
Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Inference Engines
for Streaming Datasets

Marco STOCCHI

Advisor: Prof. Michele MARCHESI
Curriculum: ING-INF/05

XXIX Cycle
November 2016

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Inference Engines
for Streaming Datasets

Marco STOCCHI

Advisor: Prof. Michele MARCHESI
Curriculum: ING-INF/05

XXIX Cycle
November 2016

Dedicated to a once beloved person

Contents

1 Introduction 1

2 Time series multiscale pattern recognition and forecasting 5
2.1 Method . 7

2.1.1 Self-organizing layers . 7
2.1.2 Cooperating back propagation multilayer perceptrons 11

2.2 Results and discussion . 12
2.3 Profitability tests . 16
2.4 Further developments . 17

3 Multiresolution analysis and prediction of streaming datasets 19
3.1 Method . 20

3.1.1 Fast wavelet transform shift variance . 23
3.1.2 Switching virtual predictors . 27
3.1.3 Predictors fitness and coefficients optimization 28
3.1.4 Inverse Discrete Wavelet Transform for prediction 28
3.1.5 System’s update and retrain operations 29

3.2 Results and discussion . 29
3.3 Further developments . 30

4 Intrinsic mode decomposition assisted machine learning frameworks 33
4.1 Synchrosqueezed Wavelet Transforms . 34
4.2 Method . 36

4.2.1 Continuous Wavelet Transform . 38
4.2.2 Phase Transform . 38
4.2.3 Reassignment procedure . 39
4.2.4 Aspects of machine learning used for IMFs prediction purposes 39

4.3 Further developments . 40
4.4 Appendices . 41

4.4.1 A1: CWT in frequency domain . 41
4.4.2 A2: time derivative of the CWT . 41
4.4.3 A3: Reconstruction after SST . 42

5 Implementation aspects 43
5.1 Variadic Template Classes . 43

i

ii CONTENTS

5.2 Parametric Recursion . 46
5.3 Discussion . 47

6 Concluding remarks 49

7 Acknowledgments 51

Bibliography 53

List of Figures

2.1 System flow chart. Left column: operations of the predict step; centre column:
update step; right colums: subprocesses. Predict and Update steps are sequen-
tial. During the predict step, the forecast is performed only if the Self-organizing
Layer has been fully trained over the entire training dataset partition (decision
box SOL trained). The update step is performed when a new external data sam-
ple has entered the system. During the update step, both SOL and MLPs are re-
trained. Finally, a new cycle begins whenever the control flows through connector
A. The SOL prepare input subprocess gathers the operations needed to create the
matrix of multiscaled patterns and to normalize the data. The SOL training sub-
process box shows the applications of eqs.(2.7), (2.9). The SOL testing subprocess
box shows how only the best-matching prototypes, whose recognition error ε< Γ,
contribute to the raw forecast formation. 10

2.2 Bitcoin price patterns clustering operations. Left: a selection of some prototype
patterns; right: a set of input patterns correspondingly recognized during the test-
ing phase. The used granularity parameter is Γ=0.004. The lower Γ, the higher
the shape similarity among the clustered patterns and, consequently, the lower
the number of patterns associated to the same cluster. In order to use the clus-
ters for effective prediction purposes, they must contain only motifs exhibiting
strong similarity. The adequate choice of Γ is key to obtain good system output
performance. 12

2.3 BTCUSD weekly candlestick chart, showing the Bitcoin price for the period Jan-
uary 2013 to June 2015. The solid line is a simple moving average of period 4. The
horizontal light line is set at the psychological level of 300 USD. From the can-
dlestick chart we can appreciate that this market is actually respecting such level
(reached by the price numerous times). 13

2.4 BTCUSD hourly close price distribution summary statistics for 21760 observa-
tions, spanning from 01/01/2013 to 06/30/2015. The dataset consists of more
than 20 thousands hourly samples of the Bitcoin exchange rate. Note that the
cryptocurrency average price (against USD), is just 30.64 USD above the mean-
ingful psychological support level of 300 USD, (Fig. 2.3). 13

2.5 Hourly Bitcoin price forecast session, January 2015. Actual raw price returns in
dark histogram columns, forecast price returns in light. Note that the accuracy
of the forecast change of direction - CoD of the price returns is directly propor-
tional to the absolute value of the respective returns. In other words, the system’s
prediction is more accurate, in terms of CoD, when the market is volatile. 15

iii

iv LIST OF FIGURES

2.6 Sorted absolute errors of the price forecast session: naive forecast absolute er-
rors (dark solid line), raw forecast with no MLP correction absolute errors (dotted
line) and system absolute errors (light solid line). Occurrence of absolute errors
less than 50 cents is 28% for the naive predictor, 30% performing a raw forecast,
43% for the system, indicating that the proposed approach achieves the highest
forecasting accuracy. 15

2.7 Raw error distribution of the price forecast for the whole out-of-sample session:
naive forecast error (dark solid line), raw forecast error (dotted line), proposed
system error (light solid line). System error shows higher kurtosis, confirming
that its smaller error classes are more frequent if compared to the same classes of
the benchmark models. 16

2.8 Cumulative Profit/Loss of a high frequency strategy, tested for the out-of-sample
period (first semester, 2015), executing 37245 long and short operations. A 3.4
pips spread is applied upon order opening. The overall ROI is 48.6%, with a max-
imum drawdown of 0.31%. 17

3.1 Virtual Prediction of DWT coefficients flow chart. At each step, an iterator points
to the ordinal of the coefficient to be forecasted. If the theorem defines the pointed
coefficient ordinal, the prediction is just a transposition of an older coefficient.
Otherwise, a neural or self organizing predictor is choosen. In our studies we
chose the neural predictors for series that have a higher degree of autocorrela-
tion, while less autocorrelated series are predicted by the SOLs. 24

3.2 Prediction session of one of the higher resolution DWT coefficients by means of
a self organizing layer. Dark solid line: forecasted series; dotted line: real coef-
ficients amplitude. The observed forecasting accuracy can be considered quite
satisfactory. 27

3.3 Sorted absolute errors of the Bitcoin hourly price forecast session. Light line:
naive prediction, the worst performer among the benchmark methods; dark lines:
performance of clustering self organizing layers prediction system; the better per-
former is featured by multiscale pattern recognition and cooperating neural pre-
dictors; black line: performance of the fast wavelet transform assisted predictor,
herein proposed. The results show the novel system outperforms all the bench-
mark models. 29

4.1 Continuous Wavelet Transform of a Bitcoin price session, imaginary component,
Morlet wavelet (σ=2π), 512 hourly rates beginning from 1 January 2016 (scales in
the vertical axis, time-steps in the horizontal axis). The smearing effect along the
scale axis reproduces the spread out issue described by Daubechies in its disser-
tations, particularly referencing to exemplar pure tones, (see [12]). 36

LIST OF FIGURES v

4.2 Synchrosqueezed Wavelet Transform of the same Bitcoin price session as in Fig. 4.1,
magnitudes of the complex values. Note that the two representations are flipped
vertically against each other, this is correct since CWT scales and SST instanta-
neous frequencies are inversely proportional. Despite such optical inconvenient
though, it is not difficult to appreciate the precision of the SST frequency extru-
sions, as depicted in yellow in the upper part of the plot. Both the lower and
higher frequencies of a difficult-to-predict series such as the Bitcoin exchange
rates are thus easily detected using the SST, promising new approaches to effec-
tive time series forecasts. 37

List of Tables

3.1 Number of varying coefficients at each depth m in a decimated DWT, performed
using Daubechies orthogonal wavelet filters (filter size nH = 2N) on a streaming
source series. The maximum reachable recursion depth m depends also on the
size of the input series, which is not considered here. From recursion depth m
onward, the convergence of varying quantities is stable. 23

3.2 Prediction performance of Producers Price Indexes - PPI time series Euro Area
19, Monthly data. Accuracy is expressed in terms of mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage error (MAPE). Val-
ues x 10−1. a) Industry, 1981-2015. b) Intermediate Goods, 1991-2015. c) Min-
ing, quarrying; manufacturing; electricity, gas, steam and air conditioning supply,
1991-2015. Source: Eurostat. 30

vi

Chapter 1

Introduction

The problem of forecasting streaming datasets, particularly the financial time series, has
been largely explored in the past, but we believe the advancement of technologies such
as the Internet of Things, which will connect an exponentially increasing number of sen-
sors and devices, endowed with limited computational resources, yet capable of producing
enormous amounts of sampled data, and the progressively higher social need to deploy in-
telligent systems, will make the prediction of time series a core industrial issue in the next
future. Consequently, we also believe that investigating efficient models for accurate and
reliable forecasting can be considered an urgent area of research.

Considerable efforts have been dedicated in the past in the attempt to forecast the for-
eign exchange rates, because of their typical non linearities and the associated well known
difficulty of predicting such financial series. As such, they were historically considered one
of the most suitable candidate datasets to be selected when testing a newly contrived time
series forecasting method.

In the late 80’s, under the influence of behaviourism and after the discovery of powerful
gradient descent machine learning algorithms [44], researchers extensively tested artificial
neural networks (such as multilayered perceptrons), feeding them with raw or preprocessed
sequential data windows. However, although it was successfully proved that the artificial
neural networks possess superior built-in curve fitting capability, unpreprocessed raw data
feeding caused poor forecasting performance, mainly because forecasting time series is a
global activity [40], while fitting is only a local one.

With the blooming of efficient clustering methods and the simultaneous advances in sig-
nal processing theory, it was noted that the forecasting performance of predictor systems
could be improved if they could be trained on a sub population featured by common statis-
tical properties; the research directions were then oriented to preprocess the raw datasets,
before feeding the predictor systems.

One direction of research saw the analysis, detection and clustering of recurrent patterns
detected in the raw series, in order to create homogeneous, representative training subsets,
on which a dedicated machine could learn. Alternatively, researchers applied the signal pro-
cessing theory to analyze the input series, isolate basic components, and finally relying on
machines to the purpose of forecasting.

One of the first attempts to forecast time series using the pattern detection approach
was proposed by Wasserman [49], who described simple yet efficient systems that train Ko-

1

2 CHAPTER 1. INTRODUCTION

honen Layers in order to find causal relationships between related patterns, and use such
relations to perform predictions. Interesting approaches based on the use of artificial neu-
ral networks can be found in [16, 42]. Their research was original among the quantitative
methods of financial forecasting. One of the first proposals of hybrid predictor systems can
be found in [23], where authors developed a three stage forecasting process, involving a
filter based feature selection; the clustering of training samples, performed using a SOFM
algorithm; and finally the forecasting step executed with Support Vector Regression. Such
method is reported to outperform the single SVR approach when tested to forecast the one
step ahead of financial series such as the stock market price index. In [22] Hsu et al. pro-
posed an approach to perform stock price forecasting by integrating a Self Organizing Map
and Support Vector Regression (SOM-SVR), predicting the n steps ahead of a given time se-
ries, achieving better results when compared to older monolithic forecasting approaches.
In [25], authors described a hybrid forecasting system composed of Self Organizing Maps
and Least Square Support Vector Machines (SOM-LSSVM), candidating such alternative sys-
tem as a general purpose predictor for time series and reporting successful benchmark tests,
outperforming the single LSSVM method. More recently, Gencay et al. [21], starting from
some stylized facts of the financial time series (such as volatility clustering and fat tails dis-
tribution of price returns), discovered new properties of financial volatility across different
time scales (asymmetric vertical dependence). Since then, the prediction of financial time
series making use of multiscale approaches has been a very active area of research (Rua and
Nunes [43]; Masih and Alzahrani [36]; Francis and Sangbae [19]; Jammazi [26]; Reboredo and
Rivera-Castro [41]). By the side of the frequency content analysis approach, such researchers
analyzed the efficacy of multiscale approaches, particularly using space-frequency types of
analysis, motivated by recent findings about the powerful methods of wavelets, the latter be-
ing applied either alone or in conjunction with other prediction or decomposition models.

Although the present work is all centered on forecasting time series, we never limited the
scope of the research to the price predictions, nor we made assumptions on the statistical
properties of the testing datasets. This should help to design machine learning frameworks
candidate to be applied to a variety of application fields. Yet, we are convinced about the
fact that large datasets such as the foreign exchange rates can help researchers to develop
and test efficient machine learning predictor systems. Also, the difficulties related to the
price forecast activity are useful to discard unproductive research paths as soon as they show
inconsistencies or excessively inaccurate results.

At the beginning of 2014, after a burst of the volatility that brought the Bitcoin to a price
peak over 1000 US Dollars, we searched and found the availability of full Bitcoin-USD cur-
rency cross price datasets. They were made available to the public once the traders’ com-
munity requested fine granularity spot rates for speculation purposes. We examined the
datasets in order to evaluate their quality and decided to select them to test our systems, as
well as other benchmark forecasting methods. At the same time we considered the predic-
tion of criptocurrencies one of the less known and explored areas of research, and consid-
ering the emerging importance of the commercial value of the Bitcoin, as well as its market
capitalization, forecasting criptocurrencies could benefit not only to trading and investment
but also to the hedging capability of enterprises which decided to transform their businesses
adopting such new alternative payment method.

This thesis is organized as follows: Chapter 2 illustrates the first prediction system de-
signed and developed using a Self Organizing Layer and a group of cooperating neural net-
works. Chapter 3 describes an hybrid time series prediction system designed using the Fast

3

Wavelet Transform for streaming time series analysis. Chapter 4 introduces a recent reas-
signment technique called Synchrosqueezing, as well as its mathematical foundations, and
the proposal of a novel forecasting approach based on the Synchrosqueezed Continuous
Wavelet Transform and machine learning objects employed to prediction purposes. Chap-
ter 5 describes some implementation aspects related to the development of the prediction
systems herein presented. Chapter 6 portrays conclusions and further research initiatives.

Chapter 2

Time series multiscale pattern
recognition and forecasting

We herein present a prediction system composed of a self organizing layer and a group of
artificial neural networks, whose purpose is to perform streaming time series analysis and
forecast. The clustering layer is able to recognize incomplete subpatterns, populated with
data sampled at different scales, all of them pointing to the incoming and unknown data
element. Whenever a set of patterns is recognized, a raw forecast of the incoming value is
performed using the information contained in the self organizing layer’s selected prototypes.
The group of artificial neural networks are trained to estimate the error measured between
the raw forecast and the actual incoming value. Such estimate is used to fine tune the final
real value forecast. Testing the system on a large dataset (the Bitcoin-US Dollar hourly ex-
change rates) we obtain good prediction results, outperforming the benchmark models. Fi-
nally we develop a simple trading strategy that uses the system predictions to perform spot
market operations. The backtesting shows that such expert advisor can yield a 50% capital
gain and a good profit factor.

Recently an alternative currency and payment method, named Bitcoin by its anonymous
inventor and based on a public chain of digital signatures (Nakamoto, [39]), is becoming
more and more popular, and could progressively become the competitor of other types of
electronic payment. Although the system was introduced in 2009, its actual use began to
kick in from 2013. Since then, the cryptocurrency’s price, quoted against the principal fiat
currencies, has suffered of high volatility and wide changes in value. Given the associated
risk that both customers and vendors adopting Bitcoin were subject to, the rapid diffusion of
the cryptocurrency was ultimately delayed. Nevertheless, Kondor et al. [33] showed that the
Bitcoin network is exhibiting an exponential growth.

Given the potential impact of Bitcoin on both economy and finance, we focus on devel-
oping a system capable of producing accurate price forecasts of the new cryptocurrency.

Considerable research efforts have been dedicated in the past to the attempt to forecast
the foreign exchange rates, see for example [16, 42]. Yet not much literature can be found
on the forecast of Bitcoin indicators, the main reason lying in the relative shortness of price
dataset series available for statistical analysis, in most cases limited to daily close price his-
tory.

A recent exploration path was followed by Shah and Zhang [45], who applied the Bayesian

5

6 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTING

Regression for Latent Source Model either for binary classification purposes or to estimate
real valued variables, achieving good results with Bitcoin trading and at the same time giving
scientific confirmation of the existence of price patterns in the mentioned time series.

More recently, other researchers [20, 28, 38] found evidence of correlation between the
Bitcoin trading volumes and web search engines trends. Such works, however, are not di-
rectly aimed to perform a short term financial prediction of Bitcoin exchange rates and, as
such, the possibility to develop a trading system, based on the cryptocurrencies’ price fore-
cast, remains only partially explored.

The existence of convincing literature focused on the analysis of Bitcoin was key to our
decision to develop a different and novel approach, designed to perform short-term price
predictions, and to test its accuracy against a benchmark model. Also, not many papers deal-
ing with such time series using short sliding windows can be found, the main reason proba-
bly being the need for huge computational resources, proportional to the required precision
of the pattern recognition operations.

Generally speaking, a system designed to perform a forecast of the series n steps ahead
must be able to run in real-time configuration (data streaming from an external source); this
can be achieved in more than one way.

One of the first attempts to forecast time series patterns was proposed in [49], in which a
Kohonen Layer is trained with two related patterns simultaneously, thus being able to fore-
cast the second one when only the first is given. More recently, in [22] Hsu et alt. proposed an
approach to perform stock price forecasting by integrating a self-organizing map and sup-
port vector regression, predicting the n steps ahead of a given time series, achieving better
results when compared to older monolithic forecasting approaches.

Starting from some stylized facts of the financial time series (such as volatility clustering
and fat tails distribution of price returns), recently Gencay et alt. discovered new proper-
ties of financial volatility across different time scales (asymmetric vertical dependence) [21].
Since then, the prediction of financial time series making use of multiscale approaches has
been a very active area of research ([19, 36, 41, 43]).

The herein proposed approach (far less explored in the literature) is to perform recogni-
tion using patterns composed only of the visible streamed data (incomplete patterns), con-
sidering the incoming (and missing) n values as those to be forecast.

As a direct consequence of this choice, the average precision of the pattern recognition
operations is inevitably lower than the one obtained using full, complete patterns, since less
information is available to test an input series against a database of prototypes. However,
supposing that the clustering training is accurately performed, the gain in forecasting ac-
curacy can be greater than those of the aforementioned approaches. In fact, if the pattern
recognition error is contained within a range (hereafter referred to as "granularity parame-
ter"), the one step ahead forecast is easy, since the last weight of the best matching prototype
contains enough information to calculate a future value. On the contrary, if the clustering
error is greater than the granularity, the best matching prototype does not give useful in-
formation, and a prediction cannot be correctly performed. For this reason, a multiscale ap-
proach is here considered and implemented: patterns composed of values sampled at differ-
ent scales, derived from the original series, are concurrently used to overcome the challenges
introduced by any inexact single recognition operation.

Selecting patterns having different scales is also consistent with the meaningful proposi-
tion of Ramsey [40] in that regression (fitting) a series is a local activity, whereas forecasting

2.1. METHOD 7

is global in structure; this implies that an effective forecast cannot be performed unless suf-
ficient data is appropriately selected from the time series and submitted to the predictor.

After having clustered the aforementioned price patterns, a fine tuning method (imple-
mented using a set of cooperating multilayer perceptrons) is eventually used to achieve the
final Bitcoin price forecast.

2.1 Method

Our system is composed of a self-organizing clustering layer and a group of cooperating
artificial neural networks. The former was designed and implemented starting from the def-
inition of the Kohonen Layers [30, 32], and adapted to the clustering difficulties associated
to the cryptocurrency series’ price and volatility. The chosen type of artificial neural network
is the back propagation [44] multilayer perceptron (MLP), known to possess a good built-in
capability to perform short-term forecasts of series characterized by some level of autocor-
relation.

The clustering module is trained to cluster patterns derived from the Bitcoin price hourly
series. Both the input patterns’ generation procedure and the self-organizing layer training
are explained next, subsequently the layers’ real-time configuration is described. The pur-
pose of the clustering layer is to be able to effectively recognize and select the clustering unit
that best matches a price input pattern.

The recognition is performed, at each time step, for several price patterns at different
scales. The prototypes that are found this way contain information useful to calculate a raw
forecast of the Bitcoin price at the next time step.

A supplementary module is deputed to evaluate the forecasting error (against the in-
coming real price), and to create and maintain a preset number of moving averages of dif-
ferent period of such error history. Each moving average serves as input to its respective
MLP, trained to estimate the error’s one step ahead. The final forecast price of the Bitcoin is
obtained by correcting the raw forecast with the average of the predicted errors.

Ideally, both the clustering layer and the cooperating neural networks should be retrained
during the real time phase, in order to retain the stability of the forecasting performance
level.

2.1.1 Self-organizing layers

Generally speaking, clustering a pattern means measuring the distance of such a pattern
from each of the discovered prototypes, and selecting the best matching unit. The self-
organizing layer is designed starting from the basic idea that the time series can be viewed as
a series of concatenated patterns of fixed length, whose shape is unknown at the beginning,
and must be explicitly found. To this purpose, we need a layer, initially empty, capable to
expand whenever an unknown pattern is discovered.

Self Organizing Layers training

Patterns are tested against the prototypes and a best matching unit is evaluated. If the recog-
nition error (euclidean distance) overcomes a granularity parameter (herein denoted Γ), the

8 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTING

layer grows with a new unit, whose training is immediately performed. Once the neuron’s
training is complete, it is encapsulated in the self organizing layer.

If the recognition error is less than the granularity instead, the layer can already cluster
the testing pattern, and no training is required. In order to complete such unsupervised
training phase, all the training data subset must be submitted to the layer.

Scaled patterns are extracted from the training dataset as follows: an iterator scans the
data series (herein the Bitcoin hourly price close) BTCUSD H1 = {xt : x ∈ R+, t ∈Z}, pointing
at the current (last) timestep t0. Denoting K ∈N the input pattern size, and S = {si : 1 6 i 6
N } a vector of N ∈N scale coefficients, an intermediate matrix M of subpatterns X i ∈ RK is
generated:

S =
{

s1, s2, ..., sN

}
(2.1)

X i =
{

xt0−(K−1)si , ..., xt0−2si , xt0−si , xt0

}
(2.2)

M =
{

X 1, X 2, ..., X N

}
(2.3)

Each of the X i vectors constitute a subpattern having xt0 as its last element (zero shift), its
previous elements being obtained by back-sampling the series at constant intervals si . To be
independent from the actual price value, at each time step each vector X i ∈ M is normalized
to X ′

i , before being fed to the self-organizing layer:

l2 ,
∥∥∥ X i

∥∥∥2 (2.4)

X ′
i =

X i

l2
(2.5)

It is worth noting that we use only one clustering layer, that is trained on all patterns sampled
at different scales si ∈ S. This avoids unit redundancy, preserves memory usage and favors
the overall system’s efficiency. Given a generic vector v of size K ∈N, let us define

∥∥ v
∥∥k

2 its
L2 norm calculated using just the vector’s first k6K elements:

∥∥∥ v
∥∥∥k

2 ,

√√√√ k∑
i=1

vi
2 (2.6)

Let us call J ∈N the size of the layer (the number of prototypes). The best matching unit’s
index j0,16 j06 J , can be found with the following equations:

di , j =
∥∥∥ X ′

i −W j

∥∥∥K
2 (2.7)

j0 = arg j mindi , j (2.8)

2.1. METHOD 9

Eq.(2.7) means measuring the euclidean distance of the input pattern X ′
i to each existing j th

prototype with weights W j , and selecting the closest unit (eq.(2.8)), having index j0.
Whenever such clustering unit does not match the input pattern within the given granu-

larity (di , j0 > Γ), a new clustering unit W ′
jς

is created (see subprocess SOL training in fig. 2.1).

W ′
jς

weights are set perturbing those of X ′
i by values drawn from a uniform random distri-

bution with interval
[−Γ/pK,Γ/pK

]
:

W ′
jς
= X ′

i + r

r = uni f
(
− Γp

K
,
Γp
K

) (2.9)

The weights are perturbed in order to improve the generalization power of the new clustering
unit. With respect to Self Organizing Maps [30–32], our network does not adjust the weights
when a new input matches a clustering unit, and no neighborhood parameter exists. Simi-
larities to the Latent Source Model (Chen et al.) [6] arise as the granularity Γ is progressively
set to a value near zero, except that our system never tries explicit pattern classification.

Self Organizing Layers testing

In a real-time configuration, all the elements of a fixed size pattern are visible except for
those to be forecast. Let us denote τ as the number of visible elements of an input pattern
X i . Recognizing a normalized input pattern X ′

i (hence using only the first τ<K elements),
is equivalent to selecting a best matching unit as follows:

εi , j =
∥∥∥ X ′

i −W j

∥∥∥τ2 (2.10)

εi , j 6 di , j 6 Γ (2.11)

j0 = arg j min εi (2.12)

The best matching prototypes whose recognition error εi , j0 > Γ are discarded (see subpro-
cess SOL testing in fig. 2.1). We denote η as the number of prototypes that match the test
input correctly; in other words, η 6 N are the remaining prototypes satisfying eq. (2.11).
They are selected to extract a vector w K of η useful weights. Let us consider also a vector l 2

holding the η normalization factors of the X i ∈ M input vectors correctly recognized by the
system:

w K =
{

w1,K , w2,K , ..., wη,K

}
(2.13)

l 2 =
{

l2(X 1), l2(X 2), ..., l2(X η)

}
(2.14)

10 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTING

Figure 2.1: System flow chart. Left column: operations of the predict step; centre column:
update step; right colums: subprocesses. Predict and Update steps are sequential. During
the predict step, the forecast is performed only if the Self-organizing Layer has been fully
trained over the entire training dataset partition (decision box SOL trained). The update
step is performed when a new external data sample has entered the system. During the
update step, both SOL and MLPs are retrained. Finally, a new cycle begins whenever the
control flows through connector A. The SOL prepare input subprocess gathers the opera-
tions needed to create the matrix of multiscaled patterns and to normalize the data. The
SOL training subprocess box shows the applications of eqs.(2.7), (2.9). The SOL testing sub-
process box shows how only the best-matching prototypes, whose recognition error ε < Γ,
contribute to the raw forecast formation.

2.1. METHOD 11

Let us denote
〈

v 1 v 2

〉
, v T

1 v 2 as the scalar product of two generic vectors v 1, v 2. Sup-

posing τ= K −1, (the system is set to forecast the series one step ahead) a raw forecast ût0 of
the real value xt0 can be calculated by averaging the denormalized weights wi ,K ∈ w K :

ût0 = η−1
〈

l 2 w K

〉
(2.15)

Uncertainty introduced by the lack of information regarding the unknown last pattern ele-
ments induces a forecasting error, denoted as ζt :

ζt = xt − ût (2.16)

As shown in fig. 2.1, ζt can be calculated as soon as the system receives a new incoming series
value. If we were able to correctly estimate ζt , it would be possible to use such value to fine
tune the raw forecast ût0 , hence obtaining a much more accurate price forecast. This is the
purpose of a group of cooperating back propagation multilayer perceptrons, each trained to
forecast a moving average of past history errors ζt , as described in the next subsection.

2.1.2 Cooperating back propagation multilayer perceptrons

Multilayer perceptrons are used as a mean to predict a correction to the raw forecast per-
formed with eq. (2.15), in order to fine tune the real value price forecast x̂t . MLPs are trained
using the last, small portion of the training dataset, before the system is put to work. The raw
forecast error ζt is stored at each time step. Such sequence of error values is used to calculate
a set of N moving averages of different periods pi , 16i 6N , the last H elements of which are
input queues ρpi

to their respective MLP, as columns of the following matrix % ∈RH×N :

%H ,N =

ρ1,p1 ρ1,p2 · · · ρ1,pN

ρ2,p1 ρ2,p2 · · · ρ2,pN
...

...
. . .

...
ρH ,p1 ρH ,p2 · · · ρH ,pN

 (2.17)

The use of smoothed sequences (such as the above-mentioned moving averages) as input to
the MLPs improves their overall prediction accuracy.

During the training phase, the incoming series ζt is used to calculate N target values
ρH+1,pi , necessary to train each respective i th MLP to produce an output ρ̂pi ≈ ρH+1,pi .

In the real time phase, ρ̂pi is the output of each i th neural network. Such N forecast
values allow each estimated error ζ̂ti to be found. The final error estimate ζ̂t is calculated
averaging all the ζ̂ti , and it is used to produce the final price forecast output:

ζ̂t = N−1
N∑
i

(
pi ρ̂pi −

pi−1∑
m=1

ζt−m

)
(2.18)

x̂t = ût + ζ̂t (2.19)

12 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTING

Figure 2.2: Bitcoin price patterns clustering operations. Left: a selection of some prototype
patterns; right: a set of input patterns correspondingly recognized during the testing phase.
The used granularity parameter is Γ= 0.004. The lower Γ, the higher the shape similarity
among the clustered patterns and, consequently, the lower the number of patterns associ-
ated to the same cluster. In order to use the clusters for effective prediction purposes, they
must contain only motifs exhibiting strong similarity. The adequate choice of Γ is key to
obtain good system output performance.

Upon arrival of a new dataset value, the actual ζt is available and can be stored. Hence, it is
possible to find ρH+1,pi ,∀i , and use such values to retrain each respective i th MLP, using the
same procedure followed during the initial training phase.

2.2 Results and discussion

Observing the cryptocurrency’s price series, (BTCUSD, presented as a weekly candlestick
chart in Fig. 2.3), it can be noted that it shows an overall appreciation and volatility spark
during the last quarter of 2013, the price reaching a peak on December 4th , 2013. During
2014 instead, Bitcoin showed a well defined downtrending correction and slowly decaying
volatility as the price tested and then lowered below the psychological support (then resis-
tance) level of 300 USD.

2.2. RESULTS AND DISCUSSION 13

Figure 2.3: BTCUSD weekly candlestick chart, showing the Bitcoin price for the period Jan-
uary 2013 to June 2015. The solid line is a simple moving average of period 4. The horizontal
light line is set at the psychological level of 300 USD. From the candlestick chart we can ap-
preciate that this market is actually respecting such level (reached by the price numerous
times).

JBera_2

Page 1

Series BTCUSD
Period Beg 01/01/2013
Period End 06/30/2015
Observations 21760
Mean 330.64
Median 257.19
Mode 124
Maximum 1082.66
Minimum 13.26
Std.Dev. 232.88
Excess Kurtosis -0.4
Skewness 0.66
Jarque Bera 2.09e-321

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

500

1000

1500

2000

2500

3000

3500

4000
Frequency

Price (USD)

Figure 2.4: BTCUSD hourly close price distribution summary statistics for 21760 observa-
tions, spanning from 01/01/2013 to 06/30/2015. The dataset consists of more than 20 thou-
sands hourly samples of the Bitcoin exchange rate. Note that the cryptocurrency average
price (against USD), is just 30.64 USD above the meaningful psychological support level of
300 USD, (Fig. 2.3).

14 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTING

The dataset we used is the Bitcoin price hourly series, spanning from January 1st 2013 to
June 30th 2015. Data inspection reveals an overall good quality of the whole set, since only
13 gaps can be found (103 missing bars, 21760/21863 observations, i.e. 0.47%). A statisti-
cal synthesis of the hourly data series is presented in Fig. 2.4, showing platykurtosis and a
slight skewness; Jarque-Bera test confirms that the series is non normal. The whole dataset
is partitioned into an in-sample period, used for training and validation of the system, (from
January 1st 2013 to December 31st 2014), and an out-of-sample period (from January 1st 2015
to June 30th 2015) to test the system on real data.

After extensive tests, we decided to set the pattern size K =8, and the granularity Γ= .004.
Consequently, the self organizing layer grows in order to cluster patterns of this same size
whenever Γ is exceeded. Lower values of the granularity cause the number of discovered
patterns to be close to its theoretical maximum (i.e. the total number of patterns, obtained
sliding step by step the training series with a window of fixed size K , repeating the operation
for each sampling rate, defined by the scale value si). As Γ tends to 0, the self organizing layer
behaves similarly to a Latent Source Model container. On the contrary, higher values of the
granularity cause the number of clusters (and the clustering precision) to reduce.

The value we found for Γ is small enough to avoid the trivial match effect, which happens
when two adjacent patterns, shifted by one step, are clustered together. Fig. 2.2 shows some
of the clustering units found, with the corresponding real time patterns found by the system.

Once the self organizing layer is trained, it must be able to perform recognition of pat-
terns synthesized using a multiscale approach. During our tests, we found that the sequence
of scale coefficients S = {2m : 0 6 m 6 7, m ∈ N} is enough to achieve a better forecasting
ability than that of a naive predictor. Also, as described by eq.(2.2), the scaled input patterns
always have the last element pointed to the forecasting step. Hence, when running, the self
organizing layer is called to perform recognition of patterns composed of τ = K −1 = 7 ele-
ments, as indicated by eqs. (2.10) and (2.12).

Raw forecast errors ζt , are stored in a queue whose size is sufficient to accommodate
enough data to calculate all the moving average sequences of different period. Finally, for
the scope of this research, the neural network configuration was set as follows: standard
input layer size 8, triple hidden layer bank (sizes 8, 8, 16), output layer size 1; hyperbolic
tangent activation function, full neural interconnection. We performed several tests with
different network parameters, confirming our intuition that the number and size of hidden
layers of the MLP should be kept low in this type of system. The reason lies in the fact that
the purpose of the MLP is to forecast the next step value of a smoothed series.

We compared the price returns forecasts, performed for the whole out of sample period
(4334 prediction attempts), with a naive benchmark method which, despite its simplicity, is
generally recognized as hard to beat in terms of financial price forecasting accuracy when
using exclusively technical analysis indicators, or when compared to quantitative finance
models – see for instance [17]. Let us recall that naive methods are generally designed to
forecast a time series using the most recent observed change trend. If the last occurred price
change is taken into consideration (as we did in the present work), the naive model is ex-
pressed by the relation x̂t = xt−1 +∆xt−1, where ∆xt−1 , xt−1 − xt−2. We also tested the raw
output of the clustering system performed using the self organizing layers described in the
sections above (see eq. (2.15)), without applying any error correction through the MLP. The
results of a forecasting session is depicted in Fig. 2.5, showing Bitcoin price returns predicted
for the hourly close one step ahead, during the out-of-sample period. Sorted absolute out-
put errors are shown in Fig. 2.6. Occurrence of errors less than 50 cents is 28% for the naive,

2.2. RESULTS AND DISCUSSION 15

graph

Page 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

time step

USD

Figure 2.5: Hourly Bitcoin price forecast session, January 2015. Actual raw price returns in
dark histogram columns, forecast price returns in light. Note that the accuracy of the forecast
change of direction - CoD of the price returns is directly proportional to the absolute value
of the respective returns. In other words, the system’s prediction is more accurate, in terms
of CoD, when the market is volatile.

absError

Page 1

9
12

6
24

3
36

0
47

7
59

4
71

1
82

8
94

5
10

62
11

79
12

96
14

13
15

30
16

47
17

64
18

81
19

98
21

15
22

32
23

49
24

66
25

83
27

00
28

17
29

34
30

51
31

68
32

85
34

02
35

19
36

36
37

53
38

70
39

87
41

04
42

21

0

1

2

3

4

5

6

7

nr. of cases

USD

Figure 2.6: Sorted absolute errors of the price forecast session: naive forecast absolute errors
(dark solid line), raw forecast with no MLP correction absolute errors (dotted line) and sys-
tem absolute errors (light solid line). Occurrence of absolute errors less than 50 cents is 28%
for the naive predictor, 30% performing a raw forecast, 43% for the system, indicating that
the proposed approach achieves the highest forecasting accuracy.

16 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTINGrawError

Page 1

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

200

400

600

800

1000

1200

Error Class Interval

Frequency

Figure 2.7: Raw error distribution of the price forecast for the whole out-of-sample session:
naive forecast error (dark solid line), raw forecast error (dotted line), proposed system error
(light solid line). System error shows higher kurtosis, confirming that its smaller error classes
are more frequent if compared to the same classes of the benchmark models.

whereas for the raw forecast (performed without the intervention of the MLPs), it is 30%.
The proposed complete system increases such statistic up to 43%. The naive method cumu-
lative absolute error of the whole forecast session (4334 prediction attempts) is 7025.01 USD,
whereas the raw forecast one is 4892.10 USD. The proposed system shows an error as low
as 3662.22 USD. Moreover, in 90% of the times, the naive method and the raw forecast per-
form respectively with an error less than 3.64 and 2.03 USD, whereas the proposed system
has an error as low as 1.67 USD. Error distributions for both the system and the benchmark
methods are plotted in Fig. 2.7. The system error distribution denotes higher kurtosis and
skewness than the same statistics of the benchmark methods, whereas, not surprisingly, the
naive error distribution is characterized by fatter tails.

2.3 Profitability tests

We implemented a simple high frequency trading strategy based on the Bitcoin hourly close
forecast (performed with the herein presented model), using no financial leverage and a re-
ward to risk ratio set to the bare minimum of 1.2, by means of fixed automatic take-profit and
stop-loss orders associated to each market operation. The trading strategy is developed as
an expert advisor with real time operational capability. The forecasting phase is performed
after each incoming price value, using the herein described hybrid prediction system. Hav-
ing forecasted the one step ahead hourly price close, the expert evaluates market price at
each tick, waiting for an opportunity to buy at lower price or to sell at higher price in the
direction of the forecast price. An order is entered only if the projected return is greater than
the absolute loss imposed with the automatic stop set for the specific operation. For the sake
of simplicity, stop losses are set at a constant price difference from the entry point through-
out the whole backtesting session. In order to improve the expert’s profitability, one could
contrive more sophisticated stop loss calculation methods, for example taking account of

2.4. FURTHER DEVELOPMENTS 17Sheet3

Page 1

75
12

00
23

25
34

50
45

75
57

00
68

25
79

50
90

75
10

20
0

11
32

5
12

45
0

13
57

5
14

70
0

15
82

5
16

95
0

18
07

5
19

20
0

20
32

5
21

45
0

22
57

5
23

70
0

24
82

5
25

95
0

27
07

5
28

20
0

29
32

5
30

45
0

31
57

5
32

70
0

33
82

5
34

95
0

36
07

5
37

20
0

9000

10000

11000

12000

13000

14000

15000

16000

nr. of transactions

USD

Figure 2.8: Cumulative Profit/Loss of a high frequency strategy, tested for the out-of-sample
period (first semester, 2015), executing 37245 long and short operations. A 3.4 pips spread is
applied upon order opening. The overall ROI is 48.6%, with a maximum drawdown of 0.31%.

the actual daily market volatility. We tested such strategy in the out-of-sample period. Re-
sults show a profit factor greater than 1.5, with successful operations accounting for the 50%
of the total. Cumulative profit and loss graph is depicted in Fig. 2.8, describing a semi an-
nual return on investment of 48.6% and a maximum drawdown of 0.31%. This performance
takes into account transaction costs of 3.4 dollar cents for each operation (a simulated retail
financial service provider’s profit).

Finally, we repeated the tests on both British Pound - USD (GBPUSD) and Euro - USD
(EURUSD) hourly exchange rates, for the period January 2014 - May 2016 (using the period
up to November 2015 for training). With these data, the simulated semi annual profit gained
on May 2016 is, respectively, 40.94% and 41.85%. These results confirm the applicability of
our approach also for price series different from Bitcoin price.

2.4 Further developments

Given the potential wide impact of Bitcoin price and volatility, we proposed a model aimed
to generate accurate price forecasts, and we evaluated its performance on the cryptocur-
rency’s hourly close series. The system is composed of a self-organizing layer, a data process-
ing module, and a group of cooperating back propagation MLPs. The forecasting process is
achieved in two steps. First, a set of patterns of fixed length is generated by sampling the
source data series at different scales, then recognized by the clustering layer, and a raw price
forecast is performed using the information contained in the best matching prototypes. Sec-
ond, each cooperating MLP performs a forecast of the error of the value produced by the first
step; the average of such values is used to fine tune the real value forecast.

When tested on a large session of the Bitcoin - USD hourly exchange rates (21760 obser-
vations), the systems shows its ability to outperform the benchmark methods, the latter not
using multiscale pattern recognition procedures. Such result confirms that a forecasting op-
eration is global in nature, and it becomes feasible whenever a system, aimed to perform an

18 CHAPTER 2. TIME SERIES MULTISCALE PATTERN RECOGNITION AND FORECASTING

accurate prediction, operates simultaneously on the information retrieved from overlapping
input ranges selected at constant intervals from the source series.

Despite possible initial lengthy training operations, especially regarding the population
of the clustering self organizing layer, we believe that the system’s performance could be
greatly improved reducing the granularity parameter, thus creating larger databases of pro-
totypes used to specialize each responsible predictor machine. Also further tests, aimed at
improving the system’s clustering capabilities after having substituted the self organizing
layers euclidean distance kernel with different times series equality statistical measures, are
already in place. This is the direction of further research initiatives, aimed to improve the
forecasting reliability and accuracy of multiscale pattern recognition assisted predictor sys-
tems.

Chapter 3

Multiresolution analysis and
prediction of streaming datasets

In this chapter we explore the shift variance of the fast wavelet transform - FWT, and we prove
a novel theorem suitable to build efficient prediction systems of streaming univariate time
series, making use of specialized statistical estimators or neural regressors trained to predict
the one step ahead discrete wavelet transform. An effective real value prediction can then be
obtained performing the inverse DWT of such estimated crystal, although several optimiza-
tion steps can be taken to further improve the precision of the forecasting results. When
tested on the Bitcoin hourly exchange rates, as well as on different statistical time series, the
results are encouraging and fostering further research initiatives aimed at the improvement
of the forecasting capability of prediction systems using discrete domain wavelet analysis of
digital signals.

Generally speaking we believe that the prediction of streaming datasets will become a
core issue with the advancement of technologies such as the Internet of Things, giving the
emerging need for real time series forecasting of data generated by sensors and surveillance
devices. The prediction of time series is also important for a wide range of application fields:
in the present thesis we focus on the analysis and prediction of the currency exchange rates
(the Bitcoin - USD currency pair in the specific), since it is possible to retrieve large chunks of
the aforementioned financial series, and such opportunity greatly fosters the development
and testing of any non-parametric contrivable prediction system.

The problem of forecasting streaming datasets has been largely explored in the past, and
recently researchers [26, 36] are heading towards multiresolution approaches, particularly
using space-frequency types of analysis, motivated by recent findings about the powerful
methods of wavelets, the latter being applied either alone or in conjunction with other pre-
diction or decomposition models.

Recently Daubechies et alt. [12] provided the necessary theoretical guarantees to the em-
pirical results obtained by Huang [24] with the proposal of the Empirical Mode Decompo-
sition and its successive improvements [50] (Wu and Huang), which allowed the scientific
community to approach the time series analysis with a newer, yet simple, different view than
the classical Fourier analysis.

At the same time, the explosion of wavelet approaches to general time series analysis
seems to converge to the application of un-decimated discrete wavelet transform - DWT

19

20 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND PREDICTION OF STREAMING DATASETS

methods (also Stationary, or "à trous", or redundant DWT), in a wide variety of scientific
disciplines; the reason being for shift invariant applicability, though resource expensive, of
the aforesaid methods to the analysis of streaming datasets.

We are interested in exploring the actual need for redundancy in applying the DWT to
real value forecasting purposes; and dealing with the shift variance problem, particularly
referenced to streaming input datasets, with the aim to build a general framework suited to
be effectively used for time series analysis and prediction.

We prove a novel theorem on the shift variance of the convolutional, decimated DWT
(also known as fast wavelet transform) of univariate sampled series, and we apply it in order
to improve a prediction’s system accuracy, also using some previous experience on the de-
velopment of artificial neural networks and self organizing clustering machines, as outlined
in the previous chapter of this thesis. Results show that the suggested method can outper-
form the benchmark models when applied to the testing financial series, as well as to other
statistical data sets.

This chapter is organized as follows: section 3.1 provides a description of the proposed
approach; the section is further subdivided into several subsections, each of which illustrates
the theoretical guarantees and the specifics of the proposed prediction system. Section 3.2
provides a discussion of the research results. Section 3.3, portrays a direction to further re-
search activities.

3.1 Method

In order to give a brief review of the discrete wavelet transform’s theory and, contextually, to
introduce the notation, let us recall that the families of wavelets:

hm,n(t) =
{

a−m/2
0 h(a−m

0 t −nb0) : m,n ∈Z; a0,b0 ∈Z0

}
(3.1)

have been particularly applied, in the past, to the analysis of signals pertaining to many sci-
entific disciplines, and recently they were also applied to the study of financial time series.
The family hm,n constitutes a set of different shifted and scaled versions of a commonly ap-
plied mother wavelet, which literature also generally denotes ψ(t). The naming "discrete"
wavelet transform derives from choosing the parameters a0 and b0 from a discrete sublat-
tice. If the dilation parameter a0 and the translation parameter b0 are respectively chosen
very close to 1 and 0, the resulting frame {hm,n : m,n ∈ Z} is very redundant and close to a
continuous family of wavelets [10]. If those parameters are set as a0 =2 and b0 =1, redun-
dancy is avoided, although the hm,n functions constitute an orthonormal basis of the vector
space of measurable, square integrable 1D functions L2(R) and they become:

hm,n(t) =
{

2−m/2 h(2−m t −n) : m,n ∈Z
}

(3.2)

Their elements have good localization properties in both the spatial and Fourier domains. If
the source time series variable is continuous, its DWT is then defined as:

Tm,n(f) =
〈

hm,n , f
〉
= 2−m/2

∫
R

f (t) h(2−m t −n) dt (3.3)

3.1. METHOD 21

Mallat proved that functions f (t) ∈ L2(R) can be considered as a limit of successive approx-
imations (smoothed versions of f (t)), and that it is possible to find the wavelet coefficients
Tm,n as the difference of two approximations of f (t) at consecutive different scales [34]. To
obtain this, it is necessary to define two families of scaling and wavelet functions φm0,n(t)
andψm,n(t), with which it is possible to express f (t) by means of the following wavelet series:

f (t) =∑
n

cm0,nφm0,n(t)+∑
m

∑
n

dm,nψm,n(t) (3.4)

Eq.(3.4) is the key to signal reconstruction (also inverse DWT - IDWT). The forward DWT
serves to retrieve the cm0,n and dm,n sets of coefficients:

cm0,n(f) =
∫
R

f (t)φm0,n(t) dt

dm, n(f) =
∫
R

f (t)ψm, n(t) dt

(3.5)

In practice, however, our objective is to work with a sampled series X of size nX , composed
of the last consecutive sampled values of f (t),

X =
{

xnX −1, ..., x1, x0

}
(3.6)

In eq.(3.6) the x0 element denotes the newly inserted element. Considering a streaming
dataset, the size nX is kept constant by popping (removing) the first and elder element from
vector X (first in last out). In order to be able to work with sampled series X , equations
(3.4) and (3.5) must be discretized: φ(t) and ψ(t) values are calculated, while integrals are
replaced by summations.

However, a multiresolution signal decomposition of a sampled series can be performed
efficiently in a recursive way, by means of filtering and downsampling operations. Normally
those filters are denoted h and g and their size is herein denoted as nh . Because of their
properties, in signal analysis they are usually referred to as quadrature mirror filters. De-
scriptions of the FWT algorithm to which the interested reader can refer is found in [4, 9]
while a dissertation on the relationship between the Wavelet Series and the Discrete Wavelet
Transform can be found in [51]. Let us denote nh the size of both filters, m as the recursion
depth of the procedure, 2−m the resolution Rm to which the signal is analyzed at depth m.
If m=0 (R0=20=1), the input series is of course the source series itself. The forward DWT
starts by convolving the source series with both filters h and g , and retaining (separately) one
sample out of two. This allows to obtain respectively two sets of coefficients, herein denoted
by c1 and d1, of the next level m=1 (lower resolution R1=2−1), respectively representing a
smoothed version of X and the difference of information between the two adjacent series
c0 , X and c1. The resulting vector of c1 coefficients serves as input to the operation of the
next level m=2, and the process is repeated until the maximum depth M is reached. The last
set of coefficients cM is retained. The maximum depth M depends on both nX and nh :

M = l og2nX −dlog2nhe (3.7)

22 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND PREDICTION OF STREAMING DATASETS

The first term of eq. (3.7) takes the input source size into account, expressing the maximum
number of downsampling operations that can be performed. The second term takes the fil-
ter size into account, since a convolution cannot be performed if the source input size is
shorter than the size of the filter itself. (At the same time, a source input must always be
a sequence whose size is a power of 2, hence the need to approximate at ceiling the value
log2nh). As a consequence of eq.(3.7), performing a forward DWT of a source input X to the
maximum depth M constrains nc M to be:

nc M = nX

2M
(3.8)

and nd m (the size of the vector containing the difference of information between two adja-
cent cm−1,cm series) to be:

nd m = nX

2m
(3.9)

At the recursion end (completion of the operation), the resulting vector T of forward trans-
form coefficients of the series X is populated in the following order:

T =
{

cM ,0,cM ,1, ..., cM ,nc M
,

dM ,0,dM ,1, ..., dM ,nc M
,

dM−1,0,dM−1,1, ..., dM−1, nd M−1
,

dM−2,0,dM−2,1, ..., dM−2, nd M−2
,

...

d1,0,d1,1, ..., d1,nd 1

}
(3.10)

Note that the size of T equals the size of the source series nX . Hereafter, the subsets of coef-
ficients allocated at the same recursion depth m are also referred to as subbands Bm .

The aforesaid recursive forward FWT procedure suffers of a principal drawback: in case
of streaming datasets, the computation on subsequent sampled windows is affected by a
shift variance problem, since at each insertion of a new element in the source series, many
DWT coefficients (located in different subbands) are affected. As a direct consequence of
this problem, different shift invariant DWT algorithms were found (they are referred to as
Maximum Overlap, "a trous", stationary, or undecimated DWT). All of them are expensive in
terms of memory and computational resources needed (high number of containers holding
portions of the MRA coefficients). Also, if multiple undecimated MRA series must be held
(eg. for machine learning purposes), this implies working with tensors of coefficients.

Instead note that, considering a single series of size nX , and wavelet filters of size nh , its
multiresolution analysis performed using the decimated DWT implies a number of opera-
tions O=2nX (2nh −1), as also outlined later (see th. on the computational efficiency), hence
the algorithm’s efficiency is comparable to the one of the Fast Fourier Transform. More over,
since no splitting operations are performed on the source series, a CPU implementation of
such algorithm was tested nearly as efficient as the one factoring wavelet transforms into
lifting steps, despite the latter’s theoretical higher efficiency [13].

Having a digital source signal, sampled at constant time intervals, and performing a mul-
tiresolution analysis -MRA on a pattern of fixed size nX , a matrix QnT ,nX

, can be filled with

3.1. METHOD 23

N
2 3 4 5 6 7 8 9 10

m 1 2 3 4 5 6 7 8 9 10
2 3 4 6 7 9 10 12 13 15
3 3 5 7 8 10 12 14 15 17
4 3 5 7 9 11 13 15 16 18
5 3 5 7 9 11 13 15 17 19
6 3 5 7 9 11 13 15 17 19
7 ...

Table 3.1: Number of varying coefficients at each depth m in a decimated DWT, performed
using Daubechies orthogonal wavelet filters (filter size nH = 2N) on a streaming source se-
ries. The maximum reachable recursion depth m depends also on the size of the input series,
which is not considered here. From recursion depth m onward, the convergence of varying
quantities is stable.

nT MRA row entries, calculated at each shift-insert operation to account for an incoming
dataset element x0 pushed into the source vector X :

QnT ,nX
=

T1,1 T1,2 · · · T1,nX

T2,1 T2,2 · · · T2,nX
...

...
. . .

...
TnT ,1 TnT ,2 · · · TnT ,nX

 (3.11)

Each row of the QnT ,nX
contains coefficients in the same order as specified in eq.(3.10). We

are determined to forecast the (1+nT)th row of the matrix, making use of the previous rows.
If such operation is performed accurately, it is also possible to perform the one step ahead
forecast of the input series by the IDWT of such estimated row. It turns out that not all the
coefficients must be estimated, but some of them can be deterministically calculated, as
explained next.

Regarding the coefficients to be estimated, when plotting the columns of QnT ,nX
, some of

its column series exhibit regular behavior and thus are easily predictable, for example using
neural estimation; others are less regular. Hence using some previous research experience
on the analysis and forecast of non-linear non-stationary time series, we deploy one self
organizing layer for each of those details columns. A more accurate description of the two
methods is given in the next subsections, whereas an algorithm for the virtual prediction of
the coefficient is shown in Fig. 3.1.

3.1.1 Fast wavelet transform shift variance

As anticipated above, not every coefficient of the forecasting series has necessarily to be es-
timated. In fact, shifting and inserting values in X causes the successive forward transforms
to possess some shifting features such that the majority of the coefficients of the DWT are
automatically determined, hence greatly enhancing the FWT algorithm efficiency applied to
streaming datasets and opening a new pathway to the research on the use of discrete wavelet
transforms for prediction purposes.

Proposition 3.1. Given the choice of wavelet filters h, g , having size nh , a source vector X
with size nX , denoting M ∈N the maximum FWT recursion depth, the size nBm of each forward

24 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND PREDICTION OF STREAMING DATASETS

Virtual Predict

Corollary
Coefficient

MLP
Prediction

No

SOL
prediction

No

Predict Begin

No

Next
Coefficient Ordinal

Ordinal EndPredict End Yes

Corollary
Transposition

Yes

Figure 3.1: Virtual Prediction of DWT coefficients flow chart. At each step, an iterator points
to the ordinal of the coefficient to be forecasted. If the theorem defines the pointed coef-
ficient ordinal, the prediction is just a transposition of an older coefficient. Otherwise, a
neural or self organizing predictor is choosen. In our studies we chose the neural predictors
for series that have a higher degree of autocorrelation, while less autocorrelated series are
predicted by the SOLs.

transform subband Bm at recursion depth m>0,(m∈Z) is expressed by the following:

nBm = nX

2m
(3.12)

Proof. At each depth m, the size of the input series is halved by 2. Also, the size of the MRA
equals the size of the input series.

Proposition 3.2. Given a sampled pattern X , on which the FWT is performed after having
shift-inserted a new value, and given the choice of wavelet filters h, g , of size nh , the number
of varying (affected) coefficients at recursion depth m>0,(m∈Z) are the last vm coefficients of
the subband Bm , their number obtained evaluating the following system:{

v1 = nh
2

vm = (1+vm−1) div 2+ (1+vm−1) mod 2+ v1 −1
(3.13)

3.1. METHOD 25

Proof. At recursion depth m=1, the number of variant coefficients v1 equals the number of
inner products (of the filters h, g on the source series), performed on those series subsets
changed by the last 2 data insertions. The ordinal of the source series on which the filters
are applied when performing the last full inner product (i.e. before running into the input
series borders) is clearly nX −nh . To complete the convolution the filters must advance (with
a translation step n=2) over the end of the input series, so nh−2

2 inner products are left. The

total inner products performed over the last coefficients of the series are then 1+ nh−2
2 = nh

2 .
After 2 insertions at level m = 0 the filter h created a series at level m = 1 having the last
nh/2 elements modified (same as explained above for the variant v1). If the series was not
shifted, thus just modifying again the last 2 values of the series at m =0, this would imply
that the last nh/2 coefficients at level m = 1 would be modified again. But 2 more values
at level m = 0 are inserted instead, and a double shift at level m requires that the series at
m+1 is shifted once. Hence the filter h creates another c1 series at level m=1 which differs
from the previous by 1+nh/2 elements: 1 element is the first of the previously changed (and
shifted) values. This algorithmic behavior is extended to any filter size nh . But the number
of the varying coefficients vm at depth m, created by filter g , depends on the maximum
translations of the filter g on the cm coefficients that have changed. Generally, denoting vc

the number of such changed coefficients of the c series (which can be an even or odd integer
quantity), the maximum translations of a filter of size nh over vc coefficients, (given the same
translation step n=2) is trivially nh/2+dvc /2e−1. At depth m=2 this means nh/2+d1+v1

2 e−1 =
v1+d1+v1

2 e−1. But the sum (1+v1)div2+(1+v1)mod2 is nothing but the definition of ceiling

of 1+v1
2 . Finally, at depth m=3, the number of translations of the filters over v2+1 coefficients

is nh/2+d1+v2
2 e−1 = v1+d1+v2

2 e−1, and since the equivalence of the ceiling approximation to
the sum of the first two terms of the second equation of system (3.13), the proof is obtained
by induction.

Proposition 3.3. Having a matrix QnT ,nX
of forward FWTs, each performed at a new shift-

insertion in the source series, the non-varying coefficients dh,i at i th column of the Bm sub-
band of the hth DWT are equal (and can be retrieved) from the respective rightish i+1th col-
umn of a previous DWT ∈Q as expressed below:

dh,i = dh−2m , i+1, 06 h < nT , nT > 2m (3.14)

Proof. Since at depth m the series has been subsampled m times, 2m new insertions are
needed to shift by 1 the wavelet coefficients at that depth.

26 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND PREDICTION OF STREAMING DATASETS

Theorem 3.4 (On the shift variance of the fast wavelet transform of streaming univariate
datasets). Given an appropriate choice of wavelet filters h, g , having size nh , a matrix QnT ,nX

of forward FWTs, each performed at a new shift-insertion in the source series, only the last
vm = (1+vm−1) div2 + (1+vm−1) mod2+ v1 −1 coefficients of subband Bm are affected by one
shift-insertion, while the others are previously determined and can be retrieved transposing
the respective rightish column coefficients contained in the DWT performed 2m insertions be-
fore (dh,i =dh−2m , i+1).

Proof. Relies on the previous propositions’ proofs.

Remark 3.5. Tab.3.1 contains the number of variant coefficients vm - also called non-SVT
coefficients - for each subband Bm , and for different Daubechies filter sizes.

Theorem 3.6 (On the computational efficiency of the fast wavelet transform applied to uni-
variate streaming datasets). Given an appropriate choice of wavelet filters h, g , and a matrix
QnT ,nX

, the following expresses the number of operations Oc needed to perform the decimated
DWT:

Oc = (2nh −1) (nX +
M∑

m=1
vm) (3.15)

Proof. The maximum MRA recursion depth M is furnished by eq.(3.7). At each recursion
step m and for each filter, nB m (p +d) operations are performed, where p denotes the num-
ber of products, d the number of additions. Both p and d depend on the filter size. Each
inner product needs a number of products p = nh , and a number of additions d = p − 1.
Hence the total recursion step operations is 2nB m (nh+nh−1) = 2nB m (2nh−1), while the total
computations O = (2nh −1) 2

∑M
m=1 nBm . Applying the shift variance theorem (streaming in-

put univariate dataset), this can be rewritten as Oc =(2nh −1) (
∑M

m=1 nBm +∑M
m=1�vm + vm)=

(2nh −1) (nX +∑M
m=1 vm). In the latter eq., non-varying coefficients�vm are discarded since

the theorem 3.4 deployment allows to retrieve them, hence no operations are performed.

Corollary 3.7 (Asymptotic computational efficiency of the fast 1D wavelet transform of stream-
ing datasets.). Deploying the shift variance theorem of the fast wavelet transform (thus skip-
ping the unnecessary calculations of SVT coefficients), the computational complexity of the
forward FWT of 1D streaming series is reduced by 50% as nX tends to infinity:

lim
nX →+∞

Oc/O = 1/2, nh ¿ nX (3.16)

Proof.
Oc

O
= (2nh −1) (nX +∑M

m=1 vm)

2(2nh −1)nX
= 1/2 +

∑M
m=1 vm

2nX
,

lim
nX →+∞

Oc/O = lim
nX →+∞

1/2 +
∑M

m=1 vm

2nX
= 1/2 + lim

nX →+∞

∑M
m=1 vm

2nX
=

1/2 + lim
nX →+∞

nh
2 +∑log2nX −dlog2nhe

m=2 vm

2nX
= 1/2.

3.1. METHOD 27

graph

Page 1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
D4 Coeff icient Amplitude

time step

Figure 3.2: Prediction session of one of the higher resolution DWT coefficients by means
of a self organizing layer. Dark solid line: forecasted series; dotted line: real coefficients
amplitude. The observed forecasting accuracy can be considered quite satisfactory.

3.1.2 Switching virtual predictors

Multilayered Perceptrons

For each of the columns of matrix Q of the subbands coding the signal at coarser resolu-
tions, we train, validate and test a 3 hidden layers backpropagation multilayered perceptron
- BPMLP, with single output. The chosen neuronic activation function of the perceptrons is
the hyperbolic tangent. If we denote nL the networks input layer size, the last 1+nL elements
of the i th matrix column are preprocessed, in order to create the effective input vector I i as
follows:

I i =
{

Th, i −Th−1, i : nT −nL 6 h 6 nT

}
(3.17)

hence generating the input vectors to the BPMLPs with the first differences of subsequent
coefficients belonging to the same matrix column. Fig.3.2 shows a coefficient prediction
session (200 consecutive attempts) performed using the herein described neural regressors.

Self Organizing Layers

In order to perform the forecast of the higher Q column series, we deploy growable self or-
ganizing layers, trained sliding the training series with a window of fixed length. The layer
size grows every time the focused pattern cannot be recognized unless committing an error
greater than a maximum threshold parameter, that we call "granularity" (see Sec. 4.2). If the
training series is sufficiently large, the self organizing layer is capable to effectively forecast
the one step ahead value, first testing the distance of an input pattern against the stored pro-
totypes, in order to detect the best matching one; then using the information contained in
the internal state of the prototype itself. Extensive tests on the DWT coefficients columns
showed that this method, when applied to the higher resolutions’ coefficients, could outper-

28 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND PREDICTION OF STREAMING DATASETS

form the forecasting accuracy of the multilayered perceptrons (see Fig. 3.2). The same was
not true when applied to the coefficients at coarser resolutions.

3.1.3 Predictors fitness and coefficients optimization

The above postulated shift variance theorem implies that a single variation to the last ele-
ment of the source series, candidate to be transformed, does not affect the SVT coefficients.
Also, let us suppose to compare sets of DWTs of non-shifted series, such that they differ from
each other only for the last l , x0 value: one can discover that each varying coefficient vmi is
governed by its own i th linear relation:

vmi =αi l +βi (3.18)

and consequently it is possible to retrieve, for each non-SVT coefficient ordinal i , the αi and
βi (slope, intersection) parameters. As previously described, in the herein proposed predic-
tor system a forecast is performed using a hybrid approach, taking advantage both of the
novel shifting features for deterministic coefficients retrieval and implementing high pre-
cision predictors for non SVT coefficients. However, having found the (3.18), more can be
done to improve the forecast of the one step ahead DWT. In fact, having queued the previ-
ous forward transforms and their forecasts in matrix Q, a fitness value for each predictor of
the varying coefficients (hence excluding SVT coefficients) can be retrieved, measuring their
absolute forecasting error. Such evaluation allows the system to select the predictor that
achieved the best accuracy, and rely on it for the next forecast, calculating its hypothetical l .
Indicating l f the l calculated for the best performer predictor at ordinal f , such value allows
us to determine a maximum probability on-fitness estimate of the others non-SVT coeffi-
cients: {

l̂ , l f

vmi =αi l̂ +βi
(3.19)

Deploying equations’ system (3.19) further improves the forecasting accuracy of an MRA-
assisted machine learning predictor.

3.1.4 Inverse Discrete Wavelet Transform for prediction

The last operation needed to extract the forecasted value is to perform an inverted transform
of the forecasted forward DWT. The forecasted one-step ahead value is obviously the last el-
ement of the inverted forecast:

T̂ =
{

wi : 06 i 6 nX −1
}

(3.20)

X̂ = T̃ T̂ (3.21)

x̂ = X̂ nX −1 (3.22)

where T̃ denotes the inverted DWT.

3.2. RESULTS AND DISCUSSION 29

graph

Page 1

9
10

8
20

7
30

6
40

5
50

4
60

3
70

2
80

1
90

0
99

9
10

98
11

97
12

96
13

95
14

94
15

93
16

92
17

91
18

90
19

89
20

88
21

87
22

86
23

85
24

84
25

83
26

82
27

81
28

80
29

79
30

78
31

77
32

76
33

75
34

74
35

73
36

72
37

71
38

70
39

69
40

68
41

67
42

66

0

1

2

3

4

5

6

7

nr. of cases

USD

Figure 3.3: Sorted absolute errors of the Bitcoin hourly price forecast session. Light line:
naive prediction, the worst performer among the benchmark methods; dark lines: perfor-
mance of clustering self organizing layers prediction system; the better performer is fea-
tured by multiscale pattern recognition and cooperating neural predictors; black line: per-
formance of the fast wavelet transform assisted predictor, herein proposed. The results show
the novel system outperforms all the benchmark models.

3.1.5 System’s update and retrain operations

The incoming data is shift-inserted in the source series, and a new DWT is immediately per-
formed and stored in a history queue. This is useful to determine the predictors fitness value
at the previous forecasting step. Also, the confirmed value is used to retrain both the neural
and self organizing layer type predictors.

3.2 Results and discussion

Since the beginning of the work we were interested in developing a system whose results
could be directly compared using one of our previous works as a benchmark model. To this
purposes, we selected the Bitcoin-USD hourly series (close price) spanning from January 1st

2013 to June 30th 2015, whose description can be found in Sec. 2.2. The whole dataset is
partitioned into an in-sample period, used for training and validation of the system, (from
January 1st 2013 to December 31st 2014), and an out-of-sample period (from January 1st 2015
to June 30th 2015) to test the system on real data. Price forecast session results are plotted
in Fig.3.3 (sorted absolute errors for the Bitcoin hourly price prediction), showing that the
system substantially outperforms the benchmark methods, including the predictor system
proposed in the previous chapter. Occurrence of errors less than 50 cents is 51%, while the
best performer among the benchmark methods achieves 43%. The system cumulative abso-
lute error is 3259 USD, while the best performer benchmark’s one is 3662 USD.

We also tested the engine other time series, made publicly available by the Eurostat. They
are monthly indicator series of the Eurozone Producers Price Index and, as such, they gener-
ally possess a higher autocorrelation than financial price series. Industrial output PPI series

30 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND PREDICTION OF STREAMING DATASETS

MAE RMSE MAPE
MLP SVM SYS MLP SVM SYS MLP SVM SYS

Industrya 3.4 3.2 2.9 5.7 4.4 4.1 3.6 3.4 3.1

Int.goodsb 2.5 3.1 2.5 3.8 4.3 3.4 2.7 3.4 2.5

Miningc 4.8 4.4 3.9 7.3 5.7 5.2 4.8 4.4 3.9

Table 3.2: Prediction performance of Producers Price Indexes - PPI time series Euro Area
19, Monthly data. Accuracy is expressed in terms of mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE). Values x 10−1. a) Industry,
1981-2015. b) Intermediate Goods, 1991-2015. c) Mining, quarrying; manufacturing; elec-
tricity, gas, steam and air conditioning supply, 1991-2015. Source: Eurostat.

spans from 1981 to 2015 (420 samples), which are divided into an in-sample period used
for training (the first 180 observations) and an out-of-sample period (the remaining 240 ob-
servations). Intermediate goods and mining output PPI series span from 1991 to 2015 (300
samples): the in-sample and out-of-sample periods are respectively 180 and 120 samples.
The results are shown in Tab.3.2): Industry, Intermediate goods, and Mining-quarrying se-
ries prediction performance is benchmarked against a triple hidden layer backpropagation
MLP predictor (self implemented) and support vector machines - SVM (Dlib-ml implemen-
tation by [29]). The performance of the system against the benchmark methods is evaluated
in terms of mean absolute error, root mean square error and mean absolute percentage error
(MAE, RMSE, MAPE). Generally the system outperforms both the MLPs and SVMs, suggest-
ing that the forecasting accuracy is quite satisfactory.

3.3 Further developments

The use of the novel shift variance theorem of the DWT allows to greatly reduce the extensive
testing times of the proposed system, and it provides the predictor a very high absorption
rate. In fact, since very few coefficients must be estimated, only a small number of predictors
is required. For example, if the input series size nX =256, using a N =4 (8 taps) Daubechies
filter, hence M = log2256−dlog28e=5, (see eq.3.7) the total number of non SVT coefficients
per single DWT (hence those to be estimated) is just 31. Also, the correct retrieval of deter-
ministic DWT coefficients allows to obtain a much more accurate estimated one-step ahead
crystal.

Regarding the system training operations, it is worth noting that long datasets availabil-
ity allows to train the self organizing layers in a very effective way. SOLs can learn either
submitting patterns sampled at constant interval scales, (hence capturing time series multi-
scale properties that are not immediately evident to the human eye); alternatively, submit-
ting consecutive patterns of fixed size. In the presently illustrated system the single pattern
approach is used to train SOL predictors to the wavelet coefficient queues of the highest
subbands of the Bitcoin price window’s DWT. During the analysis of the Eurostat series, the
efficacy of SOLs is tested scarce, the reason being the shortness of the input datasets and
hence of the unavailability of long DWT coefficient queues; consequently the predictors are
built using only artificial neural networks.

Relatively to the training of the neural predictors (multilayered perceptrons in the present
implementation of the system), we emphasize the importance of the input data preprocess-

3.3. FURTHER DEVELOPMENTS 31

ing operations on the forecasting accuracy achievable. In the case of price series prediction,
the creation of first difference input patterns as illustrated by the (3.17), greatly enhances
the forecasting results and reduces the number of retrains of the MLPs during the update
operations (meaning that the achieved precision is satisfactory). During the Eurostat series
analysis instead, we utilize unpreprocessed data input patterns since the aforesaid Statistical
Institute already provides data series in percentage and no further manipulation is consid-
ered necessary.

Should the system be implemented to perform the prediction of non-normalized time
series, the type of input data preprocessing to be performed should be carefully considered.

The present system was initially developed with the aim to serve as a general time series
predictor and thus no a priori assumptions on the input series features were made during the
code implementation. When used to forecast the Bitcoin - US Dollar exchange rates (hourly
data), the results are encouraging: a raw estimate of the DWT coefficients, fine tuned using
the linear properties outlined in the Subsec.3.1.3, greatly improves the prediction accuracy
of the series. Similarly, the prediction tests on statistical time series other than the finan-
cials outperformed the benchmark methods, suggesting that the system has a good degree
of generalization.

Given the interesting achievements related to the shift variance properties of the fast
wavelet transform for 1D streaming datasets, it is important to test the system on other types
of time series, for example those generated by IoT sensors and devices. A confirmation of the
forecasting accuracy of the proposed system could lead valuable commercial or industrial
applications.

Finally, further research could be devoted to explore the shift variance properties of the
decimated discrete wavelet transform of 2D streaming time series, such as those generated
by probes, drones and, generally, moving observers.

Chapter 4

Intrinsic mode decomposition
assisted machine learning
frameworks

In the recent years several reassignment techniques are capturing the attention of researchers
in the field of signal analysis. Among the possible reallocation methods the Synchrosqueez-
ing approach allows to map a Continuous Wavelet Transform - CWT from the time scale to
the time frequency plane. Its mathematical foundations prove that the Synchrosqueezing
transform - SST can be directly related to the Empirical Modes Decomposition, since both
methods allow the decomposition of a signal having finite energy in its intrinsic mode func-
tions, each having time-varying frequency and amplitude. We develop a fast implementa-
tion of the Synchroqueezed Wavelet Transform suitable for the synchronic extrusion of in-
stantaneous frequency information from univariate time series. We plan the development of
non parametric estimators or neural regressors to analyze and predict the time series using
the SST as a preprocessing module to assist the machines in learning the time series features.

Recently the state of the art relative to the prediction of time series is pointing towards
novel approaches based on signal decomposition or time-frequency analysis. The first ap-
proach, developed in the late 90’ by Huang N. [24] and named Empirical Mode Decompo-
sition, allows the decomposition of a signal in a fixed number of intrinsic mode functions
- IMFs, which maybe viewed as component series of the form x(t) = A(t)cos(φ(t)), plus a
residual series. Such decomposition can be considered as a generalized Fourier series, in
which the components phases and amplitudes are not constrained to be constant. Interest
in such approach motivated Wu and Huang [50] to further research innovations, that brought
them to formulate the Ensemble EMD - EEMD, in which the IMFs of a series are found after
having perturbated the signal with gaussian noise; the result is an improved noise-assisted
data analysis for IMF identification, at a slightly higher computational cost.

The wide interest in EMD and EEMD and their absolute generalized utility motivated
researchers to explore the possible mathematical foundations involved in the aforesaid em-
pirical approaches. Recently, Daubechies, Lu and Wu [12], starting from the definition of
the CWT and after having provided the algorithm to perform its reassignment, the Syn-
chrosqueezed Continuous Wavelet Transform - SST, proved that the latter can be viewed
as an adaptive time-frequency decomposition whose intent is the same as the EMD. The

33

34
CHAPTER 4. INTRINSIC MODE DECOMPOSITION ASSISTED MACHINE LEARNING

FRAMEWORKS

mathematical rigorousness of the novel approach brought, more recently, Thakur, Brevdo et
al. [47] to provide insights on the stability of Synchrosqueezing, and implementation aspects
related to the decomposition and reconstruction of sampled series via the SST. Our interest
in the SST approach is motivated by the possibility to contrive a prediction system making
use of the Synchrosqueezing transform as a dataset preprocessing module, as well as by new
possible developments in the machine learning field. Yet, not many works focused on the
use of the CWTSST to prediction purposes can be found, the reason being the novelty of
such model. This is the main argument of the present chapter and it will be described in the
next sections. We are planning to project and develop a prediction system suitable for the
analysis of streaming datasets such as the one tested in the previous works, or other time
series such as the search engine query trends, whose prediction importance goes beyond
the academic environment and, as such, could lead to valuable commercial or industrial
applications.

This chapter is organized as follows: Sec. 4.1 provides the theoretical foundations of the
SST, the principal technical aspects related to the SST implementation, as well as the pre-
liminary results obtained. Sec. 4.2 provides a description of the possible machine learning
approaches suitable to perform a time series forecast using the time series decompositions
of the CWTSST. The Sec. 4.3 provides conclusions and portrays further research directions.
The interested reader can also refer to Sec. 4.4.1 for the mathematical background relative
to the CWT in frequency domain, Sec. 4.4.2 for the time derivative of the CWT, and Sec. 4.4.3
for theoretical background of the signal reconstruction after SST decomposition.

4.1 Synchrosqueezed Wavelet Transforms

A Continuous Wavelet Transform - CWT allows the time-varying analysis of the frequency
content of a signal f (t) having finite energy. Choosing an appropriate mother wavelet func-
tion ψ(t) such that its Fourier transform ψ̂(ξ) = 0, ξ<0, the CWT of f (t) is defined as a series
of parametric convolutions of the signal and the complex conjugate of scaled versions of
the wavelet. Note that a wavelet function conforming the above mentioned features is com-
plex [14,35]. Having performed the CWT, reconstructing the signal means integrating, in the
scale direction, the convolutions of the transform coefficients and the scaled versions of the
wavelet function:

W f (a,b) =
∞∫

−∞
f (t) a

−1/2ψ
(t −b

a

)
dt . (4.1)

f (t) =Cψ

∞∫
−∞

∞∫
0

W f (a,b) a
−5/2ψ

(t −b

a

)
da db, (4.2)

where Cψ is constant and depends only on the wavelet. Eq. 4.1 differs from the Discrete
Wavelet Transform - DWT, in which the parameters a,b are selected from a discrete sub-
lattice [10]. Performing the CWT of a pure tone it can be observed that the frequency lo-
calization is spread out [12] along the scale axis, and that such effect cannot be avoided.
Specifically, considering a tone f (t) = Acos(ωt) and supposing that the chosen wavelet has
a spectrum ψ̂(ξ) concentrated in proximity of ξ=ω0, the above mentioned spreading effect

4.1. SYNCHROSQUEEZED WAVELET TRANSFORMS 35

would be around the scale point a=ω0/ω. In order to provide a much more definite instan-
taneous frequency detection of a signal, however, it can be noted that if the chosen wavelet is
complex, the real and imaginary components of the CWT contain enough phase information
to pinpoint the oscillatory behavior of f (t) in b. Hence the intuition [14] to retrieve a ma-
trix ω f (a,b), associated to the W f (a,b), containing the instantaneous frequencies extracted
from the CWT via phase transformation:

ω f (a,b) =−i
∂/∂b W f (a,b)

W f (a,b)
(4.3)

Where ∂/∂b W f (a,b) can be calculated using the time derivative property of the Fourier trans-
form (the interested reader can refer to Sec. 4.4.1 and Sec. 4.4.2).

Possessing both W f andω f matrices it is now possible to reassign the wavelet transform,
in order to pass from a time-scale representation to a time-frequency plane. Let us denote
S(W,ω) the Synchrosqueezing operator, and T f (ω,b) the Synchrosqueezed Wavelet Trans-
form of f (t), such that:

S(Wa,b ,ωa,b) : (a,b) → (ωa,b ,b)

T f (ω,b) =
∫

W f (a,b) a
−3/2 δ(ω(a,b)−ω) da, a : Ws(a,b) 6= 0

(4.4)

In a discrete environment, ω spaces linearly or logarithmically from the fundamental to the
Nyquist frequency of a sampled series. If one chooses a linear frequency scale, as we do in
the present work, having a vector of frequencies ω = {ωi : 1 6 i 6 N }, the operator S(W,ω)
can be contrived simply using a standardized lower bound algorithm to search the ωi , (cen-
ter frequency of a "bin" gathering a group of frequencies [ωi −Ω,ωi +Ω], Ω=(ωi −ωi−1)/2),
nearest to an instantaneous frequency ω f (a,b). Once the destination bin is found, the con-
tribution of the W f (a,b) can be summed into the right destination position in matrix T f :

T f (ω,b) = 1/2Ω

∑
k

W f (a,b) ak
−3/2 (∆a)k , ak : |ω(ak ,b)−ω|6Ω (4.5)

The Synchrosqueezing Wavelet Transform possesses a corresponding reconstruction algo-
rithm. Let us denote f (b) the reconstructed signal. In [12] it is proved that:

f (b) ∝
∫ ∞

0
W f (a,b)a

−3/2da (4.6)

The interested reader can also see a proof rewritten in a more pedagogical fashion in Sec.
4.4.3. The discrete version of the reconstruction algorithm can then be written from eq.(4.5):

f (b) ≈ℜ
{

C−1
ψ

∑
i

T f (ωi ,b)(2Ω)
}

(4.7)

The above descriptions highlight the foremost theoretical aspects related to the SST, retained
as foundation to the development of an advanced Synchrosqueezed Transform implemen-
tation.

36
CHAPTER 4. INTRINSIC MODE DECOMPOSITION ASSISTED MACHINE LEARNING

FRAMEWORKS

Foglio4

Page 1

Time

Scale

Figure 4.1: Continuous Wavelet Transform of a Bitcoin price session, imaginary component,
Morlet wavelet (σ=2π), 512 hourly rates beginning from 1 January 2016 (scales in the vertical
axis, time-steps in the horizontal axis). The smearing effect along the scale axis reproduces
the spread out issue described by Daubechies in its dissertations, particularly referencing to
exemplar pure tones, (see [12]).

4.2 Method

After having reassigned the CWT according to the procedure described in Sec. 4.1, the vec-
tor of frequencies ω can be partitioned in equivalence classes having a chosen bandwidth,
and the reconstruction described by eq.(4.5) is performed piecewise, thus creating the set
of intrinsic mode functions mi (t) meant to be the original series components. From each
mi (t), instantaneous amplitudes and phases can be recovered. Note that this means the SST
can be used for prediction purposes. Also, it is our opinion that such transform paves the
way to novel machine learning approaches that focus on learning the rates of change of time
series instead of fitting their values; such approaches could easily become a very active area
of research in the next few years. Our present position is to explore the possible machine
learning approaches founded on preprocessing the input series via the SST, and forecasting
the one step ahead real value of the single component series using specialized estimators.
In the next section we explore the risks connected to different prediction realizations, using
both traditional methods and the novel techniques that we are researching.

For the scope of the present demonstration we develop a fast C++ implementation of the
CWTSST algorithm, in which the complex wavelet functionψ(t) can be selected via paramet-
ric polymorphism. In order to be able to effectively use the system for prediction purposes,
given the heaviness of the stepwise calculations, efficiency is considered paramount.

Several time series are downloaded, while the Bitcoin hourly exchange rates (BTCUSD),
available from the previous research, are used as well for automated testing and debugging

4.2. METHOD 37Foglio4

Page 1

Time

Frequency

Figure 4.2: Synchrosqueezed Wavelet Transform of the same Bitcoin price session as in
Fig. 4.1, magnitudes of the complex values. Note that the two representations are flipped
vertically against each other, this is correct since CWT scales and SST instantaneous frequen-
cies are inversely proportional. Despite such optical inconvenient though, it is not difficult
to appreciate the precision of the SST frequency extrusions, as depicted in yellow in the up-
per part of the plot. Both the lower and higher frequencies of a difficult-to-predict series
such as the Bitcoin exchange rates are thus easily detected using the SST, promising new
approaches to effective time series forecasts.

purposes.
We perform extensive analysis and synthesis tests on the gathered datasets in order com-

pare the reconstruction accuracies. Finally we are going to choose the wavelet function
which gives the lower reconstruction error results. The system must be able to read stream-
ing datasets such as the above mentioned search trends chunked with a window of fixed
length, the latter sliding from the beginning of the series to the last known data sample. The
CWTSST can be performed in a three step fashion:

1. Continuous Wavelet Transform - CWT of the candidate data sequence;

2. Phase Transform - PT of the CWT;

3. Reassignment - Transfer of the CWT from the time-scale to the time-frequency plane.

38
CHAPTER 4. INTRINSIC MODE DECOMPOSITION ASSISTED MACHINE LEARNING

FRAMEWORKS

4.2.1 Continuous Wavelet Transform

The selected input pattern X = {xi : 0 6 i ≤N }, is first preprocessed before being analyzed
via the CWT. If N <2 j , j ∈Z, an integer Np = 2(1+l og2N) is chosen as the size of a pattern X ′.
Since Np >N , the extra vector space is used to symmetrically pad the payload content. Such
padding procedure is useful to reduce the negative effects of well known border problems
when performing the CWT. The Synchrosqueezed Transform is calculated implementing the
algorithms described by eq. (4.4).

In Fig. 4.1 we depict the first tests of the newly implemented CWT, showing the imaginary
component of the CWT of a Bitcoin price session, calculated instantiating the model classes
with the Morlet wavelet. Let us recall the Fourier transform of such wavelet class:

ψ̂(ξ) = cσπ
−1/4

(
e −1/2 (σ−ξ)2 −kσe −1/2ξ2)

cσ = (
1+e−σ2 −2e−3/4σ2)− 1

2

kσ = e−1/2σ2

(4.8)

where cσ and kσ are clearly constants and depend both on parameter σ. The wavelet func-
tion is above written in the frequency domain since both forward and inverse CWT can be
expressed in the frequency domain via convolution theorem (see also Sec. 4.4.1). Note that
this generally greatly improves the CWT-ICWT algorithms’ efficiency since each convolution
of eq.(4.1) is reduced to a multiplication (see eq. (4.14)), where:

ψ̂a(ξ) = a
1/2 ψ̂(aξ) (4.9)

Eq.(4.9) allows to find, for each scale iteration of the CWT, the Fourier transform of the scaled
version of the wavelet. Hence, for example, at each scale ai the Morlet wavelet of eq.(4.8) can
be written as follows:

ψ̂(aiξ) = a
1/2

i cσπ
−1/4

(
e −1/2 (σ−aiξ)2 −kσe −1/2 a2

i ξ
2)

(4.10)

Note that, in case of streaming datasets (such as the case of the present research), on which
one must calculate the CWT at each data shift-insertion, the set of ψ̂(aiξ), a0 6 ai 6 amax

can be calculated once and mapped into a high performance container specialized for fast
key-value retrieval, hence greatly enhancing the CWT algorithm efficiency.

4.2.2 Phase Transform

The phase transform of the CWT matrix W f (a,b) is defined in eq.(4.3) as a matrix of the
same size as the CWT’s one, containing the partial derivatives of the CWT with respect to
space. Such partial derivatives are divided by the wavelet coefficients in order to purge the
Phase Transform from the artifacts introduced using the instantiating wavelet. As mentioned
above, the wavelet choice should be limited to complex (analytic) wavelets (even if the can-
didate series to be analyzed is real), since the imaginary part of the complex CWT values con-
tains phase information. The first derivatives of the CWT coefficients could then be found

4.2. METHOD 39

as follows:

∂/∂b W f (a,b) =∠W f (a,b), arctan
R(W f (a,b))

I(W f (a,b))
(4.11)

The interested reader can also find an alternative procedure in Sec. 4.4.2 eq.(4.16). We im-
plemented both approaches and we found negligible differences in efficiency.

4.2.3 Reassignment procedure

Having calculated both the CWT and the PT matrices, the reassignment of the wavelet trans-
form to the frequency space plane is now possible. Both matrices have the same size, hence
they can be iterated in space simultaneously. At each iteration step, the ω f (a,b) points the
correct frequency bin which the corresponding W f (a,b) coefficient can be summed in. Such
reassignment is performed for each row of the CWT and PT matrices.

The resulting representation in the frequency-space plane is much more concentrated
than the CWT, and the smearing effect of the scale-space representation is greatly reduced.
This is the feature of the CWTSST that makes possible to perform a prediction using machine
learning objects. The synchrosqueezed representation of the same BTCUSD dataset used in
Fig. 4.1 is plotted in Fig. 4.2.

4.2.4 Aspects of machine learning used for IMFs prediction
purposes

Once the reassignment of the CWT into the frequency-space plane is completed, we are go-
ing to partition the frequency axis in a fixed number of sets having the same size, depending
on the number of modes mi (t) we intend to use to decompose the signal. Having created
a number Nm of intrinsic modes mi (t), our goal is to perform a prediction of each mi (t)
one-step ahead. If the IMFs could be used as a representative training set suitable to input
our inference modules, then reconstructing the one-step ahead forecast would simply be
obtained by summing the single mode estimations1:

f̂ (t) =∑
k

m̂i (t), 06 k ≤ Nm (4.12)

The prediction could be performed using neural regression, for example by means of a back-
propagation multilayered perceptron - BPMLP network plugged to each mi (t). However, de-
signing the prediction system in such way, there would be risks associated to the accuracy
that we set to be achieved, since the mi (t) would exhibit variable oscillatory behavior. Hence
in order to train adequately each BPMLP, the input size should be greater or at least equal to
one full oscillation of the mode. Note that this means that, first: the BPMLPs could not have
the same input layer size (and consequently the configuration of the hidden layers would
not be uniform among the neural networks); secondly, in some cases the input size of the
network would be huge, causing lengthy training (and retraining) operations and degrading
the whole system’s efficiency.

1let us denote in this case the estimations using the hat accent and hope that no confusion with the Fourier
transform notation occurs.

40
CHAPTER 4. INTRINSIC MODE DECOMPOSITION ASSISTED MACHINE LEARNING

FRAMEWORKS

Thus in order to anticipate such issues the number of hidden BPMLP layers should be
kept low. This should not represent a real limitation since, generally speaking, (and given
our previous experience on the development and testing of artificial neural networks) the
number of hidden perceptron layers must be necessarily increased only if the MLP is used for
classification purposes (i.e. the network must learn to classify a great quantity of differently
labeled patterns). In this case the MLP is to be used for regression purposes, hence once the
features of a mode mi (t) have changed, the machine could immediately forget the previous
configuration and adapt to the changing statistical properties of mi (t).

A different approach would be to train a set of N f detached perceptrons to forecast the
one-step ahead instantaneous frequencies of the series. Let us recall that a Synchrosqueezed
Wavelet Transform outputs a matrix T f (ω,b) of size {N f , N }, where N f is the size of the
frequencies vector F , and N is the size of an unpadded input series. Partitioning the fre-
quency axis into equally sized segments would eventually decompose T f (ω,b) in intrinsic
mode functions, whose union is eventually the CWTSST itself. Note that this also guarantees
that each single component has a maximum frequency excursion, hence training neural re-
gressors to learn how those frequencies vary is feasible and it is an efficient operation. Each
perceptron would be responsible to learn the ω f (a,b) rate of change in time direction, i.e.
∂
∂tω f (a,b), in order to be able to analytically find the one-step aheadω f (a,b+1) value having
empirically read the previous ω f (a,b). Success in implementing the proposed approach is
key to machine-learning innovations suitable to predict series analyzed via the SST.

4.3 Further developments

After having investigated the literature related to signal processing, particularly the frequency
space analysis approach, a novel reassignment procedure is attracting our attention, as well
as the possibility to use it for predicting streaming datasets series. We start from the basic
idea that a time series can be sampled in patterns of fixed size; such patterns can be prepro-
cessed in order to produce inputs to a predictor system.

The approach we are going to propose is based on the original series decomposition
(time-frequency analysis), based on synchronic instantaneous frequency extrusion opera-
tions performed via the SST. Such preprocessing step is meant to assist a group of cooperat-
ing statistical predictors or neural networks; our implementation experience will let us face
neural regression issues more rapidly, and for such reason we will probably privilege mul-
tilayer perceptrons tests first, in order to evaluate the difficulties related to the forecast of
oscillatory signals in a reasonable amount of time. Eventually, we may formulate a novel
machine learning technique for real-valued forecast, tailored to predict amplitude and fre-
quency modulated signals (such as the intrinsic modes extracted via the SST) in an efficient
manner.

We believe that the success of the proposed approach is key to machine-learning inno-
vations suitable to predict several categories of time series (such as the financials series, the
search engine query trends series, the streaming datasets produced by IoT sensors and de-
vices, etc.); also, the extensibility of the model to the analysis and prediction of general time
series cannot be overruled at this time.

4.4. APPENDICES 41

4.4 Appendices

4.4.1 A1: CWT in frequency domain

Let us denote Ŵ f (a,ξ) the Fourier transform of W f (a,b), as well as ∗ the convolution. Note
that each crystal of the W f (a,b), obtained fixing a, can be seen as a convolution of f and

the complex conjugate of a scaled version of waveletψa(t) =ψ(−t/a). Let us indicate z=−1/a,
and, recalling the time and frequency scaling property of the Fourier transform, let us rewrite
the CWT using the convolution theorem as follows:

W f (a,b) = a−1/2
[

f (t)∗ψa(t)
]

Ŵ f (a,ξ) = a
−1/2 f̂ (ξ)

ψ̂(−ξ/z)

|z|
(4.13)

Finally, substituting z with a=−1/z,

Ŵ f (a,ξ) = a
−1/2 f̂ (ξ) a ψ̂(aξ) = a

1/2 f̂ (ξ) ψ̂(aξ) (4.14)

It is important to note that, using eq.(4.14), for each scale iteration of the CWT, a convolution
becomes a multiplication. This allows greatly reduce the computational resources needed
to perform the CWT (using an implementation suitable to analyze digital signals), thus per-
forming calculations in a much more efficient way.

4.4.2 A2: time derivative of the CWT

Let us recall a time-derivative property of the Fourier transform such that:

ád/d x f (x)(ξ) = 2πiξ f̂ (ξ) (4.15)

Our objective is to find a convenient way to calculate the CWT’s time derivative. The latter
can be expressed similarly using eq.(4.15):

à∂/∂b W f (a,ξ) = 2πiξŴ f (a,ξ) = 2πiξa
1/2 f̂ (ξ) ψ̂(aξ) (4.16)

Finally, ∂/∂b W f (a,b) can be retrieved performing the inverted Fourier transform of the result
of eq.(4.16).

42
CHAPTER 4. INTRINSIC MODE DECOMPOSITION ASSISTED MACHINE LEARNING

FRAMEWORKS

4.4.3 A3: Reconstruction after SST

Having expressed the Fourier transform Ŵ f (a,ξ) = a
1/2 f̂ (ξ) ψ̂(aξ) , we can rewrite eq.(4.4)

substituting W f (a,b) with the inverted Fourier transform of eq.(4.14):

∞∫
0

W f (a,b) a
−3/2 da =

∞∫
0

(
1

2π

∞∫
−∞

Ŵ f (a,ξ) e iξbdξ

)
a

−3/2 da

=
∞∫

0

(
1

2π

∞∫
−∞

a
1/2 f̂ (ξ) ψ̂(aξ) e iξbdξ

)
a

−3/2 da

=
(∞∫

0

a−1 ψ̂(aξ) da

)(
1

2π

∞∫
−∞

f̂ (ξ) e iξbdξ

)
; setting aξ=ω,

∞∫
0

W f (a,b) a
−3/2 da =

(∞∫
0

ψ̂(ω)
dω

ω

)(
1

2π

∞∫
−∞

f̂ (ξ) e iξbdξ

)

= f (b)

∞∫
0

ψ̂(ω)
dω

ω
; hence,

f (b) =

∞∫
0

W f (a,b) a
−3/2 da

∞∫
0

ψ̂(ω) dω
ω

=C−1
ψ

∞∫
0

W f (a,b) a
−3/2 da.

(4.17)

In eq.(4.17), the denominator

∞∫
0

ψ̂(ω) dω
ω

is nothing but the constant generally denoted Cψ,

and it depends only on the wavelet function.

Chapter 5

Implementation aspects

All the system herein proposed is developed as ISO/IEC 14882:2014 conformant C++ imple-
mentation compiled with speed maximization optimization, inline functions expansion and
intrinsic functions enabled, target machine x64.

The code is featured by heavy use of parametric polymorphism, useful to create general
purpose core components and suitable to maximize modules reusability. It takes advantage
of some of the features introduced by the aforementioned standard, such as variadic tem-
plates, that allow to contrive class generators in which the number of instantiating classes is
not known.

5.1 Variadic Template Classes

This particular features enables implementors to design highly flexible template classes, to
be instantiated at compile time, thus reducing the number of runtime parameters and max-
imizing efficiency. The next example should clarify the advantage of parametric polymor-
phism applied to the generation of a required neural network:

namespace artificial_neural_networks
{

template <class _Functype, // logistic, hyperbolic_tangent, ...
class _InputLayerType,

template <class> class... _LayerTypes>
class base_multilayer_perceptron; /*undefined*/

// ...

In the code listing above a template basic class suitable to build multilayered perceptrons
is declared. Such template class is not defined yet, since the template class body may vary
substantially depending on the type of input layer class chosen to instantiate the template.
Instead the definition of the class is made through template specializations, in which the be-
havior of the mother template is defined accordingly to the content of some specific features.
In this example, by the time we attempted to implement one of the base classes suitable to

43

44 CHAPTER 5. IMPLEMENTATION ASPECTS

build artificial intelligences, we were not aware of the possibility to contrive input layers dif-
ferent from what the state of the art described. For this reason the possibility to instantiate
the mother template with more advanced preprocessing-endowed input classes could not
be overruled. In the code that follows, we provide an excerpt of the template specialization
for general multilayer perceptrons instantiated with a basic input layer class:

// ...

template <class _Functype,
template <class> class... _LayerTypes>

class base_multilayer_perceptron <_Functype, input_layer, _LayerTypes...>
: public network <input_layer, _LayerTypes<_Functype>...>

{// specialized with basic input_layer class

typedef network_type base;

public:

// publish typenames...
typedef _Functype function_type;
typedef input_layer input_layer_type;
typedef perceptron_layer<_Functype> perceptron_layer_type;
typedef output_layer<_Functype> output_layer_type;

// constructor with a variable number of layer sizes
template <class... sizes>
base_multilayer_perceptron(sizes... i)

: base(i...) // direct base class initialization
{
}

// destroy
~ base_multilayer_perceptron()
{
}

// ...

private:

// ...
};

} // namespace artificial_neural_networks

Note that the constructor function is contrived to get a variable number of parameters,
herein named sizes. Such parameter pack is expanded in the initializer list and used in the
base class, in order to build a network endowed with an unknown number of layers, each of
which can have a different inner size configuration.

One could discuss whether it is convenient to develop layer classes that have a compile
time or run time ability to size their inner vectors. Our choice, for the scope of this research,

5.1. VARIADIC TEMPLATE CLASSES 45

was to allow runtime selection of network layers, in order to be able to create differently sized
neural networks at runtime having the same fixed number of layers. However, if the imple-
mentor should have information about the configuration requirements, he should privilege
the compile time decision whenever possible.

In the following last code, a multilayered perceptron class is finally instantiated from a
C++ file, and it can be used to build objects of the same type:

int main()
{

// ...

typedef self_organizing_map map_type;

typedef ann::base_multi_layer_perceptron <ann::hyperbolic_tangent,
ann::input_layer,

ann::perceptron_layer, // I hidden layer
ann::perceptron_layer, //II hidden layer

ann::perceptron_layer, //III hidden layer
ann::output_layer>

mlp_type;

typedef perceptron_hive <map_type, mlp_type> perceptron_hive_type;

perceptron_hive_type PH(SOM_GRANULARITY, MLP_GRANULARITY);

// ...

PH.create_mlps(NETWORKS, // number of hives
MLP_INPUT_SIZE,

MLP_HIDDEN_SIZE, // I
MLP_HIDDEN_SIZE, // II

2*MLP_HIDDEN_SIZE, // III
MLP_OUTPUT_SIZE);

hive_launch(MS, ED, PH, TESTBEG, TESTEND);

// ...

return 0;
}

In the above listed code, object PH constructed from class perceptron_hive creates one
self organizing layer and a large number of neural networks, using the compile time config-
uration previously instantiated and a few runtime parameters, the latter not impacting the
memory resources usage.

46 CHAPTER 5. IMPLEMENTATION ASPECTS

5.2 Parametric Recursion

In this section we are going to describe the use of parametric recursion, useful to build tem-
plate class member functions that are instantiated at compile time.

Since the use of variadic templates such as the base_multilayer_perceptron (that we in-
troduced in the previous section) implies generating classes endowed with a variable num-
ber of inner components at compile time, every iteration performed among those inner
components can as well be performed statically instead of dynamically (i.e. avoiding run-
time "for" cycles), thus greatly enhancing code efficiency.

The technique used to create parametric recursive calls is to create a set of different tem-
plate member functions suitable to the same purpose. The first member function serves as
an interface to the first call, the remaining two private member functions are used respec-
tively to continue and stop the recursion.

In the code listing that follows we provide an excerpt of the private member functions
used in the base_multilayer_perceptron template to perform the feedforward procedure on
the artificial neural network. The recursive iteration starts from the first hidden layer and
runs until the output layer:

template <class _Functype,
template <class> class... _LayerTypes>

class base_multilayer_perceptron <_Functype, input_layer, _LayerTypes...>
: public network <input_layer, _LayerTypes<_Functype>...>

{// specialized with basic input_layer class

// ...

private:

template <class _inIt>
void _RSfeed(const _inIt& _Beg, const _inIt& _End)
{// feedforward procedure

_input_layer().feed_raw(_Beg, _End);

_feed<1>(); // forward parametric recursion start ...
}

template <size_t I>
void _feed()
{

_layer<I>().feed(_layer<I-1>());

_feed<I+1>(); // next layer parametric call
}

template <>
void _feed<tuple_size_type::value>() {/*do nothing*/} // stop recursion

// ...

In the next code excerpt we provide a second example of parametric recursion (from the

5.3. DISCUSSION 47

samebase_multilayer_perceptron template), this time performed from the outmost layer back-
ward to the first hidden layer. This procedure is suitable for backpropagation algorithms.

Similarly to the previous code, the first member function of the three serves as interface
for the first call, the second and third members respectively sustain and stop the parametric
recursion:

// ...

template <class _inIt>
void _RSbackpropagate(const _inIt& _Act)
{// learning backpropagation procedure

_output_layer().
back_propagate(_Act, _layer<tuple_size_type::value-2>());

// backward parametric recursion start...
_backpropagate<tuple_size_type::value-2>();

}

template <size_t I>
void _backpropagate()
{

_layer<I>().back_propagate(_layer<I-1>());

_backpropagate<I-1>(); // previous layer call
}

template <>
void _backpropagate<0> () {} // stop recursion at input layer

// ...
};

Note that in both examples the compiler will explode the inner template member func-
tion into a variable number of class member functions, depending upon the number of hid-
den layers the multilayer perceptron is instantiated with. For example, let us suppose to
instantiate the base_multilayer_perceptron template with 7 hidden layers, code will be gen-
erated for total 9 member functions.

5.3 Discussion

Variadic template features of C++ 14 programming language enables implementors to design
highly flexible models to be instantiated at compile time, enhancing code reusability and
scalability.

The parametric recursion technique allows a dramatic reduction of the number of run-
time routines, thus contributing to maximize code efficiency.

Finally, the above presented code listings are part of the implementation of back propa-
gation multilayer perceptrons we used in all the predictor systems described in the present
thesis.

Chapter 6

Concluding remarks

In this thesis we described some novel predictor systems suitable to the analysis and forecast
of streaming datasets. All the proposals were tested on the same large dataset (Bitcoin US
Dollar hourly price spot rates), in order to test them as benchmarking methods against each
other.

In Chapter 2 we describe our first proposed system, based on a Self Organizing Layer fea-
tured by slightly novel features if compared to the classical Self Organizing Maps. We use
the SOL as a high precision clustering module, in order to generate a real value forecast of
the streaming price. We also employ a group of dedicated artificial neural networks (multi-
layered perceptrons learning via the backpropagation algorithm) trained to forecast the past
raw prediction errors, in order to fine tune the final price forecast. Results show the system
can outperform the benchmarking methods, as well as to produce substantial profits when
integrated into a simple expert advisor suitable to perform spot currency market operations.

In Chapter 3 we explore the shift variance properties of the Fast Wavelet Transform, in or-
der to integrate the wavelet analysis into a prediction system suitable to forecast streaming
time series. In the specific, a fixed size window of the input series is first transformed using
the FWT, and the wavelet crystals are stored into a suitable container. The process is repeated
at each streaming data insertion. The novel shift variance properties of the FWT (whose the-
oretical guarantees are provided), dramatically increase the efficiency of the calculations and
they allow the retrieval of the majority of the wavelet coefficients, thus reducing the number
of neural networks necessary to perform a prediction. We also discover linear relationships
among the varying (non shift variance theorem) wavelet coefficients, and such relationships
help us to greatly improve the prediction accuracy of the system. Finally, we explain how
the predictor can benefit of a virtual switching system aimed at selecting the most suitable
type of estimator machine, associated to the series to be forecasted according to its statis-
tical properties. Results show this system outperforms the benchmark methods, including
the one presented in Chapter 2.

In Chapter 4 we position with the possibility to design and develop a prediction system
composed of a preprocessing module based on the Synchrosqueezed Continuous Wavelet
Transform. We recall the fundamental properties of the CWTSST as well as the principal sta-
bility issues of the aforementioned reassignment technique. We provide some implementa-
tion aspects related to the CWTSST and discuss our position to introduce machine learning
objects assisted by the decomposition of the input series into Intrinsic Modes. The contents

49

50 CHAPTER 6. CONCLUDING REMARKS

of Chapter 4 were recently submitted as contributions to the KDWEB 2016 workshop, and
presented in Cagliari in September 2016.

Throughout the research period we always tried to design non parametric systems, in
order to predispose them for the eventual extensibility to general purpose algorithms. We
followed different scientific approaches to the analysis of streaming datasets, including clus-
tering and self organizing methods up to signal processing theory algorithms. Some of the
mentioned models are fairly recent, others are less. In any case, we found that it is still pos-
sible to find new research venues based on such classical techniques, and we provide an
outlook for further research directions in each chapter.

The majority of the experimental work has been done starting from the second year of
the PhD school, after having understood the state of the art relative to the herein mentioned
scientific approaches.

The prediction systems were developed using a high performance compilable program-
ming language, conforming to international standards and making use of heavy parametric
polymorphism, in order to maximize core component reusability. The efficiency of the im-
plementations allowed us to perform extensive tests on large datasets and, in several cases,
it was key to discover (even incidentally) what we considered the most important achieve-
ments presented in this thesis.

Chapter 7

Acknowledgments

We would like to thank Eugene Brevdo and Jonathan Lilly for their contribution to determine
several theoretical misconceptions relative to the signal reconstruction’s accuracy after the
Synchrosqueezed Wavelet Transform analysis.

We would like to express gratitude to Phillip James Plauger for the support given in learn-
ing advanced features of the C++ programming language, particularly those related to the
Standard Template Library.

Finally, we would like to thank Roberto Tonelli - UNICA for reviewing several of our draft
manuscripts, and our Professor Michele Marchesi for the great support and comprehension
in tutoring all the doctoral activities.

51

Bibliography

[1] G. S. Atsalakis and K. P. Valavanis. Surveying stock market forecasting techniques part
ii: Soft computing methods. Expert Systems with Applications, 36:5932–5941, 2009.

[2] E. Avci. Forecasting daily and sessional returns of the ise-100 index with neural network
models. Journal of Dogus University, 8:128–142, 2007.

[3] N. Baba and M. Kozaki. An intelligent forecasting system of stock price using neural
networks. In Proceedings of the international joint conference on neural networks, Bal-
timore, MD, USA, pages 371–377, 1992.

[4] Gregory Beylkin, Ronald Coifman, and Vladimir Rokhlin. Fast wavelet transforms and
numerical algorithms i. Communications on pure and applied mathematics, 44(2):141–
183, 1991.

[5] L. Cao. Support vector machines experts for time series forecasting. Neurocomputing,
51:321–339, 2003.

[6] G.H. Chen, S. Nikolov, and D. Shah. A latent source model for nonparametric time se-
ries classification. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 1088–
1096. Curran Associates, Inc., 2013.

[7] H. H. Chu, T. L. Chen, C. H. Cheng, and C. C. Huang. Fuzzy dual-factor time-series for
stock index forecasting. Expert Systems with Applications, 36:165–171, 2009.

[8] P. Ciaian, M. Rajcaniova, and A. Kancs. The economics of bitcoin price formation. EERI
Research Paper Series, 2014.

[9] Mac A Cody. The fast wavelet transform: Beyond fourier transforms. Dr. Dobb’s Journal,
17(4), 1992.

[10] I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications
on Pure and Applied Mathematics, 1988.

[11] I. Daubechies and J.C. Feaveau. Biorthogonal bases of compactly supported wavelets.
Communications on Pure and Applied Mathematics, XLV:485–560, 1992.

[12] I. Daubechies, J. Lu, and Hau-Tieng W. Synchrosqueezed wavelet transforms: An em-
pirical mode decomposition-like tool. Applied and Computational Harmonic Analysis,
30:243–261, 2011.

53

54 BIBLIOGRAPHY

[13] I. Daubechies and W. Swelden. Factoring wavelet transforms into lifting steps. Program
for Applied and Computational Mathematics, Princeton University, 1997.

[14] Ingrid Daubechies and Stephane Maes. A nonlinear squeezing of the continuous
wavelet transform based on auditory nerve models. Wavelets in medicine and biology,
pages 527–546, 1996.

[15] A. Dickey and W. A. Fuller. Distribution of estimators for autoregressive time series with
a unit root. J. of the American Statistical Association, 74:427–431, 1979.

[16] C. L. Dunis and X. Huang. Forecasting and trading currency volatility: an application
of recurrent neural regression and model combination. In C. L. Dunis, J. Laws, and
P. Naim, editors, Applied quantitative methods for trading and investment, pages 129–
160. John Wiley & Sons Ltd, 2003.

[17] C. L. Dunis and M. Williams. Application of advanced regression analysis for trading
and investment. In Wiley Finance Series, editor, Applied quantitative methods for trad-
ing and investment, pages 34–35. John Wiley & Sons Ltd, 2003.

[18] L.V. Fausett. Fundamentals of Neural Networks: Architectures, Algorithms, and Applica-
tions. Prentice-Hall international editions. Prentice-Hall, 1994.

[19] I. Francis and K. Sangbae. An introduction to Wavelet Theory in Finance: A Wavelet
Multiscale Approach. World Scientific, 2012.

[20] D. Garcia, C.J. Tessone, P. Mavrodiev, and N. Perony. The digital traces of bubbles: feed-
back cycles between socio-economic signals in the bitcoin economy. Journal of the
Royal Society Interface, 11, 2014.

[21] R. Gencay, F. Selcuk, N. Gradojevic, and B. Whitcher. Asymmetry of information flow
between volatilities across time scales. SSRN, 2009.

[22] S. H. Hsu, J. J. P. A. Hsieh, T. C. Chih, and K. C. Hsu. A twostage architecture for stock
price forecasting by integrating selforganizing map and support vector regression. Ex-
pert Systems with Applications, 36:7947–7951, 2009.

[23] C. L. Huang and C. Y. Tsai. A hybrid sofm-svr with a filterbased feature selection for
stock market forecasting. Expert Systems with Applications, 36:1529–1539, 2009.

[24] N. Huang. The empirical mode decomposition and the hilbert spectrum for non-linear
and non-stationary time series analysis. Proc. R. Soc. Lond., 454:903–995, 1998.

[25] Shuhaida Ismail, Ani Shabri, and Ruhaidah Samsudin. A hybrid model of self-
organizing maps (som) and least square support vector machine (lssvm) for time-series
forecasting. Expert Systems with Applications, 38(8):10574–10578, 2011.

[26] R. Jammazi. Cross dynamics of oil-stock interactions: a redundant wavelet analysis.
Energy, 44:750–777, 2012.

[27] I. Kaastra and M. Boyd. Designing a neural network for forecasting financial and eco-
nomic time series. Neurocomputing, 10:215–236, 1996.

BIBLIOGRAPHY 55

[28] J. Kaminski and P.A. Gloor. Nowcasting the bitcoin market with twitter signals. CoRR,
abs/1406.7577, 2014.

[29] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Re-
search, 10:1755–1758, 2009.

[30] T. Kohonen. Self-organizing maps. second ed. Springer, 1995.

[31] T. Kohonen. Essentials of the self-organizing map. Neural Networks, 37:52–65, 2013.

[32] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(13):1 – 6, 1998.

[33] D. Kondor, M. Posfai, I. Csabai, and G. Vattay. Do the rich get richer? an
empirical analysis of the bitcoin transaction network. PLoS ONE, 9(2): e86197.
doi:10.1371/journal.pone.0086197, 2014.

[34] S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet represen-
tation. IEEE transactions on pattern analysis and machine intelligence, 11 (7):674–693,
1989.

[35] S.G. Mallat. A wavelet tour of signal processing, 3rd ed. Academic Press, 2008.

[36] M. Masih and O. Al T. Alzahrani. Systematic risk and time scales: New evidence from
an application of wavelet approach to the emerging gulf stock markets. International
Review of Financial Analysis, 19(1):10–18, 2010.

[37] P. Masset. Analysis of financial time-series using fourier and wavelet methods. SSRN,
page http://ssrn.com/abstract=1289420, 2008.

[38] M. Matta, I. Lunesu, and M. Marchesi. The predictor impact of web search media on
bitcoin trading volumes. Information Filtering and Retrieval - DART 2015, 2015.

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[40] J.B. Ramsey. Wavelets in economics and finance: Past and future. Studies in Nonlinear
Dynamics and Econometrics, 6(3), 2002.

[41] J.C. Reboredo and M.A. Rivera-Castro. Wavelet-based evidence of the impact of oil
prices on stock returns. International Review of Economics and Finance, 29:145–176,
2014.

[42] B. Roche and M. Rockinger. Switching regime volatility: an empirical evaluation. In
C. L. Dunis, J. Laws, and P. Naim, editors, Applied quantitative methods for trading and
investment, pages 193–208. John Wiley & Sons Ltd, 2003.

[43] A. Rua and L.C. Nunes. International comovement of stock market returns: A wavelet
analysis. Journal of Empirical Finance, 16(4):632–639, 2009.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back
propagating errors. Nature, 323:533–536, 1986.

[45] D. Shah and K. Zhang. Bayesian regression and bitcoin. arXiv:1410.1231, 2014.

56 BIBLIOGRAPHY

[46] T. Z. Tan, C. Quek, and N. G. See. Biological brain-inspired genetic complementary
learning for stock market and bank failure prediction. Computational Intelligence,
23:236–261, 2007.

[47] G. Thakur, E. Brevdo, N.S. Fuckar, and H.T. Wu. The synchrosqueezing algorithm for
time-varying spectral analysis: Robustness properties and new paleoclimate applica-
tions. Signal Processing, 93(5):1079–1094, 2013.

[48] R. Tsaih, Y. Hsu, and C. C. Lai. Forecasting s&p 500 stock index futures with a hybrid ai
system. Decision Support Systems, 23:161–174, 1998.

[49] P. D. Wasserman. Neural Computing : theory and practice. Van Nostrand Reinhold,
1989.

[50] Z. Wu and N.E. Huang. Ensemble empirical mode decomposition: a noise-assisted data
analysis method. Advances in Adaptive Data Analysis, 1:1–41, 2009.

[51] Xiao-Ping Zhang, Li-Sheng Tian, and Ying-Ning Peng. From the wavelet series to the
discrete wavelet transform-the initialization. IEEE Transactions on signal processing,
44(1):129–133, 1996.

	Introduction
	Time series multiscale pattern recognition and forecasting
	Method
	Self-organizing layers
	Cooperating back propagation multilayer perceptrons

	Results and discussion
	Profitability tests
	Further developments

	Multiresolution analysis and prediction of streaming datasets
	Method
	Fast wavelet transform shift variance
	Switching virtual predictors
	Predictors fitness and coefficients optimization
	Inverse Discrete Wavelet Transform for prediction
	System's update and retrain operations

	Results and discussion
	Further developments

	Intrinsic mode decomposition assisted machine learning frameworks
	Synchrosqueezed Wavelet Transforms
	Method
	Continuous Wavelet Transform
	Phase Transform
	Reassignment procedure
	Aspects of machine learning used for IMFs prediction purposes

	Further developments
	Appendices
	A1: CWT in frequency domain
	A2: time derivative of the CWT
	A3: Reconstruction after SST

	Implementation aspects
	Variadic Template Classes
	Parametric Recursion
	Discussion

	Concluding remarks
	Acknowledgments
	Bibliography

