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Identification of novel drug-induced toxic nephropathy and acute kidney injury (AKI) biomarkers has been designated as a top
priority by the American Society of Nephrology. Increasing knowledge in the science of biology and medicine is leading to the
discovery of still more new biomarkers and of their roles in molecular pathways triggered by physiological and pathological
conditions. Concomitantly, the development of the so-called “omics” allows the progressive clinical utilization of a multitude
of information, from those related to the human genome (genomics) and proteome (proteomics), including the emerging
epigenomics, to those related to metabolites (metabolomics). In preterm newborns, one of the most important factors causing the
pathogenesis and the progression of AKI is the interaction between the individual genetic code, the environment, the gestational age,
and the disease. By analyzing a small urine sample, metabolomics allows to identify instantly any change in phenotype, including
changes due to genetic modifications. The role of liquid chromatography-mass spectrometry (LC-MS), proton nuclear magnetic
resonance ('H NMR), and other emerging technologies is strategic, contributing basically to the sudden development of new
biochemical and molecular tests. Urine neutrophil gelatinase-associated lipocalin (uUNGAL) and kidney injury molecule-1 (KIM-1)
are closely correlated with the severity of kidney injury, representing noninvasive sensitive surrogate biomarkers for diagnosing,
monitoring, and quantifying kidney damage. To become routine tests, UNGAL and KIM-1 should be carefully tested in multicenter
clinical trials and should be measured in biological fluids by robust, standardized analytical methods.

1. Introduction

In neonatology, the evaluation and the monitoring of kidney
function continues to be a complex, intriguing, and inter-
esting medical investigation involving the close cooperation
of several specialists belonging to pediatric critical care,
neonatology, neonatal nephrology, obstetrics, radiology, and
laboratory medicine. Drug-induced nephrotoxicity plays an
important role in the high prevalence and incidence of
neonatal acute kidney injury (AKI), which in turn is the most
important cause of morbidity and mortality in preterm babies
admitted to neonatal intensive care units (NICUs) [1], espe-
cially in those conditions characterized by the absence of olig-
uria [2]. In fact, the immature preterm kidney with ongoing

nephrogenesis is likely to be vulnerable to the hemodynamic
changes associated with preterm birth. The early stages of
toxic nephropathy and AKI are commonly characterized by
very few, nonspecific clinical signs and by nonsignificant vari-
ations of conventional serum and urine biomarkers. During
toxic nephropathy, the renal functional reserve may mask
parenchymal lesions, as estimated by urinalysis, glomerular
filtration rate (GFR), blood urea nitrogen (BUN), and serum
creatinine (SCr), up to the point where over 75% of the
functioning nephrons have been lost [3, 4]. Accordingly, these
factors measure incipient kidney failure and in most cases,
the finding of normal results does not mean the absence of
kidney dysfunction. These drawbacks call for new methods,
namely, biomarkers that can identify early and accurately



kidney damage and impairment, avoiding the risk of neonatal
death and of complications in childhood and adulthood.

2. Next Generation Biomarkers for
Toxic Nephropathy and AKI

Identification of novel drug-induced toxic nephropathy and
AKI biomarkers has been designated as a top priority by the
American Society of Nephrology. The concept of developing
a new toolbox for earlier diagnosis of disease states is also
prominently featured in the National Institute of Health
(NIH) Road Map for biomedical research. In 2007, the Acute
Kidney Injury Network (AKIN), a collaborative group of
investigators from all major critical care and nephrology soci-
eties, proposed a staging system based on 3 categories (mild,
moderate, and severe) in a way similar to those (risk, injury,
and failure) used by the RIFLE staging system. In children,
A modified pediatric RIFLE (pRIFLE) classification was pro-
posed in which similar criteria were used for pediatrics [5].
Despite these working classification systems, the diagnosis of
AKT is problematic, as current diagnoses rely on two func-
tional abnormalities: functional changes in serum creatinine
and oliguria. Both of these are late consequences of injury
and not markers of the injury itself. The increasing applica-
tion in clinical practice of the so-called “omics,” especially
metabolomics, seems to offer new attractive perspectives for
improving neonatal outcome and management in kidney
disease and, more extensively, in critically ill newborns
(Figure 1).

3. Kidney Development in the Perinatal Period

Human kidney development involves two basic processes:
morphologic formation and, ultimately, the acquisition of
function. The first one occurs exclusively in utero from
the 6th to the 36th week of gestation, whereas the second
one starts during the fetal life and accelerates after birth
to reach adult levels. In preterm newborns, postnatal
renal development exhibits accelerated maturation with a
reduced width of the nephrogenic zone, reduced percentage
of immature V-stage glomeruli, and increased number of
glomerular generations [6]. Immaturity worsens the natu-
ral neonatal kidney vulnerability to ischemic and hypoxic
insults, mainly caused by higher perfusion rate, and vul-
nerability to potentially endogenous- or exogenous-toxic
substances that may be present in the circulation (drugs,
bilirubin, etc.) [7]. Immaturity of renal tubular cells might
involve the expression of transporting molecules, the regula-
tion of transporting systems, and the way by which different
tubule segments interact. The physiological renal immaturity
cannot be considered a risk factor for healthy full-term
infants fed an appropriate diet; however, it becomes a major
risk in extremely low and very low birth weight (ELBW
and VLBW, resp.) preterm infants, often affected by various
systemic diseases (dehydration, congestive heart failure, sys-
temic inflammation and sepsis, abrupt changes in intrarenal
hemodynamics, etc.) and by inappropriate losses, mechanical
ventilation, and exogenous pharmacologic stress. Multiple
factors may play a role in the epigenetic modulation of kidney
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development, including maternal diet, stress and hyperten-
sion, drugs administered to the mother or to the new-
born, prematurity, low birth weight (LBW), and intrauterine
growth retardation (IUGR) [8, 9]. All these factors may lead
to a disturbance of nephrogenesis, resulting in low nephron
numbers at birth, which may represent the main factor favor-
ing the development of hypertension and, eventually, of end
stage renal disease (ESRD) in childhood or adulthood [10].
Finally, the considerable interindividual variability in kidney
maturation, recently confirmed by autopsy studies in preterm
infants, represent a major risk factor of progressive renal
disease in adulthood [11, 12].

4. Conventional Biomarkers of Drug-Induced
Toxic Nephropathy and Acute Kidney Injury

The current diagnosis of drug-induced nephrotoxicity and
AKI relies on a marker of steady-state kidney function,
muscle-derived SCr. Unfortunately, neonatal age is typically
marked by a non-steady-state condition and even AKI itself
represents a very unstable pathological condition. Therefore,
SCr becomes a retrospective, insensitive, and even deceptive
measure of kidney injury [13-15]: retrospective because SCr
concentration may result in a very delayed signal even after
considerable kidney injury, it must accumulate over many
days, a length of time that is regulated by extrarenal modifiers
such as muscle mass and diet [16]; insensitive because as
much as a 50% loss of renal function may be required to ele-
vate SCr enough that it comes to medical attention, whereas
levels that fall short of this threshold are usually dismissed,
despite their known association with excess mortality and
prolonged hospitalization, and as SCr is affected by tubular
secretion and systemic production, changes in SCr concen-
tration are not specific to tubular injury; deceptive because
SCr level often reflects transient physiologic adaptations to
volume changes or the presence of chronic kidney disease
(CKD), rather than AKI. Most importantly, the measurement
of SCr does not identify the cell type that is acutely injured,
even though this localization determines the natural history
of the disease and its response to therapy. Because small
changes in SCr are associated with short- and long-term
adverse events, as demonstrated previously [17], determining
whether the increase in SCr represents structural damage or a
reversible functional change takes on some urgency, as ther-
apeutic strategies are somewhat different [18]. BUN is also
widely used for evaluating kidney function; however, likewise
SCr, BUN is not a reliable surrogate biomarker of kidney
injury because various factors may affect its concentration.
For example, an increase in BUN concentration can be found
with volume depletion in the absence of any tubular injury.
Furthermore, BUN increases concomitantly with the increase
of urea synthesis, as occurs with endogenous (catabolic states
or blood in gastrointestinal tract) or exogenous (protein
supplementation) protein loads [19].

5. The Omics Era and Its Impact on the Study
of Neonatal Kidney Diseases

With the latest advances in high-throughput technologies,
the pace of advances in the “omics” fields that are relevant
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FIGURE 1: Schematic progresses in knowledge on biomarkers for kidney disease and damage. Abbreviations: NGAL = neutrophil gelatinase-
associated lipocalin; KIM-1 = kidney injury molecule-1; EGF/MCP-1 = epidermal growth factor/monocyte chemotactic peptide-1 ratio.

to clinical medicine has markedly accelerated [20]. The
widespread availability of enabling technologies such as func-
tional genomics and proteomics has accelerated the rate of
novel biomarker discovery and therapeutic targets for kidney
diseases [21]. For example, great attention has been focused
on the study of genetic changes contributing to specific renal
pathology that could lead to CKD, such as IgA nephropathy
and idiopathic membranous nephropathy [22]. Genomics,
proteomics, and metabolomics, when taken together as a
whole, provide a comprehensive framework, also referred to
as systems biology that describes the biochemical function
of an organism and its response to challenges. The advent of
the microarray, or cDNA chip, allows investigators to search
through thousands of genes simultaneously, making the
process very efficient. Such gene expression profiling studies
have identified several genes whose protein products have
emerged as CKD and AKI biomarkers [23, 24]. However,
known gene polymorphisms explain only a fraction of asso-
ciated risk, suggesting that sequence variations in the human
genome are only part of the puzzle leading to the evolution
of the nascent field of epigenetics [25]. A large number
of epidemiology studies suggest that the environment is a

major factor in disease etiology [26, 27]. Epigenetics refers to
heritable modifications in gene function without alteration of
DNA sequences [28]; concisely, epigenetics changes regulate
gene expression [29]. The best-known examples of epige-
netics modification are DNA methylation and chromatin
remodeling by modification of histone proteins [30]; these
modifications are potentially reversible and are not associated
with changes in DNA sequence [31]; furthermore, they spec-
ify functional outputs from the DNA template and are often
heritable through cell division [32]. The unifying theme of
epigenetic disease is a disruption of normal phenotypic plas-
ticity [33]. Epigenetics alterations are involved in the patho-
genesis and progression of kidney disease, especially because
these alterations are easily promoted by the plethora of
coexisting metabolic alterations and inflammation associated
with CKD [34]. Recent reports of epigenetics mechanisms in
renal injury, fibrosis, inflammation, and metabolic memory
have set the stage for future research in this area [35]. Advanc-
ing technologies have radically improved the speed and
precision of identifying and measuring proteins in biological
fluids, and proteomic approaches are also beginning to
yield novel biomarkers for assessing kidney damage [36].



Proteomics can be operationally defined as a field of study
that is focused on the identification of proteins, peptides, or
their interactions and posttranslational modifications [37].
Clinical proteomics is currently conducted to detect or select
biomarkers of disease; mass spectrometry (MS) is the central
analytic technique used for most investigational proteomics
[38]. In the early 2000’ it was introduced as the concept of
protein profiling: the fusion of MS technique with pattern
recognition, where specific peak profiles, without knowledge
of individual peak identity, were treated as biomarkers [39].
In particular, matrix-assisted laser desorption and ionization
time-of-flight (MALDI-TOF) and surface-enhanced laser
desorption and ionization time-of-flight (SELDI-TOF) MS
can profile proteins of low molecular weight (LMW) as well
as the metabolic products of serum proteins, originating
the so-called peptidome [40]. Briefly, proteinases generate
biomarker fragments and circulating protein fragments gen-
erated in the diseased tissue microenvironment may serve
as diagnostic protein markers. Research studies on the pep-
tidome revealed an apparent abundance of LMW proteins
and peptides that potentially contain disease-specific infor-
mation and showed that changes in the expression patterns
of these molecules may be disease specific. Peptidome is
a promising high-throughput approach for identifying new
potential biomarkers in various body fluids; in particular,
urinary peptidome profiling with high-throughput methods
such as MB-MALDI-TOF MS or SELDI-TOF MS appears
to be a promising tool in nephrology research [41]. Several
research papers have demonstrated that “urinary peptidome”
may be a resource at least as dynamic and informative as the
“urinary proteome” [42, 43].

6. Metabolomics for Managing Neonatal
Kidney Disease

Genomics, transcriptomics, and proteomics identify geno-
type and phenotype. On one hand, the genotype of a patient
defines the risk or probability of reacting to a disease, drug,
or environmental challenge in a certain way; genotype can be
considered “static” On the other hand, the phenotype more
closely reflects clinical reality at any given moment, and it
may be considered “dynamic” The advent of metabolomics,
in which all of the metabolites in a given tissue or biological
fluid are examined (with the caveat that some metabolites will
not be detected in any given experiment), is one of the latest
advances in the field of omics. The mRNA over- or underex-
pression (identified as transcriptome) translates directly into
corresponding up- or downregulated expression of proteins
(surrogate biomarkers), respectively. However, changes in the
transcriptome are not necessarily associated with changes in
signal transduction and cell biochemistry; therefore, down-
stream confirmation by analyzing protein concentrations
and/or metabolites is commonly performed [44]. In turn,
variations of protein levels in biological fluids, cells, and
tissues may also not necessarily translate into changes in
cell biochemistry and function, since protein expression is
not always correlated with activity. Main causes include
reaction with oxygen radicals, changes in translational mod-
ifications, and allosteric regulation by substrates, products,
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and other inhibitors and activators. Metabolomics offers
several advantages over genomics, transcriptomics, and pro-
teomics, making it extremely attractive for research and
clinical purposes. Firstly, metabolites vary both quantitatively
and qualitatively at any given time, and this is of great interest,
because in most cases pathophysiological pathways and
histological damages are directly caused by cell metabolism.
Secondly, while transcriptomics and proteomics may be
considered “late signals” since their response to a challenge
may take hours, days, and sometimes weeks, metabolic
response, on the other hand, can be measured very often
within seconds or minutes. Thirdly, transcriptomics and
proteomics strictly detect endogenous changes, whereas the
metabolome communicates with the environment and is an
open system. Last but not least, despite the very high overall
number of endogenous metabolites (~100,000), the number
of major metabolites relevant for clinical diagnostics and drug
development has been estimated at 1,400-3,000 molecules
[45], which means less data to manipulate and interpret,
being genes (~25,000), transcripts (~85,000), and proteins
(>10,000,000) greatly outnumbered. It is reasonable to argue
that metabolomics is typically more closely associated with a
disease process or drug effect than proteins, mRNA, or genes
[46].

At first, metabolomics was defined as “the quantitative
measurement of the multiparametric metabolic response
of living systems to pathophysiological stimuli or genetic
modification” [47]. More recently, the same authors have
revised the definition of metabolomics as “a global holistic
overview of the personal metabolic status,” or in other word,
“a snapshot of the chemical fingerprints that specific cellular
processes leave behind” [48]. The metabolome was first
defined as “the quantitative complement of all of the LMW
molecules present in cells in a particular physiological or
developmental state” [49]; more concisely, the metabolome
can be considered the phenotype reflecting the epigenetics
modifications [50]. Two strategies configure metabolomics
studies: the targeted and the nontargeted approach [51]. The
latter may be defined as a “nonspecific approach,” investi-
gating all the metabolites (both endogenous and exogenous)
detectable in a fluid or tissue; this analysis is focused on
capturing as much information as possible, providing a
functional fingerprint of the physiological and pathological
state of the body. The former is focused on the investigation
of several well-defined compounds (e.g., those discovered in
a new metabolic pathway); it is only used when the target
of a drug or disease process is at least partially understood.
Metabolic fingerprinting describes the unbiased analysis of
the metabolome by examination of metabolite patterns in
different experimental groups with the subsequent classifica-
tion of these patterns into a fingerprint [52]. Samples can be
classified if the metabolite fingerprints differ between groups
allowing for sample clustering. Metabolite identification
relies on public databases [53]: the human metabolome Data
Base (HMDB) is the metabolomic equivalent of GenBank. It
is an open access database (http://www.hmdb.ca/) providing
reference to nuclear magnetic resonance (NMR) and mass
spectra, metabolite disease associations, metabolic pathway
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data, and reference to metabolite concentrations for hundreds
of human metabolites from several biofluids [54, 55].

In most cases, proton nuclear magnetic resonance (lH
NMR) spectroscopy and MS based assays are used for
metabolic fingerprinting [56-59]; these techniques require
a well-defined sample preparation [60]. Typically, 'H NMR
spectroscopy allows for the simultaneous detection of 20-50
metabolites with an analytical sensitivity ranging 1-10 gmol/L
[61]; below this cutoft, the detection and quantification of
metabolites is still unreliable, although high field NMR
spectroscopy and cryoprobes can improve sensitivity [62].
On the other hand, MS is still considered the gold standard
in metabolite detection and quantification; depending on the
metabolite, the sensitivity of MS is in the picomolar and nano-
molar range. However, MS should be coupled to an array of
separation techniques including gas chromatography (GC)
and liquid chromatography (LC); in addition, MS requires
longer analytical time (20-60 min for each sample), extensive
sample preparation including derivatization and the limita-
tion to volatile compounds [63]. Other technologies less com-
monly used for metabolomics are Raman and infrared spec-
troscopy [64, 65]. Each method has serious drawbacks, such
that neither by itself is ideal.

In general, biological fluids are considered highly ade-
quate for metabolomics, because they closely represent quan-
titative and qualitative variations of phenotypic molecular
markers such as metabolites. In neonatal and pediatric
nephrology, however, urine is considered the ideal sample,
since it is a so-called “proximal matrix,” being closer to (or
in direct contact with) the kidney, which is the site of disease
or drug effect under investigation [66]. This means that
urine metabolome better reflects kidney pathophysiological
changes, while metabolome in whole blood, plasma, and
serum better reflects systemic changes. Furthermore, urine
represents an “open system” by which the body through
the elimination of water, ions, metabolic degradation, and
harmful or toxic substances regulates important balance,
maintaining homeostasis. It is also of importance that the
urine metabolome includes the intermediate metabolites,
which reflects specific metabolic processes. Finally, urine can
be collected easily (a spot sample is adequate) and non-
invasively: these aspects are of extreme importance in neona-
tology, especially for preterm babies LBW. Two conditions are
essential to perform metabolomics studies on urine samples:
first, urine must be collected in a sterile bag or plastic con-
tainer, because bacteria metabolism significantly interferes
on the urine metabolome. Secondly, urine samples must
be frozen at —80°C immediately after collection, until analysis
[67].

Metabolomics allows to: (a) identify unknown molec-
ular mechanisms; (b) select molecular markers that can
be used for drug discovery, preclinical, and clinical drug
development; (c) develop diagnostic tools. Theoretically,
metabolomics has a great potential in nephrology for iden-
tifying metabolic patterns as markers of kidney function, dis-
ease, and injury and for elucidating and monitoring pharma-
codynamic and toxicodynamic molecular mechanisms [68].
Interestingly, ' H NMR-based metabolomics permits to follow

metabolism in different areas of the kidney, which could
yield important information about nephrotoxicity [69]. Mon-
itoring renal transplantation and allograft rejection are also
promising applications for metabolomics [70, 71]. In the
neonate, the continuous, abrupt changes in renal hemody-
namics, fluid balance, glomerular and tubular functions, and
metabolism due to the developmental transition from fetal to
neonatal life make it critical for the analysis of the metabolic
profile and the research of new molecules associated with
pathological conditions. In particular, the body water content
significantly differs between premature babies (85%), infants
(75%), and adults (50-60%). In addition, the amount of water
in the extracellular compartment is almost double in the new-
born compared with that in the adult (40% versus 20%, resp.)
[72]. However, metabolomics is opening up new perspectives
to improve the management of sick newborns and of VLBW
and LBW preterm newborns by providing new metabolic
profiles and biomarkers associated with perinatal/neonatal
maturational processes and their metabolic background [73-
75]. In particular, different urine metabolic profiles were
found between 26 full term and 41 preterm babies [76]. Inter-
estingly, the urine metabolome discriminated preterm babies
with a GA between 23 and 32 weeks from those with a GA
between 33 and 36 weeks. Single metabolites recognizing
unambiguously these groups were: hippurate, tryptophan,
phenylalanine, malate, tyrosine, hydroxybutyrate, N-acetyl-
glutamate, and proline. Furthermore, metabolomics seems
to be a valuable tool for investigating the pharmacokinetics
and the effectiveness of drugs in neonatology [77, 78].
In a clinical study in 21 children with nephrouropathies
compared with 19 healthy controls, it was found that renal and
urinary tract malformations are associated with specific urine
metabolic profiles never overlapping at least in part urine
metabolic profile in healthy controls [79]. Metabolomics may
play a key role in perinatology, particularly for searching
biomarkers of IUGR. In a group of preterm babies with
IUGR diagnosed by ultrasonography during pregnancy,
urine metabolic profile revealed an increase in the flux
of the urea cycle, amino acid metabolism, glycine, serine,
and threonine metabolism [80]; interestingly, it appeared
to be associated with a significant increase of myoinositol
levels in comparison to the control group (P = 0.04).
Although the role of myoinositol is still unclear, it may be
associated with the development of metabolic syndrome. The
metabolic profiles in broncoalveolar lavage fluid (BALF) were
recently investigated in 12 preterm babies with respiratory
distress syndrome (RDS) during mechanical ventilation and
at extubation time point, after surfactant administration [81].
By using the GC-MS technical approach, 25 overexpressed
metabolites were identified, including 10 with known molec-
ular structure. Metabolomics has been successfully used for
managing pediatric asthma, pneumonia, and bronchiolitis
[82]. Metabolomics seems to have the capacity to assess the
risk of CKD in adulthood in subjects born with ELBW.
By comparing the urine metabolic profile in 19 healthy
young adults (mean age 24 y) born with ELBW with that of
13 healthy adults of similar age (controls) born at term
appropriate for gestational age (AGA), we found two totally



distinct cluster regions of metabolites: the first one asso-
ciated with controls and the other one with subjects born
ELBW [83]. By multivariate analysis, the most important
discriminating metabolites between the two groups were N-
methylhydantoin, glycine, valine, and glutamine. Metabolites
significantly increased in ELBW urine samples were corre-
lated to CKD as well as to the metabolic syndrome. Several
studies have attempted to find early diagnostic surrogate
biomarkers for a variety of renal diseases as well as to direct
personalized therapies; in particular, metabolomics has been
applied to the study of uremic syndrome, diabetic nephropa-
thy, AKI, polycystic kidney disease, and kidney cancer
[84].

Although individual data sets including genomic, epige-
nomic, proteomic, and metabolomic information are highly
informative, integrating them together offers the exciting
potential to answer many long-standing questions. From this
point of view, metabolomics should be considered comple-
mentary to transcriptomics and proteomics. Therefore, inte-
grative analysis has become an essential part of experimental
design in the era of next-generation genomics and is no
longer the domain of bioinformatics technicians [85].

7. Neutrophil Gelatinase-Associated
Lipocalin (NGAL)

On the basis of experimental studies on kidney injury in
mouse and other animal models, researchers picked the
10 proteins that were most overexpressed in the kidney
for further study. Of those, neutrophil gelatinase-associated
lipocalin (NGAL) turned out to be a useful marker. NGAL has
emerged as the most promising marker of AKI in a number
of clearly defined clinical contexts [86]. Human NGAL also
named human neutrophil lipocalin (HNL), lipocalin-2 (Icn2)
or lipocalin 24p3, siderocalin, «, -microglobulin-related pro-
tein, and uterocalin is a ubiquitous 25-kDa glycoprotein
consisting of 178 amino acid residues belonging to the
lipocalins family [87]. NGAL binds and transports LMW
proteins (ligands) as well as lipophilic substances, including
the bacterial siderophore enterochelin from gram-negative
bacteria, bacilli bactin from gram positive, and carboxymy-
cobactins from Mycobacteria. When these siderophores are
bound to NGAL, iron transfer to bacteria is prevented and
growth is blocked [88]. In the course of experimental studies
inducing kidney ischemia-reperfusion, it was observed that
NGAL has the capacity to attenuate the extent and the severity
of renal tissue injury by reducing apoptosis and enhancing
proliferation of renal tubules [89]. This effect is due to the
iron delivery to proximal tubular cells by NGAL; iron, in turn
upregulates heme oxygenase-1, a well-known enzyme that
protects tubular cells [90]. NGAL can additionally promote
renal tubular formation and might enhance tubule repair after
AKI [91].

NGAL was firstly isolated from the supernatant of human
activated neutrophils [92]; later, it was evident that infec-
tion and inflammation, oxidative stress, cytokines, ischemia,
cancer, intoxication, and other conditions leading to cellular
necrosis, apoptosis, and death induce the rapid upregulation
of NGAL synthesis in epithelial cells of various human tissues,
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including liver, lung, kidney, and trachea [93, 94]. NGAL
is thought to be an acute-phase protein with upregulated
expression in different inflammatory conditions as well as in
cancer [95]; it has also been suggested that NGAL comprises
a critical component of innate immunity to exogenous bac-
terial infections [96]. In healthy subjects, circulating NGAL
is filtered through the glomerulus and is then captured by
megalin within the proximal tubule, where it traffics to
lysosomes and degrades to a 14-kDa fragment being not recy-
cled [97, 98]. Experimental studies on animal models have
definitively demonstrated that the response of the kidney to
injury consists of the NGAL mRNA overexpression by distal
tubular cells and collecting ducts [99]; similarly, the pivotal
role of NGAL in regulating the progression of CKD to
AKI was demonstrated [100]. A growing body of evidence
indicates that NGAL increases within a few minutes in both
serum and urine after an injury of kidney tissue (up to 1,000-
fold) and thus it has been widely evaluated in clinical studies
for the early diagnosis, monitoring, and risk stratification of
AKI and other kidney diseases.

AKI induces a rapid and massive upregulation of NGAL
mRNA within the thick ascending limb of Henle’s loop and
in the collecting ducts, originating the so-called “NGAL renal
pool” [101]; the accumulation of NGAL in the distal nephron
leads to a significant increase in urine NGAL (uNGAL),
which represents the major fraction of kidney tissue-derived
NGAL. Simultaneously, AKI induces NGAL mRNA upregu-
lation in the liver, in the lung, and in various distant organs,
originating a rapid release of NGAL into the circulation,
called “NGAL systemic pool.” Finally, uNGAL may originate
both from circulating NGAL and from the distal nephron,
and this hypothesis has been recently reported as “two-
compartment model of NGAL trafficking during AKI” [102].
In this model, systemic NGAL that is produced in the setting
of sepsis or renal disease may serve to limit proximal tubular
damage, whereas NGAL synthesized locally in the kidney
may exert bacteriostatic effects in the distal urogenital tract.
According to this model, changes in uUNGAL concentration
may better predict AKI than those in plasma, being earlier
and more specific.

With the intent to introduce the determination of NGAL
in clinical practice, new analytical methods have been
developed and optimized in biological fluids; in particular,
NGAL can be measured in urine by a reliable and auto-
mated method, easily adaptable in an emergency setting
[103]. Being NGAL a critical component of innate immunity
to bacterial infection, it is also expressed during systemic
inflammation and sepsis, and thus it increases significantly
in the bloodstream and, in turn, in urine. Moreover, dur-
ing systemic inflammation and sepsis uNGAL significantly
increases because of neutrophils accumulation within the
tubular lumen. Consequently, uNGAL can increase (a) as a
result of a renal tubular damage; (b) in the course of an acute
phase response; (c) as the concomitant presence of sepsis with
AKI. How can we distinguish sepsis-induced uNGAL from
AKI-induced uNGAL excretion? Three isoforms of human
NGAL have been isolated: a 25-kDa monomer, a 45-kDa
disulfide-linked homodimer, and a 135-kDa heterodimer
consisting of a monomer covalently bound with neutrophil
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gelatinase, also named matrix metalloproteinase (MMP-9)
via an intermolecular disulfide bridge. The NGAL/MMP-
9 complex formation seems to protect MMP-9 enzymatic
activity from degradation [104]. Neutrophils synthesize the
monomer and the homodimer, whereas renal tubular epithe-
lial cells synthesize the monomer and, to some extent, the
heterodimer [105, 106]. Therefore, we can speculate that an
“ideal” immunoassay capable to distinguish various molec-
ular forms of uNGAL should permit to assess the origin of
uNGAL and, ultimately, the pathological process leading to
the changes in uNGAL concentration [107]. Unfortunately,
this “ideal” immunoassay does not exist; more important,
developing AKI in the course of sepsis and developing sepsis
in the course of AKI are both dynamic pathological processes
in a continuous interaction [108].

NGAL has emerged as a very promising biomarker of
kidney injury and damage especially because kidney epithelia
express and excrete massive quantities of NGAL within 30
minutes into urine when stressed by ischemia-reperfusion
injury, nephrotoxins, sepsis, and chronic progressive changes
[109, 110]. These findings have been confirmed in various
studies in adults, children, and newborns [111, 112]. A mile-
stone in clinical studies evaluating NGAL as a biomarker for
AKT is that of Mishra et al., published in 2005 [113]. In a group
of 71 children undergoing cardiothoracic surgery, which
represents an excellent model of renal ischemia-reperfusion,
the development of AKI in 28% of children was detected by
substantial increase in serum and urine NGAL 2 hours after
cardiac surgery. Importantly, NGAL detected AKI 34 hours
earlier than serum creatinine did. Both urine and plasma
NGAL were powerful independent predictors of AKI, with
an AUC of 0.998 for the 2-hour urine NGAL and 0.91 for the
2-hour plasma NGAL measurement. A conspicuous number
of studies on NGAL for assessing AKI in the course of cardiac
surgery have subsequently confirmed the results published
by Mishra [114-120]. In a prospective study, uNGAL was
measured immediately after kidney transplantation and then
for subsequent 3 times every 6 hours [121]. NGAL urine levels
significantly differed between patients with delayed graft
recovery, patients with slow graft function, and patients with
immediate graft function; results clearly showed that uNGAL
can be used as an early, noninvasive and accurate predictor of
the need for dialysis within the first week of kidney transplan-
tation, confirming a previous similar study performed mainly
on children [122]. Urine NGAL has also been shown to
predict the severity of AKI and dialysis requirement in a mul-
ticenter study of children with diarrhea-associated hemolytic
uremic syndrome [123]. The measurement of plasma and
urine NGAL seems to be a reliable, predictive biomarker of
AKI following contrast administration and in the intensive
care setting [124, 125]. In the neonate, uNGAL is detectable
at birth, showing a wide range of variability in premature
newborns (0.51-2815.7 ug/L), probably because NGAL plays
an important developmental role in proliferating nephrons
of premature kidneys [126]. Urine NGAL was found to be
inversely related to birth weight [126]. The sensitivity of
uNGAL in detecting oliguria (used as a surrogate of AKI)
was found low (31%) while specificity was 90%, suggesting
that babies who do not have clinical indicators such as

oliguria would test negative for AKI when using uNGAL as
a screening mechanism. Reference ranges for uNGAL were
established in 50 VLBW premature babies (2-150 ug/L) by
an immunoblot assay employing human NGAL recombinant
to create the standard curve [127]. Finally, uNGAL can be
considered an early biomarker of sepsis in VLBW newborns,
discriminating babies with late onset blood culture positive
sepsis from those with single blood culture positive for
S. epidermidis and from those with negative blood culture
treated with antibiotics [128]. Despite the fact that NGAL is
emerging as a center-stage player in the AKI field as a novel
predictive biomarker, large multicenter studies to further
define the predictive role of plasma and urine NGAL as a
member of the putative “AKI panel” have been initiated [129].

8. Kidney Injury Molecule-1 (KIM-1)

Kidney injury molecule-1 (KIM-1) is a biomarker for renal
proximal tubular damage discovered only about 15 years
ago [130]. KIM-1 is a type I cell membrane glycopro-
tein containing, in its extracellular portion, a six-cysteine
immunoglobulin-like domain, two N-glycosylation sites, and
a Thr/Ser-Pro rich domain characteristic of mucin-like O-
glycosylated proteins [131]. The cytoplasmic domain of KIM-1
is relatively short and possesses a potential phosphorylation
site, indicating that KIM-1 may be a signaling molecule; the
ectodomain is cleaved by metalloproteinases. KIM-1 is also
known as T cell immunoglobulin mucin domains-1 (TIM-1),
as it is expressed at low levels by subpopulations of activated
T cell [132]; another KIM-1 homolog is an African green
monkey protein cloned as hepatitis A virus cellular receptor-1
(HAVCR-1), expressed by hepatocytes [133]. The KIM-1 gene
is markedly upregulated in the postischemic rat kidney; a
large pharmaceutical company consortium, using an unbi-
ased genomic approach to evaluate genes upregulated with
the nephrotoxin cisplatin, determined that KIM-1 was upreg-
ulated more than any of the 30 000 genes tested [134].

KIM-1 is a phosphatidylserine receptor on renal epithe-
lial cells that recognizes and phagocytizes apoptotic cells
commonly present in the postischemic kidney; this function
has the property to transform normal proximal tubule cells
into a phagocyte [135]. As a result, KIM-1 is involved in the
clearance of the apoptotic debris from the tubular lumen and
thus may play an important role in limiting the autoimmune
response to injury since phagocytosis of apoptotic bodies is
one mechanism for limiting the proinflammatory response
[136]. KIM-1 positive atrophic tubules are usually surrounded
by fibrosis and inflammation; this association suggests that
KIM-1 might be involved in the development of interstitial
fibrosis [137]. In normal human and rodent kidney, mRNA
and protein are expressed at very low levels [138]; when an
injury (e.g., hypoxia and ischemia) affects the kidney, nRNA
KIM-1levels increases more than any other known transcript
and the protein is localized at very high levels on the apical
membrane of proximal tubule in that region where the tubule
is most affected. The cell surface (mature) form of KIM-1 is
a 104 kDa peptide. After injury the ectodomain of KIM-1,
consisting of a 90kDa soluble protein (soluble KIM-1), is
shed from proximal tubular kidney epithelial cells into urine



[139, 140]. Soluble KIM-1 may form a protective layer on the
proximal tubular cells, thereby protecting them from protein
casts forming within the lumen. In situ hybridization and
immunohistochemistry revealed that KIM-1 is expressed in
dedifferentiated proximal tubular epithelial cells in damaged
regions, especially in the S3 segment of the proximal tubule
in the outer strip of the outer medulla, a region that is highly
susceptible to injury as a result of ischemia or toxins. Because
KIM-1 colocalizes with markers of proliferation, it was
suggested that KIM-1 plays a role in the regeneration process.

A large number of studies in animal models have
provided robust evidences that KIM-1 is expressed in the
affected segments of the proximal tubule whenever a toxin
or pathophysiological state results in dedifferentiation of
the epithelium [141]. Dedifferentiation is a very early man-
ifestation of the epithelial cell response to injury [142]. In
particular, KIM-1 induction has been demonstrated after
ischemic renal tubular injury and necrosis [143]. KIM-1 is
also expressed in other conditions where proximal tubules
are dedifferentiated, including toxic nephropathy from
cyclosporine [144], cadmium [145], and other toxic com-
pounds [146], and in renal cell carcinoma [147, 148]. In a
protein-overload model of tubulointerstitial disease, KIM-
1 was found markedly induced within tubular cells and
conspicuously excreted into urine [149], suggesting that it
is involved in the pathogenesis of proteinuria-induced renal
damage/repair and that its urine levels may serve as a marker
of proteinuria-induced renal damage. In mice, KIM-1 was
found upregulated in polycystic kidney disease especially
in regions of the kidney where fibrosis takes place [150].
Extrarenal functions for KIM-1 have been described in the
immune system, where the mouse kim-1 gene is a susceptibil-
ity locus for experimental allergic asthma [151], and human
KIM-1 (TIM-1) is involved in the regulation of T2 cytokine
production. The molecular mechanisms regulating KIM-1
urinary levels have been recently elucidated [152]. KIM-1
shedding can be enhanced dramatically by pervanadate,
a potent inhibitor of protein tyrosine phosphatases. The
constitutive and pervanadate-induced shedding of KIM-1 is
mediated by metalloproteinases and regulated by extracellu-
lar signal-regulated kinase (ERK) and p38 mitogen-activated
protein kinase (MAPK), respectively. The protein secondary
structure in the juxtamembrane region of KIM-1is important
for its cleavage. Ectodomain cleavage of KIM-1 results in gen-
eration of a truncated 14-kDa cell membrane-associated and
tyrosine-phosphorylated KIM-1 fragment [152].

KIM-11is a specific histological biomarker for diagnosing
early tubular injury in renal biopsies: it was found that
positive staining in proximal tubules correlates very well
with renal dysfunction, being a very useful biomarker to
diagnose kidney epithelial cell injury in renal allografts [153].
When a renal transplant recipient has renal dysfunction
without acute cellular rejection detectable in the renal biopsy,
negative staining of KIM-1 suggests that renal dysfunction is
not associated with tubular injury and may be attributed to
prerenal factors. Clinical studies have reported that urinary
excretion of KIM-1 is an independent predictor of long-
term graft loss and therefore a promising new biomarker in
early prediction of graft loss [154, 155]. KIM-1 can be

BioMed Research International

considered an outstanding biomarker for kidney injury for
at least three reasons: first, it is not detectable in normal
kidney, second it is expressed by the affected segment of
the proximal tubule whenever the initial ischemic or toxic
insult induces dedifferentiation of the epithelium, and third
the ectodomain of KIM-1 is shed from injured cells, being
excreted into urine within 12 h and persisting over time before
regeneration of the epithelium [156]. Urinary KIM-1 concen-
tration is closely correlated with the severity of kidney injury,
representing a noninvasive and sensitive surrogate biomarker
for diagnosing, monitoring, and quantifying kidney damage
[157]. Due to these superb characteristics, the Predictive
Safety Testing Consortium (PSTC), a cooperation group
consisting of members from the biotech and pharmaceuti-
cal industry together with members from academia, from
US Food and Drug Administration (FDA), and from the
European Medicines Agency (EMA), has included KIM-1
in the short list of biomarkers under investigation to detect
drug-induced nephrotoxicity [158, 159]. KIM-1 ectodomain
soluble protein can be measured by a microsphere-based
Luminex xMAP technology employing polyclonal antibodies
raised against the human KIM-1 ectodomain; this method
requires only few microliters of urine sample. The lower
limit of detection for this assay is 4ng/L, and the inter-
and intraassay variability, expressed as coefficient of variation
(CV, %), is less than 10%. In healthy subjects, urine KIM-1
excretion expressed as mean + standard deviation (SD) is 58+
8.0 ng/day, whereas in untreated patients with nondiabetic
proteinuria KIM-1 excretion is 1706 + 498 ng/day [160].
This microbead technique is an adaptation of the previously
described sandwich ELISA assay, which is known to mirror
findings by western blot analyses [161, 162].

Very few studies investigated the clinical usefulness of
KIM-1 in newborns, infants, and children. In a case-control
prospective study performed in 20 children aged 0.16-17
years with severe congenital hydronephrosis (HN) caused by
ureteropelvic junction obstruction (UPJO), the urine KIM-
1 levels were significantly elevated in subjects developing an
obstructed kidney but not yet undergone pyeloplasty [163].
Three months after surgery, the concentration of urine KIM-
1 decreased significantly but did not reach the values found
in a group of 20 children with dilated but not obstructed
kidney (mild nonobstructive HN). Urine levels of KIM-1
were negatively correlated with differential renal function
(DRF) assessed by the radionuclide scan. The strong negative
correlation between KIM-1 level in the pelvic urine and DRF
of the affected kidney confirms that urine KIM-1 ectodomain
soluble protein is closely related to tissue KIM-1 and with
the severity of renal damage. Recently, urinary KIM-1 was
measured in a cohort of 123 premature newborns in a NICU:
in 52 babies with GA <26 weeks, KIM-1 expressed as geomet-
ric mean and 95% confidence intervals, was 226 ng/L (184-
277 ng/L). As GA increased, KIM-1 progressively declined,
being geometric mean 158, 155, and 143 ng/L in babies with
GA ranging between 26-28, 28-30, and 30-36 weeks, respec-
tively [164]. An advantage of KIM-1 over uNGAL is that it
appears to be more specific to ischemic or nephrotoxic AKI
and is not significantly affected by prerenal azotemia, urinary
tract infections, or CKD.
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9. Opportunity and Challenges for Utilizing
Monocyte Chemoattractant Protein-1 and
Epidermal Growth Factor as Biomarkers of
Kidney Damage and Repair

Progressive CKD involves the impairment of several tracts
of the nephron by the activation of pathological processes,
specifically glomerulosclerosis, tubulointerstitial fibrosis, and
vascular sclerosis. Of these, tubulointerstitial changes are
greatly relevant in determining the progression of kidney
damage; indeed, the severity of tubular atrophy, interstitial
cell infiltration, and fibrosis correlates with the decline of
kidney function. Most of cell infiltrates are monocytes and
differentiated interstitial macrophages: they play a central
role in innate immune protection both early, by a cytotoxic
and proinflammatory action, and later, by phagocytizing
cellular debris and apoptotic bodies in order to initiate the
process of tissue repair [165]. Concomitantly, monocytes and
differentiated interstitial macrophages generate radical oxy-
gen species, nitric oxide, complement factors, and proinflam-
matory cytokines leading to a direct damage to resident cells.
Over the past 15 years, several studies both on animal model
and on patients with kidney disease have reported encour-
aging results on the clinical utility of biomarkers overex-
pressed by renal tubular cells and by monocytes-macrophages
infiltrating the peritubular space. In patients with chronic
tubulointerstitial injury, the urinary excretion rate of C-C
motif chemokine ligand 2 (CCL2), also called monocyte
chemoattractant protein-1 (MCP-1) and that of epidermal
growth factor (EGF) together with the calculation of the ratio
EGF/MCP-1 seem to represent powerful prognostic indexes,
opening new perspectives for the early, accurate evaluation of
tubulointerstitial injury and repair. In addition, MCP-1 gene
activation in patients with kidney injury is reflected by
increased urinary excretion of MCP-1 and thus it may be a
useful biomarker of AKI, since it mediates acute ischemic
and toxic kidney injury, as demonstrated elsewhere [166].
The severity of progressive interstitial fibrosis is strongly
correlated with the extent of macrophage infiltration in the
peritubular space, which in turn is positively correlated
with the expression of chemokines (chemotactic cytokines
constituting a large family of peptides classified into four sub-
families). MCP-1 belongs to the CC chemokine subfamily (3-
chemokine); it is a potent chemotactic factor for monocytes
and macrophages. MCP-1 gene is located on chromosome 17
(17q11.2-q21.1) and the mature form of the protein is com-
posed of 76 amino acid residues with a molecular weight of
13kDa. The major source of MCP-1 is monocytes and
macrophages. In biopsy specimens from patients with acute
interstitial nephritis, MCP-1 was found clearly upregulated;
the gene and the protein expression were primarily localized
in tubular and glomerular parietal epithelial cells, as well as in
infiltrating monocytes and macrophages [167]. In addition, in
patients with immunoglobulin A nephropathy, urinary excre-
tion of MCP-1 was higher than that in healthy subjects and
positively correlated with the renal MCP-1 gene expression
[167]. On the other hand, human EGF is a 6 kDa peptide con-
sisting of 53 amino acid residues synthesized by the ascending

portion of the Henle’s loop and the distal convolute tubule.
Human EGF is a peptide growth factor inducing epithelial cell
growth and metabolism; various experimental and clinical
studies have found that EGF acts as a mediator of normal
tubulogenesis and tubular regeneration after injury [168,169].
In a rat model involving neonatal and adult rats with chronic
unilateral ureteral obstruction, prolonged administration
of EGF attenuated the impairment of renal development
in the maturing rat kidney affected by chronic unilateral
ureteral increased the proliferation of renal tubular epithelial
cells obstruction and suppressed apoptosis [170]. Progressive
increase over time in urinary EGF excretion has been demon-
strated in asphyxiated babies put on assisted ventilation [171]
as well as in the course of therapeutic treatment of children
with recurrent urinary tract infection and in those with
vesicoureteric reflux [172]. The calculation of the EGF/MCP-1
ratio has been proposed as a better index of the relationship
between renal tubular regeneration and interstitial inflam-
mation; as previously demonstrated, an inverse relationship
exists between renal gene expression of EGF and MCP-1
[173]. In a cohort of 132 patients with biopsy-proven IgA
nephropathy, the urinary EGF/MCP-1 ratio showed a better
ability to predict outcomes rather than the two single mea-
sures, leading to the conclusion that it may be considered
a prognostic index of ESRD: at the cutoff value of 23.2,
sensitivity was 88.9% and specificity 86.4% [174]. EGF/MCP-
1 ratio was found significantly downregulated in two groups
of untreated children with ureteropelvic junction obstruction
compared with controls; in addition, surgical treatment of
urinary obstruction improved significantly EGF/MCP-1 ratio
when compared with the group of obstructive ureteropelvic
junction obstruction [175]. On the basis of the current
available results from the literature, it is desirable to perform
further multicenter trials in order to validate definitively
these biomarkers, taking into account the importance to early
assess the capacity of repair of the renal tubular cells.

10. Conclusions

Recent progress in medical care has contributed to improved
survival among all but the most immature infants [176]. In
LBW and VLBW the mortality rate continues to be high and
AKI plays an important role in reducing survival in these
babies [177]. Conventional biomarkers of toxic nephropathy
and AKI, such as oliguria, SCr, and BUN, are insensitive
and cannot be considered markers of injury. Unfortunately,
the management of critically ill newborns is often crucial
for the absence of specific symptoms and signs related to
kidney impairment and damage. Increasing knowledge in the
science of biology and medicine has accelerated the discovery
of novel biomarkers and elucidated their roles in molecu-
lar pathways triggered by physiological and/or pathological
conditions. Emerging tools, like metabolomics, depend on
sophisticated technologies (LC-MS, GC-MS, '"H NMR, etc.)
which play a pivotal role, contributing to the sudden devel-
opment of new biochemical and molecular tests. There is an
urgent need to translate these developing methods (epige-
nomics, metabolomics, etc.) and next generation biomarkers
(NGAL, KIM-1, MCP-1, etc.) from bench to bedside in order
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to improve clinical outcome and quality of care in acute
ill newborns and infants. Metabolomics seems to be a very
promising tool minimizing false positive and false negative
results. Interestingly, metabolomics may become a powerful
tool for reducing health care costs associated with length
of hospitalization, appropriateness in drug administration,
severe complications, hospital-acquired infections, and so
forth. It is likely that NGAL and KIM-1 will emerge as tandem
biomarkers of AKI, with NGAL being most sensitive at the
earliest time points and KIM-1 adding significant specificity
at slightly later time points. This combination may be an
excellent opportunity to improve the efficacy of the therapeu-
tic treatment in sick newborns and, in turn to reduce the risk
of complications that may significantly affect the quality of
life in childhood and adulthood. Metabolomics together with
epigenetics and proteomics is leading to the transformation of
conventional medicine in personalized medicine, integrating
multiple levels of information; they represent a challenge
for promoting, maintaining and improving the health of
populations through translational research.

List of Non-Standard Abbreviations

(Alphabetic Order)
AKTI: Acute kidney injury
"H NMR: Proton nuclear magnetic resonance

AGA: Appropriate for gestational age
AKIN: Acute kidney injury network
BALF: Broncoalveolar lavage fluid
BUN: Blood urea nitrogen

CKD: Chronic kidney disease

Cv: Coeflicient of variation

DRE: Differential renal function
EGF: Epidermal growth factor
EMA: European medicines agency
ERK: Extracellular signal-regulated kinase
ESRD: End stage renal disease

ELBW: Extremely low birth weight
FDA: Food and drug administration

GC: Gas chromatography

GFR: Glomerular filtration rate
HAVCR-1:  Hepatitis A virus cellular receptor-1
HMDB: Human metabolome data base

HN: Hydronephrosis
HNL:

Human neutrophil lipocalin
IUGR: Intrauterine growth retardation
KIM-1: Kidney injury molecule-1
LBW: Low birth weight
LC: Liquid chromatography
Len-2: Lipocalin-2
LMW: Low molecular weight

MALDI-TOF: Matrix-assisted laser desorption and
ionization time-of-flight

MAPK: Mitogen-activated protein kinase
MCP-1: Monocyte chemotactic peptide-1 ratio
MMP-9: Matrix metalloproteinase-9

MS: Mass spectrometry
NGAL: Neutrophil gelatinase-associated lipocalin
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NICU: Neonatal intensive care unit

NIH: National Institute of Health

pRIFLE: Pediatric risk, injury, failure, end stage
renal disease

PSTC: Predictive safety testing consortium

RDS: Respiratory distress syndrome

SCr: Serum creatinine

SD: Standard deviation
SELDI-TOF: Surface-enhanced laser desorption and
ionization time-of-flight

TIM-1: T cell immunoglobulin mucin domains-1
uNGAL: Urine NGAL

UPJO: Ureteropelvic junction obstruction
VLBW: Very low birth weight.
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