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Abstract. We propose a possible generalization of the BGK collisional term in the relativistic
kinetic theory and we compare our model with previous ones. The present model has the
advantage in that it satisfies the conservation of particle number, energy-momentum and the
H-theorem in the Eckart frame without constraints on particular local equilibrium state. In the
last part of the paper we extend the model to include also the polyatomic gas.

1. Introduction
In the kinetic theory one of most complex questions is to give an explicit expression for the
collisional term. In the classical case the simplest case for the collisional term is the one proposed
in the well-known paper by Bhatnagar-Gross-Krook [1] that is known as BGK model. The
BGK model is simple, but has the main ingredients needed to satisfy a collisional term, i.e.
the conservation of mass, momentum and energy and the H-theorem. Of course the model is
oversimplified because only one relaxation time is present in the associated production terms
related to the moments, and the phenomenological coefficients obtained via Chapman-Enskog
procedure as heat conductivity, and viscosity are not so good in comparison with experiments.
Nevertheless BGK model has been largely used not only in Boltzmann equation (see e.g. [2]), but
also in the context of Rational Extended Thermodynamics (ET) to determine the production
terms of the differential system [3]. In particular, this can be said if we take into account the
recent progress obtained in ET to include polyatomic gas in the theory [4].

In the relativistic framework the BGK model was reconsidered first by Marle [5] and
successively a different proposal was given by Anderson and Witting (AW) [6] . In this paper
we discuss first the previous proposal and then we will propose, both for monatomic and
for polyatomic gases, a variant of AW model proving the conservation of particles number,
momentum-energy and the H-Theorem in the Eckart frame instead of the Landau-Lifshitz one.

The results presented here can be useful to evaluate the production terms in the relativistic
ET of monatomic gas [7] and for polyatomic gas [8].

2. The relativistic Boltzmann Chernikov equation
Let us consider, as starting point, the Boltzmann Chernikov equation for the determination of
the distribution function f(xα, pβ):

pα∂αf = Q , (1)

http://creativecommons.org/licenses/by/3.0
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where xα is the space-time coordinate, pα is the four-momentum (pαp
α = m2c2),m is the particle

mass, c is the light velocity ∂α = ∂/∂xα, and Q is the collisional term (α = 0, 1, 2, 3). Repeated
indexes, as usual, denote summation from 0 to 3. There is now the problem of determining the
production term Q appearing in this equation. There are different possible models in literature
for Q (see, e.g. [2, 9]). In any way a physical Q must vanish in any local equilibrium state and
moreover, it must guarantee the conservation of particle number and momentum-energy and
need to satisfy the H-theorem.

It is well known that from (1), we can define the moment equations. In particular the following
first five ones:

∂αV
α = P, ∂αT

αβ = P β , (2)

with

V α = mc

∫
�3

fpαdP, Tαβ = c

∫
�3

fpαpβdP, (3)

and

P = mc

∫
�3

QdP, Pα = c

∫
�3

QpαdP, (4)

where dP = dp1dp2dp3/p0. As V α is the particle-particle flux and Tαβ is the energy-momentum
tensor, we need that (2) must be conservation laws and therefore we need that the collisional
term Q must satisfy the conditions P = 0, Pα = 0, i.e.∫

�3

QdP = 0,

∫
�3

QpαdP = 0, α = 0, 1, 2, 3. (5)

Moreover defining the entropy four vector hα and the entropy production Σ:

hα = −kBc
∫
�3

f ln f pαdP, Σ = −kBc
∫
�3

Q ln f dP, (6)

(kB is the Boltzmann constant), then from (1) we obtain the entropy law:

∂αh
α = Σ. (7)

The H-theorem requires that the entropy production must be non-negative (Σ ≥ 0) and therefore
we need to require that Q satisfies also the inequality∫

�3

Q ln f dP ≤ 0. (8)

To sum up, we have that any physical collisional term Q must satisfy the five equations (5) and
the inequality (8).

3. Eckart and Landau-Lifshitz frames
We recall that in the relativistic hydrodynamics there are two possible choices of the 4-velocity.
The most popular one is the Eckart 4-velocity and the other one is the Landau-Lifshitz 4-velocity
(see e.g. [9, 10]).
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– The Eckart frame or particle frame corresponds to the frame in which there is no dissipative
contribution to the rest-mass density current and to the energy density. In this case the four
velocity Uβ is collinear with V β and we have:

V α = V α
E ,

(
Tαβ − Tαβ

E

)
Uβ = 0, (9)

where the index E indicates a generic local equilibrium state.
In the Eckart frame it is possible to rewrite V α and Tαβ in terms of the usual physical

quantities:

V α = ρUα

Tαβ = σ〈αβ〉 + (p+Π)hαβ +
1

c2
(qαUβ + qβUα) +

e

c2
UαUβ ,

(10)

where Uα is the Eckart four-velocity (UαUα = c2), ρ = nm = c−1
√
V αVα is the number density,

p is the pressure, Π is the dynamical pressure, hαβ is the projector tensor hαβ = −gαβ+ 1
c2
UαUβ

with gαβ = diag(1 , −1 , −1 , −1) being the metric tensor, the symbol 〈· · · 〉 denotes the 3-
dimensional traceless part of a tensor, σ〈αβ〉 = Tμν

(
hαμh

β
ν − 1

3h
αβhμν

)
is the viscous deviatoric

stress, e is the energy, and qα = −hαμUνT
μν is the heat flux. From the previous definitions we

have hαβUβ = 0, qαUα = 0, σ〈αβ〉Uβ = 0 and therefore only 14 fields are independent.

– The Landau-Lifshitz frame or energy frame represents the frame in which there is no net
energy flux, i.e., it is the frame defined by the conditions

(V α − V α
E )ULα = 0,

(
Tαβ − Tαβ

E

)
ULαULβ = 0, (11)

where Uα
L indicates the Landau-Lifshitz four-velocity.

In the Landau-Lifshitz frame V α and Tαβ have the following decompositions:

V α = ρ

(
Uα
L −

1

p+ e
qα

)

Tαβ = σ〈αβ〉 + (p+Π)hαβL +
e

c2
Uα
LU

β
L ,

(12)

with projector hαβL = −gαβ + 1
c2
Uα
LU

β
L . The expressions (10) and (12) are equivalent if the

following relation between Eckart and Landau-Lifshitz 4-velocities holds:

Uα
L = Uα +

1

e+ p
qα,

and if we neglect second order terms in the non-equilibrium variables Π, qα, σ〈αβ〉.

4. The relativistic BGK approximation
In the relativistic framework the most important generalization of BGK approximation was
made by Marle [5] and successively by Anderson and Witting [6].

4.1. The Marle BGK model
The Marle model [5] is an extension of the non-relativistic BGK model in the Eckart frame:

Q = −m

τ
(f − fE) , (13)
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where τ is the relaxation time in the rest frame where the momentum of particles is zero, and
fE = fJ is the Jüttner equilibrium distribution (see [2, 8]):

fJ = exp

(
ξ − 1

kBT
Uβp

β

)
, ξ = −1 + m

kB

gr
T
. (14)

In (14) gr denotes the relativistic chemical potential

gr =
e+ p

ρ
− TS.

T and S are respectively the temperature and the entropy density (ρS = hαuα). We notice that
gr is in reality the chemical potential except for c

2 term. In fact taking into account that the
energy is composed of two parts: Part due to the internal energy ε and part to the rest-energy:

e = ρ(ε+ c2),

we have

gr = g + c2, g = ε+
p

ρ
− TS ,

where g denotes the usual chemical potential.
In the Marle BGK approximation, by inserting (13), the conditions (5) and the inequality

(8) become, respectively:∫
�3

(f − fE)dP = 0,

∫
�3

(f − fE)p
αdP = 0, (15)

∫
�3

(f − fE) ln fdP ≥ 0. (16)

The second of (15) is equivalent to the first condition of the Eckart frame definition (9) and
the inequality (16) holds for analogous arguments of classical BGK (see e.g. [2]). The most
weak condition is (15)1 that becomes a constraint on the distribution function f . In fact the
five conditions (15) can be interpreted as the equations for the five unknown particular local
equilibrium variables T, gr and Uα appearing in the Jüttner equilibrium distribution function
(14) and these coefficients in reality depend themselves on f . The existence of the solution of
this problem was proved in [11]. Another weak point of the Marle model is that the relaxation
time becomes unbounded in the case of particles with zero rest mass [2].

4.2. The Anderson and Witting BGK model
The Anderson-Witting model provides another expression of the Q, described in the Landau-
Lifshitz frame and has been widely used:

Q = − ULμp
μ

c2τ
(f − fE) , (17)

where ULμ indicates the four-velocity according with the Landau-Lifshitz definition. In the AW
model the conditions that guarantee the conservation laws (5) and the H-theorem (8) become
respectively:

ULμ

∫
�3

(f − fE) p
μ dP = 0, ULμ

∫
�3

(f − fE)p
μ pα dP = 0 , (18)
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ULμ

∫
�3

(f − fE) ln f pμ dP ≥ 0. (19)

The conditions (18) are coincident with (11) that define the Landau-Lifshitz frame and the
inequality (19) is satisfied (see [2] for the proof). Therefore the AW model satisfies all the
requirements necessary for the collisional term and moreover in the classical limit converges to
the classical BGK model. The weak point is that the frame is the Landau-Lifshitz frame that is
less used in literature also for the complexity in the conservation of number of particle [10]. A
comparison between the two BGK models and also on the Marle-Grad 14 moments was studied
in [12]. In particular in [12], the Cauchy problem has been studied for the linearized kinetic
equations with the Marle and Anderson-Witting models, and compared the resulting dispersion
relations with the 14-moment theory.

5. A new relativistic BGK approximation for monatomic gases
The question arises if it is possible to construct a relativistic BGK in the Eckart frame without
the problematic present in the Marle model. We notice that, if we substitute in the AW model
the 4-velocity of Eckart the condition (18)2 is not anymore satisfied because the left side is
not zero but proportional to the heat flux 4-vector qα. We want to prove in this paper that
it is possible to construct a sort of generalization of the AW model that satisfies automatically
the definition of the Eckart frame (9), satisfies the H-theorem, and reduces to the BGK in the
classical limit.

Before introducing it, let us consider the following equilibrium moment of third order:

Aαβμ
E =

c

m

∫
�3

fEp
αpβpμdP = aUαUβUμ + b

(
hαβUμ + hαμUβ + hβμUα

)
. (20)

Inserting the Jüttner distribution into (20), it is simple to verify that the coefficients appearing
in (20) are

a = ρ

(
3
K3(γ)

γK2(γ)
+ 1

)
, b = kBnT

K3(γ)

K2(γ)
= p

K3(γ)

K2(γ)
,

with

γ =
mc2

kBT
, (21)

and Kn(γ) denotes the modified Bessel functions of second kind.
We propose as variant of Relativistic BGK this form of the collisional term:

Q =
Uαp

α

c2τ

(
fE − f − fE pμqμ

1

bmc2

)
. (22)

Comparing these expression with (17), we see that we have now the extra term −fE pμqμ
1

bmc2

inside the parenthesis and the use of Eckart 4-velocity instead of the Landau-Lifshitz one. We
can prove

Theorem 1 (Conservation Laws) The collisional term (22) conserves the number of particle
and the energy momentum in the Eckart frame i.e. P = Pα = 0.
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The proof is immediate. Inserting (22) in (4) and taking into account the Eckart frame definition
(9) we have:

P =
m

cτ
Uα

∫
�3

(
fE − f − fEp

μqμ
1

bmc2

)
pαdP =

=− 1

bτc4
UαT

αμ
E qμ = − e

bτc4
Uμqμ = 0,

P β =
1

cτ
Uα

∫
�3

(
fE − f − fE pμqμ

1

bmc2

)
pαpβdP =

=
1

c2τ
Uα

(
Tαβ
E − Tαβ − 1

bc2
Aαβμ

E qμ

)
= − 1

c2τ
(qβ − qβ) = 0.

(23)

Theorem 2 (H-Theorem) The collisional term (22) satisfies the H-theorem up to second
order terms with respect to non-equilibrium variables.

Proof- For our collisional term (22) we have from (6)2:

Σ = −kB
cτ

Uα

∫
�3

(
fE − f − fE pμqμ

1

bmc2

)
ln f pαdP. (24)

Let us consider the right hand side of this relation, but with ln fE instead of ln f , that is,

−kB
cτ

Uα

∫
�3

(
fE − f − fE pμqμ

1

bmc2

)
ln fE pαdP. (25)

Thanks to eq. (14) it becomes

−kB
cτ

Uα

∫
�3

(
fE − f − fE pμqμ

1

bmc2

)[
−1 + mgr

kBT
− 1

kBT
Uβp

β

]
pαdP

which is zero, thanks to (23). Consequently, we can subtract (25) from (24) so that it becomes

Σ = −kB
cτ

Uα

∫
�3

(
fE − f − fE pμqμ

1

bmc2

)
ln

f

fE
pαdP.

Now we sum to this expression, (23)2 contracted by − kB
bmc3

qβ ; so it becomes

Σ =
kB
cτ

Uα

∫
�3

(
−fE + f + fE pμqμ

1

bmc2

)(
ln

f

fE
+ pβqβ

1

bmc2

)
pαdP.

Now, Taylor’s expansion of ln f
fE

around f = fE , dropped at the first order expansion, is

ln
f

fE
= ln

fE
fE

+
1

fE
(f − fE) +O(2) (26)

so that we have

Σ =
kB
cτ

Uα

∫
�3

1

fE

(
−fE + f + fE pμqμ

1

bmc2

)2

pαdP+O(3)

from which, taking into account that Uαp
α > 0, it follows Σ ≥ 0.
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5.1. Classical Limit of (22)
Taking into account that the time and space components of Uα and of pα are

Uα ≡ Γ̄(c, vi), pα ≡ mΓ(c, ξi), Γ̄ =
1√
1− v2

c2

, Γ =
1√
1− ξ2

c2

(vi and ξi are respectively the macroscopic and the microscopic velocity), and evaluating (22)
in the rest frame vi = 0, we have:

Q =
mΓ

τ

(
fE − f + fE

1

bc2
Γqiξ

i

)
.

Taking into account that [8]

lim
c→∞Γ = 1, lim

c→∞ b = p, lim
c→∞ fE =

1

m3
fM , lim

c→∞ f =
1

m3
fC ,

where fM is the Maxwellian and fC denote the classical distribution function solution of

∂tf
C + ξi∂if

C = QC , x0 = ct

we obtain:

QC = lim
c→∞

m2Q

Γ
=
1

τ
(fM − fC).

Therefore our BGK relativistic variant converges to the classical BGK!

6. A Relativistic BGK approximation for polyatomic gases
In [8] starting from the classical ideas for polyatomic gases introduced in [4,13–17] we proposed
a generalized Boltzmann-Chernikov equation that has the same form of (1) but the extended
distribution function f ≡ f(xα, pβ , I) depends on an extra variable I that takes into account
the energy due to the internal degrees of freedom of a molecule. We consider instead of (3), the
following moments:

V α = mc

∫
�3

∫ +∞

0
fpαφ(I) dP d I,

Tαβ =
1

mc

∫
�3

∫ +∞

0
f
(
mc2 + I) pαpβ φ(I) dP d I.

(27)

The meaning of (27)2 is that the energy and the momentum in relativity are components of the
same tensor and we expect that, besides the energy at rest, there is a contribution due to the
internal structure, as in the case of a classical polyatomic gas. φ(I) is the state density of the
internal mode, that is, φ(I) dI represents the number of the internal states of a molecule having
the internal energy between I and I + dI.

The macroscopic internal energy

ε =
e

mn
− c2,

in the classical limit, when γ given by (21) tend to infinity, converges to the one of a classical
polyatomic gas [8]:

lim
γ→∞ ε =

D

2

kB
m

T,
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provided that the measure
φ(I) = Ia,

where the constant is given by

a =
D − 5

2
,

and D = 3 + f i is related to the degrees of freedom of a molecule given by the sum of the
space dimension 3 for the translational motion and the contribution from the internal degrees of
freedom f i ≥ 0 related to the rotation and vibration. For monatomic gases D = 3 and a = −1.

As in the monatomic case we introduce the following equilibrium triple tensor

Aαβμ
E =

c

m

∫
�3

∫ +∞

0
fEp

αpβpμ
(
1 +

I
mc2

)2

φ(I)dP d I =

= aUαUβUμ + b
(
hαβUμ + hαμUβ + hβμUα

)
,

(28)

where fE is the generalized Jüttner equilibrium distribution function obtained in [8] via
Maximum Entropy Principle:

fE = exp

[
ξ −

(
1 +

I
mc2

)
1

kBT
Uβp

β

]
, ξ = −1 + m

kB

gr
T
, (29)

The expression of the coefficients appearing in (28)3 is

a =
ρ

γA(γ)K2(γ)

∫ +∞

0
[3K3(γ

∗) + γ∗K2(γ
∗)]φ(I) d I ,

b =
nkBT

A(γ)K2(γ)

∫ +∞

0
K3(γ

∗)φ(I) d I ,

A(γ) =
γ

K2(γ)

∫ +∞

0

K2(γ
∗)

γ∗
φ(I) d I ,

where we put

γ∗ = γ

(
1 +

I
mc2

)
.

We consider as a variant of Relativistic Polyatomic BGK this form of the collisional term:

Q =
Uαp

α

c2τ

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
. (30)

We want to prove the following:

Theorem 3 (Conservation Laws in Polyatomic Gas) The collisional term (30) conserves
the number of particle and the energy momentum, i.e.

P = ∂αV
α = mc

∫
�3

∫ +∞

0
Qφ(I) dP d I = 0 ,

P β = ∂αT
αβ = c

∫
�3

∫ +∞

0
Qpβ

(
1 +

I
mc2

)
φ(I)dP d I = 0.

(31)
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The proof is immediate. Inserting (30) in (31) and taking into account the Eckart frame (9) we
have:

P =
m

cτ
Uα

∫
�3

∫ +∞

0

(
fE − f − fEp

μqμ
1 + I

mc2

bmc2

)
pα φ(I)dP d I =

=− 1

bτc4
UαT

αμ
E qμ = − e

bτc4
Uμqμ = 0,

P β =
1

cτ
Uα

∫
�3

∫ +∞

0

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
pαpβ ·

·
(
1 +

I
mc2

)
φ(I)dP d I =

=
1

c2τ
Uα

(
Tαβ
E − Tαβ − 1

bc2
Aαβμ

E qμ

)
= − 1

c2τ
(qβ − qβ) = 0.

(32)

Theorem 4 (H-Theorem in Polyatomic Gas) Let

hα = −kB c

∫
�3

∫ +∞

0
f ln f pαφ(I)dP d I

be the entropy four-vector. In correspondence we have the entropy law (7) with the entropy
production

Σ = −kB c

∫
�3

∫ +∞

0
Q ln fφ(I) dP d I.

Neglecting third and higher order terms in non-equilibrium variables we have the H-theorem

Σ ≥ 0.

Proof - We have in the present case

Σ = −kB
cτ

Uα

∫
�3

∫ +∞

0

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
ln f pαφ(I)dP d I. (33)

Let us consider the right hand side of this relation, but with ln fE instead of ln f , that is,

−kB
cτ

Uα

∫
�3

∫ +∞

0

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
ln fE pαφ(I)dP d I. (34)

Thanks to eq. (29) it becomes

−kB
cτ

Uα

∫
�3

∫ +∞

0

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
·

·
[
−1 + mgr

kBT
− 1 + I

mc2

kBT
Uβp

β

]
pαdP ,

which is zero, thanks to (32). Consequently, we can subtract (34) from (33) so that it becomes

Σ = −kB
cτ

Uα

∫
�3

∫ +∞

0

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
ln

f

fE
pαφ(I)dP d I.
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Now we sum to this expression, (32)2 contracted by − kB
bmc2

qβ ; so it becomes

Σ = −kB
cτ

Uα

∫
�3

∫ +∞

0

(
fE − f − fE pμqμ

1 + I
mc2

bmc2

)
·

·
(
ln

f

fE
+ pβqβ

1 + I
mc2

bmc2

)
pαφ(I)dP d I.

Now, Taylor’s expansion of ln f
fE

around f = fE , dropped at the first order, is given by (26),
so that we have

Σ =
kB
cτ

Uα

∫
�3

∫ +∞

0

1

fE

(
−fE + f + fE pμqμ

1 + I
mc2

bmc2

)2

pαφ(I)dP d I +O(3)

from which it follows Σ ≥ 0.
The classical limit of the present results can be obtained in the same way described for monatomic
gases and, also in this case, we find that our BGK relativistic variant converges to the classical
BGK.

We observe that the Marle and the Anderson and Witting formulation can be used also in
the polyatomic case without any change from the monatomic gas. For this other reason our
model seems more physical. In fact the collisional term proposed in this paper changes from
(22) to (30) in the passage from monatomic to polyatomic gas. This is what we expected from
physical reasons as the collisional terms in polyatomic gas must depend on the internal state,
i.e. must depend on I.

The tendency to the equilibrium of the distribution function for our model and comparison
between the solutions with the ones using by Marle and Anderson and Witting BGK models
will be the subject of a future paper.
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[16] Arima T, Mentrelli A and Ruggeri T 2014 Ann. Phys. 345 111
[17] Arima T, Ruggeri T, Sugiyama M and Taniguchi S 2016 Ann. Phys. 372 83


