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Complex network theory enables the analysis and comparison of graphs
with a very large number of nodes, or with non-trivial topological proper-
ties. Graph models exist for many kinds of networks, ranging from com-
puter networks to representation of protein-protein interactions, and anal-
ysis techniques are often shared between fields of application.

Infrastructure networks are an active field of application of complex net-
work analysis, which is frequently aimed at finding ways to improve on the
structure of a network, while respecting budget constraints. In this activ-
ity, complex network analysis is often cross-referenced with simulations or
operational research.

Power grids stand out among the most prominent examples of infras-
tructure network analyzed with techniques derived from complex network
theory, due to their importance as a service, their properties of quick re-
sponse to events, and the desired transition to a smart grid paradigm. With
the growing interest for the protection of endangered species and habitats,
the modeling and analysis of green infrastructure has also received increas-
ing attention from scholars.

These classes of infrastructure provide case studies for the exemplifica-
tion of a common process for the analysis of various kinds of infrastructure
networks, which involves the identification of vulnerabilities, the explo-
ration of a search space for possible modifications, and the definition of a
comparable measure of health of the network.
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Chapter 1

Introduction

Graphs are a powerful mathematical tool, used to represent networks of
many kinds, whether physical (computer networks, power grids, etc.) or
conceptual (protein-protein interactions, networks of knowledge, etc.). The
most discussed theoretical problems from graph theory generally corre-
spond to one or more practical problems in applications. One such example
is the problem known as ‘graph coloring’ (more specifically, vertex color-
ing), which consists in mapping the nodes in a graph to a minimal set of
labels (colors), while respecting the constraint that no two adjacent nodes
can be mapped to the same label. This is clearly analogous to the problem
of coloring countries in a world map; in fact, it is this latter problem that fu-
eled initial research into the theoretical aspects of graph coloring, beginning
with the restricted case of planar graphs.

Other practical problems exist, which can be solved with an instance of
the vertex coloring problem, although the relation is not as obvious. One
such problem is that of job scheduling, in which a number of jobs is to be as-
signed to time slots, while keeping in mind that some resources that may be
needed for multiple jobs can only be assigned to one job at any given time.
The resources may be workers themselves, in which case the problem can
also be applied to the definition of class schedules (a teacher may give lec-
tures to multiple classes, but may only give one in any time slot). Another
related problem is found in the field of computer science: given a function
written in C (or another language compiled to machine code), compilers
may optimize performance by assigning CPU registers to store local vari-
ables, but registers are available in an extremely limited number compared
to storage in RAM, and a register can only be allocated to one variable at
any given time. This leads to the problem of determining whether the scope
of variables in a certain function is such that the number of variables that
should be stored in registers at the same time is within the available number
of CPU registers [10].

The concept of finding a theoretical problem, to which practical prob-
lems are reduced, is recurrent in many branches of the vast field that is
graph theory, and is one of the reasons for its popularity as a research field.
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One of these branches is complex network theory. Since the beginning
of the 21st century, this area of research has received an increasing amount
of attention from scholars with different backgrounds, including physics,
mathematics, computer science, biology, and engineering. Complex net-
work theory deals with the extraction and analysis of statistical properties
of graphs, and aims at finding a comparable set of measures for graphs
with non-trivial topological properties, as well as extremely large graphs,
with a number of nodes in the millions, or even at higher orders of magni-
tude. Complex network theory is considered by some to be a separate field
of research, as opposed to a branch of graph theory, due to its specific col-
location encompassing graph theory and statistics, together with the large
number of its applications and their heavy influence on research questions.

From theoretical results, techniques for complex network analysis are
derived, which can be applied to conceptual and physical networks alike,
and it is not uncommon for ideas from a field of application to be adapted
for use in a different field. The same is true for software tools, with software
initially designed for analysis of specific classes of networks (e.g. social
networks, protein-protein interaction networks) being adapted for general-
purpose use in subsequent versions.

Complex network theory is often used to provide the foundations and
an established theoretical background for the construction of models for
infrastructure networks. This enables the application of methods to assess
network properties and predict the effect of changes, whether intentional or
due to external factors, to assist in devising development plans, as well as
guidelines for response to random failures or attacks from malicious users;
if the process involves determining whether the network – or a significant
portion thereof – is susceptible to collapsing when certain elements or links
(i.e. nodes or edges in the graph model) are removed or damaged, this is
referred to as a vulnerability assessment. The success of these methods of
analysis is heavily dependent on the construction of a faithful model of the
infrastructure being analyzed.

The present work takes two kinds of network infrastructure that have
become popular applications of complex network analysis in the past two
decades: ecological landscape networks and power grids.

The former are systems of “green infrastructure”, made up of nature
protection areas and habitat corridors, and are being established in various
parts of the world, as a way to overcome the limitations of traditional nat-
ural reserves: specifically, their inadequacy at preserving biodiversity, and
their limited effectiveness in conditions of insufficient size or excessive dis-
tance from other suitable habitat patches for the endangered species, which
they are supposed to host in a protected environment. Ecological landscape
networks have been an active field of discussion by scholars with a back-
ground in ecology since at least the 1970s, although the first mentions of
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habitat corridors, without a definite view of the “big picture” of green in-
frastructure, can be dated to as far back as the 1920s.

The establishment and maintenance of a continent-wide ecological net-
work is a task that requires considerable investments and the coordination
of efforts at local, national and international level. In the European Union,
this is done within the project denominated “Natura 2000”, aimed at the
preservation of biodiversity with the creation of a continent-wide ecolog-
ical network. A common framework is defined in European directives to
determine large-scale conservation goals, with a list of protected habitats
and species and a set of common rules for the activities across the conti-
nent, while local administrations are involved in the management of single
nature protection areas. In this context, complex network analysis tools are
a valuable complement for geographic information systems (GIS) used in
land management and planning, enabling a better understanding of net-
work behavior in habitat patches at a local level, as well as the evaluation
of large-scale consequences of local changes.

Power grids represent another class of infrastructure, which has received
a large amount of attention from scholars as a field of application for com-
plex network analysis. This can be attributed to the properties for which
power grids stand out among commodity distribution networks, such as
their quick response to changes and the necessity to adjust the output of
power plants to meet demand in real time; moreover, the special interest
for power grids is fueled by current plans for a smooth transition toward
a “smart grid” paradigm. This aims at increasing the reliability, flexibility
and efficiency of the grid, by complementing the power infrastructure with
an information infrastructure, in order to enable the grid to self-regulate,
and provide the possibility for end users to contribute to power generation
and grid operation.

In spite of a difference in goals, these two classes of application share
the motives for the creation of complex network models: the understand-
ing of global and local properties of the network, with the identification of
measures of health of the infrastructure, and the evaluation of the impact
of proposed modifications.

1.1 Dissertation Structure

The following is an outline of the organization of the present work:

• Chapter 2 provides a brief review of theoretical aspects that are com-
mon to both case studies.

• Chapter 3 introduces the concept of ecological landscape networks in
general, together with the methods in use for building graph models
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of green infrastructure. The Natura 2000 network is taken as a frame
of reference; following an analysis of the form in which public data is
made available within the project, details are given on which ways it
is possible to create complex network models from available data.

• In Chapter 4, after a brief introduction concerning the work of land
management and planning, a case study is presented, which is based
on Natura 2000 sites located in Sardinia. A method to build a model
of an ecological network based on site similarity is discussed, and
models created from multiple data sources are compared to determine
which approach is most useful for land management.

• Chapter 5 presents a second case study, consisting of a model of the
Sardinian power grid. An optimization problem is defined on a graph
model of the grid, in order to determine a set of power flows toward
which average operation should converge. A measure of collateral
damage from the failure of a node or set of nodes is proposed, and
multiple complex network models are analyzed, seeking a correlation
between network indices and collateral damage.

• General conclusions are drawn in Chapter 6. Final comments con-
cerning the aptness of each of the proposed network models are given,
and possibilities of future work are discussed.

1.2 Software tools

The open source Cytoscape suite [54] was used for complex network visu-
alization and analysis. For some applications, custom modifications were
applied to the software. The IBM CPLEX Optimization Studio was used
to solve linear optimization problems. QGIS [49] and SQLite with the Spa-
tialite extension were used for computation of spatial data.
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Chapter 2

Complex Networks

2.1 Graph Models of Complex Systems

Graphs are a powerful and versatile mathematical tool, and have been used
to model a wide range of complex systems of many kinds. By their defini-
tion, they are suitable as a mathematical model for networks, including con-
nected sets of physical entities, as well as virtual and conceptual networks
built from datasets of different origins.

Properties of a graph model will reflect those of the real-world network
they represent, and the effect of modifications applied to a graph model
may be used to predict the effect of changes on the corresponding real
network. A trivial example of this is given by computer networks: at the
smallest possible scale, most wired LANs are made up of a number of hosts
connected to a switch; in a graph model corresponding to this network, the
switch and each host are represented by nodes, and an edge represents each
physical connection. As the only connections are between the switch and a
host, the resulting graph will be an instance of a special case of graph, de-
nominated ‘star graph’, which consists of a number of nodes that are only
adjacent to a special central node, which in turn is adjacent to all the others.
In the real-world network, the failure of a host does not affect the connec-
tivity of the other hosts, whereas the failure of the switch causes a loss of
connectivity for every station connected to it; likewise, in the graph model,
the removal of peripheral nodes simply results in another instance of the
star graph with fewer nodes, while the removal of the central node results
in a set of isolated nodes, with a complete lack of edges, i.e. no connections.

Clearly, most networks in the real world are not so simple as to be repre-
sented by a star graph. However, the ability to predict the effect of changes
by examining the modifications of a graph model is desirable for many
kinds of physical, virtual and conceptual networks. In practice, this can
only be done intuitively for small networks; it may be possible to do so for
some medium-sized networks, so long as their topology is regular, or sim-
ple enough to be represented visually. An analytical approach is required
for larger networks, as well as those with a non-trivial topology.
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This approach is made possible by applications of complex network the-
ory, a branch of graph theory that deals with the study of statistical prop-
erties of graphs, thus providing tools to compare and categorize networks
at every scale and every degree of complexity. Fields of application of com-
plex network theory include, but are not limited to:

• computer networks at every scale (LAN, WLAN, MAN, WAN);

• social networks (centralized, e.g. Facebook, Twitter, LinkedIn; or de-
centralized, e.g. e-mail, in-person interaction);

• transportation networks (roads, railways, airplane connections);

• commodity distribution networks, including power grids;

• protein-protein and gene-protein interactions;

• metabolic networks;

• financial and trade networks;

• networks of knowledge, e.g. those used in the semantic web.

Some fields of application exist, which encompass multiple kinds of net-
works at the same time. For instance, law enforcement may benefit from a
combined study of social networks and distribution networks to identify
drug dealers acting as ‘hubs’, thus prioritizing actions that may disrupt the
distribution of illegal substances in the quickest and most effective way.

The aim of complex network theory is to provide a robust framework
for the comparison of networks and their categorization, which may work
for very large network and in the presence of non-trivial topological struc-
tures. Complex network analysis techniques often involve the comparison
of numerical indices and statistical distributions.

2.2 Graphs and Their Properties

This section revises the most important definitions and some basic concepts
of graph theory. There exists a vast literature on graph theory; one of the
most comprehensive works is [16].

2.2.1 Basic Definitions

A graph is a pair G = (V,E), where V is a set of vertices (or nodes) and
E ⊆ V 2 is a set of edges (or lines), which represent the connection between
a pair of nodes. An edge (i, j) ∈ E is said to be incident to nodes i and j,
and these nodes are said to be adjacent to one another. The order of a graph
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is the number of its nodes |V |, while the number of edges |E| is referred to
by size of a graph.

Node pairs are usually assumed to be unordered. In cases where they
are ordered, i.e. (i, j) and (j, i) are to be treated as two separate edges,
then the graph and its edges are said to be directed. A directed edge (i, j)
is also referred to as an arc, with head j and tail i; consistently with this
definition, a directed graph is often denoted as G = (V,A). A graph in
which undirected edges and arcs are allowed to exist at the same time is
said to be a mixed graph, denoted as G = (V,E,A).

It is normally assumed that only one edge may exist joining any two
nodes in an undirected graph, or two arcs of opposite direction in a directed
graph. To avoid confusion, a graph where multiple edges are allowed to
share a node pair is called a multigraph, and one where this is disallowed
is called a simple graph. An oriented graph is a directed graph with no pair
of opposite arcs between any two nodes.

A loop is an edge (i, i) joining a node with itself. In most applications,
loops are disregarded or forbidden; thus, unless stated otherwise in the
context of study, it is usually assumed that no loops are present.

A graph is said to be weighted if each edge has a numerical attribute
associated to it; this attribute may represent a distance (or cost) for travers-
ing the link, or a strength of the link (for example, the bandwidth of a link
between two routers).

2.2.2 Graph Concepts

Subgraphs

A subgraph of a graph G is a graph G′ with all of the following properties:

V (G′) ⊆ V (G),
E(G′) ⊆ E(G),
(i, j) ∈ E(G′)⇒ i, j ∈ V (G′).

(2.1)

It is also said thatG is a supergraph ofG′. A subgraph such that V (G′) =
V (G) is said to be a spanning subgraph of G.

If a subgraph G′ includes every edge in G that satisfies the conditions
to be a valid edge in G′, then it is said to be the subgraph of G induced (or
implied) by its node set S, and is denoted by G[S]. If G′ = G[S]:

S = V (G′) ⊆ V (G) and
E(G′) = {(i, j) | i, j ∈ S, (i, j) ∈ E(G)}. (2.2)
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Walks, Paths and Cycles

A walk on an undirected graph consists in an ordered list of nodes, such
that an edge exists between any two consecutive nodes. A walk is closed if
the first and last node are the same node, otherwise it is said to be open. A
walk is simple if there is no repetition of nodes, with the sole exception of
the repetition of the starting node as the final node in a simple closed walk.
A simple open walk is also called a path; a simple closed walk is also called
a cycle.

On directed graphs, a walk is made up of an ordered list of nodes, such
that an arc exists between consecutive nodes; if an arc oriented according
to the order in which the pair is found in the walk exists for all pairs of
consecutive nodes in the walk, then the walk is directed; otherwise, it is
undirected. Depending on the application, it may be required that only
directed walks are considered. Analogous definitions are given for directed
and undirected paths and cycles.

Connected Graphs

A graph is said to be connected if a path exists between any pair of nodes
chosen arbitrarily. A connected graph without cycles is said to be a tree.

If a graph G is not connected, its components (or connected compo-
nents) are the subgraphs of G with the following properties:

• the subgraph is induced from the supergraph by its node set;

• the subgraph is a connected graph;

• no path exists in the supergraph between any node in the subgraph
and any node that is not part of the subgraph.

If an edge exists between every pair of nodes, the graph is said to be
complete. The number of edges in a complete undirected graph is

|E| = n(n− 1)

2
, (2.3)

where n = |V |.
A clique is a complete subgraph of a given graph. A maximal clique of

G is a clique of G that is not a subgraph of another clique of G.

2.2.3 Basic Properties

Node Degree

The degree of a node n, denoted as deg(n) or kn, is the number of edges in-
cident to it. If loops are allowed, they are to be counted twice, i.e. both ends
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of the loop contribute to the node degree. In a simple undirected graph, the
degree of a node is equal to the number of its neighbors.

If every node in a graph has the same degree, the graph is said to be
regular.

In directed and mixed graphs, node degree is usually evaluated sepa-
rately for arcs that are incident to a node as their head, or as their tail. The
in-degree of a node n is the number of arcs for which n is the head, and the
out-degree of n is the number of edges for which n is the tail.

Path Length

Let P be the ordered set of edges that make up the path from i to j in an
unweighted graph. The length of the path l(P ) is given by:

l(P ) = |P |. (2.4)

On a weighted graph, in which the weight represents a distance or a
cost associated with the action of traversing an edge, the length of a path is
defined as the sum of the weights of the edges in the path:

l(P ) =
∑

(i,j)∈P

wij . (2.5)

Conversely, if the weight of a link represents its strength (for example, a
link bandwidth in a computer network), the length of a path can be defined
as the sum of weight reciprocals:

l(P ) =
∑

(i,j)∈P

1

wij
. (2.6)

In this case, it is required that all wij 6= 0 for all edges in a path. Depending
on the physical meaning of edge weights, however, such edges might not
exist, or be forbidden from being traversed.

Shortest Paths

The shortest path between two nodes is the path of minimum length con-
necting the two nodes. Its length is the distance between the two nodes,
and may be denoted as dG(i, j), d(i, j), or dij . To extend this definition to
include cases where i and j are the same node, and the case where there is
no path connecting the two nodes, Pij is defined as the set of all paths from
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i and j; then:

dG(i, j) =


0 if i = j,
∞ if Pij = ∅,
minP∈Pij l(P ) otherwise.

(2.7)

The full set of shortest paths from a given starting node is generally
found by performing a breadth-first search on unweighted graphs, or with
Dijkstra’s algorithm on weighted graphs with non-negative weights rep-
resenting distances. For directed graphs, it is intended that only directed
paths are to be considered.

2.3 Complex Network Properties

It is possible to identify and extract complex network measures of different
kinds, according to whether they are global or local properties, and whether
they are simple or compound values (such as vectors, matrices, and statis-
tical distributions).

Global properties are calculated as a single value for an entire network.
Such are, for example, the diameter of a network or its characteristic path
length. Conversely, local properties are evaluated for each node, by ana-
lyzing only its immediate neighborhood. An example thereof is the local
clustering coefficient. Some properties are found in the middle of this spec-
trum, like most centrality indices, which are calculated for nodes or edges,
but their value depends on the topology of the network in its entirety. A
survey of complex network measurements is found in [12].

2.3.1 Global Measures

Diameter and Average Path Length

The diameter of a network D(G) is the maximum length of its shortest
paths, considering all pairs of nodes:

D(G) = max
i,j∈V

d(i, j). (2.8)

This measure is defined for connected graphs or connected components of
a graph. If a graph is not connected, the maximum diameter among those
of its connected components is sometimes considered to be the diameter of
the whole graph.
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The average path length of a network L(G) is the average of all shortest
path lengths in the network, considering all pairs of nodes:

L(G) =
1

n(n− 1)

∑
i 6=j∈V

d(i, j). (2.9)

This measure is defined for connected graphs. In some applications, it is
calculated for disconnected graph by setting d(i, j) = 0 if no path exists
between i and j. The average path length is sometimes referred to as the
characteristic path length.

Eccentricity and Network Radius

The eccentricity ε(i) of a node i is the maximum length of a shortest path
from i to another node in the same connected component, or 0 for isolated
nodes.

ε(i) =

{
0 if ki = 0,
maxj∈Ci d(i, j) otherwise,

(2.10)

where Ci is the connected component in which node i is found.
Network radius is the minimum non-zero value for eccentricity, consid-

ering every node in the network:

r(G) = min
i∈V,ε(i)>0

ε(i). (2.11)

Network Density

The density of a network is the ratio of the number of its edges to the num-
ber of its possible edges. For simple directed unweighted networks, this is
given by

Density(G) =
|E(G)|
n(n− 1)

, (2.12)

where n = |V (G)|. For undirected networks, the numerator has to be dou-
bled, to compensate for the fact that n(n − 1) counts each node pair twice:

Density(G) =
2 |E(G)|
n(n− 1)

. (2.13)

The following alternative definition may also be used [17]:

Density(G) =

∑
i

∑
j 6=i aij

n(n− 1)
=

S1(k)

n(n− 1)
=

ki
n− 1

, (2.14)
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FIGURE 2.1: Degree distribution. (a) Sample graph, labeled
with node degrees. (b) A visualization of the node degree
distribution, as a histogram chart with the number of nodes

on the y-axis.

where aij are the elements of the adjacency matrix, k is a vector where each
element is given by the degree of the corresponding node, and ki is the
average node degree. The Sp function of a vector v is defined as:

Sp(v) =
∑
i

vpi 1
T . (2.15)

Network density takes values from 0 to 1, where 0 is the density of a set
of isolated nodes, and 1 is the density of a complete graph. Thus, density
expresses how close a network is to one of the ends of this spectrum.

Degree Distribution

One of the most straightforward methods to compare complex networks
is to study their node degree distribution. This consists in counting the
number of nodes for each value of node degree found in the network (for
a simple example, see Figure 2.1). To make comparison possible, this is
reduced to a probability distribution by normalizing to the total number of
nodes:

P (k) =
nk
n

, (2.16)

where n = |V | and nk is the number of nodes with degree k. In this form,
the degree distribution can be compared with known probability distribu-
tion laws, or with other network instances, regardless of their order.
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2.3.2 Local Measures

Clustering Coefficient

The clustering coefficient of a node expresses a measure of how much its
neighborhood is made up of fully connected clusters.

The definition of this index is based on those of triplets and triangles.
In unweighted undirected graphs, a triplet is a set of three nodes, made up
of a central node and two of its adjacent nodes. If the non-central nodes
are also adjacent to one another, the set is a closed triplet; otherwise, it is
an open triplet. A triangle is a clique of three nodes; each triangle can be
thought of as three closed triplets, where each triplet has a different central
node.

The local clustering coefficient is defined for each node i as

Ci =
N4(i)

N3(i)
, (2.17)

whereN4(i) is the number of triangles that contain i, andN3(i) is the num-
ber of triplets where i is the central node.

An equivalent definition ofN4(i) is the number of edges between neigh-
bors of i. Moreover, a strict relation exists between the number of triplets of
a node and its degree:

N3(i) =
ki(ki − 1)

2
. (2.18)

That means that N3(i) = 0 if ki < 2. In that case, N4(i) also takes the
value of 0, and (2.17) takes an indeterminate form. By convention, the clus-
tering coefficient of any such node is considered to be 0. Thus, an alternate
definition of Ci is:

Ci =

 0 if ki < 2,
2li

ki(ki − 1)
if ki ≥ 2, (2.19)

where li = N4(i). It is simple to verify that 0 ≤ Ci ≤ 1.
The network average clustering coefficient is the average value of the

local clustering coefficient calculated for every node in a graph:

C =
1

|V |
∑
i∈V

Ci. (2.20)
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This value is sometimes used as a global clustering coefficient. Another
definition of such a measure exists, which is analogous to (2.17):

C =
3N4
N3

, (2.21)

whereN4 is the total number of triangles in the graph, thus 3N4 is the total
number of closed triplets; and N3 is the total number of triplets, inclusive
of open and closed triplets. It is possible to extend the convention that
C = 0 if N3 = 0 to this version of the clustering coefficient; with this in
effect, this measure also takes values from 0 to 1, where 1 is the value of
this coefficient in a complete graph. In general, the value of C differs from
that of C; essentially, (2.20) gives the same weight to each node, while (2.21)
gives the same weight to each triangle. C is sometimes referred to as global
clustering coefficient, but its formulation should be made explicit to avoid
confusion with the network average clustering coefficient.

IfA is the adjacency matrix of an unweighted undirected graph,N4 and
N3 can be calculated from its entries aij as follows:

N4 =
∑
k>j>i

aijaikajk, (2.22)

N3 =
∑
k>j>i

aijaik + ajiajk + akiakj , (2.23)

where the sum is taken over all triples of distinct nodes i, j, k only once.

Centrality Indices

A centrality index is a measure of how central a node is in the network;
multiple indices exist, in accordance with different definitions of central-
ity, and each may have a different degree of importance depending on the
field of application and the goal of the analysis. Some centrality indices are
defined for edges, as well.

In general, the definitions of centrality are such that the indices are local
properties, but their computation requires evaluations at a global level. For
this reason, there have been many efforts to find fast algorithms to compute
centrality indices.

Three centrality indices are commonly used across most fields of appli-
cation:

• closeness centrality;

• stress centrality;

• betweenness centrality.
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Closeness centrality expresses the degree to which a node is close to all
others, in the sense that the node has a low distance to all the other nodes.
This can be thought of as being central in a topological sense: intuitively,
the distance between two peripheral nodes at opposite sides of a complex
structure will be higher than the distance from a central node to any pe-
ripheral node.

The closeness centrality index of a node v is defined as

CC(v) =
1∑

i∈V dG(v, i)
, (2.24)

where d(v, i) is the geodesic distance from v to i. This definition holds if V
is connected; if this condition is not satisfied, the simplest possible strategy
is to compute centrality indices separately for each connected component.

The definitions of stress centrality and betweenness centrality involve
the concept of shortest path. Stress centrality is defined as the number of
shortest paths passing through a node; betweenness centrality is a measure
of how frequently a node appears in shortest paths.

In formulas, the stress centrality of a node v is:

CS(v) =
∑

s 6=v 6=t∈V
σst(v), (2.25)

where σst(v) is the number of shortest paths from s to t that include v. The
betweenness centrality of v is given by

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
, (2.26)

where σst(v) is defined the same way as above, and σst is the total number
of shortest paths from s to t.

The betweenness centrality index is often normalized to the number of
node pairs excluding v; for simple unweighted graphs, this corresponds to

(N − 1)(N − 2)

2
, (2.27)

where N = |V |. This normalizes the index to a scale from 0 to 1, making it
simpler to identify the most central nodes.
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2.4 Reference Models

In the analysis of a network with unknown properties, it is often useful to
compare its indices with those of a reference model. This ought to be a net-
work with known properties with some common ground with the network
under analysis, such as the same number of nodes and edges.

The most common reference models are:

• Erdős-Rényi model (or random network model);

• Watts-Strogatz model (or small-world model);

• Barabási-Albert model (or scale-free network model).

These are defined as parametrized constructing algorithms.

2.4.1 Erdős-Rényi Model

The Erdős-Rényi model is held as a reference for random networks. Two
variants of the model exist: one is aimed at the construction of a random
graph with a set number of nodes and edges, while the other sets a fixed
probability for any pair of nodes to be joined by an edge.

The first variant is also referred to as the G(n,m) model, where n is the
number of nodes andm is the number of edges. It was introduced by Erdős
and Rényi [20] and is formalized as follows:

1. Consider a set V of n nodes;

2. Build the set Ê of
(
n
2

)
possible edges on V ;

3. Build E by choosing m edges from Ê, uniformly at random, without
replacement (i.e. avoiding multiple edges between any pair of nodes).

The resulting graph G = (V,E) is not guaranteed to be connected and
may have some isolated nodes.

The alternate variant was introduced by Gilbert [36], but is commonly
referred to as the G(n, p) version of the Erdős-Rényi model:

1. Consider a set V of n nodes;

2. For each pair of nodes i, j ∈ V, i 6= j, add an edge (i, j) to E with
probability p.

The resulting graph G = (V,E) is guaranteed to be a set of isolated
nodes if p = 0, or a complete graph if p = 1. Clearly, an increase in p means
a greater likelihood for the resulting graph to include a larger number of
edges.
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2.4.2 Watts-Strogatz Model

The reference model proposed by Watts and Strogatz [59] is meant to pro-
vide a method to build a random network with two specific properties: a
high clustering and a short average path length. These are referred to as
‘small-world’ properties.

The model takes three parameters: a number of nodes (n), a number
of initially connected neighbors for each node (k), and a probability of
rewiring (p). It is required for k to be an even integer, with k � n. The
constructing algorithm is as follows:

1. Build a regular ring network of n nodes, where each node is connected
to its k nearest neighbors (half on each side);

2. For each edge in the starting network, rewire the edge with probabil-
ity p, where rewiring is done by detaching one of the incident nodes
and attaching the edge to another node, chosen with uniform proba-
bility, avoiding loops and duplicate edges.

This model was built in an attempt to replicate properties observed in
some real-world network, most notably social networks, in which common
acquaintances between strangers act as ‘bridges’ that make it possible to
reach any node with a small number of steps. Another goal of this model
is to provide a method to build a network that falls somewhere between
random networks built with the Erdős-Rényi model and regular networks,
in the sense that the former may have low average path lengths, but tend
to low clustering coefficients, while the latter have a high clustering coeffi-
cient, but with a high average path length.

2.4.3 Barabási-Albert Model

For many applications, the Watts-Strogatz model has a shortcoming in the
fact that its generated instances tend to lack hubs, i.e. nodes with a signifi-
cantly higher degree than the network average. Hubs are observed in many
real-world networks, particularly those describing self-organizing systems.
The degree distribution in such networks obeys a power law, in the form

P (k) ∼ k−γ , (2.28)

for some fixed parameter γ, which is independent of the size of the network.
This is referred to as the scale-free property of a network.

The Barabási-Albert model [3] was designed as a method to build net-
works exhibiting this property; its building algorithm is an iterative growth
process based on the concept of preferential attachment. The starting point
is a small initial set of m0 nodes. At every step, a new node is added to
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the network, and linked to existing nodes by m < m0 new edges. The
probability for the new node i to be joined with an existing node j is to be
proportional to the degree of j:

P (i→ j) =
kj∑
v∈V kv

(2.29)

That means that new nodes tend to connect to “popular” nodes. Af-
ter a sufficient number of steps, a network built with this method exhibits
the scale-free property. More specifically, for large numbers of nodes, the
degree distribution tends to a power law (2.28) with γ = 3; this was con-
firmed analytically [8]. Scale-free networks with a different value of γ in the
power-law degree distribution can result from adjustments in the growth
and preferential attachment process [1].
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Chapter 3

Ecological Networks

3.1 A Paradigm Shift in Nature Preservation

Over the past few centuries, increasing portions of human population have
moved away from rural areas toward urban agglomerates, to the point that
a majority of human activities are nowadays focused on cities. This has re-
sulted in the urbanization of increasing amounts of land, including on the
coastline. Moreover, a connection of cities with contiguous infrastructure
has become a requirement for the provision of essential services, such as
the transportation of people and goods via roads and railways, commu-
nication (telephone and Internet backbones, etc.), and the distribution of
electrical power. A direct consequence of this process of urbanization is
the elimination of portions of habitat patches from both land and sea. Hu-
man infrastructure has become a distributional barrier for many species.
In extreme cases, these barriers are impassable, not unlike the oceans for
terrestrial animals, or non-forest habitats for forest species; in other cases,
while not preventing migration, the presence of human infrastructure acts
as a factor to reduce the population of certain animals. An example of this
is given by the phenomenon of roadkills.

Concern for the protection of the environment, particularly species and
habitats at risk of extinction, has given rise to the creation of nature reserves.
Historically, these have existed in the form of isolated regions, mainly for
two reasons: first, reserves were tailored for the preservation of the most en-
dangered species, and secondly, the contiguity of infrastructure for human
activities was held as a priority. Eventually, this led to a heavy fragmenta-
tion of habitat patches. By the second half of the 20th century, the limited
effectiveness of this approach had become evident [15]. If the plan to es-
tablish a reserve is intended precisely to host a target species with a given
estimated population, the area assigned to it might be sized accordingly, re-
sulting in a small nature reserve. An insufficient land size acts as a limiting
factor in more than one way: not only will a small reserve be able to host a
smaller population of the target species, but it will be possible to host fewer
different species in the reserve overall, as well. Moreover, a similar phe-
nomenon is observed in relation to the distance between reserves: if said
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distance is excessive, the number of species that it is possible to protect is
also reduced.

As a way to address these shortcomings, there has been an increasing
push toward the creation of ecological networks [6] [58]; that is, rather than
being thought of as a self-contained entity, each nature reserve is to be de-
signed to contribute to large-scale conservation goals. Migration and dis-
persal of animals and plants are the essential elements of a network be-
havior that should be observed in a set of nature reserves. The presence
of migration paths for animals can increase their chances of survival in ex-
ceptional cases, such as the occurrence of local natural disasters; however,
the importance of migration paths lies in their effects in normal conditions.
In literature, a set of populations of a species, found in different areas, is
often referred to as a ‘metapopulation’ [43]. In the extreme case where no
migration can happen between sites, each population makes up a separate
metapopulation, and in time, the genetic material in each site can diverge,
while becoming poorer due to excessive inbreeding. Migration of animals
and dispersal of plants act as factors in merging the genetic pools of the
populations of different areas, reducing the frequency of inbreeding and
increasing the degree of biodiversity, which in turn also reduces the risk of
extinction of a species.

Network behavior emerges spontaneously when conditions for its oc-
currence are met. In some cases, it is sufficient to make sure that the dis-
tance between core areas of nature reserves is not excessive; most notably,
this is the case for most birds, but it may be true for other animals as well,
depending on the quality of the surrounding matrix [53]. In other cases,
the connectivity between suitable habitat patches for a target species may
be enhanced by the creation of ‘habitat corridors’ (or ‘green corridors’), de-
fined as “linear strips of habitat connecting two or more larger patches of
habitat, surrounded by a dissimilar matrix” [5]. It must be noted that, while
corridors are meant as passageways for most animals, they represent a per-
manent settlement for plants and some smaller animals, such as insects.

Several studies have confirmed habitat corridors to be an effective way
to improve biodiversity in a region, at least in the short term [37]. In de-
signing a corridor, it should be kept in mind that their efficacy depends on
several factors, including their quality relative to that of the surrounding
matrix [53]. In general, a corridor ought to be designed to meet the needs
of the species intended to use it [33]; in some cases, it is more sensible to
arrange a set of disconnected patches to form a line, rather than a contigu-
ous strip of habitat: this kind of corridor is referred to as a set of ‘stepping
stones’. Lastly, to enhance the degree of separation between nature reserves
and urban areas, a transitional area (referred to as a “buffer zone”) may be
established, as a way to keep reserves at a distance from heavily urbanized
areas. Figure 3.1 illustrates all of these elements in a sample configuration.
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Core area

Bu er zone

Linear corridor

Stepping stones

FIGURE 3.1: Sample configuration of three nature reserves
and two habitat corridors: a set of stepping stones (upper-

left) and a contiguous corridor (lower-right).

A comprehensive review of ecological network concepts, inclusive of de-
tails on these elements, is found in [6].

The costs to design, implement and maintain an artificial habitat corri-
dor represent a serious issue, particularly when intersections with infras-
tructure such as roads and railways are involved, as these introduce the
necessity for bridges, overpasses or underpasses. It stands to reason that
the problem of maximizing a benefit/cost ratio since the planning stages
can be considered extremely important.

The first mention of habitat corridors (then called “greenways”) as a
proposed solution to the shortcomings of the traditional approach to nature
preservation can be dated back to the 1920s. However, the first implemen-
tations were many decades later. In Europe, nature conservation became a
topic of great political importance only after World War II, under the pres-
sure of a disastrous state of natural resources and a necessity of recover-
ing from it [41]. Initially, policies for nature conservation were formulated
in many countries, at a national level; then, as the European Union was
formed, member states eventually coordinated their efforts toward a EU-
wide ecological network, under the project denominated “Natura 2000”.

3.2 Graph Models for Ecological Networks

Most complex systems consisting in a network can be represented math-
ematically by a graph, with the purpose of determining their properties
or comparing them with other instances of the same kind of system. Eco-
logical networks make no exception, and their graph models have been
an object of study since the beginning of the 21st century, when it was pro-
posed that a graph-theoretic approach to the analysis of ecological networks
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brings the advantage of being applicable to larger-scale case studies than
previous approaches allowed [56], and moreover, it is useful in building a
bridge between the field of biology and ecology and that of environmental
and land engineering, so long as methods based on graph theory and com-
plex network theory are seen as complement to other analysis techniques,
rather than a replacement thereof.

The latter point is particularly important, given the nature of graphs as
a mathematical object. The properties of a graph, including those derived
from complex network theory, are invariant to its presentational features,
which include the position taken by any node in its visualization. Fields of
application exist, such as the study of protein-protein interactions, where
the displacement of nodes and their presentational layout does not indeed
play any role, other than to provide the end user of complex network anal-
ysis software with an easy way to read results. In contrast, ecological net-
works fall under the category of spatial networks, i.e. those networks in
which nodes are located in a space equipped with a metric [4]. Spatial fea-
tures and constraints can not be ignored, whatever method is considered
for building a graph model of an ecological network.

Keeping this in mind, it seems sensible to build graph models by deter-
mining edges and weights in a such a way, that it represents structural con-
nectivity as it is found in the ecological network; essentially, in an attempt
to describe what the network is like. However, this approach has proven
to be unsuccessful, the main reason being that it is extremely difficult to
determine edge weights to represent structural connectivity in a meaning-
ful way [57]. Theoretically, these should be made to reflect the presence of
physical features found between areas represented by nodes, which may
have a positive or a negative impact on the migration of species: for ex-
ample, the presence of mountains between any two nodes may be a cause
for the lack of edges, or for edge weights representing very low chances
for flows between nodes. In practice, the variety of helping elements and
possible obstacles to migration makes it so that representing them by the
presence of an edge and by its weight turns out to be an oversimplification.

Instead, graph models of ecological networks are commonly built to
represent functional connectivity, by placing edges and adjusting weights
according to amounts of migrations of species, whether actual, potential,
or estimated. This restricts the scope of a graph model to a single target
species, introducing the requirement to build multiple graphs to represent
the state of the network as a whole; nonetheless, the functional approach
has proven to be more effective and has been adopted in a wide range
of studies. Rather than using graph-theoretical approaches and complex
network analysis software, structural connectivity is generally analyzed
using Geographical Information System (GIS) tools; together with spatial
databases, these can also act as valuable tools to build functional models.



3.2. Graph Models for Ecological Networks 23

3.2.1 GIS Data Types

Spatial data used for habitat conservation studies generally falls into one of
these categories [56]:

• collections of spatial points in a landscape;

• samples of measurements, referred to points in a landscape;

• subdivisions of a landscape in a lattice, where each region is assigned
some value or associated with a measurement.

GIS tools can work with different representations of spatial data, and
can present different views thereof. Most importantly, any subdivision of
a landscape into regions can be represented as raster data or vector data.
This distinction is not unlike the one found in applications of computer
graphics: raster data (also referred to as a ‘bitmap’) consists of collection
of pixels, which may be associated with their color value; in a similar way,
a portion of landscape can be subdivided into a grid of elements with a
fixed size, and each element can be associated with a value. Vector data,
on the other hand, consists of a collection of paths, which may make up
polygons to represent boundaries of regions. Vector data allows a higher
degree of precision, as regions represented as vectors may have boundaries
with arbitrary directions, but the computational costs associated with its
use can be significantly higher than those of raster data.

Another important aspect to be considered is the system of coordinates.
Spatial data is represented on a map projection, i.e. a two-dimensional
representation of the surface of the Earth. Map projections fall into one
of three classes, according to the basis of their method of creation: there
exist cylindrical projections, conical projections, and planar projections, de-
pending on whether the globe is projected onto a cylinder, a cone or a flat
surface. Each projection type introduces distortions, with a different effect
on map features. Depending on different methods of projection, it is possi-
ble to preserve angular conformity (orthomorphic projection or conformal
projection), have a constant scale for distances (equidistant projection), or
preserve the proportion of surface areas (equal area projection), but not all
three at the same time. As preserving one property generally causes a larger
degree of distortion in the other two, a compromise solution of minimizing
distortion in all three features, while preserving none, is sometimes sought
(compromise projection). Systems of coordinates are often based on lati-
tude, longitude and height on the globe, but the use of a map projection
may be associated with a reference system placed on the projection, with
an alternative system of coordinates associated to it.

The choice of a map projection and system of coordinates should de-
pend on which of the three properties is most important to preserve for the
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TABLE 3.1: Design choices for graph models of ecological
networks.

Choice Examples
Species An endangered species; an umbrella species
Scale A municipal area; a region; a continent
Granularity A node for each habitat patch or each conservation area
Corridors As nodes or as edges

goals of a study. In practice, however, the choice is sometimes dictated by
national or local standards, which mandate that public spatial databases
use a specific system, usually justified by the fact that a specific map projec-
tion has been optimized to minimize distortion in an area of interest. De-
pending on the properties of the base system used in data sources, it may be
necessary to convert spatial data to a different system prior to performing
calculations, or accept a degree of approximation in results.

3.2.2 From Landscape Data To Graphs

The creation of a graph model for an ecological network, using raw data
and computation results from GIS tools, is heavily influenced by a num-
ber of design choices, to be made consistently with the fundamental goals
of analysis. First, the motive behind the creation of a graph model has
to be considered. Representing the state of the network is generally not
enough; the success of a graph model depends on its versatility and, most
importantly, its ability to predict the effect of changes on the network. The
comparison of results of analysis performed on a graph representing the
current state of the network with those obtained on a modified instance of
the graph, where nodes, edges, or edge weights are adjusted according to
changes that may happen naturally or as a consequence of human interven-
tion, is supposed to provide insight on the effects of these changes.

The method to build a graph generally consists of determining a set of
nodes, a set of edges and, if applicable, edge weights and other attributes.
It is important to have considered issues involving both nodes and edges
before any final decision is made. The most important and recurring de-
sign choices to be made are summarized in Table 3.1 and described in the
remainder of this section.

Species

As already pointed out, a model representing functional connectivity keeps
the focus on a target species, and the characterizing features of that species



3.2. Graph Models for Ecological Networks 25

have an influence on most design choices. It stands to reason for the most
endangered species to be common choices for target species, but research
goals may involve a number of species at the same time, not all of them
being at risk of extinction. When multiple species are considered as a target,
it is possible to build multiple graphs to represent the state of the network
with respect to each species; this may not be a viable option if the number
of species is considerable.

A common approach in this case is that of finding an “umbrella species”.
This is defined as a “species with large area requirements, which if given
sufficient protected habitat area, will bring many other species under pro-
tection” [9]. In other words, a species is to be chosen, such that the end
result of the implementation of beneficial measures to that species brings
an improvement for a large number of other species. This concept has been
applied in the management and planning of conservation areas, and has
proven to be successful in many situations, especially under strict time con-
straints for analysis and planning [51]. The same approach can be consid-
ered for large-scale goals, keeping its limitations in mind.

Scale

The size of the area under consideration may vary from that of a municipal
area to that of a region, or even a whole continent.

Scale can be determined by the goals at hand, such as what research
questions and what land management plans are the most immediate con-
cern. Examples range from continent-wide studies for the prediction of the
effects that local changes in climate and land use [42] to analyses of the re-
silience of small-scale green infrastructure in peri-urban settings [14]. In
general, biologists and ecologists are likely to be concerned with studies
at different scales, while scholars and practitioners in the field of land and
environmental engineering may be most interested in small-scale studies;
however, the very purpose of ecological networks is that of enhancing the
ability of local reserves to contribute to large-scale goals, and as such, large-
scale studies should be considered by land managers as well as ecologists.

Granularity

Granularity refers to whether a node should represent each single habitat
patch (fine granularity), a whole conservation area (coarse granularity) or
some intermediate degree. This choice is heavily influenced by that of scale,
as a fine granularity paired with a large scale may result in a very large
graph, with a corresponding increase in computational costs.
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FIGURE 3.2: Graph model representations of the sample
configuration of Figure 3.1. (a) Habitat corridors modeled

as edges. (b) Habitat corridors modeled as nodes.

Representation of Corridors

Habitat corridors may be represented as edges, treating them as connect-
ing elements, or as nodes, treating them as additional habitat patches (see
Figure 3.2).

The choice should be consistent with that of granularity and with the
species of interest: as already observed, habitat corridors are permanent
settlements for plants and some smaller animals, and in that case, it may be
most sensible to represent them as nodes, adapting the choice of granularity
if necessary.

3.2.3 Basic Analysis

Once a graph model of an ecological network has been established, its anal-
ysis can uncover advanced properties, which may not be simply derived
from the corresponding geographical map.

A preliminary observation, which is simple but proves most important,
is to check whether the graph is connected or made up of several connected
components. This is needed because some indices are defined for a con-
nected component, and it has a meaning in itself in the fact that, assuming
the graph has been instantiated for a single species and edges reflect the ac-
tual possibilities of migration, each connected component is associated with
the existence of a separate metapopulation of the species [43], and merging
them can be identified as a goal of environmental planning.

Ranking network elements by their centrality is another common kind
of analysis. This is useful in determining criteria to produce modified ver-
sion of a graph model, for comparison with the instance representing the
current state of the network. In general, the removal of nodes with a high
betweenness centrality index affects a larger number of shortest paths, with
an impact on network connectivity [7]. This mostly affects the network as
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a whole at large scale, while local agglomerates of patches with a strong
organization in cliques may be unaffected for the most part [21].

3.3 Natura 2000

3.3.1 Basic Elements of Natura 2000

In the European Union, policies for the protection of nature and biodiver-
sity have been extended to include the creation of an ecological network,
denominated “Natura 2000”. The inception of Natura 2000 can be dated
back to May 1992, when Council Directive 92/43/EEC (“Habitat Direc-
tive”) was approved. This Directive complements the previous Council Di-
rective 79/409/EEC (“Birds Directive”), which was later replaced by Coun-
cil Directive 2009/147/EC, in giving the definitions for a network to cover
the cases for conservation of birds and other species.

The main elements of Natura 2000 are nature protection areas, catego-
rized into two distinct sets:

• Special Protection Areas (SPA), designated by member states accord-
ing to the EU Birds Directive;

• Special Areas of Conservation (SAC), designated by member states
according to the EU Habitats Directive.

While SPAs are simply designated by member states, the process to des-
ignate a Special Area of Conservation generally consists of two phases.
First, a site is proposed by a member state of the Union to become a Site
of Community Importance (SCI); once the site has been approved as a SCI
by the EU, the member state can designate it as a SAC.

If it is considered important for the protection of birds as well as other
forms of wildlife, a site can be recognized both as a SPA and as a SAC (or
SCI), at the same time. Moreover, the boundaries of a SPA may be inter-
sected with those of SACs and SCIs, and vice versa; that way, any area may
be part of a SPA and a SAC at the same time, even though the relevant sites
are designated independently. Sites designated as SPA may be adjacent to
one another, without overlapping; the same applies to SCIs and SACs.

Privately owned land and areas dedicated to human activities may also
become part of Natura 2000 sites. If that is the case, the site is to be con-
sidered an area where the EU seeks a sustainable management of natural
resources in the appropriate context.
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TABLE 3.2: The first few habitats listed in Annex I, with
their Natura 2000 codes.

Code Priority Name
1110 Sandbanks which are slightly covered by sea

water all the time
1120 yes Posidonia beds (Posidonion oceanicae)
1130 Estuaries
1140 Mudflats and sandflats not covered by sea-

water at low tide
1150 yes Coastal lagoons
... ... ...

3.3.2 Categorization of Habitats and Species

Within the Natura 2000 project, a categorization of habitats and species is
provided. Habitats are listed in Annex I of the Habitats Directive; species
are listed in the Birds Directive and in Annex II of the Habitats Directive.

Habitats are assigned a four-digit code, where each digit represents a
taxonomic rank; for example, habitat codes beginning with a ‘1’ are used
for “coastal and halophytic habitats”, and at the second level, ‘11’ denotes
“Open sea and tidal areas”, ‘12’ is used for “Sea cliffs and shingle or stony
beaches”, etc. (see Table 3.2). Where necessary to preserve this hierarchical
categorization, a letter was used in some habitat codes, instead of a digit.
Specific habitats are flagged as a ‘priority’ for conservation purposes. An
official Interpretation Manual of European Union Habitats contains a thor-
ough description of each habitat, including the corresponding categoriza-
tion under different projects.

Lists of species of interest, for which it is required to setup conservation
areas, are given in the relevant Directives. Each species is assigned a unique
code for identification. Unlike those in use for habitats, these codes do not
reflect any form of taxonomy, with the sole exception of the use of the letter
’A’ in the first position to identify birds (see Table 3.3).

3.3.3 Collection of Reports

As part of the activities that make up the Natura 2000 project, sites are pe-
riodically visited in order to collect data on their current state, concerning
the recognized set of species of interest and, at the discretion of local ex-
perts, any other species considered relevant. Reports are written follow-
ing a Standard Data Form found in Commission Implementing Decision
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TABLE 3.3: Excerpts from a list of species with their Natura
2000 codes.

Code Category Name
... ... ...
1190 Amphibian Discoglossus sardus
6207 Amphibian Speleomantes flavus
... ... ...
A400 Bird Accipiter gentilis arrigonii
A293 Bird Acrocephalus melanopogon
... ... ...
1095 Fish Petromyzon marinus
6135 Fish Salmo trutta macrostigma
... ... ...

2011/484/EU, replacing a previous version of the form, released with EU
Commission Decision 97/266/EC.

The current Standard Data Form consists of seven sections:

1. Site Information: this includes an identification code, the classifica-
tion (as SPA, SCI, SAC), dates of first compilation and latest update;

2. Site Location: coordinates on Earth of a site centroid, the extension
of the site and which percentage is made up of marine area, which
administrative region the site is part of, a subdivision into biogeo-
graphical regions (e.g. Alpine, Atlantic, etc.);

3. Ecological Information: detailed data on each habitat found within
the site, including an evaluation of quality (i.e. its state of conserva-
tion, etc.); data on each recognized species of interest found within the
site, with an evaluation (e.g. size of population, whether a settlement
is permanent, etc.); optionally, data on any other species deemed rel-
evant by local reporters.

4. Site Description: includes the percentage of extension cover for each
habitat, notes on quality and importance, a classification of threats
and activities, and optionally data on the ownership of the site;

5. Site Protection Status (optional): references to local designations, re-
lations to other sites;

6. Site Management: administrative references to the entities in charge
of site management, and documents detailing the management plans;
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7. Map of the Site (optional): a graphical map, which may be attached
in PDF format.

Collected data is eventually stored in a public data base, and a web
interface exists for easy access by the general public. From the point of
view of data analysis, when the whole dataset is retrieved, two potential
roadblocks emerge.

The first issue is that part of the data is collected in the form of free text,
i.e. it has to be stored as unstructured data; this includes the evaluation of
threats and description of activities. Moreover, while most of the species
data is stored in structured form, it is not available in a consistent manner,
due to difficulties in their collection at the source. Namely, the size of pop-
ulation can be reported as a number of specimen, a number of couples, or
an estimation in thousands or other units; however, in many cases, it is im-
possible to produce an exact or even an approximate number, particularly
for smaller animals. In fact, reporters are asked to include an evaluation of
the “quality of data” they managed to collect, i.e. whether they were able
to gather exact or approximate data, rough estimates, or insufficient data.

The second issue is the fragmentation of data that results from a number
of factors: individual reporters may choose to include data on any species
they consider relevant for the site (within the data base, this is referred to as
“other species”); however, in doing so, it is not necessary to report unique
species codes or names, and in fact, a large number of entries do not con-
tain any species code, or use alternative names for species or subspecies.
Moreover, some data instances are found with typographic errors, possibly
persisted from the original forms, or introduced by manual data entry.

3.3.4 Data Model

The entities, on which data is collected, are the following:

• Main entities

– Site

– Habitat

– Species (“other species” are stored in a separate table)

• Administrative references

– Region

– Site Relation (references to other projects)

– Management Body

– Management Plan

– Contact Information
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FIGURE 3.3: A simplified version of the actual Entity-
Relationship Diagram of the Natura 2000 Data Base.

– Document (generic)

• Categorizations

– Impact type

– Bio-geographical type

– Habitat class

Among the main entities, the site acts as a central entity, to which all
the others are linked (Figure 3.3); this reflects the original organization of
reports. Each Natura 2000 site is linked to the different habitat types and
the set of species that were reported in it, but no explicit relationship is
established between species and habitats.

Considering that a site is made up of a mosaic of habitat patches, this
means that the available data is not sufficiently fine-grained to determine
which set of plants makes up each patch, or which habitat type is preferred
by a species of animals; this is assumed to be part of expert knowledge,
or to be available from external documents. While the lack of fine-grained
information poses no particular problems for the original purposes of the
Natura 2000 project, a direct consequence is that there is no simple (and
error-resilient) way to determine whether any species can (or should not) be
relocated to another site, by ensuring that a proper habitat or set of habitats
is already found in the target site and that a balanced ecosystem can be
preserved.

The solution to this problem would be made easier by adopting an ex-
tended model, where the habitat patch is represented as an entity of its own
(Figure 3.4) [29]. The species could then be associated with the habitat patch



32 Chapter 3. Ecological Networks

FIGURE 3.4: Alternate Entity-Relationship Diagram of the
Natura 2000 Data Base, with the habitat patch as a central

entity.

(or patches) where they are prevalently found, and it would be possible to
infer an association with habitat types with an automatic process.

3.3.5 CORINE Land Cover Data

Another way to address the limitations of the Natura 2000 dataset is to com-
plement it with external data sources. A viable candidate is the database
from the CORINE program (Coordination of Information on the Environ-
ment), initiated in 1985 in the European Union and currently managed
within the European Environment Agency. While the ultimate goal of both
projects is to contribute to the preservation of biodiversity, the CORINE
program is exclusively aimed at the collection and storage of information,
with a focus on consistency across member states and compatibility of data.
The program is intended to provide scholars and land managers with a
common framework, on which different approaches may be based, thus
reaching a higher degree of coordination between different fields of activ-
ity, and among practitioners in different areas. Clearly, the goals differ from
those of Natura 2000, which include a proactive approach to the conserva-
tion of biodiversity.

The database provides geographical information on land use data of
member states, referred to as CORINE Land Cover (CLC). The mapping re-
sults from the interpretation of satellite images and is available at 1:100000
scale, with a minimum mapping unit of 25 hectares, and a minimum width
of 100 meters for linear elements. Land is categorized into classes accord-
ing to a taxonomic model of land use, with five levels expressing increasing
degree of detail. Codes are made up of sequences of digits (written simply
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by concatenating digits in the form ij at Level 2 or ijk at Level 3; alterna-
tively, dots are used to separate digits: i.j at Level 2, etc.). The length of a
code corresponds to the level of detail it expresses, and codes are assigned
following a strict prefix rule, so that truncating a code to a certain number
of digits returns the correspondent class at the broader level. For example,
class 3.1.2 corresponds to coniferous forests, which are a subcategory of
the Level 2 class 3.1, associated with forests of all kinds. As an example,
Level 3 codes for the subclasses of Level 1 class 3 are reported in Table 3.5.

TABLE 3.4: CORINE Land Cover (CLC) Level 1 and Level 2
nomenclature

Level 1 Level 2
1 Artificial surfaces 11 Urban fabric

12 Industrial, commercial and transport units
13 Mine, dump and construction sites
14 Artificial, non-agricultural vegetated areas

2 Agricultural areas 21 Arable land
22 Permanent crops
23 Pastures
24 Heterogeneous agricultural areas

3 Forest and 31 Forests
seminatural areas 32 Scrub and/or herbaceous vegetation association

33 Open spaces with little or no vegetation
4 Wetlands 41 Inland wetlands

42 Maritime wetlands
5 Water bodies 51 Inland waters

52 Marine waters

TABLE 3.5: CLC Level 3 nomenclature: codes beginning
with ‘3’

Level 2 code Level 3
31 311 Broad-leaved forest

312 Coniferous forest
313 Mixed forest

32 321 Natural grasslands
322 Moors and heathland
323 Sclerophyllous vegetation
324 Transitional woodland-shrub

33 331 Beaches, dunes, sands
332 Bare rocks
333 Sparsely vegetated areas
334 Burnt areas
335 Glaciers and perpetual snow

Unfortunately, a regular time frame for database updates is not set within
the CORINE program. The first release of CORINE Land Cover is referred
to as CLC1990; data collection for this version happened over a very long
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period, from 1985 (at the initiation of the CORINE program) to 1998. This
version was followed by CLC2000, CLC2006, and lastly CLC2012. In these
three version, the number is an indication of the year of data collection,
with a margin of error of one year.
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Chapter 4

Land Management and
Complex Networks

4.1 Urban Planning and Natura 2000

A trait shared by Natura 2000 and other initiatives of the European Union
is the division of competences between EU and national bodies. Ultimately,
since environmental planning makes up part of the activity of urban plan-
ning and management, administrative bodies down to the local level (such
as municipalities) are involved with Natura 2000.

In fact, urban planning is not exclusively concerned with the manage-
ment of urbanized areas; many local administrations are responsible for a
territory that includes a city, as well as the rural or natural areas in its prox-
imity. Urban planning is an interdisciplinary activity, encompassing civil
engineering, architecture, economy, health, sociology, and ecology, among
other fields.

As part of the activity of urban planning, strategies for the management
of a territory are to be outlined in official documents, referred to as manage-
ment plans. These documents report on the current situation and goals over
several periods of time (short-term, mid-term, long-term). A management
plan for an area including a Natura 2000 site should take into account its
features from multiple points of view (boundaries, extension, climate, pres-
ence of pollution, habitats, landscape, social and economic aspects, subdivi-
sion into zones), provide a list of detected or possible threats to the survival
of protected species and the conservation of habitats, and lastly, propose ac-
tions to address these threats and improve the conservation of species and
habitats. The priority of each action should also be given.

There are technical, regulatory and political aspects involved in devis-
ing management plans. In the past decades, software tools have proven
to be able to provide valuable assistance in the evaluation of technical as-
pects. GIS tools continue to be the most important class of software in use
for environmental urban planning, although complex network analysis has
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also risen in popularity, and in fact, the ability to extract graph models from
landscape features is being incorporated into GIS suites.

4.2 Building Graph Models

As previously mentioned (Section 3.2), among topological models, the state
of an ecological network is best represented by a graph model expressing
functional connectivity, with respect to a single target species. This kind of
model shall be referred to as single-species graph, to avoid confusion with
different models to be introduced later. A topological model can be built
from data available from the Natura 2000 project, although design choices
are heavily influenced by the availability of data. The examples that will
be provided are based on the subset of Natura 2000 sites found in Sardinia,
considered as a case study. The dataset in use was collected at the end of
year 2014.

Keeping the framework introduced in Section 3.2.2 as reference, the lim-
itations on design choices that derive from the exclusive use of the Natura
2000 dataset are the following:

• Species: all species of interest, listed in the Birds Directive and in An-
nex II of the Habitats Directive, can be considered as target species,
since data on these is consistently available for the whole set of Natura
2000 sites. The same is not true for other species, although a sub-
set thereof can be identified, for which a species code is consistently
given; these species can optionally be considered in building a graph
model, but extreme care should be taken to distinguish the absence
of data from the absence of the species in a site; external data sources
may have to be used.

• Scale: regional and national scale are possible with hardly any limita-
tion; studies at continental scale may have to integrate datasets from
non-EU countries, whereas studies at sub-regional scale may hit limi-
tations due to the granularity of data. The examples provided in this
work will be made at a regional scale.

• Granularity: in general, a node is to represent an entire Natura 2000
site, since the available data is hardly suitable for a finer granularity
(see Section 3.3.4). Finer granularity may be made possible by the use
of map data, if available, and by the integration of expert knowledge.

• Representation of Corridors: no data is made available on the pres-
ence or implementation of habitat corridors. Therefore, barring the
availability of external data sources, it will be necessary to make as-
sumptions on possible migration paths, to be represented by edges,
based on some criteria.



4.3. Graph Modifications 37

To build graphs for the case study, a node list is built from the list of
Natura 2000 sites in the administrative region of Sardinia, which includes
the island of Sardinia (second-largest in the Mediterranean Sea) and the
smaller islands which surround it.

At the time of this study, no site has been designated as a SAC within
this administrative region; 87 sites are designated as a SCI, 31 as a SPA,
and 6 sites have both designations, with the same boundaries. Thus, the
total number of Natura 2000 sites in Sardinia is 124. Among these, 107 are
located on the main island. In the graph models, each site shall be repre-
sented by a node, regardless of its designation: if a site is designated as a
SPA and a SCI (or SAC), it is considered one node; if a SPA and a SCI (or
SAC) overlap, a node is created for each site, but their geographical distance
is considered to be zero.

The criteria to draw edges between pairs of nodes can be based on:

• geographical distance: this can be calculated between boundaries, or
between centroids, and a pair of nodes is not to be linked if their dis-
tance is larger than a definite threshold;

• presence of a given species in both sites in a pair.

To estimate geographical distances between sites, perimeter and cen-
troid data was imported in a spatial database, using the open source SQLite
engine with the Spatialite extension. In these examples, distance is com-
puted between boundaries, keeping in mind that they are to be treated as
an approximation, since they are calculated on a cylindrical conformal map
projection (EPSG:32632, WGS 84 / UTM zone 32N). At a regional scale, the
degree of distortion has been deemed acceptable.

The simplest method to build a single-species graph is as follows:

1. Consider the full set of nodes for the area being analyzed (full graph)
or, alternatively, the set of graph where the target species is reported
to be present (local graph).

2. Add an edge between any two nodes in which the target species is
reported to be present, so long as their geographical distance is within
a set threshold.

Figure 4.1 shows an example for Cervus elaphus corsicanus.

4.3 Graph Modifications

The extraction of complex network indices from a single-species graph is
meant to contribute to the understanding of the aptness of the ecological
network for the conservation of the target species. The analysis can provide
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(a) (b)

FIGURE 4.1: Single-species graph models of Natura 2000
sites in Sardinia, built for Cervus elaphus corsicanus (species
code 1367). The position of each node roughly corresponds
to the coordinates of the site centroid. (a) Local graph, in
which only sites with reported presence of the species are
represented by nodes. (b) Full graph, in which every Natura

2000 site in the Region of Sardinia is represented.

the basis for a large-scale evaluation of land management proposals, by
way of comparing the current graph model with those that reflect proposed
local modifications, in order to identify favorable modifications as those
that improve the indices that correspond to set goals.

The real-world problem generally consists in finding a set of modifi-
cations that can be applied while respecting a set budget, maximizing the
gain, which is represented in the graph model in the form of better network
indices. In many applications, it is assumed that the set of nodes is not to
be modified, and any proposal for modification is to involve only the set of
edges. This leaves three subclasses for this problem, depending on which
modifications are allowed [2]:

• ‘updating’: only the addition of edges is allowed (considered edges,
which are not found in the initial graph, are referred to as ‘virtual
edges’);

• ‘downdating’: only the removal of edges is allowed;

• ‘rewiring’: both the addition and the removal of edges are allowed;
the usual approach is to remove a set number of edges, and subse-
quently add the same number of virtual edges.
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It is generally intended for these problems to be solved on a connected
graph; if the real-world network is not connected, the problem of connect-
ing its component should be addressed beforehand, or each connected com-
ponent should be thought of as a separate scope of application for these
classes of problems.

The updating problem corresponds to the real-world problem of finding
a set of new links, such that its addition can be performed while respecting
budget constraints, resulting in as great a benefit as possible. In the graph
representation, the budget can be represented as a maximum number of
edges, or if necessary, as a maximum value for a cost function, to which
each virtual edge contributes in different measures.

The downdating problem, on the other hand, applies to networks with
some degree of redundancy and a maintenance cost associated with each
link. It consists in finding a set of edges that can be removed from the
network in order to decrease maintenance costs, keeping the impact on the
efficiency of the network as small as possible. Any solution that causes the
network as a whole to be disconnected should be disregarded.

The rewiring problem is closely related to the downdating problem, in
that it considers link maintenance costs carefully; the goal, rather than re-
ducing these costs, is to improve the efficiency of a network, while avoiding
a hike in maintenance costs.

A problem that may occur in environmental planning is the relocation
problem, which involves finding a suitable site for the relocation of part
of the population of a species. If the site has to be found among those
where the species has not been reported yet, this translates to a problem on
the graph model; however, if the network is modeled into a single-species
graph as previously described, it consists in the addition of nodes, and as
such, it does not fall into any of the classes described so far. In some in-
stances, the goal may be that of merging components in an initially discon-
nected graph model.

In order to add nodes to the single-species graph, suitable candidate
sites have to be identified. In most cases, these should host habitat patches
compatible with it, and be located within a maximum geographical dis-
tance from an already connected node. This distance should correspond to
the dispersal distance of the target species. Due to the previously discussed
shortcomings of the Natura 2000 dataset, the selection of candidate sites is
not a straightforward activity to perform. The next section is focused on
proposing a method to address the problem.

4.4 Similarity of Natura 2000 Sites

As previously mentioned (Section 3.3.4), the Natura 2000 dataset does not
include records of any explicit relationship between each species and the
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single habitat patches where it is found, or any indication of the preferred
habitat type for each species. While this is understandable, considering
the original purposes that were considered before the collection of data,
the drawback is that it is not straightforward to obtain a machine-readable
representation of constraints that apply when proposing modifications.

In order to provide at least a partial solution to this problem, it is possi-
ble to consider similarity between sites as a criterion to determine whether
a site is suitable to host a certain target species. Similarity scores are com-
monly used for the comparison of text documents and their classification
according to their subject; the basis for these activities is the creation of vec-
tors representing the occurrence of keywords in each document. The same
principle could be applied to vectors built to represent Natura 2000 sites.

In the choice of a similarity measure for this application, it is desirable
to adopt a measure with a definite lower and upper bound (e.g. 0 to 1),
as this makes it simple to choose a threshold, i.e. a minimum similarity
score between a pair of sites to be a prerequisite for a proposal to be consid-
ered, such as the relocation of a species population or the implementation
of a habitat corridor. Among the measures that hold this property are the
Jaccard coefficient for binary vectors, and cosine similarity for non-binary
vectors.

The Jaccard coefficient of a pair of binary vectors is defined as follows.
Let f11 be the number of attributes that are true (1) in both vectors; f10 the
number of attributes that are true in the first vector and false (0) in the sec-
ond; and in an analogous manner, f01 the number of attributes that are true
in the second vector and false in the first. Then, the Jaccard coefficient J is
given by:

J =
f11

f01 + f10 + f11
. (4.1)

Cosine similarity is defined as the cosine of the angle between two vec-
tors with non-zero magnitude in a multi-dimensional space. This measure
is particularly useful for the comparison and categorization of text docu-
ments, due to its independence from document length. A simple formula
to compute cosine similarity is:

cos(x,y) =
x · y
||x|| ||y||

, (4.2)

where x and y are vectors, x ·y is their scalar product, and ||v|| denotes the
magnitude of a vector v.

There are three viable choices to build vectors to represent Natura 2000
sites:

• species sets: the reported presence of species;
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• habitats: the reported composition as habitat types;

• land use: the intersection of sites with patches from the CORINE
dataset of land use codes, or a compatible dataset.

The first two sets of vectors can be built using data from the Natura 2000
project, while the last set involves cross-referencing sites with an external
dataset. Associating a Natura 2000 site to the land use codes in its extension
require that the intersections of CORINE Land Cover patches with the site
are computed, which can be done with GIS software, such as the QGIS soft-
ware suite [49]. For this case study, a public dataset made available by the
Region of Sardinia was used, updated in year 2008 and based on the land
use codes defined within the CORINE project. Upon computing the inter-
sections, it became apparent that land use data was unavailable for 7 sites
in the Region of Sardinia, among which 3 are located on the main island.
More specifically, these sites have no intersection with any land patch in the
CLC dataset in use. This leaves a set of 117 sites (104 on the main island),
for which data is consistently available, making it possible to evaluate the
usefulness of each data source for vector creation.

4.4.1 Similarity-based Graphs

The same kind of visualization used for single-species graphs can be used to
provide a meaningful and straightforward way to visualize pairs of similar
sites within a set geographical distance. In this section, a number of refer-
ence graphs are built on the set of 117 nodes, representing sites for which
vectors can be built, with a maximum distance between sites of 30 Km. The
number of edges in a graph with a link between every pair of sites within
the set geographical distance threshold is 850 (Figure 4.2). This graph can
be referred to as the raw-distance graph of this portion of the Natura 2000
network.

A graph instance based on site similarity, or similarity-based graph, can be
built from the raw-distance graph by removing edges between node pairs
with a similarity score below a set threshold. Different graphs result from
a change of similarity measure, threshold values, or the vector set in use
(created from species sets, habitats, or land use). Since graphs will be built
for comparison using the same measure and threshold, while varying the
origins of vectors, the denominations species-set graphs, habitat graphs, and
land-use graphs shall be used as a way to distinguish data sources.

The Jaccard coefficient will be considered in this case study, as it is the
simplest choice for a similarity measure in this context, being intended for
binary vectors, which are trivially built from available data. Elements of a
species set vector for a site will take a 0 for a species that was not reported,
and a 1 for a species that was reported in the site, and likewise for habitat
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FIGURE 4.2: Raw-distance graph. Edges link pairs of nodes
with a geographical distance up to 30 Km between bound-
aries. The position of each node roughly corresponds to the

coordinates of the site centroid.

vectors. For land use vectors, the third level classes of CORINE Land Cover
were chosen as labels of vector elements, because data on the fourth and
fifth level were not consistently available across the territory, while the first
two levels offer an insufficient degree of detail. Thus, the binary land use
vector for a Natura 2000 site has an element for each Level 3 CLC code, set
to a value of 1 if the site is intersected with at least one patch with that CLC
code, and to 0 otherwise.

Taking the graph of Figure 4.2 as reference, and increasing a minimum
similarity threshold from 0 to 1 in steps of 1/10, it is possible to observe
how the number of edges decreases for the three types of similarity-based
graph [25]. Results are reported in Table 4.1 and visualized in Figure 4.3.
For similarity of species sets, it can be observed that the number of edges
decreases sharply at low threshold values: over a half of the edges are re-
moved with the application of a threshold of 0.3. The decrease in the num-
ber of links is not as steep when similarity of land use is considered, with
over half of the original edges removed at 0.4; however, a drop to zero edges
is observed somewhere over the 0.8 mark. The most peculiar case is that of
habitat similarity, which shows a very steep decrease at very low thresh-
olds, followed by the highest number of kept edges at higher thresholds.

Further observations are possible on the visualized form of similarity-
based graphs. Figure 4.4 shows graphs built with a 0.5 similarity threshold;
while the land-use graph is made up of a large connected component and a
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TABLE 4.1: Number of edges after applying a minimum Jac-
card coefficient threshold

Edges
Threshold Land use-based Habitat-based Species-based
0.0 850 850 850
0.1 777 655 739
0.2 661 533 573
0.3 509 415 350
0.4 360 295 198
0.5 232 205 134
0.6 104 120 53
0.7 34 58 24
0.8 5 36 16
0.9 0 14 14

FIGURE 4.3: Number of edges in the graph model of the
Natura 2000 network in Sardinia, when a threshold based
on Jaccard coefficients is applied, calculated on land use,

habitat configuration, and species presence data.

small number of isolated nodes and smaller components, both the species-
set and habitat graph are made up of several disconnected components at
this threshold level. More instances of the land-use graph with stricter sim-
ilarity threshold values are shown in Figure 4.5. A striking difference be-
tween the land-use graphs at 0.5 and 0.6 threshold is that the latter has two
large connected components, which roughly correspond to a subdivision
into Northern and Southern Sardinia, in addition to a larger number of iso-
lated nodes [28]. At a 0.7 similarity threshold, the number of edges reduced



44 Chapter 4. Land Management and Complex Networks

to about one third of those in the graph at 0.6, and only a few connected
components of multiple nodes are left. This suggests that a threshold of 0.7
can be considered a very strong requirement for the linking of nodes, and
a threshold of 0.6 may be considered as a reasonable requirement in many
cases.

(a) (b) (c)

FIGURE 4.4: Similarity-based graph models of Natura 2000
sites in Sardinia, built with a 30 Km distance threshold, with
edges drawn for a 0.5 similarity score or above. (a) Based on
CORINE land use codes. (b) Based on Natura 2000 habitat

codes. (c) Based on species sets.

4.4.2 Analysis of Hit Rates and Complex Network Indices

One of the measures for site similarity may qualify as a substitute for data
on habitat suitability, when this is missing or incomplete; paired with geo-
graphical distance, this may be a criterion to identify suitable nodes for the
relocation problem introduced in Section 4.3. In this case, a similarity-based
graph becomes a tool in formalizing the method and visualizing its possi-
ble solutions. Suppose that a similarity-based graph is built from the same
node set as the single-species graph and the same geographical distance
threshold; then, a candidate node for relocation has the following property:
in the similarity-based graph, it is adjacent to a node corresponding to one
that is part of a connected component in the single-species graph.

Formally, let V be the full set of nodes that represent Natura 2000 sites
in the region of interest. Let G = (V,E) be the full single-species graph for
which modifications are to be proposed, built with a geographical distance
threshold found to be suitable for the target species. Then, let Gs = (V,Es)
be a similarity-based graph built on node set V , with the same geographical
distance threshold as G and a similarity threshold deemed sufficient. If
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(a) (b)

FIGURE 4.5: Land-use graph models of Natura 2000 sites in
Sardinia, built with a 30 Km distance threshold. (a) Edges
drawn for a 0.6 similarity score or above. (b) 0.7 similarity

score or above.

G′ = (V ′, E′) is a connected component in G (V ′ ⊆ V ), and the following
conditions are met:

i ∈ V ′, j ∈ V , j /∈ V ′, (i, j) ∈ Es, (4.3)

then j ∈ V is a viable candidate node, and (i, j) is a candidate edge to link
j to G′.

This leaves the question of which dataset, among those in use to build
a similarity-based graph, is best for finding suitable candidate nodes. To
answer this question intuitively, it can be argued that, if edges in a large
number of single-species graphs are often found as edges in Gs, then Gs is
likely to provide better candidates for relocation.

To compare the three datasets being considered, a graph should be built
from each dataset, while keeping the same thresholds; this was done for
a 30 Km distance threshold and a 0.5 similarity threshold. A comparison
with 351 single-species graphs was performed and the number of hits and
the hit rate was analyzed [32]. Results are reported for a few species in
Table 4.2 as an example: in each row corresponding to a species, n denotes
the number of edges in the single-species graph, l in each row denotes the
number of edges that the land-use graph has in common with the single-
species graph (and likewise for h, s counting the edges in the habitat graph
and species-set graph, respectively). Hit rates were calculated as l/n, etc.,



46 Chapter 4. Land Management and Complex Networks

and considered to be 0 for species with n = 0.
To compare hit rates as a measure of aptness for each similarity-based

graph, it is possible to average results over every species. Considering the
unweighted average over all rows, habitats and species sets have about a
42% average hit rate, while land use data can be ranked slightly worse,
standing at 38%; if averages are weighted according to the number of edges
(i.e. the ratio is calculated on the summation of hits vs. considered edges),
the land-use graph and the habitat graph stand at approximately a 34%
average hit rate, while the species-set graph is slightly behind, at 31%.

TABLE 4.2: Excerpt of the table of hit rates. The number
of edges in each single-species graph in the set is reported.
For each similarity-based graph, the number of hits (edges
in the similarity-based graph that are found in the single-
species graph), and the corresponding rate are reported.
Weighted and unweighted average hit rates are also given.

Land use-based Habitat-based Species-based
Species Edges Hits Rate Hits Rate Hits Rate
code n l l/n h h/n s s/n

...
6137 186 93 0.5 55 0.29570 24 0.12903
1367 15 9 0.6 8 0.53333 6 0.4
1373 8 6 0.75 2 0.25 2 0.25
...
Sum 32538 10949 0.33650 11304 0.34741 10187 0.31308
Average hit rate 0.38063 0.41714 0.42587

Since all average hit rates can be considered quite low, and the differ-
ences among the three can be argued to be hardly significant, none of the
three types of graph emerges as an undisputed best option to consider for
the node linking process. However, strong differences between columns
confirm that the three graphs are far from being analogous, as can be no-
ticed visually (Figure 4.4). As a way to determine to what degree these
differences are significant, Spearman correlation indices are calculated be-
tween pairs of columns reporting hit rates in Table 4.2, to assess whether
any pair of graphs behave in a similar way with respect to hit rates. That
is, if the hit rate for a pair of similarity-based graphs Gs, Gt were high for
the same subset of species, it could be inferred that the criteria behind the
definition of similarity scores used in Gs and Gt express a similar concept,
or two closely related concepts.

Results of this study are summarized in Table 4.3. It is striking that
the hit rates for the species-set graph and the habitat graph appear to be
strongly correlated, with an index above 0.8, while neither has a significant
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TABLE 4.3: Spearman correlation between sets of hit rates.

Habitat-based Species-based
Land use-based 0.08446 0.03489
Habitat-based 0.80397

degree of correlation with the land use graph. The latter observation may
come as no surprise, seeing as that land use data originates from a different
project and has not been updated in the same time frame; this test ought
to be repeated when more recent data is made available. Concerning the
higher correlation index for the species-set graph and the habitat graph,
this can be interpreted as a confirmation that nearby sites characterized by
similar sets of habitats can be inferred to host similar sets of species; com-
pared to the set of land use codes taken as reference, the classification of
habitats made within the Natura 2000 project appears to provide a better
indication of suitability of a site for a species.

Correlations can be sought on complex network indices calculated on
the three graph instances, as well (an excerpt is in Table 4.4). Node de-
gree, closeness and betweenness centrality indices, clustering coefficient,
and topological coefficient [55] were selected for this study. For each index,
a high degree of correlation would imply that a higher value calculated on a
graph corresponds to a higher value calculated on another, thus reinforcing
the notion that the considered pair of graphs may express a similar concept.

Once again, their Spearman correlation coefficients are calculated (Ta-
ble 4.5; a visual representation is in Figure 4.6). This time, no value suggests
a strong correlation between the sets of indices. All coefficients comparing
the land-use graph with the other two are within the ±0.2 range, which
was quite expected. A moderate degree of correlation can be identified for
three indices (degree, topological coefficient and clustering coefficient) be-
tween the species-set graph and the habitat graph; Spearman coefficients
are within an upper bound of only +0.42, but overall results are consis-
tent with the observation that these two graphs have more analogies to one
another, than the land-use graph has with either.

4.4.3 Further Comparison of Average Hit Rates

Extending the study beyond the restricted case of non-binary vectors may
bring more meaningful results, on the condition that vector representations
reflect the intended features accurately, and subject to the availability of
data. The considerations in this section are based on a second case study,
intended to be more focused on land animals: sites are considered only if
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TABLE 4.4: Excerpt of the table of normalized node be-
tweenness centrality indices calculated on each similarity-

based graph.

Betweenness centrality index
Site ID Land-use Habitats Species-set
...
ITB030034 0.01671 0.11557 0.04915
ITB030035 0.00014 0.04341 0.09402
ITB030036 0.01046 0 0.00641
...

TABLE 4.5: Spearman correlation of complex network in-
dices between pairs of similarity graphs.

Correlation of Land-use Land-use Species
Index with Species with Habitats with Habitats
Betweenness centrality +0.09309 +0.17446 −0.01905
Closeness centrality +0.01001 −0.02426 +0.12268
Degree +0.09172 +0.09961 +0.41257
Topological coefficient +0.11214 +0.04271 +0.25071
Clustering coefficient −0.02396 −0.10644 +0.28248

they are located on the main island on Sardinia and land use data is avail-
able, resulting in graphs with 104 nodes. Moreover, only the species of
interest listed in official Natura 2000 Directives shall be accounted for in
computing similarity based on species sets.

Non-binary vectors can be built by assigning attribute values based on
the number of occurrences of the attribute in the data base, or by summing
the values of a meaningful feature associated to the attribute. In both cases,
the resulting vectors can be used in the computation of cosine similarity.
For habitat sets and land use codes, a summation of the surface area of
each land patch can be used. Concerning species sets, a meaningful way
to assign attribute values would be the summation of population sizes of a
species in each site; unfortunately, the availability of this attribute is very
sparse in the dataset: out of 4461 associations of 131 species with Sardinian
sites, only 495 have unambiguous data on population size, and most of
those are in the form of ranged estimates. Therefore, non-binary vectors
were avoided for species sets, and only binary vectors and Jaccard coeffi-
cients are used. Vectors based on the number of occurrences were disre-
garded, because while multiple records can occur in the association of a
species with a site, these are merely an indication of additional details in a
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FIGURE 4.6: Histogram representation of Spearman corre-
lation of complex network indices between pairs of similar-

ity graphs.

report (e.g. two records may be added to report on a seasonal presence and
the occurrence of reproduction in the site).

The raw-distance graph in this 104-site case study has 706 edges. The
number of edges in different similarity-based graphs can be analyzed in
the same way as the 117-site case; results for Jaccard coefficients of binary
vectors are reported in Table 4.6, and results for cosine similarity of non-
binary vectors are in Table 4.7, with a distinction of vectors built from the
number of occurrences or the summation of surface areas.

Hit rates were calculated for this case study, with the same method de-
scribed in the previous section, taking a similarity score threshold of 0.5 as
reference. Table 4.8 reports on a few sample species, for similarity-based
graphs based on Jaccard coefficients of pairs of binary vectors. The study
was extended to cosine similarity of non-binary vectors, built on occur-
rences and surface areas from the records of Natura 2000 habitats and land
use codes [31]. The indication of surface area was missing in 17 out of 1225
associations of habitats with Natura 2000 sites; in order to avoid having to
exclude the affected sites, a surface area of 1 hectare was assumed. Cosine
similarity is unaffected by the magnitude of vectors, so this does not intro-
duce any error for sites with only one habitat associated to them; the error
introduced for the other sites can be considered within acceptable limits.

Table 4.9 reports unweighted average hit rates and a normalized ver-
sion of the same measure. Let n be the number of edges in the raw-distance
graph (706 in this instance); the number of edges in a similarity-based graph,
denoted by |E|, can be used to define a ‘relative density’ as the ratio |E|/n.
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TABLE 4.6: Number of edges in similarity-based graphs
of Natura 2000 sites in Sardinia, using Jaccard coefficients:

104-site case study

Edges
Threshold Land use-based Habitat-based Species-based

0.0 (raw-distance) 706 706 706
0.1 658 533 554
0.2 575 436 404
0.3 453 339 276
0.4 323 248 179
0.5 210 174 122
0.6 93 103 55
0.7 33 53 18
0.8 4 35 16
0.9 0 13 12

The expected hit rate of a random graph would be higher for graphs with a
larger number of edges. To avoid or reduce a bias against graphs of higher
size, hit rates can be normalized to the number of edges in the similarity-
based graph. For ease of comparison, for this study they are normalized to
the relative density:

Normalized Hit Rate =
R

|E|/n
=
R · n
|E|

. (4.4)

Results show that the species-set graph has the best hit rate, as well as
the highest normalized hit rate. This outcome could have been expected,
as the same data is used to build this graph and every single-species graph.
It is interesting, however, that habitat graphs consistently rank higher than
land-use graphs according to their normalized hit rates, consistently with
the observations in the previous section. Another interesting result is the
better performance of area-based similarity of habitats compared to simi-
larity of vectors based on the number of occurrences and, to a lesser degree,
also to Jaccard coefficients of binary vectors.

4.4.4 Limits of Classical Indices

In proposing modifications to the current model of the network, it is im-
portant to evaluate local modifications without losing a global perspective
on the matter. For example, Figure 4.7 shows a portion of a single-species
network built for Chalcides ocellatus with a 20 Km distance threshold [25],
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TABLE 4.7: Number of edges in similarity-based graphs of
Natura 2000 sites in Sardinia, using cosine similarity: 104-

site case study

Edges
Occurrence-based Area-based

Threshold Land use Habitat Land use Habitat
0.0 (raw-distance) 706 706 706 706
0.1 648 587 507 371
0.2 577 508 412 326
0.3 471 445 354 268
0.4 361 374 289 230
0.5 277 278 242 185
0.6 201 164 184 155
0.7 126 86 132 123
0.8 79 44 97 97
0.9 35 14 56 55

TABLE 4.8: Excerpt of the table of hit rates for the 104-site
case study, using Jaccard similarity.

Land use-based Habitat-based Species-based
Species Edges Hits Rate Hits Rate Hits Rate
code n l l/n h h/n s s/n

...
6137 160 80 0.5 47 0.29375 27 0.16875
1367 15 9 0.6 8 0.53333 4 0.26667
1373 8 6 0.75 2 0.25 3 0.375
...
Sum 7819 3056 0.39084 3214 0.41105 3287 0.42039
Average hit rate 0.41607 0.44616 0.47376

and the same portion of the network with a proposed modification. Al-
phanumeric codes correspond to administrative identifiers of sites within
the Natura 2000 project. The proposed modification is a bridge from node
ITB023050 to node ITB021156 through the node ITB011102, which is
not originally part of the network. Based on the Jaccard coefficient of land
use vectors, this node has a high similarity score with both ITB023050
(above 0.6) and ITB021156 (above 0.7).

This modification affects the indices of nodes in the network in various
ways; changes in the betweenness centrality index of selected nodes are
summarized in Table 4.10. It can be argued that the addition of alternative
paths does not decrease the importance of nodes that made up previously
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TABLE 4.9: Hit rates in similarity-based graphs. Since each
graph has a different number of edges, a ratio of hit rates to
relative density is also provided, where relative density is
the ratio of edges in the similarity-based graph to edges in

the raw-distance graph (n).

Graph Avg. Hit Rate Edges Relative Density Norm. Hit Rate
R |E| |E|/n (R · n)/|E|

Land Use (Jaccard) 0.41607 210 0.29745 1.39878
Habitats (Jaccard) 0.44616 174 0.24646 1.81027
Species Set (Jaccard) 0.47376 122 0.17280 2.74159
Land Use (occurrences) 0.55524 277 0.39235 1.41517
Habitats (occurrences) 0.58591 278 0.39377 1.48795
Land Use (areas) 0.40881 242 0.34278 1.19263
Habitats (areas) 0.50503 185 0.26204 1.92730

TABLE 4.10: Effect of the proposed modification on net-
work indices

Original Modified
Node Betweenness Betweenness

ITB011102 N/A 0.00522
ITB021101 0.05105 0.04694
ITB021156 0.19820 0.21408
ITB023050 0.05105 0.07467
ITB023051 0.01502 0.01162
ITB031104 0.42042 0.43409

existing connections, since the new indices are calculated taking into ac-
count the paths to and from the newly linked node. The only node with a
decreased betweenness centrality index (ITB023051) is one that was not
linked to the new node.

In determining whether a proposed modification brings improvements,
a larger number of variables and more sophisticated indices should be con-
sidered. More refined evaluations can be obtained by considering the actual
surface area that is being connected and made available to an endangered
target species [42], and by going beyond the classic definition of shortest
paths. In fact, while animals moving through a habitat matrix tend to per-
form better than random walkers [18], they can not be expected to move
exclusively through shortest paths.

Working with a raster data representation of a habitat matrix, stochastic
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models are often taken in consideration in order to represent animal move-
ment. The habitat matrix is often associated with a set of resistance val-
ues, and least-cost paths are considered in substitution of shortest paths;
an amount of randomness can be added, for example, by considering paths
through a random point of passage, or including a random function in the
selection of movement direction [48]. An accurate model should also not
assume complete knowledge on the part of animals, or even a prior deci-
sion on a final destination [46].

)

)

ITB021156

ITB011102ITB023050

ITB021101 ITB023051

ITB031104

)

)

ITB021156
ITB021101

ITB023050
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ITB011102

(a) (b)

FIGURE 4.7: Example of modification of a single-species
network. Administrative codes of some relevant sites are
reported. Sites with a higher betweenness centrality index
are represented by larger nodes. (a) Single-species network
for Chalcides ocellatus according to available data. (b) A pro-
posed modification with alternative paths. This lowers the

betweenness centrality index of the most central node.

4.5 Conceptual Graph Models

Having devised a method of analysis to be applied on topological graph
models of ecological networks, the choice of target species, for which func-
tional models should be built, may still be considered a problem worth ad-
dressing.

4.5.1 Shared-report Graphs

A different perspective on the Natura 2000 data base (Figure 3.3) can lead
to a conceptual graph model meant to represent relations between species,
from which to extract knowledge and establish criteria to select species of
interest. In this kind of model, nodes are used to represent species, and
edges correspond to interactions or affinities between species.

The simplest way to build this kind of model consists in linking pairs
of species that have been reported to be found at the same time in at least
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a given number of Natura 2000 sites. A graph built with this rule can be
referred to as a shared-report graph. To provide a frame of reference for their
interpretation, basic examples of graphs resulting from minimal site config-
urations can be seen in Figure 4.8. An extreme case is an area consisting of
a single site with n species, or a number of sites all hosting the whole set
of n species; the shared-report graph for this situation is a complete graph
of order n (Figure 4.8a shows the case for n = 4). From this observation, it
follows that if the minimum number of sites is set to 1, each site in an area
under analysis generates a subgraph, corresponding to the species found
in that site, with the property of being complete, i.e. a clique. An example
thereof is the ABC triangle in Figure 4.8b.

At the other end of the spectrum, a situation with m sites, each hosting
only one species, results in a graph of isolated nodes. It can be argued
that this is only possible in theory, as ecosystems require the coexistence
of several species, by definition; however, this extreme case could occur in
case studies, if data were only available for a very limited set of species
present in an area (down to only one). The occurrence of this result could
lead researchers to question the quality of data or the choice of species of
interest.

Usually, certain subsets of species will occur multiple times. An alter-
native approach is to treat the resulting shared-report graph as a weighted
graph, by assigning weights according to the number of occurrence of a
pair, to represent the strength of a link (see Figure 4.8c).

4.5.2 Case Study

To apply this method to the case study, shared-report graphs are built from
data on the 93 sites designated as SCI in Sardinia [30]. The official list of
species of interest in the Natura 2000 was considered (Birds Directive and
Annex II of the Habitats Directive), with the addition of species from the
“other species” set, for which a species code was consistently used. Several
instances are built by adjusting the minimum number of sites required to
link pairs of species, and results are reported in Table 4.11. Two additional
instances are built for comparison: one is built including the entire set of
species in Sardinia, and the other is built using data for the 2314 sites des-
ignated as a SCI or a SAC in Italy, and the same criteria to select a subset of
species. In every experiment, the resulting graph was made up of one large
connected component and a number of isolated nodes. The table reports
the number of isolated nodes and three global complex network indices:
density, diameter and characteristic path length.

It is notable that the diameter of the connected component remains low,
even as the number of edges is reduced by applying increasing threshold
values. The isolated nodes correspond to a number of species that is found
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FIGURE 4.8: In the top row, sample configurations of sites,
represented as sets of species. Below, the corresponding
shared-report graphs. (a) A number of species in a sin-
gle site generates a complete graph if the minimum num-
ber of shared reports is 1. (b) An example with 5 sites.
(c) Weighted graph resulting from the multiple occurrence

of certain sets of species.

in a very limited number of sites, while it can be interpreted that a ‘main’
set of species is commonly found together in many sites, which can be a
sign of a good degree of homogeneity in common factors among habitats,
such as climate. Since diameter is low even in the graph built for the entire
Italian territory, it could be inferred that a large set of species may be able
to adapt to several different Italian regions.

As far as the approach of studying network properties of the weighted
shared-report graph is concerned, Table 4.12 reports the top 10 species by
betweenness centrality index, normalized to a scale of 0 to 1, calculated for
a weighted graph instance, where the reciprocal of the number of sites was
used as a distance. A higher value of this index for a node suggests that the
corresponding species is included in a larger proportion of shortest paths
between different species. Given the low unweighted diameter, this means
that the species often shares reports with both elements in a pair of species,
which do not share a report with one another, or do so quite rarely. This
can be a sign of a higher degree of adaptability, or a greater tendency to
migrate, depending on known features of the species.
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TABLE 4.11: Results of complex network analysis on
shared-report graphs. Only areas designated as SCI or SAC
are considered. The area under analysis is Sardinia, and
only for a subset of species with a consistent species code,
except in rows marked as follows: (AS) study extended to
all species for which data is available, (IT) study extended

to sites in Italy.

Min.
sites

Nodes Edges Isolated
nodes

Density Diam. Charact.
Path
Length

1 351 44 967 1 0.732 2 1.263
2 351 34 482 40 0.561 2 1.285
3 351 28 902 61 0.471 2 1.310
4 351 24 711 79 0.402 2 1.330
5 351 21 779 87 0.355 2 1.373
6 351 19 330 95 0.315 3 1.408
7 351 17 020 102 0.277 3 1.450
8 351 15 114 117 0.246 3 1.447
9 351 13 534 128 0.220 3 1.463
10 351 12 106 140 0.197 4 1.463

1 (AS) 860 129 953 23 0.352 3 1.629
1 (IT) 853 169 338 8 0.466 3 1.542

TABLE 4.12: Ranking of species reported in SCIs in Sar-
dinia, by normalized betweenness centrality, calculated on

the weighted graph.

Name Type Sites Betweenness
Hyla sarda Amphibian 71 0.12483
Turdus merula Bird 71 0.07566
Upupa epops Bird 60 0.05980
Falco tinnunculus Bird 64 0.04169
Larus cachinnans Bird 59 0.03935
Sylvia melanocephala Bird 70 0.03734
Bufo viridis Amphibian 61 0.03206
Carduelis chloris Bird 66 0.02921
Carduelis carduelis Bird 67 0.02921
Circus aeruginosus Bird 52 0.02920
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Chapter 5

Analysis of a Power Grid

5.1 The Transition to Smart Grids

A power grid is the network of substations, buses and power lines that
is responsible for the distribution of electrical power over long distances.
Among distribution networks, power grids stand out as a prominent field
of application for complex network analysis, due to their inherent network
structure, properties such as a quick response to changes, and the impor-
tance that power distribution has gained; it comes as no surprise that a
large amount of literature exists on the topic of representing power grids
using graph models. As icing on the cake, the interest in transitions from
traditional power grids to ‘smart grids’ makes the field particularly appeal-
ing.

A traditional power distribution network is essentially unidirectional,
in the sense that generation happens exclusively at power plants and spe-
cific sites equipped with generators, and power is transmitted and dis-
tributed to end users, which simply act as consumer nodes. A modern
power grid is made up of two codependent systems: the Energy Manage-
ment System (EMS) and the Distribution Management System (DMS). The
former includes power generators and all the facilities involved with large-
scale transmission to substations, while the DMS deals with the distribution
of power from substations to end users. Substations are complex facilities,
dealing with functions such as voltage transformation and separation of
circuits at the occurrence of overloading or to interrupt short circuits.

Multiple definitions of a smart grid exist in literature, reflecting several
different points of view on the topic [47]. The smart grid paradigm aims
at an improvement of power grids, specifically increasing their reliability,
flexibility and efficiency [23, 24]. Some fundamental capabilities of a smart
grid are the ability to self-heal and self-regulate, and the possibility for end
users to contribute to the operation of the grid.

Concerning the ability to self-heal, the grid ought to be able to detect
faults and initiate actions to restore grid components automatically, reduc-
ing the duration of blackouts that may happen. Self-regulation refers to
being able to adjust grid behavior in response to changes in supply and
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demand that happen under normal conditions of operation, particularly
concerning the intermittent availability of certain renewable sources, such
as wind turbines, and the contribution of end users. These may provide
energy back to the grid, should they have a surplus from local generation
(e.g. solar panels), which is to be treated as an additional intermittent sup-
ply. Another form of contribution by end users is the deployment of smart
appliances, which may be able to adjust their demand under certain con-
ditions: for instance, low-priority appliances such as water heaters may
be configured to switch off temporarily if a signal is received from control
centers, concerning the detection of a high risk of blackout; and resume op-
eration at a later time, or when another signal communicates that the grid
has been able to adjust to satisfy power demands without risk.

To make all of this possible, the electricity infrastructure should be com-
plemented with information and communication capabilities [38], allowing
power as well as information and control signals to flow in every direction
over the network, and not exclusively from generation sites to consumer
nodes. The information network should be designed to detect the state of
every node, and to deliver this information to control centers, in order to
alter the behavior of agents in ways that improve the efficiency and reli-
ability of the network as a whole. Privacy and security concerns are to
be considered since the planning stages of the implementation of a smart
grid, as all of these goals should be achieved while respecting the privacy
of customers, preserving the confidentiality of data, and preventing abuse
by malicious users.

A full implementation of a smart grid requires changes at every level,
from power plants to single home and office appliances. In order to do so, a
smart grid ought to be designed and built from scratch, but this turns out to
be impractical; thus, smart grid features are to be gradually introduced by
incremental changes in the current power grids [39]. This requires a long-
term strategy, as well as the capability of identifying short-term decisions
with a higher degree of priority. Understanding the topology of the current
grid and the properties of power flows is the first step in this direction.

5.2 Graph Models of a Power Grid

In building a graph model, both the topology of a power grid and the elec-
trical properties that govern power flows within it are to be considered and
represented; together with analysis goals, these properties determine fun-
damental choices in the building of graph models.
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5.2.1 Approaches to Building a Graph Model

A power grid is made up of buses, each connected to generators, loads and
transmission lines; a small-scale, fine-granularity models can reflect this
organization, representing each bus with a node, and transmission lines
with edges. Since transmission lines are inherently bidirectional, all edges
can be undirected. Loads and generators can be thought of as being part
of the node entity, which should be assigned a generation-load balance as
a numerical attribute. Edges can also be assigned attributes to reflect their
capacity; if multiple edges are found between the same pair of nodes, they
can be collapsed into one if a simple graph is preferred as a model.

Historically, unweighted models have been considered in a majority of
studies until 2006 [45]; their inability to predict the effect of changes on the
network in a consistent manner eventually determined a decline in their
popularity, and several approaches at weighted models were proposed,
aimed at taking into account the laws governing the transmission and dis-
tribution of power. Among proposed ways to assign weights are line reac-
tance [19], line impedance [11], and other concepts of “electrical distance”
based on resistance, discussed in [13]. It is notable that, in assigning edge
weights, electrical properties are deemed more important than strictly topo-
logical properties (e.g. geographical distance), as the latter are shown to
bring little to no contribution to the prediction of grid behavior, including
blackouts and cascading failures. Since electrical properties are not gener-
ally static, dynamic network models may have be favored depending on
the scope of analysis.

Building a model based on dynamic networks, however, does not nec-
essarily mean that edge weights (and only edge weights) are to be adjusted
over time. Changes in production and consumption, including the intermit-
tent availability of renewable sources and power contributions on the part
of end users, can be represented by modeling nodes as oscillators, making
it possible to determine whether a power grid can achieve stable operation
over a period of time, or the way it responds to the introduction of decen-
tralized production [52].

5.2.2 Vulnerability Assessment

As the transition from a traditional power grid to a smart grid is planned,
it is common to perform a vulnerability assessment, as way to determine
which portion of the network requires improvements most urgently. In
a vulnerability assessment, one or more typical load scenarios are chosen
(e.g. to reflect average loads, or power demands at peak time, etc.), and
the behavior of the network in these scenarios is simulated, first at a full
efficiency condition, and then after the removal of a number of nodes and
edges, to represent a case where these elements have failed, thus assessing
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the degree to which the network is able to withstand their removal. This can
be done by comparing indices of health of the network, or by measuring the
areas where blackouts or brownouts may occur according to the simulation.

A vulnerability assessment can be performed to predict the effects of
random failures or targeted attacks, by changing the criteria to mark failed
elements – either chosen at random, or depending on some network index,
or a combination thereof.

Strategies differ according to the attacker model, and assumptions on
security measures at different nodes. If an attacker is assumed to have lim-
ited knowledge of network topology, it is sensible to adopt a simple strat-
egy, consisting in the removal of nodes with the highest degree (hubs); at
the same time, if it can be taken for granted that stricter security policies are
in effect in hubs, it can be considered more interesting to study the effect of
attacks on low-degree nodes. Frameworks have been proposed to simulate
attacks with various degrees of randomness, with a parameter to express
an amount of bias toward larger-degree or smaller-degree nodes [34].

Other refined strategies, which can be considered if the attacker has a
complete knowledge of network topology, involve the selection of nodes
with the highest values of complex network indices, such as their between-
ness centrality index. Studies have shown that no network index stands
out as a single final criterion of node vulnerability, as different strategies
for node removal result in different effects, such as an increase in character-
istic path length, a loss of connectivity, and a different size of areas affected
by blackouts [40].

Vulnerability assessments can also be performed on sets of interdepen-
dent networks. The scope of this kind of study is not limited to the case
of interconnected power grids with a sufficient degree of self-sufficiency;
infrastructure networks of different kinds may have the property that a
failure in one network, including a local failure, may have an impact on
the other one. Power failures, especially prolonged ones, can indeed ham-
per the operation of several different types of infrastructure, including but
not limited to communication and transportation. The opposite is true, as
well, as power plants rely on the availability of fuel, which has to be col-
lected from remote locations, and the gradual introduction of smart grid
features is going to increase the dependency of power grids from the con-
tinued operation of communication networks. Interdependency relations
across infrastructure networks of different kinds have been an object of
study for over a decade [50], and models for ‘network of networks‘ have
been proposed to provide a background to perform robustness analysis of
interdependent networks [35].
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5.3 Case Study: a Regional Power Grid

At the time of this study, the Sardinian power grid is still mostly based on
the traditional paradigm. Wind turbines are installed in various parts of the
island, and smart meters have been introduced and installed for most cus-
tomers, with support for a quite limited set of features. This study builds up
on a previous analysis, performed on a large-scale model of this grid with
coarse granularity, where each node represents an area, for which data on
average load or power generation was available [23, 22]. The model was re-
fined in order to give more insight into the importance of power generation
from renewable sources, and in an attempt to consider more realistic sets of
power flows, as opposed to a theoretical optimal operation of the grid.

In this model, three node classes are considered: power plant nodes, ur-
ban area nodes and industrial area nodes. Each power plant node may rep-
resent a thermoelectric or a hydroelectric power plant, or a site dedicated to
power generation through a set of wind turbines. Urban area nodes repre-
sent a city, a conglomerate or a district, including one or more substations.
An urban area node may be adjacent to one or more power plant nodes, or
it may have no adjacent power plant node; in the latter case, power has to
be received from remote power plants after traversing several urban areas.
Lastly, industrial area nodes are used to model sink nodes that aggregate
the loads of activities in an industrial area. These nodes are always adja-
cent to one or more urban area nodes, and receive power through them.

The network is modeled as a directed graphG = (V,A), in which power
plant nodes have exclusively outbound arcs, and nodes representing indus-
trial areas have only inbound arcs; the connections between urban areas are
modeled as opposite pairs of arcs. The complete model of the network has
a total of 133 nodes and 269 arcs (Figure 5.1) and shall be referred to as the
model of the network in its healthy state.

5.3.1 Power Grid Operation as an Optimization Problem

Since a real power flow simulator can not be used in absence of a model
at a finer granularity, a multiple-source, multiple-sink minimum cost flow
problem is setup on the model of the network, and its solution shall repre-
sent an optimal set of power flows, to which operation should attempt to
converge as much as possible.

In order to provide at least an approximate representation of electri-
cal properties, special constraints shall be included in the definition of this
problem, which will be applied to the model representing the healthy state
of the network and to models of network states resulting from one or more
failures, thus performing a vulnerability assessment on the original net-
work.
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FIGURE 5.1: A visualization of the graph model of the Sar-
dinian power grid. Urban areas are represented with an el-
lipse, industrial areas with a rhombus, power plants with a
tall rectangle, and wind farms with a small rectangles. Pairs
of arcs with opposite directions are visualized as an undi-

rected edge.

In a minimum cost flow problem, each node v ∈ V is labeled with a
parameter b(v) ∈ R, which represents its aggregate supply or demand of
a commodity; generally, positive numbers represent supply and negative
numbers represent demand. Therefore, nodes with b(v) < 0 are sink nodes,
while nodes with b(v) > 0 are source nodes. If b(v) = 0, demand and supply
are balanced and v acts as a transit node. Each arc (u, v) ∈ A is associated
with the flow of a commodity, and has a maximum capacity c(u, v) and op-
tionally a lower bound l(u, v) for its flow. Each arc is associated with a cost
denoted by a(u, v), i.e. a unitary cost for the flow on that arc. The decision
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variables are arc flows f(u, v), and the objective function to minimize is:

z =
∑

(u,v)∈A

a(u, v) · f(u, v). (5.1)

In this instance of the problem, lower bounds are not in use, i.e. l(u, v)
is set to zero for every arc. The capacity is made to correspond to the max-
imum amount of power that can be sent through the power lines repre-
sented by the arc, calculated from data on the voltage and amperage of ex-
isting power lines. The value of b(v) for each node was determined accord-
ing to historical and statistical data provided by the Italian energy distri-
bution company Terna. Source nodes (power plants and wind farms) were
assigned values according to their maximum output in a time unit, while
the value for sink nodes (urban and industrial areas) was made to corre-
spond to an estimated average consumption in the same time unit, with a
negative sign, to match the conventions for the definition of the problem.
Each node determines a constraint in the optimization problem, due to its
balance value:

∀v ∈ V ,
∑

(v,u)∈A

f(v, u)−
∑

(u,v)∈A

f(u, v) = b(v). (5.2)

This class of problems is solved by linear optimizers, which apply al-
gorithms working under the assumption that there is a balance between
supply and demand, i.e.∑

v∈V
b(v) = 0. (5.3)

Thus, to solve problems for which this assumption does not hold, an artifi-
cial node t is added and linked to all the other nodes, with a value for b(t)
such that (5.3) is satisfied; all costs for artificial arcs incident to t ought to
be orders of magnitude higher than costs for real arcs, so that flows from
source nodes to the artificial node can be treated as a sign that there is a sur-
plus of the commodity on the network, while the presence of flows from the
artificial node to real nodes shows that no feasible solutions for the prob-
lem.

Two issues with the transmission of electrical power are not represented
in a typical commodity flow problem: overloading and power loss.

In the solution of a typical minimum cost flow problem, it is a common
occurrence that the most profitable arcs are used at full capacity, while the
flow on several arcs is set to zero. This does not reflect the goals of opera-
tion of a power grid: the use of a power line at full capacity is to be avoided
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whenever possible, because it is closer to overloading and causing malfunc-
tions. The satisfaction of demand from multiple lines used at a fraction of
their capacity is generally preferred, and may be necessary depending on
network topology and physical laws governing power flows.

To represent this, additional constraints are added, approximately mim-
icking the laws of physics and electrical properties that regulate power
flows in sets of substations [44]. Considering all simple cycles of three and
more nodes found on the graph, disregarding edge orientation, a ‘cycle con-
straint’ is formulated for each cycle, as follows:∑

(u,v)∈Ci

d(u, v) · f(u, v) = 0, (5.4)

where Ci is the set of arcs which connect nodes making up a cycle (iden-
tified by an index i) and, once an orientation on the cycle is chosen (e.g.
counter-clockwise), d(u, v) is set to +1 for arcs with that orientation, or −1
for arcs with the opposite orientation.

Concerning the issue of power losses, which occur in power transmis-
sion due to resistive heating in the wires (Joule heating), the effect of this
electrical property is not representable at transmission time in linear opti-
mization problems; in this study, an estimation of power loss was added
to the figure for demand at consumption nodes, in order to compensate for
this shortcoming.

The amount of power lost in a time unit is given by:

P (i, j)loss = I2R, (5.5)

where I is the current intensity and R is the electrical resistance. Since

I =
P (i, j)sent

V
, R =

ρL

A
, (5.6)

where V is voltage, ρ is the resistivity of the material, L is line length and A
is the cross sectional area of the cable, an explicit formula for power loss is
the following:

P (i, j)loss =

(
P (i, j)sent

V

)2 ρL

A
. (5.7)

Since the length of a power line is bound by geographical constraints,
the other variables have to be adjusted in order to minimize power loss. A
decrease in ρ is sought by giving preference to materials with a low resis-
tivity. Increasing voltage strongly reduces power losses, but because of the
costs associated with this practice, it is common to employ higher levels of
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voltage exclusively for backbones, as the advantages may not cover costs
when shorter distances are involved.

Since the goal of this problem is to determine a set of power flows that
operation should attempt to replicate, a measure of power loss is a sensible
choice for arc costs, so that the solution acts as a suggestion of a way to
limit the phenomenon. However, it is not straightforward to define the
problem this way, as P (i, j)loss is calculated from P (i, j)sent, and the latter
is supposed to be estimated from the optimization process itself.

To break this circular dependency, a first estimation of power loss is cal-
culated based on an assumption that each inbound arc provides an equal
power to each node. This estimation is used as a seed in an iterative pro-
cess (Algorithm 1) [26], in which estimated power flows are obtained from
consecutive runs of the optimizer, and used to compute power loss on each
arc, using Formula (5.7). This process converges, on the condition that the
direction used in pairs of opposite arcs is locked on the first run of the op-
timizer (line 13 in the algorithm); otherwise, the optimizer would alternate
directions of opposite pairs of arcs in consecutive runs, since only one arc
in the pair is used at a time, and the cost for the unused arc would drop to
zero for the next iteration in the process.

Algorithm 1 Iterated power loss calculation

i← 0;
Flows[0]← Seed; . Initial set of assumed flows
Costs[0]← calculatePowerLoss(Seed);
repeat

5: if i == MAX_ITERATIONS then
alertUser . Iterative process has not converged
break

end if
i++;

10: if i == 1 then
Flows[i]← runOptimizer(Costs[i− 1]);

else . Preserve arc flow directions from previous iteration
Costsartificial ← lockDirections(Costs[i− 1], Flows[i− 1]);
Flows[i]← runOptimizer(Costsartificial);

15: end if
Costs[i]← calculatePowerLoss(Flows[i]);

until (Flows[i] == Flows[i− 1])
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5.3.2 Normal Operation of the Power Grid

At the time of data collection, the total supply capacity for the power grid
under analysis is higher than the sum of average demand at its consump-
tion nodes. This suggests that during normal operation, the grid should be
self-sufficient, and external power sources should be needed only at peak
times or under special circumstances. However, this may be true on condi-
tion that the arc set has no bottleneck preventing power from reaching load
nodes. This is verified by the fact that the optimizer provides a feasible
solution for the healthy state of the network.

It must be observed that almost one-fifth of the production capacity of
the network under examination is due to wind farms; since their actual out-
put is subject to variations in winds, the same conditions should be verified
in a model where wind farms are removed, or the figure for their output is
reduced. In fact, the maximum output within the grid is still higher than
the total average demand, even when the output of every wind farm is sub-
tracted, but the optimizer does not provide a feasible solution if every wind
farm is removed, with unsatisfied demand in one consumption node. This
is a sign that wind farm output is crucial to meet local demand in some
areas, since some bottleneck is preventing distant power plants from pro-
viding the required power [27].

The results of subsequent experiments, in which wind farm output is
only partly removed, are reported in Table 5.1. In these, either a single wind
farm is removed from the network, or its maximum output is cut by one
half. The first column of the table reports an administrative identification
of the wind farm by an ID number, the second column specifies whether its
maximum output capacity was halved or cut off to zero, and the third col-
umn reports the number of nodes with unsatisfied demand resulting from
the experiment. An additional experiment was performed with five wind
farms being removed at the same time, a case that was considered of inter-
est due to the close location of these five wind farms, the output of which is
likely to drop at the same time. In this experiment, the optimizer was able
to find a feasible solution.

From these experiment, it seems clear that for the most part, the power
grid under analysis can withstand problems deriving from a drop in wind-
generated power, with the sole exception of two wind farms that appear to
be crucial for the self-sufficiency of specific areas.

5.4 Definition of Collateral Damage

To assess damage on the network deriving from the failure of one or mode
nodes, it is not sufficient to simply compare the value of the objective func-
tion in the instances of the optimization problem, as doing so does not take
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TABLE 5.1: Results of experiments involving removal of
wind farms. The rightmost column gives the number of
nodes with unsatisfied demand (deficit), following the re-
duction of maximum output from a specified wind farm to
one half of its theoretical maximum (‘Half’ reduction), or re-
moval of a wind farm from the network (‘Full’ reduction).

Wind farm ID Reduction Nodes with deficit
none N/A 0
116 Half 0
116 Full 1
134 Half 0
134 Full 1
117 Full 0
118 Full 0
119 Full 0
121 Full 0
126 Full 0
127 Full 0
128 Full 0
130 Full 0
131 Full 0

into account the reduced demand and the effects of a change in the topol-
ogy of the network, which invalidate some of the cycle constraints defined
by (5.4). The problem of normalizing the objective function to a formula-
tion that is comparable across versions of the network is discussed in this
section.

Let G = (V,A) be the healthy state model of the network. Let w ∈ V
be a node to be marked as failed. Detaching w from G, together with the
arcs incident to it, may create a disconnected component Gd(w) = (Vd, Ad)
in the network. If this is the case, and the component Gd(w) has no power
plant nodes in itself, then the whole component is to be removed from the
network when defining an instance to represent the failure of w; otherwise,
only node w is to be removed.

The subset of V determined in this way is denoted as F (w) = {w} ∪ Vd,
where Vd may be an empty set. Let D(w) ⊂ A be the set of arcs that are
incident to at least one node in F (w). For brevity, F (w) and D(w) may
be denoted simply as F , D when it is clear from the context which set is
intended.
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Let G′(w) = (V ′, A′) be the graph instance representing the failure of G,
i.e. a copy of G with the removal of nodes in F and arcs in D:

V ′ = V \ F , (5.8)
A′ = A \D. (5.9)

An instance of the optimization problem described in Section 5.3.1 has
to be created for G′(w). This is defined by assigning a′(u, v), b′(u), c′(u, v)
equal values to a(u, v), b(u), c(u, v) defined for the problem on G, exclu-
sively for nodes in V ′ and arcs in A′.

Another instance of the optimization problem is to be created onG′′(w) =
(V,A), i.e. a copy of G, with a different set of node balances and arc capaci-
ties that depend on features of G′(w). Values a′′(u, v), c′′(u, v) shall be equal
to a(u, v), c(u, v) from the problem on G, while b′′(u) is assigned like this:

∀u ∈ V, b′′(u) =
{

0 if u ∈ F ,
b(u) otherwise.

(5.10)

This essentially removes the demand of failed nodes from the problem,
converting them to transit nodes. Additionally, every cycle constraint that
was removed from the problem for G′, due to the detachment of nodes, is
also not considered in the problem for G′′.

Let z be the value of the objective function in the optimal solution of the
minimum cost flow problem on G:

z =
∑

(u,w)∈A

a(u,w) · f(u,w), (5.11)

and likewise, let z′(w), z′′(w) be the optimal values for the problems on
G′(w), G′′(w) respectively. Since these problems have different total de-
mands, these values are not directly comparable.

Considering the problem on G, given the total demand of a network:

b̂ =
∑

u∈V,b(u)<0

|b(u)| , (5.12)

and the sum of artificial costs in the optimal solution:

z∗ =
∑

(u,t)∈A

a(u, t) · f(u, t) +
∑

(t,u)∈A

a(t, u) · f(t, u), (5.13)

where t is the artificial sink node, the total cost with the artificial costs re-
moved can be considered and normalized to the demand on the network
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like this:

y =
z − z∗

b̂
. (5.14)

Repeat the process for the problems on G′ and G′′, obtaining b̂′(w),
y′(w), b̂′′(w), y′′(w), while checking whether any f(t, u), u ∈ V is above
0, i.e. the demand of any node is not satisfied, fully or in part. The number
of nodes with a deficit shall be referred to as d(w).

G′(w) represents the network G with a failure on node w, and G′′(w)
represents an ideal situation where G has not failed, but its demand has
been removed (together with that of all nodes in F (w), if applicable), and
the cycle constraints defined for w have been ignored; essentially, there
have been the same modifications to convert the optimization problem on
G to the two instances on G′ and G′′, and consequently, y′(w) and y′′(w) are
comparable. Then, a measure of collateral damage from the failure of node
w is given by their difference:

Collateral(w) = y′(w)− y′′(w). (5.15)

This figure is meant to represent how much the cost of providing service
to connected areas is affected by the unavailability of paths. It does not cap-
ture the possible existence of deficit nodes in the graph, as the cost of flows
on artificial arcs has been removed; for this reason, it has to be considered
together with d(w) as defined above.

The same process can be initiated from a set of failed nodes, i.e. choos-
ing a F ⊂ V such that no disconnected components without power plant
nodes are introduced, with the corresponding definitions of G′(F ), G′′(F ),
etc. It follows from the definitions that Collateral(∅) = 0.

5.5 Network Analysis and Collateral

The measure of collateral damage introduced in Section 5.4 can be used to
identify portions of the network where it is most pressing to bring improve-
ments, and which would benefit the most from investments on renewable
energy or an increase of redundancy of network connections. However,
the calculation of this measure requires multiple runs of an optimization
problem on the graph model, which can take a long time for very large
networks. Moreover, this limits the scope of application of this measure to
offline analysis and planning.

In several studies, correlations between measures of damage and net-
work indices are sought, with the purpose of legitimating the use of net-
work index values as an estimation of vulnerability.
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5.5.1 Graph Models for Complex Network Analysis

The graph model in use for the optimization problem can provide the ba-
sis for multiple instances to be analyzed with complex network analysis
techniques.

The first option is to analyze the same graphs, on which an optimization
problem is solved. In these, arc weights represent costs, which can be con-
sidered analogous to distances, and the definition of indices for weighted
networks can be applied directly. A different approach is to take the solu-
tions, i.e. the set of flows on each arc, and define arc weights accordingly:
in this case, weights are meant to represent a strength of the link. In order
to apply the same definitions, and most notably to compute betweenness
centrality indices, the reciprocal of the estimated power flow is used to rep-
resent a ‘distance’ associated to each arc. Since some arcs with no associ-
ated power flow are guaranteed to exist, these arcs are artificially assigned
a minimal power flow, i.e. an artificial distance orders of magnitude greater
than all others, only in the graph instance on which complex network anal-
ysis is applied, to ensure that the selection of these arcs in shortest paths is
avoided whenever possible.

Three graph models are considered for analysis, for each instance of the
optimization problem, with distances based on:

• seed costs (Costs[0] in Algorithm 1): from these, the seed cost-based
betweenness centrality (SC-BC) is computed;

• final costs (final values of Costs[i] in Algorithm 1): from these, the
converged cost-based betweenness centrality (CC-BC) is computed;

• power flows (final values of Flows[i] in Algorithm 1): from these, the
flow-based betweenness centrality (F-BC) is computed.

In the Costs[i] set, in each pair of opposite arcs, one arc has has a real
cost, while the other is assigned an artificial cost. This is discarded in anal-
ysis, and the real cost assigned to one of the arcs is used for both arcs in the
pair.

The betweenness centrality index calculated for each of the three models
built for the healthy state of the network is visualized in Figure 5.2. A few
‘hub’ nodes have a high value for this index in all of the three instances, but
considerable differences are observed for the rest of the nodes.

5.5.2 Correlation with Betweenness Centrality

The calculation of collateral damage described in Section 5.4 is performed
in multiple experiments, each time marking one node v, representing an
urban area, as a failed node; when d(v) > 0, additional experiments are
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FIGURE 5.2: Visualized analysis results for betweenness
centrality. Larger node size corresponds to a higher value
of the betweenness centrality index. (a) Seed cost-based.

(b) Converged cost-based. (c) Flow-based.

run, building a set of failed nodes (F ′), made up of the nodes in F (v) and
those that have deficits in the corresponding experiment, and iterating un-
til d(F ′) = 0 if necessary. The final value of Collateral(F ′) and the num-
ber of removed nodes is recorded for each experiment and associated to its
starting node. A sample of notable results is in Table 5.2. Among these ex-
periments, some involve a hub as a starting node (e.g. Codrongianos with
ID 70 and Villasor with ID 40). These nodes have high values for the be-
tweenness centrality index, and among the highest values for the collateral
damages associated with their failure. With few exceptions, nodes with
a very small betweenness centrality index have a low value for collateral
damage as well.

Table 5.3 reports the Pearson correlation coefficient is calculated be-
tween the set of collateral damage values and each of the three sets of be-
tweenness centrality indices of the corresponding starting nodes. Recall
that Pearson correlation coefficients are bound within −1 to 1, where val-
ues close to −1 represent an inverse linear correlation, and values close to 1
denote a direct linear correlation. An absolute value over 0.7 is considered
a sign of a strong linear correlation.

No strong correlation is detected in this study, but moderate correlations
are found with the betweenness centrality indices calculated on the model
based on seed costs (about 0.65) and network flows (about 0.55). However,
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TABLE 5.2: Results of computation of Collateral(F ) for
some F , for which d(F ) = 0. The first column represents F .
Where multiple nodes are included, the first node in the list
is the one for which betweenness centralities are reported,
e.g. where F = {21, 96} the betweenness centrality of the

node with ID 21 is reported.

Removed
node IDs y′ y′′ Collateral F-BC CC-BC SC-BC

none 40378.58499 40378.58499 0 N/A N/A N/A
6 40480.58231 40480.58231 0 0.00000 0.00000 0.00000
10 40270.57417 40270.57417 0 0.00619 0.00231 0.00000
12 40401.62739 40401.62739 0 0.00000 0.00324 0.00000
... ... ... ... ... ... ...
38 40378.58499 40378.58499 < 10−5 0.00000 0.00000 0.00000
63 40352.82864 40352.82864 < 10−5 0.01810 0.29389 0.01827
60 40393.82264 40393.73924 0.08340 0.00613 0.02429 0.01024

{21, 96} 40547.61212 40547.16976 0.44236 0.00630 0.29858 0.03620
20 40379.23947 40378.60582 0.63364 0.00000 0.02429 0.09195
78 40416.19985 40415.01453 1.18532 0.04551 0.14394 0.03609
... ... ... ... ... ... ...
80 40461.69260 40381.78177 79.91082 0.04170 0.05748 0.01220
83 40327.80678 40246.23992 81.56686 0.04048 0.00347 0.00000
81 40474.87219 40389.95289 84.91929 0.03007 0.04638 0.02417
65 40432.29062 40341.52756 90.76306 0.00162 0.20657 0.00000
76 40439.03108 40348.16189 90.86919 0.01822 0.03533 0.03591
37 40520.49025 40429.18368 91.30656 0.00069 0.00451 0.00000
53 40341.83277 40244.87584 96.95693 0.07368 0.02232 0.02429
... ... ... ... ... ... ...

{5, 6} 40844.31316 40348.08541 496.22775 0.11051 0.23282 0.13607
64 40659.30957 40135.69493 523.61464 0.02718 0.02643 0.05748
1 40627.79022 40093.67589 534.11433 0.00000 0.00000 0.00619
70 40694.38290 39773.10907 921.27383 0.30893 0.04632 0.40802

{31, 106} 41763.85277 40840.63726 923.21551 0.09507 0.31419 0.01833
40 41211.74186 39633.23393 1578.50793 0.27938 0.33085 0.40204

the former represents only a theoretical construct, while the latter is concep-
tually analogous on power flows in a real operated network, and converged
costs are analogous to power losses. Thus, a moderate degree of correlation
with the flow-based indices suggests that collateral damage may be corre-
lated to power flows in a real network, and prompts for further research in
this direction.
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TABLE 5.3: Pearson correlation coefficients between
Collateral(F ′), for which d(F ′) = 0, built on each starting
node representing an urban area, and betweenness central-

ity indices.

Pearson correlation
Betweenness centrality index with Collateral

Seed Cost-based 0.650460064
Converged Cost-based 0.231452099

Flow-based 0.548274258
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Chapter 6

Conclusions

The continued operation of a number of services, such as power generation
and distribution, communication, and transportation of goods, has become
an essential aspect of society. Whether for their inherent nature or because
technological advancements have favored large-scale solutions over local
ones, these services are impossible to provide without the active mainte-
nance of complex systems in a wide area. With the realization that regu-
lations concerning land use are necessary to avoid the destruction of habi-
tats at the hand of an uncontrolled expansion of human activities, nature
protection areas have been added to the long list of provisions for which
maintenance is required.

There are considerable costs in maintaining and repairing most infras-
tructure systems, as well as in extending them when necessary. Clearly,
any proposal for a change on an existing complex system is to be consid-
ered carefully to make sure that it brings improvements, before any attempt
to implement changes on the real network, since that may result in a loss of
resources.

The complex systems that are made up of various kinds of infrastructure
for the provision of services, including ecological networks, have become
fields of application for complex network modeling and analysis. While
models are built to reflect the different nature of each kind of system, it
is common for analysis techniques to be shared among different kinds of
infrastructure, and even between models of infrastructure networks and
conceptual networks. Thus, software tools for complex network analysis
and visualization can become useful to assist decision makers in evaluating
the potential impact of changes, so long as a proper definition is given for
the following parts of the process, consistently with the features of the real
system:

• a ‘base’ model representing normal operation of the system;

• a set of modified models that reflect changes of the system (failures or
improvements);
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• one or more measures, calculated globally or locally, which can be
compared between models to quantify the effect of modifications.

The parameter space represented by the variables that can be adjusted
in the operation of the system can be so large as to make it impractical to
consider the entire range of possible changes, particularly for large systems
and in all cases where the possibility of adding elements to the system is a
viable choice. This leads to a further necessity, consisting in the definition
of a set of criteria to reduce the range of possibilities. In the present work,
models for a portion of an ecological network and a regional power grid
have provided examples of systems for which this problem was tackled.
This process can be seen as part of a common methodology with a potential
for application in multiple contexts.

In the study of ecological networks, the approach of building models to
represent functional connectivity proves useful to describe the state of the
network with respect to a target species; to some degree, it also provides
a way to predict the effect of changes, but it has a shortcoming in the re-
quirement of a large number of graph instances in order to represent the
general state of the network. The problem of reducing the search space for
proposed changes is made more evident by the necessity to test proposals
against every graph that may be affected.

In this work, measures of land similarity are proposed as a way to elim-
inate unsound proposals. Different datasets, from which similarity mea-
sures can be calculated, have been considered and compared: sets of habi-
tats, sets of species, and land use, with the integration of land use data,
based on CORINE Land Cover codes. An analysis of how similarity-based
graphs compare to single-species graphs suggest that the use of data col-
lected within the Natura 2000 project should be favored, but land use data
is potentially most useful for land management, due to its coverage of areas
outside of Natura 2000 sites. Therefore, its adoption by practitioners may
be necessary in some cases, in which the exclusive use of the Natura 2000
dataset may be perceived as a significant limitation.

The next step in the workflow would involve the choice of a measure
of ‘health’ of the network and a comparison of its values in the base in-
stance and modified instances of the network model. An example of this
step was shown in the study of a regional power grid: a large-scale and
coarse-granularity model of the regional power grid in Sardinia was used
to determine an optimal set of power flows, supporting the notion that the
region is self-sufficient in its average operation, but there is room for im-
provement in the redundancy of links. Then, a measure of damage from
failure of transit nodes was proposed. Complex network indices from mul-
tiple models of the network were extracted, looking for a correlation of the
betweenness centrality index with the collateral damage from the failure of
the corresponding node.
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Opportunities for future work exist in the completion and refinement of
the process in both fields of applications, and its adaptation to more classes
of infrastructure. A particularly interesting aspect in the field of ecological
networks is the fact that shortest paths – and even least-cost paths – may
not be as significant as in other fields, since the natural behavior of animals
and plants clearly does not include planning their movements in the same
way as it is usually intended, or computing shortest paths with complete
information. The choice of a measure of health intended to reflect the possi-
bilities of migration is therefore not straightforward. Other than stochastic
models of animal behavior and plant dispersal, it is worth investigating
measures that take into account shortest paths as well as suboptimal paths.

The application of this process to power grids, on the other hand, is
strongly dependent on the accuracy of data and the availability of software
tools for a reliable simulation of the grid at the scale of choice. Part of the
challenge of devising a faithful model of the infrastructure network lies in
the necessity of some degree of simplification: the collapsing of multiple
power lines into single edges is an example thereof, which is understand-
able as it allows the direct application of analysis techniques for simple
graphs. Conversely, other simplifications might be deemed unnecessary
and be limiting the effectiveness of current methods. The extension to a
hierarchical model of the network would be made possible by the integra-
tion of a more accurate representation of the network at a local level; an-
other possibility is that of considering a subdivision of the regional grid
into micro-grids, providing the basis for a multi-agent model of the grid in
its entirety.
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