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Abstract

We investigate several aspects of black hole physics. First, we consider models of gravity
minimally coupled to scalar fields. We derive a new class of asymptotically flat black holes
sourced by a non-trivial asymptotically massless scalar field; we discuss their relationship with
known solutions and standard no-hair theorems and their thermodynamics. We derive exact
neutral and charged brane solutions sourced by a scalar fieldwith vanishing potential, which are
conformal to the Lifšic spacetime; we discuss the symmetries and their holographic application
for hyperscaling violation; we also give a quite general classification of brane solutions sourced
by scalar fields useful for holographic applications. We study an inflationary model inspired
by the domain wall/cosmology correspondence in which inflation is driven by a scalar with a
two-exponential potential; we derive its phenomenological consequences in the slow-roll ap-
proximation and compare its predictions with the Planck 2015 data. Second, we investigate
ultra-compact astrophysical objects which can act as black hole mimickers, in particular boson
stars and wormholes. We discuss the existence and the stability of boson stars in higher dimen-
sions and boson stars built with multiple scalars. We compute tidal Love numbers for vari-
ous mimickers and discuss how to distinguish black holes from their possible mimickers with
gravitational-wave data. We study the gravitational radiation emitted by a particle falling into
an exotic compact object and show that the initial ringdown signal cannot be use distinguish
between a black hole and a black hole mimicker.

Key words: black holes; scalar fields; hairy black holes; black branes; holography; inflation; black
hole mimickers; boson stars; wormholes; tidal Love numbers; gravitational waves.
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Notation and Acronyms
In this work wemainly use natural units c = G = 1 and we adopt the (−,+,+,+) convention for
the signature of the metric. At the beginning of each chapter we remind the adopted conventions.
In general, a dot represents derivation with respect to time and a prime derivation with respect to
the radial coordinate.
We tried to avoid acronyms as much as possible. Some of them belong to every physicist dictionary,
e.g. AdS (anti de Sitter) and QFT (quantum field theory). Others may appear in same plots and
equations.

ADM Arnowitt-Deser-Misner

BH Black hole

CFT Conformal field theory

GW Gravitational wave

QNM Quasi-normal mode

WH Wormhole
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Introduction and Summary

The triennium during which we worked on this thesis has been abundant of discoveries and an-
niversaries: the discovery of gravitational waves by the LIGO and Virgo collaborations [1, 2], the
centenary of Einstein’s general theory of relativity [3–6], the centenary of the Schwarzschild solu-
tion [7], the constraints on inflation put by the Planck collaboration [8]. They have been important
years for the research on gravity and, in particular, for Einstein’s general relativity1 which has got fur-
ther experimental and theoretical confirmations of its validity as classical theory of gravity. Einstein
theory is described by the action

A =
1

16πG

∫
d4x

√
−g (R− 2Λ) +Am (gµν , ψ) , (1)

where g is the spacetimemetric,R is the scalar curvature,Λ is a (possible) cosmological constant and
Am is the matter action that depends generically on the metric and all matter fields ψ.

The classical theoretical predictions of general relativity have been tested with high accuracy and
on scales ranging from the millimeter up to galactic scales, from the historical ones — precession of
planetary orbits, bending of light, gravitational redshift — to the very recent detection of gravita-
tional waves produced by the coalescence of a black hole binary [9].

Yet, general relativity is a classical theory andneeds corrections at short distances, where quantum
effects become important. Until now, all the attempts to unificate general relativity with quantum
mechanics are not completely satisfactory. From a quantum field theory point of view, general rela-
tivity is non-renormalisable,2 and it has been argued that general relativity is an effective theory that
necessitates an ultraviolet completion, if not before, at least when we reach energies of the order of
the Planck mass, e.g. string theory or loop quantum gravity.

There are also strong arguments, both theoretical and experimental, for high-energy corrections
to general relativity. For instance, high-energy, or high-curvature corrections, might also prevent the
formation of singularities, which has been shown to be unavoidable in classical general relativity [11].

Cosmological measurements of the galaxy rotation curves and gravitational lensing observations
have taught us that also in the far infrared, at large scales, there is some tension between general rel-
ativity and observations. This tension can be solved by assuming that in the Universe there exists

1. See e.g. the Classical and Quantum Gravity Focus Issue on ‘Milestones of General Relativity’ and the American
Physical Society ‘General Relativity’s Centennial’.

2. Stelle showed that terms quadratic in the curvature tensor make gravity renormalisable [10].

1

http://iopscience.iop.org/0264-9381/focus/Focus%20issue%20on%20Milestones%20of%20general%20relativity
https://journals.aps.org/general-relativity-centennial


2 Introduction and Summary

something that is invisible to electromagnetic instruments but interacts only gravitationally: dark
matter. Dark matter is now also a necessary ingredient in models of structure formations and to ex-
plain the current composition of our Universe. Cosmological observations provide as well evidence
for the (accelerated) expansion of theUniverse, and general relativity cannot explain what drives this
acceleration, unlesswe introduce amysterious formof energy: dark energy. In quantumfield theory,
the vacuum energy is not zero, and it might drive accelerated expansion. But we have a naturalness
problem: according to quantum field theory, the value of the vacuum energy — the cosmological
constant — is at least sixty order of magnitude bigger than the observed value!

Despite these problems at very small and very large distances, general relativity works incredi-
bly well at intermediate distances. Solar system test and binary pulsar experiments verify Einstein’s
equivalence principle, set the parametrised post-Newtonian parameters [12] very close to those of
general relativity and give stringent bounds on, for instance, scalar-tensor theories and Lorentz-
violating theories. Hence, any modified theory of gravity which introduces new degrees of freedom
and/or new interaction terms in the gravitational sector must modify the theory at low and high
energies but reproduce general relativity at intermediate energies.

There exists a large number of modified theories of gravity. In scalar-tensor theories, such as
Brans-Dicke [13] or Horndeski [14], gravity is non-minimally coupled with scalar field(s). These
theories arise from string theory to cosmology and they are useful for phenomenological aspects [15,
16]. Another possible way to modify general relativity without introducing other fields is to substi-
tute the scalar curvature in Eq. (1) with a generic function of it, to obtain f(R) gravity [17–19]. A
famous application of such a theory has been used by Starobinky in his groundbreaking paper on
inflation. Other extensions include Lorentz-violating theories, massive gravity theories, and theories
involving non-dynamical fields — for some reviews, see e.g. Refs. [20–23].

Nevertheless, except for binary pulsar observations, all tests of general relativitywere in theweak-
field regime. Fortunately, the first direct gravitational-wave detection of a compact binary coales-
cence, has opened up the possibility of testing gravity in strong regimes [24–26]. Already, the dif-
ferences between the prediction of general relativity and the signal detected by Advanced LIGO put
constraints on non-standard mechanisms (e.g. the activation of scalar fields, gravitational leakage
into large extra dimensions, the variability of Newton’s constant, the speed of gravity, a modified
dispersion relation, gravitational Lorentz violation and the strong equivalence principle) that could
be responsible for such anomalies [27].

Gravitational-wave events can also constrain or rule out exotic alternatives to Kerr black holes.3
Even without adducing exotic alternatives, the Kerr metric — which describes a rotating black hole
—appears as a vacuum solution inmanymodified theories of gravity, but the details of the dynamics
and the gravitational-wave emission might be able to discriminate among theories. Black holes (and

3. Notice that, however, to perform such an analysis we would need a complete understanding of the full evolution
of an exotic binary, while the current templates are based on general relativity.



Introduction and Summary 3

neutron stars) are indeed the best laboratory to study gravity in extreme regimes. It will also be
possible to test the strange property of black holes of being described only by few parameters, the
so-called no-hair conjecture. To do so, it is important to study the dynamics of fields in black holes
backgrounds.

It has been argued that the gravitational waves signals may also be an indirect effect of dark
matter, i.e. LIGO observed the merge of two primordial black holes rather than two stellar black
holes [28, 29].

In recent years, the theoretical research on gravity has seen exciting developments in a rather dif-
ferent perspective, namely that of the holographic character of the gravitational interaction. In the
last two decades, the AdS/CFT correspondence and the holographic principle had increased both
the knowledge on strongly coupled quantumfield theories and condensedmatter systems (e.g. holo-
graphic superconductors [30–33] and the universality of the shear viscosity to entropy density ra-
tio [34, 35]), and the understanding of gravity itself (e.g. the microscopic origin of the black hole
entropy [36], the information puzzle [37–40] and entanglement entropy [41, 42]).

It ismore thandesirable that both themore phenomenological and themore speculative research
areas could communicate and cross-fertilise themselves. For instance, choosing an example that we
will discuss in detail in this thesis, gravitational solutions sourced by scalar fields play a fundamental
role in cosmological models, the uniqueness of black holes, and act as order parameters breaking
symmetry and generating phase transitions in holographically dual quantum field theories. This is
a very interesting point showing that most of the recent progress in the holographic applications of
gravity is essentially based on the violation of old no-hair theorems. This cross-fertilisation appears
even more compelling if one considers that shortly, gravitational-wave observations could open an
observational window in the quantum regime of gravity, e.g. through quantum signatures of a black
hole horizons.

This thesis represents an attempt in this direction. We will focus the research on two concepts
that play a fundamental role in different parts of black hole physics and more generally in gravita-
tional physics: scalar sources and black hole perturbation theory. We will investigate several topics,
which, in some sense, represent a bridge between different research areas. Concerning the first con-
cept, wewill investigate the implications of the no-hair theorem, holographically dual quantumfield
theories and cosmological inflation. The second concept will be used to study the stability and the
tidal deformations of black hole mimickers; we will also give a critical discussion on gravitational-
wave data from black hole merging.

In Part I, we discuss several gravitational systems coupled with scalar fields. We will derive and
discuss a variety of gravitational solutions sourced by non-trivial scalar field configurations: black
holes, black branes and cosmological solutions describing inflation. This might allow checking if the
no-hair conjecture is correct and will allow putting constraints on alternative theories of gravity. If
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these scalars imply different black hole spacetimes from those of general relativity or if they predict
new phenomena, they could be detected. Also, black hole spacetimes are a perfect laboratory to
test and detect fundamental scalar fields [43, 44]. Massive scalar or pseudo-scalars are a theoretically
appealing candidate of dark matter and dark energy, which are predicted to arise in a variety of sce-
narios [45]. Complex scalar fields coupled to general relativity give rise to self-gravitating bosonic
configurations, known as boson stars. On the experimental side, the study of scalar fields is strongly
supportedby the recent discovery of theHiggs particle at LargeHadronCollider [46, 47]. Moreover,
scalar particles can drive inflation. This has been corroborated by the observations of the Planck 2015
satellite which give a striking confirmation of cosmological inflation. Eventually, gravity coupled to
matter fields, and in particular scalars, are of special interest for their holographic applications, where
hairy blackholes canbeused todescribe symmetry breakingor phase transitions in the dual quantum
field theory. In Chapter 2, we derive asymptotically flat black hole solutions with scalar hair using a
solution generating technique developed in the holographic context. We discuss their relation with
standard no-hair theorems and already known solutions, and we also investigate their thermody-
namics. In Chapter 3, we derive exact brane solutions ofminimally coupled Einstein-Maxwell-scalar
gravity with a vanishing scalar potential andwe show that these solutions are conformal to the Lifšic
spacetimewhose dual quantumfield theory is characterised by hyperscaling violation. We also give a
quite general classification of brane solutions sourced by scalar fields in the general relativity context,
which may be very useful for holographic applications. In Chapter 4, inspired by holography, we
study the most general model of hilltop inflation in which the potential is written as the sum of two
exponentials. In the slow-roll approximation, our model can correctly reproduce the most recent
Planck data and it predicts inflation at energy scales of four to five orders of magnitude below the
Planck scale.

In Part II, we take a critical look at the new gravitational-wave data. To assure the scientificity of
a theory, its verifiability, i.e. the capacity to predict testable phenomena, is not a sufficient criterion.
The theorymust also be falsifiable, i.e. it canbe provenwrong. This approachmight both individuate
fallacies in general relativity and exclude or constrain alternative theories. For instance, black holes
are the most feasible candidate for dark compact objects, but this cannot be turned into a paradigm.
Data will allow testing the models to discriminate among black holes and other possible compact
objects and to shed light on their nature and internal structure. Here, numerical simulations of
binary systems not being black holes or neutron stars are indispensable. In Chapter 6, we study
mini boson stars in five spacetime dimensions and boson stars built with various scalars. We show
that the former are always dynamically unstable, while the latter are stable for a broad range of the
parameters space. In Chapter 7, we compute axial and polar tidal Love numbers for boson stars,
wormholes and gravastars and we discuss their possible detection. In Chapter 8, we investigate the
gravitational radiation emitted by a point particle in radial motion towards a traversable wormhole
and we compare it to that of a Schwarzschild black hole. We show that, if the wormhole is compact
enough, the distinction in the initial ringdown signal of the emitted gravitational wave is irrelevant.
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Scalar Hair, Holography and Cosmology





Chapter 1
•

Introduction to Part I

Scalar Fields Coupled to Gravity

Gravity coupled to scalar fields is interesting for several reasons. First, in order to verify
the no-hair conjecture — the fact that black holes are characterised only by their asymptotic
charges: mass, electric charge and angular momentum — it is important to study the dynamics
of scalar fields in black hole backgrounds. Second, in the context of the AdS/CFT correspon-
dence, the holographic interpretation of scalar fields allows for the description of various phe-
nomena. Andfinally, a simple scalar field could drive inflation and solve fundamental problems
in standard cosmology. The first part of this thesis is devoted to the investigation of these three
issues.

1.1 Black Holes

Black holes arewhat is left after a complete gravitational collapse and they are a fascinating subject for
physicists and not [48]. They are extreme-curvature regions of the spacetime from which not even
light can escape. Although in the beginning they were considered simply as mathematical solutions
to the Einstein’s field equations, nowadays althoughwe do not have yet a direct evidence of an event
horizon, there is a huge observational evidence of their existence. and they found applications in
the most different branches of physics, e.g. in mathematical physics as solutions to the Einstein’s
equations; in astrophysics, where along with neutron stars, they represent the best laboratory to test
strong gravity; in holographic applications.

The Schwarzschild metric [7]

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 (dϑ2 + sin2 ϑ dφ2) , (1.1)

describes a black hole of massM but also, for r > 2M , the exterior geometry of any object with the
same mass. Most of the experimental tests of general relativity are based on this simple geometry.

TheKerrmetric [49], discovered almost fifty years later, decribes the spacetime outside amassive

7
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and spinning black hole. In Boyer-Lindquist coordinates, the metric is

ds2 =−
(
1− 2Mr

Σ

)
dt2 − 4Mra sin2 ϑ

Σ
dt dϕ+

Σ

∆
dr2 + Σ dϑ2

+

(
2Mra2 sin2 ϑ

Σ
+ r2 + a2

)
sin2 ϑ dϕ2 , (1.2)

where a = J/M is the total angular momentum per unit mass, ∆ = r2 − 2Mr + a2 and
Σ = r2 + a2 cos2 ϑ.

Both the Schwarzschild and the Kerr solutions have been generalised to the charged case, re-
spectively, by Reissner and Nordström [50, 51] and Newman et al. [52]. Astrophysical black holes
are very unlikely charged because they would attract opposite charges and get neutral. In any case,
the black hole metric depends — at most — on its mass, electric charge and angular momentum,
and in case on other charges associated with other internal global symmetries. All the details about
the matter that composes the black hole are lost and no observer could distinguish two black holes
generated by the collapse of different matter if they turn out to have the same mass and angular mo-
mentum. This characteristic and the following formulation of no-hair theorems will be discussed in
Section 1.2.

Another curious feature of black holes is that the laws of black hole dynamics resemble those of
thermodynamics, which is characterised by a small number of parameters as well [53, 54]. The event
horizon surface area always increases when the black hole undergoes any transformation [55], but
this general theorem of differential geometry is nothing more than an analogy with the second law
of thermodynamics which has a statistical origin. On the one hand, when a body falls into a black
hole, the information is irretrievably lost and Bekenstein [56] conjectured that a suitablemultiple of
the black hole event horizon area might be interpreted as its entropy (in physical units),

SBH =
kBc

3A

4ℏG
. (1.3)

On the other hand, classical black holes are perfect absorbers but they do not emit anything, so their
physical temperature is absolute zero and it would make no physical sense in associating an entropy
to a black hole. However, these formal correspondences become physical when we turn classical
general relativity into semi-classical and we consider quantum effects. The physical temperature of
a black hole is no longer absolute zero, but rather the Hawking temperature [57], which for the
Schwarzschild black hole is (in physical units)

TH =
ℏc3

8πGkBM
. (1.4)

This equation contains almost all the fundamental physical constants and for this reason we could
say that black holes are ‘meeting point’ of gravity, quantum mechanics and statistical mechanics.
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1.2 No-Hair Theorems
At the turn of the Seventies, the issue of the uniqueness of the Schwarzschild and Kerr black holes
and their charged extensions [58–62], has motivated the formulation of no-hair theorems [63, 64].
Black holes are characterised only by three parameters— themass, the electric charge and the angular
momentum — and they cannot have other ‘hairs’, i.e. the external description of a stationary black
hole cannot depend on other fields or quantum numbers.

During the Nineties, several stable hairy black hole solutions have been discovered [65–70], for
a review, see e.g. Ref. [71]. The peculiarity of these solutions is that the hairs are non-Abelian gauge
fields. Nevertheless, Abelian and scalar fields are different and this has led to the formulation of no-
scalar-hair theorems. Originally, they forbid regular hairy black hole solutions in the case of a convex
and, more generally, semi-positive definite potential scalar potential [72–74].

Later, it was discovered that also some low-energy string models allow for black hole solutions
with scalar hair [75–79]. Nevertheless, the existence of these solutions remains limited to gravity
theories with non-minimal couplings between the scalar and the electromagnetic fields. This has led
to recent no-hair theorems [80, 81] that state the absence of regular hairy black hole solutions if the
scalar-gravity theory satisfies the positive energy theorem [82, 83], i.e. the ADM energy is positive
definite. In spite of these advances on the side of hairy black hole solutions with AdS asymptotics,
progress in the search for asymptotically flat black holes with scalar hair has been achieved only re-
cently [84–90].

What about astrophysical black holes? In order to test whether the spacetime around a black
hole is described by the Kerr geometry, we need to observe stars orbiting around a black hole or the
gravitational-wave emission due to the coalescence of two black holes. The first is a non-dynamical
test that allows probing the background spacetime in the weak-field regime, while the second, which
involves a dynamical event, could tell us about the dynamics of the spacetime, and then to probe
different theories [25, 91–94].

The existence of no-hair theorems is a particularly puzzling issue in viewof the huge entropy (1.3)
associated with the black hole. If we assume that Eq. (1.3) has a statistical interpretation à la Boltz-
mann, itmust correspond to a huge degeneration of the black hole considered as a thermodynamical
system. It is still a mystery why such a system characterised by a bunch of charges could be so degen-
erate. It is likely that answering to this question would require understanding quantum gravity and
the holographic nature of gravity.

1.3 The Holographic Principle and the AdS/CFT Correspondence
In a quantum theory of gravity, the holographic principle is an idea of ’t Hooft [95] that states that
the information contained in spacetime region is encoded on its boundary. The current name is due
to Susskind who promoted such an idea with a catchier name [96].
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The argument of ’t Hooft is fundamentally based on unitarity. Trying to conciliate gravitational
collapse, i.e. the formation of a black hole, with the postulates of quantum mechanics, one finds
that the spacetime at the Planck scale cannot be (3+1)-dimensional. Instead, the observables can be
better described by a two-dimensional lattice evolving with time. This principle is closely related
to the thermodynamics of black holes and in particular to the Bekenstein-Hawking formula (1.3),
which relates the entropy of a black hole to the area of its horizon.

The AdS/CFT correspondence is probably the most famous realisation of the holographic prin-
ciple and it is a conjectured equivalence between a higher-dimensional gravitational theory and a
quantumfield theory in less spacetime dimensionswithout gravity [97–99]. InMaldacena’s original
formulation [100], AdS is the gravitational theory andmeans type IIB string theory with AdS5× S5

boundary conditions, while CFT is a four-dimensionalN = 4 supersymmetric Yang-Mills quantum
field theory. He considered a low energy limit of some branes in string theory where the field theory
on the brane decouples from the bulk. Soon after, it has been formulated a precise correspondence
between correlation functions in the gauge theory and those of supergravity on the boundary con-
ditions [101, 102]. Alternatively, the duality can be formulated in terms of the partition function on
the gravitational and field theory side.

One of themost remarkable features of this correspondence is that it is a strong/weak duality, i.e.
strongly coupled gauge theories correspond toweakly interacting gravitational theories—which are
easier to study for instance in perturbation theory. Thus, black holes and black branes (their planar
counterparts) can unveil features and properties of apparently uncorrelated systems and vice-versa.

However, the gauge theory dual to AdS5 × S5 is at zero temperature. A non-zero temperature
would introduce an energy scale responsible of the conformal symmetry breaking and make stan-
dard calculations very complicated. Here is the power of the correspondence: the holographic dual
of a quantumfield theory at finite temperature is a black hole in the bulkwith a givenHawking tem-
perature. The other way round, a black hole is dual to a hot gas of fermions and gauge bosons. As a
consequence, many problems in condensed matter physics and nuclear physics have been translated
into problems of gravitational physics and string theory.

A simple extension of this correspondence introduces other fields in the bulk spacetime. Con-
sider, for definiteness, Einstein-Maxwell-scalar gravity in d + 2 spacetime dimensions (d ⩾ 2). In
its most general setting, this theory is characterised by three coupling functions: the self-interaction
scalar potential V (ϕ), the gauge coupling function Z(ϕ), and the coupling function S(ϕ) respon-
sible for the mass of the Maxwell field,

A =

∫
dd+2x

√
−g
(
R− Z(ϕ)F 2 − S(ϕ)A2 − 2(∂ϕ)2 − V (ϕ)

)
, (1.5)

whereR is the scalar curvature of the spacetime,F is the electromagnetic tensor,A is the 4-potential
and ϕ a scalar field with scalar potential V (ϕ).

Using the rules of the AdS/CFT correspondence, and with the possibility of circumvent stan-



1 Scalar Fields Coupled to Gravity 11

dard no-hair theorems owing to theAdS asymptotics,1 plenty of black hole andblack brane solutions
—both analytical andnumerical— ind+2dimensionswith various formsof the coupling functions
have been discovered [104–114]. This strategy has allowed to uncover a very rich phenomenology for
condensed matter systems, e.g. superconductors [30–33], holographic phase transitions [115, 116],
quantum criticality [117–119], hyperscaling violation in critical systems [120–137], hydrodynamic
regime of strongly coupled quantum field theories [138, 139] and entanglement entropy [140–143].

It is important to stress that the existence of solutions endowedwith scalar hairs is a crucial ingre-
dient to have this rich phenomenology in the dualQFT. In fact, the scalar field acts in the dualQFT
has an order parameter generating through a non-vanishing vacuum expectation value of a scalar op-
erator symmetry breaking and phase transitions. In the bulk, this corresponds to a non-trivial scalar
field profile. This is a very interesting point showing that the recent progress in the holographic
applications of gravity is essentially based on the violation of old no-hair theorems.

However, the essential qualitative features of the dual QFT are not pertinent to the presence of
non-trivial coupling functionsZ(ϕ) andS(ϕ)but are basically determined by the presence of a non-
constant scalar field. In the dual QFT, the non-trivial profile of the scalar field plays the crucial role
of an order parameter triggering symmetry breaking and/or phase transitions. For this reason, in the
next chapters, we investigate solutions to the simplest theory, namely minimally coupled Einstein-
Maxwell-scalar gravity, which is characterised by a single coupling function, the potential V (ϕ),
whereas the other two are trivial, i.e.Z(ϕ) = 1 and S(ϕ) = 0.

Solitonic solutions interpolating between AdS vacua and domain wall solutions with scale-co-
variant symmetries in Einstein-scalar gravity are naturally related to cosmological solutions by the
so-called domain wall/cosmology duality, a sort of analytic continuation which maps the soliton in
a Friedmann-Robertson-Lamaître-Walker solution [144–146]. For example, the cosmological duals
of solitons which interpolate between an AdS spacetime at large distances of the bulk theory (the
ultraviolet of the dual QFT) and a scale-covariant geometry at small distances in the bulk theory
(the infrared of the dual QFT) are natural candidates for describing dark energy [147]. As a second
example, the cosmological duals of solitons interpolating between AdS in the infrared and scale-
covariant geometries in the ultraviolet may be relevant for describing inflation [148]. This latter
model has been generalised in Chapter 4.

1.4 Inflation
The last application that we briefly discuss in this chapter about scalars and gravity is cosmological
inflation. In fewwords, inflation is a period in the earlyUniverse duringwhich the expansionwas ac-
celerated, which can be successful described by coupling a real scalar field (the inflaton) with gravity,
i.e. quantum field theory in de Sitter space.

1. In the AdS spacetime, differently from the flat case, a scalar field may have tachyonic excitations, without destabi-
lizing the vacuum [103].
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Inflation has been introduced to solve some problems in the standard Friedmann-Robertson-
Lamaître-Walker cosmology, such as the horizon and flatness problems [149–153], but it also ex-
plains why the universe and w not homogeneous. However, the original models were plagued
by some fundamental issues [154], and the solution came with the chaotic model [155]. In this sce-
nario, inflation may start even if the early Universe was not in equilibrium, and does not demand
any particular scalar potential. The only requirement is that the potential has a plateau allowing for
the existence of the slow-roll regime.

According to Friedman’s equation, to have accelerated expansion one needs negative pressure.
The simplest field that can produce inflation is a scalar field, whose equation of state is p = −ρ/3.
The discussion of the perturbations of this field is a nice exercise of quantum mechanics, but it will
not be tackled here — see e.g. Refs. [156, 157]. The quantum fluctuations of the inflaton are respon-
sible for the large-scale structures in the Universe.

The existence of an inflationary epoch in the cosmological evolution of the Universe driven by a
single scalar fieldhas been greatly supportedby the recentPlanck 2015 results. Inparticular, the strin-
gent bounds on non-gaussianity and the spectral index of cosmic microwave background strongly
sustain inflation driven by a single scalar field with an exponential potential, e.g. like that of the
Starobinsky model. These are exactly the kind of potentials for the scalar field that are motivated by
our holographic arguments and we will discuss in detail in this thesis.



Chapter 2
•

Asymptotically Flat Black Holes Sourced by a
Massless Scalar Field

We derive exact, asymptotically flat black hole solutions of Einstein-scalar gravity sourced
by a non-trivial scalar field with harmonic asymptotic behaviour. Using an ansatz for the scalar
field profile, we calculate, together with the metric functions, the corresponding form of the
scalar self-interaction potential. Near to the singularity, the black hole behaves as the Janis-
Newmann-Winicour-Wyman solution. The thermodynamical description of our black hole
solutions satisfies the first principle and it is the same of the Schwarzschild black hole for large
masses.

Units: c = 1;G = 1/16π; the kinetic scalar term is non-standard.
This chapter ismainlybasedon: M.Cadoni andE.F. ‘Asymptotically flat blackholes sourced

by a massless scalar field’. Phys. Rev. D91 (2015), 104011. arXiv: 1503.04734.

2.1 Introduction
In this chapter, we study solutions to minimally coupled Einstein-scalar gravity in four spacetime
dimensions. In particular, we look for spherically symmetric, asymptotically flat black holes sourced
by an asymptoticallymassless scalar field. The general action of this theory contains general relativity
and a real scalar field with an appropriate self-interaction scalar potential,

A =

∫
d4x

√
−g
(
R− 2(∂ϕ)2 − V (ϕ)

)
. (2.1)

The existence of asymptotically flat (or AdS), spherically symmetric, black hole solutions in such
a theory with a non-trivial scalar field is strongly constrained by the no-hair theorems discussed in
Section 1.2. On the one hand, old no-hair theorems forbid regular hairy black hole solutions in the
case of a convex and, more generally, semi-positive definite potential V (ϕ). On the other hand,
recent no-hair theorems state the absence of regular hairy black hole solutions if the scalar-gravity
theory satisfies the positive energy theorem, i.e. the ADM energy is positive definite.

For a null potential,V (ϕ) = 0, butwith a non-trivial scalar field, there exists a simple solution of
Einstein-scalar gravity which describes a static, spherically symmetric, asymptotically flat spacetime
with no event horizon. It was discovered back in 1968 by Janis, Newman, and Winicour [158] and
later byWyman [159] in 1981. It is known as the Janis-Newmann-Winicour-Wyman solution [160],
and consistently with old no-hair theorems, it describes a naked singularity.
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To find asymptotically flat hairy black hole solutions, one has to relax the condition V (ϕ) = 0.
In this chapter, we investigate the case of a non-trivial massless scalar whose potential is zero only
asymptotically. This corresponds to probe the short-scale behaviour of the theory, as at high energies
the mass term can be neglected with respect to the kinetic term. In order to keep the scalar massless,
we impose the asymptotic r → ∞ fall-off behaviour for the scalar, which constrains in a highly non-
trivial way the asymptotic ϕ → 0 behaviour of the potential. More precisely, the potential turns
out to be unbounded from below, violating the no-hair theorems and hence allowing for black hole
solutions.

If we assume the spacetime to be static and spherically symmetric, following the notations and
conventions of Appendix A, the field equations for the action (2.1) are given by Eqs. (A.8) with
d = 2, ε = 1, andQ = 0,

Y ′ + Y 2 + ϕ′2 = 0 , (2.2a)

(uϕ′)′ − 1

4

dV
dϕ e2

∫
Y = 0 , (2.2b)

u′′ − 4(uY )′ + 2 = 0 , (2.2c)
u′′ − 2 + 2V e2

∫
Y = 0 . (2.2d)

Evenwith simple expressions for the potential V (ϕ), it might be very difficult to find exact solu-
tions of thefield equations sourcedby anon-trivial scalar. Nevertheless, we can improve the situation
by imposing asymptotic boundary condition on the scalar field. Knowing the fall-off behaviour of
the scalar field, we can use the general method described in Appendix A to solve the field equations.

Here, we investigate the simplest case of an asymptotically massless scalar field, therefore the
most natural boundary condition is that the scalar field behaves asymptotically as a harmonic func-
tion,

ϕ ∼ 1/r , (2.3)

and we will therefore consider the class of potentials satisfying

V |ϕ=0 =
dV
dϕ

∣∣∣∣
ϕ=0

=
d2V

dϕ2

∣∣∣∣
ϕ=0

= 0 . (2.4)

2.2 The Janis-Newmann-Winicour-Wyman solution
The Janis-Newmann-Winicour-Wyman solution is a particular solution to the field equations (2.2)
with the scalar potential identically zero. This spherically symmetric solution represents a naked
singularity, but, despite that, it has several interesting features: it is stable under scalar perturba-
tions [161], it appears as the extremal limit of charged dilatonic black hole solutions [76], and it has
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been used to construct traversable wormholes [162]. The Janis-Newmann-Winicour-Wyman solu-
tion also appears as the extremal limit of the exact black hole solutions we will derive in Section 2.4.

Theparametrisation (2.2) allows a simple rederivationof the Janis-Newmann-Winicour-Wyman
solution. Following the recipe described in Appendix A, we first solve the linear equation (2.2d)
givingu as a quadratic functionof r, thenwe solve (2.2c) forY . Finally, weuse (2.2b) todetermineϕ.
We find:

U =
(
1− r0

r

)2w−1

, R2 = r2
(
1− r0

r

)2(1−w)

, ϕ = −γ log
(
1− r0

r

)
+ ϕ0 . (2.5)

The Riccati equation (2.2a) simply constrains the integration constants w and γ, w(1 − w) = γ2,
therefore 0 ⩽ w ⩽ 1. Actually, the range of w can be restricted to 1/2 ⩽ w ⩽ 1 because of the
invariance of the solution underw → 1− w together with the coordinate translation r → r0 − r.

If we ignore the physically irrelevant constant shift of the scalar, Eq. (2.5) gives a two-parameter
family of solutions, parametrized by the length scale r0 and the dimensionless parameter w. As
expected, the scalar field ϕ has the harmonic behaviour (2.3) for r → ∞. The solution (2.5) with
r0 being a generic real number is therefore the most general solution. For w = 1 we get the usual
Schwarzschild black hole solution (with constant scalar field) which reduces to the usualMinkowski
vacuum solution in the r0 → 0 limit. For w ̸= 1 and r0 positive, r = r0 is a curvature singularity,
whereas for r0 negative, the curvature singularity is at r = 0. The solution (2.5) has no event horizon,
it interpolates between the Minkowski spacetime at r = ∞ and a naked singularity with power-law
metric near r = r0. For r0 > 0 after shifting r → r + r0, the metric behaves near the singularity as

U =

(
r

r0

)2w−1

, R2 = r20

(
r

r0

)2−2w

, ϕ = −γ log r

r0
, (2.6)

whereas for r0 < 0we have

U =

(
r

|r0|

)1−2w

, R2 = r20

(
r

|r0|

)2w

, ϕ = γ log r

|r0|
. (2.7)

2.2.1 Energy of the Solution
We now calculate the total energy M of the solution, which tells us whether the solution will be
stable with respect to theMinkowski vacuum. In general, the total energy could have a contribution
coming both from the metric and the scalar field [163, 164], as in the Euclidean action formalism,
the variation of the boundary terms of the action has both a gravitational and a scalar contribution

δM = 8π (U ′RδR−RR′δU − 2URδR′)|∞ − 16π R2Uϕ′δϕ
∣∣∞. (2.8)

The total energy can be calculated by expanding themetric functions and the scalar field (2.5) up
to terms proportional to 1/r,

U ≈ 1− (2w − 1)r0
r

, R ≈ r − (1− w)r0 −
γ2r20
2r

, ϕ ≈ ϕ0 +
γr0
r
. (2.9)
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The contribution of the scalar field to (2.8) as well as the second and third term behave like 1/r and
therefore they vanish as r → ∞. Only the first term gives a non-vanishing contribution leading to

M = 8π(2w − 1)r0 , (2.10)

which coincides with the gravitational massM0, proportional to the 1/r term of U in (2.9),

M0 = 8π(2w − 1)r0 , (2.11)

meaning that the total energy of the solution is of purely gravitational origin.
We see from Eq. (2.10) that for r0 > 0 the energy of the solution is positive (negative) for

w > 1/2 (w < 1/2) and it vanishes for w = 1/2; the exactly opposite holds for r0 < 0. This
means that for r0 > 0 solutions with w < 1/2 are stable with respect to the Minkowski vacuum,
whereas solutions with w = 1/2 are degenerate with respect to the same vacuum. However, it has
to be stressed that the Janis-Newmann-Winicour-Wyman solutions represent naked singularities,
therefore they can be ruled out by means of a cosmic censorship principle. Another interesting fea-
ture of the Janis-Newmann-Winicour-Wyman solutions is that their mass can be positive or zero
even in the presence of a naked singularity. This is rather unusual and it is due to the back-reaction
of the metric to the presence of a non-trivial scalar field.

It shouldbenoted that because the total energy of the solution is not positive definite the positive
energy theorem is not satisfied. However, violation of the positive energy theorem is a necessary but
not sufficient condition for the existence of regular hairy black hole solutions.

From the asymptotic expansion of the scalar field in Eq. (2.9) one can read off the scalar charge,
σ = γ r0. Thus, mass and scalar charge are not independent, consistently with no-hair theorems,
which forbid solutions with independent scalar hair.

2.2.2 Zero Mass and Charge Limit of Dilatonic Black Hole Solutions
The solution (2.5) also appears as limiting case of dilatonic, black hole solutions, i.e. solutions of non-
minimally coupled Einstein-Maxwell-dilaton gravity. For instance, the Janis-Newmann-Winicour-
Wyman solution can be obtained in the zero charge limit of the Garfinkle-Horowitz-Strominger
black hole [76] and also in a particular limit of the S-duality model investigated in Ref. [78]. The
latter model considers a Lagrangian as in (2.1) with V (ϕ) = 0 plus the term − cosh 2ϕF 2 and
allows for charged, scalar-dressed, asymptotically flat black hole solutions with the metric functions
and scalar field given by,

U =
(r − r−)(r − r+)

r(r − r0)
, R2 = r2

(
1− r0

r

)
, ϕ = ϕ0 +

1

2
log
(
1− r0

r

)
. (2.12)

Theconstants r± are related to themassM , themagnetic chargeQ and the scalar chargesσ = −r0/2,
ϕ0, trough

r± =M +
r0
2
±
√
M2 +

r20
4
−Q2 cosh 2ϕ0 , r0 = −Q

2

M
sinh 2ϕ0 . (2.13)
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The solution (2.12) represents a three-parameter family of black hole solutions generalizing the
well-known Reissner-Nordström solution of general relativity for M2 +

r20
4
− Q2 cosh 2ϕ0 ⩾ 0.

The extremal limit is reached when the previous inequality is saturated.
One can easily realise that the solutions (2.5) withw = 1/2 can be obtained from the dilatonic

black hole solution (2.12) in the limit M → 0, Q → 0 keeping Q2/M finite. In this limit, the
inner horizon at r = r− is pushed to r = 0whereas the outer horizon at r = r+ coincides with the
singularity at r = r0.

2.2.3 The Charged Janis-Newmann-Winicour-Wyman Solution
In this subsection, we generalise the Janis-Newmann-Winicour-Wyman solutions by switching on
an electric field as in (A.6), characterized by an electric charge Q. The field equations are given by
Eqs. (2.2) with V (ϕ) = 0, substituting Eq. (2.2c) with

u′′ − 4(uY )′ + 2− 4Q2 e−2
∫
Y = 0 . (2.14)

We find the solution by determining first u and ϕ, and then by solving the Riccati equation. Finally,
we use Eq. (2.14) to expressQ in terms of the integration constants. We have1

U =
(
1 +

r0
r

)2w−1
[
1− Q2

r20(1− 2w)2

(
1 +

r0
r

)2w−1
]−2

, (2.15a)

R2 = r2
(
1 +

r0
r

)2(1−w)
[
1− Q2

r20(1− 2w)2

(
1 +

r0
r

)2w−1
]2
, (2.15b)

ϕ = −γ log
(
1 +

r0
r

)
+ ϕ0 . (2.15c)

withw(1−w) = γ2. Forw ̸= 0, 1, these solutions canbe considered as the charged generalisationof
the Janis-Newmann-Winicour-Wyman solutions and describe a spacetime with a naked singularity
at

r = r0

[(
Q

r0(1− 2w)

)2/(1−2w)

− 1

]−1

. (2.16)

The scalar curvature of the spacetime is:

R =
2γ2r20
r4

(
1 +

r0
r

)2w−3
[
1− Q2

r20(1− 2w)2

(
1 +

r0
r

)2w−1
]−2

. (2.17)

Forw = 0, 1 the solution (2.15) gives theusualReissner-Nordströmblackholewith a constant scalar
field, which can be put in its standard form by rescaling and translating the radial coordinate r.

For the rest of the chapter, we focus on theQ = 0 case.
1. Notice that Eqs. (2.15) are not normalised such thatU → 1 as r → ∞.
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2.3 Asymptotic Behaviours
Eq. (2.5) represents the most general, static, spherically symmetric solutions sourced by a scalar field
with an identically vanishing potential. Consistently with no-hair theorems, they do not describe
black holes but naked singularities, therefore to have black hole solutions sourced by a non-trivial
scalar eitherwe violate the positive energy theoremor/andwe consider a non-convex scalar potential.
An easy way to achieve this is to consider a potential which is zero only asymptotically but becomes
non-zero and negative in the bulk spacetime. Focusing on black hole solutions sourced by an asymp-
totically massless scalar, we have to impose the conditions (2.4) on the potential and the boundary
condition (2.3) on the scalar field.

The conditions (2.4) imply that asymptotically, nearϕ = 0, the potentialmust behave at leading
order as V (ϕ) = µϕn where µ is a constant and n ⩾ 3. The corresponding asymptotic behaviour
of the scalar field for r → ∞ can be determined by using the field equation for the scalar (2.2b)
written in the form

(uϕ′)′ = nµR2ϕn−1 , (2.18)

and the conditions for asymptotic flatness of the spacetime: u = r2, R2 = r2. Using these condi-
tions, Eq. (2.18) gives the fall-off behaviour of ϕ. For n = 3 we have a scalar field decaying asymp-
totically as ϕ = 2/(3µr2). For n = 4 the theory corresponds to a conformal field theory in flat
spacetime, which allows for time-dependent meron solutions ϕ ∼ 1/

√
r2 − t2. The most inter-

esting case is however obtained for n = 5. In this case the scalar field behaves asymptotically as in
Eq. (2.5), i.e. as a harmonic function in three dimensions,

ϕ =
β

r
+ O

(
1/r2

)
, (2.19)

where β is a constant. It is important to stress that the presence of a term O (1/r2) is necessary to
cancel the contribution of the 1/r term in the right hand side of Eq. (2.18).

We have reached an important result. Compatibility of condition (2.3) with conditions (2.4)
require a quintic asymptotic behaviour of potential V (ϕ). This condition translates immediately
in a condition for the existence of asymptotically flat black hole solutions sourced by a scalar field
behaving asymptotically as massless, i.e. decaying as a harmonic function.

2.4 Black Hole Solutions
In this section, we derive asymptotically flat black hole solutions sourced by a scalar field with 1/r

asymptotic behaviour. We expect these solutions to be closely related to solution (2.5), and, given
the results of Section 2.3 we also expect the potential to behave asymptotically as V (ϕ) ∼ ϕ5.
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We start with the scalar field profile one obtains in the case of a vanishing potential

ϕ = −γ log
(
1− r0

r

)
, (2.20)

andwedetermine themetric functions and the potential using themethoddescribed inAppendixA.
The solution forR is obtained by integrating the Riccati equation (2.2a) and it can be read directly
from Eq. (2.5),

R2 = r2
(
1− r0

r

)2(1−w)

, w(1− w) = γ2 . (2.21)

The metric function u and the potential V are given by

u

R4
= −

∫
dr
(
2r + C1

R4

)
+ C2 , V =

1

R2

(
1− u′′

2

)
. (2.22)

For generic values of the integration constants C1 and C2 the corresponding solutions are not
asymptotically flat. Forw ̸= 1/4, 1/2, 3/4we get asymptotically flat solutions by choosing

C2 =
C1 − r0 + 4r0w

r30(2w − 1)(4w − 3)(4w − 1)
, (2.23)

and the metric function U reads

U(r) = X2w−1
[
1− Λ(r2 + (4w − 3)rr0 + (2w − 1)(4w − 3)r20)

]
+ Λr2X2(1−w) , (2.24)

whereX = 1 − r0/r and Λ = C2. Using Eq. (2.22) and inverting ϕ = ϕ(r) given by Eq. (2.20)
we are now able to write down the corresponding potential V (ϕ),2

V (ϕ) = 4Λ

[
−w(1− 4w) sinh (2w − 2)ϕ

γ
+ 8γ2 sinh (2w − 1)ϕ

γ

+(1− w)(3− 4w) sinh 2wϕ

γ

]
. (2.25)

Similarly to the V (ϕ) = 0 case, the solutions (2.20), (2.21) and (2.24) and the potential (2.25)
are invariant under the transformationw → 1−w and r → r0 − r, so we can restrict the range of
w to 1/2 ⩽ w ⩽ 1.

We now show that the metric function (2.24) has an event horizon and hence it describes a
black hole. Let λ = 1/(r20Λ), then the position of the event horizon rh is given by the zeros with
0 ⩽ X < 1 of the following equation

f(X) :=
{
[λ− (2w − 1)(4w − 3)] (1−X)2 − (4w − 3)(1−X)− 1

}
X4w−3 + 1 . (2.26)

The solutions of this equation can be found graphically by determining for which values of the
parameterλ the function f(X) intersects theX axis at 0 ⩽ X < 1. We have to distinguish between
the two cases 1/2 < w < 3/4 and 3/4 < w < 1.

2. The potential (2.25) arises also from the study of a general class of Petrov type D solutions [84, 85] and the solu-
tion (2.24), albeit in a different form, had already been derived in Ref. [85].
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1/2 < w < 3/4. Taking into account that f ′(1) = 0, necessary conditions for the existence of
the solution are f(X) → +∞ forX → 0+ and f(X) → −∞ forX → +∞, requiring
(2w−1)(4w−3) < λ ⩽ (2w−1)(4w−1). On the other hand f(X) has a localminimum
for

X = X2 =
(4w − 3)[λ− (2w − 1)(4w − 1)]

(4w − 1)[λ− (2w − 1)(4w − 3)]
. (2.27)

f(X) intersects theX-axis at 0 < X < 1 only if 0 ⩽ X2 < 1, which in turn implies λ > 0.
Thus Eq. (2.26) admits a solution only for 0 < λ ⩽ (2w− 1)(4w− 1). We will see that this
case is similar to thew = 1/2 case.

Black hole solutions exist only for

r20 ⩾
1

(2w − 1)(4w − 1)Λ
. (2.28)

The black hole mass is given by

M = (2w − 1)8πr0

[
1− (4w − 3)(4w − 1)

3λ

]
, (2.29)

whereas the scalar charge is determined by the mass. We have large black holes for λ→ 0 and
a naked singularity for λ = (2w− 1)(4w− 1). Owing to Eq. (2.28) the black hole mass has
a lower bound given by

Mmin =
16π

3
√
Λ

w√
(4w − 1)(2w − 1)

. (2.30)

3/4 < w < 1. In this case we always have f(0) = 1, so that a necessary condition for a solution to
Eq. (2.26) to exist is f(X) → −∞ forX → +∞, requiring λ < (2w − 1)(4w − 1). On
the other hand, 0 ⩽ X < 1 implies λ < 0. It follows that solutions always exist for λ < 0.
We will see that it is analogous to thew = 3/4 case.

There is no lower bound on λ nor the black hole mass (2.29). Black holes exist for arbitrarily
small values of the mass (corresponding to λ → −∞), while the mass of the solution which
describes the naked singularity is zero.

2.4.1 Black Hole Solutions forw = 1/2

Forw = 1/2 the solutions are asymptotically flat when

C2 = − 2

r20
. (2.31)
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The solutions and the potential read

U(r) =
r2

r20
X
[(
1 + r20Λ

)
X − 2r20Λ logX +

(
1− r20Λ

)
X−1 − 2

]
, (2.32)

V (ϕ) = 4Λ [3 sinh 2ϕ− 2ϕ (cosh 2ϕ+ 2)] , Λ = −C1 + r0
r30

. (2.33)

The solution of the transcendental equation

X logX =
1 + λ

2
X2 − λX − 1− λ

2
, (2.34)

gives the position of the event horizon rh of the metric function (2.32). For 0 < λ ⩽ 1, corre-
sponding to r20 ⩾ 1/Λ, Eq. (2.34) has always an acceptable solution, i.e. a solution 0 ⩽ X(rh) < 1,
corresponding to r0 ⩽ rh <∞.

The spacetime represents a black hole with event horizon at r = rh and a curvature singularity
at r = r0. ForX(rh) → 1 (corresponding to rh → ∞), λ→ 0 and then we have large black holes.
Conversely, forX(rh) = 0 (corresponding to rh = r0) the horizon disappears and we are left with
a naked singularity.

Theblack holemass can be easily evaluated from the coefficient of the 1/r term in the asymptotic
expansion of the metric function U ,

M =
8πr0
3λ

. (2.35)

Because of the bound r20 ⩾ 1/Λ, there is a minimum value for the black hole mass,

Mmin =
8π

3
√
Λ
, (2.36)

under which black hole solutions cannot exist. The continuous part of the black holemass spectrum
is separated from the Minkowski vacuum, attained for r0 = 0, by a mass gap.

2.4.2 Black Hole Solutions forw = 3/4

Forw = 3/4we have asymptotically flat solutions for

C2 = −3C1

2r30
− 2

r20
. (2.37)

The solutions and the potential take the form

U(r) =
r2

r20
X1/2

[(
1 +

r20Λ

2

)
X2 − 2

(
1 + r20Λ

)
X + r20Λ logX + 1 +

3r20Λ

2

]
, (2.38)

V (ϕ) = Λ

(
8
√
3ϕ cosh 2ϕ√

3
− 9 sinh 2ϕ√

3
− sinh 2

√
3ϕ

)
, Λ = −C1 + 2r0

r30
. (2.39)
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In this case, the position of the event horizon rh is given by the solutions of the equation

logX = −
(
λ+

1

2

)
X2 + 2(λ+ 1)X − λ− 3

2
. (2.40)

Solutions of this equation with 0 ⩽ X(rh) < 1 always exist for λ ⩾ 0. Also in this case we have
large black holes (X(rh) → 1) when λ→ 0 and naked singularities (X(rh) = 0) for λ→ ∞.

The black hole mass is

M = 4πr0

(
1 +

2

3λ

)
. (2.41)

Since λ has no upper bound, differently from the previous case, black holes exist for arbitrarily small
values of the mass whereas the naked singularity has zero mass.

2.5 Thermodynamics
In this section, we investigate the thermodynamics of the black hole solutions we have found in
the previous section. The masses have already been calculated, while the temperature T and the
entropy S will be calculated using the well-known formulæ involving the surface gravity and the
area law:

T =
U ′

4π

∣∣∣∣
r=rh

, S = 16π2R2
∣∣
r=rh

. (2.42)

We will also show that consistently with the non-existence of an independent scalar hair the
thermodynamical parameters M , T and S satisfy the first principle dM = T dS.3 As usual we
discuss separately the three cases 1/2 < w < 1,w = 1/2, andw = 3/4.

Let us define the dimensionless parameter ω ≡ r0/rh, with 0 < ω ⩽ 1, and let us begin with
generic 1/2 < w < 1,w ̸= 3/4. Then, Eq. (2.26) evaluated at the horizon can be solved for λ,

λ(ω) =
1− (1− ω)3−4w

ω2
+

4w − 3

ω
+ (2w − 1)(4w − 3) . (2.43)

The functions T (ω) and S(ω) are given by

T (ω) =

√
Λ

4π
√
λ

[(
2

ω
+

3− 4w

1− ω

)
(1− ω)2−2w −

(
2

ω
+ 4w − 3

)
(1− ω)2w−1

]
, (2.44)

S(ω) =
16π2

Λλ

(1− ω)2−2w

ω2
, (2.45)

The general thermodynamical relations M(T ), S(T ) characterising the black hole cannot be
found analytically. However, one can easily check by differentiating λ(ω) and M(ω) the validity

3. The same results can be derived using the Euclidean action formalism, but we omit the calculations here.
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of the first law of thermodynamics. This is a rather non-trivial consistency check, because the scalar
charge of the solution is not independent, therefore we cannot have a thermodynamical potential
associated with it.

The large mass limit can be discussed expanding T , S,M and λ about ω = 0. At leading order
one gets from (2.43), λ = 1

3
ω(1 − 2w)(3 − 4w)(1 − 4w) which inserted into the expansion of

(2.44) and (2.45) gives

T ≈
√
Λω3/2

4
√
3π

1

(1− 2w)(3− 4w)(1− 4w)
, (2.46)

S ≈ 48π2

Λω3
(1− 2w)2(3− 4w)2(1− 4w)2 . (2.47)

The leading term for the mass (2.29) is

M ≈ 8
√
3π√

Λω3/2
(1− 2w)(3− 4w)(1− 4w) . (2.48)

From these equations one easily finds the thermodynamical potentials

M =
2

T
, S =

1

T 2
, F =M − TS =

1

T
, (2.49)

whereF is the free energy. The previous thermodynamical relations are exactly those satisfied by the
Schwarzschild black hole. Thus, for large masses, our scalar dressed black hole is thermodynamically
indistinguishable fromaSchwarzschildone at the same temperature. This is an interesting result, par-
ticularly if one considers that for themodel under consideration, the Schwarzschild solution sourced
by a constant scalar is unstable.

2.5.1 Thew = 1/2 case
The temperature and the entropy (2.42) can be easily written as functions of ω and λ,

T (ω) =

√
Λ

4π
√
λ

[
2

(
1− 2

ω

)
log(1− ω)− 4

]
, S(ω) =

16π2

Λλ

(
1

ω2
− 1

ω

)
. (2.50)

where λ is obtained by solving Eq. (2.34) evaluated at the horizon,

λ(ω) =
2(1− ω) log(1− ω)

ω2
+

2

ω
− 1 . (2.51)

In Section 2.4.1 we have found that 0 < λ ⩽ 1, meaning that the temperature, the mass and
the entropy are always positive. For ω = λ = 1 we have an extremal state with zero entropy and
infinite temperature saturating the inequality r20 ⩾ 1/Λ. Near to the singularity, the temperature
diverges logarithmicallyT ∼ − log(1−ω). For this state, the horizon coincideswith the singularity.
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Nevertheless, the mass is not zero but it is given by the minimum valueMmin = 8π/(3
√
Λ). The

behaviour of this singular extremal state has to be compared with that of the Schwarzschild black
hole, for which the extremal, infinite temperature state has zero mass.

Using Eqs. (2.35), (2.50) and (2.51) one can check the validity of the first lawof thermodynamics,
hence the absence of a thermodynamical potential associated with the scalar charge. We can derive
the explicit form of the thermodynamical potentials in the limit of large black holes, λ, ω → 0

corresponding to r20 ≫ 1/Λ. In this limit, the mass and entropy diverge whereas the temperature
tends to zero. Expanding Eq. (2.51) about ω = 0 we get λ = ω/3 + O(ω2), which inserted in
Eqs. (2.35) and (2.50) gives at leading order

M =
8
√
3π√

Λω3/2
, T =

√
Λ

4
√
3π
ω3/2 , S =

48π2

Λω3
. (2.52)

Using these equations one can easily get the thermodynamical potentials (2.49).

2.5.2 Thew = 3/4 case
Also in this case we begin writing the temperature and the entropy as functions of the dimensionless
parameters ω and λ,

T (ω) =

√
Λ

4π
√
λ

(1 + 2λ)ω2 − 2λω√
1− ω

, S(ω) =
16π2

Λλ

√
1− ω

ω2
. (2.53)

where λ(ω) is obtained solving Eq. (2.40) evaluated at the horizon with respect to λ,

λ(ω) = −ω(ω + 2) + 2 log(1− ω)

2ω2
, (2.54)

where now λ > 0 from Section 2.4.2.
Although the explicit general form of M(T ) and S(T ) cannot be found analytically, one can

quickly check, using the same procedure as before, the validity of the first principle.
The extremal, singular, black hole state is obtained forω = 1,λ = ∞. We nowhave an extremal

state with M = S = 0 and T = ∞. In this state the horizon coincides with the singularity
and the mass is zero analogously to the Schwarzschild black hole. Conversely, large black holes are
obtained for λ, ω → 0 when the mass and entropy diverge whereas the temperature tends to zero.
In this limit we get again approximate solution for λ = ω/3, at leading order in ω, the temperature
and the entropy satisfy the same relations as in Eq. (2.52) and we have the same thermodynamical
potentials (2.49).

2.6 Summary and Conclusions
In this chapter, we have derived exact, asymptotically flat, spherically symmetric, black hole solutions
sourced by a non-trivial scalar field behaving asymptotically as a harmonic function. The expressions



2 Asymptotically Flat Black Hol Sourced by a Massless Scalar Field 25

for the metric function (2.24), (2.32) and (2.38), together with, respectively, the potentials (2.25),
(2.33) and (2.39) represent a two-parameter family of solutions of the Einstein-scalar gravity the-
ory (2.1) sourced by a non-trivial scalar field given by Eq. (2.20).

The solutions (2.24), (2.32) and (2.38) have a curvature singularity at r = r0 (for r0 > 0) or at
r = 0 (for r0 < 0), and it can be easily shown that near the singularity they have the same scaling
behaviour of the Janis-Newmann-Winicour-Wyman solution given in Eqs. (2.6) and (2.7). Hence,
our solutions share the same singularity structure with the Janis-Newmann-Winicour-Wyman so-
lution and, similarly to the latter, they interpolate between an asymptotically flat spacetime and a
power-law metric near to the singularity, typical of hyperscaling violation.

In view of the results of Section 2.3, for ϕ→ 0, the potentials (2.25), (2.33) and (2.39) and their
n-order derivatives vanish tilln = 5, i.e. the potential behaves nearϕ = 0 respectively forw generic,
w = 1/2 andw = 3/4 as

V (ϕ ≈ 0) = −32Λ
(2w − 1)(4w − 1)(4w − 3)

(w − w2)3/2
ϕ5 + O

(
ϕ7
)
, (2.55)

V (ϕ ≈ 0) = −256Λϕ5 + O
(
ϕ7
)
, (2.56)

V (ϕ ≈ 0) = −1856Λ

3
√
3
ϕ5 + O

(
ϕ7
)
. (2.57)

For all values of the parameter 1/2 ⩽ w < 1 the potential is always antisymmetric under ϕ → −ϕ
and diverges for ϕ → −∞, which means that it is always not limited from below. Since the first
derivative of the potential evaluated at ϕ = 0 vanishes, all the three models allow for the Schwarz-
schild black hole solution endowed with a identically trivial scalar, ϕ = 0. However, ϕ = 0 is not
a minimum of the potential so that we naturally expect this solution to be unstable. Moreover, be-
causeϕ = 0 is an inflectionpoint forV (ϕ), the potential is not convex and according to old no-scalar
hair theorems, black hole solutions with non-trivial scalar profile are in principle allowed.

Themasses of these solutions, given by, respectively, expressions (2.29), (2.36) and (2.41) are not
positive definite, and therefore the positive energy theorem is therefore violated, i.e. our solutions
do not satisfy the conditions of recent no-hair theorems.

In ourmodel, although characterised by a non-trivial scalar field profile, the corresponding scalar
charge is not independent, implying the absence of a corresponding thermodynamical potential.
Nevertheless, the thermodynamics of our solutions shows several interesting features. In the large
mass limit, they have the same thermodynamical behaviour of the Schwarzschild solution, whereas
the infrared behaviour of the mass spectrum of the black hole solutions with 1/2 ⩽ w < 3/4 is
characterised by the presence of a mass gap. The behaviour near the singular state is different for the
two cases 1/2 < w < 3/4 and 3/4 < w < 1. The first one is very similar to thew = 1/2 case: we
have a singular extremal state with zero entropy, infinite temperature, but non-vanishingmass given
by the minimal mass (2.30) for λ = (2w− 1)(4w− 1), corresponding toω = 1. The second case is
akin to thew = 3/4 case: we have a singular extremal state with zero entropy, infinite temperature,
and vanishing mass for λ→ −∞.
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On the other hand, the model has some troublesome features, related to the behaviour of the
potential V (ϕ) both at ϕ → 0 and ϕ → ∞. Because ϕ = 0 is not a minimum of the potential
but only an inflexion point, the ϕ = 0 Schwarzschild black hole, although solution of the field
equation, is most likely unstable. Moreover, the potential is unlimited from below, V (ϕ) → −∞
for ϕ → −∞, and behaves near ϕ = 0 as V (ϕ) ∼ ϕ5, hence it is not renormalisable from the
quantum field theory point of view. For these reasons our model cannot be fundamental but can
give only an effective description valid in the regionϕ ⩾ 0. It is well-known that the renormalisation
group flowmay drive the scalar field potential in regions of instability. An important example of this
kind of behaviour is given by the coefficient of the quartic term in theHiggs potential, which at short
distances could become negative making the usual Higgs vacuum unstable [165, 166].

A rather intriguing possibility comes into the play if we consider the parameter Λ in the poten-
tials (2.25), (2.33) and (2.39) as dynamical. This can be the case if we regard the model as an effective
description (e.g. resulting from some renormalisation groupflow) of some fundamentalmicroscopic
theory. If this is the case, focusing on the casew = 1/2, the vacuum can be obtained atΛ = 0, cor-
responding to r0 = ∞. For λ = 0 we get the solution (2.5) for a massless field with the value
w = 1/2, i.e. a solution with zero mass, endowed with a non-trivial scalar field.

An important point we have not addressed in this chapter is the stability of the black hole solu-
tionswe have found. For all ourmodels we have theMinkowski vacuum solution forϕ = 0. On the
other hand, we have already argued about the instability of the Schwarzschild solution. The stability
of solution (2.24) has been investigated in Ref. [86], where it has been shown that it presents mode
instability against linear radial perturbations.



Chapter 3
•

Brane Solutions Sourced by a Scalar with
Vanishing Potential

We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in
d+2 dimensions with a vanishing scalar potential andwe show that these solutions are confor-
mal to the Lifšic spacetime whose dual quantum field theory is characterised by hyperscaling
violation. These solutions, together with the AdS brane and the domain wall sourced by an
exponential potential, give the complete list of scalar branes sourced by a generic potential hav-
ing simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to
give a classification of both elementary and interpolating brane solution of minimally coupled
Einstein-Maxwell-scalar gravity having no Schrödinger isometries, whichmay be very useful for
holographic applications.

Units: c = 1;G = 1/16π; the kinetic scalar term is non-standard.
This chapter is based on: M.Cadoni, E.F., andM. Serra. ‘Brane solutions sourced by a scalar

with vanishing potential and classification of scalar branes’. J. High Ener Phys. 1601 (2016),
125. arXiv: 1511.03986.

3.1 Introduction
In this chapter, we study brane solutions of minimally coupled Einstein-Maxwell-scalar gravity. As
briefly discussed in Section 1.3, these solutions are of particular interest in the holographic context,
where we can identify three different types of solutions.

1. Black bran , i.e. solutions with a singularity shielded by an event horizon. These solutions
correspond to a field theory at finite temperature T and they are crucial in the description of
dual quantum field theories at finite temperature. In particular they may give rise to phase
transitions.

2. Scale-covariant bran , i.e. elementary solutions that transform covariantly under scale trans-
formations. They represent a generalisation of the usual Minkowski or AdS vacua to space-
times with non-standard asymptotics. They are sourced by a scalar field with log r behaviour,
have no horizon and in the dual QFT typically correspond to a T = 0 ground state exhibit-
ing hyperscaling violation. TheAdSbrane, which is characterised by full conformal invariance
and is sourced by a constant scalar, appears as the limiting case of this class of solutions. In
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general, scale-covariant solutions have a curvature singularity at r = 0 and need therefore an
infrared regularisation.

3. Interpolating bran , i.e. solutions that interpolate between two elementary branes at r = 0

(the infrared of the dual QFT) and r = ∞ (the ultraviolet of the dual QFT). They are T = 0

solutions describing the flow of the dual QFT from the infrared to the ultraviolet regime, in
which the solution behaves as an elementary, scale-covariant, solution.

The presence of a given type of brane solution in the spectrum of minimally coupled Einstein-
Maxwell-scalar gravity theories depends on the specific form of the scalar potential. For a constant
potential we obtainAdS branes; elementary, scale-covariant branes require an exponential potential;
black or interpolating branes typically require amore complicated potentialwith different behaviour
in the r = 0 and r = ∞ region. Notice that the known no-hair theorems only apply to asymptoti-
cally flat or AdS solutions. Thus, solutions with non-standard asymptotics do not necessarily satisfy
no-hair theorems. Although several solutions of minimally coupled Einstein-Maxwell-scalar gravity
theories are known, presently it is not clear if the scale-covariant geometries found until now exhaust
all the possible solutions of this kind of theory. Clearly, this lack of knowledge prevents a complete
classification of the possible interpolating geometries.

In this chapter we present two results. First, we derive the exact solutions of minimally cou-
pled Einstein-Maxwell-scalar gravity in the case of a vanishing scalar potential, which are the brane
counterpart of the Janis-Newmann-Winicour-Wyman solutions discussed in Chapter 2. We show
that these solutions belong to the class of scale-covariant solutions generating hyperscaling viola-
tion in the dual QFT. Second, we demonstrate that these solutions complete the list of the possible
scale-covariant solutions of the theory having isometries not involving Galilean boosts. This will al-
low us to give an exhaustive classification of the interpolating brane solutions of minimally coupled
Einstein-Maxwell-scalar gravity with no Schrödinger isometries.

3.2 Scaling Symmetries and Hyperscaling Violation
The d+2 dimensional metric for a brane whose dual QFT is characterised by hyperscaling violation
is usually written as [122]

ds2 = r−2(d−ϑ)/d
(
−r−2(z−1) dt2 + dr2 + dxi dxi

)
, (3.1)

where dxi dxi is the line element of the d dimensional transverse spacetime with planar topology,
ϑ is the hyperscaling violation parameter and z is the dynamic scaling exponent characterizing the
anisotropic scaling of the time and space coordinates, which breaks Lorentz invariance in the dual
QFT. The scaling symmetries of the metric (3.1) are

t→ λzt , r → λ r , xi → λxi , ds→ λϑ/d ds . (3.2)
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Anon-zero value ofϑmakes themetric (3.1) not scale-invariant, but only scale-covariant, in the sense
that the metric transforms with a definite weight under a scale transformation. Notice that in this
chapter we consider simple scaling symmetries (3.2), which do not involve Galilean boosts.1

It is useful to distinguish between the two effects of hyperscaling violation (ϑ ̸= 0) and aniso-
tropic scaling (z ̸= 1) introducing four different subclasses:

ϑ = 0 ϑ ̸= 0

z = 1 AdS branes Domain Walls
z ̸= 1 Lifšic branes Conformal-Lifšic branes

Table 3.1: Brane classification according to their (violation of) hyperscaling violation parameter and aniso-
tropic scaling exponent.

AdS branes. The metric (3.1) gives the AdSd+2 spacetime, the scaling (3.2) is isotropic and the dual
QFT is a conformal field theory.

Lifšic branes. Because ϑ = 0, the metric is not only covariant but also invariant under the scale
transformation (3.2). On the other hand, because z ̸= 1 the scaling is not isotropic in the
t and xi coordinates and the dual d + 1 dimensional QFT is not invariant under the d + 1

dimensional Lorentz group.

Domain Walls. The scaling (3.2) is isotropic but being ϑ ̸= 0, the full scale invariance is broken and
only scale covariance survives. Themetric is conformal to the AdS spacetime, the dual QFT is
Lorentz-invariant and one can still formulate a DW/QFT correspondence [173, 174]. Notice
that theMinkowski spacetime in d+2 dimensions is a particular case of this class of solutions,
obtained for ϑ = d.

Conformal-Lifšic branes. The scaling (3.2) is anisotropic and hyperscaling is violated. In this case
the metric (3.1) is conformal to the Lifšic spacetime [111].

Hyperscaling violation can be realised both for positive and negative values of ϑ, and the two
cases are qualitatively different. The scaling transformation determines the following scaling be-
haviour for the free energy of the dual QFT, given in terms of ϑ and z:

F ∼ T (d+z−ϑ)/z . (3.3)

1. Holography has also been investigated for non-relativistic quantum field theories, which allows for boosts in ad-
dition to the simple scaling geometries (3.1), and it is known as Schrödinger holography [167–172]. A complete and
exhaustive classification of all non-relativistic holographic models, in particular of the important case z = 2, would
require a separate classification also involving the Schrödinger symmetries which we do not study here.
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The effect of a positive hyperscaling violation parameter ϑ is a ‘lowering’ of the effective dimension-
ality of the dual system from d to d− ϑ, whereas for ϑ < 0 this dimensionality increases to d+ |ϑ|.
For typical condensed matter critical systems ϑ is always positive. However, in the context of holo-
graphically generated hyperscaling violation, negative values of ϑ have been found in a number of
cases, see e.g. Refs. [120, 121] and references therein.

3.3 Brane Solutions Sourced by a Scalar Field with V = 0

In this section, we find exact d+ 2 dimensional brane solutions (ε = 0) to Einstein-Maxwell-scalar
gravity with identically null scalar potential, V (ϕ) = 0. We follow the notation and conventions of
Appendix A, and in this particular case, the field equations (A.8) reduce to

Y ′ + Y 2 = −2

d
ϕ′2 , (3.4a)

(uϕ′)′ = 0 , (3.4b)
u′′ − (d+ 2) (uY )′ − 4Q2 e−d

∫
Y = 0 , (3.4c)

u′′ − 2(d− 2)

d
Q2 e−d

∫
Y = 0 . (3.4d)

Let us discuss separately the neutral and charged case.

3.3.1 Neutral Brane Solutions
One can easily check that flat branes with R = r and U = 1 (corresponding to u = rd and
Y = 1/r), are not solution of the field equations (3.4) withQ = 0. However, the system (3.4) with
Q = 0 canbe integrated exactly: we solve the trivial equation (3.4d), givingu as a linear functionof r;
then we solve Eq. (3.4d) for Y ; and finally we determine ϕ using Eq. (3.4b). The Riccati equation
then gives just a constraint for the integration constants. The most general solution is:

U =

(
r

r0

)1−dw

, R2 =

(
r

r0

)2w

, ϕ = −γ log
(
r

r0

)
+ ϕ0 , w − w2 =

2

d
γ2 , (3.5)

where r0, γ, w and ϕ0 are integration constants. The constraint implies the condition 0 ⩽ w ⩽ 1.
The solution (3.5) is invariant under the transformation w → 1 − w, which maps solutions with
w ∈ [0, 1/2] into solutions with w ∈ [1/2, 1]. Neglecting the constant ϕ0, a trivial translation
mode of the scalar, these solutions give a two-parameter family of brane solutions. In particular, r0
represents a length scale, whilew is a dimensionless parameter. The solution (3.5) can be considered
as the brane counterpart of the Janis-Newman-Winicour-Wyman spherical solutions.

Forw ̸= 0, 1 the solutions have a naked singularity at r = 0, in fact the scalar curvature is

R =
2γ2

r20

(r0
r

)1+dw

. (3.6)
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Solutions (3.5) have non-standard asymptotics, thus — in principle — no-hair theorems, which
forbid asymptotically flat black brane solutions when V = 0, do not apply. Nevertheless, one can
easily check that Eqs. (3.4) do not allow for solutions with event horizons. Thus, the brane (3.5) is a
zero temperature solution, which does not allow for finite temperature excitations.

In the two limiting casesw = 0, 1 the scalar is constant. Forw = 0 the brane solution becomes

ds2 = − r

r0
dt2 + r0

r
dr2 + dxi dxi , (3.7)

which is just d + 2 dimensional Minkowski space in a particular coordinate system; in fact, the
(r, t) sections of the metric can be brought in the Rindler form by a simple redefinition of the radial
coordinate. Forw = 1 the brane solution is

ds2 = −
(
r

r0

)1−d

dt2 +
(
r

r0

)d−1

dr2 +
(
r

r0

)2

dxi dxi , (3.8)

a Ricci-flat manifold, which can be considered as the brane counterpart of the Schwarzschild black
hole.

Energy of the Brane
In the Euclidean action formalism [163], the variation of the boundary terms of the action consists
of both a gravitational δMG and a scalar contribution δMϕ:

δMG = 8π

[
−d
2
Rd−1R′δU + U ′Rd/2δ

(
Rd/2

)
− dURd/2δ

(
R

d−2
2 R′

)]∞
, (3.9)

δMϕ = −16π
[
RdUϕ′δϕ

]∞
. (3.10)

It follows that the total energy for the solution (3.5) is

M =
4π

r0
dw [(2− d)w − 2] . (3.11)

Taking into account the constraints on w and d (namely 0 ⩽ w ⩽ 1 and d ⩾ 2), the energy
vanishes only whenw = 0, i.e. for Minkowski space, while for 0 < w ⩽ 1 the sign of the energy is
ruled by the sign of r0 (negative for r0 > 0 and positive for r0 < 0). Taking r > 0, the solution (3.5)
exists only for r0 > 0, thus the brane has always a negative mass. This behaviour is quite different
from the Janis-Newman-Winicour-Wyman solution, where the sign of the energy depends both on
the value of the dimensionless parameter of the solutions and on r0, see Section 2.2.

Scaling Symmetries and Hyperscaling Violation
The brane metric (3.5) has remarkable scaling symmetries and can be put in the form (3.1) by the
transformation of coordinates

r

r0
→
(
r

r̃0

)2/[1+w(d−2)]

, r̃0 =
2r0

1 + w(d− 2)
. (3.12)
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The hyperscaling violation parameter and the dynamical exponent are given by

z =
2dw

1 + w(d− 2)
, ϑ =

d(1 + dw)

1 + w(d− 2)
. (3.13)

We observe that z and ϑ are not independent but satisfy the relation

ϑ = z + d . (3.14)

FromEqs. (3.13) andTable 3.1, we infer that the brane solution (3.5) can neither describe anAdS
nor a Lifšic spacetime. It can be either a domain wall forw = 1/(d+2) or a conformal-Lifšic brane
forw ̸= 1/(d+2). The relation (3.14) implies that the free energy of the dualQFT is constant. This
is what we expect because owing to the absence of solutions with event horizons, our brane solution
does not allow black brane excitations at finite temperature.

The null energy conditions for the bulk stress-energy tensor require [122]

(d− ϑ) [d(z − 1)− ϑ] ⩾ 0 , (z − 1)(d+ z − ϑ) ⩾ 0 . (3.15)

Taking into account that the constraint 0 ⩽ w ⩽ 1 implies the condition 0 ⩽ z ⩽ 2d/(d− 1), it
is straightforward to check that the first inequality is always satisfied. The second one is saturated in
our case, as expected because the source is a massless field.

3.3.2 Electrically Charged Brane Solutions in Four Dimensions
Let us now consider the case of non-vanishing electric charge. Taking for simplicity d = 2, Eqs. (3.4)
become

Y ′ + Y 2 + ϕ′2 = 0 , (uϕ′)′ = 0 , u′′ − 4(uY )′ − 4Q2 e−2
∫
Y = 0 , u′′ = 0 . (3.16)

Again, we first determine u and ϕ, then we solve the Riccati equation, and finally we use the third
equation to express the chargeQ in terms of the integration constants:

U =

(
r

r0

)1−2w
[
1− r20Q

2

(1− 2w)2

(
r

r0

)1−2w
]−2

, (3.17a)

R2 =

(
r

r0

)2w
[
1− r20Q

2

(1− 2w)2

(
r

r0

)1−2w
]2
, (3.17b)

ϕ = −γ log
(
r

r0

)
+ ϕ0 , (3.17c)

wherew(1− w) = γ2. These constraints imply 0 ⩽ w ⩽ 1, withw ̸= 1/2.
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The solution (3.17) represents a three-parameter (r0, w, Q) family of brane solutions, with a
naked singularity at r = r0 (r

2
0Q

2/(1− 2w)2)
(1/2w−1) for all w in the range 0 ⩽ w ⩽ 1. In fact

the scalar curvature is

R =
2γ2

r20

(
r

r0

)−1−2w
[
1− r20Q

2

(1− 2w)2

(
r

r0

)1−2w
]−2

. (3.18)

For w = 0, 1 the solutions reduce to curved branes with vanishing scalar curvature R = 0,
sourced by a constant scalar field. In particular one has:

U =
r

r0

(
1− r0Q

2r

(1− 2w)2

)−2

, R = 1− r0Q
2r

(1− 2w)2
, forw = 0 , (3.19)

U =
r0
r

(
1− r30Q

2

(1− 2w)2r

)−2

, R =
r

r0
− r20Q

2

(1− 2w)2
, forw = 1 . (3.20)

Both solutions represent a sort of Reissner-Nordström branes. Indeed, the metric part of the solu-
tions can bewritten in the formU = a/r+Q2/r2,R = r, where a is a constant, using a translation
and a rescaling of the radial coordinate r

The general asymptotic behaviour of the solution (3.17) depends on the value of w, i.e. when
0 < w < 1/2, we have for r → ∞ (corresponding to ϕ→ −∞) at leading order:

U =
(1− 2w)4

r40Q
4

(
r

r0

)−1+2w

, R2 =
r40Q

4

(1− 2w)4

(
r

r0

)2−2w

, ϕ = −γ log r

r0
, (3.21)

while when 1/2 < w < 1 one finds:

U =

(
r

r0

)1−2w

, R2 =

(
r

r0

)2w

, ϕ = −γ log r

r0
. (3.22)

Notice that in the latter case the asymptotic behaviour coincides with the neutral solution (3.5)
with d = 2, discussed in the previous subsection. It is also easy to check that the two asymptotic
forms (3.21) and (3.22) aremapped one into the other by the transformationw → 1−w, that leaves
invariant the constraintw − w2 = γ2.

Energy of the Brane
Also in this case, we compute the total energy of the solution using the Euclidean action formal-
ism [175]. The variation of the boundary terms of the action are:

δM = δMG + δMϕ − 16π Q δΦ|∞ , (3.23)

where δMG and δMϕ are the gravitational and scalar contributions, corresponding to Eqs. (3.9)
and (3.10) with d = 2, while the last term is the contribution due to the charge andΦ is the electric
potential.
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Evaluating the energy for our solution (3.17), we find that the electromagnetic contribution al-
ways vanishes at r = ∞, and the full result depends on the value of w. When 0 ⩽ w ⩽ 1/2 we
obtain

M =
16π

r0

[
−w + (2w − 1) log Q

Q0

]
, (3.24)

whereQ0 is an integration constant. In this case the sign of the energy depends on themutual values
of w and Q. When 1/2 ⩽ w ⩽ 1 (where the asymptotic behaviour of the charged brane (3.17)
coincides with the uncharged brane (3.5) for d = 2), one simply finds

M = −16π

r0
. (3.25)

As expected, it coincides with the energy (3.11) of the uncharged solution with d = 2.

Scaling Symmetries and Hyperscaling Violation
In order to study the scaling symmetries of the solution (3.17) in the ultraviolet regime, i.e. r → ∞,
we consider first the asymptotic form (3.21), describing the ultraviolet regime of the solution when
0 ⩽ w ⩽ 1/2. Eq. (3.21) can be put in the form (3.1) by the transformation of coordinates

r

r0
→
(
r

r̃0

)2

, r̃0 =
2r30Q

2

(1− 2w)2
. (3.26)

After this transformation, it is simple to extract the hyperscaling violation parameter and the
dynamical exponent:

z = 4(1− w) , ϑ = 2(3− 2w) . (3.27)

We immediately notice that ϑ = 0 for w = 3/2, which is outside the range of w. Hence, Table 3.1
tells us that the brane solution (3.17) cannot describe neither an AdS nor a Lifšic brane. The brane
is either a domain wall for w = 3/4 or a conformal-Lifšic brane for w ̸= 3/4. Notice also that
hyperscaling violation parameter and the dynamical exponent are not independent but they satisfy
the relation ϑ = z + 2, the very same relation they satisfy in the neutral case in d + 2 dimensions,
cf. Eq. (3.14). As a direct consequence, the free energy of the dual QFT is constant.

The null energy conditions for the bulk stress-energy tensor

(2− ϑ)[2(z − 1)− ϑ] ⩾ 0 , (z − 1)(2 + z − ϑ) ⩾ 0 , (3.28)

are satisfied. In particular, the second one is saturated.
Exploiting the symmetry of the asymptotic solutions (3.21) and (3.22) under w → 1 − w, we

can easily derive the critical exponents ϑ and z related to the scaling (3.22), which, as expected, are
those of (3.13) with d = 2.
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3.4 Classification of Brane Solutions Sourced by Scalar Fields
In this section we present a detailed physical classification of brane solutions sourced by a scalar field
with a self-interaction potential V (ϕ), i.e. a classification of the brane solutions of the minimally
coupled Einstein-Maxwell-scalar gravity theory described by the action (A.1). Obviously, the form
of the brane solution will strongly depend on the form of the potential and a complete classification
is without reach. On the other hand, having inmind holographic applications, we are not interested
in generic solutions but on branes that respect some scaling symmetries, at least in some regions, say
r → ∞ and r → 0. We can therefore build up a brane classification based on the scaling symmetries
discussed in Section 3.2.

We will preliminary show that the scale-covariant solution (3.5) together with the solutions al-
ready known in the literature give all the possible brane solutions of minimally coupled Einstein-
Maxwell-scalar gravity of the form (3.1). Using a reparametrisation of the radial coordinate r we
can easily write the metric (3.1) in the form (A.5) with U ∼ (r/r0)

a,R ∼ (r/r0)
b; inserting these

expressions in the field equations (A.8) withQ = 0 one finds only three classes of solutions:

Metric function Scalar field Scalar potential

AdSd+2 brane u ∼ rd+2 ϕ = const V = −Λ2

Solution (3.5) u ∼ r ϕ ∼ log(r/r0) V = 0

Domain Wall u ∼ rη, η ̸= {1, d+ 2} ϕ ∼ log(r/r0) V ∼ eµϕ

In our classification, we will distinguish between elementary solutions, i.e. solutions that re-
spect some scaling symmetry, and interpolating solutions, i.e. solutions that approach to elementary
branes only in the r = 0 infrared region and in the r = ∞ ultraviolet region. We will discuss
separately these two types of solutions.

3.4.1 Elementary Solutions
Elementary solutions are defined as those solutions of minimally coupled Einstein-Maxwell-scalar
theory which belong to one of the subclasses of Table 3.1. In principle, we should have four kinds
of elementary branes, in correspondence with the four scale symmetries of Table 3.1. Yet, as a con-
sequence of the previous demonstration, the Lifšic solution cannot be obtained if the source is a
minimally coupled scalar field and we are therefore left with three classes of solutions:

(A) AdS bran , i.e. neutral solutions when the potential is a negative cosmological constant or has
a local extremum. In this case we have a trivial scalar field.

(B) Domain Walls, i.e. neutral solutions when the potential is a pure exponential. Domain walls
are sourced by a scalar behaving logarithmically.
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(C) Conformal-Lifšic bran , i.e. neutral solutions for an identically null potential. ForQ ̸= 0 they
appear as solutions of the theory for a purely exponential potential.

For finite z and ϑ in Eq. (3.1), there are no other elementary brane solutions which can be sourced
by a minimally coupled scalar field. However, in the ϑ = 0, z → ∞ limit, it is known that the
Lifšic brane becomes the AdS2 × �d spacetime [126], and one could include this limiting case as
the fourth kind of elementary brane solutions, namely theAdS2 ×�d bran . These spacetimes are
charged solutions of Einstein-Maxwell-scalar theory when the potential is a negative cosmological
constant or has a local extremum. Similarly to case (A), these branes are sourced by a constant scalar
field.

3.4.2 Interpolating Solutions
Combining the three types of elementary brane solutions discussed above, one can construct dif-
ferent kinds of interpolating solutions, i.e. solutions that behave as elementary branes only in the
ultraviolet and infrared regimes. These interpolating solutions are very useful for holographic appli-
cations, in particular for AdS/CFT and the gravity/condensed matter correspondence of Einstein-
Maxwell-scalar gravity.

The recent literature dealing with this topic contains a multitude of such interpolating brane
solutions derived in the context of the gravity theory (A.1) and its possible generalisations — covari-
ant coupling between the U(1) gauge field and the scalar, coupling between theMaxwell tensor and
the scalar, Einstein-Yang-Mills-scalar gravity, etc. Despite this variety of solutions and models, the
simplest case described by the action (A.1) is extremely important for the crucial role played by the
scalar field. In the dual QFT, the scalar field gives an order parameter triggering symmetry breaking
and/or phase transitions. Moreover, the scalar field has a nice interpretation in terms of holographic
renormalisation group equations describing the flow between ultraviolet/infrared fixed points, see
e.g. Ref. [176].

The classification of the possible interpolating solutions of the theory (A.1) is simple because it
is parametrised by a single function, the potential V (ϕ). It follows that the interpolating solutions
are essentially determined by the behaviour of the potential in the infrared and ultraviolet region.
This feature is not present in other, more complicated, models in which the presence of two or more
coupling functions prevents a simple classification. In the following we will list all the known in-
terpolating solutions and, in the case they have not been already discussed in the literature, we will
discuss their possible existence.

AdS-AdS interpolating solutions. In general, solutions of this kind are present when the potential
has a local maximum and a local minimum connected with continuity. The gravitational soli-
ton bridges two AdS spacetimes whereas the dual field theory flows from a fixed point in
the ultraviolet to another fixed point in the infrared. The two CFTs are connected by the
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c-theorem, which gives well-defined predictions for the running of the central charge when
running from the ultraviolet to the infrared. Interpolating solutions of this kind are typically
numerical solutions and have been already discussed in the literature, see e.g. Ref. [177].

AdS-DW Interpolating solutions. Typically, these solutions are present when Q = 0 and the po-
tential has an extremumatϕ0 withV (ϕ0) < 0 in the ultraviolet (infrared), whereas it behaves
exponentially in the infrared (ultraviolet). The gravitational soliton interpolates between an
AdS spacetime at r = ∞ (r = 0) and a domain wall near r = 0 (r = ∞). The dual QFT
flows from a fixed point in the ultraviolet (infrared) to an hyperscaling violating phase in the
infrared (ultraviolet). Exact solutions of this kind are known, in the case of hyperscaling vio-
lation both in the infrared [111] and in the ultraviolet [113, 121]. Several numerical solutions
are also known, see e.g. Ref. [114].

AdS-CL Interpolating solutions. Brane solutions of the theory (A.1) bridging an AdS spacetime in
the ultraviolet (infrared) with a conformal-Lifšic solution in the infrared (ultraviolet) have
not been discussed in the literature. Conversely, they are quite common in non-minimally
coupled theories and in the case of holographic superconductors. In the context of the min-
imally coupled theory they are expected to show up in two cases: first, when V (ϕ) has an
extremum in the ultraviolet (infrared), whereas in the infrared (ultraviolet) region the kinetic
energy of the scalar dominates over its potential energy so that we can use V ∼ 0; second, we
haveQ ̸= 0 charged solutions, V (ϕ) has an extremum in the ultraviolet (infrared) whereas
in the infrared (ultraviolet) region V behaves exponentially. Obviously the existence of these
solutions must be checked numerically.

DW-DW Interpolating solutions. Solutions interpolating between two domainwall branes are not
known in the literature. However, we can easily find a form of the potential which is a good
candidate for generating this kind of solution. One can start from a simple combination of
exponentials: V (ϕ) = A eϕ+B e−ϕ, that obviously behaves as a single exponential in the two
regimes ϕ → ∞ and ϕ → −∞. We know that a simple exponential form of the potential
leads, in the case of uncharged branes, to a domain wall solution [111]. Thus, the correspond-
ing brane solutions of themodel, if they exist, would give a soliton interpolating between two
domain walls at ϕ = ±∞.

DW-CL Interpolating solutions. Having inmind the features of the elementary solutions discussed
in Section 3.4.1, one can expect this kindof solution to showup in the case of a potentialwhich
diverges exponentially in a region whereas approaches to zero in another region. Solutions
of this type, although already known in the literature, had not been recognised as DW-CL
interpolating solutions. We will show in Section 3.5 that, for an appropriate choice of the
parameters, the solutions of Ref. [111] describe a DW-CL interpolating solution.
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CL-CL Interpolating solutions. In order to generate this kind of branes one should consider a po-
tential which vanishes in two distinct regions. Alternatively, one could consider charged solu-
tions and a potential behaving exponentially. A mixed charged configuration is possible too:
a vanishing potential in one region and an exponential one in the other region. Solutions of
this type were known in the literature as well, but not recognised as CL-CL interpolating so-
lutions. We will show in Section 3.6 that, for an appropriate choice of the parameters, the
solutions of Ref. [111] describe a CL-CL interpolating solution.2

In the above classification of interpolating brane solutions, we have not considered the limiting
case in which one of the elementary solution is AdS2 × �d. Brane solutions interpolating between
an elementary solution (A), (B) or (C) in the ultraviolet and AdS2 × �d in the infrared possibly
exist whenever one considers charged branes and a potential V behaving in the infrared as a neg-
ative cosmological constant. The simplest, well-known, example of this kind is obtained consid-
ering V = −Λ2 identically. The charged brane solutions are simply given by the AdS-Reissner-
Nordström black brane. In the extremal limit, when the BPS bound is saturated, we get a solitonic
solution which interpolates between AdSd+2 in the r → ∞ region and AdS2 × �d in the near-
horizon region. The AdS2 × �d geometry and related interpolating solutions are of interest also
because they may act as infrared regulators of the generic scale-covariant geometry (3.1) [126].

All the above interpolating solutions are considered as branes without event horizons, i.e. as zero
temperature solutions. An important question, particularly in view of holographic applications,
is whether they can be considered as the extremal limit of black brane solutions with non-trivial
hair, i.e. solutions at finite temperature endowed with a non-trivial scalar field. There is no general
answer to this question. Owing to no-hair theorems the existence of hairy solutions is related to
global features of the potential V (ϕ). Nevertheless, in most examples discussed in the literature, the
interpolating solutions appear as extremal limit of black brane solutions.

3.5 Domain-Wall/Conformal-Lifšic Interpolating Solutions
In this sectionwe discuss exact solutions, which interpolate between a domainwall and a conformal-
Lifšic brane. In the previous section we have seen that this kind of solution requires uncharged
branes and a potential which diverges exponentially in a region, whereas approaches to zero in an-
other region. We are therefore lead to considerQ = 0 solutions and the following simple potential
(0 ⩽ w ⩽ 1)

V (ϕ) = V0 dw [1− w(d+ 2)] exp
(
−
√

8(1− w)

dw
ϕ

)
, (3.29)

2. CL-CL interpolating solutions appear also in the context of non-minimally coupled Einstein-Maxwell-scalar grav-
ity, see e.g. Sect. 8 of Ref. [178].
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which diverges exponentially for ϕ→ −∞, while V → 0 for ϕ→ ∞. The general solution for the
theory (A.1) with this potential is given by [111]

U = V0R
2 − α

(
r

r0

)1−dw

, R2 =

(
r

r0

)2w

, ϕ =

√
d

2
(w − w2) log r

r0
, (3.30)

where 0 ⩽ w ⩽ 1 and α is an integration constant. Notice that when V0 = 0, i.e. the potential
is identically zero and the solution is sourced by the kinetic term of the scalar, the solution (3.30)
becomes exactly the solution (3.5) if we set α = −1.

Whenα > 0 and 1/(d+2) < w ⩽ 1, the solution (3.30) describes a black brane with an event
horizon [111]. On the other hand, when α < 0 the solution has no horizon and depending on the
value ofw it has different asymptotic behaviour. For 0 ⩽ w < 1/(d+2), at r → ∞ (ϕ→ ∞) the
second term in themetric functionU dominates over the first, the potential approaches zero and the
solution becomes the conformal-Lifšic brane solution discussed in the previous section. Conversely,
near r = 0 (corresponding to ϕ → −∞), the potential diverges, the first term dominates over
the second and the solution becomes a domain wall. Thus, the global solution (3.30) interpolates
between a conformal-Lifšic brane in the ultraviolet and a domainwall in the infrared. Physically, this
means that the ultraviolet behaviour is dominated by the kinetic energy of the scalar field, whereas
the infrared behaviour is dominated by the potential energy of the scalar. Obviously, forα < 0 and
1/(d+ 2) < w ⩽ 1 the picture is reversed and we have a global solution that interpolates between
a conformal-Lifšic in the infrared and a domain wall in the ultraviolet. The solution (3.30) in the
α = 0 extremal case, becomes the domain wall one obtains in the r = 0 region, and it has been
extensively investigated in Ref. [178].

For α > 0 and 1/(d + 2) < w ⩽ 1, we can compute the thermodynamical parameters of the
black brane. The total mass in computed using Eqs. (3.9) and (3.10) and it reads

M =
4πV0 dwα

r0
, (3.31)

while the temperature and the entropy are calculated using the well-known formulæ of Eq. (2.42)

T =
V0 [(d+ 2)w − 1]

4πr0
α(2w−1)[(d+2)w−1] , S = 16π2αdw/[(d+2)w−1] . (3.32)

Using these equations it is easy to verify that the first principle dM = T dS is satisfied.

3.6 Conformal-Lifšic/Conformal-Lifšic Interpolating Solutions
In Section 3.4.2 we have seen that CL-CL interpolating solutions require charged branes (Q ̸= 0)
and a potential having the same qualitative behaviour of (3.29). Considering for simplicity the four-
dimensional case, d = 2, we take a non-vanishing electric charge and the potential

V (ϕ) =
2Q2(1− w)

1− 3w
exp
(
−4

√
w

1− w
ϕ

)
. (3.33)
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The general brane solutions are given by [111]:

U =
2Q2r20

(1− 2w)(1− 3w)

(
r

r0

)2−4w
[
1− β

(
r

r0

)−1+2w
]
, (3.34)

R2 =

(
r

r0

)2w

, ϕ =
√
w − w2 log r

r0
, 0 ⩽ w ⩽ 1 .

Also in this case, for β > 0 and 0 ⩽ w < 1/2 (withw ̸= 1/3) the solution (3.34) describes a black
brane with an event horizon. For negative β the brane has no horizon and it interpolates between
two conformal-Lifšic elementary solutions in the infrared and ultraviolet regions. When β < 0

and w > 1/2, for r → ∞ (ϕ → ∞) the potential approaches to zero and the solution gives an
elementary conformal-Lifšic solution, which coincides with the asymptotic regime of the electrically
charged brane (3.21) whenw > 1/2. The solution reduces to an elementary conformal-Lifšic brane,
also near r = 0, but with a different dynamical exponent. For β < 0 and 0 ⩽ w < 1/2 (w ̸= 1/3)
we have the same limiting elementary conformal-Lifšic branes but with the infrared and ultraviolet
regions exchanged. The β = 0 extremal limit describes conformal-Lifšic branes.

Forβ > 0 and0 ⩽ w < 1/2 (withw ̸= 1/3)we can compute the thermodynamical parameters
associated to the black brane:

M =
8πβw

r0
, T =

(1− 2w)

4πr0
β(1−4w)/(1−2w) , S = 16π2β2w/(1−2w) , (3.35)

and check that the first principle dM = T dS is satisfied.

3.7 Summary and Conclusions
In this chapter, we have derived brane solutions of minimally coupled Einstein-Maxwell-scalar grav-
ity in d+ 2 dimensions in the case of an identically null potential. We have shown that these brane
solutions belong to the broad class of scale-covariant metrics, which generate hyperscaling violation
in the holographically dual QFT. Moreover, these solutions can be considered as the brane counter-
part of the Janis-Newman-Winicour-Wyman spherical solutions of Einstein-scalar gravity. We have
also explicitly shown that our brane solution, togetherwith theAdS brane and the domainwall solu-
tion sourced by an exponential potential, give all the possible scale-covariant, hyperscaling violating,
geometries of minimally coupled Einstein-Maxwell-scalar gravity with no Schrödinger isometries.
Using this result, we have been able to give a classification of the brane solutions of the theory in
terms of elementary and interpolating solutions. In particular, the interpolating solutions can find
a broad field of holographic applications because the dual QFT describes the flow from different
regimes (fixed points, hyperscaling violation, Lifšic) in the ultraviolet and infrared, characterised by
different scaling symmetries.
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In this context, it is important to stress that some of our solutions have curvature singularities
at r = 0 (in the infrared of the dual QFT). The issue of the acceptability of naked singularities in
the context of holographic models, and in particular in Einstein-Maxwell-scalar models, has been
discussed in several papers [178–181]. A basic requirement for a solution with a naked singular-
ity to be acceptable is that the scalar potential is bounded from above when evaluated at the solu-
tion [179]. This basic requirement is trivially satisfied for the brane solutions sourced by a scalar field
with V = 0, discussed in Section 3.3. On the other hand, further requirements involving properties
of the spectrum of small fluctuations near the solution must be imposed if the solution has to be
considered physically acceptable. Alternatively, one can resolve the singularities looking for an in-
frared completion of the theory. From the bulk point of view, this completion can be realised using
an infrared regular geometry such as AdSd+2 [120] or AdS2 ×�d [126].





Chapter 4
•

Inflation as de Sitter Instability

Inpired by holographic models of gravity, we consider a cosmological inflationary model
in which inflation is generated by a scalar field slowly rolling off from a de Sitter maximum of
its potential. Such models belong to the class of hilltop models and represent the most general
model of this kind in which the scalar potential can be written as the sum of two exponentials.
In the slow-roll approximation, our model reproduces correctly, for a wide range of its param-
eters, the most recent experimental data for the power spectrum of primordial perturbations.
Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the
Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton,
turns out to be seven to eight orders of magnitude smaller than the Planck mass.

Units: c = ℏ = 1.
This chapter is based on: M. Cadoni, E.F., and S. Mignemi. ‘Inflation as de Sitter instabil-

ity’. Eur. Phys. J. C76 (2016), 483. arXiv: 1510.04030.

4.1 Introduction
As we mentioned in Section 1.4, inflation is well described by a scalar field coupled to Einstein grav-
ity. There exist a plethora of single-field inflationary models that can be classified according to the
features of the scalar potential [182], but other alternatives include more scalar fields, as in the cur-
vaton mechanism [183–185]. Nevertheless, the most recent data of the Planck satellite exclude non-
Gaussian perturbations and give a striking experimental confirmation of the simplest single-field
inflationary scenario [8, 186, 187], and in particular the Starobinsky model [149, 188, 189], or more
in general, the so-called cosmological attractors [190–193], characterised by a ‘red’ power spectrum
for primordial perturbations and a small tensor/scalar amplitude ratio.

The accuracy of the observational data concerning the power spectrum of primordial quantum
fluctuations represents an efficient guide to select inflation models. But, despite the recent remark-
able improvements, the important questions about the microscopic origin of the inflaton and the
physics before inflation are still unanswered. This lack of knowledge does not allow one to single out
a unique inflationary model, i.e. a specific form of the potential. In fact, although the Planck data
can be used to strongly constrain the inflationary model, mainly through the values of the spectral
index ns and the tensor/scalar amplitude ratio r, they are not sufficient to select a unique model.

In view of this situation, it is natural to look for hints coming from somewhere else in gravita-
tional physics, for instance supergravity and string theory [194–197]. In Section 1.3, we mentioned
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that there exists an ‘analytical continuation’ of the AdS/CFT correspondence, namely the domain
wall/cosmology correspondence. The cosmological duals of solitons interpolating between AdS in
the infrared and scale-covariant geometries in the ultraviolet generate inflation as the scalar field rolls
down from a de Sitter spacetime [148]. In this context, inflation can be described as an instabil-
ity of the de Sitter spacetime rolling down to a scaling solution. Such models are known as hilltop
models [198, 199] and inflation is generated by a scalar field rolling off from a local maximum of the
potential. In such a scenario, since inflation starts from a local maximum, the slow-roll conditions
can be satisfied more easily. On the experimental side, hilltop models are a subset of the small-field
models, which are characterised by a potential with negative curvature. This behaviour of the poten-
tial is typical of spontaneous symmetry breaking and phase transitions, e.g. quartic potentials, natu-
ral inflation models [200] and Coleman-Weinberg potentials [201]. Although hilltop models have
beenwidely used to generate cosmological inflation, inmost of them the potential is constructed us-
ing powers of the inflaton field. To our knowledge, little attention has been given to hilltop models
in which the potential is built as a combination of two exponentials. In this chapter, we generalise
a model proposed by Mignemi and Pintus [148] and we discuss the most general, holographically
motivated, hilltop model, for which the potential can be written as the sum of two exponentials.
We will show that although near the maximum our model has the well-known behaviour of hilltop
models with a parabolic potential, at late times it gives predictions of the spectral parameters of the
cosmic microwave background radiation, which are specific for a two-exponential potential.

4.2 The Model
The single-field models for inflation are described by the following action,

A =

∫
d4x

√
−g
(
m2

P

16π
R− 1

2
(∂ϕ)2 − V (ϕ)

)
. (4.1)

Here, we focus on inflation generated by a scalar field rolling off from a maximum of the scalar
potential V (ϕ). This class of models is very natural from a physical point of view because inflation
can be thought of just as an instability of the de Sitter spacetime, generated by a scalar perturbation.

Our first goal is to construct the general form of the potential belonging to this class. Without
loss of generality we can assume that themaximumof the potential occurs atϕ = 0, so that the basic
necessary conditions to be imposed on the potential read

V |ϕ=0 > 0 ,
dV
dϕ

∣∣∣∣
ϕ=0

= 0 ,
d2V

dϕ2

∣∣∣∣
ϕ=0

< 0 . (4.2)

Obviously, the previous conditions are very loose and do not select any specific form of V (ϕ). We
further constrain the form of the potential by requiring it to be a linear combination of two expo-
nentials. This is a rather strong assumption, but is supported by several arguments. Exponential
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potentials for scalar fields appear quite generically in a variety of situations: compactification of ex-
tra dimensions, f(R) gravity theories (which on-shell are equivalent to Einstein-scalar gravity) and
low-energy effective string theory. The double exponential potential appears in the context of di-
mensional reduction of gravity with non-trivial four-form flux on a maximally symmetric internal
space [202]. Moreover, exponential potentials have been shown to be the source of brane solutions
of Einstein-scalar gravity called domain walls [111, 113], which can be analytically continued into
Friedmann-Robertson-Lamaître-Walker cosmological solutions [147, 148].

We are therefore led to consider the following general form of the inflation potential1

V (ϕ) = Λ2
(
a1 eb1µϕ + a2 eb2µϕ

)
, (4.3)

whereΛ andµ are some length scales, whose physicalmeaningwill be clarified in short, anda1,2, b1,2
are some dimensionless constants characterizing the model. They are constrained by Eqs. (4.2), giv-
ing

a1 + a2 > 0 , a1b1 = −a2b2 , a1b
2
1 + a2b

2
2 < 0 . (4.4)

Modulo trivial symmetries interchanging the two exponentials in the potential, the most general
solution of the previous equations is a1 > 0, a2 < 0, b2 > 0, b1 > 0 and a2/a1 = −β2,
where we have defined a new dimensionless parameter β2 ≡ b1/b2 < 1. The parameter rescaling
Λ2 → 2Λ2/(3a2γ), µ→

√
3/(b1b2)µ brings the potential in the form

V (ϕ) =
2Λ2

3γ

(
e
√
3βµϕ − β2 e

√
3µϕ/β

)
, (4.5)

where γ ≡ 1 − β2. The potential (4.5) is a two-scale generalisation of the model proposed in
Refs. [113, 121], to which it reduces for the particular value of the parameter µ = 4

√
π lP . The

cosmology of the particular model has been investigated in Ref. [148].2 We will see in the next sec-
tion that for generic values of the parameterµ ̸= 4

√
π lP the cosmological equations resulting from

the model (4.5) do not give rise to an exactly integrable system.
The potential (4.5) is invariant both under the transformation β → 1/β, which corresponds

to interchanging the two exponentials, and under the transformation β → −β, ϕ → −ϕ. These
symmetries allow us to limit our consideration to 0 < β < 1. The two limiting cases β = 0, 1

correspond, respectively, to a pure exponential and to a potential behaving at leading order as

V (ϕ) =
2Λ2

3

(
1−

√
3µϕ

)
e
√
3µϕ . (4.6)

The potential V (ϕ) has a maximum at ϕ = 0 corresponding to an unstable de Sitter solution with
V (0) = 2Λ2/3 and a corresponding tachyonic excitation, the inflaton.

The potential V (ϕ) is depicted in Fig. 4.1 for selected values of the parametersΛ, β and µ.
1. One could also consider a potential with an added constant term. This case will be discussed in Section 4.7.
2. Notice that our notation differs from that of Ref. [148] for the units used and for a rescaling of the parameter µ by

a factor of 2.
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φ

V (φ)

Figure 4.1: Plot of the potential (4.5) forΛ = 2, β = 3/4 and µ =
√
3/3 in Planck units.

One can therefore use this model to describe inflation as generated by an unstable de Sitter so-
lution. Inflation starts as a quantum fluctuation of the de Sitter solution and is initially driven by
a tachyonic excitation of the de Sitter spacetime and proceeds as the scalar field rolls off from the
maximum of the potential.

Physical Scales
Besides the Planck length lP = 1/mP , themodel is parametrised by the two length scalesΛ−1/2 and
µ and by the dimensionless parameter β. The presence of two length scales is a characteristic feature
of small-field models of inflation. In the present context, the two scales have a simple interpretation
in terms of geometric properties of the function V (ϕ). They give, respectively, the height and the
curvature of the ϕ = 0maximum of the function V (ϕ). Correspondingly, Λ−1/2 and µ determine
the two physical scales relevant for inflation: the vacuum energy EV at the beginning of inflation
and the inflaton mass squaredM2

I . We have

M2
I =

d2V

dϕ2

∣∣∣∣
ϕ=0

= −2Λ2µ2 = −32π

3

λ4

h2
m2

P , (4.7)

EV = [V (0)]1/4 = (2/3)1/4λmP , (4.8)

where we have introduced the two dimensionless parameters h−1 and λ,

h = 4

√
π

3

(
lP
µ

)
, λ =

Λ1/2

mP

, (4.9)

representing the measures of µ and Λ1/2 in Planck units. In the following, instead of the negative
quantityM2

I , we use the inflaton mass defined asmI =
√
−M2

I .
Conversely, β is a purely dimensionless parameter and plays a role which is drastically different

from λ and h. It is not linked to any physical scale of the model but quantifies the deviation of the
potential from a pure exponential behaviour attained for β near 0.
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4.3 Cosmological Solutions
The cosmology of our model can be investigated using the usual Friedmann-Robertson-Lamaître-
Walker parametrisation of the metric

ds2 = −dt2 + a2(t) dS2
(3) . (4.10)

The de Sitter spacetime with constant inflaton is an exact solution of the cosmological equations.
The de Sitter solution has the usual exponential form, with the scale factor given by

a(t) = exp
(
8
√
π lP Λ t

3

)
. (4.11)

This solution describes a scalar field sitting forever at the maximum of the potential, generating an
exact exponential expansion of the universe, i.e. never ending inflation.

Themost interesting cosmological solutions are those in which inflation lasts for a finite amount
of time. In this case, the scalar rolls off from the maximum of the potential, generating a quasi-
exponential expansion of the universe as long as the potential energy of the scalar dominates over the
kinetic one. This kind of solutions would be the cosmological counterpart of the solitonic solutions
interpolatingbetween anAdS spacetime in the infrared and adomainwall in theultraviolet discussed
in Refs. [113, 121].

Searching for these solutions, and following Ref. [148], one can try to find exact cosmological
solutions by using a different parametrisation for the time variable and linear combinations of the
fields in such way that the equations for the scalar field and the scale factor decouple. However,
one can easily realise that the decoupling works only for the particular value of the parameter, i.e.
µ = 4

√
π lP (corresponding to h = 1/

√
3). For this value of µ, the Einstein-scalar gravity models

give rise to exactly integrable models both in the case of brane [113, 121] and cosmological solu-
tions [148]. For generic values of the parameter µ the Einstein-scalar system does not decouple, is
not exactly integrable and a cosmological solution cannot be found in analytic form.

Approximate solutions of the field equations can be found for some limiting cases. Of particular
interest is the case of small β, for which the potential (4.5) behaves exponentially,

V (ϕ) ∼ −2β2Λ2

3γ
e
√
3µϕ/β , (4.12)

the system can be solved analytically and we have scaling (power-law) solutions, which are obtained
from scale-covariant (domain wall) solutions using the transformation t→ ir, r → it [111]. In the
gauge (4.10) this scaling solution has the form

a(t) ∼ th
2β2

, ϕ(t) ∼ − hβ

2
√
π lP

log t . (4.13)
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4.4 Inflation and Slow-Roll Approximation
Lacking exact solutions to investigate the cosmology of our model (4.5), we work in the slow-roll
approximation [203]. In this regime, the potential energy of the scalar field dominates over the
kinetic energy and theuniverse has a quasi-exponential accelerated expansion as the scalar field slowly
rolls off from the maximum of the potential. Following the usual approach, we introduce the slow-
roll parameters ϵ and η,

ϵ =
m2

P

16π

(
dV /dϕ
V

)2

, η =
m2

P

8π

d2V /dϕ2

V
− ϵ . (4.14)

Necessary conditions for the slow-roll approximation to be valid are ϵ, |η| ≪ 1. We have inflation
as long as 0 ⩽ ϵ < 1. The parameter ϵ is zero on the maximum of the potential (ϕ = 0) and the
solution is exactly de Sitter, whereas inflation ends when ϵ = 1.

The potential (4.5) and depicted in Fig. 4.1 is not amonotonic function of the scalar field: it goes
to zero asϕ→ −∞, has amaximumatϕ = 0, crosses the axis forϕ = ϕ∗ ≡ −2β log β/

√
3γµ, and

diverges to−∞ as ϕ → ∞. Since slow-roll inflation cannot occur for a negative inflaton potential,
our model is valid up to ϕ = ϕ∗ and the potential must be modified for values of ϕ greater than ϕ∗.
We have then two alternative branches that we can use to generate inflation, i.e. I: 0 ⩽ ϕ ⩽ ϕ∗ and
II: −∞ < ϕ ⩽ 0. In the following, we investigate the first branch and in Section 4.5.3 we briefly
discuss branch II and show that it cannot be compatible with observations.

Let us now introduce the variable

Y = e
√
3γµϕ/β . (4.15)

In this parametrisation the branch under consideration corresponds to 1 ⩽ Y ⩽ Y∗ ≡ 1/β2.
As a function of Y , the slow-roll parameters ϵ and η take the form

ϵ =
β2

h2

(
1− Y

1− β2Y

)2

, η =
2

h2
β2 − Y

1− β2Y
− ϵ . (4.16)

The slow-roll parameter ϵ is zero for Y = 1, whereas 0 < ϵ < 1 for 1 < Y < Y0, where

Y0 =
β + h

β + β2h
. (4.17)

For Y = Y0 we have ϵ = 1 and the universe exits inflation. One can easily check that Y0 < 1/β2,
so that during inflation we always have 1 < Y < 1/β2 and we can easily satisfy the first slow-roll
condition ϵ ≪ 1. On the other hand, the parameter η, which gives a measure of the curvature of
the potential, is not small, but we have η = O(h−2). It follows that the simplest way to satisfy the
second slow-roll condition, |η| ≪ 1, is to choose

h ≳ 10 , (4.18)
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in this way we can have η ≈ 10−2 as well as ϵ ≈ 10−2. As already noted, the model discussed in
Ref. [148] does not satisfy Eq. (4.18) because it is characterised by h = 1/

√
3.

In the slow-roll regime, the universe expands quasi-exponentially and the number of e-folds
N = − log a, which determines the duration of inflation, is determined by

N = −
∫

dtH =
8π

m2
P

∫ ϕb

ϕe

dϕ V

dV /dϕ , (4.19)

where ϕe,b are the inflaton-field values at the end and beginning of inflation and H ≡ ȧ/a is the
Hubble parameter.

Using the definition (4.15) and the expression Y0 for Y at the end of inflation, Eq. (4.19) gives
the function Y (N) in implicit form,

Y 1/γ

Y − 1
= e2N/h2

A , A :=
β

γ

(
β +

1

h

)(
β + h

β + β2h

)1/γ

. (4.20)

In the case of the de Sitter solution (4.11) the scalar field remains constant (the inflaton sits on the
top of the potential), and we have N = ∞, i.e. eternal inflation. Obviously this configuration is
highly unstable. In fact, a small scalar perturbation starts the slow-roll of the inflaton along the slope
and a finite value ofN is generated. If this fluctuation is small enough we can solve approximately
Eq. (4.20) for Y near Y = 1. We get at leading order,

Y = 1 + A−1 e−2N/h2

. (4.21)

One can easily check that 0 ⩽ A−1 ⩽ 1 withA−1 → 0 for β → 1 andA−1 → 1 for β → 0.
Moreover, in the range 0 ⩽ β ⩽ 1, A−1(β, h) is a monotonically decreasing function of β which
depends very weakly on h. It follows immediately that Eq. (4.21) is a good approximation for γ not
too close to 0, whenever e−2N/h2 ≪ 1. When γ ≈ 0 the approximation (4.21) holds irrespectively
of the value ofN .

Perturbations and Spectral Parameters
One of the most striking predictions of inflation concerns the spectrum of tensor and scalar pertur-
bations in the early universe [204–208]. During inflation the horizon shrinks and the primordial
perturbations, which were causally connected are redshifted to superhorizon scales. Conversely, in
the matter-radiation dominated era the horizon grows, the perturbations fall back on the horizon
so that they can act as seeds for structure formation and anisotropy in the universe. The informa-
tion as regards these primordial fluctuations is therefore encoded in the anisotropies of the cosmic
microwave background.

Primordial quantum fluctuations are described in terms of two-point correlation functions for
scalar and tensor modes in Fourier space and the associated power spectrum. In the slow-roll ap-
proximation, the power spectrum has a power-law behaviour and is usually characterised by four
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parameters: the amplitudes of scalar perturbations PR, the ratio r of the amplitudes of tensor and
scalar perturbations and their spectral indicesns andnT . These parameters are functions of the num-
ber of e-foldsN and can be expressed in terms of the potential V and the slow-roll parameters (4.16)
as follows:

P
1/2
R (N) =

4
√
24π

3m3
P

V 3/2

dV /dϕ

∣∣∣∣
ϕ(N)

, (4.22a)

r(N) = −8nT (ϕ(N)) = 16ϵ(ϕ(N)) , (4.22b)
ns(N) = 1− 4ϵ(ϕ(N)) + 2η(ϕ(N)) , (4.22c)

where ϕ(N) is defined by Eq. (4.19).
Using Eqs. (4.15) and (4.16) we can express the spectral parameters as a function of Y (N):

P
1/2
R (N) =

4hλ2

3β
√
γ

[1− β2Y (N)]
3/2

1− Y (N)
Y (N)β

2/2γ , (4.23a)

r(N) =
16β2

h2

(
1− Y (N)

1− β2Y (N)

)2

, (4.23b)

ns(N) = 1− 6β2

h2

[
1− Y (N)

1− β2Y (N)

]2
+

4

h2
β2 − Y (N)

1− β2Y (N)
, (4.23c)

where Y (N) is defined, implicitly, by Eq. (4.20).
For e−2N/h2 ≪ 1 we can use the approximate expansion for Y given by Eq. (4.21) and we get,

at leading order in the e−2N/h2 expansion,

P
1/2
R (N) =

4γA

3β
hλ2 e2N/h2

, (4.24a)

r(N) =

(
4β

Aγh

)2

e−4N/h2

, (4.24b)

ns(N) = 1− 4

h2

(
1 +

1 + β2

Aγ
e−2N/h2

)
. (4.24c)

One important feature of Eqs. (4.24) is the exponential dependence onN . This must be compared
with the typical behaviour of the Starobinsky model and more in general of cosmological attractor
models, where one typically obtains r ∼ 1/N2 and ns − 1 ∼ −1/N — see e.g. Ref. [193] and
references therein.

It is easy to check that the exponential behaviour of the spectral parameters (4.24) is a universal
feature of hilltop models characterised by a quadratic maximum. It is a consequence of the local
behaviour of the potential near ϕ = 0. In fact, Eqs. (4.24) can also be obtained by considering a
potential V (ϕ) = 2Λ2/3 +M2

I ϕ
2/2, withM2

I given by Eq. (4.7). This is consistent with the fact
that forN/h2 very large, inflation occurs near to the maximum of the potential, where V (ϕ) can be
approximated by the previous form.
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Notice that the conditionh≫ 1 alone does not guarantee the potential to bewell approximated
by the parabolic one. Since we need at least h ≳ 10, such limit is obtained for N ≫ 60. For
instance, for h = 10 and N = 60, we have e−2N/h2 ≈ 0.54. It follows that the approximate
expressions (4.24) can only be used in a regime of very large N , for which we do not have direct
access to observations, and, therefore, in the following, we will be using expressions (4.23).

4.5 Comparison with Observation
In this section we compare the theoretical results of our model for the spectral parameters PR, r
and ns with the most recent results of observations, in particular the joint analysis of BICEP2/Keck
Array and Planck data [186].

The spectral parameters are functions of the number of the e-foldsN and depend on the three
dimensionless parameters λ, h and β. Because λ enters only in the normalisation of the power spec-
trum PR, whereas r and ns depend on h and β only we will use the following strategy: we will first
determine using Eqs. (4.23b) and (4.23c) and the experimental results for r andns, the allowed range
of the parameters h and β for a given value of e-folds N . We will then use Eq. (4.23a) and the ex-
perimental results for PR to determine the corresponding values of the parameter λ. Finally we use
Eqs. (4.7) and (4.8) to determine the vacuum energyEV and the inflaton massmI .

For r, ns and PR we use the most recent results [186], i.e. r < 0.05, ns = 0.965 ± 0.006 and
P

1/2
R ≈ 10−5. Since the perturbations we are observing today with momentum of the order of the

horizon radius exited the horizon during inflation atN = [48, 60], we will consider only values of
N in this range.

The calculations have to be performed numerically because the function Y (N) appearing in
Eqs. (4.23) is not known, but it is defined implicitly by Eq. (4.20). Aswe said in the previous section,
a possible way to avoid numerical computations is to work in a regimewhere e−2N/h2 ≪ 1 and then
Eqs. (4.24) hold. But unfortunately, these expressions are valid in the largeN regime, not accessible
to observations.

The results of our numerical computations are shown in the two sets of density plots in Figs. 4.2
and 4.3. Once we have chosen the value ofN , the coloured region in such plots represent the range
of values of β and h for which we have values of r and ns compatible with the experimental mea-
surements. Note that the allowed region of parameters (β, h) is quite independent fromN , at least
forN in the range [48, 60].

4.5.1 Spectral Parameters

In Fig. 4.2 we show the numerical results obtained from Eqs. (4.23b) and (4.23c). We plot the
tensor/scalar ratio r (left) and the spectral index ns (right) as functions of β and h for four selected
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values ofN = 48, 52, 56, 60. The corresponding values of r and ns are given in terms of the colour
scale shown on the right of every plot.

In general, higher values of ns correspond to higher values of h. Moreover, when β is not too
close to zero, ns depends very weakly on β. For β close to zero h is allowed to vary from h ∼ 15

up to h ∼ 1000 and farther. As β increases the allowed range of h shrinks monotonically and is
restricted to [15, 50] for β close to 1.

The tensor/scalar ratio r shows a different pattern. For β close to zero it depends strongly on h.
Whereas for values of β not too close to zero, it depends weakly on both parameters β and h. Also
in this case we observe the monotonic shrinking of the allowed values of h for growing values of β.

4.5.2 Vacuum Energy and Inflaton Mass

In Fig. 4.3we show the numerical results obtained fromEqs. (4.7) and (4.8). We plot the vacuum en-
ergyEV (left) and the inflatonmassmI (right) as functions ofβ andh, again forN = 48, 52, 56, 60.
The corresponding values ofEV andmI are given in terms of the scale of colour shown on the right
of every plot.

Since we do not have stringent experimental bounds on EV and mI , we are interested just in
the order of magnitude of these quantities. We observe that the order of magnitude ofEV depends
very weakly on h and N . Also the dependence on β is quite weak, as long as we take values of β
not too close to 0. Thus, for β not too close to 0, the vacuum energy remains about 10−4 to 10−5

Planck masses. On the other hand, the inflaton mass is more sensitive to β. Its order of magnitude
is between 10−7 and 10−8 Planck masses but for values of β near to 0we have smaller values ofmI .

4.5.3 The Other Branch of the Potential

Until now we have considered the slow-roll regime for branch I of the potential, i.e. 0 ⩽ ϕ < ϕ∗.
Let us briefly consider branch II, i.e. −∞ < ϕ ⩽ 0. This might be interesting since the cosmo-
logical solutions one can obtain for the exact solvable model with h = 1/

√
3 are defined in this

branch [148].
In terms of the parametrisation (4.15), branch II corresponds to 0 < Y ⩽ 1. The slow-roll

parameters ϵ and η are still given by Eqs. (4.16) but now the condition for inflation ϵ ⩽ 1 requires

β − h

β(1− βh)
⩽ Y ⩽ 1 ,

which can be satisfied only if h < β. It follows that h = O(1). One can easily see from Eqs. (4.16)
and Eqs. (4.23b) and (4.23c) that these values of h are not only incompatible with the slow-roll
condition |η| ≪ 1, but are also completely ruled out by the experimental constraints on ns.
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(a)N = 48

(b)N = 52

(c)N = 56

(d)N = 60

Figure 4.2: Region plots for the tensor/scalar ratio r (left) and the spectral index ns (right) as functions of the
parameters β and h, for selected values of the number of e-foldsN . The values of r and ns are given in terms
of the colour scale shown on the right of every plot.
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(a)N = 48

(b)N = 52

(c)N = 56

(d)N = 60

Figure 4.3: Region plots for the vacuum energy EV (left) and the mass of the inflaton mI (right), in Planck
units, as functions of the parameters β and h, for the selected values of the number of e-folds N . The values
ofEV andmI are given in terms of the colour scale shown on the right of every plot.



4 Inflation de Sitter Instability 55

4.6 Summary and Conclusions

Inspired by holographic models used to describe hyperscaling violation, we have constructed the
most general inflation potential given by the sum of two exponentials. In these models, inflation is
generated by a scalar field rolling off from the de Sitter maximum of the potential. In the slow-roll
approximation, our model reproduces correctly, for a wide range of its parameters, the most recent
experimental data for the power spectrum of primordial perturbations. Moreover, it predicts infla-
tion at energy scales of four to five orders of magnitude below the Planck scale, whereas the inflaton
mass, at the onset of inflation, turns out to be seven to eight orders of magnitude smaller than the
Planck mass. The proposed inflationary model belongs to the class of models in which the poten-
tial has a de Sitter regime, including the Starobinsky model and, more generally, the cosmological
attractor models. Our model shares with those several features: (1) the potential is built as a com-
bination of exponentials, it predicts (2) an energy scale of inflation four order of magnitude below
the Planck mass, (3) a ‘red’ power spectrum and (4) a small tensor/scalar amplitude ratio. On the
other hand, ourmodel differs from the Starobinsky one in a crucial aspect: inflation is not generated,
as in Starobinsky model, by a scalar field rolling off from an asymptotically constant potential, but
rather from a local maximum of the potential. This property allows us to interpret the inflaton as a
tachyonic excitation of the de Sitter vacuum and to introduce a second scale of energy in the theory,
the mass scalemI , which is 7–8 order of magnitude below the Planck mass. This hierarchy of scales
opens the intriguing possibility that the origin of the inflaton could be explained by the physics at
energy scales 7–8 order ofmagnitude below the Planckmass. Ourmodel belongs to the general class
of hilltop models and shares with the latter the local behaviour near the maximum of the potential.
However, our scalar potential is the sum of two exponentials, therefore the global behaviour of our
inflationary model is sensibly different from usual hilltop models constructed using powers of the
inflaton. In particular, this results in different predictions for the spectral parameters r andns in the
region of the e-foldsN accessible to observations.

We close with a brief comment about the reheating phase and the transition from inflation to
the radiation/matter dominated era. During reheating, the energy is transferred from the inflaton
to matter fields. This means that there must exist a region in which the kinetic energy of the inflaton
dominates over its potential energy, e.g. a local minimum of the potential. It is evident from Fig. 4.1
that the potential (4.5) cannot be used to describe reheating. Thus, in order to describe reheating,
our potential must be matched with continuity at the end of inflation with some other branch of a
potential exhibiting a local minimum. This can be done very easily: in the Y -parametrisation, the
point Y0 given by Eq. (4.17), at which the universe exits inflation, is always on the left of the point
Y∗ = 1/β2 at which the potential cuts the horizontal axis, i.e. V (Y0) > V (Y∗) = 0 and Y0 < Y∗.
Since the slow-roll approximation is badly broken at V = 0, the matching with the branch of the
potential with the local minimum must be performed at a point Y0 < Y < Y∗.
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4.7 Appendix: A Hyperbolic Cosine Model
The scalar potential (4.5) is the most general form of the potential one can obtain imposing the con-
ditions (4.2) and assuming that it is built as a combination of two exponentials without an additive
constant term. When such a constant term, c, is present, only the first equation in (4.4) has to be
modified and becomes c+a1+a2 > 0, whereas the second and third equations remain unchanged.
A general solution of the ensuing system is given by a1 = −a2(b2/b1), a1, a2 < 0, b1 > 0, b2 < 0

and c > −a1 − a2. A simple example of this class of potentials is given by

V (ϕ) = Λ2 (2− coshµϕ) . (4.25)

This potential gives a further example of inflation generated by an unstable de Sitter vacuum.3 The
potential (4.25) has a maximum at ϕ = 0, corresponding to an unstable de Sitter solution with
V (0) = Λ2, and a corresponding tachyonic excitation. For µϕ ≫ 1, the potential behaves as a
pure exponential. The vacuum energy and inflaton mass, expressed in terms of h and λ, defined as
in Eqs. (4.7) and (4.8), are

M2
I = −16π

3

λ4

h2
m2

P , EV = λmP . (4.26)

Introducing the variable Y = eµϕ, the slow-roll parameters ϵ and η take the form

ϵ =
1

3h2

(
Y 2 − 1

Y 2 − 4Y + 1

)2

, η =
2

3h2
Y 2 + 1

Y 2 − 4Y + 1
− ϵ . (4.27)

The slow-roll parameter ϵ is zero on the maximum of the potential (Y = 1). Moreover, we have
0 ⩽ ϵ ⩽ 1 for 1 ⩽ Y ⩽ Y0, where

Y0 =
2
√
3h+

√
1 + 9h2√

3h+ 1
. (4.28)

For Y < Y0 we have inflation, whereas for Y ⩾ Y0 we have ϵ ⩾ 1 and the universe exits inflation.
One can easily check that during inflation we always have 1 ⩽ Y < 2 +

√
3. Conversely, the

parameter η, which gives a measure of the curvature of the potential, is not small in general, but is
of order h−2.

Also for these models the simplest way to satisfy the usual slow-roll conditions for inflation,
ϵ, |η| ≪ 1, is to choose h ≳ 10, so that η ≈ 10−2 as well as ϵ ≈ 10−2. The number of e-foldsN is
given by

1 + Y

[Y (Y − 1)]1/3
= A e2N/9h2

, A :=
1 + Y0

[Y0(Y0 − 1)]1/3
. (4.29)

3. Notice that a similar potential has been investigated in the context of constant-roll inflation, which reduces to
slow-roll inflation when the rate of roll is small — see Ref. [209] and references therein.
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In the slow-roll approximation the spectral parameters expressed in terms ofN are,

P
1/2
R (N) = 2hλ2

(4Y − Y 2 − 1)
3/2

(Y 2 − 1)Y 1/2
, (4.30a)

r(N) = 16ϵ(N) =
16

3h2

(
Y 2 − 1

4Y − Y 2 − 1

)2

, (4.30b)

ns(N) = 1− 4ϵ(N) + 2η(N) = 1− 3

8
r(N) +

4

3h2
Y 2 + 1

Y 2 − 4Y + 1
, (4.30c)

where Y = Y (N) is defined implicitly as a function ofN by Eq. (4.29).

(a) (b)

(c) (d)

Figure 4.4: Region plots for (a) the tensor/scalar ratio r, (b) the spectral index ns, (c) the vacuum energyEV

and (d) the mass of the inflaton mI as functions of the scale parameter h and the number of e-folds N . EV

and mI are in Planck masses. The values of r, ns, EV and mI are given in terms of the colour scale shown
below every plot.

Fig. 4.4 shows that there exist values of h for which the model correctly reproduces the results
of observation [186] withN = [48, 60]. Moreover, it predicts the vacuum energy to be four orders
of magnitude below the Planck scale and the mass of the inflaton seven orders of magnitude smaller
than the Planck mass.





Appendix A
•

A Solution-Generating Method for
Einstein-Maxwell-Scalar Theory

Units: c = 1;G = 1/16π; the kinetic scalar term is non-standard.

Minimally coupled Einstein-Maxwell-scalar gravity in d+ 2 dimensions is described by

A =

∫
dd+2x

√
−g
(
R− F 2 − 2(∂ϕ)2 − V (ϕ)

)
, (A.1)

and its field equations are

Rµν − 1
2
gµνR = T EM

µν + T ϕ
µν , ∇µF

µν = 0 , ∇2ϕ =
1

4

dV (ϕ)

dϕ , (A.2)

where the electromagnetic and scalar energy-momentum tensor are,

T EM
µν = 2

(
FµρF

ρ
ν − 1

4
gµνF

ρσFρσ

)
, (A.3)

T ϕ
µν = 2

(
∂µϕ ∂νϕ− 1

2
gµν∂

ρϕ ∂ρϕ

)
− 1

2
gµνV (ϕ) . (A.4)

Under certain assumptions upon the spacetime, the electromagnetic and scalar fields, Cadoni
et al. [111] proposed a solution-generating technique to solve the field equations (A.2). With this
procedure, they derived a large number of exact, static, asymptotically flat or AdS black hole and
black brane solutions, whose holographic applicationmight be useful to investigate condensedmat-
ter systems or strongly coupled quantum field theories. The method turns out to be particularly
useful when the scalar profile is given, and the potential is not an input but rather an output of the
theory.

They look for static, spherically symmetric solutions of the field equations, with line element in
the Schwarzschild gauge:

ds2 = −U(r) dt2 + dr2
U(r)

+R2(r) dΩ2
(ε,d) , (A.5)

where dΩ2
(ε,d) is the line element of the d-dimensional transverse spacetime with constat curvature

ε = −1, 0, 1, for hyperbolic, planar and spherical manifolds respectively.
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They also assume that the scalar field is static and does not depend on the transverse coordinates,
and they consider only purely electric solutions, characterised by the electric charge Q.1 Then, the
scalar field depends only on the radial coordinate and the only non-vanishing component of the
Maxwell tensor is Ftr,

ϕ = ϕ(r) , Ftr =
Q

Rd
. (A.6)

Using Eqs. (A.5) and (A.6), the field equations take the form

R′′

R
= −2

d
ϕ′2 , (A.7a)

(URdϕ′)′ =
1

4
RddV

dϕ , (A.7b)

(URd)′′ = εd(d− 1)Rd−2 +
2(d− 2)

d

Q2

Rd
− d+ 2

d
RdV , (A.7c)

(URd−1R′)′ = ε(d− 1)Rd−2 − 2

d

Q2

Rd
− 1

d
RdV . (A.7d)

Of course, the solutions of these field equations (and their existence) depend on the class of
potentials V (ϕ) considered. In any case, finding exact solutions is a very tough task, and might be
impossible, even when the explicit form of the potential is given, or can be expressed in a simple
form.

Usually, one must impose precise boundary conditions on the r → ∞ asymptotic behaviour
of the spacetime solution, which translate into boundary conditions for the scalar potential. For
example, if we require an asymptotically flat spacetime, and assume without loss of generality that
ϕ = 0 as r → ∞, it follows that V (0) = 0, while for asymptotically AdS spacetimes we have
V (0) = Λ, with Λ strictly negative. Typically, one also requires the existence of the Schwarzschild
black hole (black brane) solution sourced by a constant scalar field ϕ = ϕ0, implying V ′(ϕ0) = 0,
while the existence of black hole solutions sourced by a non-trivial scalar field, in general, is strongly
constrained by no-hair theorems.

The field equations (A.7) can be written in a more convenient form by introducing the variables
R = e

∫
Y and u = URd,

Y ′ + Y 2 +
2

d
ϕ′2 = 0 , (A.8a)

(uϕ′)′ − 1

4

dV
dϕ ed

∫
Y = 0 , (A.8b)

u′′ − (d+ 2)(uY )′ + 2ε(d− 1) e(d−2)
∫
Y − 4Q2 e−d

∫
Y = 0 , (A.8c)

u′′ − εd(d− 1) e(d−2)
∫
Y − 2(d− 2)

d
Q2 e−d

∫
Y +

d+ 2

d
V ed

∫
Y = 0 . (A.8d)

1. Notice that matter fields do not necessarily inherit spacetime symmetries, see e.g. Refs. [210–212].
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Eq. (A.8a) is a first-order non-linear equation for Y , an example of the Riccati equation. Once the
scalar profile ϕ(r) is given, solutions of the Riccati equation can be found. Then, Eq. (A.8c), which
is linear in u, can be integrated to obtain

u

Rd+2
=

∫ (
4Q2

∫
1

Rd
− 2ε(d− 1)

∫
Rd−2 − C1

)
1

Rd+2
+ C2 , (A.9)

whereC1 andC2 are integration constants. The potential is determined using Eq. (A.8d):

V =
d2(d− 1)

d+ 2

ε

R2
+

2(d− 2)

d+ 2

Q2

R2d
− d

d+ 2

u′′

Rd
. (A.10)

Notice that Eqs. (A.8a) and (A.8c) are universal, i.e. they do not depend on the potential.
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Chapter 5
•

Introduction to Part II

Black Hole Perturbations and Mimickers

Stellar blackholes are thought tobe the last stage in the evolutionofmassive stars and super-
massive black holes can be found almost in the centre of each known galaxy. Many observative
signatures of black holes can be analysed in perturbation theory. For this reason, we review
some historical results in perturbation theory such as the Regge-Wheeler and Zerilli equations,
quasi-normal modes, tidal effects and Love numbers. However, the dark compact object out
there might be horizonless exotic objects that mimic black holes. Interesting examples of this
kind, which we will discuss in this thesis are boson stars, traversable wormholes, gravastars and
superspinars.

5.1 Introduction
The events GW150914 and GW151226 observed by the LIGO and Virgo collaborations have been
interpreted as the gravitational waves emitted by a binary stellar-mass black holes merger. In par-
ticular, the LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era,
a whole new instrument to explore the Universe with which we will have the possibility of testing
gravity in extreme regimes. The existence of black holes is supported by various indirect observations
in the electromagnetic band [213–220], but the detection of GW150914 and GW151226 can be ac-
knowledged as the first direct observation. Also, the existence of event horizons might be proved
only with gravitational-wave observations, as electromagnetic observations cannot prove the exis-
tence of event horizons, but only the existence of a light ring, i.e. a boundary within which photons
can be trapped in circular orbits [221].

The gravitational-wave events observed by LIGO are characterised by three phases [222–226]:
the inspiral, when the distance between the two companions is large, and it is well described by post-
Newtonian theory; the merger, when the two objects coalesce, and which can only be described ac-
curately through numerical simulations; and the ringdown, when the product of the merger relaxes
to a stationary equilibrium configuration, with the emission of gravitational waves.

Most likely, the product of the collision of two black holes is another black hole, and then per-
turbed black holes are the most convincing sources of gravitational waves. For this reason, in this
chapter, we review some basic concept of black hole perturbation theory.

Except that for rare exceptions (ideal configurations, high symmetries, not-that-natural assump-
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tions) and in some approximations (weak-field, low velocities), Einstein’s field equations can be im-
possible to solve analytically — even for the background! With the come of super-computers, it has
becomepossible to solve numerically very complicated equations and then explore the strong-gravity
regime in more realistic astrophysical scenarios. This new tool, known as numerical relativity [227],
has allowed us testing gravity in regimes not reproducible in laboratory, e.g. gravitational collapse
of black holes, inspiral phase and coalescence of binary black holes or neutron stars and generation
of gravitational waves. Numerical relativity is a step beyond the post-Newtonian approximations
and the general relativistic perturbations as it can control the full non-linear behaviour of general
relativity.

On the other hand, there are some issues. For instance, coordinates in general relativity do not
have a concrete meaning, what matters are distances and time intervals that can be defined only by
themetric that, in turn, is the solution of the Einstein equations. Thismeans that the choice of coor-
dinates is crucial, to avoid coordinate singularities. In the case of black holes, onemust pay attention
also to physical singularities, where matter density and curvature become infinite. When one con-
siders the gravitational-wave emission, the signal must be extracted at large distances while the signal
is produced by a strong field source, hence optimisation is mandatory. In the world of numerical
relativity, the 3+1 decomposition of spacetime is a way of writing the Einstein field equations such
that they can be convenient for the alghorithms [228, 229]. The evolution of a system described by
Einstein’s equations can be viewed as a Cauchy problem: we specify the value of the metric and its
derivatives at some initial time on a three-dimensional spacelike hypersurface. These metric compo-
nents are then integrated forward in time.

However, although black holes are the simplest candidates for dark compact objects in the sky,
signals similar to those detected by LIGO might also be produced by other compact objects — see
Section 5.5. So, it is important and interesting to study these black hole mimickers and ask what
piece of information we can obtain from gravitational-wave observations about the nature of the
emitting object or the binary companions.

5.2 Black Hole Perturbations
In this section we consider perturbations about a black hole background. This work has begun back
in 1957 by the pioneering paper by Regge and Wheeler [230], followed by the extensions of Zerilli
[231–233] and Vishveshwara [234].

For defineteness we consider the most general static and spherically symmetric background in
Schwarzschild-like coordinates,

g(0)µν = −eΓ dt2 + eΛ dr2 + r2
(
dϑ2 + sin2 ϑ dφ2

)
. (5.1)

Thequest for the stability of the Schwarzschild solution ledRegge andWheeler to consider linear
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perturbations about the equilibrium equations, i.e.

g(0)µν → gµν = g(0)µν + hµν , (5.2)

where the perturbation hµν is small with respect to the background. The perturbation is then de-
composed in (tensor) spherical harmonics, and for a given ℓ,m and parity (−1)ℓ+1 (odd) the most
general perturbation can be written as,

hodd
µν =


0 0 −h0 cscϑ ∂φ h0 sinϑ ∂ϑ
⋆ 0 −h1 cscϑ ∂φ h1 sinϑ ∂ϑ
⋆ ⋆ h2 cscϑ∆1 −h2 sinϑ∆2

⋆ ⋆ ⋆ −h2 sinϑ∆1

Y ℓm , (5.3)

while for parity (−1)ℓ (even) one finds

heven
µν =


eΓH0 H1 h0 ∂ϑ h0 ∂φ

⋆ eΛH2 h1 ∂ϑ h1 ∂φ

⋆ ⋆ r2 (K +G∂2ϑ) r2G∆1

⋆ ⋆ ⋆ r2 sin2 ϑ [K +G (∂2ϑ − 2∆2)]

Y ℓm . (5.4)

In Eqs. (5.3) and (5.4), the symbol ⋆means symmetric, i.e. hµν = hνµ, the perturbations h0, h1, h2,
H0,H1,H2,K andG are functions of t and r, and we have defined two angular operators as

∆1 ≡ ∂φ (∂ϑ − cotϑ) , ∆2 ≡
1

2

(
∂2ϑ − cotϑ ∂ϑ − csc2 ϑ ∂2φ

)
. (5.5)

Obviously, owing to the spherical symmetry of the spacetime the perturbation equations cannot
mix terms that belong to different ℓ and parity. Moreover, m can be set equal to zero since the
resulting radial equation will not depend onm. In this way, the calculations are simplified, as the
φ-dependence completely disappears.

5.2.1 The Regge-Wheeler Equation

Fortunately, out of the ten perturbation functions in Eqs. (5.3) and (5.4), some of them can be set
to zero using a clever gauge transformation, today known as the Regge-Wheeler gauge. Such gauge
transformation allows us to impose additional conditions on the perturbations function. In partic-
ular, they have eliminated the terms that contain the angular derivatives of highest order.
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The final canonical form for a ℓ,m = 0 odd wave is

hodd
µν =


0 0 0 h0(r)

⋆ 0 0 h1(r)

⋆ ⋆ 0 0

⋆ ⋆ ⋆ 0

 eiωt sinϑ ∂ϑPℓ(cosϑ) . (5.6)

For the Schwarzschild spacetime, i.e. eΓ = e−Λ = 1− 2M/r, plugging Eq. (5.6) into (5.2) and
working out the Einstein field equations for the perturbation functions, one finds three non-trivial
equations. In particular, it is possible to write h0 as a function of h1 and its derivative. Finally, we
are left with a single second-order radial equation,

d2ψ(r)

dr2∗
+
(
ω2 − VRW(r)

)
ψ(r) = 0 , (5.7)

where r∗ is the tortoise coordinate defined by dr/dr∗ = 1− 2M/r,ψ(r) = (1− 2M/r)h1(r)/r,
and VRW is the Regge-Wheeler potential,

VRW(r) =

(
1− 2M

r

)(
ℓ(ℓ+ 1)

r2
− 6M

r3

)
. (5.8)

5.2.2 The Zerilli Equation
Similarly, the canonical form for a ℓ,m = 0 even wave is

heven
µν =


eΓH0(r) H1(r) 0 0

⋆ eΛH2(r) 0 0

⋆ ⋆ r2K(r) 0

⋆ ⋆ ⋆ r2 sin2 ϑK(r)

 eiωt Pℓ(cosϑ) . (5.9)

The Einstein field equations for the perturbation give seven non-trivial equations. First, we can
eliminate eitherH0 orH2 asH2 = H0 ≡ H . Then, the derivatives ofK can be written in terms
of H and H1. Finally, we are left with a second-order linear differential equation, which for the
Schwarzschild black hole reads,

d2ψ(r)

dr2∗
+
(
ω2 − VZ(r)

)
ψ(r) = 0 , (5.10)

where VZ is the Zerilli potential,

VZ(r) = 2

(
1− 2M

r

)
9M3 + 9M2rλ+ 3Mr2λ2 + r3λ2(1 + λ)

r3(3M + rλ)2
, (5.11)
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and the old metric functions can be written as functions of the new wavefunction as

K =
6M2 + 3λMr + (λ+ 1)λr2

r2(3M + λr)
ψ(r) +

(
1− 2M

r

)
ψ′(r) , (5.12)

H1 =
iω (3M2 + 3λMr − λr2)

(r − 2M)(3M + λr)
ψ(r)− irω ψ′(r) , (5.13)

H =
λr(r − 2M) +M(r − 3M)− r4ω2

(r − 2M)(3M + λr)
K +

(λ+ 1)M − r3ω2

irω(3M + λr)
H1 , (5.14)

where λ = (ℓ− 1)(ℓ+ 2)/2.
In this perturbative approach, it is also possible to study the gravitational radiation emitted by a

point particle with mass µp ≪ M falling into a Schwarzschild black hole [232]. For this problem,
the choice of boundary conditions is essential: outgoing waves at infinity and ingoing waves at the
horizon. In this case, the source term of the Einstein’s equations is given by an integral of a delta-
function over the world line of the particle,

T µν = µp

∫ dτ√
−g

uµpu
ν
p δ
(
xµ − xµp(τ)

)
, (5.15)

where uµp = dxµp/dτ is the four-velocity of the particle. In order to study the perturbations, also the
energy-momentum tensor must be expanded in spherical harmonics.

For a particle falling radially, there is no source term in the odd sector, while in the even sector,
the right-hand side of Eq. (5.10) is no longer zero but it is sourced. This source term depends on the
mass and the energy of the infalling particle and by its four-velocity components. We will give an
explicit example of source term in Chapter 8.

5.3 Quasi-Normal Modes
In general relativity, quasi-normal modes arise in the study of linear perturbations of stellar or black
hole spacetimes [235–237]. Quasi-normal mode oscillations have been found in perturbation cal-
culations of particles falling into Schwarzschild and Kerr black holes and in the collapse of a star to
form a black hole. Because of the emission of gravitational waves the oscillations are quasi-normal,
i.e. complex.

As we have seen in the previous section, in most cases, the perturbation equations reduce to a
linear second-order differential equation supplemented by boundary conditions at the horizon and
at infinity. Quasi-normal modes are the complex eigenvalues of this equation, with the real part
representing the actual frequency of the oscillation and the imaginary part representing the (inverse)
damping time.

For black holes, the quasi-normal modes are deeply related to the boundary conditions required
at the event horizon and at infinity. The effective potential in Eqs. (5.7) and (5.10) goes to zero as
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r → 2M and r → ∞, or in the tortoise coordinate r∗ → −∞ and r∗ → ∞. For V = 0, the
solutions behave asψ ∼ exp−iω(t±r∗). At the horizon we only have ingoing modes, while at infinity
we only have outgoing modes,

ψ ∼ e−iω(t−r∗) at the horizon, ψ ∼ e−iω(t+r∗) at infinity. (5.16)

In general, there exists a discrete infinity of quasi-normal modes that satisfy the boundary con-
ditions. The quasi-normal frequencies are often labelled by an integern called the overtone number.
The fundamental mode corresponds to n = 0 and is the less damped one.

In few exceptional cases, it is possible to solve analytically the wave equation. In general, quasi-
normal mode frequencies are determined by numerical methods. However, solutions to the Regge-
Wheeler equation can be given analytically in terms of the Heun functions [238].

For a Schwarzschild blackhole, the quasi-normalmode spectra of even andoddperturbations are
the same, i.e. they are isospectral [239, 240]. If we try to integrate the Zerilli equationwith boundary
conditions given by Eq. (5.16), we will run into numerical instabilities. We need to use an adeguate
series expansion as

ψ = e+iωr∗
∞∑
j=0

αj(r − 2M)j at the horizon, ψ = e−iωr∗
∞∑
j=0

βj
rj

at infinity, (5.17)

where the coefficientsαj and βj are determined by the series expansion of the Zerilli equation at the
horizon and at infinity. The recipe of Chandrasekhar and Detweiler [240] is then as follows. For
a given ω we integrate forwards from −∞ and backwards from +∞ to an intermediate value of
r∗, which tipically coincides with the maximum of the potential, roughly at 3M . Then we match
the two solutions at the junction and we use a shooting method to determine the value of ω, the
quasi-normal mode, such that the Wronskian of the solutions is zero. In Table 5.1 we list the first
two overtones for ℓ = 2 and ℓ = 3.

ℓ = 2 ℓ = 3

n = 0 0.374− 0.089i 0.599− 0.093i
n = 1 0.348− 0.275i 0.582− 0.281i

Table 5.1: Fundamental and first overtone quasi-normal frequencies ωM for the Schwarzschild black hole.

For a Kerr black hole, the quasi-normal mode spectrum is richer [241–244] but entirely char-
acterised only by the black hole mass and angular momentum. Thus, the detection of a few modes
from the ringdown signal can allow for precisionmeasurements of the black holemass and spin [91],
and possibly of higher multipole moments, which can be used to perform null-hypothesis tests of
the no-hair theorems of general relativity [25].
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5.4 Tidal Love Numbers
When we model the inspiral phase of a binary system, at large orbital separations (low frequencies)
the tidal interaction is negligible. As the orbital separation decreases (higher frequencies), the tidal
interactionbecomes significant. These effects canbe studied inperturbation theory aswell and at first
order, the relation between the tidal field and the induced moment is constant, and such a constant
is known as the tidal Love number.1 Tidal Love numbers have been studied first in Newtonian
gravity [246]. Later, a fully relativistic theory has been developed to describe tidal effects in strong-
gravity regimes, such as neutron stars and black holes [247–250].

Tidal Love numbers encode the information about the deformability of an object in a tidal en-
vironment and depend significantly on the object internal structure and the dynamics of the grav-
itational field. In fact, to define the relativistic Love numbers one only needs the vacuum exterior
geometry, while to compute the Love numbers one needs to know the metric in the body interior,
e.g. the equation of state.

An intriguing result in classical general relativity is the fact that the tidal Love numbers of a black
hole are precisely zero. This property has been originally demonstrated for small tidal deformations
of a Schwarzschild black hole and has been recently extended to arbitrarily strong tidal fields [251]
and to the spinning case, at least in the axisymmetric case to quadratic order in the spin and generi-
cally to linear order in the spin [252–254].

A static, spherically symmetric compact object embedded in an external tidal field, is charac-
terised by the symmetric and trace-free polar and axial tidal multipole moments of order ℓ,

Ea1...aℓ ≡
⟨C0a10a2;a3...aℓ⟩

(ℓ− 2)!
, Ba1...aℓ ≡

⟨ϵa1bcCbc
a20;a3...aℓ

⟩
2
3
(ℓ+ 1)(ℓ− 2)!

, (5.18)

where Cabcd is the Weyl tensor, a semicolon denotes a covariant derivative, ϵabc is the Levi-Civita
symbol, the angular brackets denote symmetrisation of the indices ai and all traces are removed. The
polar (axial) moments Ea1...aℓ (Ba1...aℓ) can be decomposed in a basis of even (odd) parity spherical
harmonics. We denote by Eℓm and Bℓm the amplitudes of the polar and axial components of the
external tidal field with harmonic indices (ℓ,m), wherem is the azimuthal number, |m| ⩽ ℓ. The
structure of the external tidal field is entirely encoded in the coefficients Eℓm andBℓm.

We adopt the Geroch-Hansen definition of multipole moments [255, 256], equivalent [257] to
the one by Thorne [258] in asymptotically mass-centered Cartesian coordinates. As a result of the
external perturbation, the mass and current multipole moments — Mℓ and Sℓ — of the compact
object are deformed and, in linear perturbation theory, these deformations are proportional to the
applied tidal field. In the non-rotating case, mass (current) multipoles have even (odd) parity, and

1. When the orbital motion approaches a resonance, the relation between the induced quadrupole moment and the
tidal field is no longer constant, and the tides become dynamical [245].
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therefore they only depend on polar (axial) components of the tidal field.2 Hence, we can define the
polar and axial tidal Love numbers as [248, 250]

kEℓ ≡ −1

2

ℓ(ℓ− 1)

M2ℓ+1

√
4π

2ℓ+ 1

Mℓ

Eℓ0

, kBℓ ≡ −3

2

ℓ(ℓ− 1)

(ℓ+ 1)M2ℓ+1

√
4π

2ℓ+ 1

Sℓ

Bℓ0

, (5.19)

where the numerical factor is conventional, M is the mass of the object, whereas Eℓ0 (Bℓ0) is the
amplitude of the axisymmetric component of the polar (axial) tidal field. Since we are considering
only non-spinning objects in spherically symmetric spacetimes, we candefine the tidal Love numbers
in the axisymmetric m = 0 case, without loss of generality. The factor 1/M2ℓ+1, that makes the
Love numbers dimensionless, is non-standard. It is much more common to divide by powers of the
object radius, but since the definition of radius for boson stars can be equivocal, we adopt this non-
standard choice. Thus, our definition is related to those used by Hinderer, Binnington and Poisson
through

kE,B
ℓ ours =

(
R

M

)2ℓ+1

kE,B
ℓHBP . (5.20)

Modified theories of gravity and exotic compact objects typically require the presence of extra
fields which are (non) minimally coupled to the metric tensor, and therefore the definition of ex-
ternal applied fields. But, in astrophysical situations we expect the ratio of any external field to the
gravitational tidal field to be small or negligible.

To compute the tidal Love numberswe need to calculate the inducedmass and currentmoments
as functions of the external tidal field. We consider static perturbations about a static spherically
symmetric background spacetime (5.1), and we expand the metric in spherical harmonics.

Solving the appropriate field equations will give us expressions for the metric functions in (5.9)
and (5.6). Themultipole moments can be extracted from the asymptotic behaviour of the spacetime
metric and fields:

gtt = −1 +
2M

r
+ htt , gtφ =

2J

r
sin2 ϑ+ sinϑhtφ , (5.21)

where

htt =
∑
ℓ⩾2

(
2

rℓ+1

√
4π

2ℓ+ 1
Mℓ Y

ℓ0 + O

(
1

rℓ+2

)
− 2rℓ

ℓ(ℓ− 1)
Eℓ Y

ℓ0 + O
(
rℓ−1

))
, (5.22)

htφ =
∑
ℓ⩾2

(
2

rℓ

√
4π

2ℓ+ 1

Sℓ

ℓ
∂ϑ Y

ℓ0 + O

(
1

rℓ+1

)
+

2rℓ+1

3ℓ (ℓ− 1)
Bℓ ∂ϑ Y

ℓ0 + O
(
rℓ
))

, (5.23)

An appropriate comparison between the solution of the field equations and the expansions
(5.22) and (5.23) gives us a method to extract the multipole moments and consequently the tidal
Love numbers.

2. This symmetry is broken if the compact object is spinning due to spin-tidal couplings. In such a case, there exists a
series of selection rules that allow defining a wider class of ‘rotational’ tidal Love numbers [252–254, 259, 260].
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5.5 Black Hole Mimickers
Black hole mimickers, or exotic compact objects, are possible alternatives to black holes as they are
objects whose exterior geometry is the same as black holes but without an event horizon. Although
most of them are unstable,3 there exists no formation mechanism (yet), and might look as artifi-
cial solutions to Einstein’s equations, they give rise to light rings, closed orbits where photons are
confined, so that to an electromagnetic observer they would look as dark as black holes, and then
indistinguishable. Gravitational-wave observations, on the other hand, can discriminate between a
black hole and amimicker. Beyond the interest onmimickers as themselves, their study is fundamen-
tal to test the presence of horizons observationally. In fact, even if some observational signatures of
black holes, like ringdown signals [269] and shadows [270] are well reproduced by ultra-compact
horizonless geometries, the details of gravitational-wave emission are different [271]. One can, for
example, compare the gravitational-wave signature of a two exotic compact objects merger with that
of more conventional compact object binaries consisting of black holes and neutron stars. At early
times, the precise structure of the objects is almost irrelevant and the signatures are largely the same.
However, for the late stages of the merger, the relative phase of the compact objects determines the
gravitational wave signature. In Chapter 8, we discuss in detail the gravitational radiation emitted
by a point-particle falling into a wormhole.

5.5.1 Boson Stars

Among exotic compact objects, boson stars might be the most realistic (or less exotic). They are
stationary compact configurations made of fundamental bosonic fields coupled to gravity. We will
discuss in more details this kind of stars in Chapter 6. Here we briefly comment boson stars as a
black hole mimicker [272, 273]. Spherically symmetric minimal boson stars can mimic the power
spectrum of a simple accretion disk model, due to a black hole of the same mass. On the other hand,
interacting boson stars can mimic a broad spectrum of astrophysical black holes. Discrimination
between black holes and boson stars can be possible via the gravitational lensing.

5.5.2 Wormholes

A wormhole is a hypothetical bridge between two remote spacetime regions. There exists a worm-
hole even in the Schwarzschild spacetime, but it would collapse faster than any particle could cross

3. Horizonless compact objects require exotic matter configurations and almost inevitably possess a stable light ring
at r < 3M . The latter might be associated with various (linear and non-linear) instabilities, including fragmentation
and collapse [261, 262] and ergoregion instability [263–268] when the object rotates sufficiently fast. The argument
of instability can be circumvented by arguing that one could be observing exotic compact objects which are compact
enough to agree with observations but not compact enough to go unstable. Besides, the instability could be present, but
with an extremely large timescale.
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and emerge on the other side. However, there exist traversable wormholes that can, in principle, be
straddle in both ways [274, 275].

Using the thin-shell formalism, Visser [276, 277] constructed simple examples of traversable
wormholes. These models are built by glueing together two Schwarzschild spacetimes in such a way
that there is no event horizon, i.e. we take two copies of Schwarzschild, from which we remove the
regions

D1,2 ≡ {r1,2 ⩽ r0 | r0 > 2M} . (5.24)

Then we identify the boundaries of these manifold

∂D1 = ∂D2 ≡ {r1,2 = r0 | r0 > 2M} , (5.25)

such that the resulting spacetime is geodesically complete and possesses two asymptotically flat re-
gions connected by a wormhole. Notice that r0 > 2M prevents the formation of a horizon.

The energy-momentum tensor is zero everywhere but at the throat, where the two universes
are connected, and the non-zero energy-momentum tensor is proportional to a delta-function. The
surgery at the throat requires a thin shell of matter with surface density and surface pressure

σ = − 1

2πr0

√
1− 2M

r0
, p =

1

4πr0

1−M/r0√
1− 2M/r0

. (5.26)

In general relativity, a traversable wormhole violates the weak energy condition [278]. On the other
hand, the null and strong energy conditions are satisfied as long as the throat is within the light
ring, i.e. r0 < 3M . These energy conditions are no longer violated in modified theories of gravity,
e.g. in Einstein-dilatonGauss-Bonnet gravity, traversable wormholes satisfying all energy conditions
exist [279].

Damour and Solodukhin [280] considered another simple example of traversable wormhole,
described by the metric

ds2 = −
(
f(r) + λ2

)
dt2 + dr2

f(r)
+ r2 dΩ2 , f(r) = 1− 2M

r
, (5.27)

where λ is a dimensionless parameter. They show that some observational features of black holes
do not depend on the presence of an event horizon. In fact, the apparently irreversible accretion of
matter down a hole, no-hair properties, quasi-normal mode ringing, and even dissipative properties
of black hole horizons canbemimic by thewormhole (5.27) if the parameterλ is exponentially small.
To distinguish the two geometries, we should either observe a classical phenomenon such as matter
accretion, or detect Hawking’s radiation, which is way too weak to be detected for realistic black
holes.

Recently, it has been argued that even mixed star-wormhole system could mimic some features
of black holes [281].
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5.5.3 Gravastars
Gravastars have been proposed as an alternative endpoint of gravitational collapse [282, 283]. The
name is the cras of “gravitational vacuum star”. In the original model, in order to take into ac-
count quantum mechanics, the gravastar does not possess a horizon but rather a thin shell of ultra-
relativistic fluid which satisfies the equation of state ρ = p. The interior region is a vacuum de Sitter
space, whose equation of state is ρ = −p. The exterior region is described by the Schwarzschild
geometry.

Mazur and Mottola claimed that these objects are stable since only the shell is non-vacuum.
However, these objects develop a strong ergoregion instability when rapidly spinning [263, 265].

A simpler model is called thin-shell gravastar, and it is obtained when the thickness of the shell
goes to zero [284]. The line element for this model is as in Eq. (5.1) with

eΓ = e−Λ =

1− 2M
r

r > R ,

1− 2C r2

L2 r < R ,
(5.28)

whereR is the radius of the gravastar,C its compactness, and L the de Sitter length.

5.5.4 Superspinars
Superspinars are another kind of black hole mimickers [285]. In string theory, it is possible to vio-
late the Kerr bound, i.e. the ratio between their angular momentum and mass can be greater than
one. For this reason, they have no event horizon. Although finding such super-spinning objects (for
instance in active galactic nuclei or as sources of gamma ray bursts) could be interpreted as a piece of
evidence for string theory, they have been shown to be unstable for multiple reasons [265–268].





Chapter 6
•

Boson Stars

We review boson stars and in particularmini boson stars and their stability. Next, we show
that mini boson stars in five spacetime dimensions are dynamically unstable. Then, we inves-
tigate boson star solutions built from various scalars with different masses, we provide strong
evidence that these stars are stable at least in part of the parameter space, andwe provide quanti-
tative criteria for instability. These solutions share a lot of features with the well-known single-
boson stars.

Units: c = G = ℏ = 1.
Note: This chapter contains new results not published elsewhere.

6.1 Introduction
Boson stars are built coupling a complex scalar field to gravity,1 i.e. they are self-gravitating solutions
made of massive bosonic fields. This subject has been broadly reviewed [287–294], and here we
summarize only the fundamental features.

The energy of the scalar field — which can be either a stable fundamental bosonic particle or
an unstable particle with decay/inverse-decay in equilibrium — gravitates holding the star together,
and the gravitational collapse is not inevitable. Sometimes, it is said that boson stars are held in equi-
librium by the Heisenberg uncertainty principle, because the Klein-Gordon wave equation which
describes the scalar field tends to disperse fields, the same dispersion which underlies theHeisenberg
uncertainty principle.

Gravity is necessary to build a boson star, but we will need an oscillating complex scalar field, as
Derrick’s theorem [295] states that no regular, static, nontopological localised scalar field solutions
are stable in three-dimensional (spatial) flat space. Even if the scalar is no longer static, the spacetime
remains static.

Boson stars could be astrophysical stellar objects. As neutron stars, they have a maximum mass
(inversely proportional to the mass of the constituent scalar field) across which the configuration is
no longer stable. Differently, they do not have a surface. If we make a correspondence, we could say
that to different equations of state for neutron stars correspond different potentials for boson stars,
with the advantage that boson stars are easier to evolve than neutron star models.

1. It is not possible to find time-independent, spacetime solutions for a real scalar field. However, there are non-
singular, time-dependent near-equilibrium configurations of self-gravitating real scalar fields, which are known as oscil-
latons [286].

77
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Boson stars have often been invoked as generic dark matter candidates [288], to explain dark
matter halos [296, 297], and to model accretion of dark matter into stars [298, 299].

For a fixed boson mass µ, boson stars can come under a variety of sizes and compactnesses, a
maximum mass that scales likeMmax ≈ 0.633m2

P/µ, wheremP is the Planck mass, for minimally
coupled scalars, and a compactness that can be negligibly small or very close to that of black holes.
For this reason, high-compactness boson stars have been proposed as black hole mimickers [272,
273]. Black holes and their mimickers are indistinguishable to electromagnetic telescopes, and the
potential electromagnetic differences can be tweaked by adjusting the boson star potential. In fact, a
boson star canbe a non-interacting compact object, as long aswedonot include any explicit coupling
to any electromagnetic or other fields. However, the observation of gravitational waves from such
objects may be able to distinguish black holes from boson stars.

The possibility of detecting boson stars — through gravitational redshift, (micro-)lensing, emis-
sion of gravitational waves, or, in the case of a giant boson star, its dark matter contribution to the
rotation curves of galactic halos — is discussed, e.g., in Ref. [293].

However, there are two objections against invoking boson stars as the compact, dark objects seen
in our universe. The first is the issue of instability, a common problem to all ultra-compact objects,
as discussed in Section 5.5. The second objection argues that a single scalar of mass µ will fix, once
and for all, themaximummass of very compact objects. In such scenario, it would be hard to explain
the variety of masses that black hole candidates are observed to have. Such arguments can be evaded
by invoking a large number of different bosonic fields to be present. However, in Section 6.5, we
show that even with only two different scalars we can obtain stable multi-boson star solutions with
different maximum masses.

6.2 Review on Boson Stars
In this section we review some general properties of general relativistic boson stars, whose general
action is

A =

∫
d4x

√
−g
(

R

16π
− |∂ϕ|2 − V

(
|ϕ|2
))

, (6.1)

and the Einstein-Klein-Gordon equations are

Rµν −
R

2
gµν = 8π Tµν , (6.2)

1√
−g

∂µ
(√

−g gµν ∂νϕ
)
=

dV
d|ϕ|2ϕ , (6.3)

where the energy-momentum tensor is given by,

Tµν =
1

2

[
(∂µϕ ∂νϕ

∗ + ∂µϕ
∗ ∂νϕ)− gµν

(
|∂ϕ|2 + V

(
|ϕ|2
))]

. (6.4)
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As a consequence of Noether’s theorem, the invariance of the Lagrangian in (6.1) under global
U(1) transformations, ϕ→ eiαϕ, implies the existence of a conserved current Jµ and the spatial in-
tegral of the time-component of the current defines the conserved Noether charge: the boson num-
berN,

Jµ =
i
2
(ϕ∗∇µϕ− ϕ∇µϕ

∗) , N =

∫
d3x

√
−g J0 . (6.5)

Boson stars are often classified according to their scalar potential. The threemost commonmod-
els are summerised in Table 6.1, togheter with the scaling of the maximum mass.

Model Potential
V (|ϕ|2)

Maximum mass
Mmax/M⊙

Minimal µ2|ϕ|2 8× 10−11
(

eV
µ

)
Massive µ2|ϕ|2 + α

4
|ϕ|4 5

√
α
(

0.1GeV
µ

)2
Solitonic µ2|ϕ|2

(
1− 2|ϕ|2

σ2
0

)2
(7×105 GeV)3

µσ2
0

Table 6.1: Scalar potential and maximum mass for the three most common models of boson stars. µ is the
mass of the bosonic field, α is a dimensionless parameter and σ0 is a constant of the same order of µ. For
massive boson stars, the maximum mass holds in the α ≫ 1 limit.

The simplest potential is the free-field case, or mini boson star, characterized by a massive poten-
tial [300, 301]. This model and its stability will be discussed better in Section 6.3. It has a max-
imum mass configuration of Mmax ≈ 0.663m2

P/µ, known as the Kaup limit. Except for very
light bosons, µ ∼ 10−11 eV, this limit is way below the Chandrasekhar limit for fermion stars, i.e.
MCh/M⊙ ∼ (1GeV/µ)2.

Thismodel can be easily extended by adding a quartic interaction term in addition to themassive
term [302]. It is now known as massive boson star model because, depending on the value of α, the
total mass can reach values compatible with the Chandrasekhar limit.

A third common model is the solitonic one [303–305]. This model supports confined nondis-
persive solutions with finite mass and allows for supermassive configurations of order 106M⊙ even
for very heavy bosons, e.g. µ ∼ σ0 ∼ 1TeV.

A more comprehensive list of boson star models can be found in Ref. [294]. Other models and
extensions include e.g. rotating boson stars [306, 307] and mixed fermion-boson stars [308, 309].
Boson stars can also be built in alternative theories of gravity, by introducing Maxwell or Yang-Mills
terms the action (6.1), and considering a vector field instead of a scalar field [310].
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6.3 Mini Boson Stars
Mini boson stars, characterised by the potential V (|ϕ|2) = µ2|ϕ|2, have been introduced by Kaup
[300] as the Klein-Gordon counterpart of John Wheeler’s geons [311]. In this section we review
the equilibrium solutions and their stability. This will be useful to compare with what happens for
boson stars inhigher dimensions (Section6.4) andboson stars builtwith various scalars (Section6.5).

6.3.1 Equilibrium Solutions
We consider a spherically symmetric spacetime in Schwarzschild-like coordinates, and a harmonic
ansatz for the scalar field,

ds2 = −eΓ(r) dt2 + eΛ(r) dr2 + r2 dΩ2 , ϕ(t, r) =
1√
8π

ϕ0(r) e−iωt . (6.6)

The relevant Einstein and Klein-Gordon equilibrium equations are,

Λ′ =
1− eΛ
r

+ r
(
ω2eΛ−Γϕ2

0 + ϕ′2
0 + eΛV0

)
, (6.7)

Γ′ =
eΛ − 1

r
+ r

(
ω2eΛ−Γϕ2

0 + ϕ′2
0 − eΛV0

)
, (6.8)

ϕ′′
0 =

(
Λ′ − Γ′

2
− 2

r

)
ϕ′
0 + eΛ

(
dV

d|ϕ|2 − ω2e−Γ

)
ϕ0 , (6.9)

where V0 ≡ V (ϕ2
0), e.g. for a mini boson star V0 = µ2ϕ2

0. Notice that after the change of variables
r → µr and ω → ω/µ, Eqs. (6.7) to (6.9) do not depend on µ. For simplicity, henceforth we set
µ = 1. In order to have a physical solution we have to impose regular boundary conditions at the
origin,2

Γ(0) = Γc , Λ(0) = 0 , ϕ0(0) = ϕc , ϕ′
0(0) = 0 , (6.10)

while at infinity we require the scalar field to vanish and the spacetime to be asymptotically flat,

lim
r→∞

ϕ0(r) = 0 , lim
r→∞

eΓ(r) = lim
r→∞

e−Λ(r) = 1 . (6.11)

For each value of the scalar field central value ϕc, the background equations form an eigenvalue
problem for the frequency ω, which we solve using a standard shooting method. In general, the
boundary conditions are satisfied by a discrete set of eigenfrequencies; here we focus on the lowest
eigenfrequency, which corresponds to a boson star in the ground state and to a scalar profile with no
nodes—seeFig. 6.1. Thehigher frequencies correspond to excited states thatwill decay to the ground

2. Actually, to increase the accuracy of the numerical integration, it is customary to consider a higher-order expansion
near the origin which reduces to Eq. (6.10) at first order.
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Figure 6.1: Scalar profile and metric functions (inset) as functions of the radial coordinate for the ϕc ≈ 0.106
configuration. The total mass for this configuration isM ≈ 0.542/µ.

state through emission of gravitational and scalar radiation [312]. The value Γc can be arbitrary, it
can always be tweaked by a time-redefinition in order to achieve (6.11), i.e. asymptotic flatness.

The total mass of the configuration is defined as the r → ∞ limit of

M(r) =
r

2

(
1− 1

eΛ(r)

)
, (6.12)

in analogy with the total mass of the Schwarzschild solution.
Then, by following the procedure described above, we obtain a family of solutions parametrised

by the central value of the scalar field ϕc. In Fig. 6.2 we plot the total mass versus ϕc and we observe
that, in our units, the maximum mass value,Mmax ≈ 0.663m2

P/µ is attained for ϕc ≈ 0.27.
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Figure 6.2: Total mass as function of the scalar field central value for mini boson stars. The Kaup limit is
attained for ϕc ≈ 0.27.

Boson stars do not have a hard surface, as the scalar is spread out all over the radial direction.
However, the configuration is highly localized in a radius ∼ 1/µ and it is customary to define the
effective radiusR as the radius within which the 99% (sometimes the 90%) of the total mass is con-
tained, i.e.M(R) = 0.99M .
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6.3.2 Stability of Mini Boson Stars

A maximum mass usually indicates a point of marginal stability [313] and we now discuss whether
the background solutions of the previous subsection are stable. A common approach is to consider
small fluctuations about the equilibriumconfigurations such thatwe canwork in linear perturbation
theory [314, 315]. However, a solution can be linearly stable and yet have a non-linear instability. In
such a case, other methods are needed, e.g. full numerical evolutions of the Einstein-Klein-Gordon
equations.

Assuming the linear perturbations to be only in the radial direction [316, 317], we introduce
four perturbation fields and we expand about the equilibrium configuration,

Λ(t, r) = Λ0(r) + δΛ(t, r) ,

Γ(t, r) = Γ0(r) + δΓ(t, r) ,

ϕ(t, r) =
1√
8π

[
ϕ0(r) e−iωt + δψ1(t, r) + i δψ2(t, r)

]
.

The resulting Einstein-Klein-Gordon equations for the perturbations can be manipulated to get rid
off δΓ and δψ2, and in the end we are left with two equations in two unknowns,

δψ′′
1 =− eΛ0

(
1

r2ϕ0

− rϕ2
0ϕ

′
0 +

ϕ′
0
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− 2ϕ0

)
δΛ− δΛ′
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0 − Λ′

0

2
− 2ϕ′
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r

)
δψ′

1
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ω2eΛ0−Γ0 + 2reΛ0ϕ0ϕ

′
0 + 3eΛ0

)
δψ1 , (6.13)
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)
δψ′

1 . (6.14)

For the stability analysis, we assume harmonic time dependence,

δψ1 = δψ1(r) eiσt , δΛ = δΛ(r) eiσt . (6.15)

The system (6.13) and (6.14) defines a characteristic value problem for σ2. It can be shown that the
system is self-adjoint [316] and hence the values ofσ2 must be real. To determine stability or instabil-
ity we just need to determine whether σ2 is positive or negative. Negative values of σ2 correspond to
perturbations that will grow, which means that the boson star is unstable against radial oscillations.

In Fig. 6.5, the red solid line represents the value of σ2 for different background configurations.
We observe that it is positive for ϕc ≲ 0.27, the very same value for which we have the maximum
mass. This means that configurations on the left of the maximum in Fig. 6.2 are stable against linear
radial perturbation, while configurations on the right are not.
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The procedure for calculating the frequency σ2 is as follows. Once we have an equilibrium solu-
tion, we solve Eqs. (6.13) and (6.14) along regular boundary conditions at the origin,3

δΛ(0) = δΛ′(0) = 0 , δΛ′′(0) = δΛc , (6.16)

δψ1(0) = δψc , δψ′
1(0) = 0 , δψ′′

1(0) =
3 + e−Γc(σ2 − ω2)

6
δψc −

δΛc

2ϕc

, (6.17)

asymptotic flatness at infinity,

lim
r→∞

δΛ(r) = lim
r→∞

δψ1(r) = 0 , (6.18)

and with the condition that the boson numberN must be conserved. Notice that, since the system
is linear, the value of δψc is arbitrary. We begin with considering perturbations very close to the
configuration which corresponds to the maximum mass, where σ2 = 0. Then we shoot forΛc until
the boundary conditions are satisfied. Formore general configurations (σ2 ̸= 0), we simultaneously
shoot forΛc and σ2.

6.3.3 Binding-Energy Criterion
Thebinding-energy criterion is an alternativemethod for studying stability proposed byKusmartsev
et al. [318]. As a general fact, stable systems are expected to have negative binding-energy, defined as
Ebind =M − µN, while positive binding-energy signals an instability. However, negative binding-
energy is a necessary but not sufficient condition for stability.

The method consists of investigating the critical points of a mapping and the construction of
bifurcation diagrams of the binding-energy versus the boson number.
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Figure 6.3: Bifurcation diagrams of the binding-energy versus the total boson number.

3. Actually, to increase the accuracy of the numerical integration, it is customary to consider a higher-order expansion
near the origin which reduces to Eqs. (6.16) and (6.17) at first order.
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The mapping is between the two-dimensional subspace of the dynamical variables of the boson
field, and space of the integrals of motion, such as the gravitational mass M and the total particle
number N. Using catastrophe theory to classify the singularities of such mapping, it is possible to
derive general criteria for the stability of the star. The results agree with those of linear perturbation
theory.

In Fig. 6.3 we plot the bifurcation diagram for mini boson stars. The lower branch of the bifur-
cation diagram corresponds to a stable configuration and the cusp occurs at precisely the location of
theϕc corresponding to themaximummass. The upper branch corresponds to solutions with larger
ϕc, and eventually reaches a positive binding-energy.

6.4 Boson Stars in Higher Dimensions
In this section we show that mini boson stars in five dimensions are always unstable against radial
oscillations. This is a new result, not published elsewhere, that also proves an assertionmade recently
by Brihaye andHartmann [319], who showed that these stars always have a positive binding-energy.

We consider themost general time-dependent, spherically symmetric line element in five dimen-
sions,

ds2 = −eΓ(t,r) dt2 + eΛ(t,r) dr2 + r2
(
dϑ2

1 + sin2 ϑ1 dϑ2
2 + sin2 ϑ1 sin2 ϑ2 dφ2

)
, (6.19)

and we decompose the scalar field in two real scalars

ϕ(t, r) =
1√
8π

[ψ1(t, r) + iψ2(t, r)] e−iωt . (6.20)

The Einstein-Klein-Gordon background equations are obtained by setting Λ(t, r) = Λ0(r),
Γ(t, r) = Γ0(r), ψ1(t, r) = ϕ0(r) and ψ2(t, r) = 0, and they read

Λ′
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, (6.21)
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, (6.22)

ϕ′′
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Λ′

0 − Γ′
0

2
− 3

r

)
ϕ′
0 + eΛ0

(
1− e−Γ0ω2

)
ϕ0 , (6.23)

along with regular boundary conditions at the origin,4

Γ0(0) = Γc , Λ0(0) = 0 , ϕ0(0) = ϕc , ϕ′
0(0) = 0 , (6.24)

4. Actually, to increase the accuracy of the numerical integration, it is customary to consider a higher-order expansion
near the origin which reduces to Eq. (6.24) at first order.
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while at infinity we require the scalar field to vanish and the spacetime to be asymptotically flat,

lim
r→∞

ϕ0(r) = 0 , lim
r→∞

eΓ0(r) = lim
r→∞

e−Λ0(r) = 1 . (6.25)

The total mass in five dimension is the r → ∞ limit of

M(r) =
3πr2

8

(
1− 1

eΛ0(r)

)
. (6.26)

As in the four-dimensional case, for each value of the scalar field central value, we use a shooting
method to find the lowest frequency ω which solves the background equations. In Fig. 6.4 we plot
the total mass as function of the central value of the scalar field and we observe that there is no local
maximum.
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Figure 6.4: Total mass as function of the scalar field central value for five-dimensional mini boson stars.

In order to study linear stability, following the analysis ofGleiser andWatkins [316] andHawley
and Choptuik [317], we introduce four perturbation fields and we expand about the equilibrium
configuration. The four equations for the perturbed quantities can be manipulated such that we are
left with two equations in two unknowns,
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For the stability analysis, we assume harmonic time dependence

δψ1(t, r) = δψ1(r) eiσt , δΛ(t, r) = δΛ(r) eiσt . (6.29)
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The boundary conditions at r = 0 are5

δΛ(0) = δΛ′(0) = 0 , δΛ′′(0) = δΛc , (6.30)

δψ1(0) = δψc , δψ′
1(0) = 0 , δψ′′

1(0) =
e−Γc(σ2 − ω2) + 3

8
δψc −

3δΛc

4ϕc

. (6.31)

At infinity the perturbations vanish,

lim
r→∞

δΛ(r) = lim
r→∞

δψ1(r) = 0 . (6.32)

As in the four-dimensional case, the system (6.27) and (6.28) along with the condition that the
boson number must be conserved, defines a characteristic value problem for σ2. In order to deter-
mine stability or instability we just need to determinewhetherσ2 is positive or negative. To solve the
system (6.27) and (6.28) for a given ϕc we begin by solving the respective background solution and
then we shoot for σ2 and δΛc. Notice that, since the system is linear, the value of δψc is arbitrary.

Figure 6.5: Distribution for the squared frequency σ2 with respect to the central value of the scalar ϕc. In
four dimensions σ2 crosses zero, while in five dimensions it is always negative.

Thedependence of the squared frequencyσ2 on the value of the scalar at the origin,ϕc, is plotted
in Fig. 6.5, together with the corresponding four-dimensional case. We observe that σ2 is always
negative in the five-dimensional (and presumably, higher-dimensional) case, contrary to the four-
dimensional case [317], implying that mini boson star solutions in five spacetime dimensions are
always unstable against radial perturbations.

6.5 Multi-Scalar Boson Stars
In this section we construct boson stars built with various scalars and we investigate their stability.

5. Actually, to increase the accuracy of the numerical integration, it is customary to consider a higher-order expansion
near the origin which reduces to Eqs. (6.30) and (6.31) at first order.
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6.5.1 Setup
We consider Einstein gravity minimally coupled with N massive complex scalars, i.e. an N -boson
star, described by the following action,

A =

∫
d4x

√
−g

[
R

16π
−

N∑
n=1

(
|∂µΦn|2 + µ2

n|Φn|2
)]
. (6.33)

As in the single-boson star case, we consider a time-independent and spherically symmetric space-
times, and harmonic ansätze for the scalar fields,

ds2 = −eΓ(r) dt2 + eΛ(r) dr2 + r2 dΩ2 , Φn(t, r) =
1√
8π

ϕn(r) e−iωnt . (6.34)

InEinstein’s equations the total energy-momentum tensorTµν is given by the sumof the energy-
momentum tensors of each scalar,6
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The relevant field equations are
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Similarly, the Klein-Gordon equation for each scalar

1√
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)
= µ2

nΦn , (6.38)

(and its complex conjugate) is
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)
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n − µ2
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)
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The Noether charges (particle number) associated to the U(1) invariance of each mode of the
action (6.33) are:

Nn =
ωn

2

∫
dr r2 exp

(
Λ− Γ

2

)
ϕ2
n . (6.40)

6. The same energy-momentum tensor appears in the multistate boson star models [320, 321], where Φn are the
eigenstates of one scalar field with the same mass. In our model, each Φn is a different bosonic field, in its ground state
and with its own mass.
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6.5.2 Equilibrium Solutions
In this section we construct spherically symmetric, time-independent boson stars by integrating nu-
merically (6.36), (6.37) and (6.39) along with boundary conditions. We impose regularity at the
origin,7

Γ(0) = Γc , Λ(0) = 0 , ϕn(0) = ϕnc , ϕ′
n(0) = 0 , (6.41)

whereas at infinity we impose the metric to be Minkowski and the scalar fields to vanish.

lim
r→∞

ϕn(r) = 0 , lim
r→∞

eΓ(r) = lim
r→∞

e−Λ(r) = 1 . (6.42)

The problem is then reduced to an eigenvalue problem for the frequencies ωn, which we solve
using a standard shooting method. In general, the boundary conditions are satisfied by a discrete set
of frequencies. We focus here on the ground state, corresponding to a scalar field with no nodes (see
Fig. 6.6).

We will restrict our study by considering only two scalars, i.e.N = 2 and µ2 = 2µ1. The com-
plete specification of the equilibrium solution requires themode content, i.e., the relative amplitude
between the ϕn at the centre of the star, which is unspecified a priori.

Figure 6.6: Scalar profiles and metric functions (inset) for the two-boson star with relative amplitude
ϕ2c/ϕ1c = 1/2. The central value for the first scalar is ϕ1c = 0.14. The total mass for this configuration is
M ≈ 0.488/µ1.

Typical scalar-field and metric profiles are shown in Fig. 6.6 for ϕ1c = 0.14 = 2ϕ2c, in units of
µ1 = 1. The scalar and metric profile resemble those of the purely single-boson stars and approach
their asymptotic values at infinity exponentially fast [322]. For this particular set of parameters, the
ADM mass of the configuration isM ≈ 0.488/µ1.

7. Actually, to increase the accuracy of the numerical integration, it is customary to consider a higher-order expansion
near the origin which reduces to Eq. (6.41) at first order.
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A useful and relevant information is how the total mass of boson stars changes with the central
value of the scalar field or with the effective radius R. This is summarised in Fig. 6.7 for two repre-
sentative mode content. As expected, these stars have a maximum mass, still of order ∼ 1/µi. The
maximum mass, when measured in units of the lightest mode in the problem, is smaller when the
second mode has a larger amplitude. In the limit that the second mode dominates completely, the
maximum mass should be one-half of its Kaup limitMmax ≈ 0.633/µ1.

Figure 6.7: Left Panel: Total mass of the two-boson stars as a function of the central value of the first mode,
for different mode content. The lower, solid (red) line corresponds to two scalars with the same value at the
origin; The second line (blue, dotted) corresponds to two scalars with relative amplitude at the origin of 1/2.
Right Panel: Total mass as a function of the effective radius.

The total mass of the two-boson stars is shown in the contour plot in Fig. 6.8 for a wide range
of central values of the fields. In this plot, we can observe the same behaviour shown in Fig. 6.7: the

Figure 6.8: Contour plot of the total mass of the two-boson stars as a fuction of the central value of the scalars.
The value ofM is given in terms of the scale of colour on the right.

total mass increases, reaches a local maximum and then decreases. This is evident for small values of
ϕ2c, while as ϕ2c gets bigger the total mass value does not drop fast enough to be noted in the plot.
We also observe that the maximum total mass tends to the Kaup limit as ϕ2c → 0, i.e., when our
solution reduces to the single-boson star.
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We also find that the compactness of these boson stars decreases with radius, i.e., boson stars
with a large radiusR (fixed masses µi, corresponding to small values of the scalar at the origin) have
a small totalmassM ∼ 1/R. In essence, in the largeR regime these are quasi-Newtonian, extremely
dilute configurations.

6.5.3 Stability
In analogy with the single-boson star, the existence of a maximum mass is a hint of marginal sta-
bility. Ideally, the stability properties are studied via an analysis of how the system behaves under
small fluctuations. Unfortunately, a dynamical analysis formulti-scalar boson stars can become very
cumbersome due to the large number of equations to solve.

However, a stability criterion for solutions that depend on two parameters has been introduced
studying the stability of fermion-boson stars [323, 324]. At a critical point (a point that separates
stable from unstable configurations) there must be a direction n such that the directional derivatives
of {M,N1,N2} vanish, implying that at the stability boundary n is tangential to the level curves of
constantM , N1, andN2. The critical equilibrium configurations correspond to the extreme values
of the boson numbers N1 and N2 when surveyed along a level curve of constant total mass. In
Ref. [324] the authors validated the results by numerical evolutions, and they showed that only
the stars on one side of such a critical point are stable against perturbations. On the other side of
the critical point, the solutions are unstable and can, depending on the initial perturbation, either
evolve to a stable star or collapse to a black hole.

We have repeated the analysis for the two-boson stars under study. In Fig. 6.9 we consider the
particular caseM ≈ 0.485/µ1, in which the critical configuration is obtained when N1 ≈ 0.299

andN2 ≈ 0.101 forϕ1c ≈ 0.294, or equivalently, ϕ2c ≈ 0.279. Notice that, for positiveϕ1c (ϕ2c),
the boson numberN1 decreases, reaches a minimum and then increases. Since the mass is kept fixed
the boson numberN2 has a complementary behaviour.

Figure 6.9: The boson numbers N1 (blue solid line) and N2 (red dashed line) for the equilibrium configu-
rations as function of ϕ1c (Left Panel) and ϕ2c (Right Panel) when M ≈ 0.485/µ1. The position of the
extrema corresponds to the critical point which divides stable from unstable configurations.
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As an example, let us consider the points ϕ1c = 0.24 (black circles) and ϕ1c = 0.34 (black
squares) in Fig. 6.9, respectively on the left and the right of the critical point, and the subset with
relative amplitude ϕ2c/ϕ1c = 11/12. For such solutions, the maximum mass isMmax ≈ 0.491/µ1,
reached when ϕ1c (ϕ2c) is equal (up to numerical errors) to the value corresponding to the mini-
mum (maximum) ofN1 (N2). Hence, these two configurations are also on the left and on the right
of the maximum mass. Configurations with boson number N1 (N2) on the left of the minimum
(maximum) are stable configurations, while those on the right side are unstable.

Once we fix the central value of one field or their relative amplitude, the stability of the solutions
can also be studied by means of the binding-energy stability criterion discussed in Section 6.3.3.

We generalise the criterion to multi-scalar boson stars by defining the binding-energy and the
total boson number as,

Ebind =M −
∑
n

µnNn , Ntot =
∑
n

Nn . (6.43)

The binding-energy as a function of total boson number is shown in Fig. 6.10 for some relative
amplitudes of the central values and shows a lot of similarity with Fig. 6.3.

Figure 6.10: Bifurcation diagrams of the binding-energy versus the total boson number. Left Panel: The first
curve from left (red, solid) corresponds to two scalars with the same value at the origin;The second curve (blue,
dotted) corresponds to two scalars with relative amplitude at the origin of 1/2. Right Panel: Two bosons with
relative amplitude at the origin of 12/11; The black circle corresponds to ϕ1c = 0.24, while the black square
corresponds to ϕ1c = 0.34. Notice how the first point is on the stable part of the branch, while the second is
on the unstable, in agreement with the analysis of Fig. 6.9.

This cuspy diagram has interesting features. The cusp occurs at precisely (to within numerical
uncertainties) the location of the maximum mass. The line branching off at that point, with steeper
slope, corresponds to boson stars with a large value of the scalar at the origin, and eventually reaches
a positive binding-energy. The single-boson case shows that the cusp marks the onset of stability.
The binding energy diagram for the configurations studied in Fig. 6.9 are shown in the right panel
of figure 6.10; Both results are consistent. In summary, combining the two stability criteria, the
lower branch of each cusp (central values of the fields smaller than the critical value) corresponds to
stable boson star configurations while the upper branch (central values of the fields bigger than the
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critical value) corresponds to unstable configurations. There is therefore compelling evidence that
multi-scalar boson stars are also marginally stable at the point of maximum mass.



Chapter 7
•

Tidal Deformations and Love Numbers for
Exotic Compact Objects

The tidal Love numbers encode the deformability of a self-gravitating object immersed in
a tidal environment and depend significantly both on the object’s internal structure and the
dynamics of the gravitational field. In general relativity, all the Love numbers of black holes
are exactly zero. We extend this result aiming at testing the nature of compact objects: we com-
pute the tidal Love numbers of exotic compact objects within the framework of general rela-
tivity, including different families of boson stars, gravastars, wormholes, and other toy models
for quantum corrections at the horizon scale; in the black hole limit, we find a universal loga-
rithmic dependence of the tidal Love numbers on the location of the surface, making the tidal
Love numbers of these objects small, but not desperately small to measure. We assess the abil-
ity of present and future gravitational-wave detectors to measure the tidal Love numbers of
these objects, including the first analysis of tidal Love numbers with LISA. Both LIGO, the
Einstein Telescope and LISA can impose interesting constraints on boson stars, while LISA
is able to probe even extremely compact objects. The fact that these numbers are generically
non-zero provides a piece of evidence for new physics at the horizon scale. We argue that fu-
ture gravitational-wavemeasurements of the tidal Love numbers of compact objects in a binary
system provide a novel way to test black holes and general relativity in the strong-field regime.

Units: c = G = 1.
This chapter is based on: V. Cardoso, E.F., A. Maselli, P. Pani, and G. Raposo. ‘Testing

strong-field gravity with tidal Love numbers’. (2017). arXiv: 1701.01116.

7.1 Introduction
Tidal interactions have several implications in different branches of physics: from geophysics, in the
description of oceanic tides and seismic effects, to astrophysics, in the description of ordinary and
neutron stars up to galaxies. Tidal interactions are fundamental in the interpretation of tidal tails
and binary systems [325, 326] and they can give rise to extreme phenomena, e.g. tidal disruptions,
in strong regimes.

Tidal Love numbers measure the deformability of a self-gravitating object immersed in an exter-
nal tidal field [12, 327]. These tidal effects can leave a detectable imprint in the gravitational-wave
signal emitted by a neutron-star binary in the late stages of its orbital evolution [248, 328, 329].
So far, a relativistic extension [248–250] of the Newtonian theory of tidal deformability has been
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mostly motivated by the prospect of measuring the tidal Love numbers of neutron stars through
gravitational-wave detections and, in turn, understanding the behaviour of matter at ultra-nuclear
densities [330–336]. In this chapter, we use tidal effects to explore more fundamental questions
about the nature of compact objects and the behaviour of gravity in the strong-field regime.

The intriguing general relativistic result that the tidal Love numbers of black holes vanish poses a
problem of ‘naturalness’ [337, 338], analogous to the strong CP problem and the hierarchy problem
in particle physics, or to the cosmological constant problem. The resolution of this naturalness prob-
lem could lead to a huge piece of evidence for new physics, which is accessible in gravitational-wave
data.

In this chapter, we explore a possible solution to this problem. New physics effects could mani-
fest themselves as unexpectedly largequantumback-reactions or changes in the equationof state, and
as a consequence black holes might simply not be formed, and other objects might be the end prod-
uct of gravitational collapse. These exotic compact objects include boson stars, gravastars, worm-
holes, and various toymodels describing quantum corrections at the horizon scale, like superspinars,
fuzzballs [339], ‘2-2 holes’ [340] and others [341–346]. These objects might be formed from the
collapse of exotic fields or by quantum effects at the horizon scale, and represent the prototypical ex-
ample of exotic gravitational wave sources [322, 347, 348] which might be searched for with Earth-
or space-based detectors.

There exists another related solution to the naturalness problem. We do not delve into it here
and we refer to the paper upon which this chapter is based. The argument is as follows. General
relativity might not be a good description of the geometry close to horizons. Black holes other than
Kerr arise in theories beyond general relativity which are motivated by both theoretical arguments
and by alternative solutions to the dark matter and dark energy problems. Arguably, the simplest
hairy black holes arise inEinstein-Maxwell theory and are describedby theReissner-Nordström solu-
tion. Although astrophysical black holes are expected to be electrically neutral, Reissner-Nordström
black holes can be studied as a proxy of black holes beyond vacuum general relativity and could
also emerge naturally in models of minicharged dark matter and dark photons [349]. In several
scalar-tensor theories, black holes are uniquely described by the Kerr solution, as in general relativ-
ity [350]. However, these theories introduce a scalar degree of freedom (non-minimally) coupled
to gravity and the response of black holes to external perturbations is generically richer [351]. In
theories with several or with complex bosons, hairy black hole solutions might exist that can be seen
as boson stars with a black hole at the center [88, 352]. These solutions are natural endpoints of the
superradiant instability of the Kerr geometry, and may even describe metastable states when a single
real field is present [353, 354]. Finally, in higher-curvature theories of gravity, the Einstein-Hilbert
action is considered as the first term of a possibly infinite expansion containing all curvature invari-
ants. To leading order in the curvature corrections, stationary black holes in these theories belong
to only two families [355, 356], i.e. the Einstein-dilaton-Gauss-Bonnet solution [357–359] and the
dynamical Chern-Simons solution [360, 361].
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The observational determination of the tidal properties of compact objects will also help an-
swering the fundamental question about the existence of event horizon and their possible tests with
gravitational-wave data. In Chapter 8 we will show that ultracompact horizonless geometries can
mimic very well the last phases of the coalescence of two black holes, when they merge to form a
single distorted black hole, ringing down to its final Kerr geometry. In this scenario, horizonless
geometries would show up as echo in the gravitational waveforms at very late times [362]. The ex-
clusion of echoes up to some instant t after themerger rules out the structure of the spacetime down
to a region r/r+−1 ∼ exp(−t/r+), with r+ the Schwarzschild radius of the spacetime. Thus,more
sensible detectors will probe regions closer and closer to the horizon. The above picture refers to the
final, post-merger state. On the other hand, the inspiral signal may contain imprints of the struc-
ture of the inspiralling objects. This piece of information is encoded in the way each of these objects
reacts to the gravitational field created by the other, i.e. their tidal Love numbers. As we will show,
the tidal Love numbers of all exotic compact objects vanish in the black hole limit, logarithmically.
Thus, observational bounds on the tidal Love numbers will provide constraints on the compactness
of the inspiralling objects.

Using the perturbative formalism described in Chapter 5 and following the notation introduced
in Section 5.4, we compute the lowest quadrupolar andoctupolar polar and axial tidal Love numbers
for variousmodels of spherically symmetric and static exotic compact objects, under the assumption
that the only surviving tide at large distances is gravitational.

One of our main results is that the tidal Love numbers of several exotic compact objects display
a logarithmic dependence in the black hole limit, i.e. when the compactness of the object approaches
that of a black hole,

C :=M/r0 → 1/2 , (7.1)

whereM and r0 are themass and the radius of the object. As shown inTable 7.2, this property holds
for wormholes, thin-shell gravastars, and for a simple toy model of a static object with a perfectly
reflecting surface [341, 342]. It is natural to conjecture that this logarithmic behaviour is model-
independent andwill hold for any exotic compact object whose exterior spacetime is arbitrarily close
to that of a black hole in the r0 → 2M limit. Furthermore, this mild dependence implies that even
the tidal Love numbers of an object with r0 − 2M ≈ lP are not extremely small, contrarily to
what one could expect. Indeed, we estimate that the dimensionless tidal Love numbers defined in
Eq. (5.19) are

kE,B
2 ≈ O

(
10−3

)
, kE,B

3 ≈ O
(
10−4

)
, (7.2)

for an exotic compact object in the entire mass range M ∈ [1, 100]M⊙. Note that all tidal Love
numbers of ultracompact exotic objects listed in Table 7.2 have the opposite sign relative to the
neutron-star case.
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The accuracy with which gravitational-wave detectors can estimate the tidal Love numbers of
compact objects is shown in Fig. 7.6 for three boson star models, where the two inspiralling ob-
jects are assumed to be equal. In moderately optimistic scenarios, a gravitational-wave detection of
a compact-binary coalescence with LIGO can place an upper bound on the tidal Love numbers of
the two objects at the level of kE2 ∼ 10, whereas the future Einstein Telescope [363] can potentially
improve this constraint by a factor of ten. Interestingly, the future space interferometer LISA [364]
has the ability to set much tighter constraints (see also Fig. 7.4) and to rule out several candidates of
supermassive exotic compact objects. In essence, both Earth- and space-based detectors are able to
discriminate even the most compact boson stars, by imposing stringent bounds on their tidal Love
numbers. By contrast, as we show in Section 7.4, only LISA is able to probe the regime of very com-
pact exotic compact objects, describing geometries which are microscopic corrections at the horizon
scale, for which the compactnessC = 0.48 or higher.

7.2 Tidal Love Numbers of Boson Stars
In this section, we compute tidal Love numbers for representativemodels of boson stars—seeChap-
ter 6 and in particular Section 6.2. We consider spherically symmetricminimal, massive and solitonic
boson stars, with background metric and background scalar field given by (6.6), whose Einstein-
Klein-Gordon background equations are provided by Eqs. (6.7) to (6.9).

By using the procedure described in Section 6.3 for mini boson stars,mutat mutand , we can
compute a sequence of background solutions characterised by the value of the scalar at the centre
of the star, ϕc. Notice that, contrary to the minimal and massive case — in which the scalar profile
decays exponentially— in the solitonic model, the scalar profile has a very steep profile whichmakes
the numerical integration of the background equations very challenging, requiring very fine-tuned
shooting parameters. But the steepness of the scalar profile is also a benefit as it makes the definition
of the radius more natural.

In Fig. 7.1, we show the gravitational massM against its effective radius R (left panel) and the
compactnessC =M/R as a function of the mass (right panel).

For minimal and interacting boson stars, we observe a maximum which separates stable (on the
right) from unstable (on the left) configurations. On the other hand, solitonic boson stars display
a completely different behaviour: there exists a stable branch for high values ofR and small masses
(bottom-right part of the left panel in Fig. 7.1), an unstable branch that starts after the firstmaximum
roughly atRµ ∼ 50, and then a second stable branch which starts atRµ ∼ 10 up to the maximum
on the top-right part of the plot. As shown in the right panel of Fig. 7.1, for minimal and massive
boson stars the compactness is typically ofO (10−2). On the other hand, solitonic boson stars can be
almost as compact as black holes (i.e.C ≈ 1/2), meaning that their radius can be of the order of the
Schwarzschild light ring. Even though boson stars have a wide range of compactness, interactions
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Figure 7.1: Left panel: ADM mass as a function of the effective radius R for different models of boson stars,
including some unstable configurations. Right panel: Compactness of the models in the stable branch as a
function of the mass. For the massive and solitonic model we have considered three cases: α = 104 µ2 and
σ0 = 0.05 respectively.

between boson stars typically lead to a net weight gain, clustering old boson stars close to the mass
peak [299], which also coincides with the peak of compactness.

The details of the numerical procedure to find the tidal Love numbers à la Hinderer [248] are
given in Sections 7.2.1 and 7.2.2. The tidal Love numbers are shown in Fig. 7.2 as a function of
the total massM , for different boson star models. We only show static configurations in the stable
branch, i.e. with a mass smaller thanMmax. For minimal boson stars and the ℓ = 2 polar tidal Love
number, our results agree with those recently obtained in Ref. [365]. In addition, we also present
the results for ℓ = 2 and ℓ = 3, for both axial and polar tidal Love numbers, and for the three boson
star models previously discussed.

The behaviour of the tidal Love numbers of boson stars is in qualitative agreement with that
of neutron stars. For a given boson star model with a given mass, the magnitude of the polar tidal
Love number is larger than that of an axial tidal Love number with the same ℓ. Furthermore, in the
Newtonian regime (M → 0) the tidal Love numbers scale as kEℓ ∼ 1/C2ℓ+1, kBℓ ∼ −1/C2ℓ, in
agreement with the neutron star case.

7.2.1 Polar Perturbations

The metric perturbation is given by Eq. (5.9) withH1 = 0, and we write the scalar perturbation as

δΦ =
1√
8π

e−iωtϕ1(r)Pℓ(cosϑ) . (7.3)

The linearized Einstein-Klein-Gordon equations implyH0 = H2 ≡ H , whileK can be writ-
ten as a function of H , ϕ1 and the background functions. We are then left with a radial equation
for the perturbation function H , coupled to the perturbed Klein-Gordon equation for the scalar
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Figure 7.2: Polar (toppanels) and axial (bottompanels) tidal Love numbers forminimal,massive and solitonic
boson stars. For themassive and solitonicmodelwe have consideredα = 104 µ2 andσ0 = 0.05, respectively.
With these values, the maximum mass scales approximately as shown in Table 6.1. Left and right panels refers
to ℓ = 2 and ℓ = 3, respectively. The numerical data are available online. These plots include only stars in the
stable branch.

Neutron star Boson star

kE2 210 41

kB2 11 −14

kE3 1300 403

kB3 70 −212

Table 7.1: Tidal Love numbers of neutron and boson stars. We provide the lowest value for the polar Love
numbers found in our exploration of solitonic boson stars, and correspond to Mµ ≈ 3.12553 (i.e. to a
compactness C ≈ 0.18). In the axial case, the lowest number corresponds to a massive boson star with
Mµ ≈ 3.1235 (i.e. C ≈ 0.16) and α = 104 µ2. As a comparison, we also provide the order of magnitude
of the tidal Love numbers for static neutron stars with compactness C ≈ 0.2 (the precise number depends
on the neutron-star equation of state).

perturbation ϕ1,

H ′′ +

(
2

r
− rω2ϕ2

0 eΛ−Γ + Γ′ − rϕ′2
0

)
H ′ + 4

[
ϕ′′
0 −

(
Λ′ + Γ′

2
− 2

r

)
ϕ′
0 − ω2ϕ0 eΛ−Γ

]
ϕ1

+

[
Γ′2 − 2Γ′

r
− 6ω2ϕ2

0 eΛ−Γ + 2ϕ′2
0 +

eΛ(ℓ2 + ℓ+ 2)− 2
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]
H = 0 , (7.4)

ϕ′′
1 +

(
2

r
− rω2ϕ2

0 eΛ−Γ + Γ′ − rϕ′2
0

)
ϕ′
1 +

[
ϕ′′
0 −

(
Λ′ + Γ′

2
− 2

r

)
ϕ′
0 − ω2ϕ0 eΛ−Γ

]
H

−
[
ϕ′′
0

ϕ0

+

(
Γ′ − Λ′

2
+

2

r

)
ϕ′
0

ϕ0

+ 4ϕ′2
0 +

ℓ(ℓ+ 1)eΛ
r2

]
ϕ1 −

dδV
d|ϕ2|

eΛϕ0 = 0 . (7.5)

http://blackholes.ist.utl.pt/?page=Files
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We now solve the perturbation system supplied by regular boundary conditions at the origin,1

H ≈ H(ℓ)rℓ + O
(
rℓ+2

)
, ϕ1 ≈ ϕ

(ℓ)
1 rℓ + O

(
rℓ+2

)
. (7.6)

Since the system (7.4) and (7.5) is linear, the value ofH(ℓ) can be set to 1, and the correct value can
be recovered a posteriori. The value of ϕ(ℓ)

1 is determined using a shooting method by requiring that
ϕ1 → 0 as r → ∞.

At distances greater than the boson star effective radius, Eq. (7.4) reduces to

H ′′ +
2(r −M)

r(r − 2M)
H ′ − 4M2 − 2ℓ(ℓ+ 1)Mr + l(ℓ+ 1)r2

r2(r − 2M)2
H = 0 , (7.7)

which has a general solution in terms of the associate Legendre functions P 2
ℓ and Q2

ℓ . Using their
asymptotic behaviour and comparing with (5.22) we find (for ℓ = 2 and ℓ = 3)

kE2 =
8

5

(
(1− 2C)2[2C(y − 1)− y + 2]

)(
2C
[
4C4(y + 1) + 2C3(3y − 3) + 2C2(13− 11y)

+ 3C(5y − 8)− 3(y − 2)] + 3(1− 2C)2[2C(y − 1)− y + 2] log (1− 2C)
)−1

, (7.8)

kE3 =
6

7

(
(1− 2C)2

[
2C2(y − 1)− 3C(y − 2) + y − 3

]) (
2C
[
4C5(y + 1)

+ 2C4(9y − 2)− 20C3(7y − 9) + 5C2(37y − 72)− 45C(2y − 5) + 15(y − 3)
]

+ 15(1− 2C)2
(
2C2(y − 1)− 3C(y − 2) + y − 3

)
log(1− 2C)

)−1

. (7.9)

where C = M/Rext and y = rH ′/H evaluated at Rext. The values of kEℓ are independent of the
extraction radiusRext if the latter is sufficiently large.

7.2.2 Axial Perturbations
In this case, the metric perturbation is given by Eq. (5.6), while the scalar perturbation is still (7.3).
The perturbed Einstein-Klein-Gordon equations imply h1 = ϕ1 = 0, and we are left with a single
radial equation for the perturbed function h0,

h′′0 −
Λ′ + Γ′

2
h′0 +

r(Λ′ + Γ′)− (ℓ2 + ℓ− 2)eΛ − 2

r2
h0 = 0 , (7.10)

that we solve along with regular boundary conditions at the origin,

h0 ≈ h
(ℓ+1)
0 rℓ+1 + O

(
rℓ+3

)
. (7.11)

Notice that the value ofh(ℓ+1)
0 is not given but it can be fixed arbitrarily to 1 and corrected a posteriori

once the intensity of the tidal field is known.
1. As usual, to increase the accuracy of the numerical integration, we consider a higher-order expansion near the origin

which reduce to Eq. (7.6) at first order.
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Outside the star, Eq. (7.10) reduces to the simple diffential equation

h′′0 +
4M − ℓ(ℓ+ 1)r

r2(r − 2M)
h0 = 0 , (7.12)

whose general solution can be written in terms of the hypergeometric functions. By matching its
asymptotic behaviour to (5.23), we find (for ℓ = 2 and ℓ = 3)

kB2 =
8

5

(
2C(y − 2)− y + 3

)(
2C
[
2C3(y + 1) + 2C2y + 3C(y − 1)− 3y + 9

]
+ 3[2C(y − 2)− y + 3] log(1− 2C)

)−1

, (7.13)

kB3 =
8

7

(
8C2(y − 2)− 10C(y − 3) + 3(y − 4)

)(
2C
[
4C4(y + 1) + 10C3y

+ 30C2(y − 1)− 15C(7y − 18) + 45(y − 4)
]

+ 15
[
8C2(y − 2)− 10C(y − 3) + 3(y − 4)

]
log(1− 2C)

)−1

, (7.14)

where againC =M/Rext but now y = rh′0/h0 evaluated atRext. Even in this case, the values of kBℓ
are independent of the extraction radiusRext if the latter is sufficiently large.

7.3 Models of Microscopic Corrections at the Horizon Scale
Several phenomenological models of quantum black holes introduce a Planck-scale modification
near the horizon. In this section, we consider three toy models for microscopic corrections at the
horizon scale, namely a wormhole, a Schwarzschild geometry with a perfectly reflective surface near
the horizon [341, 342], and a thin-shell gravastar. The exterior spacetime of thesemodels is described
by the Schwarzschildmetric, and the perturbation formalism is identical to the one developed in Sec-
tion 5.2. On the other hand, the interior is either vacuum or de Sitter and the junction/boundary
conditions at the radius r0 are model dependent. As a result of these properties, the tidal Love num-
bers of thesemodels can be computed in closed analytical form. The qualitative features are the same
and, especially in the black hole limit, do not depend strongly on the details of the models. In Ta-
ble 7.2 we present explicit formulas for the black hole limit, while (cumbersome) expressions for
generic compactness are provided online. The details of the computation are given in Sections 7.3.2
and 7.3.3.

Wormholes. We consider a traversable wormhole built with two copies of the Schwarzschild space-
time, as described in Section 5.5.2. In Fig. 7.3a, we show the wormhole Love numbers as
functions of ξ andwe notice that they have the opposite sign to those of a neutron star. In the
Newtonian limit they behave as kE,B

ℓ ∼ −1/C2ℓ+1. Interestingly, the scaling for polar Love
numbers agrees with that of neutron stars, but that for the axial Love numbers is different.

http://blackholes.ist.utl.pt/?page=Files
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Perfect Mirror. Thermodynamical arguments suggest that any horizonless microscopic model of
black holes should act as a mirror, at least for long wavelength perturbations. Motivated by
this scenario, we consider a Schwarzschild geometry with a perfect mirror at r = r0 > 2M

and impose Dirichlet boundary conditions on the Regge-Wheeler and Zerilli functions, for
the axial and polar sectors, respectively. Thus, our strategy is to consider the stationary limit of
generically dynamical perturbations (in the Fourier space, whereω is the frequency of the per-
turbation) of a Schwarzschild geometry. The tidal Love numbers for this model as functions
of ξ are shown in Fig. 7.3b. Close to the black hole limit, the polar and axial Love numbers for
the same multipolar order are almost identical and the respective curves overlap as we can see
in the inset. Also for this model, all tidal Love numbers are negative and kE,B

ℓ ∼ −1/C2ℓ+1

in the Newtonian limit.

Gravastars. For thin-shell gravastars, like those introduced in Section 5.5.3, tidal Love numbers can
be computed analytically [345, 346]. We consider a gravastar whose thin shell is described by
a fluid with zero energy density and negative pressure. The Newtonian regime of a gravastar
is peculiar due to the de Sitter interior and its tidal Love numbers scale as kE,B

ℓ ∼ −1/C2ℓ.
This scaling of the polar tidal Love numbers is different from that of an ordinary neutron star
and the other models of microscopic corrections at the horizon scale, whereas the scaling of
the axial tidal Love numbers is the same as that for wormholes and a perfect mirror model.
The behaviour of the tidal Love numbers as functions of ξ is shown in Fig. 7.3c. Also in this
case, the polar and axial Love numbers are negative. Similar to the perfectly reflective mirror
case, close to the black hole limit, the polar and axial Love numbers for the same multipolar
order are almost identical and the respective curves overlap as we can see in the inset.
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(a) Wormhole
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(b) Perfect Mirror
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(c) Gravastar

Figure 7.3: The ℓ = 2, 3 polar and axial tidal Love numbers for (a) a wormhole constructed by patching
two Schwarzschild spacetimes at the throat radius r0 > 2M ; (b) a toy model of Schwarzschild metric with
a perfectly reflective surface at r0 > 2M ; (c) a thin-shell gravastar with zero energy density. The tidal Love
numbers are negative and all vanish in the black hole limit, ξ := r0/(2M)− 1 → 0.
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7.3.1 On the Universal Black Hole Limit

It is remarkable that the models described above display a very similar behaviour in the black hole
limit, as summarised in Table 7.2. Indeed, although all tidal Love numbers vanish in this limit, they
have a logarithmic dependence.

Wormhole Perfect Mirror Gravastar

kE2
4

5(8+3 log ξ)
8

5(7+3 log ξ)
16

5(23−6 log 2+9 log ξ)

−3× 10−3 −6× 10−3 −4× 10−3

kB2
16

5(31+12 log ξ)
32

5(25+12 log ξ)
32

5(43−12 log 2+18 log ξ)

−6× 10−3 −6× 10−3 −4× 10−3

kE3
8

105(7+2 log ξ)
8

35(10+3 log ξ)
16

35(31−6 log 2+9 log ξ)

−4× 10−4 −9× 10−4 −6× 10−4

kB3
16

7(209+60 log ξ)
32

7(197+60 log ξ)
32

7(307−60 log 2+90 log ξ)

−9× 10−4 −9× 10−4 −6× 10−4

Table 7.2: Tidal Love numbers of some exotic compact objects. We provide expressions for very compact
configurations where the surface r0 sits at r0 ∼ 2M and is parametrized by ξ := r0/(2M) − 1 (modulo
subleading terms ofO

(
ξ/(log ξ)2

)
), and its numerical value when r0 − 2M ∼ lP ≈ 1.6× 10−33 cm. This

value is roughly valid in the entire mass rangeM ∈ [1, 100]M⊙ due to themild logarithmic dependence. All
Love numbers vanish in the black hole limit, ξ → 0.

Due to thismild dependence, the tidal Love numbers are not extremely small, as onewould have
naively expected if the scaling with ξ were polynomial. Indeed, in the Planckian case (r0 − 2M ∼
lP ≈ 1.6× 10−33 cm) the order of magnitude of the tidal Love numbers is the same for all models,
and it is only five orders of magnitude smaller than those a typical neutron star. This logarithmic
dependence implies that the deviations from zero are relatively large even when the throat is located
just a Planck length away from the would-be horizon.

On the light of our results, it is natural to conjecture that this logarithmic dependence is a generic
feature of ultracompact exotic objects, and will hold true for any exotic compact object whose ex-
terior spacetime is arbitrarily close to that of a black hole in the r0 → 2M limit. These putative
deviations from the ‘zero-Love’ rule of black holes in general relativity might be within reach future
detections.
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7.3.2 Polar Perturbations
In the exterior spacetime, Einstein’s equations for static polar-type perturbations of the Schwarz-
schild metric reduce to Eq. (7.7), whose general solution for any ℓ is

Hext = C1 P
2
ℓ (r/M − 1) + C2Q

2
ℓ(r/M − 1) , (7.15)

where C1 and C2 are two integration constants. The term proportional to C1 diverges at large dis-
tances and is identified with the external tidal field, whereas the term proportional toC2 is the body
response. The other metric functionK is

K =

(
1 +

4M(r −M)

(ℓ2 + ℓ− 2) r(r − 2M)

)
H − 2M

ℓ2 + ℓ− 2
H ′ . (7.16)

The interior spacetime depends on the model under consideration. In the wormhole model,
we consider that the other universe is an exact copy of exterior metric, so that polar perturbations
are described by Eq. (7.15) with two independent constants, C3 and C4. On the ‘other side’ of the
wormhole, we require that there are no tidal fields, i.e.C3 = 0.

In the perfectmirrormodel, perturbations do not penetrate the surface and the interior solution
is irrelevant.

In the gravastar model the interior solution for any ℓwhich is regular at the origin reads

H int ∼ rℓ

3− Λr2
2F1

(
ℓ− 1

2
,
ℓ

2
; ℓ+

3

2
;
2Cr2

r20

)
. (7.17)

In the wormhole and the gravastar cases, the interior and the exterior solutions are described by
three independent constants, whereas the perfect mirror model is described by two constants. Since
the problem is linear, an overall amplitude is irrelevant soweneed to impose two junction conditions
at r = r0 in the wormhole and gravastar cases, and one boundary condition at r = r0 in the perfect
mirror case.

In the former cases, we can impose the Darmois-Israel junction conditions [366], which relate
the discontinuity of the extrinsic curvature across the radiuswith the properties of a thin shell ofmat-
ter located at r = r0. By adapting the formalism developed in Ref. [347], we find that [[K]] = 0

and [[dK/dr∗]] = −8π
√
1− 2M/r0 δΣ, where δΣ is the perturbation of the surface energy den-

sity of the thin shell. The symbol ‘[[ · ]]’ denotes the ‘jump’ of a given quantity across the spherical
shell, i.e. [[A]] ≡ limϵ→0A(r → r0 + ϵ)− A(r → r0 − ϵ). For simplicity, we assume that the
thin-shell matter is stiff, so that δΣ ∼ 0. Therefore, in the polar sector we impose [[K]] = 0 and
[[dK/dr∗]] = 0. These two conditions completely specify the matching between the interior and
the exterior solution in the wormhole and gravastar cases.

In the perfectmirror case, wewill impose aZ2 symmetry on the surface and, therefore, thewave-
function vanishes at r = r0. In the static limit, one can solve analitically the Zerilli equation and
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then reconstruct the metric functionH0 thorugh

H =
λr2 − 3M2 − 3λMr

r(3M + λr)
ψ′

Z +
9M3 + 9λM2r + 3λ2Mr2 + λ2(λ+ 1)r3

r2(3M + λr)2
ψZ , (7.18)

where λ = (ℓ − 1)(ℓ + 2)/2. By imposing the Dirichlet boundary condition ψZ = 0, the ratio
C1/C2 in Eq. (7.15) is completely specified.

Finally, once the perturbation equations are completely specified (modulo an overall amplitude)
through the junction/boundary conditions, it is straightforward to compare the analytical expres-
sion forH0 at large distance with Eq. (5.22), extract the multipole moments and the tidal field am-
plitudes, and finally compute the polar tidal Love numbers by using Eq. (5.19).

7.3.3 Axial Perturbations

In the exterior spacetime, Einstein’s equations for static axial perturbations of the Schwarzschild
metric reduce to Eq. (7.12), whose general solution for any ℓ is

hext
0 = C1 r

2
2F1

(
1− ℓ, ℓ+ 2; 4;

r

2M

)
+ C2G

2,0
2,2

 r

2M

∣∣∣∣∣∣ 1− ℓ, ℓ+ 2

−1, 2

 , (7.19)

where G2,0
2,2 is the Meijer function and 2F1 is one of the hypergeometric functions. The terms pro-

portional toC1 andC2 are identifiedwith the external tidal field andwith the body response, respec-
tively. The above solution reduces to simply expressions for integer values of ℓ, which can be written
in terms of polynomial and logarithmic functions.

Also in the axial case, the interior spacetime is model dependent. In the wormhole case we con-
sider the same solution as in Eq. (7.19) but with zero tidal field, namelyC1 = 0.

In the gravastar case, the interior solution which is regular for any ℓ near the origin reads

hint
0 ∼ rℓ+1

2F1

(
ℓ− 1

2
,
ℓ+ 2

2
; ℓ+

3

2
;
2Cr2

r20

)
. (7.20)

As in the polar case, the interior solution of the perfectmirrormodel is irrelevant to the purposes
of computing the tidal Love numbers.

The junction conditions for axial perturbations are easier because they do not couple to themat-
ter of a putative thin shell. Therefore, regularity of the axial perturbations across the shell imposes
that h0 and its derivative with respect to r∗ be smooth. Thus, for the wormhole and gravastar cases
in the axial sector we impose [[h0]] = 0 and [[dh0/dr∗]] = 0.
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For the perfect mirror model, we impose a Dirichlet condition on the Regge-Wheeler function
evaluated at r = r0. This function is defined through2

h0 =
d(rψRW)

dr∗
, h1 =

−iωr
1− 2M/r

ψRW , (7.21)

and satisfies the Regge-Wheeler equation (5.7) which can be solved analytically in the static limit.
Again, the ratio of the two integration constants in Eq. (7.19) is fixed by imposing ψRW = 0.

After that the perturbations are fully specified through the junction/boundary conditions, the
axial tidal Love numbers can be computed by comparing the large-distance behaviour of h0 with
Eq. (5.23), extracting the multipole moments, and finally using the definition (5.19).

7.4 Detectability
To estimate the detectability of the tidal Love numbers through gravitational wave observations, we
use a Fisher matrix approach, given parametrized models of the waveforms, and assuming detector
noise of known distribution [367].

The tidal Love numbers enter the phase of the gravitational-wave signal as a fifth-order post-
Newtonian (5pn) correction. The contribution due to tidal effects ψT adds linearly to the point-
particle contribution ψPP,

h̃(f) = A(f) exp [i (ψPP + ψT)] , (7.22)

and it depends on the polar ℓ = 2 tidal Love numbers through the constant [248, 328]

λ :=
2

3
M5kE2 . (7.23)

The contribution of higher multipole and axial Love numbers is subleading.
In our analysis, we will use the so-called TaylorF2 approximant of the gravitational-wave tem-

plate in the frequency domain [368], which is 3.5pn accurate in the point-particle phase and 2pn
accurate in the tidal term [333, 369].

For binary systems for which λi=1,2 ̸= 0, finite-size effects are described in terms of the average
deformability,

Λ =
1

26

[
(1 + 12q)λ1 +

q + 12

q
λ2

]
, (7.24)

where q := m1/m2 ⩾ 1 is the mass ratio. For non-spinning objects, the waveform depends
on 6 parameters i.e. the amplitude A, the phase ϕc and time tc at the coalescence, the chirp mass

2. Note that our definition differs from the standard one by a factor ω, which has been included so that h1 → 0 in
the static limit, whereas h0 remains finite, as expected.
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M = ν3/5(m1 + m2), the symmetric mass ratio ν = m1m2/(m1 +m2)
2 and the average tidal

deformability Λ defined in Eq. (7.24). Nonetheless, the amplitude is completely uncorrelated with
the other variables, and therefore we will restrict our analysis by performing derivatives only with
respect to the remaining parameters, leading to a 5× 5 Fisher matrix.

The detector properties are encoded in the noise spectral densitySh(f). We perform the analysis
both for terrestrial and space interferometers. For theEarth-baseddetectors,we consider (i)AdLIGO
with its anticipated design sensitivity curve ZERO_DET_high_P [370] and (ii) the Einstein telescope
(ET) design configuration, with noise described by the analytic fit provided in Ref. [371]. As space-
baseddetector, we consider themost optimistic LISAconfiguration, namely theN2A5model defined
in Ref. [372], with a 5× 106 km arm-length and an observing time of Tobs = 5 yr.

To compute the errors on the tidal deformability, we numerically integrate the Fisher informa-
tion matrix within the frequency range [fmin, fmax], where fAdLIGO

min = 20Hz, fET
min = 1Hz, and

fLISA
min = max[10−5, 4.149 × 10−5(10−6M)−5/8T

−3/8
obs ]Hz [373]. For the upper frequency we

choose fAdLIGO
max = (63/2mπ)−1, while for LISA fLISA

max = min[1Hz, (63/2mπ)−1], being m =

m1 +m2 the total mass of the system.

7.4.1 Model-Independent Tests with Gravitational Waves
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Figure 7.4: Relative percentage errors on the average tidal deformabilityΛ for equal-mass binaries at 100Mpc
(for AdLIGOand ET, left andmiddle panel, respectively) and at 500Mpc (for LISA, right panel) as functions
of the mass of the single object and for different values of the tidal Love number kE2 (top panels) and of Λ
(bottom panels) of the two objects. The horizontal dashed line identifies the upper bound σΛ/Λ = 1.

Before discussing the detectability for different families of exotic compact objects, it is instructive
to analyze the impact of the tidal Love numbers on the gravitational wave signal in a more general
framework. Figure 7.4 shows the relative uncertainty σΛ/Λ for equal-mass binaries at d = 100Mpc
(for AdLIGO and ET) and at d = 500Mpc (for LISA), as a function of the mass of the objects and
for different values of the tidal Love numbers kE2 (top panels) and of the average tidal deformability
Λ (bottom panels). In the panels of Fig. 7.4, the dashed horizontal line denotes the upper bound
σΛ = Λ. Therefore, each point above that line is indistinguishable from a black hole-black hole
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binary in general relativity (Λ = kE2 = 0) within the errors, whereas a measurement of the tidal
Love numbers for systems which lie below the threshold line would be incompatible to zero and,
therefore, the exotic compact objects can be distinguished from black holes in this case.

It is worth remarking that — motivated by the prospect of measuring the tidal Love numbers
of neutron stars through gravitational wave detections — several efforts have been devoted to in-
vestigate the detectability of Λ for objects withM ≲ 2M⊙. The latter represents the mass range in
which terrestrial interferometers will provide new information on matter at supranuclear densities
from neutron-star binaries. On the other hand, our results shown in Fig. 7.4 do not assume any
specific model and extend the analysis of the detectability of the tidal Love numbers to a regime un-
explored so far, where more massive exotic compact objects can contribute to the gravitational wave
signal through finite-size effects. Likewise, to the best of our knowledge, this work presents the first
analysis on the detectability of tidal effects with LISA.

From the bottompanels of Fig. 7.4wenote that, for a fixedΛ, the detectability is favored for low-
mass systems, as the tidal phase scales with the inverse of the total mass ψT ∝ Λm−10/3(1 + q)2/q.
Moreover, for 2M⊙ ≲ M ≲ 5M⊙, AdLIGO will constrain the tidal Love numbers for small
compactness only (i.e. for large Λ). This picture improves for ET, which leads to an upper bound
σΛ/Λ = 1 up to M ≃ 15M⊙. Therefore, as far as terrestrial interferometers are considered, the
high-compactness regime for exotic compact objects seems to be available only for the third genera-
tion of detectors. This result is also evident from the toppanels of the left andmiddle plots in Fig. 7.4,
which show that AdLIGOwill not be able to set any significant constraint below kE2 ≃ 100, regard-
less the exotic compact object mass.

On the other hand, space interferometers open a completely new window onto finite-size ef-
fects. The top-right panel of Fig. 7.4 shows that LISA is capable to bound the Love numbers with a
relative accuracyσΛ/Λ ≲ 10% in almost the entiremass rangeM ∈ [104, 106]M⊙. In otherwords,
binary systems made of intermediate-mass compact objects will provide interesting constraints on
the tidal Love numbers, with kE2 ≃ 10 and above, and therefore also on the nature of these ob-
jects. The exquisite precision of LISA can be traced back on the dependence of the tidal deformabil-
ity (which is the physical parameter entering the waveform) on the exotic compact object mass, i.e.
Λ ∝ M5, which amplifies the tidal effect on the gravitational wave signal. This is confirmed by the
right-bottom panel of Fig. 7.4, where the upper bound on Λ = 1024 km5 forM = 5 × 104M⊙

corresponds to kE2 ∼ 0.7.

7.4.2 Detectability of Exotic Compact Objects

We discuss the detectability of the exotic compact objects investigated in the previous sections. As
a general setup, we consider equal-mass binaries at distances d = 100Mpc withM ∈ [2, 30]M⊙

for AdLIGO/ET, and at d = 500Mpc withM ∈ [104, 106]M⊙ for LISA. The gravitational wave
signal is proportional to 1/d, and therefore the error onΛ scales linearly with the distance.
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Figure 7.5: Relative percentage errors on the tidal deformability for binaries observed by AdLIGO (left pan-
els), ET (middle panels), andLISA (right panels), as functions of the exotic compact objectmass and for differ-
ent values of the compactness. For terrestrial interferometers we consider prototype binaries at d = 100Mpc,
while forLISAwe set the source atd = 500Mpc. Top,middle andbottompanels refer towormholes, perfect-
mirror models, and gravastars, respectively.

In Fig. 7.5we show the percentage relative errorsσΛ/Λ formodels ofwormholes, perfectmirrors
and gravastars, as a function of the mass of the object and for different values of its compactness.
Some qualitative results are independent of the nature of the exotic compact object: the left panels
confirm that AdLIGOwould be able to constrain the tidal deformability only for small values of the
compactness, namely C ≲ 0.2. As the errors scale with the distance, an upper bound σΛ/Λ ∼ 1

forC = 0.3, would require a source located at a distance∼ 10Mpc.
Furthermore, the relative errors decrease for larger masses, reach a minimum, and then increase

again. This behavior can be explained by looking at the functional form of Eq. (7.23). For a fixed
compactness (i.e. for fixed kE2 ), the average tidal deformability grows with the exotic compact object
mass, thus making the tidal part of the gravitational waveform easier to be detected. However, since
the template is truncated at the last stable orbit, fmax ∼ m−1, increasing the mass also reduces the
number of effective cycles spent into the detector’s bandwidth. This is particular penalizing for tidal
effects, which enter the gravitational wave signal as high-pn/high-frequency corrections.
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It is worth noticing that a network of advanced interferometers would improve these results,
even though it will not drastically change the upper bound on the compactness of these objects.
Indeed, if we consider that the experiments are all independent, the Fisher matrices computed for
each detector simply sum up, and the overall error on Λ is given by the inverse of the total Γab.
Assuming five detectors with the same sensitivity of AdLIGO, the relative error σΛ would decrease
roughly by a factor

√
5 which, from our results in Fig. 7.5, is still not enough to constrain objects

much more compact thanC ∼ 0.2.
Third-generation ground-based detectors, like ET (middle panels of Fig. 7.5), holdmore promis-

ing results. In this case, the relative errors σΛ/Λ decrease roughly by one order of magnitude relative
to AdLIGO. A gravitational wave detection of an exotic compact object binary at d = 100Mpc
would allow to distinguish the system from a black hole-black hole binary (by the sole detection of
the tidal Love numbers) up to compactnessC ∼ 0.3.

This scenario improves drastically for space-baseddetectors such asLISA (rightpanels of Fig. 7.5).
Within the considered mass range, tidal effects may be measured for exotic compact objects with
C ≲ 0.3 up to 1% of accuracy. Moreover, LISA will be able to put strong constraints even for more
compact objects: forM ≳ 105M⊙ it would be possible to set an upper bound σΛ/Λ = 1 in the
entire parameter space. As discussed in the previous section, these results rely on the magnitude of
the exotic compact object mass, which strengthens the effect of tidal interactions in the waveform.
The right panels of Fig. 7.5 show indeed that for all the considered exotic compact object models,
LISA leads the analysis to nearly explore the black hole limitC → 1/2.

It is worth remarking that, as finite-size effects develop during the late inspiral, eventually leading
to complex phenomena like the excitations ofmodes [245], amore accurate template which extends
the frequency domain of the waveform up to the merger phase, would improve this analysis.

7.4.3 Detectability of Boson Stars
For each model of boson stars, we focus on the most compact configuration in the stable branch.
In Fig. 7.6, we show the results of the Fisher matrix analysis for an equal-mass boson star-boson
star binary as a function of the boson star mass, obtained by considering the most compact con-
figuration and by varying the parameters of the potential. Since, for each model, we consider the
maximum compactness allowed in the non-spinning case, our results can be seen as conservative,
since less compact configurations are easier to discriminate.

The forecast for detecting boson star-boson star binaries by using gravitational wave tidal effects
are more promising than for other exotic compact objects, because the compactness of boson stars
is at most C ≲ 0.3 and, in turn, their tidal Love numbers are larger. AdLIGO will be able to
discriminate betweenminimal boson stars and black holes in all themass range. These errors worsen
for massive objects. However, for all the models analyzed, second-generation detectors will set a
strong upper bound on the tidal deformability, unless solitonic boson star are considered. Results



110 7.5 Summary and Conclusions

△

△ △ △ △ △ △
△
△
△
△
△
△

×

×
× × × × × × × ×

×
×
×

□

□ □ □ □ □ □ □
□
□
□
□
□△ �������

× �������

□ ���������

10 20 30 40 50

5

10

50

100

500

1000

M [M⊙]

|σ
Λ
/Λ

|[
%
]

������

△

△
△ △ △ △ △ △ △ △ △ △ △

×

×
× × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □

10 20 30 40 50

0.1

0.5

1

5

10

M [M⊙]

|σ
Λ
/Λ

|[
%
]

��

△

△

△

△
△

×

×

×

× ×

□

□

□
□

□

1 5 10 50 100

0.01

0.10

1

10

M [104 × M⊙]

|σ
Λ
/Λ

|[
%
]

����

Figure 7.6: Relative percentage errors on the average tidal deformability Λ for boson star-boson star binaries
observed by AdLIGO (left panel), the Einstein Telescope (ET) (middle panel), and LISA (right panel), as
a function of the boson star mass and for different boson star models considered in this chapter. For each
model we considered the most compact configuration in the stable branch. For terrestrial interferometers we
assume a prototype binary at d = 100Mpc, while for LISA the source is located at d = 500Mpc. The
horizontal dashed line identifies the upper bound σΛ/Λ = 1. Roughly speaking, a measurement of the tidal
Love numbers for systems which lie below the threshold line would be incompatible with zero and, therefore,
the corresponding boson stars can be distinguished from black holes. Here Λ is given by Eq. (7.24), the two
inspiralling objects have the same mass, and σΛ/Λ ∼ σkE2

/kE2 .

in Fig. 7.6 suggest that models of minimal and massive boson stars can be distinguished from black
holes through AdLIGO detections, whereas discriminating between black holes and more compact
boson stars such as solitonic models will require future detectors like ET. Again, the uncertainties
significantly decrease with LISA, especially in the high-mass regime, where relative errors are below
1% for every binary configuration withM ≳ 5× 104M⊙.

7.5 Summary and Conclusions
In this chapter we have used the theory of tidal deformations to explore fundamental questions
about the nature of event horizons, the existence of exotic compact objects and the behaviour of
gravity in the strong-field regime.

In particular, we have shown thatwithin the framework of general relativity, the tidal Love num-
bers of exotic compact objects are generically non-zero. Some exotic compact objects can be as com-
pact as a black hole, and in this limit, all tidal Love numbers vanish logarithmically. This result holds
for all models of exotic compact object we have considered. It is therefore natural to conjecture that
this logarithmic dependence is a generic feature of ultra-compact exotic objects.

We have explored the detectability of these tidal effects in some details, both for ground- and
for space-based detectors. Ground-based detectors such as AdLIGO and ET can constrain exotic
compact object models with compactnessC ≲ 0.2 andC ≲ 0.3, respectively, whereas a LISA-like
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mission can constrain supermassive exotic compact objects up toC ≲ 0.49. Interestingly, AdLIGO
can set stringent constraints on various boson star models, and both ET and LISA will be able to
discriminate a boson star binary from a black hole binary just by measuring the tidal Love numbers
of the binary components.

The prospects for testing deviations from general relativity are less promising. Results not in-
cluded in this chapter indicate that the tidal Love numbers of Reissner-Nordström and uncharged
static Brans-Dicke black holes vanish, as in general relativity. However, the tidal Love numbers of
black holes are non-zero in other interesting extensions. In particular, the axial tidal Love numbers of
a Schwarzschild black hole in Chern-Simons gravity and the tidal Love numbers of static black holes
in Einstein-dilaton-Gauss-Bonnet gravity. While the tidal Love numbers of black holes beyond gen-
eral relativity are different from zero, their effect in the gravitational wave signal is small and typically
subleading relative to other, point-particle, beyond general relativity effects such as dipolar emission.
Nevertheless, the non-vanishing of the black hole tidal Love numbers remains a piece of evidence of
deviations from general relativity and its phenomenological implications are under investigation.





Chapter 8
•

The Ringdown of a Black Hole Mimicker

We investigate the gravitational radiation of a particle falling into a black hole mimicker, in
particular a traversable wormhole. We show that if the mimicker is compact enough, the ini-
tial ringdown signal is almost indistinguishable from that of a black hole with the same mass.
This result suggests that the initial ringdown signal is not the conclusive proof for event hori-
zons. Each very compact object will display a similar ringdown followed by the proper modes
of vibration of the object itself, i.e. its quasi-normal modes.

Units: c = G = 1.
This chapter is based on: V. Cardoso, E.F., and P. Pani. ‘Is the gravitational-wave ringdown

a probe of the event horizon?’ Phys. Rev. Lett. 116 (2016), 171101. arXiv: 1602 . 07309.
Erratum: ibid. 117 (2016), 089902.

8.1 Introduction
The gravitational-wave detection of the events GW150914 and GW151226 have been interpreted as
the merger of two black holes and the product of the coalescence is another black hole [374]. Far
from claiming that this interpretation is not correct and that the product of the merger might be
something more exotic, in this chapter, we would like to answer a matter of principle: is there any
evidence for event horizons in the detected signals?

With a few rare exceptions [269, 280, 375], the ringdown waveform is commonly associated to
the quasi-normalmodes of the final objectwhich, in turn, are closely related to the peculiar boundary
conditions required at the event horizon, namely the absence of outgoing waves — see Section 5.3.
That being the case, the gravitational wave ringdown signal provides a way to prove the existence of
an event horizon in dark, compact objects. Here, we stress that, in general, the ringdown modes do
not coincide with the quasi-normal mode frequencies.

If the final object does not possess a horizon, the boundary conditions change completely, thus
drastically affecting the quasi-normal mode structure. On the other hand, the ringdown waves of
the distorted compact object are closely related to the null, unstable, geodesics in the spacetime [236,
376–379], their frequency and damping time being associated with the orbital frequency and with
the instability timescale of circular null geodesics, respectively. Thus, in principle, the ringdown
phase should not depend on the presence of a horizon as long as the final object has a light ring.

If the final object is a black hole, its quasi-normal modes incidentally also describe the ringdown
phase, as the ingoing condition at the horizon simply takes the ringdown waves and ‘carries’ them
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inside the black hole.
To sum up, if there is no horizon or the horizon is replaced by a surface of different nature (as,

e.g. in the firewall [40] or in the gravastar proposals) the relaxation of the corresponding horizonless
compact object should then consist on the usual light-ring ringdown modes (which are no longer
quasi-normal modes), followed by the proper modes of vibration of the object itself. The former are
insensitive to the boundary conditions and similar to the black hole case, whereas the latter, defined
by different boundary conditions, can differ dramatically from their black hole counterpart and are
usually identified as quasi-normal modes.

8.2 Setup
To the best of our knowledge, the above picture has never been verified in the context of gravitational
wave tests of an event horizon. Here we perform such analysis by considering the ringdown signal
and the quasi-normal modes associated with a horizonless compact object with a light ring. For
definiteness, we focus on the gravitational radiation emitted by a point particle in radial motion
towards a traversable wormhole — see Fig. 8.1 for an illustration. The main qualitative features of
our analysis are independent of the specific horizonless object and apply also to spherical shells of
matter, gravastars, compact boson stars and others [262, 269, 380, 381].

Figure 8.1: Illustration of a dynamical process involving a compact horizonless object. Apoint particle plunges
radially (red dashed curve) in a wormhole spacetime, and emerges in another ‘universe’. The black curve de-
notes the wormhole’s throat, the two grey curves are the light rings. When the particle crosses each of these
curves, it excites characteristic modes which are trapped between the light-ring potential wells, see Figs. 8.3
and 8.4.

The specific solution is obtained by identifying two Schwarzschild metrics with the same mass
M at the throat r = r0 > 2M , as described in Section 5.5.2. In Schwarzschild coordinates, the two
metrics are identical and described by

ds2 = −f(r) dt2 + dr2
f(r)

+ r2 dΩ2 , f(r) = 1− 2M

r
. (8.1)
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Because Schwarzschild’s coordinates do not extend to r < 2M , we use the tortoise coordinate
dr/dr∗ = ±f , where henceforth the upper and lower signs refer to the two different universes
connected at the throat. Without loss of generality we assume r∗(r0) = 0, so that one domain is
r∗ > 0whereas the other domain is r∗ < 0.

The four-velocity of a particle with mass µp ≪M and conserved energy E in this spacetime
reads uµp := dxµp/dτ =

(
E/f,∓

√
E2 − f, 0, 0

)
, where τ is the proper time, and the coordinate

time tp is governed by

t′p(r) = ∓ E

f
√
E2 − f

. (8.2)

A particle falling from infinity reaches the throat in finite time (we set tp(r0) = 0) and emerges
in the other universe. In the point-particle limit, Einstein’s equations sourced by the stress-energy
tensor (5.15) reduce to a pair of Zerilli equations,

d2ψℓ(ω, r)

dr2∗
+
(
ω2 − VZ(r)

)
ψℓ(ω, r) = Sℓ , (8.3)

with the effective potential VZ given by Eq. (5.11) and

Sℓ =
2
√
2µpE(9 + 8λ)1/4 eiωtp

f(3M + rλ)2ωt′p

[
f 2t′p

(
2iλ+ (3M + rλ)ωt′p

)
− (3M + rλ)ω

]
, (8.4)

whereλ = (ℓ−1)(ℓ+2)/2 and ℓ ⩾ 2 is the index of the spherical-harmonic expansion. The source
term is different in the two universes due to the presence of tp(r). The time-domain wavefunction
can be recovered via

ψ̂ℓ(t, r) =
1√
2π

∫
dω e−iωtψℓ(ω, r) . (8.5)

With themaster equation in both universes at hand, we onlymiss the junction conditions forψℓ

at the throat. The latter depend on the properties of the matter confined in the thin shell [347]. For
simplicity, here we assume that the microscopic properties of the shell are such thatψℓ and dψℓ/dr∗
are continuous at r∗ = 0. This assumption is not crucial and can be modified without changing our
qualitative results.

Finally, the energy flux emitted in gravitational waves reads [232]

dE
dω =

1

32π

∑
ℓ⩾2

(ℓ+ 2)!

(ℓ− 2)!
ω2|ψℓ(ω, r → ∞)|2 , (8.6)

and the solution ψℓ can be obtained through the standard Green’s function as

ψℓ(r) =
ψ+

W

∫ r

−∞
dr∗ Sℓ ψ− +

ψ−

W

∫ ∞

r

dr∗ Sℓ ψ+ , (8.7)
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whereψ± are the solutions of the corresponding homogeneous problemwith correct boundary con-
ditions at r∗ → ±∞, and the WronskianW = ψ−dψ+/dr∗ − ψ+dψ−/dr∗ is constant by virtue
of the field equations. We validated the results presented below by comparing this procedure with a
direct integration of the master equation through a shooting method, obtaining the same results up
to numerical accuracy.

8.3 Quasi-Normal Mode Spectrum

The quasi-normal modes of the wormhole are defined by the eigenvalue problem associated with
the master equation above with Sℓ = 0 and supplemented by regularity boundary conditions. We
requireψℓ ∼ e±iωr∗ at the asymptotic boundaries of both universes. Note that, because r∗ → ±r at
infinity, in Schwarzschild coordinates both homogeneous equations and boundary conditions are
the same. At the throat we impose continuity of dψℓ/dr∗ which— given the symmetry of the prob-
lem and the homogeneity of the master equation — can be achieved only in two ways: by imposing
either dψℓ(0)/dr∗ = 0 or ψℓ(0) = 0. Correspondingly, we find two families of quasi-normal
modes that can be obtained by a straightforward direct integration supplied by a high-order asymp-
totic expansion of the solution [382] in either of the two domains.

A representative example of the polar quasi-normal mode spectrum is shown in Fig. 8.2, while
the values of the fundamental quasi-normal mode for the first family are listed in Table 8.1.

Black Hole ωBHM
Wormhole ωWHM

r0 = 2.001M r0 = 2.0001M r0 = 2.00001M

0.374− 0.089i 0.141− 8.68 · 10−7i 0.102− 5.35 · 10−8i 0.079− 6.93 · 10−9i

Table 8.1: Fundamental QNM for the Schwarzschild black hole and for a wormhole with different r0.

Remarkably, in the black hole limit, r0 → 2M , the spectrum is dramatically different from that
of a Schwarzschild black hole: the quasi-normal modes of the wormhole approach the real axis and
become long-lived. In fact, as r0 → 2M the deviations from the black hole quasi-normal modes are
arbitrarily large.

This behaviour can be understood by investigating the effective potential shown in Fig. 8.3. Due
to the presence of the throat at r∗ = 0, the effective potential isZ2-symmetric and develops another
barrier at r∗ < 0. Therefore, for any r0 ≲ 3M , wormholes can support long-lived modes trapped
between the two potential wells near the light rings. These modes are analog to the ‘slowly-damped’
modes of ultracompact stars [383–385].
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8.4 Excitation of Light-Ring Modes vs Quasi-Normal Modes
Given the drastically different quasi-normalmode spectrum of a wormhole relative to the black hole
case, one might be tempted to expect an entirely different ringdown signal in actual dynamical pro-
cesses. This expectation seems to be confirmed by the energy spectrum shown in the left panel of
Fig. 8.4 and compared to the case of a particle plunging into a Schwarzschild black hole. The spectra
coincide only at low frequencies, but are generically very different. Furthermore, in the black hole
limit, the long-lived quasi-normalmodes of the wormhole can be excited and correspond to narrow,
Breit-Wigner resonances in the spectrum [386, 387].

However, as previously discussed, the black hole quasi-normal modes are light-ring modes and



118 8.4 Excitation of Light-Ring Mod vs Quasi-Normal Mod

��� ��� ��� ��� ���
����

����

����

����

����

����

ω �

�
�
/�
ω

μ
�-
�

-�� � �� �� �� �� ��� ���

-���

���

���

���

���

� /�

ψ
�

��� ��� ��� ��� ���
����

����

����

����

����

ω �

�
�
/�
ω

μ
�-
�

-�� � �� �� �� �� ��� ���

-���

���

���

���

� /�

ψ
�

Figure 8.4: Left panels: quadrupolar gravitational wave energy spectrum for a point particle crossing a
traversablewormhole (red solid line) and compared to the case of a particle plunging into a Schwarzschildblack
hole (dotted black line) with the same energyE. Top and bottom panels refer to r0 = 2.1M ,E = 1.01 and
to r0 = 2.001M ,E = 1.5, respectively (different parameters give qualitatively similar results). Right panels:
the corresponding gravitational wave waveforms compared to the black hole case. The black hole waveform
was shifted in time by ∆t, see Eq. (8.8), to account for the dephasing due to the light travel time from the
throat to the light ring.

should play a role for any object with a light ring. In fact, the striking difference in the energy spectra
does not leave a trace in the initial ringdown waveform. This is shown in the right panel of Fig. 8.4
for the time-domain wavefunction ψ̂2(t, r) extracted at infinity as a function of time. As the worm-
hole approaches the black hole limit, r0 → 2M , the initial ringdown is precisely the same as in
the Schwarzschild case: the waveform oscillates with the same fundamental quasi-normal mode of a
Schwarzschild black hole, although the quasi-normalmode spectrum of the wormhole is completely
different from that of the black hole. We stress that the fundamental black hole quasi-normal mode
does not appear as a pole of the corresponding Green’s function of the wormhole, but nevertheless
dominates the ringdown.

The quasi-normal modes of the wormhole contain low energy and get excited only at late times,
namely after the particle crosses the throat in the characteristic timescale

∆t =

∫ 3M

r0

dr
f(r)

∼ −2M log
(
δ

M

)
, (8.8)

where in the last step we considered r0 = 2M + δ with δ ≪ M . Finally, in the black hole limit
(δ → 0) all quasi-normal modes are long-lived and have similar frequencies (see Fig. 8.2), which
gives rise to a peculiar beating pattern at late times.
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8.5 Summary and Conclusions

Our results give strong evidence for a highly counter-intuitive phenomenon: in the post-merger
phase of a compact binary coalescence, the initial ringdown signal chiefly depends on the properties
of the light ring of the final object rather than its quasi-normal modes. If the final object is arbitrar-
ily close to a black hole, the ringdown modes will correspond to the black hole quasi-normal modes,
even if the object does not possess a horizon. In particular, this also means that mass (and probably
spin) estimates from current ringdown templates perform well even if the compact object is hori-
zonless. The actual quasi-normal modes of the object are excited only at late times and typically do
not contain a significant amount of energy. Therefore, they play a subdominant role in the merger
waveforms, but will likely dominate over Price’s power-law tails [388].

Clearly, our model is heuristic and could be extended in several ways, e.g. by including rota-
tion, finite-size and self-force effects, and more generic orbits. None of these effects is expected to
change the qualitative picture discussed above. Environmental effects (such as accretion disks, mag-
netic fields, dark matter distributions or a cosmological constant) are typically negligible [269] and
should not affect the waveform significantly. In particular, the motion of the particle before cross-
ing the innermost-stable circular orbit is irrelevant for the ringdown signal, which depends almost
entirely on the subsequent plunge and the particle’s motion after crossing the light ring. It would be
interesting to extend our analysis by performing a numerical simulation of a compact binary merger
producing a horizonless compact object.

Our results are relevant to test possible consequences of quantum effects at the horizon scale, e.g.
the firewall and the gravastar proposals. In these models the quasi-normal mode spectrum might
considerably differ from the Kerr case, but this will not prevent gravitational-wave observatories
from detecting their ringdown signal using standard black hole-based templates. For various black
holemimickers the horizon is removed by a quantumphase transition, whichwould naturally occur
on Planckian length scales δ [40, 269, 280, 283, 389]. In this case, the changes to the quasi-normal
mode spectrum are more dramatic and, if detected, they will provide a piece of incontrovertible
evidence for quantumcorrections at the horizon scale. In the δ ≪M limitwe expect that our results
will be qualitatively valid for any model. Interestingly, Eq. (8.8) shows that the delay ∆t for the
quasi-normal modes to appear after the main burst of radiation produced at the light ring depends
only logarithmically on δ. For a final object with mass roughly sixty solar masses, ∆t ∼ 16τBH

(τBH ≈ 3ms being the fundamental damping time of a Schwarzschild black hole with the same
mass) even if the length scale is Planckian, δ ∼ lp = 2× 10−33 cm. For δ ∼

√
2lpM ∼ 10−13 cm,

as in the original gravastar model, such delay is only halved.
Our results suggest that future gravitational wave detections by LIGO [390], Virgo [391] and

KAGRA [392] should focus on extracting the late-time ringdown signal, where the actual quasi-
normal modes of the final object are eventually excited. Even in the absence of a horizon, these
modes are expected to be in the same frequency range of the black hole quasi-normal modes and
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thereforemight be detectable with advanced gravitational-wave interferometers. Furthermore, their
extremely long damping time might be used to enhance the signal through long-time integrations,
even if the energy contained in thesemodes is weak. Estimating the signal-to-noise ratio required for
such precise measurements is an important extension of our work.

As discussed in Section 5.5, black hole mimickers are generically unstable. Therefore, while our
results are generic, the viability of a black holemimicker depends on the specificmodel, especially on
its compactness and spin [393].

At themoment, the post-merger signal leaves room for alternative theories of gravity [394, 395],
dark particles [348] and exotic compact objects, such as gravastars and empty shells [362, 396]. Our
results show that only late-time ringdown detections might be used to rule out exotic alternatives
to black holes and to test quantum effects at the horizon scale. As it stands, the events GW150914
andGW151226 do not provide the final evidence for horizons, but strongly support the existence of
light rings, itself a genuinely general relativistic effect.



Conclusions

In this thesis we have investigated topics of black hole physics with the aim of bridging different
aspects of this research field. We have chosen to focus our research on two key concepts, which we
believe very promising for future developments: scalar sources and black hole perturbation theory.

As we have stressed several times in this thesis, scalar fields play a crucial role in different sectors
of gravitational and particle physics. Nevertheless, their status is still not completely clear. Do they
always correspond to fundamental microscopic fields as the recent discovery of the Higgs boson
indicates, or may also represent just an effective description of unknown physics? We think that
an answer to this fundamental question requires critical thinking about the role that scalar fields
play in three different areas of gravitational physics — standard black holes and no-hair theorems,
holographic description of gravity and cosmology. This thesis represents a step in this direction.

Perturbation theory of gravitational configurations is a transversal concept too. It plays an essen-
tial role in several areas of gravitational physics — e.g. stability, calculation of transport coefficients
in the holographic set-up, cosmology and gravitational wave emission. In this thesis we have used it
for different purposes: the issue of stability of boson stars, the calculation of tidal deformations of
black hole mimickers and for a critical discussion on recent gravitational-wave data from black hole
merging.

Here we give a list of the most important results of this thesis and prospects for future inves-
tigations. In the first part, we have discussed three different models in which general relativity is
coupled to a real scalar field. We have considered a massless or asymptotically massless scalar, and
we have found a new family of asymptotically flat black holes and exact brane solutions conformal
to the Lifšic spacetime whose dual gauge theory is characterised by hyperscaling violation. Then we
have studied an inflationarymodelwhose scalar potential ismotivated by holographic arguments. In
the second part, we have considered several different black hole mimickers and we have investigated
their possible astrophysical signatures in gravitational waves. We have studied the stability of mini
boson star in five spacetime dimensions and we have constructed mini boson stars built with more
than one scalar. We have computed the tidal Love numbers for various black hole mimickers and
we have discussed their possible detection. Finally we have shown that the gravitational radiation
emitted by a particle falling into a black hole mimicker is almost indistinguishable if the mimickers
is sufficiently compact.

In Chapter 2 we have derived a two-parameter family of exact, asymptotically flat, spherically
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symmetric, black hole solutions sourced by a non-trivial scalar field which decays asymptotically
as 1/r. The scalar potential near ϕ = 0 behaves as V (ϕ) ∼ ϕ5 meaning that it is not renormal-
isable from the quantum field theory point of view, and our model could at least give an effective
description. Our solutions violate the assumptions of no-hair theorems both in their old and recent
formulation: the potential is not convex and the masses are not positive definite, meaning violation
of the positive energy theorem. The thermodynamics of our solutions is the same of the Schwarz-
schild solution in the large mass limit, whereas the infrared behaviour of the mass spectrum of the
black hole, depending on the value of the parameters, is characterised by the presence of a mass gap.
What we have not addressed in this chapter and would be important to study is the issue of the
stability of our black hole solutions in more details. We also plan to investigate the rotating case.

Chapter 3 is the ‘brane counterpart’ of Chapter 2 plus charge, i.e. we have derived brane solu-
tions of minimally coupled Einstein-Maxwell-scalar gravity for an identically null potential. These
solutions are scale-covariant metrics, and their interest is motivated by holography, as the dual QFT
of these solutions is characterised by hyperscaling violation. We have given a general classifications of
all brane solutions ofminimally coupled Einstein-Maxwell-scalar which are relevant for holographic
applications with no Schrödinger isometries.

In Chapter 4 we have studied an inflationary model whose two-exponential scalar potential is
inspired by the same holographic models that motivate the topics tackled in the previous chapters.
Inflation begins when the inflaton starts rolling off from the maximum of the potential, caused by
a de Sitter instability. In the slow-roll approximation, our model reproduces correctly, for a wide
range of its parameters, the most recent experimental data for the power spectrum of primordial
perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude
below the Planck scale, whereas the inflaton mass, at the onset of inflation, turns out to be seven to
eight orders of magnitude smaller than the Planck mass. In this chapter we have not discussed the
reheating phase and the transition from inflation to the radiation/matter dominated era. Ourmodel
can be extended by modifying the potential, and some progress has already been made.

In Chapter 6 we have studied two aspects of boson stars. We have studied the existence and the
stability of mini boson stars in five dimensions and we have confirmed a recent claim showing that
five-dimensional — and presumably, higher-dimensional — mini boson stars are unstable against
linear radial perturbations. Then we have investigated boson stars built from various scalars with
different masses and we have discussed similarities and differences with the single-boson star case.
We have provided strong evidence that these stars are stable at least in part of the parameter space,
studying their stability with two different criteria and we have provided quantitative criteria for in-
stability.

In Chapter 7 we have compute the tidal Love numbers of exotic compact objects within the
framework of general relativity. In the black hole limit, all the Love numbers vanish logarithmically,
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but they are in general non-zero. Future gravitational-wavemeasurements of the tidal Love numbers
of compact objects in a binary systemwill provide a novelway to test black holes and general relativity
in the strong-field regime. Future developments and extensions of this work include: consider the
presence of electromagnetic or scalar tidal fields and hence the definition of new families of Love
numbers; consider rotating objects, in fact, although the spin of the individual components of a
neutron star binary system are typically small, but this might not be the case for exotic compact
objects and for black holes; consider extra charges, e.g. static black holes in Einstein-dilaton-Gauss-
Bonnet theory or spinning black holes in Chern-Simons gravity. Some of them are already work in
progress.

In Chapter 8 we have presented an important and counter-intuitive phenomenon: the initial
ringdown signal depends on the light ring modes rather than the quasi-normal modes. For a black
hole, its quasi-normal modes also describe the ringdown phase by accident. For another horizon-
less object, its quasi-normal modes appear at later times. Hence, only late-time ringdown detections
might be used to rule out exotic alternatives to black holes and to test quantum effects at the hori-
zon scale. The model discussed in this chapter has already been extended in Ref. [362], but other
extensions are possible, e.g. by including rotation, finite-size and self-force effects, and more generic
orbits. However, none of these effects is expected to qualitatively change the result.
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