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A B S T R A C T

Through antimicrobial resistance [1] many bacteria can survive to an
ever larger number of antibiotics. This is true in particular for a cate-
gory of bacteria classified as gram–negative. These kinds of bacteria
differ from the other ones by the presence of an outer membrane,
which is able to protect them from the fast access (and consequently
the action) of any antibiotics. The increasing capability of antibi-
otics to survive to many kinds of drugs has given rise to the Mul-
tiple Drug Resistance (MDR) [2]. New antibiotics could help to miti-
gate the MDR problem, but the poor understanding of permeability
through outer membranes [3] has given an ever littler number of new
patented antibiotics. This is due to a lack of experimental methods
which are able to explain with a sufficient detail the permeation
and, on the other side, to the difficulty in reaching the typical time
scales (ms or even more [4]) of these processes. The category of an-
tibiotics studied in this thesis can permeate the membrane crossing
some porins [5] (beta barrel proteins nestled in bacterial outer mem-
brane) so the permeation happens when we observe a transport of
the antibiotic through a porin.

In this thesis we will focus on some computational methods,
which are suitable to increase our understanding of transport pro-
cesses. We will start with a post elaboration algorithm [6], that can
be used to extract from an electrophysiology time series transport
events apparently lower than the experimental device temporal sen-
sitivity, continuing with another post elaboration algorithm that al-
lows to extract the real transition time from a metadynamics sim-
ulation [7], skipping in this way the timescale problem in computer
simulations, and we will finish with an ultra coarse grained model,
that can be used to study the transport properties through a bacte-
rial channel. Finally we will list the results obtained using the three
aforementioned methods and we will summarise this thesis with
the conclusions.
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I N T R O D U C T I O N , S C O P E O F T H E
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I N T R O D U C T I O N

Contents
1.1 Antimicrobial resistance 3
1.2 Uptake of antibiotics in gram–negative bacte-

ria 5
1.3 Experimental study of translocations 8
1.4 Computational study of translocations 11

1.1 antimicrobial resistance

According to World Health Organization (WHO) “Antimicrobial
resistance happens when microorganisms (such as bacteria, fungi,
viruses, and parasites) change when they are exposed to antimicro-
bial drugs (such as antibiotics, antifungals, antivirals, antimalarials,
and anthelmintics). Microorganisms that develop antimicrobial re-
sistance are sometimes referred to as superbugs”.

This phenomena, in particular concerning Multiple Drug Resis-
tance (MDR) [2] related to antibiotics, has shown an increasing trend
in the last decades [8] and has reached alarming values as shown e. g.
in Figure 1

The ways a bacterium can develop to become multidrug resistant
are multiple [2].

1. Mutational alteration of the target protein. Every antibiotic
must reach a target, that is a protein fundamental for the live
cycle of the bacterium, and destroy it to accomplish its goal
to kill the bacterium. The antibiotic is a chemical compound
intrinsically static, so, if some bacterium develops a mutational
alteration of the target protein, it can easily survive to that
kind of antibiotic.

2. Enzymatic inactivation of the drug. The antibiotic is, by its
nature, recognised as extraneous by the bacterium. If it de-
velop some enzymatic defense sufficiently good, the antibiotic
is destroyed before it can reach its target protein.

3. Acquisition of genes for less susceptible target proteins from
other species. Some bacterium has already developed muta-

3



4 introduction

Figure 1: Percentage (%) of invasive isolates with combined resistance to
fluoroquinolones, aminoglycosides and carbapenens, by country,
EU/EEA countries, 2014. Reprinted from [9].

tion of its target in a version less susceptible to the antibiotic
action. Instead of develop again by scratch its own mutation,
a bacterium can “import” DNA fragments from another kind
of bacterium, and in this way it becomes antibiotic resistant in
a shorter time.

4. Bypassing of the target. Specially in a hospital environment
it is possible to develop bacteria strains multidrug resistant,
giving rise to infections difficult to treat in patients.

5. Preventing drug access to targets. Antibiotics usually must
overcome the bacterial membrane to reach its target located
in the inner part. Bacteria have developed some special pro-
teins (porins) nestled in the bacterial membrane and able to
diffuse molecules in the inner part and some other (efflux
pumps) devoted to actively extrude some molecules from the
bacterium. Focusing on antibiotics, if the activity of porins is
decreased (less antibiotics enter) or alternatively the action of
efflux pumps is increased (more antibiotics exit), in these cases
the action of antibiotics is suppressed and bacteria can survive.

The permeability of antibiotics through bacterial membranes is
still poorly understood, and this lack of knowledge has given rise
to an always littler production of new patented antibiotics (Figure
2) able to mitigate the aforementioned ability of bacteria to develop
defense mechanisms against drugs.
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Figure 2: Number of new antibiotics patented by Food and Drug Admin-
istration (FDA) every five years from 1982 to 2012. [10].

The typical short duration of antibiotic therapy in patients af-
fected by bacterial infection combined with the difficulties at finding
new antimicrobial drugs have produced a poor interest of pharma-
ceutical companies in the research of new antibiotics. To cope with
the increasing hazards for the populations and to the increasing gov-
ernmental expenses in hospitalization of patients connected to the
MDR and other kind of diseases, the international community has
started promoting partnerships between public and private compa-
nies. An example in Europe is the Innovative Medicines Initiative (IMI)
project able to develop new medicines [11]. Within the IMI project the
New Drugs for Bad Bags (ND4BB) programme focus in particular
on the research of new antibiotics and this thesis is involved through
the academic group I have worked with.

In this thesis we will focus in particular on aspects connected to
the study and comprehension of permeability of antibiotics through
bacterial membranes of gram–negative bacteria. This aspect, as
stated before, has a crucial importance in the action and efficiency
of this kind of drugs.

1.2 uptake of antibiotics in gram–negative bacteria

Bacteria can be divided in two categories: Gram–Positive (GP) and
Gram–Negative (GN). For the purpose of this thesis the main differ-
ence between these types of bacteria is the presence (in GN) of an
external membrane that does not exist in GP (Figure 3).

The outer membrane can be considered as being made of ly-
popolisaccharides (the main constituent of the membrane) that
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Figure 3: Schematic representation of GP and GN bacteria

forms a bilayer with a plethora of proteins implanted in it. Be-
tween these proteins there are the porins that in particular have
been shown to be important [5] for the uptake of a category of an-
tibiotics named β–lactams. The porins are organized in a secondary
structure forming β–barrels, with beta sheets connected by loops,
and can organise again in a trimeric (Figure 4) or monomeric (Fig-
ure 5) form. The porins are usually water filled (Figure 6) and are
responsible of the passive penetration of hydrophilic molecules [5,12]

that move through a diffusive motion.
Porins are often shaped to form an hourglass (Figure 6) with typ-

ical height and average radius of the order of 50 Å and 10 Å respec-
tively. The central part is known as the constriction region, charac-
terised by the minimal hollow cross section.

As already mentioned the porins usually transport many kind
of molecules through the outer membrane and the transport has a
typical diffusive nature [13]. Often the available cross section in the
constriction region closely matches with the one of the molecule that
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Figure 4: Representation (top view) of a typical simulated box with a
trimer (in this figure an OmpF (Outer membrane protein F) con-
stituted by three monomers in green, yellow and blue, a por-
tion of lipid bilayer in magenta and an antibiotic (Meropenem)
molecule close to the green monomer.

have to be translocated. For this reason size, shape, hydrophobicity
or charge of the transported solute and of the residues composing
in particular the constriction region can often influence the effective
transport properties giving rise to porins more or less specific for a
certain kind of molecules [12,13] mainly if a binding site for a specific
molecule is present in the porin.

In our thesis we will focus particularly on transport of β–lactam
antibiotics through porins, because is known [5] they use porins to
cross the outer membrane. Because of the typical little space avail-
able for the antibiotic close to the constriction region, the times
needed for the translocation increases and can reach times in the
range of milliseconds in this particular case [14] or in comparable
cases [4].

In the following part we will describe two approaches used to
study translocations of antibiotics through bacterial porins: the ex-
perimental one and the computational. We will focus in particular in
the experimental method called electrophysiology [15,16] and widely
used also to study transport properties of antibiotics [5,14] and re-
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Figure 5: Example (side view) of a porin constituted only by a monomer.
In this case is represented a Outer Membrane Protein G (OmpG).

cently postelaborated [6] to extend the time range analysable and
in computational methods, focusing on the ones usable to skip the
problem of the milliseconds time range, impossible to afford with
standard computational calculations and power for systems like our
composed of hundred of thousands of atoms. For every experimen-
tal and computational method we will point out positive and nega-
tive aspects.

1.3 experimental study of translocations

Many experimental methods have been developed to study the
translocation of solutes through porins [3]. Every method try to quan-
tify only the flux of antibiotics into the bacteria, but can not give in-
formation about the microscopical details connected to the uptake
of solutes. Between these methods it is interesting the one based on
fluorescence microscopy [17], because it shows the best experimental
detail in this field and it is able to detect the presence of fluorescent
antibiotics with a single cell detail, but even in this most favourable
case it is not available a microscopic detail and this method needs
often the presence of a label applied to the antibiotic.
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Figure 6: A monomer (side view) of a water filled OmpF. The distribution
of the water into the porin displays the typical hourglass shape.

Another method widely used is the one based on electrophysi-
ology, where a single porin is implanted in a planar lipid bilayer
merged in an electrolytic solution, allowing to study conductance,
selectivity and voltage gating of the channel [15,16] and allowing to
characterise interactions between substrates and outer membrane
channels [14,15]. Applying a voltage between the two sides of this
solution separated by the lipid bilayer the ions will flow through
the porin causing a tiny electric current. Finally inserting antibiotic
molecules in the solution it is observed a drop in the current when
an solute drug enters the porin (Figure: 7) reducing remarkably the
ions flux for a sufficiently long time.

To know how long the current drop must last in order to be de-
tected, it is useful to note the necessity to amplify the ionic current,
to get a sufficiently big signal, and because of this amplification and
other source of noise [18] the final current signal must be filtered usu-
ally first with a low–pass Bessel filter (4–th order or even more) at
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Figure 7: a. Scheme of the experimental apparatus used to perform elec-
trophysiology measurements. b. Detail of the trimeric porin in-
serted in the planar lipid bilayer. c. Appearance of the ionic cur-
rent through the porin, when its insertion in the lipid bilayer
happens. d. Typical drops in former current when an antibiotic
enters the porin. e. Zoom in a current drop. Reprinted from [5]

10 kHz and afterwards with a linear filter [6]. With this configuration
a lower limit for this time (i.e. the lowest times detectable with this
kind of instruments) was 50 µs [6,19] and it was a big drawback of this
method because of the strong limit in detecting fast blockages, usu-
ally more interesting because connected with a poor interaction in
the constriction region and a consequent potentially high antibiotic
flux. Another minus of this method is the lack of microscopic detail
and a simulated system often in environmental conditions different
from the biological ones (e.g.applied voltage, high salt concentra-
tion, lipid bilayer instead of outer membrane) and the difficulty to
connect the current drop to the real flux of the substrate through
the channel [20].

One of the biggest problems connected to the electrophysiology
method (the aforementioned minimum resolvable time around 50

µs) has been overcome recently [6], allowing the time resolution to
be in the µ–seconds time range (this method will be described more
in detail in the Section 2.1). Increasing the experimental time resolu-
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tion has, in our opinion, a big practical influence, because it permits
to study a set of translocation phenomena with a double approach:
the electrophysiology and the computational methods. Without ac-
cess to to the best computational facilities, this is possible only by
simulating bigger time–scales through coarse grained calculations
or other computational methods, that are able to increase the ex-
plored time range.

1.4 computational study of translocations

Another widely used approach to study drug discovery or, in par-
ticular, translocations of antibiotics through bacterial channels is the
computational one [3,21]. Performing all–atoms simulations with ex-
plicit solvent of a typical system, that contains hundred of thou-
sands of atoms as in the one described in Figure 4, it is possible
to simulate up to the time range of 100 µ–seconds using the best
available supercomputers dedicated to protein simulations [21] and
classical Molecular Dynamics (MD) methods. This huge increase in
computer power has helped to test with increasingly demanding
benchmarks the force fields available for protein simulations, high-
lighting how performant these force field must be to manage all the
events ranging from a typical femptosecond MD time step even to
the milliseconds scale [22], with an even tiny imprecision likely to
be amplified when a calculation is repeated millions or billions of
times.

The translocations we simulate has often a typical time–scale
of 100 µs or even more [4,14], making it practically impossible to
simulate these processes even if we had a perfect force field and
the most performant supercomputers or computational architec-
tures [23,24]. Moreover a transport event often involves a molecule
stuck in some free–energy basin [5]. It is necessary to cross the free–
energy barrier to cross the bacterial channel and for this reason, in
a MD simulation, we waste much of the computational time explor-
ing states close to the free-energy minimum that have a really little
interest compared to the ones close to the transition zone (saddle
point). Speaking in a more mathematical mode, we can say that a
translocation can be considered as a Poissonian event, that is a sub-
stantially stochastic event. Considering this last aspect, even having
a few translocations simulated through MD, they could have a little
impact in our studies because we need a number of crossings ade-
quate to make a sufficiently accurate statistic of the event. To cope
with all the needs of a large (dozens) number of translocations to
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be obtained in a reasonable time (months), we have to choose some
accelerated computational method.

One possible way out is to perform MD simulations using an
increased time step. This is possible, but like every compromise has
plus and minus. The increased speed in the simulation leads to an
increased instability of the simulation with difficulties to preserve
the energy conservation. On the other hand a bigger time–step cut
all the events occurring in a time–scale littler than the integration
step chosen, but this is not a wise choice, because we do not know
a priori if the events removed have or not a role in the translocation
we want to study. Moreover the strong dependence of the antibiotics
flux on little changes in the constriction region [19] could suggest the
need to preserve a little integration step to keep an high detail level.

Another method widely used especially to explore the free–
energy surface, and for this reason suitable also for the problem of
translocations, is the metadynamics [25] (MT). In this method is per-
formed a MD simulation adding periodically to the system Hamil-
tonian a bias potential over a few (generally not more than two or
three) Collective Variables (CV). This bias potential allows the sys-
tem to escape easily from free–energy minima, exploring quickly
and efficiently (if compared with other classical methods) the free–
energy surface, but still keeping the MD detail of the simulated
Hamiltonian. Using the Well Tempered Metadynamics [26] the con-
vergence in this exploration is still faster and more efficient. One
drawback of this method is the absence of any direct connection be-
tween the simulated MD time and the real time. To skip this prob-
lem, once available a free–energy profile of the phase space, it is
possible to determine a set of metastable states and simulate mas-
sively (e. g. with a Kinetic Monte Carlo (KMC) scheme [27,28]) the
system allowing to have in a short time a big number of translo-
cation events. Unfortunately, following the Arrhenius equation, the
times obtained for every transition between metastable states, and
consequently for the whole translocation, are affected by big errors,
because they are exponentially dependent on the height of the free–
energy barriers estimated through the MT or WTMT, that still are
affected by considerable errors [29]. Another way to obtain real tran-
sition times between metastable states is to use MT simulations and
to post–elaborate a WTMT trajectory that made a transition over a
saddle–point. Using a recent method [7] it is possible to obtain the
real transition time from the otherwise useless MT time (from meta-
dynamics to dynamics, as stated in the article title). Collecting a
sufficiently big (at least around twenty) number of transitions and
making some statistical tests on this times [30] it is possible to as-
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sess the reliability of the obtained results under the hypothesis that
every transition time follow a Poisson distribution. These methods,
having basically the MT simulation as a core, give the possibility to
obtain kinetic models useful to study the dynamics of translocation
events [28,31].

Another approach which can be used to skip the time scale prob-
lem consists in implementing ultra coarse grained models able to
point out the main physical parameters believed to influence the
translocation. These models can be tested with in silico simulations
to check the goodness of the physical hypothesis behind them. An
essentially thermodynamic model, developed by our group follow-
ing the basic idea here explained, will be described in more detail
in the Section 2.3.
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2.1 analysis of fast channel blockages

In electrophysiology experiments (see Section 1.3), we observe a
typical generally on average constant current. Many kinds of dis-
turbance cause noisy fluctuations of this current. When we have or
have not a substrate into the electrophysiology solution, we observe
a different behaviour of this current as shown in Figure 8. What we
observe is a lower (if we focus on absolute values) average current
(from jav = −147.3 pA to jav = −144.3 pA) when we insert a 5mM
concentration of Cefepime and, at the same time, an increase of the
standard deviation from σ = 2.3 pA to σ = 4.8 pA.

2.1.1 Two–state Markov model for the current

If we consider the channel monomer as a two–states Markov model
with the monomer alternatively open or closed and we set two

15
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Figure 8: An example of ion current time series (a) without substrate or (b)
with Cefepime 5mM.

values j0 (open channel) and j1 (occupied channel) for its current,
we can calculate the average current of a channel constituted of Nc
monomers at substrate concentration c as

jav(c) = Nc[j1P(c) + j0 · (1− P(c))] (1)

where P(c) represents the equilibrium probability of occupation for
a monomer as a function of substrate concentration and for c = 0,
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jav(0) = Nc j0. It is possible to express the occupation probability
P(c) in terms of the transition rates [4,32] obtaining

〈∆j〉 = |jav(c)− jav(0)| =
Ncckon∆j

ko f f + ckon
(2)

with ∆j = |〈j1〉 − 〈j0〉| for a certain applied potential. In the
last formula ko f f and kon represent respectively the dissociation
and association rates. If the channel is completely blocked, ∆j =
|jav(0)|/Nc = |〈j0〉|, otherwise, for a partial monomer occupation,
∆j < |〈j0〉|.

The power spectral density (PSD) of the ion current fluctuations
due to the blockages by blockages by the substrate in the two–state
Markov model is [14]

G( f ) =
a

1 + (2π f τc)2 (3)

with
a = 4Nc(∆j)2ckonko f f τ3

c and (4)

τc =
1

ko f f + ckon
. (5)

where a is the Lorentzian factor and τc is the correlation time of the
blockage process.

When ko f f � kon, the average current drop 〈∆j〉 and the
Lorentzian factor a can be expanded in a Taylor series up to the
second order obtaining

〈∆j〉(c) = Nc∆j
ckon

ko f f

(
1− ckon

ko f f

)
+ o
((

ckon

ko f f

)2)
, (6)

a(c) =
4Nc(∆j)2

ko f f

ckon

ko f f

(
1− 3

ckon

ko f f

)
+ o
((

ckon

ko f f

)2)
. (7)

2.1.2 Current filtering

Due to the large amount of noise in electrophysiology experi-
ments [18], the ion–current signal is filtered by an analogous low–
pass linear filter (usually a 4–order (4–pole) low–pass Bessel filter)
and then sampled at a specific rate fs = 1/∆t. Practically the sec-
ond sampling is done averaging the signal for a period ∆t and, for
this reason, this second sampling can be considered a linear filter
following the first analogous one. The average ion current jav is not
affected by the linear filter, but the dispersion, the auto–correlation
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function and the PSD are modified by both filters. Calling Ha(ω)
the transfer function of the analogous filter and Hs(ω) the one of
the sampling filter, then the PSD of the original ion current in Equa-
tion 3 becomes, after filtering, the following

Gm( f ) =
a

1 + (2π f τc)2 |Ha(2π f )|2|Hs(2π f )|2 (8)

At small frequencies both transfer function are close to 1 and do not
modify the PSD. At large frequencies ( f � fc, with fc representing
the low–pass filter cut–off frequency, or f � 1/∆t), the original
PSD is suppressed by the filters. From Equation 3 we can see that if
τc / ∆t or τc / f−1

c , the filters start to influence strongly the PSD.

2.1.3 Determining kon and ko f f

If we fit the filtered PSD in Equation 8 to the observed PSD, we can
obtain a and τc as a function of c and after get kon and ko f f from
Equation 4 and 5. Unfortunately the calculation of τc and 〈∆j〉 is
not always possible and we can depict different scenarios.

2.1.3.1 Case 1

In the best case (τc and a obtained from the fitting of PSD in Equa-
tion 8 and ∆j obtained from current distribution, for example) we
can use Equation 4 and 5 to obtain

ko f f =
1

2τc

(
1 +

√
1− a

Ncτc(∆j)2

)
(9)

kon =
1

2τcc

(
1−

√
1− a

Ncτc(∆j)2

)
(10)

2.1.3.2 Case 2

If it is not possible to calculate directly ∆j, but it is still possible
to calculate τc, then one can use Equation 5 to obtain kon and ko f f .
Having these two values it is possible to obtain ∆j using Equation 4

∆j =

√
a

4Ncckonko f f τ3
c

(11)

2.1.3.3 Case 3

If τc is very small and can not be fitted using Equation 8, we are
in the case where we can make the approximations that lead to
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Equation 6 and 7, then we can fit the dependence of these equations
on c with the following simplified equations:

〈∆j〉(c) = bj(1− rc) (12)

a(c) = ba(1− 3rc) (13)

where r = K = kon/ko f f is the equilibrium or stability constant of
the solute/channel interaction. Comparing the fitting parameters ba
and bj with physical values through Equation 6 and 7, it is possible
to get kon, ko f f and ∆j in the following way

kon =
4b2

j

Ncba
, (14)

ko f f =
kon

r
, (15)

∆j =
bj

Ncr
. (16)

2.1.3.4 Case 4

In the last case, if τc is so small to make impossible to find its de-
pendence on c, but it is possible to obtain ∆j from direct measures,
then one can obtain kon and ko f f basically through Equation 6 and
7.

First we obtain r fitting to the experimental average current the
following equation

〈∆j〉(c) = Nc∆j(1− rc)rc. (17)

After, fitting Equation 13 with a fixed value of r, we obtain

ko f f =
4Nc(∆j)2r

ba
and (18)

kon = rko f f . (19)

2.1.4 Detection of sub–microsecond channel gating

With the method used in Section 2.1.1 has been obtained residence
times tres around one micro–second (see Section 3.1.2). This method
is based essentially on the manipulation of PSD and average ion cur-
rent, however a different approach can be used considering, instead
of PSD and average ion current, two observables: average ion cur-
rent and current variance. This method allows to set a lower limit
for τres, that can produce τres ≈ 400 ns with a standard electrophys-
iology equipment.
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2.1.4.1 Theory

Considering as in Section 2.1.1 the two filters (analogous low–pass
and linear filter due to sampling), the average value of the ion–
current signal is not affected by the linear filter, but the variance,
the auto–correlation function and the PSD are modified by the both
filters. If the transfer function (its Fourier transform) of the analo-
gous filter is Ha(ω) and that of the sampling filter is Hs(ω), then
the relation between the PSD of the original (the one before the fil-
ters) ion current, g0(ω), and the one of the signal after successive
application of the two filters is, similarly to how obtained before in
Section 2.1.1,

g(ω) = g0(ω)|Ha(ω)|2|Hs(ω)|2. (20)

The variance of the ion-current signal is equal to the un–normalised
auto–correlation function at zero time shift (σ2

j = R(0) or R(0, T)
using the notation hereafter specified), if we define

R(τ, T) =
1

NT −Mτ

NT−Mτ

∑
k=1

[jk − jav(T)][jk+Mτ
− jav(τ, T)], (21)

with ∆t meaning the sampling interval, T = NT∆t representing
the duration of the sampling, jav(T) = 1

NT
∑NT

k=1 jk and jav(τ, T) =
1

NT−Mτ
∑NT−Mτ

k=1 jk+Mτ
.

Then, as the power spectral density of the signal is the Fourier
transform of the auto-correlation function,

g(ω) =
1
π

∫ ∞

0
R(τ) cos(ωτ)dτ , (22)

and by using Equation (20) can be obtained

σ2
j =

∫ ∞

−∞
g(ω)dω =

∫ ∞

−∞
g0(ω)|Ha(ω)|2|Hs(ω)|2dω.

(23)

This last equation relates the observed ion–current variance to the
PSD of the original unfiltered ion current.

If the correlation time of the original (unfiltered) ion current is
much smaller than the inverse of the cutoff frequency ( fc) of the
analogue filter, then function g0(ω) is much wider then transfer
functions of the filter. It is also possible to consider that the sampling
frequency fs is sufficiently larger than fc as this is the instrumental
requirement to avoid aliasing effects. Therefore, one may take g0(ω)
and |Hs(ω)|2 out of the integration in Equation 23 and obtain

σ2
j ≈ g0(0)

∫ ∞

−∞
|Ha(ω)|2dω. (24)
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Here, we have taken into account that |Hs(0)|2 = 1. By using an
integral definition of the correlation time of the original signal

τc ≡
∫ ∞

0 R0(τ)dτ

R0(0)
=

πg0(0)∫ ∞
−∞ g0(ω)dω

, (25)

from Equation (22) one obtains

g0(0) =
τcσ2

0
π

, (26)

where R0(τ) and σ2
0 = R0(0) are the autocorrelation function and

the variance of the original (unfiltered) signal, correspondingly.
A linear low–pass filter is characterized by a single dimensional

constant, the cutoff frequency ωc = 2π fc, defined as |Ha(ωc)|2 =
1/2. Therefore, the dimensionless transfer function must be a func-
tion of ratio ω/ωc, i. e. Ha(ω) = f (ω/ωc). Then it is possible to
write ∫ ∞

−∞
|Ha(ω)|2dω = 2π fcξ f , (27)

where ξ f is a dimensionless numerical constant depending on filter
type.

For the 4–order Bessel filter, typical for the patch clamp electro-
physiology, one finds ξ f ≈ 2.093. And by combining equations
(Equation 24-Equation27) one obtains

σ2
j = 2ξ f fcτcσ2

0 . (28)

The last relation represents the linear low–pass filter correction to
the variance of the signal at conditions fcτc � 1 and fc � fs. No
major assumptions have been made about the statistical nature of
the original signal except of its stationarity and of the existence of
the correlation time in the sense of Equation 25.

In the following development, we will assume, as in Section 2.1.1,
that the substrate–induced ion–current fluctuations are caused by
a 2–state Markov process. The probability density of the ion cur-
rent values are f (j) = fop(j)pop + fcl(j)pcl. Here, pop and fop(j) are
the equilibrium probability and the current probability density of
the open channel, pcl and fcl(j) are the corresponding quantities
of the “closed” channel, i. e. , with the substrate molecule inside.
We also have assumed, as justified in Section 2.3.4, that only a sin-
gle substrate molecule at a time may be in the channel, at least,
in the current blocking state. Then, the average current through
the channel and its variance before filtering become, respectively,
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j̄ = j̄op pop + j̄cl pcl and σ2
0 = σ′2op pop + σ′2cl pcl +( j̄op− j̄cl)

2pop pcl, where
j̄p and σ′2op are the average current and its variance in the open state
before filtering, while j̄cl and σ′2cl are the quantities for the closed
state. If the ion–current fluctuations in the open channel state and
those in the close state are independent and much faster (have much
smaller correlation time) than the substrate–binding Markov pro-
cess, then the observed (filtered) variance may be written as

σ2
j = σ2

op pop + σ2
cl pcl + 2ξ f fcτc(∆j)2pop pcl. (29)

Here ∆j = | j̄op − j̄cl|, while σ2
op and σ2

cl are the filter–corrected
variances of the ion–current in the open and in the closed channel
state, respectively. The values ξ f and fc are the filter constant and
the cutoff frequency, as they were discussed for Equation 28. Finally
τc is the correlation time of the substrate binding process.

Further, we suggest that substrate molecules are added from one
side of the channel with bulk concentration c. By using the asso-
ciation rate constant, kon, so that the association frequency equals
νon = ckon, the dissociation rate constant ko f f and the binding con-
stant r = kon/ko f f , then the equilibrium probabilities of the open
and the closed channel become, correspondingly, pop = 1/(1 + cr)
and pcl = cr/(1 + cr), as can be argued from Equation 5. Al-
ways from the last equation we know that the correlation time is
τc = (ko f f + ckon)−1. Now we can define the model statistical ob-
servables for Nc independent active monomers channels, that is the
average substrate–induced current shift δj(c) = Nc| j̄− j̄op| and the
substrate–induced variance σ2

s (c) = Nc(σ2
j − σ2

op),

δj(c) = Nc∆j
cr

1 + cr
, (30)

σ2
s (c) = 2ξ f Nc(∆j)2 fc

ko f f

cr
(1 + cr)3 +

Nc(σ2
cl − σ2

op)cr
1 + cr

.

(31)

The second term in Equation 31 comes from the difference in the
magnitude of ion–current fluctuations in the open channel state
and that in the close state. In many cases this term may be ne-
glected compared with the first one originating from the transitions
between the states having significantly different conductance. Then,
one may use a simplified equation for the substrate induced vari-
ance.

σ2
s (c) = 2ξ f Nc(∆j)2 fc

ko f f

cr
(1 + cr)3 . (32)
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We will focus on this case below hereafter.
As the instrumental filter’s properties and the substrate concen-

tration are known from the experimental setup, there are 4 parame-
ters in the two Equations 30 and 32, namely Nc, ∆j, r and ko f f . The
number of active monomers may be determined from the experi-
ment by measuring the conductance without the substrate and the
remaining three parameters are not known in general case. They
must be obtained by fitting Equations 30 and 32 to the observables
calculated from the experimental ion–current traces, in the way sim-
ilar to the that used in Section 2.1.3.3 for the PSD fitting. There
are conditions for the substrate concentration when this complete
3–parameter data analysis is possible. If the substrate concentra-
tion is very small, so that cr � 1, then both the observables (δj(c)
and σ2

s (c)) are directly proportional to the concentration. In this lin-
ear regime all the three unknown parameters are multiplicative and
they may not be determined simultaneously. Thus, the largest sub-
strate concentration, cmax used in the measurements should obey
the conditions cr ≥ 0.1, i. e. when the deviation from the linear
concentration dependence in σ2

s (c) is clearly detectable. Because, in
general, the r value is not known in advance, one need to perform
the electrophysiology experiment increasing the substrate concen-
tration until the non–linear dependence becomes quantifiable.

It is not always possible experimentally to achieve the necessarily
high substrate concentration due to the limited solubility. In that
case, one can still use δj(c) and σ2

s (c) to determine the substrate
binding kinetics, if a priori information on ∆j is available. For exam-
ple, if there is an experimental evidence or a theoretical argument
that the monomer channel is completely blocked for the ion current
when the substrate in bound ( j̄cl = 0), then ∆j = |jop|. The aver-
age current for the open monomer is determined directly from the
experiments, if the number of active channels is also known. Then,
the substrate–binding kinetic parameters are readily available from
Equations 30 and 32 as follows

r =
1
c

δj
(Nc∆j− δj)

, (33)

ko f f = 2ξ f fc
∆jδj
σ2

s

(
1− δj

Nc∆j

)
. (34)

The kinetic parameters r and ko f f may be obtained by using Equa-
tions 33 and 34 from the ion–current trace measured at a single
concentration c. However, a direct 2–parameter fit of Equations 30

and 32 to the experimental concentration–dependent δj(c) and σ2
s (c)

values might be preferred to improve the accuracy of the extracted
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parameters. The ability of the model to reproduce the substrate con-
centration dependence of both δj(c) and σ2

s (c) provides an addi-
tional consistency test.

The signal from the channel blockages due to the substrate may
be detected over the background (i. e. , ion–current through the open
channel) if its variance σ2

s exceeds or at least is similar to the vari-
ance of the background (σ2

op), i. e. η = σ2
s /σ2

op ≥ 1. From Equation
32, by assuming condition cr � 1 (the linear substrate concentration
dependence regime) one obtains

η = 2ξ f Nccr
fc

ko f f

(∆j)2

σ2
op
≥ 1. (35)

The latter equation is the condition for substrate–induced channel–
blockages signal to be detectable. Formula 35 shows that one can
improve the signal detection by increasing the number of active
monomer channels in the experimental setup or by increasing the
substrate concentration. Moreover, one may optimize the applied
electric potential to maximize ratio (∆j)2/σ2

op). However the usabil-
ity of this way is limited, as the kinetic parameters may also be
voltage dependent. A higher filter cutoff frequency might also im-
prove the detection accuracy, but usually it is not possible to change
continuously the filter cutoff frequency fc, due to the instrumen-
tal limitations. Moreover, the increase of fc is accompanied by the
increase of the background noise, σ2

op. If we take, for example, a
typical 4–order Bessel filter with 10 kHz cutoff frequency, assume 3

active channels, cr = 0.1, ∆j = 50 pA and σ2
op = 10 pA2, then the de-

tectable ko f f , according to Equation 35, may be as high as 2.5× 106

1/s. The latter corresponds to the residence time of 400 ns.

2.2 computational methods

Apart from standard MD [33], MT [25] and WTMT [26] simulations per-
formed with the ACEMD [34] software with a PLUMED plugin ver-
sion 1.3 [35] and with interactions based on the AMBER 99SB–ILDN
force field [36], the not standard method mentioned here is the pro-
cedure [7,30] that allows us to obtain transition times from WTMT
simulations.

2.2.1 From metadynamics to dynamics

Metadynamics is a technique used to calculate static properties and
its main use is connected to the exploration of the FES, in particular
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when it has a rough profile and many basins could be not explored
using standard MD simulations, due to the large energy barrier to
be passed.

Metadynamics is based on MD simulations performed using a
biased Hamiltonian. The biasing is obtained typically with some
Gaussians periodically added around some coordinates named col-
lective variables (CVs). If the CVs represent some relevant physical
quantity for the system, this biasing allows a fast transition through
the free–energy barriers, leading to a fast exploration of the FES.
Due to the MD calculations involved in MT simulations a “MT time”
is still present, but in the classical version of the method there are
not connections between this time, basically considered like nothing
more than an index, and the real time.

The method from metadynamics to dynamics (FMTD) permit to
get a connection between the MT time and the real time needed
to perform a transition through a saddle point in a free–energy
basin. The basic assumptions are the presence of a, let suppose
one–dimensional, free-energy basin that is passed when the value
of λ > λ∗, with λ generally dependent, maybe through some CVs
named s, on the system coordinates R. If we assume a local equilib-
rium at all times, we can guess a Boltzmann distribution and, if the
time spent in the saddle point is much less than the one spend in the
basin, we can write the average time τ needed to make a transition
through the bottleneck in the saddle point

τ =
1

ωκ

Z0

Z∗0
=

1
ωκ

∫
λ≤λ∗ e−βU(R)dR∫
λ=λ∗ e−βU(R)dR

, (36)

with ω a normalisation constant (intuitively the frequency of at-
tempt to cross the barrier) and κ a transmission coefficient, whose
value is not important in our case, because we assume a fast cross-
ing of the saddle point.

If we assume the ability to perform MT simulations with good
CVs that do not deposit bias near to the transition zone, then we
can write the equivalent of the Equation 36 as

τM(t) =
1

ωκM

ZM

Z∗M
(37)

that is a function of the MT time t.
Assuming we do not bias the transition zone in our MT simula-

tion, we can say that κM ≈ κ and, supposing good CVs that sample
well the free–energy basin, we can assume Z∗M ≈ Z∗0 . At this point,
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having the ratio between Equation 36 and 37, we can write down
α = τ/τM as

α(t) ≈ Z0

ZM
= 〈eβ[V(s((R),t))]〉M (38)

The factor α is simply the average of the bias potential in MT sim-
ulations calculated until the system stays in the basin in conditions
λ ≤ λ∗. Knowing this value we can easily get the real transition
time as

τ = ατM. (39)

This formula means that the real time transition time is obtained
multiplying the MT time by the α factor, named acceleration factor.

To know when the transition occurs is easy observing the trend of
α(t), because when a transition occurs, the system visit a zone with
zero bias V(s((R), t)) causing a typical drop in his value as shown
in Figure 9

Figure 9: An example of drop in the acceleration factor for Meropenem in
OmpF when a transition occurs.

To make sure if the real transition times obtained from the
FMTD method are reliable, we can perform some standard statisti-
cal tests [30] to check if these times follow, as they should, a Poisson
distribution. These test, to be sufficiently trusted, have to be made
over a sufficiently big number of transition events (let say around
20). The fail of the test can be due typically to two factors: biasing in
the transition region or wrong CVs choice. If the case is the second
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one, what we observe is and overestimation of the obtained transi-
tion times, because much of the bias of WTMT simulations has not
produced (or has produced only partially) an enhanced probability
to visit the transition zone. For this reason we can say, as a rule of
thumb, that, if we consider the faster transition times obtained with
the FMTD method, these values (apart from the statistical fluctua-
tion of the Poisson distribution of times) are more trusted than the
slower ones.

2.3 translocation model

The model used to simulate the translocation is a basically ther-
modynamic model that calculates the free–energy available for a
particle given the geometrical properties of the particle and of the
bacterial channel. Some modifications of the model are introduced,
in order to take into account the vibrations of the porin.

2.3.1 Particle probability density and average particle density

Considering N identical independent particles confined in the con-
figuration space Ω (multidimensional in general), the probability
density for a particle to occupy the vicinity of the point x ∈ Ω is
p(x), with

∫
Ω p(x)dx = 1. Given a subset V ⊂ Ω, the probability

density to stay in V is pV =
∫
V p(x)dx. Considering the indepen-

dence of the particles, the probability of n particle of N to occupy
V follows a binomial distribution and is

Pn
N (V) =

(
N
n

)
(pV )n(1− pV )N−n (40)

Considering an average number of particles n(V) = pVN , in the
hypothesis of a large number of particle that gives N � n and
N � n(V), we have (Nn ) ≈

N n

n! and the distribution in Equation 40

becomes

Pn(n(V)) ≈
(n(V))n

n!
e−n(V) (41)

The probability to find zero or one particles in V is

P0(n(V)) = e−n(V) and P1(n(V)) = n(V)e−n(V). (42)

With the hypothesis of a subset V sufficiently little to assume
n(V)� 1, the probabilities of Equation 42 becomes

P0(n(V)) = 1− n(V) + o(n2(V)) and

P1(n(V)) = n(V) + o(n2(V)).
(43)
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For an infinitesimal subset δV ⊂ V with a volume dV ≡ dx one
obtains n(δV) = c(x)dV + o(dV2), where c(x) = N p(x) is the par-
ticle density in x. With these considerations, the probability density
to find one particle in x is

φ1(x) =
P1(n(δV))

dV
= c(x) (44)∫

V
φ1(x)dx = P1(n(V)) = n(V) (45)

2.3.2 1 D diffusion model

We start in our model from the one–dimensional Smoluchowski
equation, with direction x corresponding to the main diffusion di-
rection, that is the axis of the porin perpendicular to the bacterial
membrane,

∂φ(x, t)
∂t

=
∂

∂x
D(x)

(
∂φ(x, t)

∂x
+

φ(x, t)
kT

∂U(x)
∂x

)
(46)

where φ(x, t) is the probability density, D(x) the diffusion coeffi-
cient, U(x) the free energy of the molecule, k the Boltzmann con-
stant and T the absolute temperature.

In this equation the diffusion flux can be written as

J(x, t) = −D(x)

(
∂φ(x, t)

∂x
+

φ(x, t)
kT

∂U(x)
∂x

)
(47)

that leads to the continuity equation

∂φ(x, t)
∂t

+
∂

∂x
J(x, t) = 0 (48)

2.3.3 Steady state

Due to the nature of our system (really little translocations through
the porins) we can consider a quasi–stationary equilibrium. For this
reason the probability density is time–independent and ∂φ(x,t)

∂t = 0.

From Equation 48 we can state ∂J(x,t)
∂x = 0 and consider J(x, t) =

J0 =const. In this situation the steady state probability density φ(x)
satisfies the time–independent diffusion equation

− D(x)

(
∂φ(x)

∂x
+

φ(x)
kT

∂U(x)
∂x

)
= J0. (49)
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Substituting φ(x) = ψ(x) exp(−U(x)/kT) from Equation 49 follows

dψ(x)
dx

= −J0

exp
(

U(x)
kT

)
D(x)

(50)

and solving this differential equation, we get

ψ(x) = ψ0 − J0

∫ x

0

exp
(

U(x′)
kT

)
D(x′)

dx′, (51)

with ψ0 = ψ(0) representing an integration constant. Coming back
to the probability density, we obtain

φ(x) = ψ0e−
U(x)

kT − J0e−
U(x)

kT

∫ x

0

exp
(

U(x′)
kT

)
D(x′)

dx′. (52)

The values of J0 and ψ0 in Equation 52 can be calculated imposing
boundary conditions to our system.

2.3.4 Fixed concentration boundary conditions

We suppose our bacterial channel starting at x = 0 and finishing
at x = L and we fix the molecular concentration to the value c0
in x = 0 and cL in x = L. Assuming a sufficiently little value of
c0 and cL, we can consider both φ(x) and c(x) as a single–particle
probability density and we can assume the boundary conditions

φ(0) = c0 and φ(L) = cL (53)

and obtain from Equation 52 the two values

ψ0 = c0e
U0
kT and (54)

J0 =
c0e

U(0)
kT − cLe

U(L)
kT∫ L

0
exp
(

U(x)
kT

)
D(x) dx

. (55)

Substituting the ψ0 value from Equation 54 into Equation 52 we
obtain

φ(x) = e−
U(x)−U(0)

kT

(
c0 − J0

∫ x

0

exp
(

U(x′)−U(0)
kT

)
D(x′)

dx′
)

. (56)

If J0 = 0, we basically re–obtain the Boltzmann distribution with
his famous factor, but in a quasi–equilibrium steady state (J0 6= 0),
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the second term within brackets in Equation 56 give us the devi-
ation from a Boltzmann distribution, that depends from the local
diffusion too.

With our hypothesis of sufficiently little molecular concentrations
the probabilities to find one (p1) or zero (p0) particles into the bacte-
rial channel are respectively

p1 =
∫ L

0
φ(x)dx and p0 = 1− p1. (57)

To have an a posteriori filling of the goodness of our hypothesis
of little molecular concentrations, we have to be quite sure that
the concentration guarantees a negligible probability to have two
particles in the bacterial channel. Because our molecules are as-
sumed to be in a large number, independent between them and
we assume the theoretical same occupation probability in every
state of the phase space, we can assume a Poisson distribution as
stated in Section 2.3.1 and for this reason the probability to have
two molecule contemporaneously present in the bacterial channel
is p2 = 0.5p2

1 exp(−p1) = 0.5p2
1 + o(p2

1). If our molecular concen-
tration leads to a value of p1 such that p2 � p1 and we can safely
ignore p2, we can consider φ(x) as the one–particle probability den-
sity.

Assuming the same free energy on each side of the channel
(U(0) = U(L) = U0) and independence of the diffusion constant
on x (D(x) = D =const), we can write

J0 = −D · ∆c
l(L)

(58)

l(x) =
∫ x

0
exp

(
U(x′)−U(0)

kT

)
dx′ (59)

with ∆c = cL − c0. The function l(x) may be called effective length
of the channel and

• if U(x) = U(0) =const, then l(x) = x,

• if U(x) < U(0) (binding), then l(x) < L and

• if U(x) > U(0) (barrier), then l(x) > L.

With these hypothesis the probability density reads

φ(x) = e−
U(x)−U(0)

kT

(
c0 + ∆c

l(x)
l(L)

)
(60)

and in this case we note an independence on the diffusion constant.
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Assuming an uniform free–energy along all the channel (U(x) =
U0 =const), we get respectively from Equation 58, Equation 60 and
finally Equations 57 and 62

J0 = −D · ∆c
L

, (61)

φ(x) = c0 + ∆c · x
L

, (62)

p1 =
c0 + cL

2
L. (63)

Considering a slightly more complicated free–energy profile with
a rectangular profile of magnitude ∆U and width ∆l starting from
the position x = X0, then the effective free–energy and channel
length assume the form

U(x) = ∆U · rect
(x− x0

∆l

)
(64)

l(L) = e
∆U
kT ∆l, (65)

where rect(x) = θ(x)− θ(x− 1) assumes the value one for x ∈ [0, 1],
being θ(x) the Heaviside step function. We can see from Equation
65 an exponential increase or decrease of the effective length if we
have a rectangular barrier (∆U > 0) or well (∆U < 0). Having a
barrier composed of one rectangular well followed by one barrier

U(x) = −|∆U−| · rect
(x− x−

∆l−

)
+ |∆U+| · rect

(x− x+
∆l+

)
, (66)

we obtain the following effective length

l(L) = e−
|∆U−|

kT ∆l− + e
|∆U+ |

kT ∆l+. (67)

From this equation we can see that, if ∆U+ � kT, the largely dom-
inant term in the effective length is the barrier and, having a se-
quence of barrier, the dominant one is the one with the highest
value.

2.3.5 Models to calculate free–energy profiles

In the following part we considerate a way to calculate, under cer-
tain hypothesis, the free–energy profile through our model. The
basic assumption is a diffusion current null (J0 = 0), that can be
reached at equilibrium. Following Equation 56, the new probability
density becomes

φ(x) = e−
U(x)−U(0)

kT c0. (68)

Considering the different hypothesis on the joined effect of the finite
channel and molecule size, we obtain different cases.
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2.3.5.1 Point–like molecule.

Assuming a molecule size much smaller than the one of the chan-
nel, then the concentration of the molecules (and for what stated in
Sections 2.3.1 and 2.3.4 the probability density too) is proportional
to the cross section S(x) of the channel, with

φ(x) = cVS(x), (69)

and cv representing the volume concentration assumed constant in
the channel. By Equations 68 and 69 and assuming c0 = cVS(0), we
obtain

U(x)−U(0) = −kT ln
(

S(x)
S(0)

)
. (70)

This last equation shows clearly the appearance of a steric barrier
when the section of the channel restricts.

2.3.5.2 Finite–sized small spherical molecule.

If the size of the molecule is much smaller than that of the channel,
but still finite, then one may model it by a ball with the average
cross section Sm. In this case we replace in Equation 70 the cross
section S(x) with the available area, that is A(x) = S(x) − Sm. In
this case the new free–energy will be

U(x)−U(0) = −kT ln
(

A(x)
A(0)

)
. (71)

2.3.5.3 Channel/molecule Gaussian size fluctuations.

When the molecule cross section becomes comparable to the one of
the channel (this is particularly true near to the constriction region
assumed located in x = xc), the fluctuations in the channel and
molecule cross sections start to be important to allow the molecule
to cross the channel.

If we assume a fluctuation in the channel cross section, with the
corresponding probability density in position x given by fc(sc, x)
and the fluctuations of the molecule due to non–spherical form and
conformational movements characterised by the probability density
fm(sm), then the probability to find the available area at position x
in the channels becomes

fa(sa, x) =
∫∫

fc(sc, x) fm(sm)δ(sc − sm − sa)dscdsm =

=
∫

fc(sm + sa, x) fm(sm)dsm.
(72)
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Since only positive values of instant available area make sense, the
average available area in position x is

A(x) =
∫ ∞

0
sa fa(sa, x)dsa. (73)

Having a new available area, the steric contribution to the free–
energy can still be calculated through Equation 71.

If the channel and molecular fluctuations are Gaussian and have
average values of Sc(x) and Sm and dispersion of σc(x) and σm, then
fa(sa, x) is also Gaussian, with mean value Sa(x) = Sc(x)− Sm and
dispersion σ2

a (x) = σ2
c (x) + σ2

m. The average available area is

A(x) =
∫ ∞

0
sa

exp
(
− (sa−Sa(x))2

2σ2
a (x)

)
√

2πσ2
a (x)

dsa. (74)

If the channel is much wider than the molecule (Sc(x) >> Sm),
then A(x) ≈ Sc(x) − Sm and we have the result of Section 2.3.5.2.
In the other limit of a narrow channel and a thick molecule, we
have Sc(x) < Sm and (Sm − Sc(x))/σa(x) � 1 and we can limit the
integration in Equation 74 only around zero in a small interval of
the order of magnitude of σ2

a (x)/Sa(x) where

exp
(
− (sa − Sa(x))2

2σ2
a (x)

)
≈ exp

(
− sa|Sa(x)|

σ2
a (x)

)
exp

(
− S2

a(x)
2σ2

a (x)

)
(75)

and we obtain the following estimate

A(x) ≈ 1√
2π

σ3
a (x)

S2
a(x)

exp
(
− S2

a(x)
2σ2

a (x)

)
(76)

Substituting Equation 76 in Equation 74, we obtain

U(x)−U(0) ≈ kT
(

ln(2π)

2
+ ln

(
S2

a(x)
σ2

a (x)

)
+

S2
a(x)

2σ2
a (x)

+ ln
(

Sa(0)
σa(x)

))
≈ kT

(
1 +

S2
a(x)

2σ2
a (x)

+ ln
(

Sa(0)
σa(x)

))
,

(77)
where the last approximation follows from ln(2π)/2 ≈ 1 and from
the little assumed by the second logarithmic term compared to the
third linear one.

2.3.5.4 Asymmetric channel cross section fluctuations.

If we suppose a small asymmetry of the channel cross section distri-
bution, it can be considered in a generalised Gaussian distribution
with a probability distribution function

a(u, γ, η) =
eφ(u,γ,η)

N(γ, η)
(78)
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with

φ(u, γ, η) = −1
2

u2 +
γ

6
u3 − η

γ2

64
u4 and (79)

N(γ, η) =
∫

eφ(u,γ,η)du. (80)

The probability distribution function a(u, γ, η) is an integrable func-
tion at η > 0, has a single maximum at u = 0 if η ≥ 1 and has a
concave phase (dφ(u,γ,η)

du ≤ 0) if η ≥ 4/3.
For small γ values, one obtains for the norm N(γ, η) and for the

lower raw moments valid up to the second order on γ these values

N(γ, η) =
√

2π

(
1 + γ2 3

8

(
5
9
− η

8

))
+ o(γ2), (81)

α1 =
∫

a(u, γ, η)udu =
γ

2
+ o(γ2), (82)

α2 =
∫

a(u, γ, η)u2du = 1 + γ2 3
8

(
10
3
− η

2

)
+ o(γ2), (83)

α3 =
∫

a(u, γ, η)u3du =
5γ

2
+ o(γ2), (84)

α4 =
∫

a(u, γ, η)u4du = 3 + γ2 3
8

(
100
3
− 4η

)
+ o(γ2). (85)

When η ≥ 1, we can use a(u, γ, η) as an uni–modal probability
density function with a single maximum at u = 0 and respectively
the following asymptotic expressions for the average, the variance,
the skewness and the excess kurtosis

u = α1 =
γ

2
+ o(γ2), (86)

σ2 = (u− u)2 = 1 + γ2
(

1− 3
16

η

)
+ o(γ2), (87)

γ1 =
(u− u)3

σ3 = γ + o(γ2), (88)

γ2 =
(u− u)4

σ4 − 3 = 3γ2
(

1− 1
8

η

)
+ o(γ2), (89)

2.3.5.4.1law of big numbers considerations . If the distri-
bution of interest comes from the sum of n equivalent random vari-
ables, then

γ1 =
γ0

1√
n

and γ2 =
γ0

2
n

, (90)
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with γ0
1 and γ0

2 representing the skewness and excess kurtosis of
the distribution of a single variable, respectively. Thus, γ1 and γ2
are small numbers at large n and one concludes

γ2

γ2
1
=

γ0
2

(γ0
1)

2
= 3

(
1− 1

8
η

)
+ o
(

1
n2

)
. (91)

Therefore, the parameter η is determined by the ratio γ0
2

(γ0
1)

2 .

2.3.5.4.2extended diffusion approximation considera-
tions . At η = 8 we have γ2 = 0 and therefore the forth cu-
mulant of the distribution is zero: κ4 = 0. This may be attributed
to the extended diffusion approximation with retains the first three
cumulants (κ1, κ2 and κ3), but neglects all the others.

2.3.5.4.3maximum entropy considerations . The entropy of
the distribution a(u, γ, η) is

H(γ, η) = −
∫

a(u) ln(a(u))du =
1
2

α2 −
γ

6
α3 +

ηγ2

64
α4 + ln(N)

=
1
2

ln(2πe) + γ2
(

25
24
− η

3
16

)
+ o(γ2).

(92)
At the end one concludes that asymptotically, at small γ, the en-

tropy increase linearly with decreasing η. Thus the asymptotically
maximum–entropy distribution with a given skewness and concave
phase (dφ(u,γ,η)

du ≤ 0) is located at η = 4/3.
This distribution is

b(u, γ) = a(u, γ, 4/3) =
eφ(u,γ)

N(γ)
, (93)

with the following asymptotic conditions

φ(u, γ) = −1
2

u2 +
γ

6
u3 − γ2

48
u4, (94)

N(γ) =
√

2π

(
1 +

7
48

γ2
)
+ o(γ2), (95)

u =
γ

2
+ o(γ2), (96)

σ2 = 1 +
3
4

γ2 + o(γ2), (97)

γ1 = γ + o(γ2), (98)
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γ2 =
5
2

γ2 + o(γ2), (99)

H(γ) =
1
2

ln(2πe) +
19
24

γ2 + o(γ2). (100)

Because the phase φ(u, γ) has a single zero of the second deriva-
tive at u = 2/γ, i. e. φ(2/γ, γ) = 0, the distribution function b(u)
may be presented in an alternative form

b(u, γ) = − e
− 1

γ2−
1
3

2
γ (u−

2
γ )−

γ2
48 (u−

2
γ )

4

N(γ)

= − e
− 1

γ2−
1
3

2
γ (u−

2
γ )

N(γ)

(
1 + O

((
u− 2

γ

)4
))

.

(101)

From last equation we conclude that

• function b(u, γ) has an exponential long tail at u ≈ 2/γ,

• at u > 2/γ the function b(u) decays as the forth power in the
exponent (b ∼ e−γ2u4/48) and

• around the maximum u ≈ 0 the function b(u) is Gaussian.

Finally, the asymmetric distribution of the channel cross section
area may be expressed as

f (sc, x) =
1

σ0(x)
b
(

sc − S0(x)
σ0(x)

, γ(x)
)

, (102)

where the parameters may be calculated by the measured average
Sc(x), the variance σ2

c (x) and the skewness γ1(x), by using the fol-
lowing formulas

S0(x) = Sc(x)− γ1(x)σc(x)
2

, (103)

σ2
0 (x) =

σ2
c (x)

1 + 3
4 γ2

1(x)
, (104)

γ(x) = γ1(x). (105)

Note that the above relations assume small γ values. It is probably
reasonable to assume γ ≤ 0.5. If γ1(x) > 0.5 for some x values, then
one may probably fix γ = 0.5 having probably still a better result
than with a pure Gaussian.
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3.1 microsecond and sub–microsecond channel gat-
ing

As a case study of the methods described in Section 2.1 we anal-
ysed the electrophysiology data referred to Meropenem in OmpF.
These data are particularly suitable to check the post–elaboration
method, because the classical methods fail with the couple Meropen-
em/OmpF because the blockages are under their resolution.

3.1.1 Experimental configuration

We used data obtained from an experimental configuration having
a 1M KCl concentration, a pH=6 and a -50mV voltage. The filter ap-
plied is a 4–pole (4–order) low–pass Bessel filter at cut–off frequency

39
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Set ID c (mM) fs(kHz)

1 0;2.5;5.0;7.5;9.0 50

2 0;2.5;5.0;7.5;10.0 50

3 0;5.0;10.0;12.5;15.0;20.0;23.0 50,250

4 0;5.0;10.0;12.5;15.0;20.0;24.0 50,250

5 0;5.0;10.0;12.5;15.0;20.0;24.0 50,250

Table 1: List of parameters (ID for the set, concentration c of Meropenem
and sampling frequency fs) used for the five independent mea-
sures of Meropenem in OmpF.

fc = 10 kHz (ω0 ≈ π fc) with the following absolute square of the
transfer function

|Ha(ω)|2 =
11025(

ω
ω0

)8
+ 10

(
ω
ω0

)6
+ 135

(
ω
ω0

)4
+ 1575

(
ω
ω0

)2
+ 11025

(106)
There was five set of measures described in Table 1. With different

values of OmpF concentration c and sampling frequency fs.

3.1.2 Results

The available sets of data described in Table 1 were divided in three
independent data records named I, II and III. In the case of fs = 50
kHz each record lasts 5 seconds, when fs = 250 kHz each record
lasts 4 seconds for a total number of values respectively of 2.5 · 105

and 1.0 · 106 events respectively.
If we analyse the behaviour of the current histogram when

Meropenem is inserted, we can observe (Figure 10) the absence of
a secondary peak that sometimes happens around the value of the
dropped current (monomer occupied by the drug).

What can be seen is only a widening of the current distribution,
but not evidence of the appearance of a second peak can be stated
at first glance.

The autocorrelation function is calculated for τ up to τmax = 20
ms for fs = 50 kHz and up to τmax = 4 ms for fs = 250 kHz.

If we calculate Gs( f ), that is the signal PSD, subtracting from the
PSD of the signal the one of the background (signal recorded before
inserting the antibiotic, i. e. for c = 0), using the data set number 3

in Table 1 we obtain the results shown for data records I, II and III
and for fc = 50 kHz and fc = 250 kHz in Figure 11 panel A and B.
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Figure 10: Histogram of the current distribution with or without a 10 mM
Meropenem concentration.

In Figure 11 we can see the PSD of each of the three records. If
we fit these data with respect to the PSD in Equation 8, using the
range of f ∈ [1, 25] kHz to avoid the large fluctuations observed
below 1 kHz, we can obtain only an upper limit for τc (respectively
τc < 0.01 ms for fc = 50 kHz and τc < 0.005 ms for fc = 250 kHz).
For this reason, if we fix τc = 0, we obtain from the fitting procedure
a = 2.6 pA2 kHz−1 and a = 2.7 pA2 kHz−1 in the two cases, with a
comparable dispersion for the records I, II and III. From the figure
we can see how the sampling filtering assume a littler weight when

the sampling frequency increases, because |Hs(ω)|2 =
(

sin(0.5ω∆t)
0.5ω∆t

)2

with ∆t representing the sampling interval. In the panel B is shown
also the result we would have without applying any filter. We can
see immediately a difference with the real values in the figure. In
this case (we calculate this values only to compare them with the
ones obtained with the new procedure) the fitted parameters are
a = 3.5 pA2 kHz−1 and τc = 0, 03 ms.

In Figure 12 we can see a pretty linear trend of a and ∆j as a func-
tion of c (the error bars shown are the maximum between the fitting
error and the error due to averaging between the three records I, II
and III). For this reason we can assume the approximations in Equa-
tion 6 and 7 (Section 2.1) are good and we can apply the method
number 3 described in Section 2.1.3.3 to the set number 3 in Table 1.
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Figure 11: PSD of the ion current fluctuations sampled (A) at 50 kHz and
(B) at 250 kHz. The thick solid lines represent the fitting ob-
tained using the formula in Equation 8. The black dotted line
is the fitting calculated without the sampling filtering and, only
for panel B, the red dotted line is the result of the fitting com-
puted without any filter. The data set used is the number 3 in
Table 1 for c = 10 mM.

The fitted values are displayed in Table 2 and the kinetic parameters
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Figure 12: Lorentzian factor (panel A) and average ion current shift (panel
B) as a function of Meropenem concentration. In every panel
the red triangles refer to the 50 kHz data and the black circles to
the 250 kHz data. The fitting parameters are obtained using the
method number 3 in Section 2.1.3.3 and the results are shown in
Table 2. The data set used is the number 3 in Table 1 for c = 10
mM.

in Table 3. Finally the same kinetic parameters are shown for all the
sets in Table 4, but only for the sampling at 50 kHz.
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fs(kHz) ba r bj

50 0.293 (0.019) 0.0029 (0.0011) 0.688 (0.015)
250 0.297 (0.013) 0.0031 (0.0008) 0.678 (0.020)

Table 2: Fitting parameters for ion–current fluctuations (data set 3 in Table
1) obtained with the method 3 in Section 2.1.3.3. In round brackets
are displayed absolute error estimates.

fs(kHz) ∆j (pA) koff (ms−1) kon (ms−1M−1)

50 80 (30) 700 (250) 2030 (140)
250 72 (16) 660 (150) 2060 (140)

Table 3: Kinetic parameters for ion–current fluctuations (data set 3 in Table
1) obtained with the method 3 in Section 2.1.3.3. In round brackets
are displayed absolute error estimates.

Set ID ∆j (pA) koff (ms−1) kon (ms−1M−1)

1 NA NA 800 (500)
2 NA NA 800 (400)
3 80 (30) 700 (250) 2030 (140)
4 140 (70) 1200 (600) 1500 (100)
5 80 (20) 750 (200) 2030 (140)

Table 4: Kinetic parameters for ion–current fluctuations (data set 3 in Table
1) obtained with the method 3 in Section 2.1.3.3. In round brackets
are displayed absolute error estimates. All data set are sampled at
50 kHz.
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Set ID ∆j (pA) koff (ms−1) kon (ms−1M−1) K (M−1) Kcp (M−1)

1 73 (2) 370 (100) 800 (400) 2.2 NA
2 70 (2) 340 (80) 800 (400) 2.3 NA
3 66 (2) 600 (40) 2030 (120) 3.4 3.6
4 66 (2) 540 (40) 1430 (110) 2.6 2.1
5 68 (2) 580 (50) 2000 (200) 3.4 3.3

Table 5: Kinetic parameters for ion–current fluctuations (data set 3 in Table
1) obtained with the method 4 in Section 2.1.3.3. In round brackets
are displayed absolute error estimates. All data set are sampled at
50 kHz and Kcp are the equilibrium binding constants obtained
from the conductance probe method [15].

From Table 4 we can see that kinetics parameters for sets 1 and
2 are not available. This is due to the big uncertainty (almost 100%)
in fitting parameters. Using the results of sets 3, 4 and 5 for ∆j
one can infer that, within the uncertainty error, ∆j equals 1/3 of
the open state trimer ion current, supposing each monomer blocks
completely the ionic current. Taking this assumptions we can use
the method number 4 described in Section 2.1.3.4 and re–analyse
all data sets of Table 1. The results are listed in Table 5. In this
table we can see how from the results obtained it is possible to get
equilibrium binding constants K in good agreement with the one
obtainable with the conductance probe method [15].

Within this thesis we are mostly interested on the residence
times τres obtainable from this method. Using the data sampled
with a frequency of 50 kHz or 250 kHz, we obtain in both cases
τres = (1.5± 0.4) µs, that is around 1/50 of the one obtainable with
standard current analysis [19].

3.1.3 Sub–microsecond events.

Using the method in Section 2.1.4 and in particular basing our cal-
culations on Equation 35, we already saw that for a typical 4–order
Bessel filter with 10 kHz cutoff frequency, assuming 3 active chan-
nels, cr = 0.1, ∆j = 50 pA and σ2

op = 10 pA2, then the detectable ko f f

may be as high as 2.5× 106
1/s, giving a residence time τres=400 ns.

This result is important because it give us, with a standard electro-
physiology equipment, one detectable time more than two orders of
magnitude littler than f−1

c .
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ID N 〈τ〉 (s) 〈τ〉·ln 2
τmedian

〈τ〉
σ p–value

Oxygen1 50 5.51·10−10
0.968 0.989 0.789

Oxygen2 50 2.61·10−9
1.07 1.09 0.988

Water1 29 2.15·10−10
0.693 1.68 0.0679

Water2 29 1.15·10−8
0.772 1.42 0.0119

Table 6: Results of statistical analysis of time series from different exits
from the HOD catalytic box. ID represents the code identifying
every series of simulations. N, 〈τ〉, τmedian and σ represent respec-
tively the number, the arithmetic average, the median and the stan-
dard deviation of data composing every series. Finally p–value is
referred to a KS test to check the correspondence of every series
with a Poisson distribution.

To make sure about this method, we applied it again to the same
set of measures as in Section 3.1.2 obtaining the same results. This
confirms the goodness of this method that, moreover, can easily give
a really good lower limit for detectable times.

3.2 transition times from metadynamics

To check the method [7,30] described in Section 2.2.1 we performed
some simulations. We wanted first to have a feeling on the presence
of events classifiable as Poissonian in a biological system and know
with which level of confidence the KS test can be passed. For this rea-
son we started analysing the times obtained in two events occurring
in times allowing to be simulated through classical MD simulations:
the case studies are the exit time of a molecule of Oxygen first and
water later from a catalytic box located in the inner part of the pro-
tein 1–H–3–hydroxy–4–oxoquinaldine–2,4–dioxygenase (HOD) [37].
In Figure 13 is shown a representation of HOD and some residues
of the catalytic box.

3.2.1 Exit times from the catalytic box in HOD

In the case of oxygen and water exit from the HOD catalytic box we
performed two series of fifty and twenty–nine classical MD simula-
tions respectively and recorded the times. The simulations started
with different initial conditions for the oxygen and the water. After-
wards we applied the KS test obtaining the results listed in Table
6.
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Figure 13: Representation of the protein HOD (cartoon representation)
and the catalytic triad in its inner part (Histidine 251 in green,
Aspartic acid 126 in orange and Ser 101 in red).

From table 6 we can see that despite the apparent similarity of the
system to be simulated in the cases named Oxygen1 and Oxygen2

all the test are passed (with really good results in the case Oxygen2),
but, in practice1, not one case involving water passed the statistical
tests, despite the relatively simple event analysed (water leaving a
reactive box).

These results let us understand how complex can be a complete
translocation of an antibiotic through a porin. During the translo-
cation an antibiotic often meets very different conditions in terms
of electric fields, available space, flexible loops and so on, that can
strongly influence with various effects the translocation seen as a

1 The case Water1 has a p–value of 0.0679. This value is bigger than the minimum
admissible value of 0.05, but, considering the low p–value obtained by Water2,
we can say that both cases did not pass the KS test.
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whole. For this reason it is quite obvious to do not expect to see
very good results in statistical tests applied to translocation times
obtained with the method FMTD (Section 2.2.1).

3.2.2 Translocations of Meropenem and Meropenenum through OmpF

To test the applicability of the FMTD method to translocations, we
simulated the transit of antibiotics (Meropenem and Meropenenum)
through bacterial channels (OmpF) inserted in a lipid bilayer (Fig-
ure 4) in a explicit solvent simulation. The system is simulated with
the ACEMD [34] software with a PLUMED plugin version 1.3 [35], the
interactions are based on the AMBER 99SB–ILDN force field [36] for
the OmpF, tip3p for water [38] and GAFF for lipids and substrates [39].
Visualization and plotting of molecular interactions, as well as mea-
surement of the most stable interactions, are done with VMD soft-
ware [40].

We chose to simulate Meropenem and Meropenenum because
they are isomers differing only for their geometrical position of
elements. Despite the little differences between them (Figure 14)
they show a big clinical difference with Meropenem, which is com-
monly used to treat bacterial infections, and with Meropenenum,
that shows instead a really low antibacterial effectiveness.

Figure 14: Comparison of the chemical structure of Meropenem and
Meropenenum displaying only little geometrical differences be-
tween them. Note the dipole momentum of the two drugs.

The target of these antibiotics is located in both cases into the
bacterium, so we expect a possible difference between the perme-
ability of Meropenem and Meropenenum through OmpF to explain
their different clinical effectiveness. A difference in permeability is
directly related to a difference in the times needed for these drugs to
enter the porin (in this case OmpF) and cross it. Because of almost
identical electrical properties of these two drugs, we guess a similar
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Drug Ebias (kcal/mol) fbias (ps) Tbias (K) Tsim (K) N

Meropenem 50 5 3000 300 17

Meropenenum 50 5 3000 300 17

Table 7: List of the parameters which have been used in WTMT simula-
tions for Meropenem and Meropenenum.

rate of entrance into the porin [28]. For this reason we simulated the
transport starting with the molecules already inside the porin, in
the extracellular part, with a wall impeding them to exit again from
OmpF. In MT simulations we biased two CVs. The first biased CV
is the difference between the position of the center of mass (CM)
of Meropenem/Meropenenum and the CM of the monomer where
the antibiotics were captured (in both cases always the monomer
number one). To take into account the dipole moment of the drugs,
the second CV biased is the projection along the Z axis (parallel to
the OmpF translocation direction) of the distance between the two
atoms displayed (only for Meropenenum, because the atoms are the
same also for Meropenem) in Figure 15.

The parameters that have been used in the simulation are sum-
marised in Table 7.

3.2.2.1 Meropenenum

The KS test was initially not passed for all the 17 simulations of
Meropenenum. To explain this difference we noted a correlation
between the anomalously big times and the distance between the
ASP121CG and TYR124OH atom in OmpF. Namely all the 10 faster
translocations have a distance ASP121CG–TYR124OH around 4 Å
and with little fluctuations when Meropenenum crosses the con-
striction region (this is the bottleneck in the transport process) and
between the remaining 7 slower translocation show a much wider
fluctuation around 5 Å for the same distance ASP121CG–TYR124O
(Figure 16).

We believe this regularity can not be fortuitous, because, as ex-
plained in Section 3.2, a wrong CV for a trajectory will produce a
perturbation in the Hamiltonian not corresponding to a real help to
translocate. For this reason the acceleration factor calculated with
the FMTD method will be bigger and will produce an anomalously
big time. Instead little times are more likely to be correctly helped
by the chosen bias. To confirm this idea we performed the KS test to
the series of all the times and the series obtained selecting only the
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Figure 15: Representation of Meropenenum with a superimposed oriented
distance between the two atoms (displayed as big spheres) cho-
sen in the second CV biased in MT simulations.

transition occurring in a configuration “fast” referred to Figure 16.
The results of the whole statistical tests [30] are shown in Table 8).

As we can see from these results, if we consider the whole set of
simulated times, not one statistical test is passed, while considering
only the trajectories showing the “fast” behaviour of the distance
ASP121CG–TYR124OH, as described in Figure 16, every statistical
test can be considered passed, in spite of the little number of data,
considering the complexity of the simulated system. Based on these
consideration we can say that the two CVs, which are used for bias-
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Figure 16: Comparison of the distance between the atom ASP121CG and
TYR124OH during a fast (∼ 10−4 s) and slow (∼ 10−1 s) translo-
cation event of Meropenenum through OmpF. Note the differ-
ent behaviour of this distance when the antibiotic goes quickly
to negative values crossing the porin.

ing in MT simulations, are relevant for Meropenenum to let it cross
the OmpF when the system shows a “fast” behaviour of the distance
ASP121CG–TYR124O. For sure we can not state that these two CVs
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ID N 〈τ〉 (s) 〈τ〉·ln 2
τmedian

〈τ〉
σ p–value

Meropenenum (all) 17 2.6·10−1
84.5 0.367 0.000

Meropenenum (“fast”) 11 1.9·10−3
0.769 0.831 0.660

Table 8: Results of statistical analysis of time series transition times in the
case of Meropenenum in OmpF. The results obtained using all the
trajectories do not show a Poissonian behaviour, but using only
the “fast” translocations (i. e. the events showing a “fast” distance
ASP121CG–TYR124OH as depicted in Figure 16) statistical tests
are passed with good results.

ID N 〈τ〉 (s) 〈τ〉·ln 2
τmedian

〈τ〉
σ p–value

Meropenem (all) 17 2.6·10−2
19.8 0.293 0.000

Meropenem∗ 15 2.9·10−3
2.36 0.421 0.080

Table 9: Results of statistical analysis of translocation times obtained with
the FMTD method. Considering all simulations the test is not
passed. To pass the test, but still with really poor results, we must
eliminate arbitrarily the two slowest translocation times (results
shown in Meropenem∗).

are the only ones influencing the translocation in this case, but from
results they seem to be the most relevant. In the general case (“slow”
events) these CVs play a role, but some other CVs, not considered,
influence the translocation and determine the increased biasing in
the Hamiltonian and the consequent anomalously big times.

3.2.2.2 Meropenem

Simulating Meropenem we performed 17 simulations, but we
did not observe a correlation between the distance ASP121CG–
TYR124O and the time obtained with the FMTD method (namely
sorting the events by time it is not possible to note any correlation
between transition times and distance ASP121CG–TYR124O). More
or less all the simulations show always a similar behaviour with a
distance between these two atoms typically littler than in the case
of Meropenenum and having two states: around 5 Å and around 7

Å (see Figure 17).
Applying the FMTD method to all 17 simulations we obtained the

results listed in Table 9.
These last results show statistical tests barely passed eliminating

arbitrarily some of the slowest translocation times. The CVs cho-
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Figure 17: A typical behaviour of the distance between the atoms
ASP121CG and TYR124OH during a translocation. This be-
haviour can be observed both in trajectories having transition
times locate before or after the 50th percentile of translocation
times. There is not evidence of a correlation between the dis-
tance ASP121CG–TYR124O and the translocation time.

sen seem to have some influence in translocation, because they still
show times roughly distributed as a Poissonian, but for sure some
relevant CVs are missed and cause the poor results in our tests. As
before it seems that our CVs accumulate biasing in the Hamilto-
nian without producing a real help to translocate. With the FMTD
method this case produce apparently big transition times realisti-
cally having not a correspondence in a translocation occurring in
nature.

3.2.2.3 Meropenem vs. Meropenenum

Coming back to our original goal, that is to justify the different ef-
fectiveness of the considered antibiotics through eventually faster
translocations in Meropenem than in Meropenenum as described in
Section 3.2.2, we can compare the average time obtained using all
the times obtained with Meropenem and Meropenenum (see Table
9 and 8). We can see at first glance a much littler average translo-
cation time in Meropenem (2.6·10−2 s) compared to Meropenenum
(2.6·10−1 s).



54 results

Meropenem (s) Meropenenum (s)

4.8·10−7
7.2·10−5

1.1·10−5
2.5·10−4

4.6·10−5
5.6·10−4

9.9·10−5
8.8·10−4

1.4·10−4
1.1·10−3

1.9·10−4
1.7·10−3

3.7·10−4
1.7·10−3

8.6·10−4
1.8·10−3

9.0·10−4
2.2·10−3

1.1·10−3
2.3·10−3

1.5·10−3
5.9·10−3

1.8·10−3
6.9·10−3

3.9·10−3
8.4·10−3

5.7·10−3
5.5·10−2

2.7·10−2
3.5·10−1

2.9·10−2
1.3

3.6·10−1
2.8

Table 10: Comparison of sorted translocation times obtained with the
FMTD method for Meropenem and Meropenenum. See the sys-
tematically shorter times of Meropenem with respect to Merope-
nenum. This trend is particularly clear for events littler than the
median.
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Moreover, sorting the time series obtained with the FMTD
method for our two antibiotics and comparing them one by one with
the element in the same ranking (Table 10) we can stress systemat-
ically shorter times for Meropenem with respect to Meropenenum,
with a particular evidence roughly for times shorter than median.
If we consider, as already stated in Section 3.2, that the FMTD
method, practically, never underestimate the transition times, we
can argue that, at least for the faster trajectories, where no extra
bias seems to be deposited in MT, Meropenem result always faster
than Meropenenum. We can connect this difference with the bigger
clinical effectiveness of Meropenem, thanks to the argumentation
given in Section 3.2.2. Considering the faster events recorded for
Meropenem, they can be considered as possible real translocation
times impossible to detect in electrophysiology without the post–
elaboration method described in Section 2.1.

Summarising, the CVs which have been used in our MT simula-
tions seems to play a role in translocation, but, given the complex-
ity of the systems simulated, they can not give a full explanation
of the whole translocation process except in some particular case
(e. g. “fast” events in Meropenenum). Nevertheless it is still possible
to have good hints of different effectiveness from the translocation
times of Meropenem and Meropenenum as described in this Sec-
tion. Thanks to these preliminary studies, we addressed ourselves
to a different approach to the translocation events, similar to the
MSM [41] one. Highlighting the presence of a series of metastable
states in FESs obtained from translocation MD simulations and cal-
culating through the FMTD method the transition times between
these metastable states, it is possible [31] to have a more flexible and
detailed picture of the whole transport process.

3.3 verification of a translocation model

To check our model we focused mainly on Section 2.3.5. In particular
we want to compare the free–energy obtained from the model with
the ones obtained from WTMT simulations. This approach leads to
evaluate the goodness of the hypothesis of our model, but, as the
molecule to translocate becomes more complex, arise doubts about
the reliability of WTMT simulations as a "true" free–energy, due to
the problems evidenced in Section 3.2. The basic formula to be used
is Equation 71 and for this reason we need to estimate the available
area for the molecule, that is A(z) = S(z)− Sm, with S(z) and Sm
representing respectively the cross section of the channel and of the
molecule studied.
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3.3.1 Estimation of cross section of OmpF

In our case we consider as a channel the OmpF bacterial porin. We
calculated (with a resolution of 0.5 Å for z) the cross section S(z)
numerically estimating for every monomer composing the OmpF
trimer the free space available. We did that (for details about simu-
lation see e. g. [42]) simulating via classical MD a system containing
OmpF with explicit solvent and a lipid bilayer as bacterial mem-
brane and considering the average free space in the inner part of
a right circular cylinder having its axis parallel to the axis through
the center of the monomer and perpendicular to the bacterial mem-
brane. We varied the radius of this cylinder increasing it by one
Angstrom from 14 Å to 18 Å. What we get is the general result de-
picted in Figure 18. From this figure we note a general increase of

Figure 18: Average free cross section in first OmpF monomer for different
radii of the used cylinder in the first monomer.

the available cross section when the cylinder radius becomes larger
and brings more space in the larger zones of OmpF near the its outer
part. This should suggest a even larger radius to take in account the
whole free cross section even in the outer parts, but if we have a look
in a detail on the available area close to the constriction region (Fig-
ure 19), we can note an increase of the cross section for cylinder ra-
dius bigger than 16 Å. This phenomenon have a strong influence in
translocations because the constriction region is the one with bigger
steric increase of free–energy. The explanation of this event resides
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Figure 19: Detail of the free cross section in first OmpF monomer for differ-
ent radius of the used cylinder in the first monomer. We can not
an increase of the cross section near to the constriction region
for cylinder radius greater than 16 Å.

in the vacuum space available between every monomer (Figure 4):
when the radius increase to values bigger than 16 Å, some of the
free vacuum space between each monomer starts to be erroneously
computed as free available space for the translocation. Taking into
account these arguments, we choose as best representation of the
cross section the one coming out from the cylinder with a radius of
16 Å.

Considering this radius we can see a similar trend for cross sec-
tion in all monomers, with only little differences in monomer three
(Figure 20).

With the same set of MD simulations described before in this sec-
tion, we calculate also along the z axis the variance and the skew-
ness of OmpF’s cross section, that is useful to estimate the distribu-
tion of fluctuations in this area.

3.3.2 Free–energy calculation from the model

Given a particle that try to cross the channel, the calculation of the
free–energy from the model can be performed in different ways de-
pending on the hypothesis done.

The available cases that can be compared are three:
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Figure 20: Comparison of cross section of each of the three monomers in
OmpF for a cylinder radius of 16 Å.

• the simple geometrical case obtained from Equation 71 consid-
ering A(x) = 〈S(x)〉 − 〈Sm〉, with 〈S(x)〉 and 〈Sm〉 represent-
ing the average value, obtained from MD simulation, of the
cross section of the channel and the molecule respectively,

• the Gaussian case, where we use the calculated average and
variance of both channel and molecule cross section and after
we use them to obtain through Equation 74 the available area
to be substituted in Equation 71 to get the new free–energy
values from model,

• the case of a generalised asymmetric Gaussian, obtained us-
ing the asymmetric distribution of the channel cross section
derived from Equation 102 to calculate through Equation 73

the available area to insert in Equation 71.

In Figure 21, 22 and 23, we show how these different ways to
calculate free-energy perform changing the Van der Waals radius of
the spherical atoms supposed to translocate through the channel.

We can see from this sequence of graphs that the way we calcu-
late A(x) in Equation 71 influence the free–energy calculated with
our model. In Figure 21 the radius is still little (0.5 Å) compared to
the approximated radius of the constriction region (more or less 3

Å). For this reason the geometric and Gaussian model perform bet-
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Figure 21: Comparison of the free energy values obtained using different
ways (geometrical, Gaussian and Gaussian generalised) to calcu-
late A(x) in Equation 71 (the channel parameters are calculated
as stated before using a cylinder radius of 16 Å). In this case a
spherical atom having a 0.5 Å radius translocate through OmpF.

ter than the asymmetric Gaussian one, because the approximations
used in the last model still do not match well with this case. When
(Figure 22) the cross section of the atom that have to translocate
(spherical atom with radius 3.5 Å) starts to be slightly bigger than
the constriction region cross section, the geometrical model fails to
calculate the free–energy in the smallest channel region and we can
see a straight line in the Figure, due to not available (logarithm of
negative quantities in Equation 71) data. The remaining two models
show instead a good match in this smallest region and this means
an almost purely Gaussian fluctuation of the channel for small fluc-
tuations around the average cross section value. The last case (Fig-
ure 23) is obtained with a spherical atom (radius 5.5 Å) having a
cross section much bigger than the one in the constriction region.
In this case (apart from the always more evident failure of the geo-
metric model) we see smaller values with the Gaussian generalised
model than with the simple Gaussian model. We believe the values
obtained with the Gaussian generalised model are more reliable be-
cause in our MD simulations used to study the fluctuations of the
OmpF we observed a not negligible skewness and excess kurtosis,
that can not be taken into account with the purely Gaussian model.
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Figure 22: Comparison of the free energy values obtained using different
ways (geometrical, Gaussian and Gaussian generalised) to calcu-
late A(x) in Equation 71 (the channel parameters are calculated
as stated before using a cylinder radius of 16 Å). In this case a
spherical atom having a 3.5 Å radius translocate through OmpF.

The translocation in this case occurs when we observe a large fluc-
tuation of the constriction region size and this can be adequately
generalised with an asymmetric Gaussian (like our) having param-
eters depending on skewness and excess kurtosis.

3.3.3 Model vs. simulated free-energy

The final goal of our model is the comparison with other, likely
more trusted, values. To do that we used as reference values the
ones simulated through WTMT simulations obtained using the clas-
sical system with explicit solvent of Figure 4, but having not a
Meropenem as a molecule to transport but a simple spherical ball
of various radius. The two CVs used are the distance along the Z
and XY directions of the molecule with respect to the OmpF CM,
with Z representing the direction of the OmpF’s axis of symmetry.
We used a CV temperature of 3000 K.

We simulated spherical atoms with different characteristics: neu-
tral or charged with ±1 e−, with different Van der Waals radii. Fi-
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Figure 23: Comparison of the free energy values obtained using different
ways (geometrical, Gaussian and Gaussian generalised) to calcu-
late A(x) in Equation 71 (the channel parameters are calculated
as stated before using a cylinder radius of 16 Å). In this case a
spherical atom having a 5.5 Å radius translocate through OmpF.

nally we performed this computation putting our atom in each of
OmpF monomers.

When we start with the smallest spherical atoms, e. g. R=1.5 Å,
we observe (Figure 24, 25 and 26) the absence of the steric barrier in
the constriction region. This is due to the little size of the atom that
allows it to be trapped in the many little cavities on OmpF channel,
that are not taken into account in the model. We can see from Figure
24 the neutral atom case, that show two minima around 0 and 10

Å in correspondence of some of these cavities. The influence of the
presence of charged residues in OmpF can be seen when we simu-
late an atom with same radius but charged. In these cases the two
minima in 0 and 10 Å are alternatively (Figure 25 and 26) deepened
(from around 1.5 kcal/mol to around 3.0 kcal/cal) or flattened de-
pending on the presence near to these cavities of charges opposite
or equal to the one of the spherical atom.

Increasing the spherical atom radius up to 2.5 Å, the presence
of minima in free–energy due to the cavities in OmpF disappear,
because the atom is too big to be trapped. In Figure 27 we can see a
good agreement between the model and the WTMT simulations.
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Figure 24: Comparison of the free energy values obtained using the Gaus-
sian and Gaussian generalised (asymmetric) model, with the
ones obtained from WTMT simulations. The channel parame-
ters are calculated as stated before using a cylinder radius of 16

Å and a spherical neutral atom having a 1.5 Å radius translocate
through OmpF.

In this last case the cross section of the atom is still littler than the
one in constriction region, so we can not say anything about the hy-
pothesis of channel vibration involved in translocation. To explore
this guess, we increase the radius of the simulated atom until 4.0 Å
(in this case the cross section of the atom is larger than the average
one in constriction region), but even in this case we can see (Fig-
ure 28) a good agreement between model and WTMT simulations.
In all the cases analysed (except the case of really small spherical
atoms, like in Figure 24) we have observed smaller values of free–
energy in the model, if compared with the WTMT simulations. This
behaviour can be explained, because we performed the MD simu-
lations that gave us the parameters (average channel cross section,
variance, skewness and excess kurtosis) at equilibrium without any
antibiotic in the channel. It is possible that in slightly different sit-
uations (equilibrium not reached and particle to be translocated in
the channel) the porin reacts differently having less vibrations and
giving a larger value for free–energy.
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Figure 25: Comparison of the free energy values obtained using the Gaus-
sian and Gaussian generalised (asymmetric) model, with the
ones obtained from WTMT simulations. The channel parame-
ters are calculated as stated before using a cylinder radius of
16 Å and a spherical atom having a 1.5 Å radius and a +1 e−

charge translocate through OmpF.

Finally we have not observed differences when we simulate the
atom in monomer number one (all pictures here shown refer to this
monomer) or in one of the other monomers.
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Figure 26: Comparison of the free energy values obtained using the Gaus-
sian and Gaussian generalised (asymmetric) model, with the
ones obtained from WTMT simulations. The channel parame-
ters are calculated as stated before using a cylinder radius of 16

Å and a spherical atom having a 1.5 Å radius and a -1 e− charge
translocate through OmpF.
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Figure 27: Comparison of the free energy values obtained using the Gaus-
sian and Gaussian generalised (asymmetric) model, with the
ones obtained from WTMT simulations. The channel parame-
ters are calculated as stated before using a cylinder radius of 16

Å and a spherical neutral atom having a 2.5 Å radius translocate
through OmpF.
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Figure 28: Comparison of the free energy values obtained using the Gaus-
sian and Gaussian generalised (asymmetric) model, with the
ones obtained from WTMT simulations. The channel parame-
ters are calculated as stated before using a cylinder radius of 16

Å and a spherical neutral atom having a 4.0 Å radius translocate
through OmpF.
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In this thesis we afford the problem of the translocation of an-
tibiotics through bacterial channels in a threefold way comparing
results from different kinds of approaches: the experimental one
through electrophysiology, the in silico approach through MD and
WTMT simulations applying in particular the FMTD method and
finally the more theoretical approach developing a model to study
the properties of the translocation assuming basic hypothesis. This
apparently confuse way of proceeding is actually almost mandatory
due the complexity of the phenomena studied, that not allow us to
obtain completely satisfactory results using, let say, a “pure” line.

4.1 microseconds and sub–microseconds channel gat-
ing

We have first analysed the experimental data focusing on the widely
used electrophysiology approach. The bigger limit in this method
resides on the apparently (due to the typical 10 kHz low–pass fil-
ter) too big residence time detectable. At first glance it should seem
that only τres ∼ 10−4 s can be detectable, but we have described
two methods that allow us to detect easily τres ∼ 1µs and give us
a really good lower limit of τres ≈ 0.5µs still having a classic elec-
trophysiology equipment. Moreover these methods, although quite
sophisticated, have shown a good agreement with experimental re-
sults and for this reason can be safely used instead of the classical
methods used to get kinetic parameters from electrophysiology.

The possibility to detect such a little time (microsecond or sub–
microsecond time scale) is really important because give the oppor-
tunity to reduce considerably the distance between the time range
of experimental and computational results.

67
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4.2 transition times from metadynamics

Unfortunately, even with this still big improvement, it is not possi-
ble to cope with the time–range of systems to be simulated as big as
our without super–computing facilities. This problem leads to neces-
sarily coarse–grained computational methods to try to reach at least
the µs time scale with almost standard computers. Our choice has
been a recent method FMTD [7] that using WTMT simulations per-
mit to obtain real transition times. We have opted for this method
even because in our group there is a good level of competence in
MT methods. The results obtained with the FMTD method permit-
ted us to obtain good results [31] comparable with electrophysiology
experiments.

Moreover in this thesis we have suggested an additional possi-
ble use of this method to study the whole translocation process
in particular cases (e. g. “fast” events in Meropenenum in Section
3.2.2.1) or as a first screening of the effectiveness of an antibiotic
as in Section 3.2.2.3. Although the FMTD method has not passed
the statistical tests to assert the Poissonian nature of the event, from
considerations about this method made in Section 3.2.2.3 and the
results of Table 10 give a clear evidence of a faster translocation in
Meropenem with respect to Meropenenum that can be likely the
origin of the different effectiveness of the two antibiotics.

Analysing a quite simple case as the exit times of oxygen and
water from the HOD catalytic box in Section 3.2.1, we have seen
how, even with standard MD simulations, the transition times can
or can not pass the statistical tests even with systems apparently
really similar. Due the complexity of our system is not surprising
to obtain poor results in statistical tests and, given these arguments,
we can take in a bigger consideration even the results in Section
3.2.2.

4.3 translocation model

Considering the poor understanding in general of the basic param-
eters influencing the permeability of antibiotics through bacterial
channels, an approach based on a model can be useful. Starting
from simple hypothesis we can make gradually more complex our
model checking the effects of single physical variables on translo-
cation and comparing the results with experimental or simulated
properties.

In our case we have analysed in Section 3.3.3 the effects of dimen-
sions of neutral spherical balls and we have seen that the model
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fails for little (/ 1.5 Å) radii (Figure 24). This is due to the intrinsic
hypothesis of the model that consider average cross sections of the
model without considering the many little cavities on OmpF chan-
nel, but fortunately we observed good agreement between model
free–energy and WTMT simulated free–energy increasing the di-
mensions of the translocating atom to values near to the ones that
characterise standard antibiotics. For spherical atoms having dimen-
sions of 2.5 and 4.0 Å the results are quite good (Figure 27 and
28) and give us a good confidence on the basic assumptions of the
model.

4.4 perspectives and general considerations

The analysis of microseconds and sub–microseconds channel gat-
ing are in our opinion ready to be used in electrophysiology exper-
iments and can help to boost them and integrate it more strongly
with simulations giving a microscopical interpretation of blockages.

The FMTD method can be used with profit even to study translo-
cations of antibiotics through bacterial channels, despite the com-
plexity of the system to be simulated. The increased time–range
available thanks to this method can easily allow us to compare ex-
perimental and simulated times, giving us at the same time a hint
about the most relevant CVs (the ones that obtain better results in
statistical tests and transition times closer to the experimental ones).

The translocation model, still being in an early stage, already
shows good results and can be developed to take into account the
effects, for example, of the shape of the molecule to be translocated
or his dipole momentum or other physical parameters helping to
focus on the most relevant parameters in drug design.
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