w ∈ SPt, ∀ρ ∈ IR, the probability

P (λρ > t,W (t) = j,M0(t+ 1) = w|(i, v)),

obviously

Ri(v, t||ρ) =
∑
j∈E

∑
x∈SPt,x<ρ

Ri,j(v, t||x, ρ). (3.5)

The following equations for finding the first passage time distribution

have been derived 1. First, let us define the distribution function

Hi(t) = P[Tn+1 − Tn ≤ t|Zn = i] =
∑
j∈E

bij(t) (3.6)

which represents the unconditional waiting time distribution in state i.

Four different cases are identified. In the first case, the first passage time

distribution Ri,j(v, T ||w, ρ) for time t belonging to the first day is determined

as:

Ri,j(v, t||w, ρ) = 1{(1+i∆)t<ρ}δij

(
1−Hi(t+ v)

1−Hi(v)

)
+

∑
a∈E

t∑
m=1

bia(v +m)

1−Hi(v)
1{(1+i∆)m<ρ}·

Ra,j

(
0, t−m|| w

(1 + i∆)m
,

ρ

(1 + i∆)m

)
.

(3.7)

In the second case, the opening of the second day is considered and thus

we have t = n. In this situation we should take care for the transition at
1For a more detailed description and for the proofs of the equations the reader can refer

to D’Amico and Petroni (2012a)
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time t = n which is due to the Markov chain X(t). To obtain a formula for

the first passage time distribution until time n it is sufficient to consider all

possible states for the return and for the accumulation factor at time n − 1

and to use equation (3.7).

Ri,j(v, n||w, ρ) =
∑

w∈SP ρn−1

∑
a∈E

ta,j1{(1+j∆)=w
w
}Ri,a(v, n− 1||w, ρ) (3.8)

By similar computations it is possible to have the first passage time distri-

bution for time t = nd. The relation is the following:

Ri,j(v, nd||w, ρ) =
∑
a∈E

ρ∑
w∈SP(n−1)d

Ri,a(v, (n− 1)d||w, ρ)Ra,j(0, n||
w

w
,
ρ

w
). (3.9)

Formula (3.9) is obtained by conditioning on all possible states of the return

process W (t) and on all possible values of the accumulation factor M0(t) at

time t = (n− 1)d (the closing of day n− 1).

The last case, when (n− 1)d < t < nd, can be obtained by using jointly the

formulas (3.7) and (3.9). The resulting relation is the following:

Ri,j(v, t||w, ρ) =∑
a∈E

ρ∑
w∈SP(n−1)d

Ri,a(v, (n−1)d||w, ρ)Ra,j(0, t−(n−1)d||w
w
,
ρ

w
).

(3.10)

Formula (3.10) is obtained by conditioning on the states of the return process

and on the values of the accumulation factor process at time t = (n − 1)d

and then by using formula (3.7).

Formulae (3.7), (3.8), (3.9) and (3.10) allow us to compute the probability

Ri,j(v, t||w, ρ) for all times t. It should be noted that if ρ is not too big, it

is highly probable that the accumulation factor process exceeds ρ within the

day. In this case probabilities (3.8), (3.9) and (3.10) will be equal to zero.

Consequently, the first passage time distribution will have non zero values
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only for 1 ≤ t ≤ n − 1. In this case (3.7) satisfies the following simpler

equation:

Ri(v, t||ρ) = 1{(1+i∆)t<ρ}

(
1−Hi(t+ v)

1−Hi(v)

)
+

∑
a∈E

t∑
m=1

bia(v +m)

1−Hi(v)
1{(1+i∆)m<ρ}Ra(0, t−m||

ρ

(1 + i∆)m
).

(3.11)

which is obtained from (3.7) through relation (3.5).

3.3.1 The Indexed semi-Markov model

In D’Amico and Petroni (2011), the authors propose a new model called In-

dexed semi-Markov model (or ISMC) as a generalization of the semi-Markov

process that is able to represent higher-order dependencies between succes-

sive observations of a state variable. Models based on Markov processes that

have the characteristic of longer memory have previously been defined in

Limnios and Oprisan (2003) where high-order semi-Markov processes have

been used. ISMC on the other hand is presented as a more parsimonious

model. This new model should better reproduce the long-term dependence

in the square of returns of financial time series. It seems useful to describe

in detail the main characteristics of this model.

Let (Ω,F, P ) be a probability space and let us consider the stochastic

process:

J−(m+1), J−m, J−(m−1), ..., J−1, J0, J1, ...

with a finite state space E = {1, 2, ..., S}. Let us also consider:

T−(m+1), T−m, T−(m−1), ..., T−1, T0, T1, ...

Let Jn describe the price return process at the n-th transition and let

Tn describe the time in which the n-th transition of the price return process

occurs.
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Also we define another stochastic process:

U−(m+1), U−m, U−(m−1), ..., U−1, U0, U1, ...

with values in IR. The random variable Un describes the value of the index

process at the n-th transition. Um
n is defined as follows:

Um
n =

1

Tn − Tn−(m+1)

m∑
k=0

∫ Tn−k

Tn−1−k

f(Jn−1−k, s)ds, (3.12)

where f : E×IR→ IR is a Borel measurable bounded function and Um
−(m+1), ..., U

m
0

are known and non-random.

The process Um
n can be interpreted as a moving average of the accumu-

lated reward process with the function f as a measure of the rate of reward

per unit time. The function f depends on the state of the system Jn−1−k and

on the time s.

To better explain the construction of the index process, let us consider

the simplest case where m = 1 and f(Jn, s) = (Jn)2, i.e. the function f is

equal to the square of returns. We have that:

U1
n =

1

Tn − Tn−2

(
(Jn−1)2 · (Tn − Tn−1) + (Jn−2)2 · (Tn−1 − Tn−2)

)
, (3.13)

which expresses a moving average of order m+ 1 = 2 executed on the series

of the square of returns with weights given by the fractions

Tn − Tn−1

Tn − Tn−2

;
Tn−1 − Tn−2

Tn − Tn−2

. (3.14)

To construct an indexed model, a dependence structure between the vari-

ables has to be specified:

P [Jn+1 = j, Tn+1 − Tn ≤ t|σ(Jh, Th, U
m
h ), h = −m, ..., 0, ..., n, Jn = i, Um

n = v]

= P [Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i, Um
n = v] := Qm

ij (v; t),

(3.15)
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where σ(Jh, Th, U
m
h ), h ≤ n is the natural filtration of the three-variate pro-

cess.

The matrix of functions Qm(v; t) = (Qm
ij (v; t))i,j∈E is called the indexed

semi-Markov kernel.

The joint process (Jn, Tn), which is embedded in the indexed semi-Markov

kernel, depends on the moving average process Um
n which acts as a stochastic

index. Moreover, the index process Um
n depends on (Jn, Tn) through the

functional relationship (3.12).

Given the three-dimensional process {Jn, Tn, Um
n } and the indexed semi-

Markov kernel Qm(v; t), let us define:

N(t) = sup{n ∈ N : Tn ≤ t};

Z(t) = JN(t);

Um(t) =
1

t− T(N(t)−θ)−m

m∑
k=0

∫ t∧T(N(t)−θ)+1−k

T(N(t)−θ)−k

f(J(N(t)−θ)−k, s)ds,

(3.16)

where TN(t) ≤ t < TN(t)+1 and θ = 1{t=TN(t)}.

The stochastic processes defined in (3.16) represents, respectively:

• The number of transitions up to time t

• The state of the system (price return) at time t

• The value of the index process (moving average of a function of price

return) up to t

The process Z(t) defined above is referred to as an indexed semi-Markov

process. The process Um(t) is a generalization of the process Um
n where time

t can be a transition or a waiting time.

It is simple to realize that ∀m, if t = Tn we have that Um(t) = Um
n . Let,

then

pmij (v) := P [Jn+1 = j|Jn = i, Um
n = v].
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be the transition probabilities of the embedded indexed Markov chain. It

denotes the probability that the next transition is in state j given that at

current time the process entered in state i and the index process is v. It is

simple to realize that

pmij (v) = lim
t→∞

Qm
ij (v; t). (3.17)

Let Hm
i (v; ·) be the sojourn time cumulative distribution in state i ∈ E:

Hm
i (v; t) := P [Tn+1 − Tn ≤ t|Jn = i, Um

n = v] =
∑
j∈E

Qm
ij (v; t). (3.18)

It expresses the probability to make a transition from state i with sojourn

time less or equal to t given the indexed process is v. The conditional waiting

time distribution function G expresses the following probability:

Gm
ij (v; t) := P [Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j, Um

n = v]. (3.19)

It is simple to establish that

Gm
ij (v; t) =


Qmij (v;t)

pmij (v)
if pmij (v) 6= 0

1 if pmij (v) = 0.
(3.20)

To properly assess the probabilistic behavior of the system, we introduce

the transition probability function:

φm(i−(m+1),i−m,...i0;j)(t−(m+1), t−m, ..., t0; t, V ) :=

P [Z(t) = j, Um(t) ≤ V |J0 = i0, ..., J−(m+1) = i−(m+1), T0 = t0, ..., T−(m+1) = t−(m+1)].

(3.21)

In D’Amico and Petroni (2011) the authors show that the transition prob-

ability function of the indexed semi-Markov process satisfies a renewal-type

equation2.

2For a more detailed description of the propositions and proofs refer to the cited paper.
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3.3.2 The WISMC and the Bivariate ISMC

The model described in the above paragraph has been further improved

in two successive papers, D’Amico and Petroni (2012b) and D’Amico and

Petroni (2014). In this section, the main characteristics and the most rele-

vant improvements achieved in these two works will be presented.

Firstly, let us describe the Weighted Indexed semi-Markov Chain (or

WISMC). Let us recall that the main objective of these models is to repro-

duce the long-term dependence in the square of returns in the most efficient

way. This, as mentioned above, is an important characteristic of financial

time series.

Let us assume that the value of the financial asset under study is described

by the time varying asset price S(t). The return at time t calculated over a

time interval of length 1 is defined as S(t+1)−S(t)
S(t)

. The return process changes

value in time, then we denote by {Jn}n∈IN the stochastic process with finite

state space E = {1, 2, ..., s} and we assume that it describes the value of the

return process at the n-th transition.

Let us consider the stochastic process {Tn}n∈IN with values in IN that

describes the time in which the n-th transition of the price return process

occurs.

Let us consider also the stochastic process {Uλ
n}n∈IN with values in IR. As

defined in the above paragraph, the random variable Uλ
n describes the value

of the index process at the n-th transition.

We recall that, in case of the ISMC, the process {Un} was defined as a

moving average of the reward process. Here, motivated by the application to

financial returns, we consider a more flexible index process defined as follows:
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Uλ
n =

n−1∑
k=0

Tn−k−1∑
a=Tn−1−k

f(Jn−1−k, a, λ), (3.22)

where f : E × IN× IR→ IR is a Borel measurable bounded function and Uλ
0

is known and non-random.

The process Uλ
n can be interpreted as an accumulated reward process with

the function f as a measure of the weighted rate of reward per unit time.

The function f depends on the current time a, on the state Jn−1−k visited at

current time and on the parameter λ that represents the weight.

In next section a specific functional form of f will be selected in order to

produce a real data application.

To construct the WISMC model, we have to specify a dependence struc-

ture between the variables. Toward this end we adopt the following assump-

tion:

P[Jn+1 = j, Tn+1 − Tn ≤ t|σ(Jh, Th, U
λ
h ), h = 0, ..., n, Jn = i, Uλ

n = v]

= P[Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i, Uλ
n = v] := Qλ

ij(v; t),

(3.23)

where σ(Jh, Th, U
λ
h ), h ≤ n is the natural filtration of the three-variate pro-

cess.

The matrix of functions Qλ(v; t) = (Qλ
ij(v; t))i,j∈E is called weighted-indexed

semi-Markov kernel.

The joint process (Jn, Tn) depends on the process Uλ
n , the latter acts

as a stochastic index. Moreover, the index process Uλ
n depends on (Jn, Tn)

through the functional relationship (3.12).

Observe that if

P[Jn+1 = j, Tn+1−Tn ≤ t|Jn = i, Uλ
n = v] = P[Jn+1 = j, Tn+1−Tn ≤ t|Jn = i]

for all values v ∈ IR of the index process, then the weigthed indexed semi-
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Markov kernel degenerates in an ordinary semi-Markov kernel and the WISMC

model becomes equivalent to classical semi-Markov chain model.

The triple of processes {Jn, Tn, Uλ
n} describes the behavior of the system

only in correspondence of the transition times Tn. To describe the behavior

of our model at whatever time t which can be a transition time or a waiting

time, we need to define additional stochastic processes.

Given the three-dimensional process {Jn, Tn, Uλ
n} and the weighted in-

dexed semi-Markov kernel Qλ(v; t), we define by

N(t) = sup{n ∈ N : Tn ≤ t};

Z(t) = JN(t);

Uλ(t) =

N(t)−1+θ∑
k=0

(t∧TN(t)+θ−k)−1∑
a=TN(t)+θ−1−k

f(JN(t)+θ−1−k, a, λ),

(3.24)

where θ = 1{t>TN(t)}.

As seen in the case of ISMC, the stochastic processes defined in (3.24)

represent the number of transitions up to time t, the state of the system

(price return) at time t and the value of the index process (weighted moving

average of function of price return) up to t, respectively. We refer to Z(t) as

a weighted indexed semi-Markov process.

The process Uλ(t) is a generalization of the process Uλ
n where time t can

be a transition or a waiting time. It is simple to realize that if t = Tn we

have that Uλ(t) = Uλ
n .

Let

pλij(v) := P[Jn+1 = j|Jn = i, Uλ
n = v],

be the transition probabilities of the embedded indexed Markov chain. It

denotes the probability that the next transition is in state j given that at

current time the process entered in state i and the index process is equal to
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v. It is simple to realize that

pλij(v) = lim
t→∞

Qλ
ij(v; t). (3.25)

Let Hλ
i (v; ·) be the sojourn time cumulative distribution in state i ∈ E:

Hλ
i (v; t) := P[Tn+1 − Tn ≤ t|Jn = i, Uλ

n = v] =
∑
j∈E

Qλ
ij(v; t). (3.26)

It expresses the probability to make a transition from state i with sojourn

time less or equal to t given the indexed process is v.

The conditional waiting time distribution function G expresses the fol-

lowing probability:

Gλ
ij(v; t) := P[Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j, Uλ

n = v]. (3.27)

It is simple to establish that

Gλ
ij(v; t) =


Qλij(v;t)

pλij(v)
if pλij(v) 6= 0

1 if pλij(v) = 0.
(3.28)

It is possible to derive for the WISMC model the same results in terms

of an explicit renewal type equation such as the ones submitted to describe

the probabilistic behavior of ISMC.

In D’Amico and Petroni (2014), the WISMC model is extended to the

bivariate case. The results obtained can easily be extended to the case of a

multivariate setting. In the bivariate model, two stocks are considered and it

is assumed that each of the two stocks is modeled via a WISMC model. Let

us denote as usual J in, T
i
n, U

λi
n , and Zi(n) the price return, the time, the value

of the index and the state of the return process, respectively, all considered

at the n-th transition. Also, let i denote the stock considered and in the case

of the bivariate we have i = 1, 2.
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In order to simplify the definition of the bivariate WISMC, the backward

recurrence time process for the stock i is defined, for each time t ∈ N by

Bi(t) = t − TN i(t), where N i(t) is the counting process associated to the

stock i. This way, the bivariate model can be simplified and be defined in

terms of (Zi(t), Bi(t), Uλi(t)).

In defining the model, the three following assumptions have to be made.

Let us denote with Z(n) = (Z1(n), Z2(n)), B(n) = (B1(n), B2(n)), Uλ(n) =

(Uλ1(n), Uλ2(n)), j = (j1, j2), i = (i1, i2), d = (d1, d2) and u = (u1, u2).

Assumption 1:

P[Z(n+ 1) = j,B(n+ 1) = d|σ(Z(h),B(h)), 0 ≤ h ≤ n,Z(n) = i,B(n) = u]

= P[Z(n+ 1) = j,B(n+ 1) = d|Z(n) = i,B(n) = u,Uλ(n) = v]

(3.29)

Assumption 1 basically states that knowing (Z(n) = i,B(n) = u,Uλ(n) =

v) is sufficient to give the conditional distribution of (Z(n + 1),B(n + 1))

independently of the past values of the variables.

It results that:

P[Z(n+ 1) = j,B(n+ 1) = d|(Z(n) = i,B(n) = u),Uλ(n) = v]

= P[Z1(n+ 1) =j1, B
1(n+ 1) = d1|(Z2(n+ 1) = j2, B

2(n+ 1) = d2,

Z(n) = i,B(n) = u,Uλ(n) = v)]

∗P[Z2(n+ 1) =j2, B
2(n+ 1) = d2|Z(n) = i,B(n) = u,Uλ(n) = v]

(3.30)

In order to compute 3.30, the following assumption is needed:

Assumption 2:

P[Z2(n+ 1) = j2, B
2(n+ 1) = d2|Z(n) = i,B(n) = u,Uλ(n) = v]

= P[Z2(n+ 1) = j2, B
2(n+ 1) = d2|Z2(n) = i2, B

2(n) = u2, U
λ2(n) = v2]

=: p2
(i2,u2)(j2,d2)(v2)

(3.31)
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The second assumption affirms that the next state of return and the next

duration of the second stock depend only on these two variables observed at

a previous time, i.e. the second stock evolves by its own while the evolution

of the first stock depends on the second one. Obviously, such a hierarchy can

be inverted.

Assumption 3:

P[Z1(n+ 1) = j1,B
1(n+ 1) = d1|Z2(n+ 1) = j2, B

2(n+ 1) = d2,

Z(n) = i,B(n) = u,Uλ(n) = v]

= P[Z1(n+ 1) = j1,B
1(n+ 1) = d1|sgn(Z2(n+ 1)) = s,

Z1(n) = i1, B
1(n) = u1, U

λ1(n) = v1]

=: p̃1
(i1,u1)(j1,d1)(v1; s)

(3.32)

where sgn(Z2(n + 1)) is the sign of Z2(n + 1) and it can assume the value

+, 0,− according to the fact that the stock number 2 exhibits a positive, con-

stant or negative return, respectively. This assumption simplifies drastically

the model while still preserving the cross correlation between the two stocks.

From Assumption 1, 2 and 3 the joint one step transition probability of

the two stocks can be calculated as the following product:

p̃1
(i1,u1)(j1,d1)(v1; s) ∗ p2

(i2,u2)(j2,d2)(v2) (3.33)

The probabilities p2
(i2,u2)(j2,d2)(v2) are represented as a function of the

Weighted Indexed semi-Markov kernel. The probabilities p̃1
(i1,u1)(j1,d1)(v1; s)

can be evaluated from the data by using the following estimator:

N1,2
L (i1, u1, v1; j1, d1, s2)

N1,2
L (i1, u1, v1; s2)

(3.34)

where L is the length of the bivariate series of stock returns;

N1,2
L (i1, u1, v1; j1, d1, s2) =

∑L
t=1 1{Z

1(t) = j1, B
1(t) = d1, sgn(Z2(t)) =
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s2, Z
1(t− 1) = i1, B

1(t− 1) = u1, U
λ1(t− 1) = v1};

N1,2
L (i1, u1, v1; s2) =

∑
j1∈E

∑
d1∈NN

1,2(i1, u1, v1; j1, d1, s2).
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Chapter 4

Markov processes for the salary

evolution

4.1 Introduction

We previously introduced a particular type of stochastic processes which have

in common the “Markov property”. As mentioned in the previous Chapters,

semi-Markov chains (SMC) are a wide class of this type of stochastic process

that generalize at the same time both Markov chains and renewal processes.

Their main advantage is that of using whatever type of waiting time distri-

bution to model the time of having a transition from one state to another.

This major flexibility has on the other hand a weakness, i.e. the amount of

data necessary to estimate the parameters of the model should be very large.

Since pension funds have many participants and data are kept for a long

time, it seems then natural to try to verify the semi-Markovian hypothesis

on future streams of salaries.

In this Chapter, we propose a semi-Markov chain to model the salary

levels of participants in a pension scheme. The aim of the models is to
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understand the evolution in time of the salary of active workers in order to

implement it in the construction of the actuarial technical balance sheet. It

is worth mentioning that the level of the contributions in a pension scheme is

directly proportional to the incomes of the active workers (in almost all cases

it is a percentage of the worker’s incomes). As a consequence, an adequate

modeling of the salary evolution is essential for the determination of the

contributions paid to the fund and thus for the determination of the fund’s

sustainability.

The models are applied to a large dataset of a real compulsory Italian

pension fund of the first pillar. The semi-Markovian hypothesis will be tested

by using a statistic test developed in Stenberg et al. (2006b).

4.2 A Markov approach for the salary evolu-

tion

The aim of this work is to test the possibility of modeling the yearly salary

evolution for an active insured person through a Markov process. In partic-

ular, we are interested in finding out if the salary evolution can be modeled

through a semi-Markov model with discrete backward recurrence times. As

mentioned above, a similar model has been used in modeling disability in-

surance.

Let us then briefly describe this type of Markov process and its main

characteristics. We will use the same definitions seen in the previous Chap-

ters with regard to a semi-Markov model defined in a probability state space

(Ω,F,P). We suppose that the SMC represents the salary level of an “ac-

tive” member of the pension scheme. Let us then consider the following two
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sequences of random variables:

Jn : Ω→ E;Tn : Ω→ IN

Obviously, Jn and Tn denote, the state and the time of the n-th transition

of the system, respectively.

We assume that (Jn, Tn) is a Markov Renewal Process on the state space

E × IN with kernel Qij(t), i, j ∈ E, t ∈ IN.

The kernel has the following probabilistic interpretation:

P[Jn+1 = j, Tn+1 − Tn ≤ t|σ(Jh, Th), h ≤ t, Jn = i] =

P[Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i] = Qij(t)
(4.1)

From the kernel defined above, we can obtain the transition probability

matrix of the embedded Markov chain Jn, P = (pij) as:

pij = lim
t→∞

Qij(t); i, j ∈ E, t ∈ IN

Obviously, it results that:

P[Jn+1 = j | Jn = i] = pij

Furthermore, we can introduce the probability to have the next transition

in state j at time t given the starting at time zero from state i

bij(t) = P[Jn+1 = j, Tn+1 − Tn = t|Jn = i] =

=

 Qij(t)−Qij(t− 1) if t > 0

0 if t = 0
(4.2)

The distribution functions, that represents the unconditional waiting time

distribution in a generic state i, is defined as follows:

Hi(t) = P[Tn+1 − Tn ≤ t|Jn = i] =
∑
j∈E

Qij(t) (4.3)
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The Radon-Nikodym theorem assures for the existence of a functionGij(t)

such that:

Gij(t) = P[Tn+1 − Tn ≤ t|Jn = i, Jn+1 = j] =
Qij(t)

pij
if pij 6= 0

1 if pij = 0
(4.4)

The function defined above denotes the waiting time distribution function

(also denoted as the sojourn time distribution function) in state i given that,

in the next transition, the process will be in the state j.

It should be noted that the sojourn time distribution Gij(·) can be any

type of distribution function. In cases where Gij(·) is geometrically or an ex-

ponentially distributed, we obtain the discrete or the continuous time Markov

chain, respectively.

It is possible to define the homogeneous semi-Markov chain (HSMC) Z(t)

as

Z(t) = JN(t), ∀t ∈ IN (4.5)

where N(t) = sup{n ∈ IN : Tn ≤ t}. The process Z(t) represents the state

of the system for each waiting time t.

Let us denote the transition probabilities of the HSMP by

φij(t) = P[Z(t) = j|Z(0) = i, T0 = 0]

They satisfy the following evolution equation1

φij(t) = δij(1−Hi(t)) +
∑
k∈E

t∑
τ=1

bik(τ)φkj(t− τ). (4.6)

Once the semi-Markov process is defined, it is necessary to introduce the

discrete backward recurrence time process linked to the SMP.

1To solve Eq. (4.6) there are well known algorithms in the SMP literature (see Barbu

et al. (2004)).
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For each time t ∈ IN, let us define the following stochastic process:

B(t) = t− TN(t). (4.7)

This process is called the discrete backward recurrence time process.

If the semi-Markov process Z(t) indicates the state of the system at time

t, B(t) indicates the time since the last jump.

The joint stochastic process (Z(t), B(t), t ∈ IN) with values in E × IN is

a Markov process. That is:

P [Z(T )=j, B(T )≤v′|σ(Z(h), B(h)), h≤ t, Z(t)= i, B(t)=v]

= P [Z(T ) = j, B(T ) ≤ v′|Z(t) = i, B(t) = v].

To save space the event {Z(0) = i, B(0) = v} can be denoted in a more

compact form by (i, v).

In the sequel we will make use of the following probabilities:

bφbij(v; v′, t) = P [Z(t) = j, B(t) = v′|(i, v)];

bφij(v; t) = P [Z(t) = j|(i, v)].
(4.8)

Our next step is to compute bφbij(v; v′, t) as a function of the semi-Markov

kernel. For all states i, j ∈ E and times h, v, t ∈ IN such that Hi(v) < 1 we

have that

bφbij(v; v′, t) =
δij[1−Hi(t+ v)]

[1−Hi(v)]
1{v′=t+v}+

∑
k∈E

t∑
s=1

bik(s+ v)

[1−Hi(v)]
bφbkj(0; v′, t− s),

(4.9)

Notice that bφbij(0; v′, t) satisfies the following system of equations

bφbij(0; v′, t)=δij[1−Hi(t+ v)]+
∑
k∈E

t∑
s=1

bik(s+ v) bφbkj(0; v′, t−s).
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It results that bφij(v; t) =
∑t+v

v′=0
bφbij(v; v′, t). Consequently:

bφij(v; t) = δij
[1−Hi(t+ v)]

[1−Hi(v)]

+
∑
k∈E

t∑
s=1

bik(s+ v)

[1−Hi(v)]
φkj(t− s)

(4.10)
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4.3 Empirical application

4.3.1 Database Description

The model described in the previous section has been applied to the stream

of salaries of the active participants of an Italian National Institute of Social

security. This is one of the biggest Private Schemes concerning first pillar

pensions for Professionals in Italy. The database contains information re-

garding more then 27 thousand active participants recorded for a time span

of 30 years, starting from 1981 till 2011.

The following tables summarize some of the most relevant descriptive

statistics of the dataset. In Table 4.1, the age distribution of the active par-

ticipants of is shown. The age is calculated at the end of the observation

period, i.e. at 31st December 2011. Also, the histograms of the age distribu-

tion by gender as well as for the total population of the active workers are

shown in Figure 4.1.

Since the participants considered may have entered the Pensions Scheme

at different years, it seems relevant to also calculate the seniority of each

active member of the dataset at the end of the observation period. The

seniority is thus calculated considering the date of first subscription of the

member to the scheme and results are shown in Table 4.2.

Since the database consists of streams of salaries that refer to a long time

span, it is important to also consider the monetary reevaluation of wages.

In order to perform this, the index FOI calculated by ISTAT and obtained

from www.istat.it has been used. In particular, wages of active workers have

been reevaluated up to the year 2011. Table 4.3 shows the coefficients used

for the reevaluation for each year.

The salaries of the participants are collected by the Institute because the
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Classes of Age Male Female Total

[0, 25] 72 59 131

(25, 30] 777 726 1503

(30, 35] 1772 1742 3514

(35, 40] 2316 2258 4574

(40, 45] 2520 2190 4710

(45, 50] 2865 2009 4874

(50, 55] 2574 1327 3901

(55, 60] 1914 750 2664

(60, 65] 912 198 1110

(65, 70] 126 34 160

(70, 75] 58 10 68

(75, 80] 30 6 36

(80, . . . ) 29 2 31

Total 15.965 11.311 27.276

Table 4.1: Age class distribution of active participants
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Figure 4.1: Histogram of active workers by age
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Classes of seniority Male Female Total

[0, 5] 2600 2457 5057

(5, 10] 3419 3031 6450

(10, 15] 3199 2375 5574

(15, 20] 1913 1292 3205

(20, 25] 2997 1642 4639

(25, 30] 974 342 1316

(30, 35] 643 151 794

(35, 40] 195 18 213

(40, . . . ) 25 3 28

Total 15.965 11.311 27.276

Table 4.2: Seniority class distribution of active participants

amount of the contribution paid by each single participant is proportionally

dependent on his\her incomes. Given that the database reports only annual

salaries collected by the Scheme for contribution purposes, we calculated the

monthly salaries by taking into account the effective months of contributions

paid by each participant. Graph 4.2 shows the mean salary value of all

participants for the time span considered while graph 4.3 shows the histogram

of the average monthly salaries. The first two bins of the histogram are equal

to 500 while from the third and on they are equal to 2000. This choice helps

better analyze lower classes of salaries, i.e. salaries less than 2000, which is

the most populated.
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Year FOI Year FOI Year FOI

1981 3.821 1991 1.696 2001 1.225

1982 3.284 1992 1.609 2002 1.196

1983 2.856 1993 1.544 2003 1.167

1984 2.583 1994 1.486 2004 1.145

1985 2.378 1995 1.410 2005 1.125

1986 2.241 1996 1.357 2006 1.103

1987 2.142 1997 1.334 2007 1.085

1988 2.041 1998 1.310 2008 1.051

1989 1.915 1999 1.290 2009 1.043

1990 1.805 2000 1.258 2010 1.027

Source: ISTAT

Table 4.3: FOI Index
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Figure 4.2: Average monthly salaries of active participants
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Figure 4.3: Histogram of monthly salaries of active participants

4.3.2 Modeling the salary evolution

In the following paragraph we will try to implement a Markov processes to

describe the salary evolution of the active participants of the Pension Scheme.

In particular, we are interested in finding whether the model described in

Section 4.2, i.e. a semi-Markov model with backward reward process, is

more suitable than a simple Markov chain to model salaries.

From the analysis of the graphs shown in the above paragraph, and in

particular of the histogram of the average monthly salaries, we chose to

divide salaries into 11 states. The first ten states are constructed considering

salaries from 0 to 20000 and forming groups by a step of 2000, i.e. the first

state considers the interval [0, 2000), the second one [2000, 4000) and so on.

The last state is a residual class for salaries higher than 20000.

The salary evolution can be modeled considering transitions from the

above defined classes through a Markov process, which as mentioned before
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considers geometrically distributed waiting times, or through a semi-Markov

process which permits the use of whatever type of distribution of the waiting

times.

First, we estimated the transition probability matrices p̂ij of a Markov

chain through its maximum likelihood estimator given by the equation:

p̂ij =

∑ω
n=1 1{Jn−1=i,Jn=j}∑ω

n=1 1{Jn−1=i}
=
Nij

Ni

(4.11)

where ω ∈ N is the observation period and Nij, Ni denote, respectively,

the number of times the process transitioned from a generic state i to another

generic state j and the total number of times the process transitioned in the

generic state i. The estimated matrix is:

p̂ij =



0.676 0.310 0.012 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.038 0.797 0.157 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.003 0.069 0.789 0.133 0.005 0.001 0.000 0.000 0.000 0.000 0.000

0.001 0.008 0.060 0.806 0.115 0.007 0.002 0.000 0.000 0.000 0.000

0.000 0.003 0.008 0.078 0.774 0.119 0.011 0.003 0.001 0.001 0.001

0.000 0.004 0.006 0.012 0.099 0.724 0.125 0.020 0.006 0.002 0.003

0.000 0.002 0.004 0.006 0.018 0.132 0.649 0.136 0.031 0.008 0.013

0.001 0.006 0.007 0.005 0.011 0.037 0.171 0.534 0.156 0.039 0.032

0.000 0.005 0.007 0.004 0.015 0.020 0.061 0.167 0.450 0.160 0.113

0.000 0.007 0.007 0.005 0.004 0.023 0.027 0.051 0.188 0.395 0.293

0.001 0.007 0.006 0.004 0.011 0.007 0.018 0.026 0.036 0.066 0.817


The second step is that of modeling the salary evolution through a semi-

Markovian process. In order to do so, the distribution of the waiting times

has to be estimated.

Let us firstly define the probability mass function of the sojourn times as

follows:

gij(t) = P[Tn+1 − Tn = t|Jn = i, Jn+1 = j] = Gij(t)−Gij(t− 1) if t > 1

Gij(1) if t = 1
(4.12)
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We considered a discrete time step of one year and calculated the waiting

times for up to 20 years. Through an algorithm we estimated the sojourn

times on the data using the following:

ĝij(t) =

∑ω
n=1 1{Tn−Tn−1=t,Jn−1=i,Jn=j}∑ω

n=1 1{Jn−1=i,Jn=j}
(4.13)

In order to verify the semi-Markov hypothesis, a test proposed by Sten-

berg et al. (2006a) can be applied. Obviously, the model can be considered

semi-Markovian if the sojourn times are not geometrically distributed.

Under the geometrical hypothesis the equality gij(1)(1−gij(1))−gij(2) =

0 must hold. Then a sufficiently strong deviation from this equality has to

be interpreted as an evidence in favor of the semi-Markov model.

The test-statistic is the following:

Ŝij =

√
N(i, j)

(
ĝij(1)(1− ĝij(1))− ĝij(2)

)√
ĝij(1)(1− ĝij(1))2(2− ĝij(1))

. (4.14)

where N(i, j) denotes the number of transitions from state i to state j ob-

served in the sample and ĝij(x) is the empirical estimator of the probability

gij(x).

The results of the test statistic are shown in Table 4.4. It reports the

score as calculated from Eq. 4.14 for the eleven states of the salaries.

This statistic, under the geometrical hypothesis H0 (or markovian hy-

pothesis), has approximately the standard normal distribution. This means

that large values of the test statistic suggest the rejection of the Markovian

hypothesis in favor of the more general semi-Markov one. We applied this

procedure to our data to execute tests at a significance level of 95%.

In Table 4.5 we show the results of the test applied to the waiting time

distribution functions where R means the null hypothesis is Rejected while

A means that the null hypothesis of geometrical distribution of the waiting

times is Accepted.
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@
@
@
@

i

j
1 2 3 4 5 6 7 8 9 10 11

1 n.a. -3.59 3.88 0.58 0.57 0.43 n.a. n.a. n.a. n.a. n.a.

2 3.86 n.a. -3.49 -0.15 2.09 1.41 -0.75 -0.19 1.83 n.a. 0,04

3 1.93 9.89 n.a. 2.73 1.84 1.50 1.28 -1.34 -0.15 0.82 n.a.

4 2.28 7.13 8.82 n.a. 3.94 -0.08 1.39 -0.56 0.69 0.47 -0.19

5 0.85 2.48 2.47 8.25 n.a. 3.94 2.10 0.53 -0.01 1.36 1.46

6 n.a. 1.06 1.47 1.70 5.78 n.a. 3.54 1.26 -0.81 1.25 0.14

7 n.a. 0.97 0.54 0.43 4.63 4.00 n.a. 1.89 1.19 0.79 3.08

8 n.a. -0.40 -0.56 -0.65 -0.13 2.46 3.44 n.a. 3.81 -1.08 0.72

9 n.a. -0.46 n.a. -0.52 1.51 1.86 1.56 1.96 n.a. -0.45 0.88

10 n.a. n.a. n.a. n.a. n.a. -0.28 -0.79 3.05 1.42 n.a. 0.24

11 n.a. 2.86 2.39 1.73 1.26 1.21 1.84 0.11 0.36 1.97 n.a.

Table 4.4: Test scores for classes of salaries

@
@
@
@

i

j
1 2 3 4 5 6 7 8 9 10 11

1 n.a. R R A A A n.a. n.a. n.a. n.a. n.a.

2 R n.a. R A R A A A A n.a. A

3 A R n.a. R A A A A A A n.a.

4 R R R n.a. R A A A A A A

5 A R R R n.a. R R A A A A

6 n.a. A A A R n.a. R A A A A

7 n.a. A A A R R n.a. A A A R

8 n.a. A A A A R R n.a. R A A

9 n.a. A n.a. A A A A R n.a. A A

10 n.a. n.a. n.a. n.a. n.a. A A R A n.a. A

11 n.a. R R A A A A A A R n.a.

Table 4.5: Decision for the null hypothesis for classes of salaries
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As shown in Table 4.5, the geometric hypothesis is rejected for 31% of

the waiting time distributions. There is, thus, evidence that we should be

inclined in choosing the more general model of a semi-Markov process to that

of a simple Markov chain.

We also considered the case of the worker’s job qualification for the con-

struction of the states of the salary process. The database furnished the

necessary information regarding the different levels of qualification for each

participant at each year of the observation period. In order to have an

estimation as robust as possible, only qualifications with more then 5000

participants have been considered.

The hypothesis under such modeling is that the transition from one qual-

ification to the other, which would indirectly imply a transition in the salary

level, can be described by a Markov process. The procedure applied is quite

similar to the one described above. First, we will estimate the transition

probability matrix of the Markov chain through the same algorithm described

above. The estimated matrix p̂ij is:



0.90 0.03 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

0.02 0.92 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

0.00 0.11 0.85 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.03 0.05 0.89 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.01 0.01 0.11 0.84 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.01 0.00 0.03 0.02 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.01 0.01 0.00 0.03 0.02 0.47 0.41 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.01 0.01 0.01 0.00 0.09 0.00 0.78 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.05

0.00 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.01 0.00 0.02 0.02 0.38 0.00 0.01 0.00 0.52 0.01 0.00 0.00 0.00 0.01 0.02

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.02

0.00 0.01 0.00 0.01 0.00 0.07 0.32 0.02 0.00 0.03 0.00 0.00 0.50 0.00 0.01 0.02

0.00 0.01 0.00 0.01 0.01 0.05 0.00 0.01 0.00 0.61 0.01 0.00 0.00 0.24 0.01 0.04

0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.01 0.00 0.14 0.00 0.00 0.01 0.63 0.13 0.04

0.01 0.01 0.00 0.01 0.00 0.04 0.00 0.01 0.00 0.02 0.05 0.00 0.00 0.01 0.01 0.81



Secondly, we suppose that a semi-Markov model can better explain the

transitions between states since it gives the possibility of using whatever type
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of waiting time distribution.

The values of the statistic test are obtained in the same way as seen

above and are reported in Table 4.6. We fixed a level of significance of

95% and the results of the statistic test are given in Table 4.7. The null

hypothesis of geometrical distribution is rejected for 25% of the waiting time

distributions considered and thus we conclude that the semi-Markov process

is more suitable to model the salary evolution of participants with states

formed on the basis of the the active workers’ qualification.
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Table 4.6: Test scores for qualification states
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Table 4.7: Decision for the null hypothesis for qualification states
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4.4 Conclusions

In this chapter, we proposed a semi-Markov Chain with backward recurrence

time to model salary lines. This is a more general model compared to the

simple Markov chain since any type of distribution can be used for the waiting

times while the latter allows only the geometrical distribution.

The model was applied to a dataset of active participants to an Italian

Pension Scheme of the First Pillar. More than 27 thousand workers have

been observed over a period time of 30 years. Salaries of participants have

been clustered to form the states of a stochastic process in two ways: the

first one considers classes of salaries of 2000 while the second one is based

on the qualification of the workers. In both cases, the transition probability

matrices of the embedded Markov chain have been estimated. Then, the

semi-Markov hypothesis is tested by a statistical test applied in the recent

literature.

We fixed a significance level of 95% and performed the statistic test on

the distribution of the waiting times. The null hypothesis of geometrical

distribution was rejected for nearly 30% and 25% of the tests, in the two cases

considered, and thus we concluded that the semi-Markov model should be

preferred to a simple Markov chain to model salary evolution of participants.
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Chapter 5

A change-point approach in

IMC

5.1 Introduction

In Section 3.3 a review of semi-Markov processes in the application of high

frequency price return modeling was shown. In particular, a new model

called the Indexed semi-Markov process was introduced. In this model, a

discretization of the Index process was necessary in order to determine a

limited number of states, each representing a particular level of volatility. In

the above mentioned papers, the authors chose five states of volatility and

defined the border values of each class based on the analysis of the histogram

of the Index process.

In this Chapter, we propose a method for the discretization of the state

space of an Indexed semi-Markov process by using the change-point approach.

The change-point approach is used in econometric studies where the process

analyzed undergoes a significant change at some point in time, marking a

discontinuity with the past. In Polansky (2007), the problem of the change-
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point estimation in case of a Markov processes is discussed. The estimation

of the transition probability matrices before and after the change are per-

formed. Through the likelihood theory, the author develops a method for

the estimation in case the change point is unknown. Also, the possibility

to detect more then one change point and a method for selecting the most

parsimonious model is shown.

In this Chapter, we try to use the change-point approach to determine

the number of states and the border values of each state of the Index process

in a generic Indexed Markov model. The chapter is organized as follows: in

Section 5.2 a general description of Markov model where an Index process is

introduced is provided, in Section 5.3 the discretization of the state space of

the Index process based on the change-point approach is formalized and in

Section 5.4 the mathematical framework for predicting the state of the Index

after one step is shown. Lastly, in Section 5.5 an empirical applications of

the methodology and results are evidenced.

5.2 A generalized model of Indexed Markov

Chains

The aim of this work is to analyze the discretization of the index process.

Since the method applied, which will be fully described in the following

paragraphs, does not depend on the type of Markov process chosen but rather

on the dependence of the price return processes with the index process it

seemed then useful to consider the most simple type of Markov processes

for the description of the price return dynamics. As a consequence, and

without any loss of generality, let us consider a simplified indexed Markov

model where Tn = n for ∀n ∈ N, i.e. the price return process is described by
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a Markov chain rather than a semi-Markov process and we will denote this

process as Indexed Markov Chain (IMC) rather than ISMC. The approach

used for the discretization of the index process can then be easily extended

to the case of more complex models.

Consider the stochastic process {Jn}n∈N that describes the value of the

return process at the n-th transition and the stochastic process {V m
n } as the

value of the index process at the n-th transition with memory equal to m

such that:

V m
n =

∑m−1
k=1 f(Jn−k)

m
(5.1)

We assume that:

P(Jn+1 = j|Jn = i, V m
n = v, Jn−1, V

m
n−1)

= P(Jn+1 = j|Jn = i, V m
n = v)

= pij(v)

(5.2)

Equation (5.2) states that the value of the price return process at the n+1

transition depends on the value of process in the previous n-th transition and

the value of the index process in the previous n-th transition. From now on

we will refer to this model and we will use the hypothesis in equation 5.2 to

find the optimal discretization of the index process.

The goal of this work is to try and answer the following questions:

(a) If we consider only two levels of volatility of the price return process,

how do we identify the border values of Index process?

(b) Could there be more than two levels of volatility? How can we identify

the optimal number of volatility levels?

(c) In case of more than two levels of volatility, how can we identify the

border values of the Index process for each level?
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5.3 Change-point approach in IMC

In this paper, the change point approach will be used to determine the op-

timal number of states of the index process V m
n as well as the border values

for each state. This will be obtained by using the fact that the dynamics of

the price return process Jn depend on the value of the index process V m
n .

We defined E as the state space of the price return dynamics Jn such

that for ∀n, Jn(ω) ∈ E. Let Ef be the state space of the index process such

that V λ
n ∈ Ef .

Let Ef and Ef be the maximum and the minimum, respectively, of the

space state Ef . Then:

V m
n ∈ [Ef , Ef ] (5.3)

First, let us suppose that there are mainly two levels of volatility in the

market: low volatility and high volatility. What we are interested in is to

model the price dynamics process Jn through two different Markov processes

described by two different transition probability matrices. Let P (ψ1) be

the transition probability matrix of the price return process in case of low

volatility and P (ψ1) be the transition probability matrix in case of high

volatility.

Since the level of the volatility is considered through the index process

then, the state space [Ef , Ef ] of the Index process has to be subdivided into

two discrete states. Let ψ1 ∈ [Ef , Ef ] be the value of the Index model that

determines a change in the dynamics of the price return process Jn such that:

(a) The interval [Ef , ψ1] represents the low volatility case. If the Index

process V λ
n < ψ1, than we suppose that the price return process Jn is

described by the transition probability matrix P (ψ1)

(b) The interval [ψ1, Ef ] represent the high volatility case. If the Index
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process V λ
n ≥ ψ1, than we suppose that the price return process Jn is

described by the transition probability matrix P (ψ1)

5.3.1 Case of a known change point

If the change point ψ1 is known, the transition probability matrices can be

estimated through the maximum likelihood estimators P̂ and P̂ whose (i, j)-

th elements are given as follows:

P̂ ij(ψ1) =

∑T−1
n=1 1{Jn−1=i,Jn=j,Vn−1≥ψ1}∑T−1
n=1 1{Jn−1=i,Vn−1≥ψ1}

=
N ij(ψ1)

N i(ψ1)
(5.4)

P̂ ij(ψ1) =

∑T−1
n=1 1{Jn−1=i,Jn=j,Vn−1<ψ1}∑T−1
n=1 1{Jn−1=i,Vn−1<ψ1}

=
N ij(ψ1)

N i(ψ1)
(5.5)

where T ∈ N is the time of the last observation of the process.

In order to test the hypothesis that the two matrices are statistically

equal and, as a consequence, there is no significant change in the dynamics

of the price return process due to the different levels of the states of the index

process a statistical test can be developed:H0 : P = P

H1 : P 6= P
(5.6)

Once the two hypothesis are set, a distance measure has to be defined.

As shown in Polansky (2007), a convenient distance measure can be devel-

oped through the log of the likelihood ratio. Let L(P (ψ1), P (ψ1), x ) be the

likelihood function of a sample x observed on the period [0, T ] with a change

point ψ1. Then,

L(P (ψ1), P (ψ1), x ) = P(J0 = x0, J1 = x1, . . . , JT = xT )

=
∏
i,j∈E

(P ij(ψ1))N ij(ψ1) ∗
∏
i,j∈E

(P ij(ψ1))N ij(ψ1) (5.7)
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Let L be the log-likelihood function:

L(P (ψ1), P (ψ1), x ) = log(L)

=
∑
ij

(
N i,j(ψ1) ∗ log

(
N i,j(ψ1)

N i(ψ1)

))
+
∑
ij

(
N i,j(ψ1) ∗ log

(
N i,j(ψ1)

N i(ψ1)

))
=: L+ L

(5.8)

A distance measure can then be calculated from the log-likelihood func-

tions:

D = 2 ∗ [L(P (ψ1)) + L(P (ψ1))− L(P )] (5.9)

where

• L(P (ψ1)) + L(P (ψ1)) is the log of the likelihood value for the model

under the alternative hypotheses

• L(P ) is the log of the likelihood value for model under the null hy-

potheses. In this case, we suppose that there is no change point in the

observed process and thus we estimate the dynamics of the price return

process {Jn} by using a single transition probability matrix P of the

Markov Chain.

5.3.2 Case of an unknown change point

In our case, the change point is not known and it also needs to be estimated.

In cases in which the change point is not known, the parameter ψ1 becomes

un unknown parameter of the log-likelihood function seen above. Usually,

the maximum likelihood estimator for ψ1, in this cases, does not exist in

closed form but it can be estimated through an iterative method;

ψ̂1 = arg max{ψ̂1 ∈ [Ef , Ef ] : LM + LM} (5.10)
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where LM and LM are the maximum values of the two likelihood functions

observed conditioned on ψ̂1.

Operatively, the methodology is the following:

1. Define on the state space n discrete and distinct points ψ ∈ [Ef , Ef ] .

2. For each possible ψ ∈ [Ef , Ef ]

(a) Set ψ1 = ψ

(b) Estimate P (ψ1) with Eq. (5.4) and P (ψ1) with Eq. (5.5)

(c) Compute L(ψ1) = L(ψ1) + L(ψ1) as in Eq. (5.8)

3. Fix ψ̂1 = arg max{ψ1 ∈ [Ef , Ef ] : L(ψ1)}

The results will be the value of the index process that determines a change

in the price return process, the estimated transition probability matrices of

the price return process that reflect the two different dynamics and the value

of the log-likelihood function. Once these outputs are obtained, a test of the

hypothesis as shown in (5.6) can be performed.

Unfortunately, the theoretical distribution of the statistic test under H0 is

also not known but it can be approximated by using the bootstrap method-

ology described as follows. Given a sample x, a single transition probability

matrix P is estimated from the data (i.e. without considering the change

point). B trajectories of the same length of the data are simulated from

the transition matrix P . For each simulation, the test statistic defined in Eq.

(5.9) is calculated. We denote this values as DB. The theoretical distribution

of the statistic test D can then be approximated by the kernel distribution

of the simulated statistic test DB. Once the level of confidence α for the test

is fixed, the critical value dα can be approximated by the 1 − α percentile
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of the simulated statistic test DB. Hence, if the statistic test on the sample

data D̂(x) ≥ dα, the null hypothesis cannot be accepted.

The empirical p-value of the test can be then calculated as:

p− value =
1

B + 1
∗
[
1 +

B∑
i=1

1DB(x)≥D̂(x)

]
(5.11)

5.3.3 Case of more than one unknown change points

The case of two or more change points can be extended from the estimation

methods of a single change point shown so far.

Let ψ1 < ψ2 < · · · < ψk be k change points defined in the interval

[Ef , Ef ]. Each possible combination (s) of the k change points divides the

interval in k + 1 sub-intervals:

[Ef , ψ1] =: I
(s)
1

[ψ1, ψ2] =: I
(s)
2

...

[ψr−1, ψr] =: I
(s)
r

...

[ψk, Ef ] =: I
(s)
k+1

For each of the (s) possible partitions of interval in k + 1 sub-intervals{
I

(s)
r

}k+1

r=1
, k + 1 transition probability matrices P̂ (s) have to be estimated

whose (i, j) elements are:

P̂
(s)
i,j =

∑T−1
n=1 1

Jn−1=i,Jn=j,Vn−1∈I(s)r∑T−1
n=1 1

Jn−1=i,Vn−1∈I(s)r

=:
N

(s)
i,j;r

N
(s)
i;r

(5.12)

The likelihood function of the sample x observed on the period [0, T ] for
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the generic partition (s) with k + 1 change points is:

L(s)(P
(s)
1 , P

(s)
2 , . . . , P

(s)
k+1; x ) =

k+1∏
r=1

∏
i,j∈E

(
P

(s)
i,j;r

)N(s)
i,j;r (5.13)

The log-likelihood function can then be calculated as

L(s) = log(L(s)) = L
(s)
1 + L

(s)
2 + · · ·+ L

(s)
k+1 =

k+1∑
r=1

L(s)
r (5.14)

where L
(s)
r is the log-likelihood of the generic (s) partition in reference to

the sub-interval Ir. As seen above, the values of the k change points can

be calculated in an iterative way. We set n discrete and distinct values

of ψ ∈ [Ef , Ef ]. Notice that, for k change points, we have
(
n−1
k

)
possible

combinations of the vector of change points (ψ1, ψ2, . . . , ψk). The method-

ology is basically the same as that for one change point but in this case

we have to consider all the possible combinations of the set of k change

points (ψ1, ψ2, . . . , ψk). As seen above, the estimated values can be calcu-

lated through:

(ψ̂1, ψ̂2, . . . , ψ̂k) = arg max{(ψ1 < ψ2 < · · · < ψk) ∈ [Ef , Ef ] : L(s)} (5.15)

A test can be performed in this case where:H0 : P0 = P1 = · · · = Pk

H1 : Pi 6= Pj for some i 6= j
(5.16)

The test statistic can be calculated as follows:

D(s) = 2 ∗
[ k+1∑
r=1

L(s)
r − L(P )

]
(5.17)

where L(P ) is the log-likelihood value in case there is no change point on

the sample x and thus a single transition matrix P is estimated. The boot-

strap methodology can be used to obtain an approximation of the theoretical

distribution of the statistic test.
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If the number of change points is unknown, it also needs to be estimated

and thus measures such as AIC or BIC can be used.

The AIC objective function is given by:

AIC(k) = 2 ∗ c ∗ (c− 1) ∗ (k + 1)− 2 ∗
k+1∑
r=1

LMr (5.18)

where

• LM is the value of the log-likelihood of the maximum likelihood esti-

mate of ψ1, ψ2, . . . , ψk conditioned on the fact that there are k change

points

• c is the number of states of the Markov Chain

• k is the number of change points.

The estimated number of change points is given by:

k̂AIC = arg min{k ∈ {1, 2, . . . , n} : AIC(k)} (5.19)

The BIC objective function is given by:

BIC(k) = 2 ∗ log(n) ∗ c ∗ (c− 1) ∗ (k + 1)− 2 ∗
k+1∑
r=1

LMr (5.20)

where

• LM is the value of the log-likelihood of the maximum likelihood esti-

mate of ψ1, ψ2, . . . , ψk conditioned on the fact that there are k change

points

• c is the number of states of the Markov Chain

• k is the number of change points.
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• n is the length of the sample x

The estimated number of change points is given by:

k̂BIC = arg min{k ∈ {1, 2, . . . , n} : BIC(k)} (5.21)
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5.4 Predicting the value of the index in the

next step

Suppose we have identified k change points of our Indexed Markov chain

{Jn}n∈N such that:

ψ1 < ψ2 < · · · < ψk ; ψi ∈ R ∀i = 1, 2, . . . , k

As mentioned, the state space of the chain is E = {1, 2, . . . , S} and we

have estimated k + 1 transition probability matrices. Let us indicate such

matrices in general with:

P (v) = (pij(v))i,j∈E,v∈R

and

pij(u) = pij(v)

if

∃a ∈ {1, 2, . . . , k − 1}

such that

ψa < u ≤ ψa+1 ; ψa < v ≤ ψa+1

This means that if u, v belong to the same interval

Ia+1 := (ψa, ψa+ 1]

where

I1 = (−∞, ψ1]

ψk−1 = +∞

then

P (u) = P (v)

72



CHAPTER 5. A CHANGE-POINT APPROACH IN IMC

At time s, the information needed in order to apply the model is the vector

of the past states of the return process iss−m+1 := {is−m+1, is−m+2, . . . , is−1, is}.

Once the vector iss−m+1 is known, we can calculate the value of the index pro-

cess:

V m
s =

∑m−1
k=0 f(Js−k)

m
=

∑m−1
k=0 f(is−k)

m
(5.22)

Let us define:

Tiss−m+1
(Ia) := inf{n∈Nn≥s : V

m
n ∈ Ia|Jss−m+1 = iss−m+1} (5.23)

as the first time (successive of the current time s) in which the Index process

enters in the generic interval Ia = (ψa−1, ψa).

Also, let

giss−m+1
(Ia; s+ n) = P(Tiss−m+1

(Ia) = s+ n|Jss−m+1 = iss−m+1) (5.24)

be the probability distribution of the first entrance time in Ia of the Index

process. Let us assume that

giss−m+1
(Ia; s) = 0 ; ∀Ia , ∀iss−m+1

Proposition 1 (explicit formula for g)

giss−m+1
(Ia; s+n) =

Ec,E∑
(is+1,...,is+m−1),is+n

n∏
r=1

Pis+r−1,is+r

∑m−1
k=0 f(is+r−1−k)

m
(5.25)

where the symbol

Ec,E∑
(is+1,...,is+m−1),is+n

:=
∑

is+1∈Ec
i0s−m+1

(Ia)

∑
is+2∈Ec

i1s−m+2

(Ia)

. . .

· · ·
∑

is+m−1∈Ec
is+n−2
s−m+(n−1)

(Ia)

∑
is+n∈Ec

is+n−1
s−m+n

(Ia)
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and

Eiss−m+1
(Ia) := {k ∈ E :

∑m−1
k=0 f(is+1−k)

m
∈ Ia}

also, Ec
iss−m+1

(Ia) is the complementary of Eiss−m+1
(Ia).

Note that Eiss−m+1
(Ia) is the sub-interval of the space state E that, through

the estimation of iss−m+1, let the Index process enter in the interval Ia with

the next transition.

Proof 1 For n = 1, Proposition 1 is true. In fact:

giss−m+1
(Ia; s+ 1) = P(Tis−m+1s(Ia) = s+ 1|Jss−m+1 = iss−m+1)

=
∑

is+1∈E

P(Tiss−m+1
(Ia) = s+ 1, J(s+ 1) = is+1|Jss−m+1 = iss−m+1)

=
∑

is+1∈E

P(V m
s+1 ∈ (Ia), J(s+ 1) = is+1|Jss−m+1 = iss−m+1)

=
∑

is+1∈E

P(V m
s+1 ∈ (Ia)|Js+1

s−m+1 = is+1
s−m+1)

∗ P(J(s+ 1) = is+1|Jss−m+1 = iss−m+1))

=
∑

is+1∈Eiss−m+1
(Ia)

1 ∗ Pis,is+1

(∑m−1
k=0 f(is−k)

m

)

(5.26)

that is equal to Proposition 1 for n = 1.

Now, let us suppose that Proposition 1 is true for n−1 and that it is also

true that:

giss−m+1
(Ia; s+m−1) =

Ec,E∑
(is+1,...,is+m−2,is+m−1)

(s+m−1)−s∏
r=1

Pis+r−1,is+r

(∑m−1
k=0 f(is−k)

m

)
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We can calculate:

giss−m+1
(Ia; s+ n) = P(Tiss−m+1

(Ia) = s+ n|Jss−m+1 = iss−m+1)

=
∑

is+1∈Eciss−m+1
(Ia)

P(Tiss−m+1
(Ia) = s+ n, J(s+ 1) = is+1|Jss−m+1 = iss−m+1)

=
∑

is+1∈Eciss−m+1
(Ia)

P(Tiss−m+1
(Ia) = s+ n|J(s+ 1) = is+1, J

s
s−m+1 = iss−m+1)

∗ P(J(s+ 1) = is+1|Jss−m+1 = iss−m+1)

=
∑

is+1∈Eciss−m+1
(Ia)

P(Tiss−m+1
(Ia) = s+ n|Jss−m+1 = iss−m+1)

∗ Pis,is+1(

∑m−1
k=0 f(is−k)

m
)

=
∑

is+1∈Eciss−m+1
(Ia)

gis+1
s−m+2

(Ia; s+ n) ∗ Pis,is+1(

∑m−1
k=0 f(is−k)

m
)

= (from inductive hypothesis)

=
∑

is+1∈Eciss−m+1
(Ia)

[ Ec,E∑
(is+2,...,is+m−2),is+m−1

s+n−(s+1)∏
r=1

Pis+1−r−1,is+1+r(

∑m−1
k=0 f(is+1,r−1−k)

m
)

]
∗ Pis,is+1(

∑m−1
k=0 f(is−k)

m
)

= Propostion 1

(5.27)
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5.5 Empirical application of the change-point

in IMC

5.5.1 Database description

The methodology described so far has been applied to the study of intra-day

prices of a quoted Italian firm. The sample data of prices starts on January

1st, 2007 and ends on December 31st 2010. The dataset is obtained from

www.borsaitaliana.it and it contains tick-by-tick quotes of the traded stocks.

The data have been re-sampled to have 1 minute frequency according to the

procedure described below. Let us consider a single day k with 1 ≤ k ≤ d

where d is number of traded days in the time series. Since we consider four

full years of trading, the number of trading days is d = 1076.

The stock market in Italy operates as follows: first the opening price is

fixed at a random time in the first minute after 9 am; immediately after that a

continuous trading of the stock starts and it ends just before 5:25 pm; finally

the closing price is fixed just after 5:30 pm. Let us denote with S(t) the time

varying asset price of the stock under study. Therefore, we can define S(k1)

as the price of the last trading before 9:01:00 am, S(k2) as the price of the

last trading before 9:02:00 am and so on. If there are no transactions during

a generic minute z with 1 ≤ z ≤ n considered, the price S(kz) is set equal to

S(kz−1). The price is considered to be unchanged also in the case where the

title is suspended and reopened in the same day. Let us denote with S(kn)

the price of the last trading before 5:25:00 pm. As a consequence, the number

of prices for each day is n = 507. It should be noticed that before the 28th

of September 2009, the continuous trading started at 9:05 am and therefore,

for the time period from the 1st of January 2007 to the 28th of September

2009, n = 502. Also, the title may have a delay in the opening and/or a
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closing in advance, e.g. a title suspended but not reopened. In these cased,

the affective number of trading minutes is considered and as a result n might

be less then 502 or less then 507 depending of the period before or after the

28th of September 2009, respectively. Finally, the number of price data for

the stock under study is approximately 500 thousand.

The price returns at time t are calculated as

R(t) =
S(t+ 1)− S(t)

S(t)

with R(t) ∈ R and are shown in Figure 5.1.

The returns are then converted into a series of states denoted by {Jn}n∈N
with values in E space of states. The index value for each value of Jn is

then calculated using Eq. (??) and choosing a memory m = 100. The index

process is denoted by {V m
n }n∈N. As mentioned above, the value of the index

denotes the level of the volatility of the prices: higher the value of the index,

higher the price volatility.
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Figure 5.1: Prices and returns of the traded stocks
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Figure 5.2: Discretization of the index process in case of one change point

5.5.2 The index process in case of one change-point

Firstly, let us suppose that there can be only two levels of the volatility:

high and low. As a consequence, the index process should also be discretized

in these two states. In order to detect the optimal value of the index that

subdivides the process in two states we use the fact that the price return

process {Jn} presents different dynamics, i.e. different transition matrices,

based on the level of the volatility. Thus, in our work the change point is

identified as the value of the index which would maximize the differences in

the price return dynamics.

Since there is no closed form for identifying the change point we operate

algorithmically by using the maximum likelihood procedure described in Sec-

tion 5.3. The estimated change point and the two probability matrices of the

price return process in each state of the index are calculated for each of the

stocks. Figure 5.2 shows the discretization of the index process in two states
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by using the change point identified through the maximum log-likelihood

procedure.

A well known characteristic of financial time series is the ”volatility clus-

tering” which simply states that periods of high/low volatility in the market

tend to be followed by periods of high/low volatility. It seems useful to

point out that this characteristic is confirmed by analyzing the following two

transition probability matrices:

P̂ (ψ1) =



0.173 0.151 0.207 0.218 0.251

0.129 0.196 0.267 0.255 0.153

0.137 0.209 0.300 0.221 0.133

0.150 0.246 0.275 0.204 0.125

0.237 0.215 0.218 0.159 0.171


;

P̂ (ψ1) =



0.067 0.162 0.312 0.338 0.121

0.031 0.183 0.391 0.347 0.048

0.033 0.236 0.466 0.234 0.031

0.049 0.339 0.397 0.185 0.030

0.110 0.338 0.316 0.170 0.066



In fact, it can be noticed that in the case of high volatility the transition

matrix P̂ (ψ1) presents higher probabilities of transiting in the most extreme

states than the transition matrix P̂ (ψ1). This simply confirms the fact that

in a high volatility market, the probability of experiencing large variations

of the asset price (i.e. strongly positive returns followed by strongly negative

returns and vice versa) is higher than the case of low volatility.

Once the matrices are estimated, the next step is that of determining

whether they are statistically different. For this purpose we calculated two

indices that can be used as a measure of the difference between the two
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Table 5.1: % Root square mean deviation and % mean absolute deviation

Matrices % RSMD % MAD

P̂ (ψ1) , P̂ (ψ1) 49.3% 44.2%

matrices. In particular, we used the percentage root mean square deviation (%

RSMD) and the percentage mean absolute deviation (%MAD). The formulas

are given in Eq. 5.28 and Eq. 5.29, respectively.

%RSMD =

√∑
ij(pij − pij)

2

n
∗ n ∗ 100%∑

ij pij
(5.28)

%MAD =

∑
ij |pij − pij|∑

ij pij
∗ 100% (5.29)

Results are shown in Table 5.1. Since, the values of these two indices

are a measure of the differences of the estimated matrices, higher the value

of the index, higher the distance between the two matrices and higher the

probability that there actually is a difference in the process.

The next step is to test statistically whether the two transition probability

matrices are different. In order to construct the test, we use the procedure

described in Section 5.3.

As mentioned before, the distribution of the statistic test under the null

hypothesis is not known and thus it has to be approximated through the

bootstrap methodology. We have simulated 1000 trajectories of the same

length of the data from a single transition probability matrix estimated con-

sidering the whole dataset. The histogram of the simulated statistic test as

well as the kernel fitting are derived and are shown in Figure 5.3.

We chose a level of significance of 5%. The results of the test for a single

change point of the stock are shown in Table 5.2. The p-value strongly
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Figure 5.3: Histogram and kernel fitting of the simulated statistic test

Table 5.2: Results of the statistic test on one change point

ψ1 D D∗(0.95) D∗(0.99) Empirical p-value

Value 1.23 32400 3290 3580 0.000

suggests to not accept the null hypothesis and thus we conclude that there

is a statistical difference between the two transition probability matrices.
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5.5.3 Identifying the optimal number of change points

The case of more then one change point has also been considered. The

procedure is similar to the case of one change point described so far.

Two change points. In the case of two change points, we suppose that

there are three levels of volatility in the market, i.e. low, medium and high.

In this case, in order to find the maximum of the log-likelihood function, all

the possible combinations of the two change points have to be considered.
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Figure 5.4: Log-likelihood function: one change point

Table 5.3: Results of the statistic test on two change point

ψ1 ψ2 D D∗(0.95) D∗(0.99) Empirical p-value

Value 0.90 1.60 42000 3300 3590 0.000

As a consequence, the log-likelihood is a bivariate function of the two

change points. In Figure 5.4, the log-likelihood function in case of one change

point (the univariate function) is shown. The representation of the bivariate
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Figure 5.5: Log-likelihood function: two change points

case, i.e. the log-likelihood function in case of two change points is shown in

Figure 5.5.

From the maximization of the log-likelihood function we obtained the

values of the two change points (see Table 5.3) and the three transition

probability matrices in each of the classes of volatility.

The estimated transition probability matrices are the following:

P̂ (1) =



0.055 0.151 0.332 0.361 0.101

0.021 0.168 0.416 0.360 0.035

0.024 0.230 0.496 0.228 0.022

0.036 0.352 0.424 0.167 0.021

0.094 0.357 0.339 0.156 0.054


; P̂ (2) =



0.096 0.172 0.273 0.300 0.159

0.067 0.212 0.325 0.309 0.087

0.073 0.244 0.370 0.245 0.068

0.089 0.300 0.331 0.219 0.061

0.142 0.302 0.281 0.183 0.092



P̂ (3) =



0.202 0.140 0.184 0.187 0.287

0.172 0.178 0.232 0.216 0.202

0.184 0.181 0.254 0.203 0.178

0.191 0.208 0.238 0.187 0.176

0.272 0.185 0.195 0.147 0.201


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The statistic test shows that also in this case the null hypothesis cannot

be accepted. We calculated the the percentage root mean square deviation

(% RSMD) and the percentage mean absolute deviation (%MAD) (Table 5.4

and Table 5.5 respectively) and performed the statistic test (see Table 5.3).

Table 5.4: % Root square mean deviation: two change points

P̂ (1) P̂ (2) P̂ (3)

P̂ (1) 0.0% 28.4% 73.0%

P̂ (2) 28.4% 0.0% 47.8%

P̂ (3) 73.0% 47.8% 0.0%

Table 5.5: % Mean absolute deviation: two change points

P̂ (1) P̂ (2) P̂ (3)

P̂ (1) 0.0% 25.8% 65.3%

P̂ (2) 25.8% 0.0% 45.2%

P̂ (3) 65.3% 45.2% 0.0%

Three change points. The procedure for more than two change points is

substantially the same and thus we summarize the results obtained for the

case of three and four change points.

Table 5.6: Values of the Index process in case of three change points

ψ1 ψ2 ψ3

Value 0.80 1.30 2.00
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The estimated transition probability matrices are the following:

P̂ (1) =



0.051 0.145 0.346 0.368 0.090

0.017 0.157 0.429 0.367 0.030

0.020 0.226 0.511 0.224 0.019

0.032 0.357 0.435 0.159 0.017

0.086 0.361 0.345 0.153 0.055


; P̂ (2) =



0.077 0.171 0.294 0.321 0.137

0.049 0.211 0.347 0.323 0.070

0.055 0.250 0.396 0.249 0.050

0.069 0.316 0.354 0.214 0.047

0.122 0.327 0.297 0.179 0.075



P̂ (3) =



0.140 0.167 0.232 0.249 0.212

0.116 0.202 0.278 0.266 0.138

0.126 0.217 0.308 0.229 0.120

0.138 0.257 0.284 0.212 0.109

0.194 0.246 0.255 0.175 0.130


; P̂ (4) =



0.234 0.125 0.158 0.162 0.321

0.218 0.160 0.191 0.182 0.249

0.232 0.150 0.216 0.173 0.229

0.240 0.175 0.195 0.163 0.227

0.311 0.157 0.163 0.133 0.236



Table 5.7: % Root square mean deviation: three change points

P̂ (1) P̂ (2) P̂ (3) P̂ (4)

P̂ (1) 0.0% 24.2% 51.4% 93.0%

P̂ (2) 24.2% 0.0% 29.7% 73.6%

P̂ (3) 51.4% 29.7% 0.0% 44.5%

P̂ (4) 93.0% 73.6% 44.5% 0.0%

Table 5.8: % Mean absolute deviation: three change points

P̂ (1) P̂ (2) P̂ (3) P̂ (4)

P̂ (1) 0.0% 21.8% 46.1% 83.4%

P̂ (2) 21.8% 0.0% 26.8% 70.0%

P̂ (3) 46.1% 26.8% 0.0% 43.0%

P̂ (4) 83.4% 70.0% 43.0% 0.0%
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Four change points. The results of the algorithm in case of four change

points are shown below.

Table 5.9: Values of the Index process in case of four change points

ψ1 ψ2 ψ3 ψ4

Value 0.70 1.00 1.40 2.10

The estimated transition probability matrices are the following:

P̂ (1) =



0.046 0.143 0.351 0.378 0.082

0.014 0.141 0.445 0.374 0.026

0.016 0.219 0.532 0.217 0.016

0.027 0.365 0.448 0.146 0.014

0.084 0.360 0.358 0.147 0.051


; P̂ (2) =



0.064 0.162 0.314 0.344 0.116

0.033 0.202 0.375 0.340 0.050

0.039 0.249 0.429 0.248 0.035

0.053 0.333 0.382 0.199 0.033

0.107 0.343 0.321 0.169 0.060



P̂ (3) =



0.091 0.171 0.279 0.304 0.154

0.067 0.215 0.321 0.308 0.089

0.073 0.248 0.367 0.245 0.067

0.086 0.300 0.332 0.222 0.060

0.135 0.312 0.283 0.182 0.088


; P̂ (4) =



0.150 0.166 0.224 0.238 0.222

0.127 0.199 0.269 0.256 0.149

0.138 0.208 0.298 0.222 0.134

0.150 0.245 0.276 0.206 0.123

0.206 0.236 0.245 0.172 0.141



P̂ (3) =



0.239 0.121 0.153 0.155 0.332

0.232 0.151 0.182 0.169 0.266

0.241 0.142 0.207 0.168 0.242

0.249 0.168 0.182 0.161 0.240

0.320 0.150 0.155 0.130 0.245



Table 5.10: % Root square mean deviation: four change points

P̂ (1) P̂ (2) P̂ (3) P̂ (4) P̂ (5)

P̂ (1) 0.0% 20.1% 35.8% 59.4% 100.5%

P̂ (2) 20.1% 0.0% 16.8% 43.0% 86.1%

P̂ (3) 35.8% 16.8% 0.0% 27.1% 70.9%

P̂ (4) 59.4% 43.0% 27.1% 0.0% 44.1%

P̂ (5) 100.5% 86.1% 70.9% 44.1% 0.0%
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Table 5.11: % Mean absolute deviation: four change points

P̂ (1) P̂ (2) P̂ (3) P̂ (4) P̂ (5)

P̂ (1) 0.0% 17.2% 32.2% 53.4% 90.1%

P̂ (2) 17.2% 0.0% 15.2% 38.6% 80.6%

P̂ (3) 32.2% 15.2% 0.0% 25.2% 67.7%

P̂ (4) 53.4% 38.6% 25.2% 0.0% 42.6%

P̂ (5) 90.1% 80.6% 67.7% 42.6% 0.0%

Five change points. The results of the algorithm in case of five change

points are shown below.

Table 5.12: Values of the Index process in case of five change points

ψ1 ψ2 ψ3 ψ4 ψ5

Value 0.20 0.70 1.00 1.40 2.10

Once the border values of the Index process are identified, the probability

transition matrices of the price return process in each state of volatility can

be estimated through the maximum likelihood estimators. The estimated

matrices are shown below.

P̂ (1) =



0.000 0.143 0.428 0.286 0.143

0.000 0.244 0.356 0.378 0.022

0.002 0.011 0.973 0.013 0.001

0.093 0.326 0.395 0.163 0.023

0.000 0.750 0.000 0.250 0.000


; P̂ (2) =



0.045 0.144 0.354 0.377 0.080

0.014 0.140 0.446 0.375 0.025

0.017 0.223 0.524 0.220 0.016

0.027 0.366 0.450 0.144 0.013

0.081 0.358 0.363 0.147 0.051



P̂ (3) =



0.064 0.161 0.315 0.344 0.116

0.032 0.200 0.377 0.341 0.050

0.038 0.248 0.431 0.249 0.034

0.052 0.334 0.384 0.197 0.033

0.106 0.346 0.321 0.168 0.059


; P̂ (4) =



0.090 0.172 0.280 0.307 0.151

0.066 0.214 0.323 0.309 0.088

0.072 0.249 0.368 0.245 0.066

0.084 0.300 0.334 0.223 0.059

0.135 0.313 0.281 0.183 0.088



P̂ (5) =



0.150 0.165 0.225 0.239 0.221

0.126 0.199 0.269 0.257 0.149

0.136 0.209 0.299 0.224 0.132

0.149 0.246 0.276 0.207 0.122

0.204 0.236 0.247 0.172 0.141


; P̂ (6) =



0.238 0.122 0.154 0.156 0.330

0.230 0.152 0.183 0.171 0.264

0.241 0.143 0.207 0.168 0.241

0.248 0.169 0.184 0.160 0.239

0.319 0.151 0.156 0.130 0.244


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Table 5.13: % Root square mean deviation: five change points

P̂ (1) P̂ (2) P̂ (3) P̂ (4) P̂ (5) P̂ (5)

P̂ (1) 0.0% 80.2% 85.2% 91.8% 106.3% 134.9%

P̂ (2) 80.2% 0.0% 19.5% 35.3% 59.1% 100.2%

P̂ (3) 85.2% 19.5% 0.0% 16.8% 43.0% 86.0%

P̂ (4) 91.8% 35.3% 16.8% 0.0% 27.2% 71.0%

P̂ (5) 106.3% 59.1% 43.0% 27.2% 0.0% 44.1%

P̂ (6) 134.9% 100.2% 86.0% 71.0% 44.1% 0.0%

Table 5.14: % Mean absolute deviation: five change points

P̂ (1) P̂ (2) P̂ (3) P̂ (4) P̂ (5) P̂ (5)

P̂ (1) 0.0% 51.3% 52.0% 59.4% 78.7% 110.2%

P̂ (2) 51.3% 0.0% 16.8% 31.9% 53.3% 90.1%

P̂ (3) 52.0% 16.8% 0.0% 15.3% 38.6% 80.4%

P̂ (4) 59.4% 31.9% 15.3% 0.0% 25.2% 67.8%

P̂ (5) 78.7% 53.3% 38.6% 25.2% 0.0% 42.6%

P̂ (6) 110.2% 90.1% 80.4% 67.8% 42.6% 0.0%

Optimal number of change points. In order to decide the optimal num-

ber of change points methods based on AIC and BIC as defined in Eq. (5.19)

and Eq. (5.20), respectively can be used. As mentioned, it does not exist a

closed form for the calculation of the optimal number of change points and

thus we operate in an iterative way. This way the most parsimonious model

can be identified as the one that minimizes the two indices mentioned before.

It should be remarked that the algorithm reaches very slowly the minimum

values of AIC or BIC. We decided to also calculated the improvement of
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Figure 5.6: Optimal discretization of the Index process

an additional change point in terms of a percentage variation of the two in-

dices. We considered a limit of less than 0.1% as a sign that the algorithm

is reaching its minimum. Results are summarized in Table 5.15.

We identified the optimal number of change points to be four since the

BIC index reached an improvement level of less than 0.1%. As a conse-

quence, the Index process is divided in five states representing five levels of

the volatility in the market: very low, medium-low, medium, medium-high

and very high.

The border values of the index process obtained in the case of four change

points have already been given in Table 5.9 in the above paragraph as well

as the estimated transition probability matrices. Also, in Figure 5.6 the

discretization of the Index process according to the estimated change points

is shown.
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Table 5.15: Values of AIC and BIC for various number of change points

k 1 2 3 4 5

D 32400 42000 46100 48300 49800

%∆ 29.6% 9.8% 4.8% 3.1%

AIC 1379000 1370000 1365000 1363000 1362000

%∆ -0.7% -0.4% -0.1% <-0.1%

BIC 1380000 1371000 1367000 1366000 1365000

%∆ -0.7% -0.3% <-0.1% <-0.1%

The autocorrelation function. Financial time series present a very im-

portant feature: the fact that while the returns are not autocorrelated and

present i.i.d behavior, the square of returns or their absolute values are long

rage correlated. It is important that the model describing such dynamics

presents the same characteristic.

The autocorrelation of the square of returns for various time lags, which

we will denote with τ , is given by the Eq. 5.30.

Σ(τ) =
Cov(R2(t+ τ), R2(t))

V ar(R2(t))
(5.30)

We compared the autocorrelation function of the square of returns of real

data with simulated trajectories using the models defined above (see Figure

5.7)

The graph shows that for the model with one change point, the autocor-

relation of the square of returns falls rapidly to zero. In choosing two change

points, there is a significant improvement in the long range autocorrelation.

In adding more change points, the function continues to improve even though

at a very slow rate. It is worth noticing that for the model with four change

91



CHAPTER 5. A CHANGE-POINT APPROACH IN IMC

0 10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

 

 

Real data

Four change points

Five change points

Three change points

Two change points

One change point

Figure 5.7: Autocorrelation of the square of returns for various number of

change points of the Index process

points the autocorrelation function of the simulated data is the closest to

the autocorrelation of the real data. Adding one more change point seems

to worsen the result (even though the difference with the model with four

change points is minimal).
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5.6 Conclusions

In this Chapter the change point approach has been used to identify the opti-

mal discretization of the Index process in the Indexed Markov Chain models.

It is well known that financial time series present a long range autocorrela-

tion of the square of return and thus models used to describe price returns

should have this particular characteristic known also as ‘a long memory’.

Furthermore, financial time series present another peculiar feature often re-

ferred to as ‘volatility clustering’. The latter states that there is a certain

persistence of the price volatility in the market, i.e. high (low) volatility

periods of price returns tend to be followed by high (low) volatility periods.

Both these stylized facts of financial series are modeled in the IMC by the

introduction of the Index process. In fact, the Index process is calculated as

a function of the previous mth (accounting thus for the ‘a long memory’) of

the square of returns (accounting this way for the ‘volatility clustering’) each

exponentially weighted.

In order to construct the model, the Index process has to be discretized in

a limited number of states. We applied the change point approach justified by

the assumption that the price dynamics of the index are different on different

levels of the volatility. We thus estimated, through the maximization of the

log-likelihood function, the value of the index process which maximized the

difference in the dynamics of the price return process. This was achieved in

an iterative way through an algorithm implemented in MatLab.

We also treated the problem of finding the optimal number of change

points to consider. In this case we used the methods based on AIC and BIC

to find the most parsimonious model. This also has been achieved in the

empirical study in an iterative way.

Lastly, we constructed the autocorrelation function of the square of re-
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turns for the real data and for the different models with various change

points.

From the empirical study, it resulted that the optimal number of change

points was four which identified five states of the Index process each corre-

sponding to a particular level of volatility: very low, medium -low, medium,

medium-high and very high. The autocorrelation function showed that with

four change points, the simulated data presented the closest behavior to the

real data.
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Conclusions

In this thesis we tried to make one more step in the application of Markov

processes in the actuarial and financial field. Two main problems have been

dealt. The first one regarded the application of a Markov process for the

description of the salary lines of participants in an Italian Pension Scheme of

the First Pillar. A semi-Markov process with backward recurrence time was

proposed. A statistic test has been applied in order to determine whether

the null hypothesis of a geometrical distribution of the waiting times of the

process should be accepted or not. The test showed that the null hypotheses

was rejected for some of the waiting time distributions and thus we concluded

that the semi-Markov process should be preferred to the simple Markov chain

to model the transition in the states of the salary process.

In the financial application, we treated the Indexed semi-Markov chain, a

new model that has been previously used to describe intra day price return

dynamics. The peculiarity of this model is that, through the Index process,

it manages two very known stylized facts of financial time series: the first

one is the long memory of financial series and the second one is the volatility

clustering. This is achieved by defining the Index as a function of the m-th
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previous values of the price returns.

In order to transform the values obtained in states of a stochastic process

a discretization of the Index is necessary. We proposed the method of change

points as a new method to obtain the most efficient classes. This approach

is justified by the fact that, for financial time series, the price dynamics in

different levels of volatility in the market present different characteristics.

The theoretical framework has been set by considering various situation:

the case of one known change point, of one unknown change point of more

then one unknown change point. In all these cases the maximum likelihood

estimations of the transition probability matrices are defined. The method-

ology has then been applied to study the dynamics of intra-day price returns

of a quoted Italian firm. Different models, with different number of change

points have been hypothesized. Tests, based on AIC and BIC, are performed

in order to determine the most parsimonious model. We found out that the

best discretization of the Index process is that of using four change points,

which implied five levels of volatility in the market: very low, medium low,

medium, medium high and very high. We also generated synthetic trajec-

tories in order to calculate the autocorrelation of the square of returns for

the real data as well as for the hypothesized models. The autocorrelation

function showed that the model with four change points was the closest to

the real data.
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