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Criteria for Modification of Complex Infrastructure Networks

by Pier Luigi PAU

Complex network theory enables the analysis and comparison of graphs
with a very large number of nodes, or with non-trivial topological proper-
ties. Graph models exist for many kinds of networks, ranging from com-
puter networks to representation of protein-protein interactions, and anal-
ysis techniques are often shared between fields of application.

Infrastructure networks are an active field of application of complex net-
work analysis, which is frequently aimed at finding ways to improve on the
structure of a network, while respecting budget constraints. In this activ-
ity, complex network analysis is often cross-referenced with simulations or
operational research.

Power grids stand out among the most prominent examples of infras-
tructure network analyzed with techniques derived from complex network
theory, due to their importance as a service, their properties of quick re-
sponse to events, and the desired transition to a smart grid paradigm. With
the growing interest for the protection of endangered species and habitats,
the modeling and analysis of green infrastructure has also received increas-
ing attention from scholars.

These classes of infrastructure provide case studies for the exemplifica-
tion of a common process for the analysis of various kinds of infrastructure
networks, which involves the identification of vulnerabilities, the explo-
ration of a search space for possible modifications, and the definition of a
comparable measure of health of the network.
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Chapter 1

Introduction

Graphs are a powerful mathematical tool, used to represent networks of
many kinds, whether physical (computer networks, power grids, etc.) or
conceptual (protein-protein interactions, networks of knowledge, etc.). The
most discussed theoretical problems from graph theory generally corre-
spond to one or more practical problems in applications. One such example
is the problem known as “graph coloring’ (more specifically, vertex color-
ing), which consists in mapping the nodes in a graph to a minimal set of
labels (colors), while respecting the constraint that no two adjacent nodes
can be mapped to the same label. This is clearly analogous to the problem
of coloring countries in a world map; in fact, it is this latter problem that fu-
eled initial research into the theoretical aspects of graph coloring, beginning
with the restricted case of planar graphs.

Other practical problems exist, which can be solved with an instance of
the vertex coloring problem, although the relation is not as obvious. One
such problem is that of job scheduling, in which a number of jobs is to be as-
signed to time slots, while keeping in mind that some resources that may be
needed for multiple jobs can only be assigned to one job at any given time.
The resources may be workers themselves, in which case the problem can
also be applied to the definition of class schedules (a teacher may give lec-
tures to multiple classes, but may only give one in any time slot). Another
related problem is found in the field of computer science: given a function
written in C (or another language compiled to machine code), compilers
may optimize performance by assigning CPU registers to store local vari-
ables, but registers are available in an extremely limited number compared
to storage in RAM, and a register can only be allocated to one variable at
any given time. This leads to the problem of determining whether the scope
of variables in a certain function is such that the number of variables that
should be stored in registers at the same time is within the available number
of CPU registers [10].

The concept of finding a theoretical problem, to which practical prob-
lems are reduced, is recurrent in many branches of the vast field that is
graph theory, and is one of the reasons for its popularity as a research field.
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One of these branches is complex network theory. Since the beginning
of the 215 century, this area of research has received an increasing amount
of attention from scholars with different backgrounds, including physics,
mathematics, computer science, biology, and engineering. Complex net-
work theory deals with the extraction and analysis of statistical properties
of graphs, and aims at finding a comparable set of measures for graphs
with non-trivial topological properties, as well as extremely large graphs,
with a number of nodes in the millions, or even at higher orders of magni-
tude. Complex network theory is considered by some to be a separate field
of research, as opposed to a branch of graph theory, due to its specific col-
location encompassing graph theory and statistics, together with the large
number of its applications and their heavy influence on research questions.

From theoretical results, techniques for complex network analysis are
derived, which can be applied to conceptual and physical networks alike,
and it is not uncommon for ideas from a field of application to be adapted
for use in a different field. The same is true for software tools, with software
initially designed for analysis of specific classes of networks (e.g. social
networks, protein-protein interaction networks) being adapted for general-
purpose use in subsequent versions.

Complex network theory is often used to provide the foundations and
an established theoretical background for the construction of models for
infrastructure networks. This enables the application of methods to assess
network properties and predict the effect of changes, whether intentional or
due to external factors, to assist in devising development plans, as well as
guidelines for response to random failures or attacks from malicious users;
if the process involves determining whether the network — or a significant
portion thereof — is susceptible to collapsing when certain elements or links
(i.e. nodes or edges in the graph model) are removed or damaged, this is
referred to as a vulnerability assessment. The success of these methods of
analysis is heavily dependent on the construction of a faithful model of the
infrastructure being analyzed.

The present work takes two kinds of network infrastructure that have
become popular applications of complex network analysis in the past two
decades: ecological landscape networks and power grids.

The former are systems of “green infrastructure”, made up of nature
protection areas and habitat corridors, and are being established in various
parts of the world, as a way to overcome the limitations of traditional nat-
ural reserves: specifically, their inadequacy at preserving biodiversity, and
their limited effectiveness in conditions of insufficient size or excessive dis-
tance from other suitable habitat patches for the endangered species, which
they are supposed to host in a protected environment. Ecological landscape
networks have been an active field of discussion by scholars with a back-
ground in ecology since at least the 1970s, although the first mentions of
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habitat corridors, without a definite view of the “big picture” of green in-
frastructure, can be dated to as far back as the 1920s.

The establishment and maintenance of a continent-wide ecological net-
work is a task that requires considerable investments and the coordination
of efforts at local, national and international level. In the European Union,
this is done within the project denominated “Natura 2000”, aimed at the
preservation of biodiversity with the creation of a continent-wide ecolog-
ical network. A common framework is defined in European directives to
determine large-scale conservation goals, with a list of protected habitats
and species and a set of common rules for the activities across the conti-
nent, while local administrations are involved in the management of single
nature protection areas. In this context, complex network analysis tools are
a valuable complement for geographic information systems (GIS) used in
land management and planning, enabling a better understanding of net-
work behavior in habitat patches at a local level, as well as the evaluation
of large-scale consequences of local changes.

Power grids represent another class of infrastructure, which has received
a large amount of attention from scholars as a field of application for com-
plex network analysis. This can be attributed to the properties for which
power grids stand out among commodity distribution networks, such as
their quick response to changes and the necessity to adjust the output of
power plants to meet demand in real time; moreover, the special interest
for power grids is fueled by current plans for a smooth transition toward
a “smart grid” paradigm. This aims at increasing the reliability, flexibility
and efficiency of the grid, by complementing the power infrastructure with
an information infrastructure, in order to enable the grid to self-regulate,
and provide the possibility for end users to contribute to power generation
and grid operation.

In spite of a difference in goals, these two classes of application share
the motives for the creation of complex network models: the understand-
ing of global and local properties of the network, with the identification of
measures of health of the infrastructure, and the evaluation of the impact
of proposed modifications.

1.1 Dissertation Structure
The following is an outline of the organization of the present work:

e Chapter 2 provides a brief review of theoretical aspects that are com-
mon to both case studies.

e Chapter introduces the concept of ecological landscape networks in
general, together with the methods in use for building graph models
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of green infrastructure. The Natura 2000 network is taken as a frame
of reference; following an analysis of the form in which public data is
made available within the project, details are given on which ways it
is possible to create complex network models from available data.

e In Chapter [ after a brief introduction concerning the work of land
management and planning, a case study is presented, which is based
on Natura 2000 sites located in Sardinia. A method to build a model
of an ecological network based on site similarity is discussed, and
models created from multiple data sources are compared to determine
which approach is most useful for land management.

o Chapter [5| presents a second case study, consisting of a model of the
Sardinian power grid. An optimization problem is defined on a graph
model of the grid, in order to determine a set of power flows toward
which average operation should converge. A measure of collateral
damage from the failure of a node or set of nodes is proposed, and
multiple complex network models are analyzed, seeking a correlation
between network indices and collateral damage.

e General conclusions are drawn in Chapter [} Final comments con-
cerning the aptness of each of the proposed network models are given,
and possibilities of future work are discussed.

1.2 Software tools

The open source Cytoscape suite [54] was used for complex network visu-
alization and analysis. For some applications, custom modifications were
applied to the software. The IBM CPLEX Optimization Studio was used
to solve linear optimization problems. QGIS [49]] and SQLite with the Spa-
tialite extension were used for computation of spatial data.
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Complex Networks

2.1 Graph Models of Complex Systems

Graphs are a powerful and versatile mathematical tool, and have been used
to model a wide range of complex systems of many kinds. By their defini-
tion, they are suitable as a mathematical model for networks, including con-
nected sets of physical entities, as well as virtual and conceptual networks
built from datasets of different origins.

Properties of a graph model will reflect those of the real-world network
they represent, and the effect of modifications applied to a graph model
may be used to predict the effect of changes on the corresponding real
network. A trivial example of this is given by computer networks: at the
smallest possible scale, most wired LANs are made up of a number of hosts
connected to a switch; in a graph model corresponding to this network, the
switch and each host are represented by nodes, and an edge represents each
physical connection. As the only connections are between the switch and a
host, the resulting graph will be an instance of a special case of graph, de-
nominated ‘star graph’, which consists of a number of nodes that are only
adjacent to a special central node, which in turn is adjacent to all the others.
In the real-world network, the failure of a host does not affect the connec-
tivity of the other hosts, whereas the failure of the switch causes a loss of
connectivity for every station connected to it; likewise, in the graph model,
the removal of peripheral nodes simply results in another instance of the
star graph with fewer nodes, while the removal of the central node results
in a set of isolated nodes, with a complete lack of edges, i.e. no connections.

Clearly, most networks in the real world are not so simple as to be repre-
sented by a star graph. However, the ability to predict the effect of changes
by examining the modifications of a graph model is desirable for many
kinds of physical, virtual and conceptual networks. In practice, this can
only be done intuitively for small networks; it may be possible to do so for
some medium-sized networks, so long as their topology is regular, or sim-
ple enough to be represented visually. An analytical approach is required
for larger networks, as well as those with a non-trivial topology.
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This approach is made possible by applications of complex network the-
ory, a branch of graph theory that deals with the study of statistical prop-
erties of graphs, thus providing tools to compare and categorize networks
at every scale and every degree of complexity. Fields of application of com-
plex network theory include, but are not limited to:

e computer networks at every scale (LAN, WLAN, MAN, WAN);

e social networks (centralized, e.g. Facebook, Twitter, LinkedIn; or de-
centralized, e.g. e-mail, in-person interaction);

e transportation networks (roads, railways, airplane connections);
e commodity distribution networks, including power grids;

e protein-protein and gene-protein interactions;

e metabolic networks;

e financial and trade networks;

e networks of knowledge, e.g. those used in the semantic web.

Some fields of application exist, which encompass multiple kinds of net-
works at the same time. For instance, law enforcement may benefit from a
combined study of social networks and distribution networks to identify
drug dealers acting as ‘hubs’, thus prioritizing actions that may disrupt the
distribution of illegal substances in the quickest and most effective way.

The aim of complex network theory is to provide a robust framework
for the comparison of networks and their categorization, which may work
for very large network and in the presence of non-trivial topological struc-
tures. Complex network analysis techniques often involve the comparison
of numerical indices and statistical distributions.

2.2 Graphs and Their Properties

This section revises the most important definitions and some basic concepts
of graph theory. There exists a vast literature on graph theory; one of the
most comprehensive works is [16].

2.2.1 Basic Definitions

A graph is a pair G = (V, E), where V is a set of vertices (or nodes) and
E C V?%is aset of edges (or lines), which represent the connection between
a pair of nodes. An edge (i,j) € E is said to be incident to nodes ¢ and j,
and these nodes are said to be adjacent to one another. The order of a graph
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is the number of its nodes |V|, while the number of edges |E| is referred to
by size of a graph.

Node pairs are usually assumed to be unordered. In cases where they
are ordered, i.e. (i,7) and (j,7) are to be treated as two separate edges,
then the graph and its edges are said to be directed. A directed edge (i, j)
is also referred to as an arc, with head j and tail i; consistently with this
definition, a directed graph is often denoted as G = (V,A). A graph in
which undirected edges and arcs are allowed to exist at the same time is
said to be a mixed graph, denoted as G = (V, E, A).

It is normally assumed that only one edge may exist joining any two
nodes in an undirected graph, or two arcs of opposite direction in a directed
graph. To avoid confusion, a graph where multiple edges are allowed to
share a node pair is called a multigraph, and one where this is disallowed
is called a simple graph. An oriented graph is a directed graph with no pair
of opposite arcs between any two nodes.
loops are disregarded or forbidden; thus, unless stated otherwise in the
context of study, it is usually assumed that no loops are present.

A graph is said to be weighted if each edge has a numerical attribute
associated to it; this attribute may represent a distance (or cost) for travers-
ing the link, or a strength of the link (for example, the bandwidth of a link
between two routers).

2.2.2 Graph Concepts
Subgraphs
A subgraph of a graph G is a graph G’ with all of the following properties:

V(G') CV(G),
E(G') C E(G), 2.1)
(i,7) € BE(G") = i,j e V(G).

Itis also said that G is a supergraph of G’. A subgraph such that V(G’) =
V(G) is said to be a spanning subgraph of G.

If a subgraph G’ includes every edge in G that satisfies the conditions
to be a valid edge in G, then it is said to be the subgraph of G induced (or
implied) by its node set .S, and is denoted by G[S]. If G’ = G[S]:

S=V(G@)CV(G) and

E(G") ={(i,j)|i,j € S, (i,j) € E(G)}. (2.2)
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Walks, Paths and Cycles

A walk on an undirected graph consists in an ordered list of nodes, such
that an edge exists between any two consecutive nodes. A walk is closed if
the first and last node are the same node, otherwise it is said to be open. A
walk is simple if there is no repetition of nodes, with the sole exception of
the repetition of the starting node as the final node in a simple closed walk.
A simple open walk is also called a path; a simple closed walk is also called
a cycle.

On directed graphs, a walk is made up of an ordered list of nodes, such
that an arc exists between consecutive nodes; if an arc oriented according
to the order in which the pair is found in the walk exists for all pairs of
consecutive nodes in the walk, then the walk is directed; otherwise, it is
undirected. Depending on the application, it may be required that only
directed walks are considered. Analogous definitions are given for directed
and undirected paths and cycles.

Connected Graphs

A graph is said to be connected if a path exists between any pair of nodes
chosen arbitrarily. A connected graph without cycles is said to be a tree.

If a graph G is not connected, its components (or connected compo-
nents) are the subgraphs of G with the following properties:

e the subgraph is induced from the supergraph by its node set;
o the subgraph is a connected graph;

e no path exists in the supergraph between any node in the subgraph
and any node that is not part of the subgraph.

If an edge exists between every pair of nodes, the graph is said to be
complete. The number of edges in a complete undirected graph is

(n—-1)

n
F| = , 2.3
Bl =2 23)

where n = |V]|.
A clique is a complete subgraph of a given graph. A maximal clique of
G is a clique of G that is not a subgraph of another clique of G.
2.2.3 Basic Properties
Node Degree

The degree of a node n, denoted as deg(n) or ky, is the number of edges in-
cident to it. If loops are allowed, they are to be counted twice, i.e. both ends
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of the loop contribute to the node degree. In a simple undirected graph, the
degree of a node is equal to the number of its neighbors.

If every node in a graph has the same degree, the graph is said to be
regular.

In directed and mixed graphs, node degree is usually evaluated sepa-
rately for arcs that are incident to a node as their head, or as their tail. The
in-degree of a node n is the number of arcs for which 7 is the head, and the
out-degree of n is the number of edges for which n is the tail.

Path Length

Let P be the ordered set of edges that make up the path from ¢ to j in an
unweighted graph. The length of the path I(P) is given by:

I(P) = |P|. (2.4)

On a weighted graph, in which the weight represents a distance or a
cost associated with the action of traversing an edge, the length of a path is
defined as the sum of the weights of the edges in the path:

I(P)= ) wy (2.5)

(i,7)€EP

Conversely, if the weight of a link represents its strength (for example, a
link bandwidth in a computer network), the length of a path can be defined
as the sum of weight reciprocals:

=3 —. (2.6)

o
(i.j)ep

In this case, it is required that all w;; # 0 for all edges in a path. Depending
on the physical meaning of edge weights, however, such edges might not
exist, or be forbidden from being traversed.

Shortest Paths

The shortest path between two nodes is the path of minimum length con-
necting the two nodes. Its length is the distance between the two nodes,
and may be denoted as d(i,7), d(4, j), or d;;. To extend this definition to
include cases where ¢ and j are the same node, and the case where there is
no path connecting the two nodes, P;; is defined as the set of all paths from
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1 and j; then:

0 ifi=j,
dg(i,j) =< o if Pij =0, (2.7)
minpep,; [(P) otherwise.

The full set of shortest paths from a given starting node is generally
found by performing a breadth-first search on unweighted graphs, or with
Dijkstra’s algorithm on weighted graphs with non-negative weights rep-
resenting distances. For directed graphs, it is intended that only directed
paths are to be considered.

2.3 Complex Network Properties

It is possible to identify and extract complex network measures of different
kinds, according to whether they are global or local properties, and whether
they are simple or compound values (such as vectors, matrices, and statis-
tical distributions).

Global properties are calculated as a single value for an entire network.
Such are, for example, the diameter of a network or its characteristic path
length. Conversely, local properties are evaluated for each node, by ana-
lyzing only its immediate neighborhood. An example thereof is the local
clustering coefficient. Some properties are found in the middle of this spec-
trum, like most centrality indices, which are calculated for nodes or edges,
but their value depends on the topology of the network in its entirety. A
survey of complex network measurements is found in [12].

2.3.1 Global Measures
Diameter and Average Path Length

The diameter of a network D(G) is the maximum length of its shortest
paths, considering all pairs of nodes:

D(G) = max d(i, 7). (2.8)
i,jEV
This measure is defined for connected graphs or connected components of
a graph. If a graph is not connected, the maximum diameter among those
of its connected components is sometimes considered to be the diameter of
the whole graph.
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The average path length of a network L(G) is the average of all shortest
path lengths in the network, considering all pairs of nodes:

L(G):n(nl_l) > d(i, ). (2.9)

i#jeV

This measure is defined for connected graphs. In some applications, it is
calculated for disconnected graph by setting d(i,j) = 0 if no path exists
between i and j. The average path length is sometimes referred to as the
characteristic path length.

Eccentricity and Network Radius

The eccentricity €(i) of a node i is the maximum length of a shortest path
from i to another node in the same connected component, or 0 for isolated
nodes.

. 0 ifk; =0,
(i) = { max;ec, d(i,j) otherwise, (2.10)

where C; is the connected component in which node ¢ is found.
Network radius is the minimum non-zero value for eccentricity, consid-
ering every node in the network:

G) = i ). 211
r(@) = min_ eG) (2.11)
Network Density

The density of a network is the ratio of the number of its edges to the num-
ber of its possible edges. For simple directed unweighted networks, this is
given by

[E(G)]

DenSlty(G) = m,

(2.12)

where n = |V(G)|. For undirected networks, the numerator has to be dou-
bled, to compensate for the fact that n(n — 1) counts each node pair twice:

, _ 2|E(G))
Density(G) = nn—1)° (2.13)
The following alternative definition may also be used [17]:
Density(G) = 2i2ijpity _ Sik) ki (2.14)

n(n —1) nn—1) n-1
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Number of nodes

FIGURE 2.1: Degree distribution. (a) Sample graph, labeled

with node degrees. (b) A visualization of the node degree

distribution, as a histogram chart with the number of nodes
on the y-axis.

where a;; are the elements of the adjacency matrix, k is a vector where each
element is given by the degree of the corresponding node, and k; is the
average node degree. The S, function of a vector v is defined as:

Sy(v) = Z vPT, (2.15)

Network density takes values from 0 to 1, where 0 is the density of a set
of isolated nodes, and 1 is the density of a complete graph. Thus, density
expresses how close a network is to one of the ends of this spectrum.

Degree Distribution

One of the most straightforward methods to compare complex networks
is to study their node degree distribution. This consists in counting the
number of nodes for each value of node degree found in the network (for
a simple example, see Figure 2.I). To make comparison possible, this is
reduced to a probability distribution by normalizing to the total number of
nodes:

Plk)="%, (2.16)
n
where n = |V| and ny, is the number of nodes with degree k. In this form,
the degree distribution can be compared with known probability distribu-
tion laws, or with other network instances, regardless of their order.
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2.3.2 Local Measures
Clustering Coefficient

The clustering coefficient of a node expresses a measure of how much its
neighborhood is made up of fully connected clusters.

The definition of this index is based on those of triplets and triangles.
In unweighted undirected graphs, a triplet is a set of three nodes, made up
of a central node and two of its adjacent nodes. If the non-central nodes
are also adjacent to one another, the set is a closed triplet; otherwise, it is
an open triplet. A triangle is a clique of three nodes; each triangle can be
thought of as three closed triplets, where each triplet has a different central
node.

The local clustering coefficient is defined for each node i as

_ Na(3)

Ci - N4
N3(i)

(2.17)

where N (7) is the number of triangles that contain i, and N3(¢) is the num-
ber of triplets where i is the central node.

An equivalent definition of N () is the number of edges between neigh-
bors of i. Moreover, a strict relation exists between the number of triplets of
anode and its degree:

N3(i) = k(k;l) (2.18)

That means that N3(i) = 0 if k; < 2. In that case, Na (i) also takes the
value of 0, and takes an indeterminate form. By convention, the clus-
tering coefficient of any such node is considered to be 0. Thus, an alternate
definition of Cj is:

0 ifki<2,

C; = oA, (2.19)
— ifk; > 2,
k’l(k'z — 1) ! -

where [; = Na (7). It is simple to verify that 0 < C; < 1.
The network average clustering coefficient is the average value of the
local clustering coefficient calculated for every node in a graph:

— 1
C==—> C. (2.20)
=7
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This value is sometimes used as a global clustering coefficient. Another
definition of such a measure exists, which is analogous to (2.17):
3N,
c="2,
N3

(2.21)

where N is the total number of triangles in the graph, thus 3NV is the total
number of closed triplets; and V3 is the total number of triplets, inclusive
of open and closed triplets. It is possible to extend the convention that
C = 0if N3 = 0 to this version of the clustering coefficient; with this in
effect, this measure also takes values from 0 to 1, where 1 is the value of
this coefficient in a complete graph. In general, the value of C' differs from
that of C; essentially, gives the same weight to each node, while
gives the same weight to each triangle. C'is sometimes referred to as global
clustering coefficient, but its formulation should be made explicit to avoid
confusion with the network average clustering coefficient.

If A is the adjacency matrix of an unweighted undirected graph, N and
N3 can be calculated from its entries a;; as follows:

NA = Z aijaikajk, (2.22)
k>j5>1
N3 = Z Qi Qi + Qi Q5k + ki Qkj, (2.23)

k>j>i

where the sum is taken over all triples of distinct nodes i, j, & only once.

Centrality Indices

A centrality index is a measure of how central a node is in the network;
multiple indices exist, in accordance with different definitions of central-
ity, and each may have a different degree of importance depending on the
field of application and the goal of the analysis. Some centrality indices are
defined for edges, as well.

In general, the definitions of centrality are such that the indices are local
properties, but their computation requires evaluations at a global level. For
this reason, there have been many efforts to find fast algorithms to compute
centrality indices.

Three centrality indices are commonly used across most fields of appli-
cation:

o closeness centrality;
e stress centrality;

e betweenness centrality.
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Closeness centrality expresses the degree to which a node is close to all
others, in the sense that the node has a low distance to all the other nodes.
This can be thought of as being central in a topological sense: intuitively,
the distance between two peripheral nodes at opposite sides of a complex
structure will be higher than the distance from a central node to any pe-
ripheral node.

The closeness centrality index of a node v is defined as

1
ZiEV dG(Uv 7’) ’

where d(v, 1) is the geodesic distance from v to ¢. This definition holds if V'
is connected; if this condition is not satisfied, the simplest possible strategy
is to compute centrality indices separately for each connected component.

The definitions of stress centrality and betweenness centrality involve
the concept of shortest path. Stress centrality is defined as the number of
shortest paths passing through a node; betweenness centrality is a measure
of how frequently a node appears in shortest paths.

In formulas, the stress centrality of a node v is:

Co(v) = (2.24)

Cs()= Y oulv), (2.25)

s#v#LEV

where o (v) is the number of shortest paths from s to ¢ that include v. The
betweenness centrality of v is given by

Cplv)= > 7st(v) (2.26)

g
sEVALEV st

where o4 (v) is defined the same way as above, and o is the total number
of shortest paths from s to ¢.

The betweenness centrality index is often normalized to the number of
node pairs excluding v; for simple unweighted graphs, this corresponds to

(N-1)(N—-2)
9 ,

(2.27)

where N = |V|. This normalizes the index to a scale from 0 to 1, making it
simpler to identify the most central nodes.
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2.4 Reference Models

In the analysis of a network with unknown properties, it is often useful to
compare its indices with those of a reference model. This ought to be a net-
work with known properties with some common ground with the network
under analysis, such as the same number of nodes and edges.

The most common reference models are:

o Erdds-Rényi model (or random network model);
o Watts-Strogatz model (or small-world model);
e Barabasi-Albert model (or scale-free network model).

These are defined as parametrized constructing algorithms.

24.1 Erd6s-Rényi Model

The Erd&s-Rényi model is held as a reference for random networks. Two
variants of the model exist: one is aimed at the construction of a random
graph with a set number of nodes and edges, while the other sets a fixed
probability for any pair of nodes to be joined by an edge.

The first variant is also referred to as the G(n, m) model, where n is the
number of nodes and m is the number of edges. It was introduced by Erd&s
and Rényi [20] and is formalized as follows:

1. Consider a set V of n nodes;

2. Build the set E of (%) possible edges on V;

3. Build E by choosing m edges from E, uniformly at random, without
replacement (i.e. avoiding multiple edges between any pair of nodes).

The resulting graph G = (V, E) is not guaranteed to be connected and
may have some isolated nodes.

The alternate variant was introduced by Gilbert [36], but is commonly
referred to as the G(n, p) version of the Erd6s-Rényi model:

1. Consider a set V of n nodes;

2. For each pair of nodes i,j € V,i # j, add an edge (i,j) to E with
probability p.

The resulting graph G = (V, E) is guaranteed to be a set of isolated
nodes if p = 0, or a complete graph if p = 1. Clearly, an increase in p means
a greater likelihood for the resulting graph to include a larger number of
edges.
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2.4.2 Watts-Strogatz Model

The reference model proposed by Watts and Strogatz [59] is meant to pro-
vide a method to build a random network with two specific properties: a
high clustering and a short average path length. These are referred to as
‘small-world” properties.

The model takes three parameters: a number of nodes (n), a number
of initially connected neighbors for each node (k), and a probability of
rewiring (p). It is required for k to be an even integer, with £ < n. The
constructing algorithm is as follows:

1. Build a regular ring network of n nodes, where each node is connected
to its £ nearest neighbors (half on each side);

2. For each edge in the starting network, rewire the edge with probabil-
ity p, where rewiring is done by detaching one of the incident nodes
and attaching the edge to another node, chosen with uniform proba-
bility, avoiding loops and duplicate edges.

This model was built in an attempt to replicate properties observed in
some real-world network, most notably social networks, in which common
acquaintances between strangers act as ‘bridges’ that make it possible to
reach any node with a small number of steps. Another goal of this model
is to provide a method to build a network that falls somewhere between
random networks built with the Erd6s-Rényi model and regular networks,
in the sense that the former may have low average path lengths, but tend
to low clustering coefficients, while the latter have a high clustering coeffi-
cient, but with a high average path length.

2.4.3 Barabasi-Albert Model

For many applications, the Watts-Strogatz model has a shortcoming in the
fact that its generated instances tend to lack hubs, i.e. nodes with a signifi-
cantly higher degree than the network average. Hubs are observed in many
real-world networks, particularly those describing self-organizing systems.
The degree distribution in such networks obeys a power law, in the form

Pk) ~ k™, (2.28)

for some fixed parameter v, which is independent of the size of the network.
This is referred to as the scale-free property of a network.

The Barabasi-Albert model [3] was designed as a method to build net-
works exhibiting this property; its building algorithm is an iterative growth
process based on the concept of preferential attachment. The starting point
is a small initial set of my nodes. At every step, a new node is added to
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the network, and linked to existing nodes by m < mg new edges. The
probability for the new node i to be joined with an existing node j is to be
proportional to the degree of j:

k;
ZUGV k”

That means that new nodes tend to connect to “popular” nodes. Af-
ter a sufficient number of steps, a network built with this method exhibits
the scale-free property. More specifically, for large numbers of nodes, the
degree distribution tends to a power law with v = 3; this was con-
firmed analytically [8]]. Scale-free networks with a different value of y in the
power-law degree distribution can result from adjustments in the growth
and preferential attachment process [1]].

P(i — j) = (2.29)
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Chapter 3

Ecological Networks

3.1 A Paradigm Shift in Nature Preservation

Over the past few centuries, increasing portions of human population have
moved away from rural areas toward urban agglomerates, to the point that
a majority of human activities are nowadays focused on cities. This has re-
sulted in the urbanization of increasing amounts of land, including on the
coastline. Moreover, a connection of cities with contiguous infrastructure
has become a requirement for the provision of essential services, such as
the transportation of people and goods via roads and railways, commu-
nication (telephone and Internet backbones, etc.), and the distribution of
electrical power. A direct consequence of this process of urbanization is
the elimination of portions of habitat patches from both land and sea. Hu-
man infrastructure has become a distributional barrier for many species.
In extreme cases, these barriers are impassable, not unlike the oceans for
terrestrial animals, or non-forest habitats for forest species; in other cases,
while not preventing migration, the presence of human infrastructure acts
as a factor to reduce the population of certain animals. An example of this
is given by the phenomenon of roadkills.

Concern for the protection of the environment, particularly species and
habitats at risk of extinction, has given rise to the creation of nature reserves.
Historically, these have existed in the form of isolated regions, mainly for
two reasons: first, reserves were tailored for the preservation of the most en-
dangered species, and secondly, the contiguity of infrastructure for human
activities was held as a priority. Eventually, this led to a heavy fragmenta-
tion of habitat patches. By the second half of the 20t century, the limited
effectiveness of this approach had become evident [15]. If the plan to es-
tablish a reserve is intended precisely to host a target species with a given
estimated population, the area assigned to it might be sized accordingly, re-
sulting in a small nature reserve. An insufficient land size acts as a limiting
factor in more than one way: not only will a small reserve be able to host a
smaller population of the target species, but it will be possible to host fewer
different species in the reserve overall, as well. Moreover, a similar phe-
nomenon is observed in relation to the distance between reserves: if said
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distance is excessive, the number of species that it is possible to protect is
also reduced.

As a way to address these shortcomings, there has been an increasing
push toward the creation of ecological networks [6] [58]; that is, rather than
being thought of as a self-contained entity, each nature reserve is to be de-
signed to contribute to large-scale conservation goals. Migration and dis-
persal of animals and plants are the essential elements of a network be-
havior that should be observed in a set of nature reserves. The presence
of migration paths for animals can increase their chances of survival in ex-
ceptional cases, such as the occurrence of local natural disasters; however,
the importance of migration paths lies in their effects in normal conditions.
In literature, a set of populations of a species, found in different areas, is
often referred to as a ‘metapopulation” [43]]. In the extreme case where no
migration can happen between sites, each population makes up a separate
metapopulation, and in time, the genetic material in each site can diverge,
while becoming poorer due to excessive inbreeding. Migration of animals
and dispersal of plants act as factors in merging the genetic pools of the
populations of different areas, reducing the frequency of inbreeding and
increasing the degree of biodiversity, which in turn also reduces the risk of
extinction of a species.

Network behavior emerges spontaneously when conditions for its oc-
currence are met. In some cases, it is sufficient to make sure that the dis-
tance between core areas of nature reserves is not excessive; most notably,
this is the case for most birds, but it may be true for other animals as well,
depending on the quality of the surrounding matrix [53]. In other cases,
the connectivity between suitable habitat patches for a target species may
be enhanced by the creation of ‘habitat corridors’ (or ‘green corridors’), de-
fined as “linear strips of habitat connecting two or more larger patches of
habitat, surrounded by a dissimilar matrix” [5]. It must be noted that, while
corridors are meant as passageways for most animals, they represent a per-
manent settlement for plants and some smaller animals, such as insects.

Several studies have confirmed habitat corridors to be an effective way
to improve biodiversity in a region, at least in the short term [37]. In de-
signing a corridor, it should be kept in mind that their efficacy depends on
several factors, including their quality relative to that of the surrounding
matrix [53]. In general, a corridor ought to be designed to meet the needs
of the species intended to use it [33]]; in some cases, it is more sensible to
arrange a set of disconnected patches to form a line, rather than a contigu-
ous strip of habitat: this kind of corridor is referred to as a set of ‘stepping
stones’. Lastly, to enhance the degree of separation between nature reserves
and urban areas, a transitional area (referred to as a “buffer zone”) may be
established, as a way to keep reserves at a distance from heavily urbanized
areas. Figure 3.1|illustrates all of these elements in a sample configuration.
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Core area
‘\Buffer zone
o
@ Stepping stones

Linear corridor

FIGURE 3.1: Sample configuration of three nature reserves
and two habitat corridors: a set of stepping stones (upper-
left) and a contiguous corridor (lower-right).

A comprehensive review of ecological network concepts, inclusive of de-
tails on these elements, is found in [6].

The costs to design, implement and maintain an artificial habitat corri-
dor represent a serious issue, particularly when intersections with infras-
tructure such as roads and railways are involved, as these introduce the
necessity for bridges, overpasses or underpasses. It stands to reason that
the problem of maximizing a benefit/cost ratio since the planning stages
can be considered extremely important.

The first mention of habitat corridors (then called “greenways”) as a
proposed solution to the shortcomings of the traditional approach to nature
preservation can be dated back to the 1920s. However, the first implemen-
tations were many decades later. In Europe, nature conservation became a
topic of great political importance only after World War II, under the pres-
sure of a disastrous state of natural resources and a necessity of recover-
ing from it [41]. Initially, policies for nature conservation were formulated
in many countries, at a national level; then, as the European Union was
formed, member states eventually coordinated their efforts toward a EU-
wide ecological network, under the project denominated “Natura 2000”.

3.2 Graph Models for Ecological Networks

Most complex systems consisting in a network can be represented math-
ematically by a graph, with the purpose of determining their properties
or comparing them with other instances of the same kind of system. Eco-
logical networks make no exception, and their graph models have been
an object of study since the beginning of the 21% century, when it was pro-
posed that a graph-theoretic approach to the analysis of ecological networks
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brings the advantage of being applicable to larger-scale case studies than
previous approaches allowed [56], and moreover, it is useful in building a
bridge between the field of biology and ecology and that of environmental
and land engineering, so long as methods based on graph theory and com-
plex network theory are seen as complement to other analysis techniques,
rather than a replacement thereof.

The latter point is particularly important, given the nature of graphs as
a mathematical object. The properties of a graph, including those derived
from complex network theory, are invariant to its presentational features,
which include the position taken by any node in its visualization. Fields of
application exist, such as the study of protein-protein interactions, where
the displacement of nodes and their presentational layout does not indeed
play any role, other than to provide the end user of complex network anal-
ysis software with an easy way to read results. In contrast, ecological net-
works fall under the category of spatial networks, i.e. those networks in
which nodes are located in a space equipped with a metric [4]. Spatial fea-
tures and constraints can not be ignored, whatever method is considered
for building a graph model of an ecological network.

Keeping this in mind, it seems sensible to build graph models by deter-
mining edges and weights in a such a way, that it represents structural con-
nectivity as it is found in the ecological network; essentially, in an attempt
to describe what the network is like. However, this approach has proven
to be unsuccessful, the main reason being that it is extremely difficult to
determine edge weights to represent structural connectivity in a meaning-
ful way [57]]. Theoretically, these should be made to reflect the presence of
physical features found between areas represented by nodes, which may
have a positive or a negative impact on the migration of species: for ex-
ample, the presence of mountains between any two nodes may be a cause
for the lack of edges, or for edge weights representing very low chances
for flows between nodes. In practice, the variety of helping elements and
possible obstacles to migration makes it so that representing them by the
presence of an edge and by its weight turns out to be an oversimplification.

Instead, graph models of ecological networks are commonly built to
represent functional connectivity, by placing edges and adjusting weights
according to amounts of migrations of species, whether actual, potential,
or estimated. This restricts the scope of a graph model to a single target
species, introducing the requirement to build multiple graphs to represent
the state of the network as a whole; nonetheless, the functional approach
has proven to be more effective and has been adopted in a wide range
of studies. Rather than using graph-theoretical approaches and complex
network analysis software, structural connectivity is generally analyzed
using Geographical Information System (GIS) tools; together with spatial
databases, these can also act as valuable tools to build functional models.
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3.2.1 GIS Data Types

Spatial data used for habitat conservation studies generally falls into one of
these categories [56]:

e collections of spatial points in a landscape;
e samples of measurements, referred to points in a landscape;

e subdivisions of a landscape in a lattice, where each region is assigned
some value or associated with a measurement.

GIS tools can work with different representations of spatial data, and
can present different views thereof. Most importantly, any subdivision of
a landscape into regions can be represented as raster data or vector data.
This distinction is not unlike the one found in applications of computer
graphics: raster data (also referred to as a ‘bitmap’) consists of collection
of pixels, which may be associated with their color value; in a similar way,
a portion of landscape can be subdivided into a grid of elements with a
fixed size, and each element can be associated with a value. Vector data,
on the other hand, consists of a collection of paths, which may make up
polygons to represent boundaries of regions. Vector data allows a higher
degree of precision, as regions represented as vectors may have boundaries
with arbitrary directions, but the computational 