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Introduction

This PhD thesis focuses on laser diodes, and reports on three years spent within
the Optoelectronic Reliability team of prof. Massimo Vanzi and prof. Giovanna
Mura, at the Department of Electric and Electronic Engineering (DIEE) of the
University of Cagliari.

The relevance of laser diodes in several technological fields increases progres-
sively with the evolution of their technology, and then of their performances. A
summary of such history will be given in detail at the beginning of Ch.1.

Telecommunications in particular have been both the most intense prompt and
the hardest challenge to solid state semiconductor light emitters. Faster and faster,
and more and more powerful devices have been progressively developed, with the
conflicting constraints of single-mode operation combined with tenability, and the
continuous request for integrated optical functions.

The team at DIEE is historically involved, since decades, in studying the sur-
vival of laser diodes, that is, their Reliability.

Reliability is in itself a manifold activity, that involves statistics, failure physics,
modeling, microscopic analysis, strategy.

This work witnesses three years of intense evolution of a new physical model
for describing laser diodes, that was initially developed for giving account of the
measured degradation of electric and optic parameters of failed devices. The model
became progressively more and more inclusive, and also caused several deep revi-
sions of the widespread approaches to laser diode physics and reliability.

At the beginning of this period, the model was existing, and had been yet
applied to several studies of specific failure cases. Anyway, it left some open
questions, that limited its application to the totality of real cases.

Along the three years of this PhD course, I had the chance to cooperate in first
refining the fundamental model, and then in solving one by one all the unresolved
issues, and in signing as an Author all the relevant papers published by the DIEE
team in this field.

The Thesis is accordingly organized in three parts and some appendices.
The first resumes the general model, including a quite new formulation of

optical gain that has been only partially published, at the date of the presentation
of this work. Also the most relevant non-idealities are here discussed and solved.

The second part collects the several experimental studies that have been carried
out and published on real devices, looking for physical validation of the theoretical
predictions, or, conversely, measuring the magnitude of some relevant quantities
requested for calibrating the model.

The third part faces the issue of failures. Experimental cases, with the inter-
pretation of the most puzzling ones, are complemented with a sort of dictionary
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of failure modes, that is the systematic prediction of the measurable electric and
optic degradations, to be compared with the real world for sorting and classifying
effects and then addressing the physical analysis to discover their root causes.

The final appendices resume some more theoretical details, or report on still
incomplete studies that require further refinement and calibration.

It has been a choice to keep the thesis quite close to the papers which it refers
to: all those parts have been deeply discussed, distilled and organized, word by
word, with my Tutors, before each publication. No better form could be found
for them. On the other hand, no paper is here reported, from paragraph 1.2 to
the end of the thesis, where my name is not included in the list of Authors of the
published version. On the contrary, some points are here reported anticipating
their publication, as for the gain-current g(I) formulas and the paragraph on the
dV/dI curves. It is the kind permission of prof. M.Vanzi to use this material for
my thesis that allows its presence here.
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Chapter 1

An extended model for Laser
Diodes

Introduction

The first chapter summarizes and extends a new model for laser diodes de-
veloped at the University of Cagliari in the last decade [1–3], that embraces the
whole injection range, below and beyond threshold and embeds the threshold itself.
Quantities are referred to the measurable applied voltage, and include radiative
and non-radiative currents as well as relevant functions as gain and quantum effi-
ciency. Several popular formulas for the laser regime are shown to be the limiting
cases of a new and wider treatment. Comparison with literature is continuously
carried on.

On the past few years, a model has been proposed and developed for laser
diodes [1–3] based on a new version of the Rate Equations for photons and charges.

The prompt for going back and revise the foundations themselves of laser diode
modelling has been the difficulty to apply the available Rate Equations in a coher-
ent way when analyzing DC electro-optical characteristics evolving in time, that
is when dealing with degradations. The point is exactly the plural form “Rate
Equations”, because a unique form does not exist. Gain, optical power, threshold,
efficiency, and in general all quantities that are relevant for characterizing and mon-
itoring such devices are referred to different representations of injection: separation
of the quasi-Fermi levels, carrier density, current. It is difficult to harmonize them
and look, for instance, for a self-consistent treatment able to correlate gain satu-
ration with current injection, or to continuously describe the transition between
the ranges where spontaneous or stimulated emission dominate. An illuminating
example is the search for a relationship between the clamp value of the quasi-Fermi
levels and the threshold current; despite they are different representations of the
same phenomenon: the achievement of lasing.

The opinion is that this situation is a consequence of the historical evolution
of laser equations in general and of laser diodes in particular. Then, some history
may help.

After the seminal Einstein’s papers [4,5] that in 1916-17 first proposed the idea
of stimulated radiation, for decades the studies focused on amplification of radi-
ation in the microwave domain [6–8] up to the definition of a fundamental Rate
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Equation for Maser given by Statz and De Mars [9] in 1960. The translation to
the optical domain, moving from Maser to Laser, was theoretically investigated by
Lamb [10] in 1964. The peculiarity of this phase was the consideration of physical
systems where the probability of upward or downward energetic transitions were
separately defined by the population of, respectively, the non-excited end the ex-
cited states. No mass-action laws have ever been invoked, taking into account for a
same transition the populations of both the initial and the final states. This is an
important point, to be considered when the laser history approaches the world of
Solid State Physics, whose milestones appeared after the Einstein’s works: Pauli’s
Exclusion principle [11] on 1925, Fermi-Dirac statistics [12,13] on 1926, the Bloch
Theorem [14] on 1928. This prepared the playground for the capital book by
Shockley [15] on electrons and holes on 1950.

The two lines (maser/laser and solid state electronics) run nearly indepen-
dently, and when they merged [16–23] the laser diode rate equations on one side
looked at the formalism of the semiconductor collective states, and on the other
tried to harmonize with the assessed heritage of maser/laser physics, developed for
systems of local wave functions. It resulted a dual description of photon-charge
interactions: one, keeping the concepts of quasi-Fermi levels and of band popula-
tion, was mostly used for spectral properties and in particular for gain (including
the transparency condition); the other, counting the rate of change of the number
of particles, with a set of two lumped equations for charges and photons, mainly
applied to current and optical power. If the former approach still shows its clear
foundation on Quantum Mechanics, the latter generally faces the computational
challenges for many quantities introducing phenomenological considerations.

The first fundamental books summarizing the state of the art [24–26], includ-
ing the evolving technology that rapidly brought to Double Heterostructure laser
diodes, certified that dual approach, and even when further studies widened the
field of application of laser diodes, studying their modulation [27–29], they did not
change this original dichotomy.

When one opens the currently available most popular textbooks [30–33], he still
finds spectral gain and transparency condition in different chapters than current-
power relationship. This makes difficult to correlate any observed kinetics, as for
degradations, with Physics.

If we want to point out the kernel of the problem, the difference between the
Solid State world and the historical Rate Equations for lasers is dramatically sim-
ple: the latter, neglecting the mass-action law for the non-equilibrium transitions,
renounces to refer any relevant quantity to the voltage V. This, for a device that
is built, is named and largely behaves as a diode, is a serious handicap.

The new model, presented in this chapter, aims to rewrite the Rate Equations
for a laser diode focusing on the voltage V as the main reference parameter. Noth-
ing of laser physics is modified, but the choice is proven to greatly unify the study
of the many different quantities that characterize such kind of devices.

The approach is to start with an ideal Double Heterostructure Quantum Well
diode, whose inner part, the active region, is responsible for all recombination, and
recombination is completely radiative (unit internal efficiency). Here the quantum
size of the active layer is invoked to justify the transversal uniformity of densities
(usually assumed for infinitely extended regions), based on the loss of significance
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of locality on a quantum scale. Also the detailed band structure will be packed
into the effective masses and density of states, so that the simple (and widely used)
parabolic band model will be employed. A specific appendix A will be dedicated
to the more refined picture that includes light and heavy hole subbands.

The k-selection rule is preserved, which implies to neglect the non-collective
states in band tails. It will be shown that the basic characteristics of a real device
are not affected by such approximation. The Rate Equation for the ideal active
region will then be derived by first considering and then modifying the equilibrium
state. The separation of the quasi-Fermi levels is here identified with the energy
equivalent qV of the applied voltage V.

Several results come from the solution of the Rate Equation, including spectral
and modal gain, the ideal I(V) current-voltage characteristics and the initial form
of the POUT (I) power-current relationship. Threshold will appear as an asymptotic
value for voltage, and a fast but non abrupt transition will continuously connect
the regions under and above threshold. This bunch of results follows the simple
strategy inversion in the proposed approach, when compared with the previous
treatments: instead of computing the total number of electron-hole transitions
and then look for the fraction that creates light, the sole radiative ones are first
considered, finding a harmonic, self-consistent and quite peculiar relationship be-
tween V, I and POUT (I), that describe the ideal diode as a device.

It is only after this step that comparison with real world will force to include
non radiative recombination inside the active layer itself, and to model it as an
additive Shockley current sharing the same voltage of the radiative one.

This non radiative current at threshold voltage will be shown to rule over
the measurable threshold current. Its formulation will display the most striking
difference with literature, but it will also be shown to be, surprisingly, numeri-
cally undistinguishable from the previous results, validated by experiments along
decades.

Being POUT (V ) available, the expression of the total (radiative and non-radiative)
current I as a function of the same V will lead to the continuous L-I curve
[21,22,30–32], whose asymptotic limits exactly recover the well-known expression
for the LED and the laser regimes.

Other currents are then considered, dominant at very low injection, in a region
usually neglected in standard current-driven measurements. They will be identified
and weighted for their relevance, that is null in regular devices, but can become
important under degradation.

Optical gain equations are revised on the basis of this recent new model. Ex-
plicit relationships with total current and voltage are shown, able to include proper
gain saturation limits with experimental estimate of gain on the basis of the DC
characteristics s proposed.

A list of further non-idealities and open points will be given and discussed.
Among them, the harmonization of the new modal gain relationships with the
existing ones, the puzzle of the ideality factor, the sharpness of the threshold
transition, the effects of longitudinal and transversal non-uniform pumping.
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Figure 1.1: Quasi-Fermi levels in the ideal laser diode

1.1 The basic model

1.1.1 Energies and densities

Let us consider an ideal laser diode fig.1.1, where

(a) all recombination is radiative and

(b) it occurs inside the very thin QW undoped active layer of a Double Het-
erostructure.

The quantum size of the active layer makes any concept of density gradient mean-
ingless, allowing electrons, holes and photons to interact irrespective of their po-
sition along the whole thickness of the layer itself.

This is the same as saying that the quasi-Fermi levels for electrons and holes,
as well as the existing photon density, are uniform inside the active layer.

Dealing with optical transitions in a semiconductor, the usual concepts [33]
that define tab.1.1 and fig.1.2 electron and hole energy and density, as well as
their complementary density are introduced:

Ee = EC +
}2K2

e

2m∗e

Eh = EV −
}2K2

h

2m∗h

(1.1)



n(Ee) =
ge(Ee)

1 + exp

(
Ee − φn
kT

)

p(Eh) =
gh(Eh)

1 + exp

(
φp − Eh
kT

) (1.2)
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Figure 1.2: Definition of energy levels.


n̄(Ee) = n(Ee) exp

(
Ee − φn
kT

)

p̄(Eh) = p(Eh) exp

(
φp − Eh
kT

) (1.3)

These elements are complemented with the quantum-mechanical selection rules
on momentum and energy: {

}ke = }kh
Ee − Eh = hν

(1.4)

The only not common definition that will be here also introduced relates the
difference in the quasi-Fermi levels to the electrostatic potential V.

φn − φp = qV (1.5)

This clearly recalls the similar definition that enters the Shockley’s theory
[15] of an ideal pn junction, where V is the final voltage applied to the classic
semiconductor diode. Here it is proposed for the ideal laser diode. Physics of the
two ideal devices are nearly opposite: recombination occurs totally outside the
depletion region in the Shockley diode, while it is concentrated inside the active
layer, fully embedded inside the depleted volume, for the ideal laser diode, that in
this way resembles the deeply non-ideal device considered by Shockley when traps
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Symbols Definitions

Ee Conduction band edge

Eh Valence band gap

Ee = EC + h2K2
e

2m∗
e

Electron energy in conduction band

Eh = EV −
h2K2

h

2m∗
h

Hole energy in valence band

}ke Electron momentum in conduction band

}kh Hole momentum in valence band

m∗e Electron effective mass

m∗h Hole effective mass

ge(Ee)[cm
−3eV −1] Electron density of state at energy Ee

gh(Eh)[cm
−3eV −1] Hole density of state at energy Eh

n(Ee) =
ge(Ee)

1 + e
Ee − φn
kT

[cm−3eV −1] Electron density at energy Ee

p(Eh) =
gh(Eh)

1 + e
φp − Eh
kT

[cm−3eV −1] Hole density at energy Eh

n̄(Ee) = n(Ee) exp

(
Ee − φn
kT

)
[cm−3eV −1] Complementary electron density at energy Ee

p̄(Eh) = p(Eh) exp

(
φp − Eh
kT

)
[cm−3eV −1] Complementary hole density at energy Eh

φn Quasi-Fermi level for electrons

φp Quasi-Fermi level for holes

T [K] Absolute temperature

k Boltzmann’s constant

h Planck’s constant

} Reduced Planck’s constant

q Electron charge

ν Photon frequency

Table 1.1: Definition of relevant parameters.
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cause high recombination in the transition region. It is interesting to observe that
Shockley predicts for this case the dependence of current I on half the applied
voltage V . This will not happen for the laser diode. The reason is the quantum
size of the recombination layer that makes the concept of charge density gradients
meaningless.

The listed relations allow to write the joint densities that enter all processes of
light emission and absorption as

pνnν =
N2
ν

f 2
ν

p̄νn̄ν = pνnν exp

(
hν − qV
kT

) (1.6)

Where
N2
ν = ge(Ee)gh(Eh)

∣∣
Ee−Eh=hν

(1.7)

is the joint density of states for an optical transition at frequency ν, when the
k-selection rule holds, and

f 2
ν =

[
exp

(
hν − qV
kT

)
+ 2 exp

(
hν − qV

2kT

)
cosh(ε) + 1

]
→

−−→
ε≈0

[
exp

(
hν − qV

2kT

)
+ 1

]2 (1.8)

with

ε =
(Ee + Eh)− (φn + φp)

2kT
(1.9)

The limit in (1.8), calculated for vanishing values of ε, links the current version
of the model to the previous ones, and should be discussed. Referring to fig.1.2,
it should be clear that the term (Ee + Eh)/2 represents the energy level midway
between the electron and hole energies in the given transition, while (φn+φp)/2 is
the mean value of the quasi-Fermi levels. Their difference is strictly null only for
symmetrical bands (not necessarily parabolic), in which case both mean values are
separately null. For asymmetric bands this is no more true, although it is difficult
to estimate the difference at a glance.

Anyway, the approximation of symmetric bands makes many of the next results
intuitively evident, while the exact formulation renders them physically sound.
For this reason, most of the following part of the chapter will show both versions
whenever possible and advisable.

The role of a non-null ε will be discussed in Appendix A, to point out the effects
of the band asymmetry, and also of valence sub-bands, on the several results that
are going to be shown.

Another point that needs to be clarified deals with dimensions of the joint
densities. This is the goal of Appendix B.
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1.1.2 Rate and Balance

1.1.2.1 Equilibrium

The most convenient starting point is the equilibrium state, when qV=0. Here
the century-old Einstein’s treatment of the black-body spectrum still holds as a
roadmap [4,5].

Let us add the suffix 0 to the densities of electrons and holes and introduce the
photon density φ0ν at equilibrium, at frequency ν.

When one specializes the Einstein approach to the black-body to the case of
a semiconductor at equilibrium, the upward and downward transitions from the
conduction to the valence band and the reverse process (photon absorption) give
rise to rates that balance according with

ACV p0νn0ν +BCV p0νn0νφ0ν −BV C p̄0νn̄0νφ0ν = 0 (1.10)

where ACV ,BCV and BV C are coefficients, not depending on temperature, referring
respectively to photon spontaneous emission, stimulated emission, and absorption.
Because of (1.6), at equilibrium

p̄oνn̄0ν = p0νn0ν exp

(
hν

kT

)
(1.11)

and then one has

ACV +BCV φ0ν −BV Cφ0ν exp

(
hν

kT

)
= 0 (1.12)

Exactly as in the Einstein’s treatment, for increasing temperatures the exponential
approaches unity, the photonic density increases (Stefan’s law), but the coefficients
remain unchanged. This leads to identify BCV = BV C and then to rename{

B ≡ BCV = BV C

A ≡ ACV
(1.13)

and then

φ0ν =
A

B

1

exp

(
hν

kT

)
− 1

(1.14)

The usual way to proceed in the treatment of the black-body radiation will allow
to identify the ratio

A

B
=

8πν2

c3
(1.15)

which gives back the Planck’s formula for the power density uν per unit frequency

uν ≡ φ0νhν =
8πν2

c3
hν

exp

(
hν

kT

)
− 1

(1.16)

For the scopes of the current study it will be sufficient to recognize that

A

B
= φ0ν exp

(
hν

kT

)
− 1 (1.17)
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1.1.2.2 The rate equation

Moving to the non-equilibrium steady state, the balance must introduce the
possibility that a net flux of photons enters or leaves the system. A net incoming
flux will be here neglected, while an escape term is introduced. This term must be
a rate, proportional to the photon density through a factor with the dimensions
of the reciprocal of a time, that assumes the meaning of the mean permanence
time τc. This net escape rate must vanish at equilibrium, and then the balance
equation for the steady state reads as

Apνnν +Bpνnνφν −Bpνnν exp

(
hν − qV
kT

)
φν −

φν − φ0ν

τc
(1.18)

The solution of this rate equation is a function φν(V ) that will be explicitly
calculated in the next subparagraph. Anyway, some general considerations can be
done since now:

a)The last term, when multiplied by the photon energy hν and the volume Vol
of the cavity, and integrated over frequencies, represents the total emitted optical
power PTOT , proportional to the measured optical power POUT , one of the mea-
surable quantities for a real laser diode.

b)The sum of the first three terms (equated, because of the balance, again by
the last term) is the net number of radiative recombination events, and then, once
multiplied by the electron charge q and the volume Vol of the cavity, and summed
over frequencies, gives the net light-producing current Iph.

c)Any other current that will be introduced for considering non-radiative phe-
nomena inside the active layer will share the same voltage V .

It follows that the solution of the rate equation will supply the link between the
voltage V , the total current I and the emitted optical power P of the ideal laser
diode, as the next subparagraphs will demonstrate.

The solution itself will show, as obviously expected, that the photon density φν
increases with increasing bias qV . It follows that the ratio between the stimulated
and the spontaneous emission

Rst

Rsp

=
φν
A/B

=
φν

φ0ν

[
exp

(
hν

kT

)] (1.19)

will rapidly increase with bias, which legitimates neglecting the spontaneous term
at high injection in many textbooks. Anyway, it is the spontaneous emission
that provides the stimulus for the stimulated one, and also mathematically that
term will be crucial for achieving the solution. Also the transparency condition
Rst = Rabs, that is by definition the injection level that exactly balances stimulated
emission and absorption, is immediately identified with:

qV = hν (1.20)

Before proceeding with its solution, some further handling of the equation itself
will lighten other important features.
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1.1.3 Gain and losses

Dividing all terms in the rate equation by the group velocity of light νg and

the photon density φν , one transforms a balance of rates
∂φν
∂t

= 0 into a balance
of gain and loss terms

1

∂φν

∂φν
∂(νgt)

≡ 1

∂φν

∂φν
∂x

= 0 (1.21)

It is convenient here to partially explicit the joint densities and write[
A

B

B

νg

N2
ν

f 2
ν

1

φν

]
+

[
B

νg

N2
ν

f 2
ν

]
−
[
B

νg

N2
ν

f 2
ν

exp

(
hν − qV
kT

)]
−
[

1

νgτc

(
1− φ0ν

φν

)]
= 0

(1.22)

where the function f 2
ν represents the denominator of the equation of the joint

density of charge, as given by (1.8).
The unessential square brackets in the modified balance equation (1.22) have

the cosmetic role to put into evidence the two gain terms (positive sign) and the
two loss terms (negative sign).

Starting with the second term in (1.22), it is possible to represent the pure gain
(net gain will be defined, later on, as the difference between the second and third
term) and introduce the “gain coefficient”:

gm =
BN2

ν

νg
(1.23)

This term is obviously a function of the frequency ν, and embeds all information
about the density of states, and then vanishes for any transition involving forbidden
states in the band-gap. It also appears in the first and third term of (1.22), and is
then a good candidate for a more compact and physically clear formulation of the
balance equation itself. Moreover, considering the last term in (1.22)[

1

νgτc

(
1− φ0ν

φν

)]
(1.24)

It gives account for escape phenomena, and even for very low injection levels is
practically a constant at a given frequency ν, that we will here define as the total
loss coefficient

αT =
1

νgτc
(1.25)

We can now rewrite the gain-loss equation (1.22) as[
A

B

gm

f 2
ν

1

φν

]
+

[
gm

f 2
ν

]
−
[
gm

f 2
ν

exp

(
hν − qV
kT

)]
−
[
αT

(
1− φ0ν

φν

)]
= 0 (1.26)

and proceed with

a) the first term, that is a rather unusual gain term, being related to those spon-
taneous transitions that can indeed add photons, but without any coherence
with the laser radiation that is under investigation. It is then usually omitted,
but this hides the balance between creation and destruction of photons, that
is simple in itself. It is interesting to observe that neglecting the first term, as
usual in many textbooks, simply inhibits the solution of the equation.

19



b) The algebraic sum of the two central terms represents all light-induced transi-
tions: spontaneous emission and optical absorption, and is the definition of the
gain g.

c) The last term, that represents escape losses, has the important role to link the
solution to measurable parameters as current and optical power, as pointed
out in comments a) and b) to (1.18). The issue of practical integration over
frequencies will be considered in more detail in the following.

Finally, considering (1.23) and (1.25), this allows to rewrite the steady-state rate
equation (1.18) as:

gm

exp

(
hν

kT

)
− 1[

1 + exp

(
hν − qV

2kT

)]2φ0ν + gm

1− exp

(
hν − qV
kT

)
[
1 + exp

(
hν − qV

2kT

)]2φν = αT (φν − φ0ν)

(1.27)
Before proceeding with the solution of the rate equation, some comments should

be given about gain, its saturation and the way to take account for vertical losses,
which means what is known as vertical confinement.

1.1.3.1 Gain limits

The explicit form for the gain function, following the previous comments, is
given by (1.28)

g =
gm

f 2
ν

[
1− exp

(
hν − qV
kT

)]
=

= gm

1− exp

(
hν − qV
kT

)
[
exp

(
hν − qV
kT

)
+ 2 exp

(
hν − qV

2kT

)
cosh(ε) + 1

] −−→
ε≈0

gm tanh

(
qV − hν

4kT

)
(1.28)

At any given voltage V , the spectral gain combines the high-pass filter of the
joint density of states embedded in gm and the tanh function that monotonically
decreases for increasing frequencies. Positive gain is then restricted to a frequency
range Eg < hν < qV , which obviously implies qV > Eg.

When one assumes a stepwise density of states, corresponding to an ideal Quan-
tum Well, without broadening, and compares with one that includes broadening
by means of a suitable Lorentzian lineshape, fig.1.3 is obtained, whose parameters
(bandgap, bias and vertical scale) have been adjusted in order to compare with
fig.4.8 in ref. [31].

This result in (1.28) agrees with ref. [33], Ch.11.4.1, once one recalls the re-
lationship between the voltage V and the quasi-Fermi levels and recalls (1.6) for
describing the joint charge densities. Anyway, this formally allows bias to increase
unlimitedly, which is not the case, as the next sub-subparagraph will show and
experience tells. This leads to the conclusion, also given in the previous reference,
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Figure 1.3: The gain curves from (1.34). Blue line: ideal QW. Red line:
Lorentzian-broadened

that the upper limit for gain is its own lower limit with a positive sign. This is
mathematically correct but physically wrong.

This last point is made clear when going back to modal gain, that is specifying
a single frequency. Gain g, represented by the second and third term of (1.34),
balances with the first and fourth ones.

g =

[
αT

(
1− φ0ν

φν

)]
−
[
A

B

gm

f 2
ν

1

φν

]
(1.29)

This expression hides the transparency condition that just leads g to vanish, but
allows to find the upper and lower limit for the gain itself, when the photon density
φν respectively approaches ∞ or φ0ν . It should be evident that f 2

ν will always
remain finite for any positive bias qV , and that, at qV = 0, for any permitted
photon energy

A

B

1

φ0ν

1

f 2
ν,qV=0

=

exp

(
hν

kT

)
− 1

exp

(
hν

kT

)
+ 2 exp

(
hν

2kT

)
cosh(ε) + 1

≈ 1 (1.30)

it then follows: 
g −−−−→

φν→φ0ν
−gm

g −−−→
qV→0

0

g −−−−→
φν→∞

αT

(1.31)

The lower, negative, limit of gain –gm results then strictly related to the sole
material properties, while the upper limit αT is mostly due to device-specific issues.
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This upper limit, on the other hand, indicates that gain saturates at a level gth
exactly balancing the total losses αT , as expected by the self-sustentation condition
of a laser cavity after a round trip of the radiation.

Would an expression of gain be available as a function of the injection current
I, (1.31) would implicitly define the threshold current Ith below which gain changes
with injection, and above which remains clamped at its threshold value

g(Ith) = αT (1.32)

The search for such g(I) equation has been concluded only very recently, and the
whole next paragraph will be spent on it.

1.1.3.2 Total losses and confinement factor

Usually it is not always clearly reminded that “losses” means anything loosing
photons, but NOT including absorption due to generation of electron-hole pairs,
that is embedded in the concept itself of gain, and leads it to be negative below
threshold. On the other hand, any other kind of absorption, as the one caused
for instance by free electrons, must merge into a separate loss term, that will
then give account of such internal losses in conjunction with any photon escaping
mechanism.

A private discussion with the Authors of the main reference papers [1–3], not
yet published, focused on the unsatisfying use of a confinement factor Γ as a
multiplying term of the gain at threshold gth, to give account of the lateral and
transversal losses. They could be well taken into account in the same additive way
that leads to sum the mirror loss term.

On the contrary, the use of Γ as a multiplier comes from a first-order ap-
proximation of the effective-index method [Appendix A5 of [31]] and perturbs the
simplicity of the gain-loss balance. Would losses αT be defined as the addictive
contribution of a purely internal mechanism (whatever could be) αi, a vertical
escape αV , a lateral escape αL and mirror escape αm

αT = αi + αV + αL + αm (1.33)

The simple definition

Γ = 1− αV + αL
gth

= 1− αV + αL
αT

(1.34)

would make the standard (1.32) formula

Γgth = αi + αm (1.35)

consistent with the balance gth = αT , provided one reminds that αi + αm 6= αT
defines another set of “total losses”. Anyway, such definition of Γ safely holds at
and beyond threshold, but remains questionable at lower injection, when sponta-
neous emission should not be neglected. Being one of the result discuss in this
chapter the continuous definition of measurable DC characteristics along the full
below/above threshold ranges, the additive form (1.33) for losses, that excludes
the use of Γ, will be used.
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1.1.4 Solving the rate equation

The rate equation, after the introduction of the ratio:

R =
αT
gm

(1.36)

reads as
A

B
+

[
1− exp

(
hν − qV
kT

)]
φν −Rf 2

ν (φν − φ0ν) = 0 (1.37)

Some further manipulation (putting φν = (φν − φ0ν) + φ0ν in the second term),
and the recall of the explicit expressions for A/B (1.17) and f 2

ν (1.8), lead to

φν − φ0ν = φ0ν

exp

(
qV

kT

)
− 1

Rf 2
ν exp

(
qV − hν
kT

)
+

[
1− exp

(
qV − hν
kT

)] =

= φ0ν

exp

(
qV

kT

)
− 1

R

[
exp

(
qV − hν
kT

)
+ 2 exp

(
qV − hν

2kT

)
cosh(ε) + 1

]
+

[
1− exp

(
qV − hν
kT

)] ≈

≈ φ0ν

exp

(
qV

kT

)
− 1

R

[
exp

(
qV − hν

2kT

)
+ 1

]2
+

[
1− exp

(
qV − hν
kT

)] (1.38)

It predicts that

1. for any bias lower of, and not too close to, the transparency condition qV =
hν, all exponentials in the denominator are negligible when compared with
unity

φν − φ0ν

∣∣
qV <hν

≈ φ0ν

exp

(
qV

kT

)
− 1

R + 1
(1.39)

2. At the transparency

φν−φ0ν |tr = φ0ν

exp

(
qV

kT

)
− 1

4R cosh2
( ε

2

) =
8πν2

c3
1

4R cosh2
( ε

2

) −−→
ε≈0

8πν2

c3
1

4R
(1.40)

3. The denominator vanishes, leading to infinite density and infinite energy at
a threshold voltage

qVth = hν+kT ln


√

1 +R2 sinh2(ε) +R cosh(ε)

1−R

2

−−→
ε≈0

hν+kT ln

(
1 +R

1−R

)2

(1.41)
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The considerations above look at the photon density at a given frequency as a
function of the applied voltage qV .

The same result can be conversely considered as the spectral distribution at a
given voltage. Of course, parameters as the actual densities of states (included in
the gm coefficient) must be specified. They give account for the forbidden states
inside the band gap, and then for the minimum allowable frequency hν ≥ Eg. In
the same way, the escape coefficient must be defined as a function of frequency, to
take into account for instance the resonant modes of a Fabry-Perot cavity.

In any case, among the many possible frequencies, only one leads to the lowest
value of qVth: it will be the ultimate threshold condition for the whole device, be-
cause any further voltage increase would require infinite energy. At the same time,
that specific frequency will first reach positive net gain and will soon stimulate
and drain all new recombination events: it will be the peak frequency for the laser
diode.

1.1.5 Current and power

Two quantities are related to the escape rate given by the last term in (1.18),
as pointed out commenting that equation: the radiative current Iph, responsible
for all and sole the photon emission, and the total emitted optical power PTOT .

Iph = qV ol

∫ ∞
0

φν − φ0ν

τc
dν

PTOT = V ol

∫ ∞
0

hν
φν − φ0ν

τc
dν

(1.42)

Both receive contributions from all frequencies in the emitted spectrum, and
then the problem arises of integrating over frequencies. Many factors should be
taken into account, all of which should be embedded into the frequency dependence
of τc:

1. The intrinsic (homogeneous and inhomogeneous [30–32] lineshape broaden-
ing. This changes the ideal step function for the 2D size of the Quantum
Well into a smooth function that is usually considered by convolving the ideal
function with some suitable peaked function, as a Gaussian, a Lorentzian or
other.

2. The frequency selection introduced in single mode devices by DFB (Dis-
tributed Feedback) gratings, DBR (Distributed Bragg Reflector) structures
at the side of the cavity, or external devices, as adjustable sets of Etalon
filters in tunable lasers.

3. In multi-mode devices, the resonant function introduced by the Fabry-Perot
cavity.

Anyway, in practical measurements of real devices, both current and power are
measured with an accuracy not exceeding the percent. This is, roughly, the in-
accuracy that one could obtain when considering any of the possible frequencies,
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allowed by the spontaneous emission spectrum, with respect to the peak frequency
ν0 at which the device will first reach threshold. This means that (1.42) can be
evaluated as: 

Iph = q · V ol · ν̂ · φν − φ0ν0

τc

PTOT = V ol · ν̂ · hν · φν − φ0ν0

τc

(1.43)

where ν̂ is an integration constant, with the dimensions of a frequency, that is
determined by the actual line-shape of the spectrum peaked at ν0.

Would Iph be the only current flowing in the device, when one defines the
output power POUT as the fraction αm/αT of the total emitted power POUT (where
αm is the loss for the sole escapes from the laser side faced to the detector system
( [31], Ch.2), one would obtain the simple relationship

POUT =
hν

q
Iph

αm
αT

(1.44)

This is obviously not the case, but (1.44) is the starting point for the final power-
current characteristics, once Iph is expressed in term of the total current I.

1.1.5.1 The current Iph

Substituting the escape time τc in (1.43) with the loss coefficient αT by means
of (1.25):

Iph ≈ q · V ol · νg · ν̂ · αT [φν − φ0ν ] (1.45)

one can use the solution (1.38) of the rate equation to obtain:

Iph = 4Iph0R

exp

(
qV

kT

)
− 1

R

[
exp

(
qV − hν
kT

)
+ 2 exp

(
qV − hν

2kT

)
cosh(ε) + 1

]
+

[
1− exp

(
qV − hν
kT

)] →

−−→
ε≈0

4Iph0R

exp

(
qV

kT

)
− 1

R

[
exp

(
qV − hν

2kT

)
+ 1

]2
+

[
1− exp

(
qV − hν
kT

)] (1.46)

where the frequency ν must now be considered the peak frequency ν = ν0 and Iph0
is a constant with the dimensions of a current that is not dependent on αT :

Iph0 = [q · V ol · νg · ν̂ · gm] (1.47)

In the sub-threshold range one has qV � hν, which makes both exponential in
the denominator much smaller than unity, and then:

Iph ≈
(
Iph0

R

R + 1

)[
exp

(
qV

kT

)
− 1

]
(1.48)
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Figure 1.4: The bimodal behavior of the purely radiative current Iph

It is a perfect Shockley-like behavior, where

Ish0 = Iph0
R

R + 1
(1.49)

plays the role of the saturation current.
The dependence on R has been kept into evidence, instead of embedding it in a

simpler definition of Iph0, because of the relevance of the optical losses in general.
The vanishing limit of such “saturation current” for very low losses should be

not surprising: no loss means infinite time for photon escape from the cavity, that,
in turn, needs no current to sustain the steady state.

On the opposite side, high losses lead this term to saturate at Iph0, but also, for
R > 1, they cause the disappearance of the threshold voltage, (1.41): the device
never achieves the transition to the laser regime, and only is allowed to operate as
a LED.

In summary, it is possible now to plot (fig.1.4) the forward DC electrical charac-
teristics of the ideal laser diode and also graphically appreciate the sub-threshold
Shockley-like behavior, the voltage clamp at Vth at increasing current and the
transition between the two regimes.

It is interesting to check that if one neglects the sole stimulated emission in the
original balance equation, one gets the very same Shockley-like Iph(V ) character-
istics, but no voltage clamp at any current. This means that any other recombina-
tion mechanism, not stimulated by photons, will not be able to create the voltage
clamp displayed in fig.1.4.

1.1.5.2 The non-radiative current Inr

The peculiar behavior of Iph, with its striking bimodal characteristics, that
strictly follow the ideal Shockley equation for V < Vth and then sharply clamps at
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Figure 1.5: Experimental IM(I) curve on an InP-based edge emitter at 1310 nm

V = Vth at higher injection, should be compared with the experimental measure-
ments.

Two currents are available: the total current I and the monitor current IM ,
that is usually represented as a measurement of the externally collected optical
power POUT . It should be evident that the experimental IM is also proportional
to the theoretical Iph.

At the same time, it is evident form experiments (fig.1.5) that the two currents
are not proportional, otherwise the plot of IM(I) would be a straight line starting
from the origin, as predicted by (1.44). A well-defined threshold value Ith separates
two regions that look mostly linear, with largely different slopes. The conclusion
is that an extra current, non-radiative (all optical emission is collected into Iph),
and here indicated as Inr, does exist.

Besides such evident and well known conclusion, a second important one can
be drawn when one plots (fig.1.6) both I and IM(I), versus the reduced voltage,
that is using V − RsI at the abscissa, where V and I are the externally applied
and measured voltage and current of the laser diode, and Rs is its overall series
resistance, easily obtained by the dV/dI curve ( [31], Ch.2.8.5).

The many details of this figure will be considered in the following. A first com-
ment must be given for the area A in fig.1.6. It includes all the I, IM pairs that led
to fig.1.5. The area on the left of region A belongs to the sub-mA range, where cur-
rent still spreads laterally outside the active area and also small shunting currents
are often detected. This current can be easily modeled [2] for a ridge structure,
up to achieve the perfect fit of the experimental data by introducing a distributed
structure made of infinitesimal diodes and resistors, parallel to the active region.
A short description of such currents is given in the next sub-subparagraph 1.1.5.5.
What is important is the conclusion that all currents dominating the sub-mA range
become negligible entering the area A of fig.1.6: in that plot area, all the measured
currents belong to the active region of the laser diode.
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Figure 1.6: Experimental current-voltage characteristics plotted vs. the reduced
voltage V −RsI for the same device of fig.1.5.

Focusing then on the sole area A of fig.1.6, the two experimental curves I and
IM , clearly display the same voltage clamp at some V = Vth, and also the same
slope in the sub-threshold domain, where the logarithmic vertical scale reveals the
perfect and identical exponential dependence of both currents on the same voltage
V .

Now, such a kind of exponential I(V) is likely to be related to diffusion/recom-
bination phenomena that are common in standard pn junctions. None of them
is able to introduce the sharp threshold displayed by Iph, that then must be con-
sidered the sole responsible for the observed voltage clamp. This means that the
voltage clamp introduced by the sole Iph forces also the voltage driving Inr to
clamp. In other words, any model attributing separately Iph and Inr to some
equivalent circuital blocks must connect those blocks in parallel.

Inr, it is then a Shockley-like current typical of general diodes and then mono-
tonically increases with the same V that drives Iph. Because of the experimental
evidence, Inr dominates over Iph for V < Vth, and then clamps at V = Vth. This
leads to estimate the threshold current Ith as that clamp value:

I(Vth) ≈ Inr(Vth) (1.50)

The next sub-subparagraph 1.1.5.5 will demonstrate this conclusion to be not a
simple estimation, but an exact rule.

But in fig.1.6 one discovers another intriguing feature: I and Iph are parallel
(that means, proportional) in the sub-threshold region A, up to the point that if
one vertically shifts Iph upwards (dashed line), it coincides with I.

This simply means that, for V < Vth, also Inr behaves as Iph, and then:

Inr = Inr0

[
exp

(
qV

kT

)]
(1.51)
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Equation (1.51), assuming the same voltage dependence of Inr and Iph in the sub-
threshold range, on one side obeys the indication of experiments, but on the other
confirms what ref. [31] states when introducing its eq.2.41 (the threshold current
equation), that is that bimolecular (electron-hole) recombination dominates for
the sub-threshold range, up to threshold. In case, the novelty is that (1.48) tells
the same for V < Vth.

It follows that the total current is:

I(V ) = Inr(V ) + Iph(V ) = Inr0

[
exp

(
qV

kT

)
− 1

]
+

+Iph04R

exp

(
qV

kT

)
− 1

R

[
exp

(
qV − hν
kT

)
+ 2 exp

(
qV − hν

2kT

)
cosh2(ε) + 1

]
+

[
exp

(
qV − hν
kT

)]
(1.52)

Some relevant values can be considered: At transparency (qV = hν)

Inr,tr = Inr0

[
exp

(
hν

kT

)
− 1

]
≈ Inr exp

(
hν

kT

)
(1.53)

At threshold (1.41):

Ith = Inr(Vth) = Inr0

[
exp

(
qVth
kT

)
− 1

]
≈ Inr0 exp

(
qVth
kT

)
=

= Inr0 exp

(
hν

kT

)
√

1 +R2 sinh2(ε) +R cosh(ε)

1−R

2

(1.54)

That can be written as:

Ith = Ith0

(
hν

kT

)
√

1 +R2 sinh2(ε) +R cosh(ε)

1−R

2

≈
ε≈0

Ith0

(
1 +R

1−R

)2

(1.55)

where the (ideal) zero-loss (R = 0) minimum threshold current Ith0 is identified as
the value of Inr at transparency

Ith0 = Inr0 exp

(
hν

kT

)
= Inr,tr (1.56)

Also fig.1.5 is now easily obtained by calculating separately Iph(V ), that is
proportional to IM , and I(V ) and then plotting Iph(V ). The analytic expression
for that last curve can also be obtained by eliminating qV from Iph(V ) and I(V )
by means of (1.46) and (1.52), that is more easily obtained in closed form as I(Iph).
Being this calculation mostly the same that leads to the more familiar POUT (I),
because of the proportionality of the monitor current IM to the measured optical
power POUT , this will considered in detail in the next sub-subparagraph 1.1.5.5.
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Anyway, the striking difference of (1.55) with any other formulas for Ith known
from literature asks for a final consideration. It will be sufficient to refer to the
approximation ε = 0 to fully appreciate the main conclusion.

The dominance of the non-radiative current in the sub-threshold range makes
(1.56), specific for that component, about, say, 1% different from the value Itr of
the total I at transparency, so that (1.55) could be written, within the available
accuracy limits and making R explicit by means of (1.36), as

Ith = Itr

1 +
αT
gm

1− αT
gm


2

(1.57)

This should be compared with the corresponding empirical formula, based on the
logarithmic model for gain available in literature ( [31], table 4.5, two-parameter
gain-current curve fits)

g = g0 ln

(
J

Jtr

)
≡ g0 ln

(
I

Itr

)
(1.58)

where the ratio of the current densities J has been transformed into the correspond-
ing ratio of currents, and g0 is an empirical constant. From the reference [34], the
calculated current at threshold gives:

Ith = Itr exp

(
αT
g0

)
(1.59)

At zero-loss (1.57) and (1.59) coincide, which confirms for both model the
prediction that the minimum (ideal) threshold current is the value of the total
current (or of its dominating non-radiative component) at transparency.

But the surprising result is that if one assumes gm = 4g0, the power expansion
of (1.57) and (1.59) near the value αT/g0 = 0 coincide at the zero, first and second
order. The difference achieves 1% for values of that ratio as high as about 0.7,
which would correspond to a real threshold current Ith twice its value Itr at zero
losses, a case that never occurs in well-designed real devices.

What is even more interesting is that the empirical quantity g0 now assumes
a physical significance. When one goes back to (1.26) and considers separately
the second and third term (pure gain and absorption) at transparency, within the
approximation ε = 0 here applied, their absolute values are not only equal, but
each of them is exactly gm/4 = g0. The threshold is then completely related to
the sole transparency condition and total optical losses.

The important novelty is that (1.57) tells that, beyond some loss level (αT =
gm = 4g0), no current will be available to force the device to achieve threshold,
which does not appear in (1.59).

1.1.5.3 Internal efficiency ηi

Fig.1.6 carries a last information: the explicit Iph(V − RsI) curve, that up
to now was only considered as proportional to the measurable monitor current
IM(V −RsI). This proportionality can be estimated as follows.
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If the total current is I = Inr+Iph and Inr stops for for I > Ith, this means that
the monitor current IM , for I > Ith, must be IM = K(I−Ith). Being I, Ith and IM
measurable, one gets the coupling constant K. This constant represents the total
conversion efficiency that collects the transformation of Iph into a photon flux,
made of their partial loss traveling from the laser facet to the monitor diode and
the back-conversion of light into current into the monitor diode. If one assumes
negligible any focusing effect of the optical beam, K should be the same at any
injection level, and then IM directly measures Iph:

Iph =
1

K
IM (1.60)

This allows to draw Iph(V −RsI), the so called Trans-characteristic [35] in fig.1.6
by upscaling IM(V − RsI) by the factor 1/K. Moreover, the difference I − Iph
gives the non-radiative current Inr that has such an important role in defining
threshold.

Finally, the ratio between the photonic current Iph and the total current I is, by
definition, the internal efficiency ηi, that is then expected to be a constant only in
the sub-threshold range, and then to approach unity for increasing current. This
is confirmed by the previous results (it is here sufficient to apply the simplification
ε = 0):

ηi =
Iph
I

=
Iph0

Iph0 + Inr0

R

[
1 + exp

(
qV − hν

2kT

)]2
+

[
1− exp

(
qV − hν
kT

)]
R

(1.61)
This is obviously not a constant. In the sub-threshold range qV < hν it reduces
(using also (1.49)) to

ηi
∣∣
V <Vth

=
Iph0

Iph0 + Inr0
R + 1

R

=
Iph0

Iph0 + Ish0
(1.62)

that is, as expected, the ratio between the “saturation currents” of the sole Iph and
of the total current I in their common Shockley regime. This result, that predicts
a constant value of the internal efficiency for the sub-threshold range, agrees with
the observation of the parallelism of I and Iph in region A of fig.1.6. Anyway in
laser regime, when the voltage clamps at its threshold value, it goes to unity

ηi
∣∣
V=Vth

= 1 (1.63)

Measuring efficiency as a function of the total current I, the value in (1.63) be-
comes an asymptotic limit smoothly approached by the experimental curve Iph/I,
because more and more current is required to slightly increase the (internal) volt-
age when the last approaches its threshold.

1.1.5.4 Optical power

The total emitted optical power PTOT is proportional to the radiative current
Iph, as stated in (1.43).
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If now αm is the fraction of the total losses that exits the emitting mirror facet,
and is the collection and conversion efficiency of the optical system, one has the
measured optical power POUT as:

POUT =
hν

q
ηCIph

αm
αT

(1.64)

The previous results on currents and voltage allow to find an analytic relation-
ship between POUT and the total current I, possibly the most familiar tool in laser
diode characterization. One can first express:

Iph = [I − Inr] =

[
I − Inr0 exp

(
qV

kT

)]
(1.65)

and then eliminate the voltage V by means of the previously found (1.58).
It is sufficient indeed to solve that equation for the voltage V to obtain a rather

cumbersome analytic expression of V (Iph)

exp

(
qV − hν

2kT

)
=

=

IphR cosh(ε) +

√
I2ph(1 +R2 sinh2(ε)) + IphI0R(1 +R) + (I0R)2 exp

(
hν

kT

)
I0R + Iph(1−R)

(1.66)

where we put for simplicity:

I0 = Iph0 exp

(
hν

kT

)
(1.67)

Direct inspection shows that (1.66) correctly predicts that the voltage V van-
ishes for Iph approaching 0, and that, on the contrary, it clamps at its threshold
value, given by (1.41) for very large values of Iph.

The expression (1.66) itself appears a little bit more friendly in the bias range
where exp(qV/kT )� 1:

qV = hν + kT ln


√

1 +R2 sinh2(ε) +
I0
Iph

R(1 +R) +R cosh(ε)

1−R +
I0
Iph

R


2

≈
ε≈0

≈
ε≈0

hν + kT ln


√

1 +
I0
Iph

R(1 +R) +R

1−R +
I0
Iph

R


2

(1.68)
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The proportionality between Iph and POUT allows to replace the ratio I0/Iph
with the ratio P0/POUT by defining:

P0 =
hν

q
ηCI0

αm
αT

(1.69)

one has:

POUT =
P0

I0

I − Ith0

√

1 +R2sinh2(ε) +
P0

POUT
R(1 +R) +R cosh(ε)

1−R +
P0

POUT
R


2
 ≈ε≈0

≈
ε≈0

P0

I0

I − Ith0

√

1 +
P0

POUT
R(1 +R) +R

1−R + dd
P0

POUT
R


2
 (1.70)

Where Ith0 is defined according with the previous (1.56). It is, once again, a rather
heavy formula.

Anyway, it deals with POUT and I in the full operative range of a laser diode,
including the sub-threshold regime and the transition to the gain domain. It also
embeds the threshold condition, and defines the threshold current that clearly
appears when one lets POUT to increase in the right-hand side

POUT −−−−−−→
POUT→∞

P0

I0
{I − Ith} =

hν

q
ηC(I − Ith)

αm
αT

(1.71)

with Ith, here calculated as the limit of the term in square brackets in (1.70)
for large current and power, coincides with the expression given by (1.55). This
was inferred in the previous subparagraph about currents, but here it finds its
demonstration.

The full formula can be inverted, too, leading to an analytic form for I(POUT )
that can be easily plotted, perfectly recovering the experimental fig.1.5. The ex-
plicit expression, here limited to the approximation ε = 0, is

I = I0
POUT
P0

+

Ith0

√

1 +
P0

POUT
R(1 +R) +R

1−R +
P0

POUT
R


2
 (1.72)

This not only agrees, as natural, with (1.71) for high values of POUT , but also
predicts the linearity of the POUT (I) curve in the sub-threshold range:

Isub−th =
POUT
P0

I0

(
1 +

Ith0
I0

1 +R

R

)
≡

≡ POUT
P0

I0

(
1 +

Inr0
Iph0

1 +R

R

)
=
POUT
P0

I0
1

ηi
≡ Iphηi (1.73)
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That means:

POUT −−−−−−→
POUT→0

ηi
P0

I0
I =

hν

q
ηCηiI

αm
αT

(1.74)

Equation (1.71) and (1.74) are then the asymptotic limits of (1.70) (or (1.72)),
and coincide with the well-known relationships for, respectively, the laser and the
LED range of a semiconductor optical emitter.

The novelty is that now the two ranges are connected in a self-consistent way
that embeds the calculation of the threshold condition, usually introduced from
outside (see, for instance, (1.29), or eq.2.39, and eq.2.34 in ref. [31]).

Just to conclude this sub-subparagraph, we can consider the apparently puz-
zling prediction that high efficiency seems to lead the threshold current to zero.

Indeed, the ideal case of a pure emitting diode, with total conversion of current
into light, requires unit internal efficiency ηi = 1 even in the LED regime. This
implies that the POUT (I) has no kink (Ith = 0), and displays a uniform slope,
increasing linearly with I irrespective of the LED or laser regime. Being that kink
the fingerprint of the threshold current, one could conclude that the threshold
current is null.

This is not true, and the solution is simple: the sole Iph flows across the device,
and the optical power is correctly proportional to it. Anyway, this does not mean
that stimulated emission dominates over the full range of injected current: the
voltage still requires to approach its threshold value in order to achieve the laser
regime. One can simply say that for currents lower than the limit of the LED
regime for V approaching its threshold (within the approximation ε = 0)

Ith = lim
qV→qVth

[
Iph0

(
exp

(
qV

kT

)
− 1

)]
= Iph0 exp

(
hν

kT

)(
1 +R

1−R

)2

(1.75)

the device is operating in the LED regime, and for higher currents it behaves as a
laser. Intermediate cases can be considered, with high but not total efficiency.

1.1.5.5 Other currents

Fig.1.6 shows that at the left of the highlighted region A the total current
deviates from the ideal behavior predicted by (1.52).

This is a region, confined in the sub-mA range, usually neglected in measure-
ments performed by forcing a current into the laser diode and then measuring
voltage and optical power. Anyway, it is worth of some consideration because of
its capability to show early stages of degradation mechanism, well before their
measurable effect on the relevant electro-optical characteristics.

First of all, some shunting path may be allowed to give account for surface
conduction or other parasitic mechanisms. It is easily modeled as a parallel element
with ohmic characteristics.

Ish =
V

Rsh

(1.76)

where Rsh is, in good devices, an extremely high resistance, whose effects are
limited at the very low conduction range (fig.1.7).

The most interesting “other” current is that flowing in the side areas surround-
ing the active region. Here the specific technology for lateral current confinement
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Figure 1.7: The shunt resistance effect.

should be called into play, leading to peculiar results. The simple case of a ridge
structure in an edge-emitting device (fig.1.8) can qualitatively clarify the general
situation, and even allow for accurate fitting when the device under test actually
displays that technology. Ref. [2] proposes a model where the epitaxial stack is the
same under the ridge and at its sides. This means that the conduction properties
of each section of the stack are the same, but that the electrical connection is
modified by some resistive path in the side areas (fig.1.8).

It is demonstrated [2] that the lateral current IW is given by:

IW =
kT

qRW

[√
1 + 2

RW IW0

kT/q
exp

(
qV

kT

)
− 1

]
(1.77)

where RW is the total resistance of the lateral path and IW0 is the saturation
current of the whole area of the lateral diodes, the plot of this component as a
function of the voltage V is reported in fig.1.9.

Such current displays a bimodal behavior, with an ideality factor of 1 at low
conduction (when the square root can be approximated at the first order), and an
ideality factor of 2 beyond some higher level (when both unities can be neglected),
depending on the value of RW . For a well - designed device, such current limitation
takes place well before the mA range, and leaves the ideal current given by (1.52)
to dominate.

Variants to such model of the side currents are introduced by specific tech-
nologies: for instance, Buried Heterostructures (BH), where the optical cavity is
also laterally confined by higher band-gap material, may display different ideality
factor in IW with respect to Iph and Inr, while in VCSELS the circular lateral
confinement of the active area modifies the model in fig.1.8 calling for radial 2D
networking. In any case, at low conduction, when the side resistances are negligi-
ble, the lateral current displays its own ideality factor, that doubles, limiting the
current itself, as soon as the ohmic effect enters into play.
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Figure 1.8: The model for lateral currents.

Figure 1.9: The lateral current component IW (V ).
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Fig.1.10 summarizes all currents in this model for a theoretical edge-emitting
ridge-structure device emitting at hν = 1eV , with loss ratio (see (1.42)) R =
0.12. Here region A represents the same as in fig.1.6, that is the range where
Iph + Inr dominate. Region B, that is in the sub-mA range, the domain of IW and
region C the extremely low conduction limit, where the shunt current Ish hides
the correction of the pure exponential behavior in the dominating IW that would
be introduced by the “-1” term in the corresponding Shockley equation.

Also the threshold voltage Vth and current Ith, as well as the relevant values
Ith0 and I0 at transparency qVtr are shown in fig.1.10

Figure 1.10: Prediction of the complete model in the V −RSI representation

1.1.6 Measurement and plot protocols

1.1.6.1 Electrical characteristics

As a practical remark, the illustrated results strongly recommends to slightly
modify the standard protocols for DC characterization of laser diodes, in order to
have the most clear representation of their performances [35,36]. The only practical
variation, with respect to the assessed practice, is to perform DC measurements
forcing voltage instead of current, and measuring I and IM simultaneously. A
practical rule, suitable for the most part of laser diodes, is

1. to apply a linear sweep of the forward voltage VL at steps of, say, 5mV. A
suitable compliance should be set to avoid excess current to flow at high
bias. With this measurement three series of data are measured, the input
voltage V, the laser current I and the induced current in the monitor diode
IM (fig.1.11).

2. The series resistance RS of the device is easily obtained from the dV/dIL
plot, looking at the voltage ranges where the plot line flattens just at the RS

value (see fig.1.12).
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Figure 1.11: The total laser current and the monitor current in logarithmic scale
vs. the voltage.

Figure 1.12: The first derivative dV/dI vs. the laser current
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Figure 1.13: The total laser current and the monitor current in logarithmic scale
vs. the voltage reduced of the effect of the series resistance.

3. Plotting the current I as a function of the reduced voltage V = VL − RSI
clearly displays a kink whose coordinates are (Vth, Ith), as showed in fig.1.13.

4. At last, as announced in 1.1.5.3, the coupling constant K allows to recon-
struct the internal radiative current Iph, at any injection level, as (1.60)
(fig.1.14).

5. The double plot of I and Iph as functions of the same reduced voltage V
(fig.1.13), and the current-current plot IM(I) (fig.1.15) give the final format
for the DC characteristics.

About the last point, the choice of not normalizing IM to Iph in the current-current
version of the power-current curve follows the suitability to preserve the effects of
losses on the measured emission, that would be lost by that normalization

A final comment should be reserved to the popular dV/dI and IdV/dI curve,
often recommended [Ch 2.8.5 in [31] and paragraph 1.4] to point out non-idealities
in real laser diodes.

The point is that they are usually plotted as functions of the laser current I.
This neglects the many information encoded in the low injection range, where, for
instance, latent degradation mechanisms can early mark their own presence.

If one also plots the same curves as functions of the applied voltage V , as here
proposed, the full information of the I > Ith range are preserved, and in addition
the lower range can be fruitfully investigated.

In fig.1.16, indeed, the ideal differential curves give both the series resistance
RS and the ideality factor n multiplied by the thermal voltage VT = kT/q. One
particular feature of this ideal IdV/dI plot is that for I > Ith it aligns with a
straight line intersecting the origin of the axes.
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Figure 1.14: The total laser current and the photonic component of the current in
logarithmic scale vs. the voltage reduced of the effect of the series resistance.

Figure 1.15: The total laser current vs. the monitor current
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Figure 1.16: The standard differential curves dV/dI and IdV/dI

As a complement, fig.1.17 gives the IdV/dI curve as a function of the voltage
V , superimposed to the I(V ) curve. The vertical bands corresponds to the three
areas A,B,C in fig.1.10, and the bold lines refer to the reduced abscissa V −RSI,
while the thin lines refer to the external voltage V .

It is interesting to observe that now the areas A and B, invisible in fig.1.16,
display evident features, and even more that the straight dashed line, that overlaps
the IdV/dI plot for I > Ith, crosses the horizontal axis exactly at V = Vth, one of
the important parameters of the device.

Figure 1.17: The curves I and IdV/dI as functions of both V and V −RSI.
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1.1.6.2 Optical characteristics

The integral measurement of the emitted optical intensity, described in the pre-
vious subparagraph, needs to be complemented by spectral measurements. Con-
trary to the I(V ) measurements, for which a new protocol has been proposed, the
measurement procedures do not ask for any modification with respect to the stan-
dard. Anyway, the new interpretation and formulas for gain, that will be proposed
in the next paragraphs, will allow to take advantage of some popular methods,
based on spectral measurements (as the Hakki-Paoli method [37]), for proposing
a significant extension of the measurable gain values. This will be the subject of
paragraphs 1.3 and 1.4.

1.1.7 Refinements of the basic model.

Real devices are not ideal, and even this paragraph required to embed several
non-radiative or lateral, or shunting currents in the main body of the model. Three
cases will be here considered: first of all the presence of Multiple Quantum Wells,
indeed the model assumes the same approximations that lead, for instance from
eq.2.43 to eq.2.45 in [31]. Here the number of wells NW simply multiplies the
gain value for a single quantum well. In other words, a sort of effective volume is
introduced, summing all QWs. It is rough, but it is also common in textbooks.
Within such approximation, currents are the same as in the basic model, apart
from the effective volume.

Then the big puzzle of the non-unitary ideality factor and the apparent re-
duction of RS at increasing current beyond are going to be discuss in the next
paragraphs of this Chapter.

The choice has also been made to not deal with thermal effects. It is assumed
that the available literature on this subject does not need any revision, at least on
the basis of the present model.

1.2 Optical gain in single-mode laser diodes

Optical gain in semiconductor laser diodes (LDs) is a function of both the light
frequency and the injection level, and its measurement enters the characterization
and monitoring procedures for such devices. To this purpose, the most popular
methods have been proposed by Hakki and Pauli [37], Cassidy [38], Henry, Logan
and Merritt [39] or Hofstetter and Faist [40].

Anyway, each of the listed methods is essentially spectral, and strictly applies
to multi-mode emitters. When one moves to single-mode LDs, as Distributed
Feed Back (DFB), Distributed Bragg Reflector (DBR) or externally-tuned laser
emitters, none of those methods does work.

This paragraph aims to deal with modal gain, that is optical gain at a given
frequency.

It seems a much simpler task than handling general gain, because the main
complexity in gain equations comes from the spectral dependence of many param-
eters. Modal gain g at a fixed frequency is just a function of the injection level,
that, in turn, is usually represented by the laser current I.
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We are then going to study g(I), a function that is known in advance to display
some very simple features: it grows monotonically with I; it has a minimum
gm that is negative and corresponds to the absorption αabs of the un-pumped
(I = 0) material; it is null when I leads stimulated emission to just balance
absorption, which defines the so-called transparency condition; it becomes positive
beyond transparency and, finally, it saturates when g equates the total optical loss
coefficient αT . Despite that simplicity, the curve g(I) does not exist in literature.
Several empirical formulas are instead available, each missing at least one of the
features of the real function.

Moreover, the experimental methods for measuring modal gain at saturation
require the comparison of a pair of devices with identical structure and different
cavity length [34], a request easily fulfilled by a device manufacturer but not by
an end user.

The following subparagraphs will first resume the most popular equations for
gain available in literature. They will then propose both a working formulation
for g(I) and a protocol for its measurement, based on the results of a laser model
published in some previous papers [1–3], that are described and somewhat refined
in paragraph 1.1.

Particular attention will be paid to the comparison of the old and new for-
mulations. This will allow to explain why empirical formulas work so well, and
will also grant some “fitting parameters” in that formulas with a sound physical
significance.

Finally, the measurement protocol will be demonstrated for the real cases of
a 850 nm VCSEL and two 1310 nm DFB edge emitters, one with ridge and one
with Buried Heterostructure (BH) technology.

1.2.1 Gain equation in literature

1.2.1.1 The double population model

The most complete equation for gain, starting from the theoretical form that
links that quantity to both frequency and quasi-Fermi levels, appears in [41, 42],
and is the only one that preserves the separate populations of electrons and holes,
and then also the concept of population inversion.

Referring in particular to [42], the expression is

g = A
λ20

8πn2
r

[fe(1− fh)]N2
ν

[
1− exp

(
hν − (φn − φp)

kT

)]
(1.78)

Here, for the sake of the next discussion, the notations of [1–3] have been
used, but the term-to-term correspondence with the quoted reference holds. In
particular: g is the gain function, A is the Einstein’s coefficient for spontaneous
emission, λ0 is the photon wavelength in vacuum, nr is the refractive index of the
active region, fe and fh are the Fermi distribution for, respectively, electrons and
holes, N2

ν is their joint density of states, hν the photon energy, kT the thermal
energy, and φn and φp the quasi-Fermi levels for, respectively, electrons and holes.

Equation (1.78) predicts both a lower and upper limit for g that, in a specific
note in [42], are shown to have the same absolute value and opposite sign, up to
state that, at complete population inversion “what was absorption becomes gain”.
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This is not true. On one side, indeed, the low-injection approximation (un-
pumped material), that assumes a completely filled state in the valence band and
a completely empty state in conduction band, is acceptable, together with the
conclusion that gain in the un-pumped material is negative, and coincides with its
natural absorption. But, on the other hand, the upper limit requires a completely
filled state in the conduction band and a completely empty state in the valence
band, which is physically impossible. Moreover, the saturation at g = αT does not
appear, and the link with the injected current I is not explicit. Anyway, this is
the only equation that indicates upper and lower bounds for gain.

1.2.1.2 The linear and logarithmic models

The strictly modal gain g is described by four empirical models, reported and
discussed in detail in [43]. The most relevant of them, for the sake of the present
study, states the dependence of g on the logarithm of the ratio J/Jtr between the
injected current density J and its value Jtr at transparency.

The approximation of such model to the first order leads to the linear model
that is widely recognized as less accurate, but, nevertheless, is assumed for a
calculation of the threshold current density Jth in [25], that is reported in so many
textbooks, by substituting g with its saturation limit αT .

Two more models, logarithmic and linear, are reported, referring gain not to the
current density J but to the carrier density n and its value ntr at transparency. It
is the same reference [25] that shows how the J and n models can be harmonized by
assuming the bi-molecular (band-to-band) recombination dominant, and properly
adjusting the empirical fitting parameters.

In conclusion, all the available empirical formulas for gain can be efficiently
represented by the logarithmic model, where, using the total current I instead
of its density J one has the equation (1.58), that introduces the empirical fitting
parameter g0, also implies the definition of the threshold current Ith (1.59) [43] as
that value of I for which gain g exactly balances the total optical losses αT .

It is evident that the gain equation (1.58) may behave well only close to trans-
parency and also that is monotonic, as requested, but it fails in predicting upper
and lower boundaries for g.

Nevertheless, its consequence (1.59) has been experimentally validated along
decades. This challenges any new model to behave equally well, before pretending
to replace such consolidated representations.

1.2.2 New equation for Gain

The model proposed in [1–3], is described and partially refined in the para-
graph 1.1. It embraces the whole injection range of a laser diode and includes the
threshold condition as a sharp but not abrupt transition between the LED and
the laser regimes. It has been first applied to point out the peculiar characteristics
of the radiative component Iph of the total current I and its relationship with the
other currents. The model is here applied to modal gain, with the aim of finding
a formulation able to remove the limitations of the previously recalled equations.
We will start with equations (1.27) and (1.28) in the paragraph 1.1, that indicates
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the gain function as:

g = gm

1− exp

(
hν − qV
kT

)
[
1 + exp

(
hν − qV

2kT

)]2 (1.79)

It is just a cumbersome exercise to show that this expression is exactly the
same as (1.78). It is indeed sufficient to first express gm by means of (1.23), then
to use (1.15) to express B/c, and finally recognize the appearance of the term
fe(1−fh)N2

ν by means of (1.6), (1.7), (1.8) from paragraph 1.1. The identification
of qV with the separation of the quasi-Fermi levels leads to the final result.

An equivalent form of (1.79) will be more useful for the following steps:

gm tanh

(
qV − hν

4kT

)
= gm

exp

(
qV − hν

2kT

)
− 1

exp

(
qV − hν

2kT

)
+ 1

(1.80)

As said, this equation, by itself, does not tell anything new with respect to
(1.78), apart from attributing a physical meaning to the parameter gm: for the
un-pumped material (qV = 0), the exponentials are extremely small in comparison
with unity (at least for real photon energies at normal temperatures) so that

gmin = −gm = αabs (1.81)

This tells that gm is the absolute value of the absorption coefficient αabs for the
un-pumped material.

Anyway, in order to obtain a self-consistent expression that includes all features
of gain, it is advisable to invert (1.80) to express the exponential as a function of
g/gm.

exp

(
qV − hν

2kT

)
=

1 +
g

gm

1− g

gm

(1.82)

Now, the exponential on the left side of (1.82) is identical or very close to all
exponentials appearing in the definition of the current components Iph and Inr as
indicated in paragraph 1.1.

The first equation (1.38), neglecting the negative unity in the numerator, and
using (1.43), (1.25) and (1.36), may be written as

Iph = I04R

exp

(
qV − hν
kT

)
R

[
exp

(
qV − hν

2kT

)
+ 1

]2
+

[
1− exp

(
qV − hν
kT

)] (1.83)

where

I0 = qV ol∆νgm

(
2πnr
λ0

)
(1.84)
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results to be the value of Iph at transparency qV = hν. Its expression has been
obtained by neglecting the negative unity also in the denominator of the black-
body (1.14).

The other current Inr can be suitably rewritten, starting from (1.51), neglecting
again the negative unity and using (1.56)

Inr(V ) = Ith0 exp

(
qV − hν
kT

)
(1.85)

As pointed out in paragraph 1.1, it should be also noticed that the coefficient
Ith0 corresponds to the value of this current Inr at transparency, qV = hν.

Now, (1.82) allows to eliminate the exponentials from (1.83) and (1.85), and
to express the total current (1.52) as

I = Ith0

1 +
g

gm

1− g

gm


2

+ I0

(
1 +

g

gm

)2

1− g

αT

(1.86)

This is an inverse relationship that expresses the total current I as a function
of the gain g, and that cannot be inverted in a simple form. Anyway it is possible
to plot the g(I) curve, that clearly displays several important features:

1. ∂I/∂g is positive, that means a monotonic relationship between I and g, for
all gain values g < αT .

2. Gain g has a minimum when I = 0, that corresponds to g = −gm.

3. At transparency, when gain vanishes, the current is I = Ith0+I0, in agreement
with the definition of the constants Ith0 and I0.

4. If αT > gm gain saturates (infinite current) at g = gm.

5. If αT < gm gain saturates at g = αT .

With regard to the last two points, relative to the values of αT and gm, it can
be easily checked that the denominator of (1.38) may vanish only if R < 1, that
is (1.36) only if αT < gm. This condition is the requirement for lasing, and then
the value g = αT is the saturation limit for gain in semiconductor lasers, and
corresponds to the requirement that gain balances optical losses.Would be R ≥ 1,
no population inversion could be achieved. The diode would only emit as a LED,
and the upper limit for gain would be given by gm, as predicted by [42].

Equation (1.86) is then the first gain equation able to include all its features.

1.2.3 Comparison with previous models

For the sake of comparison with literature, the following alternative form, ob-
tained by (1.80) and (1.85) will be useful:

g = gm

√
Inr −

√
Ith0√

Inr +
√
Ith0

(1.87)
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This formula links gain g to the sole non-radiative current Inr (and its value Ith0
at transparency), but hides the saturation limit. The latter is implicitly recovered
when it is realized that the first term on the right-hand side of (1.86) is exactly
Inr and that, in a properly designed laser diode achieving threshold, g clamps at
gclamp = αT . The maximum of Inr is then

Inr,MAX ≡ Ith (1.88)

This is the definition of the threshold current Ith, as reported in detail in [1–3]
and in (1.55). Direct substitution of (1.88) and (1.55) into (1.87) gives back the
gain saturation limit.

Equation (1.87) has a practical importance because of the mentioned dom-
inance of Inr in the whole sub-threshold range, that includes the transparency
value Ith0. This dominance may safely lead to identify Inr with the total current
I when empirical formulas are looked for. In other words, the form

g ≈ gm

√
I −

√
Itr√

I +
√
Itr

(1.89)

where Itr is the value of the total current I at transparency, may be considered a
practical approximation of (1.87) when the accuracy in current measurements is
not better than about 1%. In this way, the given result for g can be compared with
the various expressions, available in literature, that refer the gain g to the total
current I. In particular, formulas (1.89) and (1.55) should be compared, respec-
tively, with (1.58) and (1.59). The difference is striking and the wide experimental
confirmation of (1.59) seems to ultimately support the validity of the old models
with respect to the new one. However, the new formulas give account for gain
saturation, while (1.58) seems to allow g to increase with I without any limit. It
seems hard to exploit the benefits of the two versions.

The surprising result comes from the power expansion of the competing formu-
las. Let us start with (1.58) and (1.89): they mathematically agree only for the
common prediction that gain vanishes at transparency I = Itr. Anyway, close to
transparency, we have for (1.58)

g = g0 ln
I

Itr
= g0

[(
I

Itr
− 1

)
− 1

2

(
I

Itr
− 1

)2

+
1

3

(
I

Itr
− 1

)3

− 1

4

(
I

Itr
− 1

)4

+

+O

(
I

Itr
− 1

)5 ]
(1.90)

while for (1.89)

g = gm


√

I

Itr
− 1√

I

Itr
+ 1

 =
gm
4

[(
I

Itr
− 1

)
− 1

2

(
I

Itr
− 1

)2

+
5

16

(
I

Itr
− 1

)3

+

− 7

32

(
I

Itr
− 1

)4

+O

(
I

Itr
− 1

)5 ]
(1.91)
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It follows that if we identify the phenomenological fitting parameter g0 with

g0 =
gm
4

(1.92)

the competing expression will coincide at the first and second order, while the
difference of their third order term is as small as that between 5/16 and 1/3, and
between 7/32 and 1/4 for the fourth order term. This means that any experiment
confirming (1.58) in its range of validity, near transparency, will also confirm (1.89)
that, in turn, does not differ numerically from its exact formulation given by (1.87).

Being the threshold current Ith close to Itr, this conclusion also apply to thresh-
old current measurements.

This last particular case has been investigated in a previous paper [36], where
optical losses were modifed on a 1310 nm edge emitter by a Focused Ion Beam,
and Ith was monitored. The experiment and its results will be reported in detail
in the next paragraph 2.2. Here we can anticipate that the experiments, indeed,
confirmed the expected results in a range where the two competing formulas for
g(I) are completely undistinguishable.

A final comment must be given for (1.92): it assigns a physical meaning to the
phenomenological “fitting parameter” g0 of [43]. The factor 1/4 is not accidental:
it corresponds to the transparency value of the absorption term in (1.27), so that
g0 assumes the role of the absorption coefficient measured at transparency, that is
when absorption exactly balances stimulated emission.

1.2.4 Experimental method

The procedure proposed in [35] and in 1.1.6 is the most straightforward also
for gain measurement. Plotting I, Inr and Iph as functions of the internal voltage
V − RSI, it is possible to identify the values of Ith0 and I0 as the values of,
respectively, Inr and Iph that correspond to the transparency voltage Vtr (Fig.1.18).

Figure 1.18: The identification of Ith0 and I0 on the measured characteristics.
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Figure 1.19: The normalized experimental gain curves (red lines) of three laser
diodes, compared with the calculations (thin lines) of (1.89) and of (1.86). Once
indicated the value of the ratio R = αT/gm in (1.86), the experimental and the
calculated curves are undistinguishable. The saturation values for the ratio R are
0.37 for the VCSEL, 0.25 for the ridge emitter and 0.025 for the BH device.

The original IM has been preserved, to show the upscaling factor required to
reconstruct Iph. Anyway, the latter remains so low with respect to Inr in the
sub-threshold range, that I and Inr look undistinguishable, which justifies the
approximation of (1.87) with (1.89), as far as saturation is not involved.

1.2.4.1 The normalized curves and the universal function

The available experimental values of Inr(I) and the calculation of Ith0 allow
to draw the normalized gain g/gm as a function of the normalized current I/Ith0
according to (1.87).

Fig.1.19 reports the normalized experimental gain curves for a VCSEL emitting
at 850 nm, and two edge emitters at 1310 nm, one in Buried Heterostructure (BH)
and one in Ridge technology.

It is interesting to observe the dashed line calculated by means of (1.89), that
is replacing Inr with I. It draws a symmetrical universal curve on which the
experimental values of the normalized gain must lay for any device. What remains
peculiar of each device is the level at which the ratio g/gm saturates.

Equation (1.86) is the key result in this paragraph that includes all features
of modal gain as a function of the injected current. Its alternative forms (and in
particular (1.87)), have been successively presented and discussed for the sake of
comparison with the previous formulas found in literature.

The cardinal point of the given results is the Current-Voltage relationship
shown in [1–3], and the peculiarity of (1.83), the Iph(V ) characteristics for the
radiative component of the total current I. It is the vanishing condition for the
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denominator in that equation that switches up the LED-laser transition, and then
gain saturation, in the whole theoretical frame.

After these results we start further investigations, in order to extrapolate the
value for the modal gain gm. The first attempt will be presented in the next
subparagraph.

1.2.5 Gain versus current in single mode laser diode.

Numerous investigation based on electrical and optical characterization have
been intensively used to characterize and determine failure mechanisms in laser
diodes [40,44–48]. The analyses in this paragraph 1.2 and in the next subparagraph
2.2.1 with the references [2,3,35,49,50] have considered the gain measurement with
electrical measurement approach. In particular, paragraph 1.2 it is focused on the
measurement of gain g as a function of the laser current I, first pointing out
how and why the available theories and methods fail for single-mode emitters,
as DFB and DBR structures. It then gave account for an experiment where,
inducing controlled modifications with a FIB, the empirical relationship between
optical losses and threshold current was nicely confirmed. Finally, it proposed a
new theoretical formula that on one side is proven to numerically coincide with
the empirical ones, and on the other side indicates an experimental method for
measuring gain in single-mode devices.

The last sub-subparagraph 1.2.4.1 pointed out the main practical limitation of
the whole study: the impossibility to decouple the measured gain g from a scale
factor gm.

This subparagraph aims to remove that limitation, by the combined use of the
new measurement method for g(I) and the Hakki-Paoli method [37,51] that, since
40 years, provides spectral measurement of gain for Fabry Perot laser diodes.

The multimodal sub-threshold spectrum of some DFB devices will be shown
acting as one of the best candidates for absolute gain measurement, according
with the Hakki-Paoli (HP) or other techniques reported in [37,38,51], at some few
different current levels. The results, measured at the operating frequency at which
the devices are tuned for single-mode lasing, compared with the corresponding
values of the continuous g(I)/g0 curve, obtained by means of the new method, allow
to calculate g0. The perfect superposition of the HP values onto the continuous
curve, after upscaling it by g0, validates once more the proposed extended model.

The goal of this subparagraph will be to demonstrate a much simpler way for
gain measurement as a function of the injection current in single-mode emitters.
This, in turn, aims to ease both characterization and failure Analysis in such
devices.

1.2.5.1 The measurement of gm

As it has been said previously equation (1.86) corresponds to an improvement
of the proposed new model, that allows to demonstrate the existence of upper and
lower limits for the function g(I). Anyway, it does not decouple g from gm (or,
equivalently, from g0).

A nice solution to this problem comes from the observation that at suitable
currents I < Ith the spectrum even of a Distributed Feedback (DFB) device is

50



Figure 1.20: Multi-modal spectrum of a 1310 nm InP-based DFB laser diode for
I < Ith measured at transparency qVtr = hν.

dominated by the Fabry-Perot resonances (fig.1.20). The spectral measurement
(fig.1.20) has been made with the equipment HORIBA Jobin Yvon, 1250M Series
II, High resolution Spectrometer, with spectral dispersion equal to 0.65nm/mm
(with slit near 3µm). For experiment the resolution is close to 20pm for a constant
current close to 8mA. Considering such current levels, the HP method can be
applied to get the absolute value of g at any frequency in the spectrum, at a
constant current I.

On a practical ground, only a limited set of values of I provides a good SNR
for the measured spectral g(ν, I). Anyway, it should be obvious that, tuning on
the DFB peak frequency ν, those values must coincide, apart from a multiplying
constant, with those from (1.86). That constant is gm, and it is defined by data
fitting.

The result is shown in fig.1.21, where the dots represent the HP measurements,
while the continuous curve corresponds to the plot of (1.87), after the determina-
tion of Inr and Ith0 according to sub-subparagraph 1.1.5.2. The plot clearly shows
the upper and lower bounds of the absolute gain, while the inset allows to appreci-
ate the nice fitting of the two sets of data. The minimum value of g, corresponding
to the absorption coefficient for the un-pumped material at the reference frequency
set by the DFB grating, results to be gm = 650cm−1, while the total loss coefficient,
giving the saturation upper boundary for gain, results to be αT = 140cm−1.

The proposed method undoubtedly an added-value for both manufacturers
and end-users dealing with the possibility to extract the gain value of Laser diodes
using a quite nice and simple technique from the spectrum measurements. This
approach is more efficient for laser diode devices where laser diode is not directly
accessible and some additional optical losses, due to packaging, must be taking
into account. The combined use of the current-voltage measurements and of the
Hakki-Paoli methods allows for at least a good estimate of gain in single-mode
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Figure 1.21: g(I) in logarithmic horizontal scale measured by the Hakki-Paoli and
the new method.

laser diodes removing the need of comparing devices of different lengths [31], or
even of opening the package. The good fitting of the Hakki-Paoli data by the g(I)
continuous curve on one side experimentally validates once more the theoretical
laser model underlying the new proposed method for measuring g, and on the
other side shows the complete removal of the ultimate limitation that affected it,
as pointed out at the beginning of this subparagraph.

It is then possible, from now, to include gain measurement among a set of
non-destructive characterization techniques available not only at the device de-
signer level, but also for qualification reliability engineers. Going back to the
theoretical model, the lower gain limit should only depend on material properties
as fundamental as the value of the Einstein coefficient for absorption and stimu-
lated emission and on the joint density of states for electrons and holes involved
in radiative direct transitions. On the other hand, the upper gain limit should
mostly depend on optical losses, a strictly device-specific parameter that includes
the internal losses, not due to absorption, and photon escape from the active re-
gion (including the escapes that the confinement factor Γ accounts for). It is then
expected that the most part of the known laser degradation mechanism will affect
the upper limit of gain, leaving its lower limit and the whole intermediate curve
unchanged.

This novel method will allow to verify such expectations. In any case, it is a
new tool for a direct insight into the relationship between causes and effects in
laser diodes. Such study represents a significant part of the general Design for
Reliability (DfR) effort carried out to produce efficient and reliable high power
devices at the industrial level.
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1.2.6 Gain versus voltage in single mode laser diode.

This subparagraph 1.2.6 proposes a practical method for complete gain mea-
surement in DFB laser diodes and it is complementary to the method proposed in
the previous subparagraph 1.2.5 . It is non-destructive and does not require any
reference device. It includes the whole range of continuous gain values, from its
minimum to saturation, passing through the transparency condition. The method
makes gain suitable for monitoring time-evolving processes, as degradation kinetics
in Reliability tests.

This subparagraph follows the approach to gain calculation mentioned by
Agrawal and Dutta [52], that refers to the original study by Lasher and Stern [41]
that has been, in turn, summarized by Casey and Panish [53]. We propose to over-
come the shortcoming pointed out by [52] for which that approach “provides only
the small-signal gain, and so gain-saturation effects cannot be treated”, by using
the concept of junction voltage, introduced by Paoli and Barnes [54]. The result
will be an experimental curve, ranging continuously from the negative minimum
corresponding to the un-pumped state, passing through the transparency condition
and finally clearly saturating at a constant maximum. One undefined multiplying
constant will then be calculated by comparing that curve with some experimental
gain values measured by the standard Hakki-Paoli method [37], whose suitability
for DFB devices will be discussed. The list of other methods for gain measurements
is left to specific papers available on literature [44].

1.2.6.1 Gain and voltage equations

Verdeyen [42], based on [41, 52, 53], proposes for gain the expression (1.78).
From this equation we now proceed with the following steps:

a) Set

gm = A
λ20

8πn2
r

N2
ν (1.93)

This is a gain coefficient, depending on the frequency ν, that collects all
information on the effective density of states.

b) Following Paoli and Barnes [54], define

Vj = V −RSI (1.94)

where V and I are, respectively, the forward voltage and current of the laser
diode, and RS is the series resistance of the device.

c) Introduce an explicit for the product of the Fermi functions in (1.78)

[fe(1− fh)] =
1[

exp

(
Ee − φn
kT

+ 1

)][
exp

(
φp − Eh
kT

+ 1

)] =

=
1

exp

(
hν − qVj
kT

)
+ 2 exp

(
hν − qVj

2kT

)
cosh(ε) + 1

(1.95)
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Figure 1.22: Experimental plot of the junction voltage Vj in a 1310 nm InP-based
DFB laser diode. Its saturation value Vth is compared with the transparency
voltage qVtr = hν.

where the parameter ε is defined as (1.9) and Ee and Eh are the electron and
hole energies involved in the optical transition Ee − Eh = hν.

For undoped In1−xGaxAsyP1−y lattice-matched to InP , it can be demonstrated
that, in the Boltzmann approximation for carrier densities, ε ≤ 1 for transitions
involving light holes, and one order of magnitude less for heavy holes. The pos-
sibility and effect of larger values of ε for relevant doping and/or high injection
levels, for which the Boltzmann approximation does not hold, will be considered
in the next discussion. The final result of the indicated steps is the definition of
the function

H =
g

gm
=

1− exp

(
hν − qVj
kT

)
1 + 2 cosh(ε) exp

(
hν − qVj

2kT

)
+ exp

(
hν − qVj
kT

) (1.96)

1.2.6.2 Gain measurement

Equation (1.94) allows to draw Vj from experimental data. Fig.1.22 refers to
a 1310 nm DFB laser diode for which RS = 7.7Ω has been measured. Inserting
now the experimental values of Vj in (1.96), after having calculated ε for the given
material and measured hν form the single-mode emission above threshold, we can
draw the relative gain function g/gm. In order to get the absolute gain function
g, the constant gm must be obtained.

For this task, we take advantage of the evidence (fig.1.23) of clear Fabry-Perot
(FP) resonances in the sub-threshold Amplified Spontaneous Emission (ASE) spec-
trum, and of the correspondence of the DFB peak with one of the FP maxima. The
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Figure 1.23: ASE spectrum of the DFB in the sub-threshold range.

final discussion will demonstrate that in this situation the Hakki Paoli method [37]
can be applied also to the DFB peak. According with that method, the ratio r
between the max and min indicated in fig.1.23 leads to measure the quantity

S = ln

(√
r + 1√
r − 1

)
= LαT − Lg (1.97)

where L is the length of the optical cavity, and αT is the total loss coefficient.
About αT , it is assumed to include all internal losses αi and mirror losses αm,

being the latter often represented by means of the sole mirror reflectivities R1 and
R2, typical of a pure Fabry-Perot (FP) cavity, whose length is L

αT = αi + αm = αi +
1

L
ln

1√
R1R2

(1.98)

The physical length L could be directly measured from one reference device.
It was done by Scanning Electron Microscopy, resulting L = 258µm.

Anyway, we proceeded also with the FP resonances, measuring the Free Spec-
tral Range (FSR), that is the spacing ∆hν between maxima in Fig.1.23, that is
linked to Optical Path Length (OPL) nL.

nL =
hc

2∆hν
(1.99)

where h is the Planck’s constant, c the light speed in vacuum and n the refractive
index. It resulted nL = 0.0903cm, that indicates n = 3.5, a perfectly acceptable
value for the given material and optical frequency. The joint use of (1.96) and
(1.97) leads to the linear relationship

Si = LαT − LgmHi (1.100)
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I V Vj S HL HH

6.98 1.003 0.949 2.297 -0.022 -0.018

8.03 1.018 0.956 1.889 0.039 0.030

9.01 1.030 0.961 1.292 0.088 0.070

10.05 1.043 0.966 0.964 0.134 0.106

11.13 1.056 0.97 0.629 0.176 0.140

12.11 1.067 0.974 0.431 0.210 0.167

Table 1.2: Experimental measurements of terms in (1.100).

Where the suffix i indicates that several measurements can be performed at dif-
ferent injection levels. Table 1.2 reports a set of such measurements, where H was
calculated for both the case of light holes (HL) and heavy holes (HH). For both
cases (1.100) was used for a least square fit.

The difference in the last two columns is due to the different value of ε, that on
one side modifies the curve described by (1.96) and on the other leads to different
values for its minimum gm. It interesting is to observe Fig.1.24, that plots both
curves vs. the applied voltage V and also the experimental gain values measured
by means of the Hakki-Paoli method. The two curves are the same curve for the
whole positive range of the gain function, and also for an extended range below
the transparency, much more extended than the range explored by the Hakki-Paoli
method.

Moreover, it could be shown that setting ε = 0, one would obtain a curve
undistinguishable from that of the light holes. Even more, any other value of ε,
including the extreme ones corresponding to degeneracy in the doping level, would
lead to the same result: beyond some negative gain level, all fitting curves do
coincide.

The practical meaning of Fig.1.24 is that a simplified version of (1.96) should be
proposed, holding for all the practically important gain values, with the exception
of its deep range close to the minimum:

g = gm

1− exp

(
hν − qVj

2kT

)
1 + exp

(
hν − qVj

2kT

) = gmarcth

(
hν − qVj

2kT

)
(1.101)

In order to better visualize the various excitation levels involved in this study,
Fig.1.25 reports the standard L-I curve of the same device as in fig.1.22, fig.1.23
and fig.1.24. The threshold current is measured at about 13 mA. The box HP
indicates the range of excitation values at which the spectra have been measured
for applying the Hakki-Paoli method. It should be appreciate that all them are
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Figure 1.24: Absolute gain measurement for two values of the parameter ε. HP
indicates the experimental values calculated by the Hakki-Paoli method.

lower than threshold, so fulfilling the recommendation issued by Cassidy [38] with
respect to possible effects of the resolution of the spectrometer when spectra are
measured above-threshold.

Figure 1.25: The general L-I curve for the DFB laser diode under investigation.
The box HP indicates the injection range for the Hakki-Paoli method, while the
box ε indicates the low current values for which gain curves, as in Fig.1.24, can
depend on the actual value of ε.

But, even more important, the use of sub-threshold data in (1.100) leads to
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Figure 1.26: The box indicates the range of voltage and current where the actual
value of ε modifies the gain curves. The dashed line Ia indicates the current of
the active area [2]. The extra current is due to lateral currents, not completely
confined under the ridge. IM is the current measured from the monitor diode.

the determination of αT as a coefficient in a linear relationship, not necessarily
related to any saturation. It is then relevant to observe that that same numerical
value comes out from the gain equation when the threshold voltage Vj = Vth is
introduced in (1.96), no matter the value of ε.

Finally, it is also interesting to observe that the region where ε makes the
difference in gain formulas corresponds to the low injection range where, in a ridge
structure, even current confinement is not complete, as shown in fig.1.26.

1.2.6.3 Hakki-Paoli method and DFB

The last considerations have defined the boundaries of application of (1.95), one
of the crucial points of this study. The other most important issue is the suitabil-
ity of the Hakki-Paoli method for DFB devices. This requires a slightly different
approach than the standard one that operates within the so-called Coupled-Wave
framework [55, 56]. The Coupled Wave Theory (CWT) gives nice results for the
DFB reflection coefficient, up to replace the product R1R2 that defines the com-
bined mirror reflectivity in a pure FP cavity with a more complicated but elegant
expression that includes those same reflectivity coefficients and the DFB-specific
reflectivity. Nevertheless, if one tries to use the solution of the CWT for calculat-
ing the optical field after the multiple round-trips, one never gets what Fig.1.23
shows, and in particular, an enhanced DFB peak castes onto the FP pattern.

For the limited sake of this study, we will first consider the DFB peak in Fig.1.23
as essentially tuned to one of the existing FP maxima. This means that one can
assume that the cavity length L is an integer multiple of the DFB grating pitch
a. If this holds, it is sufficient to recall that in the HP method [37] and in the
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appendix C with the new mathematical reconsiderations, the amplitude F of the
travelling wave whose propagation is considered after several round trips is given
by

F (x) = F0

[
exp

(
−αT − g

2
x

)
exp(ikx)

]
(1.102)

and this leads to a final intensity

| F |2= | F0 |2

1 + exp(−2(αT − g)L)− 2 exp(−(αT − g)L) cos (2kL)
(1.103)

from which maxima and minima are calculated and lead to (1.97). We replace the
plane wave of (1.102) with the Bloch solution

F (x) = exp

(
−αT − g

2
x

)[
exp(ikx)

∑
m

Fm exp

(
i
2πm

a
x

)]
(1.104)

It can be easily verified that, after several round trips of length L multiple of a the
result in (1.103) is simply modified in its numerator, where |

∑
m Fm |2 replaces

| F0 |2. Provided one assumes that the DFB resonance, due to the finiteness of the
cavity, has a linewidth large enough to include the next minimum, the HP method
results suitable for gain calculations.

The proposed method essentially aims to extend the range of practical measure-
ments of modal gain to DFB laser diodes, validating and extending the Hakki-Paoli
method, originally developed only for FP devices. The measurement procedures
are non-destructive and can be applied to packaged devices whose construction
details are unknown.

The role of details as band asymmetries or even material doping have been
shown to be relevant only in the very low current range, as illustrated in fig.1.25
and fig.1.26.

This result is also relevant for a model developed and applied during the past
years [2,3,35,49,50], where the approximation corresponding to ε = 0 is implicitly
assumed. This subparagraph shows up to what extent this can be acceptable also
for that general model.

1.3 Clamp Voltage and ideality factor in laser

diodes

The proposed model for laser diodes was applied to the decomposition of the
experimental characteristics of several laser diodes into their fundamental com-
ponents. This pointed out a problem involving the ideality factor and the clamp
voltage. The two quantities indicate largely different values of the internal volt-
age, not explained or predicted by any theory. The solution of the puzzle requires
going back to points as fundamental as the meaning of locality of band-to-band
transitions in quantum or bulk active regions

This paragraph deals with a puzzle that troubled the authors along a couple of
years, after having published [1–3], the new theoretical model for the DC charac-
teristics of a laser diode (LD). The initial prompt, and the main application field of
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such a new model, was the search for an interpretation tool for the evolving char-
acteristics of a LD under degradation [35]. In particular, the model attempted the
numerical fit of the experimental DC curves by adjusting the relevant coefficients
of a set of equations strictly derived by physical considerations. The protocol
described in subparagraph 1.1.6 [35] illustrates how to decode the experimental
data and reconstruct, for instance, the separate contribution of the radiative and
non-radiative phenomena to the overall conduction.

Compared to that model, two experimental points remained puzzling: the ap-
parent continuous reduction of the series resistance beyond the threshold condition,
and the measured internal threshold voltage as the upper limit of the sub-threshold
domain. The former will be discussed and solved specifically in a next paragraph,
while the latter is the subject of this section.

The kernel of the problem can be summarized as follows: experimental data
for several different laser diodes show that the pure radiative component Iph of the
total laser current I exactly behaves as in a Shockley diode with an ideality factor
n > 1. This is not surprising for a MQW structure, as it will be discussed in the
following subparagraphs, and simply states that the effective internal voltage Vin
driving the optically active material is n times lower than the voltage V applied
to the electrical junction. But the threshold condition, that is the experimentally
observable clamp of the junction voltage V = Vth, always occur at qVth ≈ hν, where
q is the electron charge and hν is the peak photon energy, and not at V = nVth,
as the sub-threshold domain predicts.

The simplest explanations based on ohmic effects or parasitic currents fail after
simple considerations, and the problem stands in its full evidence.

The paragraph will start from experimental measurements on a real device,
according with the protocol described in 1.1.6 and [35], and will then summarize
the results of the model reported in 1.1 [1–3] that are relevant for this work.

The attempt to fit theory with experiments will point out the puzzling question
of the effective voltage. With the aid of further experimental data, belonging to
both bulk and Quantum Well active area devices, it will be proposed an interpreta-
tion, that calls into play concepts as fundamental as the locality of photon-charge
interaction.

1.3.1 Experimental data and modeling

Fig.1.18 displays the experimental characteristics of an edge-emitting DFB
laser diode in ridge technology tuned at 1310 nm. This representation follows the
protocol proposed in the subparagraph 1.1.6.

Moreover, the displayed voltage range focuses, in this paragraph, on the in-
jection levels close to threshold, and neglects the lower current range (highlighted
area on the left), due to lateral conduction paths. Those lateral currents are rel-
evant only in the sub-mA range for a device as in fig.1.18, and are not significant
for this study. Anyway, they have been duly considered and completely modeled
in [2].

Several other features of fig.1.18 should be commented. The threshold voltage
Vth now appears as a vertical asymptote for all currents, while the threshold current
Ith is the corresponding value of the current I. The quoted references refine the last
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statement, showing that the real definition of the threshold current is the value that
the sole Inr assumes at V = Vth. The small contribution of the radiative current
Iph to the total current I in the sub-threshold range, experimentally confirmed in
fig.1.18, makes the identification I ≈ Inr reasonable for practical cases. Anyway,
both theory and direct inspection of the numerical data from experiments show
that Inr does clamp at the value Ith = Inr(Vth) (1.54), while I continues increasing,
because of (1.52), following the increase of Iph even when voltage clamps. This
particular feature of Iph is possibly the most peculiar result of the cited model,
that describes that current by means of the formula (1.46), The reference voltages
in fig.1.18 are, respectively, the transparency voltage

Vtr =
hν

q
(1.105)

at which stimulated emission balances absorption, and gain is null, and the thresh-
old voltage can be rewritten from (1.41):

Vth = Vtr +
2kT

q
ln

(
1 +R

1−R

)
(1.106)

that is the value of the internal voltage at which the denominator in (1.46) vanishes.
It is evident from (1.106) that Vth > Vtr and that the condition for voltage clamping
at a finite value, that is for achieving the laser regime, is R < 1.

For the case given in fig.1.18, one has Vth = 0.993, Vtr = 0.947V , and, at room
temperature, R = 0.42.

It is intriguing the parallelism (that means the proportionality) of all currents in
the sub-threshold range in fig.1.18, and have discussed it in the previous paragraph
1.1. Anyway, for the scope of this part, the sole Iph is relevant, so that we will
focus on it in the following.

The plot of Iph calculated from (1.46) and the experimental measurements as
in fig.1.18 will show, in the next subaragraphs, a nice qualitative agreement: the
sub-threshold range (when exponentials in the denominator of (1.46) are negligible
with respect to the unity) displays a Shockley-like behavior, that is an exponential
dependence of current on voltage. As far as the voltage approaches the thresh-
old limit (1.106), the current Iph increases rapidly, up to dominate over all other
currents, and the non-radiative Inr blocks (1.54).

1.3.2 Ideality factor and threshold voltage

When one moves to a more quantitative analysis, two differences appear be-
tween theory and experiments: the transition at threshold is sharper in the ex-
perimental curves than in the theoretical ones, and the slope of the sub-threshold
branch in real data is significantly lower than predictions.

Measuring the slope of Iph in the sub-threshold range in fig.1.18, one gets
an ideality factor n = 1.4, instead of the expected n = 1. At a first glance
this seems not a problem: many diodes show non-unitary ideality factors, and
even the seminal work of Shockley [15] predicts that, in case of recombination
inside the depletion layer (that is the case for optical emitters, although radiative
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Figure 1.27: Quasi-Fermi levels φn and φp in a junction where all recombination
takes place inside the depletion region. Their difference is everywhere lower than
the junction bias qV .

recombination hopefully overcomes trap-driven transitions), the ideal voltage V
appears reduced.

The interpretation, indeed, of a value n > 1 could be that recombination
leads several carriers to be lost before they reach the region where the dominant
recombination rate takes place, as represented in fig.1.27. This means that the
leading current appears to depend not on exp(qV/kT ), but on exp(qV/nkT ), with
n > 1. This would simply require to re-define the“internal voltage” that appears
in (1.52) as a fraction of the nominal voltage, even after having removed the ohmic
contribution.

Here the problem arises that a reduced voltage would also re-scale the value of
both Vtr (1.105) and Vth (1.106), which does not appear in experimental data.

In order to clarify the last point, fig.1.28 shows an attempt to use (1.46) for
fitting data of fig.1.18. The bold lines represent the cases of n = 1 and n = 1.4.
The corresponding values for both Vtr and Vth are brought into evidence. It should
be noticed that the last case shifts the transparency voltage Vtr at more than 1.3V ,
which is well beyond the observed value of Vth.

To support the statement that the measured Vtr really depends on V and not
on V/n, we can recall the results obtained in an experiment [36] where a Focused
Ion Beam (FIB) was used to modify the optical losses in a 1310 nm ridge laser
diode, and then to change both Vth and Ith. The modified thresholds not only
followed the theoretical expectations, but also allowed to extrapolate their values
to the ideal case of no-losses, when threshold and transparency coincide. It resulted
Vth0 = Vtr = 0.947V , that is exactly the value of hν/q.

In other words, the sub-threshold range looks depending on a reduced voltage
(n > 1), while the threshold voltage seem to follow the full voltage (n = 1). The
two requirements by no means can be simultaneously fulfilled in (1.46).
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Figure 1.28: Iph curves calculated, by means of (1.46) for n = 1 and n = 1.4,
trying to fit experimental data of Fig.1.18.

1.3.3 Curve fitting

The first step toward the solution of the puzzle is to observe that a suitable
superposition of several functions Iph, as given by (1.46), can lead to properly fit
the experimental curves.

Let us start with fig.1.29, referring to a 850 nm GaAs-based VCSEL, that is
known to have a single active layer, thick enough to be considered closer to a bulk
layer than a Quantum Well. The transparency voltage is accordingly calculated
as Vtr = 1.459V , while the threshold was measured at Vth = 1.555V . This is
compatible with the theoretical n = 1 curve, with a loss/gain ratio R = 0.7.

The sub-threshold branch, on the other hand, shows an ideality factor n = 1.55,
and the transition appears sharper than the expectation from (1.46). Anyway, a
very good fit results from a suitable linear combination of two Iph curves, one
depending on V/n and one on V . The first nearly completely recovers the sub-
threshold range, while the second, that defines the threshold voltage, is suitably
scaled down, in order to adjust the transition. It is not necessary here to grant this
patchwork with too much significance: it is just a phenomenological observation
that will call for deeper analysis in the following.

A second example (fig.1.30) is a 1310 nm DFB laser, as for the case in fig.1.18,
but in Buried Heterostructure (BH) technology.

The obvious question is about the physical meaning of the superposition of just
two theoretical and conflicting curves to get proper fitting of experimental data.
To this purpose, fig.1.31 may help. It has been calculated superimposing not two
curves, but a continuous set of curves Iph spanning a given interval n1, n2 of values
of the ideality factor n, weighted by an adjustable peak function P (n):∫ n2

n1

P (n)Iph

(
V

n

)
dn (1.107)
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Figure 1.29: Experimental Iph (bold line) for a 850 nm VCSEL and the two fitting
curves (thin lines), calculated from (1.46).

Figure 1.30: The same as in Fig.1.29 for a 1310 nm BH DFB laser diode.
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Figure 1.31: The continuous superposition in (1.107) gives curves with different
slope for different shapes of the peak function P (n), but with the same threshold
voltage, corresponding to the threshold of the Iph function with the lowest value
of n.

The specific case reported in figure refers to n ranging from 1 to 2, and a
gaussian peak function P with σ = 0.1,whose maximum is shifted from n = 1 to
n = 1.5 and n = 2. The resulting IphTOT curves display, for V < Vth, a slope
corresponding, respectively, to n = 1.72, n = 1.555 and n = 1.4. The relevant
result is that all curves display the same threshold Vth of the component Iph(V ),
corresponding to the minimum value n = 1.

The scope of (1.107) is to represent, at least qualitatively, a situation similar
to fig.1.27, where several different separations of the quasi-Fermi level concur to
the total recombination rate. The result is a curve that strictly resembles the ideal
Iph, keeping the correct threshold voltage while the ideality factor deviates from
unity.

It is then possible to imagine that a suitable choice of the extremals of the
integral and of the shape and position of the peak function P in (1.107) can fit
real data.

1.3.4 Ideality factor

At a first glance, in order to explain n > 1, in LEDs or laser diodes, three
other causes could be considered, besides the distributed recombination inside the
active layer represented in fig.1.27: ohmic effects, diffusion currents, and Shock-
ley–Read–Hall (SHR) recombination. Anyway, the first have been removed by
introducing the reduced abscissa V − RSI, and in any case no ohmic effect can
reduce V to the same V/n at any injection level. On the other hand, diffusion cur-
rents have been considered since the original papers [1–3] as the residual Shockley
current due to incomplete recombination inside the active region, and have been
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Figure 1.32: Local and non-local transitions in an ideal double Quantum Well

shown to be negligible in real devices. Finally, the Shockley–Read–Hall mecha-
nisms could justify non-unitary values for n, but limited to the sole non-radiative
components (because none of such recombination mechanisms contributes to light
emission), while we are investigating the ideality factor of the sole radiative current
Iph, no matter the behavior of any other current in the laser diode.

1.3.5 Non-local interactions

All rate equations for photon emission rely on the joint densities of electrons
and holes, that is, they imply ”bimolecular” recombination [31]. This, in turn,
calls into play the full separation of the quasi-Fermi levels, and never a fraction of
it. The theoretically expected clamp of such separation and the observation of a
clamping voltage in the V − RSI representation identifies the measured internal
voltage with φn − φp, and brings back to the problem of the origin of an ideality
factor n > 1.

The superposition in (1.107) and fig.1.31 partially solves the problem, showing
as a distributed recombination across the active layer can both justify the non-
unitary ideality factor and the occurrence of a fixed threshold voltage. But it
gives, indeed, the correct threshold voltage only if the lowest limit in the integral
is exactly n1 = 1. This means that transitions involving the full separation of the
quasi-Fermi levels must be included in the range of the possibilities. Looking again
at fig.1.27, this seems impossible.

The point is that, in fig.1.27, we consider each recombination rate ruled by
the difference between the quasi-Fermi levels calculated at the same position. In
other words, we invoke strictly local interactions.

The situation is, if possible, even more evident if we consider a Multi Quantum
Well. Fig.1.32 describes an ideal double quantum well, that is supposed to be
immersed in the middle of the depletion region of a Heterojunction Diode, and
draws the qualitative behavior of the quasi-Fermi levels, assuming for simplicity
that recombination only takes place inside each well.
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It should be evident that none of the wells ”feels” the complete separation
of the quasi-Fermi levels, as ref. [58] clearly shows for LED devices. In other
words, any attempt to bring any QW first to transparency and then to threshold,
would require to apply a total voltage to the MQW stack equal to or higher than
qV = nEg. This holds until we consider local transitions, as the vertical arrow,
labeled ”1” in fig.1.32. But if we accept the idea that also the transition labeled ”2”
has a non-null probability, then the whole building of the previous subparagraph
1.3.3 gains physical soundness.

Anyway, this last transition should be handled with care. It cannot be a two-
step event, for instance, first tunneling from one well to the other, followed by
local recombination. In this case, the tunneling would ”filter” the flux of charge,
allowing only part of the carrier densities to penetrate the other well. This would,
in turn, reduce the quasi-Fermi levels, i.e., for electrons, leading back to the reduced
separation.

On the contrary, we could suppose that the tunneling is so probable that elec-
trons from the well on the left, in fig.1.32, will flood the well on the right, and
the same for holes on the reverse direction, without significant reduction of their
density. By the way, this is one of the ways for reading Quantum-Cascade de-
vices. But, would this be the explanation, then also the recombination rate in the
sub-threshold range should follow the full separation qV of the quasi-Fermi levels.

The point is that, in order to have a transition at full separation qV and
n > 1, we should consider that the population of electrons on the left well can
interact with the population of holes in the one on the right. Only in this case
we can achieve transparency applying a voltage that is Vtr = hν/q ≈ Eg/q, and a
measurable threshold Vth that is only few percent higher than Vtr.

Furthermore, the evidence of a non-unitary ideality factor, given by the sub-
threshold branches of all experimental cases, states that such a non-local transition
should be much less probable than local processes. This is the meaning of the
relative position of the two Iph curves in both figs. 1.29 and 1.30: the component
depending on V must be much lower than Iph(V/n) in the sub-threshold range.
This makes sense: local transitions are likely to be much more probable than non-
local ones. It seems reasonable that such situation may be common to all diodes,
and not peculiar of laser diodes.What is peculiar is that, in optical emitters, the
radiative component Iph behaves as described by (1.46), with its vertical increase
at threshold. This feature allows a current, that should be negligible in all other
cases, to become dominant as far as the bias reaches the threshold Vth.

It seems necessary to accept in full the ultimate consequence of the Uncer-
tainty Principle that leads to non-locality of the interaction. If one considers the
different linewidth of the spontaneous and stimulated emission, it follows that the
sharp definition of the electron–hole transition energy for a stimulated process re-
quires an uncertainty in the carrier position larger by far than the thickness of the
active regions, no matter if bulk, QW or MQW. On the contrary, the much wider
lineshape of the spontaneous transitions allows locality to keep some meaning, and
classical (including MQW transitions) recombination rates between carriers may
be distinguished by their position.

The non-local interaction is of course not new, and is based on the overlap of
the electron and hole wave functions in quantum-sized solid-state structure sys-
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Figure 1.33: Effects of 3 MeV proton irradiation on a 1310 nm InP edge emitter.
Curve 0: before irradiation. Curve 1: after irradiation.

tem. It is mentioned in several experiments as Quantum Coupling, for explaining
observations in closely spaced Quantum Dots and micro-cavities (see ref. [59, 60]
for examples).

Anyway, in the current paragraph, non-locality is called into play for explaining
features as simple as DC characteristics displayed even by commercial optoelec-
tronic devices. Its novelty should be then surprising, because of the decades of
science and technology in this field. It may be useful to consider that two things
allowed to point out the problem: a) the availability of (1.46), that predicts the
behavior of Iph continuously across the whole injection range and embeds the
threshold condition as a computable consequence of theory, and b) the reference
of the quasi-Fermi levels to the measurable applied voltage V , that brings down a
laser diode to the practical playground of device engineering.

1.3.6 Application: proton irradiation on a 1310 nm DFB

The proposed update of an existing model for laser diode DC characteristics
has been applied to the case of an InP-based DFB laser diode emitting at 1310
nm, that was irradiated by 3MeV protons for studying the effect of radiations on
optical emitters for space applications. The complete report of that experiment,
that shows the evidence of diffusion kinetics after irradiation, is presented in 3.4
and [61]. The result relevant for this paragraph is summarized in fig.1.33, where
the sole Iph is plotted, before and just after irradiation, versus the reduced voltage
V − RSI as for the previous cases. For the sake of clarity, no calculated curve
has been added, although excellent results can be easily obtained by the extended
model, as reported for all previous cases. This allows focusing on the experimental
evolution of the laser characteristics.

Contrary to the large majority of degradation cases, the threshold voltage Vth1
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of the damaged device decreases with respect to its initial value Vth0, which should
indicate a small reduction of the optical losses inside the cavity. In fig.1.33 Vtr
indicates the ideal threshold voltage in case of no losses. In the sub-threshold
range, on the other hand, the intensity of the radiative current reduces, which is
typical of a smaller quantum efficiency of the active region. But the most intriguing
figure is the reduction also of the ideality factor.

It is beyond the scopes of this paragraph even to attempt the physical inter-
pretation of the observed characteristics, that display some puzzling features. The
role of the proposed example is to point out that, at least in some particular cases,
the accurate analysis of some degradation kinetics must include the possibility of
changes also of the ideality factor. The proposed extended model operates in that
direction.

The study of the electrical characteristic and Trans-characteristics of commer-
cial laser diodes pointed out a contradictory determination of the separation of the
quasi-Fermi levels in the sub-threshold and above the threshold ranges. Several
practical explanations have been considered, all based on classical arguments in
Physics of Solid State Devices. Nevertheless, only the reference to deep Quantum
Mechanical concepts as non-locality of photon-induced electron–hole transitions
seems to be able to fully solve the contradiction.

A fascinating experiment could be imagined to verify the proposed interpre-
tation: would it be possible to build a laser diode with two Quantum Wells of
different bandgaps, and provided that the selection rules allow the ”non-local”
transitions, then lasing would take place at a photon energy different from the
characteristic emission of each of the two wells.

1.4 Incomplete threshold and effective RS.

The previous paragraph 1.3, dealing with the puzzle of the ideality factor,
opened the series of the refinements required for practical application of the general
model. This paragraph will deal with another point that shares, with the previous
one, a common issue: the observed clamp voltage Vth in real devices [57]. That
voltage is predicted to be a constant (1.41), and its experimental value should
be given by first calculating the series resistance RS by means of the differential
curve dV/dI as shown in fig.1.12, and then re-plotting the general current-voltage
characteristics as a function of the reduced voltage V−RSI: all current components
Inr, IM , Iph measured for I > Ith should then align along a vertical line, exactly
located at the abscissa V = Vth. The problem in real devices is that the value of RS

should be itself a constant for I > Ith, but it is not. The series resistance, indeed,
seems to monotonically decrease as the current I increases. This phenomenon has
been observed by several authors in the past [62–64] but non completely justified.
This section will start with the statement of the problem by analysing experimental
data for a real device. It will then propose a solution with two different approaches:
one strictly analytic, based on a network of distributed elements, that is still in
process and for this reason reported in Appendix D, and one numerical based on
a limited number of discrete components reported in the next subparagraph 1.4.3.
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Figure 1.34: First derivative dV/dI as a function of the total current for a DFB-LD
1310nm.

1.4.1 Experimental data

The core of the problem can be summed up in this way: experimental data
for different kind of laser diodes show progressive and monotonic reduction of the
series resistance beyond the threshold. This was not so evident in fig.1.12, but
appears relevant in cases as in fig.1.34. It is evident that RS is not a constant but
presents a drastic decrease with the increase of the current. In more detail, it is
possible to notice that at threshold the corresponding Rs is about 10.1Ω, but after
80mA the value of the resistance falls at about 6.9Ω, a reduction of 30%. As a
consequence, the plot of the current, as a function of the voltage without the effect
of the Rs shows an overturning rather than a fixed clamp voltage (fig.1.35) [1,2].

Generally, this phenomenon is attributed to thermal effects, but this looks
impossible, because the resistance should increase, and not decrease, with tem-
perature. Anyway, also an experimental proof has been obtained to support that
preliminary conclusion. DC or pulsed measurements in pulse conditions have been
collected for a same device, in order to discriminate the thermal effects. The
conditions of the pulsed measurements are:

• pulse width 1µs

• pulse current level 100mA

• delay time 1ms

The red line in fig.1.36 is the measurement in pulsed mode while the black line
refers to DC conditions. It appears evident that no thermal effect can be responsi-
ble for the observed anomaly in the dV/dI curve. For this reason, it is possible to
conclude that the decrease of the series resistance can not be ascribed to thermal
effect.
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Figure 1.35: Total laser current and monitor current as a function of the voltage
reduced of the effect of the series resistance.

Figure 1.36: First derivative plot from measures in pulse and continuous condition.
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Figure 1.37: Different current paths from the upper metal contact to the electrical
junction

The reason for the apparent reduction of RS has been then investigated starting
from the hypothesis that the active region under the long and narrow ridge does
not reach the lasing threshold at the same time everywhere. The cause of that
inhomogeneity should be the different current paths from the upper metal contact
to the electrical junction (fig.1.37), that are associated to different ohmic voltage
drops. The construction made in fig.1.8 for dealing with lateral currents may help:
the junction line (that in this case fig.1.37 runs along the length of the optical
cavity, while in fig.1.8 it was transversal to it) can be imagined made of several
identical “diodelets” whose mutual connection and that with the equipotential
metal contact is made of small ohmic resistors. In this structure, the threshold
condition first appear at the diode elements close to the metal contact. When the
metal voltage further increases, the voltage of those elements will remain clamped,
but the threshold will be likely to propagate laterally, also modifying the apparent
total series resistance.

1.4.2 Parameters from real devices

The parameters entering the two models that have been developed are strictly
linked to the physical and geometrical characteristics of real devices; in particular,
the device chosen for the study is an InP-based Directly-Modulated-Distributed
Feed Back (DM-DFB) edge-emitting laser diode, whose high modulation speed is
achieved by a very narrow ridge, manufactured quite close to the active region
(fig.1.38).

The typical geometrical proportions, evaluated on real devices, are reported in
the draft of fig.1.39.

Assuming a uniform resistivity ρ inside the ridge, h is the height of the ridge
itself, L is the length of the area connected to the metalization and Z is the
corresponding width. Considering the series resistance, which corresponds to the
series resistance measured at the threshold from experimental data, one has

RS = ρ
h

LZ
(1.108)
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Figure 1.38: Top view and cross-sectional view of a DM-DFB Edge Emitter laser
diode.

Figure 1.39: Typical geometrical proportion of a device with ridge structure.

The total resistance of the lateral path is

RL = ρ
W

hZ
(1.109)

We can simplify some expressions by introducing the coefficient

R0 =
ρ

Z
(1.110)

so that

RS = R0
h

L
(1.111)

RL = R0
W

h
(1.112)

1.4.3 The discrete numerical model

The first check of the hypothesis of a propagating threshold can be done by a
simple numerical model, where a network of discrete identical elements, connected
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by ohmic links, represents the various parts of the real device. We start from a base
element as in fig.1.40 (a) [1–3,35,36,57], that represents the diodes responsible for
the the radiative and non-radiative currents in a small section of the active area,
and the corresponding ohmic path towards the metal contact. This element is here
graphically simplified as indicated in fig.1.40 (b).

(a) (b)

Figure 1.40: The historical model (a) and the schematic symbol (b) to identify it
in the new simulation.

Ten base elements have been linked as shown in fig.1.41. The first element of
the circuit represents the section under the ridge, that is assumed equipotential.
In other words, that first element is equivalent to several parallel identical ele-
ments that, in turn are equivalent to a single diode and a single resistor suitably
dimensioned. The network of the other elements, on the contrary, represents the
terminal part (s) of the ridge, where currents flow after some ohmic path. The
values of the vertical and horizontal ohmic elements follow the definitions (1.108)-
(1.112) and the number of elements, as well as the equivalent area of each diode
is taken proportional to the area of the first diode.

Figure 1.41: The model simulated with LTspice.
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Figure 1.42: The resulting simulation (red curve) superimposed to the experimen-
tal curve (black). The same decreasing of the dV/dI is evident after the threshold
with the increasing of the current.

The predicted electrical behavior of this structure is reported in fig.1.42 and
fig.1.43, that, respectively, show the differential dV/dI and the current-voltage
characteristics in the reduced-voltage representation. The calculated curves per-
fectly fit the experimental ones in the relevant region I > Ith.

Figure 1.43: The simulation (red curve) is perfectly superimposed on the exper-
imental curve (black) for high level of injection. Beyond the threshold the over-
turning of both the curves is evident.
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This nice result can be further appreciated if one checks the voltage of each
diode element. It results that as soon as the first element, the main body of the
laser device, reaches the threshold, none of the lateral elements did the same. Then,
when current and voltage increase, each lateral diode reaches its own threshold and
clamps to the same threshold voltage Vth. In fig.1.44 the diamond markers indicate
the achievement of threshold by each new lateral diode. The interpretation now
is simple: the threshold propagates since its first appearance, involving more and
more area of the ridge. The corresponding voltage clamp also propagates, and
this results in an apparent progressive reduction of the series resistance, and in an
apparent reduction of the clamp voltage.

Figure 1.44: The resulting simulation (red curve) superimposed to the experimen-
tal curve (black), the yellow points represent the clamp of the elements.

This phenomenon, that could be marginal at a first glance, indicates that
injection (and then gain) is not uniform even in a simple device. In paragraph 3.2
it will be shown as non-uniform light distribution can give, in advanced devices,
dramatic effects, as the excitation of higher optical harmonics. This is a very
recent result, and the correlation between the latter event and the electrical effects
described in this paragraph is still under investigation.

Conclusions

This Chapter looks at the fundamental characteristics of laser diodes under
a new point of view, and proposes several conclusions that embed, and never
contradict, the widespread knowledge, evolved along more than 50 years. The
connection of the sub-threshold and the above-threshold ranges, including the
self-determination of the threshold condition, is possibly its most useful result.

The availability of a working model for the full injection range enables nu-
merical simulations, parameter fitting and monitoring of degradation kinetics. A
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suitable method for proficiently measuring real devices has been recalled. This
new method essentially aims to extend the range of practical measurements of
modal gain to DFB laser diodes, validating and extending the Hakki-Paoli method,
originally developed only for FP devices. The measurement procedures are non-
destructive and can be applied to packaged devices whose construction details are
unknown.

Non idealities have been indicated, deeply discussed and solved. The roadmap
for further investigations has been proposed all along the Chapter.
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Chapter 2

Validation experiments by
electron microscopy.

Introduction

During the years of PhD the Author had the opportunity to access different
microscopy techniques. In particular four of them have been applied for physical
investigations at microscope level:

- FEGSEM (Field Emission Gun Scanning Electron Microscopy)

- FIB (Focused Ion Beam)

- EBIC (Electron Beam Induced Current)

- TEM/STEM (Transmission Electron Microscopy/Scanning Transmission Elec-
tron Microscopy) FEGSEM and FIB were available on the same instrument,
in the so-called Dual Beam configuration.

2.1 The optical trans-characteristics and XEBIC

at the SEM

The prompt for this study came from some field failures of a kind of 1310 nm
laser diodes, mounted in the Transmitter Optical Sub Assembly (TOSA) of a 10
Gbit/s trans-receiver.

The correlation with some stress-related root cause was suspected, but its exact
identification remained puzzling. Thermomechanical effects have been considered,
as a possible source of defects, but for the sake of completeness also more subtle
mechanisms have been investigated, as stress-related inhomogeneity in electron,
hole and photon concentrations, due to local distortion of band-gap Eg and (which
is the same) refractive index n.

The failed devices were severely damaged, and then some experiments have
been performed on similar reference devices. Being direct measurement of the
spatially-resolved values of Eg and/or n not possible on a finished device, two
complementary approaches have been considered, investigating the DC electro-
optical characteristics and the charge distribution under forward injection.
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2.1.1 Experimentals

2.1.1.1 The devices

The device chosen for the study is an InP-based Directly-Modulated-Distributed
Feed Back (DM-DFB) edge-emitting laser diode, whose high modulation speed is
achieved by a very narrow ridge, manufactured quite close to the active region, and
two deep lateral trenches cutting the active and the confinement layers (fig.2.1).

Figure 2.1: SEM plan view (a), cross-section (b) and TEM (c) on the device under
test.

2.1.1.2 Burnout

The figure 2.2a shows the TEM images of the failure. The damage is shown in
plan-view, with the lamella cut parallel to the epitaxial layers, and including part
of the basement of the ridge (fig.2.2b is the same as fig.2.1c, rotated by 90◦. The
dashed box in b indicates the upper and lower edges of the lamella displayed in a).

Figure 2.2: TEM on the burnout catastrophical optical damage (a). Position of
the edges of the lamella are shown in (b).
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The damaged area describes a severe event where melting and re-crystallization
took place, leading also to the lateral spread of some insulated dislocations, quite
consistent with the interpretation of a Catastrophical Optical Damage (COD).

An extensive literature exists about CODs (see for instance [65]), always in-
dicting the optical power density as the firing quantity for the failure mechanism.
The point here is to detect how the high-speed technology introduces something
able to locally increase such power density.

2.1.1.3 Case study by transcharacteristics

The novelty is here the deeper insight that the trans-characteristics (1.60) allow,
for the present case.

Fig.2.3 shows the IM(V ) experimental plot, and its expected behavior (line
a) from the theoretical model here derived in [2]. The difference is evident at
the transition across the threshold. The kink in the experimental IM recalls the
knee in the total current I in fig.1.18, suggesting that also in this case the “active
element”, able to reach its own threshold, is a much smaller one (line c).

Figure 2.3: The experimental IM deviates from its theoretical expectation for a
uniformly pumped active area (a). It results perfectly fitted by the sum of the
ideal curve (a) shifted downward (c) to refer to a much smaller area and a current-
limited contribution (b).

Numerical fitting of experimental data indeed, shows the composition of a
theoretical curve at much lower intensity (line c), but displaying the threshold,
and a larger conduction curve (line b), perfectly fitted by the same formula that
allows to describe the sub-mA range of I in fig.1.18. That formula, derived in
details in [3], describes the characteristics of a resistive transmission line made of
diodes identical to the light emitting one and infinitesimal extension.

Anyway, lateral conduction across the diode areas at the sides of the ridge
cannot be invoked to give account for fig.2.3: it is indeed the plot of what occurs
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inside the real active area, under the ridge. Nevertheless, the behavior, although
on a different scale, seems quite similar.

The nature of this phenomenon is likely to be less simple than a simple resistive
path, and must be investigated by local techniques. In any case, the interpreta-
tion of fig.2.3 is simple and severe: only a part of the active region reaches the
population inversion, and then drains all other current further injected into the
device. The optical density then crowds in smaller areas than designed, which in
turn increases the probability for any degradation mechanism enhanced by optical
and/or electrical power density.

2.1.2 Confirmation by EBIC

Expectations get an interesting confirmation by EBIC (fig.2.4), measured at a
fresh cross-section of the active region performed by FIB. The signal distribution
dramatically changes when the device is inclined or perpendicular with respect
to the beam axis. Beam voltage and current are exactly the same for the two
cases. A continuous EBIC line appears for the inclined case, while it is completely
confined under the ridge in case of perpendicular imaging. It should be here
recalled that EBIC maps the junction activity when it is forward biased at a level
similar to current injection in EBIC conditions. Carrier generation takes place
only partially inside the depletion region under inclined imaging, while is nearly
completely collected under perpendicular orientation.

Figure 2.4: SEM (left) and EBIC (right) of a FIB-cross-sectioned front view of the
device. Inclination changes the charge collection
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Figure 2.5: Linescan of the EBIC signal.

It is then the second case that can tell something relevant for our investigation.
When the linescan of the EBIC signal along the active layer is drawn (fig.2.5), it
shows

1. a peak inside the area under the ridge

2. lower maxima and minima at both sides.

The asymmetry of the EBIC map could even be attributed to some possible resid-
ual tilt along the horizontal direction, but the two pointed out features remain.
The first is perfectly consistent with the analysis of fig.2.3. The second tells that
the edges of the ridge introduce some distortion in charge collection, that is likely
to be attributed to lattice strain.

2.1.3 Longitudinal strain

The last consideration allows to look at another puzzling failure case with some
interest. The figure 2.6 shows the failure of another laser diode, with quite similar
characteristics and application as for the previous case. Here an evident burnout
occurred not at the mirror facet, but well inside the ridge, just at the edge of a
thicker Au metalization covering the thinner metal.

The device is, as for the other device, a DM-DFB laser diode, and the role of
longitudinal strain should be here considered.

If the thick metal edge introduces some local strain, then both the bandgap
and the refractive index are locally modified.

The DFB corrugation would then look no more periodic, but locally chirped.
The effect of chirping is known [66,67], and is used to create wide band Distributed
Bragg Reflectors (DBR) in monolithic tunable lasers.

In our case, the distortion creates a virtual partially reflecting mirror under
the thick metal edge, and makes it prone to parasitic light scattering.
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Figure 2.6: A burnout on a DFB device occurring inside the ridge length, at the
step of a thick metalization over the thinner one.

The introduction of trans-characteristics to support a case study is not a new
proposal, and caused some discussion, for instance, when [3] was presented for the
first time.

The current paragraph tries to show that details in the trans-characteristics
carry information not directly available in the standard I(V ) and POUT (I) plots.
In particular, the former does not distinguish between the light emission and the
other recombination mechanisms, while the latter, dealing with light power, draws
the dependence on I on a linear scale that hides detail in the whole sub-mA range,
that, on the contrary, carries a lot of information.

In any case, the foundation of all the proposed applications is the theoreti-
cal treatment of the “pure radiative current” Iph given in paragraph 1.1 and [2],
that allowed to draw lines a and c in fig.2.18 of this paragraph. It is the only
available model, at our knowledge, that leads the balance equation for photons
to current–voltage characteristics spanning the whole current range that includes,
and predicts, the threshold condition and the voltage clamping. It is this unique
feature of Iph that prompts the considerations in the previous sub-subparagraph
2.1.1.3.

2.2 FIB-induced electro-optical alterations in a

DFB InP laser diode

2.2.1 FIB to modify the internal optical losses.

This section summarizes the work done during the preparation of the final
thesis for the Author’s graduation. Most of the results have been published in
two separate papers at a past Conference [35,36], but are here collected in a more
self-consistent form. The final part will deal in with the new gain model reported
in paragraph 1.2. It is a consequence of a much larger study, carried out mainly
by the Tutor of the Author [2, 3] that mostly confirms or simply redraws many

83



consolidated results, but also, in some points, achieves important differences, at
least under the formal point of view. Optical gain is one of such points, and
probably also the best way to compare the new theory with the known ones.

A new method has been here applied, based on a Focused Ion Beam (FIB), to
modify the sole internal optical losses in a commercial DFB device. Consistently
with the available theories, such modification causes measurable changes in both
the threshold current and the total optical efficiency. The expected mathematical
relationship between these last quantities is then verified on the experimental data,
which also defines a quite effective graphical test to check if really FIB only altered
the internal optical losses. After validation, the numerical parameters extracted
from the experiments allow for a calibrated plot of gain as a function of the injection
level.

Finally, going back to the different gain models, the experiment itself is shown
prone to be re-designed for the sake of validating or discarding each of them. The
experimental data available up to now are, at the same time, disappointing but
also exciting, because they stop just at the very limit that would decide about
the two most conflicting competitors. This addresses the planned next steps and
perspectives of this work.

2.2.1.1 Experimentals

The device selected for the test is a commercial InP-based DFB laser emitting
at 1310 nm, originally mounted in a Transmission Optical Sub-Assembly (TOSA),
for telecom applications. The structure of the injection region is made of a ridge
configuration with a high aspect ratio, centered on the top of a planar epitaxial
stack, limited at both lateral sides by deep tranches. Fig.2.7 shows the top view of
such device and the polished cross-section of the vertical structure with the EBIC
signal superimposed in order to locate the junction depth and also the width of
the injected area. The selected area for successive FIB experiments is also shown.

Fig.2.8 describes the planning of the FIB modification: a vertical trench should
cut one of the sides of the ridge, far from the longitudinal edges (mirrors) of
the optical cavity, and close enough to the cavity to possibly modify the optical
propagation of the lateral evanescent waves, but not so much to interfere with
current injection. The alternate and inclined layers on the edges of the ridge allow
to easily monitor the actual position of the cut.

The choice of the position of the cuts far from the mirror edges aims to avoid
any perturbation to the reflectivity. This is also the reason for choosing a DFB,
that is a device locked to single-mode operation: any alteration in the cavity shape
in, say, a Fabry-Perot configuration would have modified the mode distribution,
complicating the gain studies.

Fig.2.9 shows the comparison between the real FIB action and the expected
one, which confirms that the hole is at the side of the ridge, does not intersect the
current injection area, but is located at about 1µm from the optical gain region,
where the side tails of the electromagnetic fields surely penetrate.
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Figure 2.7: Top and cross-sectional views of the laser diode. EBIC locates the
depth and width of the actual current injection area.

Figure 2.8: Design of the FIB modification. The final surface is recognized by its
peculiar stack of layers.

FIB was applied twice, allowing the second step to increase the length of the
erosion by 50% with respect to the first one. Laser monitor characteristics have
been measured on the specimen as received and after each FIB step.
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Figure 2.9: Design of the FIB modification. The final surface is recognized by its
peculiar stack of layers.

2.2.1.2 Threshold current and optical efficiency

As a result of the experiment, three curves have been obtained for the power-
current plot.

Fig.2.10 reports such plot, drawn in terms of the monitor current IM as a
function of the laser current I. It is evident that the FIB induced both an increase
of the threshold current Ith (given in fig.2.10 as the intercept of the inclined lines
with the horizontal axis) and a corresponding decrease of the total optical efficiency
ηT (that here is represented as the differential ratio dIM/dI for I > Ith. The
obvious relationship holds with optical power: POUT = IMhν/q).

Both effects are largely expected because of the lumped empirical equations
(1.59) and

ηT = ηC
αm
αT

(2.1)

The coupling efficiency ηC measures the fraction of light that, leaving from
the laser facet, actually creates light into the monitor diode; αT and are αm,
respectively the total and the mirror loss coefficients.

Equations (1.59) and (2.1) clearly states that, given a set of measured couples
(Ith,1/ηT ) as from fig.2.10, the linear relationship holds

ln(Ith) = ln(Ith0) + η0
1

ηT

η0 = ηC
αm
g0

(2.2)

Fig.2.11 shows the perfect alignment of the experimental pairs along the theoretical
curve, and also indicates the predicted value of Ith0, corresponding to the ideal zero-
loss case αT = 0, that allow to draw g(I)/gm in fig.2.12. The alignment of the
experimental points, and its extrapolation to zero-loss, should be considered the
validation of the hypothesis that mirror losses have not been involved. The point
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Figure 2.10: The evolution of the power-current characteristics during the experi-
ment

Figure 2.11: Experimental data plotted onto the theoretical curve (1.5)
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Figure 2.12: Experimental gain as a function of the injected current, that clerly
show the upper limit of saturation at αT/gm

is that, even if the physical mirrors have not been touched by the FIB action, their
reflectivity could change if wavelength have been even slightly affected. The sole
confidence that the DFB grating locks the cavity mode can sound fairly sufficient.
It is then advisable to recall fig.2.13, from ref. [36], that compares the different
results of the plots as in fig.2.11 when pure internal losses (a) or also mirror losses
(b) are introduced. The experiments in this case refer to a completely different
case (external cavity tunable lasers), that allowed both choices, but the result is
of striking evidence.

2.2.1.3 Competing models and design of an experiment

The stimulating results of the last sub-subparagraph seem to open a conflict
with evidence. The best way to point out the problem is to compare the different
expressions for the threshold current. The alternative formulas (1.59), (2.1) and
(1.55), (1.56) seem indeed to say quite different things, and the nice alignment
shown in fig.2.11 and 2.13, based on the exponential form (1.59), clearly supports
that popular and widely accepted model. Nevertheless, the empirical origins of
(1.59) and (2.1) should be compared with the theoretical foundation of (1.55) and
(1.56) that, in turn, is consistent with the gain analysis reported by ref. [79], where
upper and lower bounds are predicted for g.

The rather surprising discovery has been that the power expansions of (1.59)
and (1.55) near the transparency condition (zero losses) lead to identical results at
the zero, first and second order, and that the coefficients of next few orders differ
for very small quantities [36].

This is put into evidence in fig.2.14, where the same as fig.2.11 has been re-
plotted as a function of the ratio αT/gm (proportional to the abscissa in fig.2.11).
The available experimental points do not decide which of the two models holds.
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(a) Pure internal losses in a tunable laser (from ref. [36]).

(b) Internal and mirror losses in a tunable laser (from ref. [36]).

Figure 2.13: Different result of the plot of fig.2.11 when pure internal losses (a) or
also mirror losses (b) are introduced.
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Figure 2.14: The same as fig.2.11 with the experimental points plotted onto the
competing exponential and algebraic models for Ith given, respectively, by (1.59)
and (1.55).

An experiment leading to even a small further increase in the FIB-induced
losses seems ready to answer the question. Unfortunately, the increase of FIB
modifications introduces parasitic parallel current paths, that modify the whole
procedure for extracting parameters as indicated in ref. [35] and shown in fig.1.18.
This task is not beyond any possibility, and it is deeply described in the next
subparagraph 2.2.2 and [49]. If successful, it will strongly validate the whole
theory presented in [2, 3].

2.2.2 FIB-induced electrical alteration.

On the basis of the experiment discuss in the previous subparagraph 2.2.1, in
which it has been used FIB to induce local modification in a single-mode edge
emitting laser operating at 1310 nm, and that led to a method for estimating
gain parameters. In this experiment, the final FIB modification introduced large
variation in electrical characteristics that were not analysed in detail, and even
seemed to contradict the basic laser model that the experiment itself aimed to
confirm. This part focuses on this puzzling point, and solves it with a circuital
hypothesis, a circuit simulation and a direct inspection by XEBIC.

Until now it has been studied the variation of the gain coefficients in some kinds
of single-mode laser diodes. One kind was made of a 1310 nm edge emitting DFB
InP-based device, progressively modified by FIB erosion at one side of the optical
cavity. The evolution of both the threshold current and the optical efficiency were
monitored, and shown to be due to the sole variation of the internal optical losses.

Anyway, when looking at the full set of available data, that also included the
evaluation of the series resistance RS and the internal threshold voltage Vth (cor-
responding to the separation of the quasi-Fermi levels required to achieve lasing),
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the last FIB-induced state showed really puzzling figures, including a reduction of
qVth, as for a reduced optical loss. Moreover, such last experimental result seemed
to destroy the underlying DC model progressively developed and applied during
the last few years.

This subparagraph analyses this puzzling point, proposes its solution and shows
an experimental XEBIC [78] observation that validates the conclusions.

2.2.2.1 Experimentals

The measurement of gain coefficients [36] in single-mode laser diodes involves
the threshold current Ith and the total efficiency ηT , both obtained by the L–I
curves by interpolating the experimental data, with the well-known linear formula
[31]

L = ηT (I − Ith) (2.3)

and using them, for different couples Ith, ηT , in the empiric relationship (1.58) [31].
As previously said, the alignment of the experimental data along a straight line
confirms that only internal losses lead to changes in αT . Such analysis led to the
curve in fig.2.11 in subparagraph 2.2.1, that seems to fully confirm all expectations.

The last point is important because many results obtained insofar have been
based on an equivalent circuit [2] that, after a common series resistance, links in
parallel several elements representing, separately, the light emitting “diode”, the
non-radiative currents, the lateral currents flowing at low injection at the sides of
the active region. Removal of such a series resistance is then a starting step for
any deeper analysis of the electrical end electro-optical characteristics.

Figure 2.15: I and IM characteristics at the initial state (0), after the 1st FIB (1)
and after 2nd FIB (2).

When one performs such step for the initial state, after the first FIB and after
the second FIB, one obtains the result shown in fig.2.15. Here both the laser
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current I and the relative monitor diode current IM are plotted vs. the separately
calculated reduced voltage V − RSI, at the initial step (suffix “0”), the first FIB
(“1”) and the second FIB (“2”). Also the corresponding threshold voltages Vth are
put into evidence.

The surprising result was that after the last FIB, the clamp voltage Vth2 ap-
peared to decrease, while the threshold current increased, in evident conflict with
the statement about their relationship.

The evidence, in current I2, for a parasitic shunting ohmic path, roughly cor-
responding to some 700Ω, addresses the qualitative interpretation. Anyway, the
preservation of alignment of the highest point in fig.2.11 with the others remains
puzzling, if relevant extra-currents are invoked.

2.2.2.2 Analysis

When one considers the configuration in fig.2.16, where the block L represents
the laser diode, large values of the shunt resistance R0 correspond to the initial
state, and the resistance itself can be neglected. FIB is likely to introduce both
optical effects, by modifying the lateral losses, and electrical effects in terms of
a parasitic shunting path along the walls of the grooved trench. Such electrical
effects can be neglected when confined to the sub-mA range, as for current I1 in
fig.2.15. In this case, in fig.2.16 the lateral resistance R0 can be omitted, and the
dV/dI characteristics correctly give the overall series resistance RS when measured
at I > Ith.

Figure 2.16: The simple circuit for describing fig.2.15.

On the contrary, the last curve I2 shows a dominant leakage current, that does
not physically involve the optically active region, but drains current enough to
perturb the I(V ) relationship in the whole device.

It is matter of trivial circuit analysis to see that, when the element L in fig.2.16
clamps at its internal clamp voltage Vth, not only Ith but also ηT and the externally
measured value of itself Vth change depending on the critical ratio R0/(RS +R0).

More precisely, if the known relationships for V and IM hold for the initial
state (no shunting path) for I > Ith, the appearance of the parallel path changes
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them into 
V =

R0

R0 +RS

(Vth +RSI)

IM =
R0

R0 +RS

η

(
I −

(
R0

R0 +RS

Ith +
Vth
R0

)) (2.4)

The result is that the functional relationships between the measurable quanti-
ties V , I, IM remain the same, and that the four constants Vth, Ith, RS, η seem to
change their value, mostly depending on the value of the ratio R0/(RS +R0) that
for the given case amounts to about 0.985. The correspondence between old and
new parameters is: 

Vth →
R0

R0 +RS

Vth

RS →
R0

R0 +RS

RS

η → R0

R0 +RS

η

Ith →
R0

R0 +RS

Ith +
Vth
R0

(2.5)

Here is the explanation of the apparent reduction of the clamp voltage Vth:
the lateral path kids the electrical model, and emulates the original simple pure
serial scheme with false values for the key parameters. Not only the clamp volt-
age, but even the series resistance RS seems to reduce, challenging any physical
interpretation, upon FIB milling of the laser surface.

But what is possibly more intriguing is that the qualitative effect of the parasitic
path is that it simultaneously increases the threshold current Ith and decreases
the total optical efficiency η. This is just what one expects from an increase of
optical losses, the foundation of fig.2.11 and a key point in ref. [36].

It is then natural to wonder if the third point in fig.2.16 is a true effect of pure
optical losses, or if it is somewhat affected by electrical effects, or even if it is only
an electrical effect.

One way at least to infer the answer is to check if, supposing a tentative Rx

for the parasitic shunt resistance, one can reproduce or approach the former state
IM1 starting from the measured values of IM2, by means of the inverse of (2.5).

Fig.2.17 shows an intermediate situation, that confirms that the variations
from state 1 to state 2 can be reproduced by mere electrical means. The choice
of a suitable value for Rx allows to continuously recover all intermediate states
between 1 and 2. Such a possibility does not say, in principle, that nothing optical
took place after the second FIB, but prevents from separating the optical from the
electrical effects.

It should be noticed that this states that the third point in Fig.2.11 is possibly
unreliable, and that the FIB method can be safely applied only when evidence
exists that no electrical alterations took place at currents higher that the mA
range.
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Figure 2.17: The last curve IM2 can be brought to recover the previous state,
IM1,by adjusting the electrical parameters of the shunting path.

Finally, fig.2.18 shows a XEBIC map superimposed onto the corresponding
SEM image on the polished facet of the device under test after the final FIB. The
edges of the floating blocking layer disappear on the left side, that is just the side
where FIB created its trenches [36], confirming with full experimental evidence
the hypothesis of a more and more important shunting path, shorting the lateral
junction, growing during FIB action.

Figure 2.18: XEBIC confirms the expected shunted path by cancelling the upper
blocking junction signal on the left side, where FIB grooved a trench.
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Conclusion

Several different aspects of the theoretical model have been investigated by
means of experimental microscopical methods. In the first paragraph strain-related
alteration of charge and photon distribution have been investigated, prompted by
the occurrence of some failures in high modulation speed lasers. The physical
analysis of some reference devices points out the real distortion of charge collection
uniformity. This phenomenon has also been identified on the trans-characteristics
of the devices, that are demonstrated to carry information enough to reveal possible
risks in a non-destructive way.

Then starting from the analysis of these field failures in single-mode laser diodes
for telecom application, that are consistent with the so-called Catastrophical Op-
tical Damage (COD) mechanism. The attempt to replicate such mechanism by
controlled FIB-induced local damage required, for its interpretation, the much
general revision of fundamental concepts as gain and losses in laser diodes.

Finally the puzzling set of measurements in the FIB-modified laser diode has
been shown to be explained by a modified equivalent circuit, and confirmed by
EBIC. This raises some warnings in applying the FIB method, as reported in [36],
when evidence for electrical alterations appear in the mA range of the laser current,
which also defines a criterion for validating data in such FIB-based experiments.
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Chapter 3

Laser Diode degradation.

Introduction

Moving to failure physics of laser diodes, the original prompt for developing the
model of Chapter 1, we will first modify each of the model parameters and predict
the effects on the measurable characteristics. Then we will consider a number
of real degradation cases, looking for correspondence between experiments and
theory. Where possible, we will propose the link between the two approaches,
by describing the physical mechanism in terms of multiple parameter alterations.
It will be explained how the model really addresses failure analysis, becoming a
powerful tool in diagnostic for such devices and finally some unusual case of failure
will be reported.

3.1 Degradation modeling in laser diodes.

After recalling fundamentals of the model for laser devices, this paragraph
illustrates an application on a real device. The result is the measurement of a
number of important parameters, related to physics and technology of a laser
diode, which is in turn useful to address the failure analysis in case of degradation.

The model [1–3] developed for laser diodes is able to describe its DC char-
acteristics (voltage, current, emitted optical power). Its possible main feature is
to display the threshold condition in a self-consistent way, and to relate it (and
its variations under degradation) to specific parameters as internal and external
optical losses, the intrinsic single-mode emission frequency, the coupled density of
states of electrons and holes, the saturation current of the Shottky-like character-
istics in the sub-threshold LED regime, etc.

Degradations can then be investigated by modifying one or more of those pa-
rameters, looking for their fingerprints on the measurable characteristics.

Anyway, the most practical utility should travel the inverse path: from real
characteristics, find the numerical values for fundamental parameters, related to
possible failure mechanisms. If, indeed, it is of fair utility to appreciate the increase
of the threshold current or the decrease of the optical efficiency, it would be quite
useful to “decode” those degradation modes in terms of evidence for say, some
modified reflectivity at the mirror facets, or a clear increase of the non-radiative
recombination rate inside the optical cavity.
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This paragraph focuses on a practical procedure for measuring the relevant
parameters entering the model, and tests it on an experimental case of a good
device. Its application on specific induced degradation case will be summarized in
the final section.

3.1.1 The effect of parameter variation

The equivalent electrical circuit for a laterally-confined structure as described in
Chapter 1 splits the total area of the junction into several parallel diodes (fig.3.1).
Three of them represent the optically active region: one corresponds to the non
radiative component of the current, that displays a typical Shockley behavior; the
other two diodes represent the photonic components of the current, one responsible
for the sub-threshold region (n > 1) and the other responsible for the threshold
(n = 1), as described in subparagraph 1.2.5.

Figure 3.1: The equivalent circuit for an Edge-Emitters laser diodes.

The lateral component of the current is also taken into account by the last
diode (whose current is IW ) which is in turn resistively connected, to the central
“optically active” diodes. This resistor, indicated as RW , represents the average
of the ohmic effects (current paths across semiconductor material) on the lateral
current [2]. Fig.3.1, also includes a common series resistor RS that globally takes
account for contact and wire connection resistances, and a shunt resistor Rsh, that
is likely to be very high, to describe possible resistive paths parallel to the junction,
as for surface conduction or even very small vertical spikes inside the epitaxial
layers connecting the p and the n sides (as for native or etch pits related to them).
This “marginal” element is important, for instance, to describe some dramatic
effects of a severe failure mechanism as ESD, that causes the local perforation of
the junction, and results in a dramatic decrease of the original value of Rsh.

The proposed circuit in fig.3.1 has proven well suitable also to describe the
electrical characteristics of LEDs, in which case the only difference is the presence
of a single photonic diode, that never reaches the laser threshold. Table 3.1 reports
the current equations corresponding to each branch, as, derived in Chapter 1 and
here reported for simplicity.
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Equations Parameters

I =
V

RS

RS

IRsh =
V

Rsh

Rsh

Inr = Inr0 exp

(
qV

nkT

)
Inr0, n

Iphn=1 = Iph0R

exp

(
qV

kT

)
− 1

R

[
exp

(
qV − hν

2kT

)
+ 1

]2
+

[
1− exp

(
qV − hν
kT

)] Iph0, hν, R

Iphn>1 = Iph0nR

exp

(
qV

nphnkT

)
− 1

R

[
exp

(
qV − hν
2nphnkT

)
+ 1

]2
+

[
1− exp

(
qV − hν
nphnkT

)] Iph0n, hν, nphn, R

IW =
kT

qRW

[√
1 + 2

RW IW0

kT/q
exp

(
qV

nWkT

)
− 1

]
RW , IW0, nW

Table 3.1: Current Equations for each branch of the electrical model, with the
corresponding parameters.

It is interesting to observe the effect of each single parameter on the DC electrical
and optical characteristics.

The following set of images 3.2-3.13 show the effect of a single-parameter vari-
ation on a) the optical power-current curve (the so-called L-I curve) and b) on the
current-voltage curve. The latter plots both the total current I (in black) and the
photonic current Iph (in red) as functions of the laser total voltage V . In other
words, no reduced voltage is used for the abscissa (in order to keep the effects of
the series resistance into evidence). The only minor differences with the standard
procedure in measuring laser diodes is the logarithmic scale for the vertical axis
in the I(V ) plot and the inclusion of Iph in the same plot. Arrows are placed
to highlight the relevant variations in each plot, directed in the direction of the
increasing value of the parameter under test. For instance, in fig.3.2 RS is consid-
ered. It is the series resistance that takes into account the resistive path between
the metal contact and the active region. Its increase gives (fig.3.2) a peculiar mod-
ification of the current-voltage characteristics (arrowed) without any evidence on
the Light-Current curve.

Even this first observation is interesting, because many times, looking for degra-
dations, the sole L-I curve is considered, focusing all attention on the threshold
current and the optical efficiency, that is on the voltage coordinate of the “knee”
and on the slope of the over-threshold branch. In the given example, one parame-
ter, namely RS, would be able to dramatically change without any effect on the L-I
curve. The reliability issue, related to degradation mechanisms likely to involve
the metal-semiconductor connection, would be completely hidden, even prevent-
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ing from any screening possibility, for instance, by means of thermal tests during
qualification or incoming inspection.

Similar to the given case, all other parameters are then considered in the fol-
lowing images.

(a) (b)

Figure 3.2: Variations of parameter RS.

(a) (b)

Figure 3.3: Variations of parameter Inr0.

(a) (b)

Figure 3.4: Variations of parameter n.
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(a) (b)

Figure 3.5: Variations of parameter IW0.

(a) (b)

Figure 3.6: Variations of parameter nW .

(a) (b)

Figure 3.7: Variations of parameter RW .
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(a) (b)

Figure 3.8: Variations of parameter Iph0.

(a) (b)

Figure 3.9: Variations of parameter Iph0n.

(a) (b)

Figure 3.10: Variations of parameter nphn.
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(a) (b)

Figure 3.11: Variations of parameter R.

(a) (b)

Figure 3.12: Variations of parameter hν.

(a) (b)

Figure 3.13: Variations of parameter Rsh.

Each case could be considered point by point, but the graphical evidence is in
itself clear enough. Some specific points will be here highlighted.
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a) Several single-parameter variations have no correspondence with any physical
degradation mechanism. For instance, an increase of the saturation current
Iph0 of the “photonic diodes” has no counterpart in the historically documented
cases, and hardly can be imagined as the consequence of an evolving failure.

b) The most part of the single-parameter effects predicts for the LI curves or no
changes at all, or the mere increase of the threshold current, which is contrary
with the most widespread experience, that indicates as degradations reduce
light emission by both increasing the threshold current and decreasing of the
optical efficiency.

c) Some latent phenomena, as for the leakage current (value of the shunt resistance
Rsh), would be completely missed not only in the LI curve but also in the I(V )
curve is the linear vertical scale is employed, as usual. This is the reason for
proposing the log scale.

3.1.2 Parameter extraction from experimental curves

The focus of this paragraph is mostly on the procedure for extracting the
relevant parameters from experimental curves. In particular, values for Rs, Vth,
Ith, R, hν, Ith0 has been described in the subparagraph 1.1.6. Meanwhile Inr0, n,
IW0, nW , RW , Iph0, Iph0n, nphn, have been found accessible by superimposition of
experimental curves and simulated and this is the main topic for this subparagraph.

The electrical model gives the opportunity to individuate all the current com-
ponents of real laser diodes. For example, considering the experimental measure-
ments of a real laser diode Edge-Emitter, that emits at 1310nm, in fig.3.14, and
considering the method described in chapter 1, in which the transparency values of
the current and of the voltage have been pointed out, the values of the parameters
can be extrapolate and are reported in table 3.2.

Figure 3.14: (a) The I(V ) characteristics and (b) the proportional optical power
characteristic measured for a real laser diode.
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Parameter Value

RS 10.3Ω

Ith 10.3mA

ηi 0.0116

K 86

Vth 0.99V

R 0.32

hν=Vth0 0.947eV

Ith0 3.9mA

Table 3.2: Extracted values of the parameters by using the method illustrated in
the paragraph 1.1.6.

The total laser current I and the photonic component Iph as a function of the
reduced voltage V − RSI are reported in fig.3.15. Starting from these electrical
characteristics every current component can be identified in the electrical model
in fig.3.1 by best fit of the parameters.

Figure 3.15: The I and Iph characteristics vs. the reduced voltage V −RsI.

Fig.3.16 shows the calculated currents; by using the equation for each compo-
nent reported in tab.3.1, they are superimposed to the experimental curve mea-
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sured. Table 3.3 reports the best fit values for the relevant parameters entering
the model.

Figure 3.16: Simulated currents for the equivalent model in fig.3.1 compared to
the experimental characteristics (black) measured for a real device (fig.3.14). The
red line refers to the photonic component, the green one to the lateral flow and the
violet curve describes the non radiative component of the current, in this case the
shunting resistance is so high that does not contribute for low level of injection.

Parameter Value

Inr0 5pA

n 1.82

RW 150Ω

IW0 10.7pA

nW 1.82

Iph0 0.7µA

nphn 1.82

RSH 10TΩ

Table 3.3: The best fit values for the relevant parameters entering the model.

105



3.1.3 Physically induced parametric changes.

At this point it is evident that this procedure may be of the upmost utility when
parameter variations are involved, that is in case of degradation, to address Failure
Analysis. This part reports the case of subparagraph 2.2.1 and the comparison
between all the parameters before and after the first and the second FIB action.
The first step is to compare the electrical measurements of the laser diode as
received and after the first FIB. The results are reported in fig.3.17.

Figure 3.17: (a) Comparison between the experimental measurements I(V ) and
IM(V ) before (bold line) and after (dashed line) the first FIB action. (b) Compar-
ison between the experimental measurement IM(IL) before (bold line) and after
(dashed line) the first FIB action.

At first glance, this measurements allow to observe that after the first FIB
action:

• in fig.3.17a:

– for low level of injection a shunting resistive path is created,

– for high level of injection there are not change and the RS appears the
same,

– the monitor current after the FIB is lower than the monitor current
before the FIB, this predicts a reduction of the photonic current.

• in fig.3.17b:

– an increase of the threshold current,

– a decrease of the total efficiency.

The second step is to extrapolate all the parameters for the measurements after
the first FIB action, and to compare these values with the values obtained for the
device as received, in table 3.4 these two sets of values are reported.
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Parameter as received 1st FIB

RS 10.3Ω 10.3Ω

Ith 10.3mA 11.6mA

ηi 0.0116 0.00983

K 86 102

Vth 0.99V 0.99V

R 0.32 0.32

hν=Vth0 0.947eV 0.947eV

Ith0 3.9mA 4.13mA

Table 3.4: Extracted values of the parameters by using the method illustrated
in the subparagraph 1.1.6 for the laser diode as received and after the first FIB
action.

Figure 3.18, that plots the total current and the photonic component as a
function of the reduce voltage, allows to make another important observation: it
seems that the threshold voltage does not change, but it depends from hν and
R = αT/gm. The first one in this situation can not change, but R, that depends
from the total losses, changes as described in 2.2.1. This effect is caused because
the variation is so small (less the 10% as can be seen from the difference of the two
threshold currents), that is not appreciable in the Vth, in which the dependence
from the total losses is inside of a logarithm function (1.106).

Finally, also for this case fig.3.19 shows the simulated currents of each compo-
nent and they are superimposed to the experimental curves measured, table 3.5
reports the best fit values for the relevant parameters of this case.

The values of the parameters, together with the plots in fig.3.17 and fig.3.18,
allow to confirm that for high level of injection the curves, before and after the FIB
step, are perfectly superimposed, the non-radiative and the lateral components
of the current do not present modifications. The presence of a lower resistive
shunting path, parallel to the circuit, causes an increase of the current for low
level of injection. Finally, the current in the active region, the photonic current,
shows a decrease, already noticed from the reduction of the monitor current after
the FIB and confirmed by the decrease of the value of Iph0. The non variation of
the series resistance is important too, indeed it corresponds to the Ohmic path of
the ridge, but, as described in 2.2.1, the FIB action does not touch the ridge, so
the RS does not have reasons to change.

In conclusion, in this section it has been shown how the powerful tool of the
mathematical model is useful for the analysis of laser diode. The variations of
each parameter allow to determinate which component of the current is changing
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Figure 3.18: Comparison between the I(V −RsI) and IM(V −RsI) of the device
before (bold line) and after (dashed line) the first FIB action.

Figure 3.19: Simulated currents for the equivalent model in fig.3.1 compared with
the experimental characteristics (bold black line) of laser diode measured (fig.3.17).
The red line refers to the photonic component, the green one to the lateral flow
the violet curve describes the non radiative component of the current and the back
thin curve describes the shunting contribution.
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Parameter as received 1st FIB

Inr0 5pA 5pA

n 1.82 1.82

RW 150Ω 150Ω

IW0 10.7pA 12pA

nW 1.82 1.82

Iph0 0.7µA 0.4µA

nphn 1.82 1.82

RSH 10TΩ 11MΩ

Table 3.5: The best fit values for the relevant parameters entering the model for
the laser as received and after the first FIB step.

and this gives the possibility to oriented the actions for the failure analysis in
the next steps. The application of the model is quite easy and the method to
extract all the parameters has been detailed presented, by using some experimental
measurements on a Edge-Emitter laser diode. Finally to show the validity of the
model, a comparison has been made between a virgin laser and the same laser
with a defect induced by FIB. The extraction parameters, by using the proposed
model, allows to make a complete analysis of the case.

3.1.4 Multiple parameter changes in COD.

A second example of application of this method is given from the most frequent
case of failure in laser diode: the Catastrophical Optical Damage. Indeed this kind
of failure has a fingerprint and it is easily recognizable from the parameters and
the electrical curves evolutions before and after a COD event. In figure 3.20a the
electrical characteristics I(V ) in logarithmic scale for a laser diode before (red line)
and after COD (black line) are reported. In the zoomed figure 3.20b, a crossing
between the two electrical curves is evident.

This point had puzzled the expert designers of an important international com-
pany, which whom the Department of Electrical and Electronic Engineering of
Cagliari collaborates. Actually the explanation of this effect, by using the method
reported in this paragraph, is quite simple.

By using the electrical model and the equation of all the current components,
the crossing effect has been simulated by the variation of two parameter (fig.3.21a
and 3.21b):

- increasing the saturation current of the non radiative diode Inr0

- and increasing the total losses αT
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(a)

(b)

Figure 3.20: Experimental electrical characteristic for a LD before (red) and after
COD (black) (b) and the zoomed area of the crossing between the two curves (b).
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(a)

(b)

Figure 3.21: Simulated electrical characteristic for a LD before (red) and after
COD (black) (b) and the zoomed area of the crossing between the two curves (b).
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This is exactly the description of a failure in the active region as the COD is.
Without using electron microscopy, just looking the electrical characteristic I(V ),
with the electrical model described in Chapter 1 and in this paragraph 3.1, it is
possible to recognize a COD from some other events.

3.2 Side mode excitation in single-mode laser

diodes.

The Author, during the three year of PhD, managed also with some particular
kind of laser diodes for high power application and some unusual case of failure
analysis. In this paragraph it will be presented a double-peaked spectrum in some
DFB laser diodes that is demonstrated to relate to axially confined Catastrophic
Optical Damage (COD), followed by the excitation of a transversal optical mode.
The melting-regrowth kinetics of CODs also reveals another possibility of COD-
induced side optical modes in a fiber DBR pump laser diode.

The appearance of a double peak in the spectrum of some single-mode laser
diodes, failed during their operating life, has been the prompt for a study that
reveals the possibility for multi-mode oscillation of the optical field in commercial
devices. This study required to recall and summarize the most peculiar features of
the so-called Catastrophic Optical Damage (COD) [65, 80–95], in term of spatial
and temporal evolution of the associated melting-regrowth process.

It resulted a surprising correlation between CODs and side mode excitation:
not only the initial case is easily explained as a COD-induced higher-order lateral
mode, but a second case, occurring in some pump laser diodes, externally tuned
by means of a fiber Distributed Bragg Reflector (DBR), revealed a quite complex
evolution, starting with a COD that induces a vertical higher-order mode that in
turn causes a second-level COD. The conclusion that CODs can induce modifica-
tions of the optical cavity, able to excite higher harmonics, would probably confine
this study to the field of the curious cases. But the observation of a completely
reversed relationship, where lateral multi-modes are the origin of a peculiar COD
in a state-of-the-art Distributed Feed Back (DFB) structure, flags an alarm on the
possibility for mode hopping even in single-mode devices.

The paragraph will first consider the simple case of the double peak in the DFB
device, showing the structure of the CODs in planar, transversal and longitudinal
views. The transversal features will be referred to a study that has been published
a long time ago [96], because of its role in safely identifying a real COD and in
particular its regrowth kinetics after the initial melting. The quantitative shift of
the second peak will be shown to be consistent with the excitation of the second
lateral mode of a Hermite-Gaussian beam [97, 98] for the specific material and
geometries.

The COD kinetics will be the key for decoding the second case. In particular the
regrowth under Liquid Phase Epitaxy (LPE) conditions will explain the observed
distribution of defects and lattice-matched areas in the molten/regrown region as
the final effect of the second COD.

Finally, the surprising case of side-mode-induced-COD will be shown and demon-
strated.
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Figure 3.22: EL image of the rear and front facets of one of the failed devices,
showing regular light emission.

The paragraph does not aim to discuss the origin of the initial CODs in any
of the first and second cases: several authoritative papers have been published on
that subject, some of which are listed in the bibliography [65,80–95].

3.2.1 COD-induced higher-order modes

3.2.1.1 Experimental observations

Some InP-based 1310 nm DFB laser diodes failed during field operation. Their
optical power resulted reduced and noisy, but all devices still reached the lasing
threshold, and their Electroluminescence (EL) images confirmed light emission
from both facets (fig.3.22).

The most surprising feature was the appearance of a second peak in the light
spectrum when the laser current was increased beyond approximately 50 mA, as
shown in fig.3.23. The second peak was at a wavelength 1.3 nm shorter than the
original peak, which survived at its original position

Plan View (PV) STEM analysis was carried out on the rear facets of one of
the failed devices (fig.3.24).

The evident damage starts from the facet itself and propagates inside the opti-
cal cavity along its central axis, leaving two regions of regular material at its upper
and lower sides.

The interpretation of the observed spectrum is then straightforward: at low
injection current, the light oscillation inside the damaged segment of the active
cavity is mostly switched off, and the surviving cavity on the left sustains the
regular oscillation at the wavelength fixed by the DFB corrugation. It is useful to
recall here that, in a DFB, the facets do not play the role of mirrors, being the op-
tical feedback supplied by the Bragg diffraction distributed along the whole cavity.
The effect of the damaged axial stripe is to reduce the lifetime of the electron-hole
pair by increasing the local non-radiative recombination, and to attenuate the
optical field by absorbing the incoming photons generated elsewhere.

At higher injection conditions, the attenuation of the fundamental transversal
mode, that continues to survive, allows the first lateral mode, whose maxima are
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symmetric with respect to the axis, to setup.

Figure 3.23: Spectrum at two different driving currents of the same device of
fig.3.22.

Figure 3.24: PV STEM on the rear facet of a failed device, showing a typical COD
propagating from the right-hand side boundary of the optical cavity to inside.

3.2.1.2 Peak separation and the Hermite Gauss functions

The second peak in fig.3.23 seems to indicate that a second wave, with a wave-
length shorter by 0.1% with respect to the fundamental one, travels longitudinally
along the laser cavity.

Anyway, such a longitudinal wave would never resonate with the existing DFB
grating, whose measured pitch of 0.211µm strictly corresponds to the 1310 nm
wavelength in vacuum when a refractive index n=3.10 is assumed, well suitable
for the InGaAsP mixture of the active Multi Quantum Well (MQW) region.

The only possibility is that a transversal component of the oscillation is re-
sponsible for the new peak. At a first glance, one could consider a sinusoidal wave
whose longitudinal half-wavelength corresponds to the pitch d of the DFB grating
and, in its fundamental mode, has the width W of the ridge as the transversal half
wavelength. In this case, it is easy to demonstrate that the effective wavelength
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λ0 would be defined by
2n

λ0
=

√
1

d2
+

1

W 2 (3.1)

The transversal next mode would display a wavelength λ1 given by

2n

λ1
=

√
1

d2
+

2

W 2 (3.2)

Unfortunately, this calculation predicts, for the given figures, a second peak
shifted by some 20nm with respect to the fundamental mode.

The solution comes from the more accurate representation of the optical wave
in terms of Hermite-Gaussian beams [97,98], that more realistically represent the
lateral confinement, in a ridge-guided structure, as a smooth function and not as
a sharp wall.

It is standard practice in Photonics to derive for the fundamental mode the
expression

2n

λ0
=

1

d

(
1 +

α

q

)
(3.3)

Where q is the number of periods of the DFB structure (and then is a very
large number, in the order of 1000) and a is a parameter, depending on the ridge
width W , the refractive index n and the vertical confinement factor G, that ranges
between 0 and 1. The next transversal harmonic brings the wavelength λ1 to the
new value

2n

λ1
=

1

d

(
1 + 2

α

q

)
(3.4)

The difference λ0 − λ1 is exactly in the range of the observed peak shift.
Moreover, the intensity distribution calculated for the fundamental and the first

transversal mode by the Hermite-Gauss functions exactly follows the qualitative
shapes reported in fig.3.24.

3.2.2 COD structure and regrowth kinetics

The planar view of fig.3.24 shows some interesting features of a COD, that are
completed in fig.3.25 by the longitudinal cross-section (LX view) of the damaged
region of a second device of the same group.

It is necessary to enlarge the LX image (fig.3.26) to appreciate the alternate
regions where the MQW stack survives or disappears, distributed with same peri-
odicity of the DFB grating.

The disappearance of the MQW and the absence of any extended lattice defect
indicate a melting/regrowth process, driven by the optical field as a thermal source.
One could say that the COD brands the crystal with the shape of the standing
wave of the optical field.

This is also the reasons for the preservation of such detailed figures as in fig.3.26,
without complete destruction of the whole device: as soon as the material reaches
its melting point, light generation locally and suddenly switches off, and the fused
region cools down.

The cooling phase is quite interesting: the original different materials of the
active region and of the confinement layers are now blended together in a liquid
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Figure 3.25: PV and LX STEM on the rear facets of two failed devices.

Figure 3.26: Deatil of the LX .view of fig.3.25, showing the alternate surviving or
disappearing (circled) MQWs.

phase, and are confined inside several meltingpots shaped as the isothermal sur-
faces generated by the optical field and whose boundaries preserve the lattice of the
solid structure. This means that the intermixed materials, cooling down, solidify
under Liquid Phase Epitaxy (LPE) conditions starting from the liquid/solid inter-
faces to inside, according with some complicate phase diagrams that will segregate
the lowest melting material to the middle of the regrown region.

This is very well illustrated by an old TEM LX image (fig.3.27) of a suddenly
failed strained-lattice (SL) single quantum well (SQW) InGaAs/AlGaAs pump
laser diode emitting at 980 nm [99]. The melting process started from overheating
of linear defects (misfit dislocations) that instantaneously released the strain of
the SL active layer after the penetration of climb dislocations from outside be-
cause of Recombination Enhanced Defect reaction (REDR). For the sake of the
present study, the interesting point is that the misfit dislocations inside the active
layer, because of enhanced photon absorption, became hot rods creating cylindrical
isothermal surfaces around them. After melting, the regrown material perfectly
replicated the surrounding lattice, but cancelled the active layer. Only a residual
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Figure 3.27: Cross-sectional TEM of a molten/regrown SL SQW region.

Figure 3.28: Transversal EBIC distribution in a ridge structure (from. Ref. [78])

spot of the low melting In-rich phase appears in the middle of one of the reacted
regions.

When the same regrowth kinetics are considered for the molten region of
fig.3.26, one should take into account the transversal distribution of the optical
energy, predicted by the Hermite-Gauss functions, that is an astigmatic Gaussian
bidimensional function. In other words, the circles in fig.3.26 should be considered
as cross-sections of ellipsoids.

Fig.3.28 (from [78]) shows the EBIC distribution in the Transversal Cross sec-
tion (TX view) of a laser diode with ridge confinement. The EBIC signal exactly
maps the current distribution under the ridge in forward bias conditions [100] and
then also the optical field intensity.

Depending on the position where the ellipsoids are cut in TX view, one may
have a situation as in fig.3.29, where the damage is strictly confined in the middle of
the active region, where the optical field has its maximum, or a larger intersection
as in fig.3.30, where the ellipsoid occupies a large part of the active region.

The dislocations appearing in fig.3.30 at both sides of the COD are also evident
in PV (fig.3.25), and should be considered as secondary effect of the intense and
fast melting/regrowth event onto the surrounding material.

Anyway, the most interesting feature is that, as for the case of fig.3.27, the
most part of the material inside the ellipse is perfectly matched to the surrounding
lattice. Only a thin line of defects runs along the major axis of the ellipse. This
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Figure 3.29: TX TEM view of a highly confined COD.

Figure 3.30: TX TEM view of a laterally extended COD.

is the fingerprint of the melting/regrowth process in TX view, and was studied
and published since 1991 [96], when dealing with ElectroStatic Discharges (ESD)
in Buried Crescent (BC) InP(InGaAsP) laser diodes. The liquid-solid wavefronts
that evolve during the solidification process start from the elliptic boundary and
proceed as in fig.3.31. The calculation has been carried out, as in the quoted
reference, on the basis of the Euler equations [96] for the propagating wavefronts
in a system where the growth speed only depends on the local orientation of the
interface. The predicted surface quickly develop two cusps along the major axis of
the ellipse, whose motion define the locus of the points where the upper and lower
wavefronts collapse, and where the low-melting material segregates in a mixture
that cannot more be matched to the surrounding lattice.

3.2.3 Double COD and side modes

The previous detailed study of the structure of a COD is the key for under-
standing a puzzling situation occurred in a set of high power 980 nm pump laser
diodes, tuned on a single mode by means of an external fiber DBR.

The PV (fig.3.32) showed a continuous stripe of defects, without any periodic-
ity, extending for several tens of micrometers

It should be evident that the intersecting ellipses cannot coincide with any
isothermal surface. Moreover, the defective area occupies a large part of the inter-
secting regions, but does not extend upwards. The remaining part of the ellipses
is made of lattice-matched material, as shown by fig.3.32, where the central bright
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Figure 3.31: Calculated evolution of the liquid/solid boundaries in a COD.

Figure 3.32: STEM PV of extended defects in a failed high power 980 nm pump
laser diode.

Figure 3.33: STEM TX of the defects in fig.3.32. The lateral IID labels indicate
the Impurity-Induced-Disordering used in this device for lateral confinement.

Figure 3.34: Two step kinetics for the case of fig.3.32, 3.33.
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Figure 3.35: Asymmetric field distribution by different combination of the first
transversal Hermite-Gauss harmonics.

stripe corresponds to the defects inside the ellipses, and the two thin horizontal
white lines are the boundaries of the upper ellipses in fig.3.33. No kinetics are
known able to create such a structure during a single melting/regrowth event.

The solution, on the contrary, appears clear if we suppose two events. The
first is a standard COD, and creates the ellipse aligned with the active layer. This
will have the same structure described in the previous subparagraph 3.2.2. But
we then need to suppose that the light did not disappear in this area, but that an
intense optical beam traveled below the molten/regrown region, and that caused a
second COD. This second COD will melt the second elliptic region, and here is the
key point: the upper side of the new liquid/solid interface runs along the defect
line of the first ellipse. The LPE process evolving from here does not replicate a
perfect lattice, but will cause a complex network of twins and thread dislocations
to fill the space between the major axes of the two ellipses (fig.3.34).

The question is: how can the optical field move away from the active region?
The answer is likely to be, again, in the higher order transversal modes, as in
the first case, with the difference that here it is a vertical transversal mode that
is called into play. This requires a larger amount of energy than for activating
and horizontal lateral higher mode, but, on the other side, the device is designed
exactly for high power operations. Also the presence of a single ellipse in the
secondary COD, instead of two symmetrical ones over and below the active layer
is easily explained. It is indeed very easy to obtain asymmetric beams by allowing
mode interference. For instance, fig.3.35 shows three possible field distributions
obtained by differently combining the first three transversal Hermite-Gauss orders
T00, T10 and T20, always keeping the same total power distributed among modes.

It is interesting to observe as the excitation of higher transversal modes can
focus a peak of energy also in a narrow central peak, reaching a local density higher
than in the sole fundamental peak for which the device has been designed. This
last observation can be an alternative explanation of the very confined COD in
fig.3.29.
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Figure 3.36: STEM PV of a DFB structure showing a COD separated into two
parallel paths.

Figure 3.37: STEM TX of the same device as in fig.3.36 at both the double and
the single path CODs.

3.2.4 Lateral-mode-induced COD

The last subparagraph 3.2.3 could be summarized in two sole images, fig.3.36
and fig.3.37. They belong to a high power 1310 nm DFB structure that failed
during High Temperature Operating Life (HTOL) test. They show a long COD,
propagating along several tens of micrometers, split into two parallel rails, that
converge in a single rail, occupying half the width of the ridge guided area. The
cross section identifies as real CODs two symmetric elliptic regions, with all the
features described in the previous subparagraph 3.2.2.

Here the difference with the previous cases is striking: the COD is not the cause,
but the effect of the higher-order transversal optical mode. No primitive damage
has been found on this and other devices of the same group, but only the observed
long damaged paths, that in turn cannot be anything else than molten/regrown
regions following the optical intensity.

The first two cases reported in this subparagraph can be considered just compli-
cate effects of a very well-known failure mechanism as a COD. Nevertheless, their
detailed study allows to progressively investigate the structure of a COD, pointing
out some of its structural peculiarities that make its individuation absolutely safe.

It is then possible to bring the results of the last subparagraph and in particular
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of fig.3.36 and 3.37 to their ultimate interpretation: single mode laser structures
may host transversal multi-modes. It is not sure that when this happens it also
leads to a COD. In this case, the performances of the device would be severely
affected in terms of dispersion figures in fiber optic communications.

It is not the aim of this subparagraph to investigate the origin of such multi-
modality, leaving this subject to a more accurate investigation. It can be said that
the common point for all cases seems to be the high power: even the first case,
involving a device operating at low power, reveals the higher-order mode by a
second peak that only appears when the driving current increases. More precisely,
it seems that the high optical power density is the trigger for higher harmonics,
which not only includes the high power devices, but also the low power ones whose
active region is highly confined vertically and laterally.

Also any design solution or process flaw that can break the axial symmetry of
the optical cavity is indicted for exciting th extra-modes. In this directions some
studies are in progress, involving integrated optical devices, where the coupling
elements can become critical for this new failure mechanism.

3.3 ESD tests on 850 nm GaAs-based VCSELs

Forward and reverse HBM, MM, CDM ESD tests have been performed on
850-nm VCSELs, together with EOS and overpower test. The physical analy-
sis of the tested devices showed a variety of damages not easily correlated to the
measured electro-optical degradations. The solution requires the detailed interpre-
tation of the observed physical mechanism, by means of electron microscopy and
device modelling, that also in this case it helps with the solution of the physical
interpretation for the mechanisms of failures.

The qualification plan for telecom application of commercial GaAs-based VC-
SELs emitting at 850 nm included several transient electrical stress tests: forward
and reverse ESD tests according with the Human Body Model (HBM), the Charged
Device Model (CDM) and the Charged Machine Model (MM) , Surge test and Over
Power (OVP) test [101–106]

Several failures have been detected by the simple monitoring of the current
leakage at reverse bias. Anyway, the attempt to correlate the leakage level with
the polarity, timing and intensity of the applied stress was not able to point out
more than a fair relationship between stress intensity and leakage. Moreover,
when physical analysis was performed first by forward Electro Luminescence (EL),
and reverse-bias emission microscopy (EMMI) and then by FIB-assisted Electron
Microscopy (at both the SEM and the STEM), the pattern of the observed damages
complicated even more the situation. It happened, indeed, that some damage
patterns, well known in VCSEL literature [107–113], appeared in devices with
extremely different leakage levels, and even in devices that passed the pass/fail
test after the stress.

The last observation on one side calls for an explanation, and on the other
side rises a warning about the possibility that some devices pass the ESD tests
but that the test themselves introduce the seed for delayed degradation during the
operating life
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Figure 3.38: Electro-optical DC characteristics of a typical VCSEL before the
stress test.

This paragraph aims to strictly focus on the correlation between physical dam-
age and electrical properties. It will first summarize the set of tests, and illustrate
the most evident and also the most contradictory results. Then it will introduce
a simple circuital interpretation for the type and location, and the observable
electrical effects, of the observed physical damage.

3.3.1 Devices, ESD tests and failure modes

The devices are commercial VCSELs for telecom applications, whose internal
structure includes upper and lower Distributed Bragg Reflectors (DBR) with re-
spect to the active plane. The latter, in turn, achieves laterally confined emission
by means of a partially oxidized Al-rich epitaxial plane, that leaves only a nearly
circular central area accessible to the injection current (see next subparagraph
3.3.2 for some physical details). Despite the sharp selection of the longitudinal
oscillation operated ny the DBR, the light emission is expected to allow several
lateral modes, for the sake of a better (lower) beam divergence.

The typical electrical and optical DC characteristics of one of the devices are
reported in fig.3.38. On such devices, transient electrical tests have been planned,
whose complete set is reported in tab.3.6. The forward or reverse polarity of the
stress have been indicated by, respectively, the + or the – sign. A leakage level
larger than 2µA at a reverse bias of −5V was used as a pass/fail criterion after the
tests. The highlighted cells in the last column, indicate devices that passed the
test, having a leakage lower than the preset failure criterion. It should be noticed
that, apart three cases (highlighted cells in the last column), all devices failed,
according with the given criterion.

Some correlation is evident, for instance between the leakage level and the
maximum stress in HBM tests. Anyway this does not hold, for instance, for Over
Power (OVP) tests, where the highest electrical degradation occurs for the less
severe stress. When one tries to solve the puzzle for the OVP test by observing
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n.# Test Conditions Leak. at -5V

1 OVP 20mA / 10s, 50mA / 10s 453µA

2 OVP 20mA, 24mA, 36mA, 42mA / 10s 752µA

3 OVP 30mA / 10s >2mA

4 surge+ 24mA/5ms/10, 42mA/5ms/10 normal

5 surge+ 60mA/5ms/15 6.31µA

6 surge- 10mA/5ms/10, 20mA/5ms/10 big

7 HBM- 0-200V / 6 4.59µA

8 HBM- 0-200V / 6 4.64µA

9 HBM- 0-1000V / 200V step 0.835µA

10 HBM- 0-1000V / 200V step 243µA

11 HBM+ 1400V-5000V / 200V step >2mA

12 HBM+ 1400V-5000V / 200V step >2mA

13 HBM+/- 2000V 20.2µA

14 HBM+/- 2000V 11.3µA

15 CDM+/- fail 740V 5.42µA

16 CDM+/- fail 730V 5.65µA

17 CDM+/- pass 440V 1.15µA

18 MM+/- fail -500V 5.69µA

19 MM+/- fail -500V 9.87µA

20 MM+/- pass 300V 296nA

Table 3.6: Tests and results.
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Figure 3.39: EL images of the residual light emission for the three devices stressed
by the OVP test (see Table 3.6).

the EL emission (fig.3.39) of the three devices #1,2,3, one gets even more confusing
data, because, for instance, device 3 is much more leaky than device 2, but has
also much more residual light emission.

The set of measurements in fig.3.38 and 3.39 is everything is possible to do
without opening the package, and then is also the available set of actions for
screening purposes. Any further insight requires destructive actions, starting from
the package.

Spectral analysis is usually not considered among this set, because of the several
unpredictable lateral modes intrinsically allowed by the design itself of a VCSEL,
even during regular operation.

3.3.2 Physical analysis

As a preliminary step, the vertical structure of the devices has been recon-
structed at the SEM after FIB-assisted cross-sectioning (fig.3.40).

For the failed devices, EL was used to drive 200 keV STEM analysis in Z-
Contrast (ZC) mode, sometimes in Planar View (PV), sometimes in cross-sectional
(X) view. This method has been nicely illustrated and applied in [113]. It takes
advantage of the capability of analyzing thick specimens, up to 1 micrometer for
our devices, preserving information from scattering phenomena as for the standard
Diffraction Contrast, but without the constraint of thin lamellas. This allows to
include the whole 3D extension of several defects, as the next examples will show.

The different tests caused several different patterns of physical damage, and
different degrees of electro-optical degradation. The puzzling point is the apparent
poor correlation between physical damage and optical degradation.

Fig.3.41 reports two kinds of physical, damage, corresponding to two levels of
reverse HBM ESD test.

The first case, despite the evident damages, did not show any significant change
in the optical characteristics (threshold current and optical efficiency), and a small
leakage of less than 5µA at −5V . The second case, on the contrary, displayed the
total loss of optical emission and a leakage at −5V as large as about 240µA.

The conclusion seems evident: the higher stress creates the damage external to
the oxide window, and that kind of damage is responsible for the main electrical
and optical degradation.

Anyway, the situation resulted much more articulated. A second device stressed
at 1000V reverse HBM test did not show any change after the test, but, after some
ageing, it approached the same failure modes of the previous device. A variety
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Figure 3.40: Cross-sectional view of one of the tested VCSELs at the SEM (upper
side) and reconstructed transversal structure.

Figure 3.41: Electro Luminescence (EL) and Planar View TEM (PVTEM) on two
devices after reverse HBM test at a) 200 V (#7 in Table 3.6) and b) 1000 V (#10).
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Figure 3.42: Plan View (PV) and Cross-sectional view (X) at the STEM in Z-
Contrast (ZC) of two similar sets of three ESD-induced defects (arrowed) as for
specimen in fig.3.39a. The dashed lines in each image indicate the approximate
thickness of the specimen in the other, that then results to include the whole 3D
extension of the defects.

of combination was then discovered between the applied stresses, the physical
evidence and the detectable optical and electrical failure modes.

The structural analysis of the defects showed as the spots appearing along the
internal rim of the oxide windows are vertical structures surrounded by nested
systems of dislocations (fig.3.42).

Such structures, in themselves, are not sufficient to cause any relevant electrical
effect, because of their complete immersion inside the depletion region of the pn
junction, or any optical effect, because of their location at the boundaries of the
optical cavity.

Nevertheless, they are likely to become nucleation points for larger defects
during the operating life of the devices, as shown in fig.3.43, where a fatal network
of dislocations clearly evolves from a single local damage point into a Dark Line
Defect (DLD) structure. Also the damages observed in fig.3.41b, outside the oxide
window, may appear at a different extent, but always involve the perforation of
the oxide. For the weaker cases, the perforation creates small molten regions that,
cooling down, are likely to preserve the dominant local doping , and then re-build
a parasitic pn junction that keeps the measured leakage limited (fig.3.44).

Of course, high levels of stress can lead directly to a faulty state. What is inter-
esting is the fact that some defects may occur without any external manifestation.
Also the types of transient stress may be different, leading to quite similar degra-
dation states. For instance, fig.3.45 reports the result of a surge test, where the
device, after the stress, passed the electrical and optical tests. It was only the EL
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Figure 3.43: DLDs evolving from a local damage.

Figure 3.44: Transversal view of an oxide damage, with the evidence of melting
and regrowth of the stack of layers of the Distributed Bragg Reflector (DBR).

inspection, and the following TEM analysis, that revealed the same microscopic
damage as for the 200V HBM test reported in fig.3.41a.

3.3.3 Electrical model

In order to describe the distribution of the stress during the transient events,
the model reported in fig.3.46 has been developed. It is obviously an over-simplified
model, that tries to summarize with a unidimensional resistive network of parallel
elements what is a structure that has a circular symmetry. It then qualitatively
describes what happens along a radius of the VCSEL circular structure. The
rightmost element in fig.3.45 then represents the geometric center of the device,
where the only allowed current flow is vertical, while for any other element also
a lateral flow must be allowed. The numerical values associated to each element
have been selected in order to reproduce under DC and AC the measured values
for the real devices.
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Figure 3.45: Results of a forward surge test, to be compared with fig.3.41a.

Figure 3.46: A resistive network model for the VCSEL, representing the radial
distribution of electrical elements. Four regions, A,B,C,D are highlighted, corre-
sponding to different regions shown in fig.3.40.

Several situations have been simulated by means of the circuit in fig.3.46. The
most clarifying example refers to the case of a reverse HBM stress, as for the
experimental cases of fig.3.41. First of all, each node in the circuit will sustain a
transient that has the general time evolution as in fig.3.47

Figure 3.47: Time evolution of the EDS discharge at a generic node in the circuit
in fig.3.46
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The increasing voltages across the nodes during the rising time is shown in fig.3.48.

Figure 3.48: Rising voltage transient across the capacitors and diodes in fig.3.46

The four regions A,B,C,D of fig.3.46 and 3.48 can be identified on the same
damage pattern of fig. 3.41b, as shown in fig.3.49. The white spots in region D
are of the same type as in fig. 3.42, while those in region B belong to the type of
fig.3.44.

Figure 3.49: The four regions A,B,C,D of fig.3.46 and 3.48 correspond to different
damage patterns on real cases (same specimen as in fig.3.41b).
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Figure 3.50: STEM Plan view of a dislocation network evolving form a single point
inside the active region, likely to not be caused by ESD.

The section proposed several results from ESD tests on commercial VCSEL
devices. It focused on the problem of identifying the type, structure and spatial
distribution of the observed physical damage.

Several conclusions follow the proposed analysis. First of all, two kinds of
defects are shown to appear, whose structural details are given, respectively, in
fig.3.42 and 3.44. Both occur, as expected, at the places of maximum field in
the oxidized regions A,B,C and in the active region D. All of them appear as the
result of current filaments, causing a small damaged core and a surrounding region
that is mostly made of nested dislocations for the active region and of extended
fusion/solidification areas in the oxidized areas.

The thresholds for the two kinds of failures indicate that the weakest structure
is the edge of the active region (as shown by fig.3.41 and fig.3.45). Failures across
the oxide are always related to excess leakage, and their occurrence also causes an
optical faulty state, in terms of reduced light emission.

On the contrary, failures in the active region can occur as silent damage, not
detected by the standard optical or electrical screening methods. Their risk for
device reliability is illustrated by fig.3.43, where DLD defects are likely to evolve
from small defective areas close to the oxide edge. The effectiveness of EL in indi-
viduating cases as in fig.3.45 strongly suggests to introduce Electro Luminescence
as a screening procedure whenever possible, if ESD risks are involved.

It is not marginal also what that same on DLD evolution conclusion do exclude.
Cases as in fig.3.50 and fig.3.51 have been often claimed as the result of ESD
stress, possibly due to incorrect handling. Based on the proposed analysis, on
the contrary, ESD hardly justifies such interpretation: dislocations evolve, as in
fig.3.42, from a small point, but the point is in the wrong place and its nucleus
does not correspond to any of the structures shown in fig.3.41.

Even more, in fig.3.51 nothing leads to any relationship with ESD events:
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Figure 3.51: STEM Plan view of a uniform dislocation network, occupying the
whole active window and extending outside, attributed to ESD.

a uniform network of dislocations floods the active area, possibly evolving from
native defects at epitaxy or, more probably, from the oxidized edge. Nevertheless,
the Manufacturer concluded his own Failure Analysis, requested by the end user,
with the words: ”The crystal damage coincides with ESD high current path. So
this failure was undoubtedly caused by ESD because no other mechanism would
produce this same crystal damage pattern”.

The evident contradiction of the last statement with the reported results also
puts the question of ESD as the most frequent indicted culprit for any failure,
at least in the Manufacturer-Customer commercial relationships. The repeated
occurrence of cases of questionable failure analysis reports has been discussed since
a long time [114–117], and also recently [118] , and points out the opportunity of
demonstrating the proposed conclusions on the basis of scientific evidence.

In conclusion, the section focused on part of the puzzling results obtained
from several transient tests on VCSELs, and more specifically on the physical
and electrical characterization of the damaged regions. The limited number of
specimens in each test does not allow to draw statistical conclusions. Anyway, the
study allows on one side to confirm a severe warning for possible ESD-induced
latent damage, and on the other to invoke some caution in indicating ESD for any
failure.

3.4 Proton Irradiation Effect in Commercial Laser

Diodes

The effects of radiation on semiconductor light emitters have been investigated
by several Authors [119–123] mostly to assess the reliability of such devices in
aerospace applications. In this paragraph it will be presented these effects and the
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interpretation of the results will be aided by the model for laser diodes described
in the previous chapters.

Effects are expected to be direct and immediate, with a clear alteration of the
laser performances related to the irradiation parameters. Anyway, also long-term
effects are considered, because of the known attitude of solid state emitters to host
the growth of extended, fatal defects starting from small and initially negligible
seeds.

The strategy for a coordinate study of early and long-term effects is rather
clear: the selected samples, once duly measured before and after irradiation, should
be monitored during a period of operating life, possibly accelerated by means of
high temperature and/or high current. What such a strategy undertakes is that
each degradation phase is irreversible, no matter if due to the primary irradiated
particles or to some internal growth of lattice defects. Anyway, some Authors
recognize that some recovery of the initial conditions may take place a certain
time after irradiation, and this leads in general to the recommendation of starting
the operating life tests immediately [123,124].

This paragraph is focuses on recovery effects. The laser characteristics of two
different devices, after 3MeV proton irradiation, indeed, were found to evolve on
a daily time scale even for unbiased samples at room temperature.

Moreover, that time evolution displayed some quite peculiar features that
prompted to consider the spatial redistribution of the implanted protons, and
in particular to identify a diffusion process.

This explanation, well supported even by a simple theoretical model based of
the classical diffusion equation, in turn puts many more questions on both the
physical side and the hardness assurance protocols.

The next subparagraph will start with the description of the two devices, of
their measurement protocols and of the irradiation setup. Then, the time-evolving
characteristics will be reported and interpreted.

The solution of the diffusion equation will be trimmed on the geometries of
the two kind of lasers, introducing a suitable Green function able to vanish on the
physical boundaries of the chips. The comparison of the calculated and measured
results will suggest some further refinements.

Finally, the open questions will be listed and discussed, in order to plan the
future work.

3.4.1 Experimental setup

3.4.1.1 Laser diodes

The devices employed for the experiment are an edge emitter and a VCSEL
(Vertical Cavity Surface Emitting Laser), both for telecom applications.

The first is an InGaAsP/InP Distributed FeedBack (DFB) device tuned at
1310 nm, mounted on a typical Transmission Optical Sub-Assembly (TOSA) that
includes a photodiode as a monitor of the emitted optical power (fig.3.52).

The top and front views of a real device of this family are shown in fig.3.52. The
latter is a SEM image with the superposition of the EBIC (Electron Beam Induced
Current) that maps the position of the junction line, that completely embeds the
optically active layer.
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Figure 3.52: Assembly of the laser/monitor pair in a TOSA configuration.

Figure 3.53: Top and cross-sectional views of the 1310 nm edge-emitting laser
diode.

The second device is a vertical emitter, based on the AlGaAs/GaAs system
that includes upper and lower Distributed Bragg Reflecting (DBR) stacks to tune
the light emission at 850 nm.

The structure is reported in fig.3.54, while fig.3.53 shows a cross-section of a
real device, obtained by FIB (Focused Ion Beam) milling.
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Figure 3.54: Schematic structure of a VCSEL.

Figure 3.55: Patchwork of SEM images of the cross-section of a VCSEL.

3.4.1.2 Irradiation and measurements

We have performed 3MeV protons irradiation in vacuum at the CN accelera-
tor of the INFN National Laboratories of Legnaro, Italy. The proton beam was
perpendicular to the laser output facets. This means that in the ridge laser the
axis of the proton beam was parallel to the junction plane, while in the VCSEL it
resulted perpendicular.

The proton fluence was 3x1012particles/cm2 for the InP edge emitter and for
the GaAs VCSEL.

The proton beam projected range was about 60µm for both devices, meaning
that the proton peak distribution was well inside the 200µm length of the edge
emitter (see fig.3.53) while it was much deeper than the electrically active junction,
that is also the optically active layer, in the VCSEL case.

The devices have been measured before the experiment, and then in four steps
just after irradiation, namely after two hours, one week, two weeks and one month.
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They have never been biased apart for the very short time of their measurement.
The measured parameters were: the laser current I, the corresponding voltage

V, and the photocurrent IM measured at the monitor diode for the ridge-emitter
(see fig.3.52) and at an external photodiode for the VCSEL, respectively. As said
this current is proportional to the optical power POUT , so that the plot of IM(V )
gives the light-current curve. For both devices the monitor current was up-scaled,
following the protocol indicated in subparagraph 1.1.6, that allows to eliminate
the conversion losses of the monitor diode. This is important for the edge-emitter,
where the monitor diode itself is exposed to the proton flux, this causes a reduction
of the conversion efficiency of the monitor diode that is compensated by the up-
scaling procedure.

In order to better illustrate the obtained radiation results, from fig.1.15 we
remind two relevant parameters Ith and ηT , which are commonly related [43] to
the internal optical loss coefficient αi, to the loss coefficient from the emission facet
αm, and to their sum, the total loss coefficient αT = αm + αi, by the empirical
formulas (1.59) and (2.1).

3.4.2 Results

Figures 3.56 and 3.57 reports the resulting light-current curves before irradia-
tion (dashed curves), just after irradiation (1), after two hours (2), one week (3),
two weeks (4), and one month (5).

Figure 3.56: Light-current characteristics after irradiation for the 1310nm InP
Edge Emitter. The dashed lines represent the pre-irradiation condition.
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Figure 3.57: Light-current characteristics after irradiation for the 850nm GaAs
VCSEL. The dashed lines represent the pre-irradiation condition.

The immediate effect of proton irradiation is aligned with literature results: for
both devices the threshold current increases and the efficiency decreases. This is a
common situation in laser diode degradation, that is related to the appearance of
non-radiative centers inside the active region. Such defects, indeed, cause a strong
increase of the internal optical losses, and then of the total loss coefficient αT that
appears in (1.59), without modifying the other parameters.

The following evolution is by far more puzzling and intriguing under many
points of view. First of all, after the first measurement, the evolution is opposite
in the two devices during the first room temperature annealing week (curves 2 and
3): the edge emitter tends to recover the initial state, while the VCSEL continues
to degrade. After two weeks (curve 4) the characteristics of both devices invert
their evolution. This happens at a small extent for the edge emitter, that returns
to an intermediate state between step 2 and 3, but much more for the VCSEL that
jumps to half the initial degradation, midway between states 0 and 1.

After one month (lines 5), both devices result closer to their initial states than
at the previous step 4. In addition, some details appear, specific for each device.
After irradiation the slope of all states (1,2,3,4,5) remains the same for the edge
emitter. On the contrary, for the VCSEL not only the slope greatly changes, but
states 2 and 3 seem even to have no threshold current.

The detailed interpretation of the observed features is challenging, because
it requires to understand the interaction mechanisms active at microscopic level,
how the geometry and relative orientation of the proton beam and the laser layers
enter the problem and which phenomenon causes the time evolution (and following
which kinetics). Yet, some important conclusion can be given even at a general
level.
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Figure 3.58: Model for proton implant and diffusion in both the VCSEL and the
edge-emitter laser diodes.

Non-permanent damage

First of all, the kind of damage induced by the proton irradiation is, concerning
its effect on optical properties, non-permanent. This follows the evident large re-
covery shown by both devices: on the other hand, the lattice damage hardly would
disappear at room temperature along one month. This fact is also in agreement
with previous observations, reporting some post irradiation recovery [125].

Second, also local activation/deactivation of interstitial protons (for instance
because of electron capture or binding with dopant atoms) should be excluded. It
is indeed difficult to imagine a mechanism that in one device enhances the optical
effects of protons (the initial evolution of the VCSEL) and in the other (the ridge
emitter) case goes in the opposite direction.

The working hypothesis that answers many, but not all, questions is related to
the diffusion of protons introduced by irradiation.

Proton diffusion hypothesis

If protons diffuse from their initial position after implantation, and we con-
sider the geometries of the two experiments (fig.3.58), we can study, at least at
qualitative level, the expected kinetics of the optical performances.

We assume that the proton density inside the optically active layer causes
the increase of the non-radiative recombination, that results in an increase of the
optical losses (coefficient αT ) and of the term Itr, that is shown in paragraph 1.1
to be determined, indeed, by the amount of non-radiative events.

In order to calculate the proton density, we assume that the proton profile
is approximated by a single layer at a depth equal to the projected range (that
is, we lead the projected struggle to vanish). This approximation can be easily
removed for a more accurate calculation, but the main results appear even at this
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simplified level. We also assume that protons escape from the physical boundaries
of the chips, which forces their density to zero at the laser surfaces. The thickness
of the devices is assumed infinite, if compared with the penetration range of the
implanted particles, and the beam intensity is assumed uniform across the whole
width of the chips.

The definition of the mathematical problem is given by the classical diffusion
equation for the proton concentration C:

∂C

∂t
= D∇2C (3.5)

where D is the diffusion coefficient and t is the time. The solution is represented
in terms of the superposition given by the triple integral over the three orthogonal
space coordinates:

C(x, y, z, t) =

∫∫∫
C0(x0, y0, z0)G(x, y, z, x0, y0, z0, y)dx0dy0dz0 (3.6)

provided the Green function G, corresponding to the solution of the problem for
a point source located in x0, y0, z0, is known for the given domain.

For an unlimited and uniform three-dimensional domain, the solution is known:

C(x, y, z, x0, y0, z0, t) =
1√

(4πDt)2
exp

[
−(x− x0)2 + (y − y0)2 + (z − z0)2

4Dt

]
(3.7)

For the domain indicated in fig.3.58, the Green functionH satisfying the bound-
ary conditions on the x = 0 and z = 0 planes is easily obtained from (3.7) and the
image method:

H(x, y, z, x0, y0, z0, t) = G(x, y, z, x0, y0, z0, t)−G(x, y, z,−x0, y0, z0, t)+
+G(x, y, z,−x0, y0,−z0, t)−G(x, y, z, x0, y0,−z0, t)

(3.8)

The total density C obtained from (3.6) is then integrated over the active layer
half plane, indicated for each devices by the corresponding dashed lines in fig.3.58.

The result is summarized in fig.3.59, where the proton concentration is plotted
as a function of the parameter Dt. A rough estimate of the diffusion coefficient
D can follow the observation that the inversion in the VCSEL characteristics oc-
curs between 1 and 2 weeks. This gives for D an estimate of about 10−11cm2/s
consistent with literature [126]. For the edge emitter the optically active defects
are expected to decrease with time, while for the VCSEL a “wave peak” is pre-
dicted, with an initial increase of the density, because of diffusion from the high
concentration deep region, followed by a continuous decrease. The most part of
the observed features is consistent with the proposed diffusion model.

Anyway, several details still require some deeper investigation. Among them:
step 4 and the slopes of the light-current curves for the edge-emitter, and the
apparently missing threshold current of the VCSEL at steps 2 and 3. All these
issues will be discussed in the future in a new extended paper, as well as the role
of the radiation induced lattice damage in correlation with the proton diffusion.

In conclusion, proton irradiation on two kinds of commercial laser diodes has
shown optical effects evolving in time. The different geometries of the two devices,
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Figure 3.59: Calculated time evolution of the total proton density at the active
regions of both the edge emitter and the VCSEL, according to the diffusion model.

and in particular the orientation of their planar active region with respect to the
proton beam, caused completely different effects.

A simple model pointed out a proton diffusion process as the basic mechanism
driving the observed kinetics. Several open question still ask for more detailed
investigations, starting from the root mechanism that leads protons to affect the
electro-optical properties of a laser diode.

The possibility of a permanent damage associated to proton irradiation can
be investigated by accelerating the diffusion process by a suitable storage of the
irradiated devices at high temperature, without any bias.

In any case, despite the many open questions, the conclusion follows that any
lifetest on proton-irradiated laser diodes should carefully consider that, if the im-
planted dose is supposed to cause the growth of extended defects, it changes in
time. The same lifetest started at once or one day (or one week) after irradiation
may lead to totally different results.

3.5 1060nm seed laser diodes in pulsed opera-

tion: performances and safe operating area

The general model developed in Chapter 1 deals with low power devices. No
thermal effects related to high power have been included. During the discussion of
the anomalous dV/dI, discuss in paragraph 1.4, a pulsed measurement method has
been applied to validate the hypothesis of low power condition. This opened the
door to experimental studies on power devices. The following part will describe
some preliminary experiments aiming to point out the most relevant adjustments
that the model will require when facing the high power domain.
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New phenomena are observed in the optical response of InGaAs/AlGaAs 1060nm
Laser Diodes (LDs) and Laser Diode Modules (LDMs) driven under high peak cur-
rent condition: two segments of parasitic oscillations appear in the optical response
of every tested LD and LDM, when increasing the current above two respective
thresholds. We designed a test bench devoted to the near-field and time-spectral
analysis of LD optical responses under such conditions. A correlation was found
between the presence of the first segment of oscillations on the optical response,
a widening of the near-field profile and a temporal broadening of the LD spec-
trum [127,128].

Lifetime and reliability estimation of Laser Diodes (LDs) and Laser Diode Mod-
ules (LDMs) used under CW conditions have been extensively studied by many
research groups [129, 130]. However, for fiber Laser seeding applications, the use
of pulsed commercial 1060nm LDMs offers a large flexibility compared to others
techniques (ex. EO modulator) [131]. In order to limit nonlinear effects (Ex. Bril-
louin, noise) caused by a high amplification gain of the fiber Laser, it is required
that LDs be driven under high peak overcurrent (>>2A), short pulse duration
(<100ns) and high repetition rate (>100kHz) conditions [132]. Nevertheless, the
behavior and life expectancy of these LDs under such conditions is not well es-
tablished. A few studies have been carried out on the reliability of some 1060nm
Laser diode, rated for a pulsed current of 2A max, demonstrating their ability to
withstand higher driving current conditions (2.35A [133], or even 3.5A [134]).

Our work is based on determining the reliability of InGaAs/AlGaAs 1060nm
CW LDs under such conditions by the extraction of Electro-Optical (EO) charac-
teristics (I-V, P-I, DoP etc.) and the monitoring of their changes during pulsed
ageing tests. In this context, we observed new behavior when LDs and LDMs
are driven under high peak-current conditions: damped pseudo-oscillations were
observed on the optical pulse response of the Laser diode, when increasing the
driving current above a critical threshold and larger than the maximum ratings.
This effect is non-linear, and is therefore expected to cause undesired effects on
the output pulse of the fiber Laser [135]. In order to understand the origin of
those oscillations and to discuss their potential influence on the operation range of
seed LDs, we studied three types of LDs with different packaging architecture: 10
butterfly LDMs (numbered from #1 to #10) with a Fiber Bragg Grating (FBG)
photo-inscribed in the core of the optical fiber, 10 butterfly LDMs without FBG,
and 11 Chip on Submount (CoS) LDs. Optical pulse responses of each Laser diode
are characterized through dedicated test benches:

• time pulse response,

• near-field analysis (only for CoS)

• time-spectral analysis of these diodes when driven under overcurrent and
short-pulse conditions.
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(a) (b)

Figure 3.60: Example of LDs packages: a) CoS LD and b) butterfly LDM.

3.5.1 Optical characterizations at high peak current pulsed
conditions

As the drive current increases, and for a constant pulse duration of 100ns,
two time intervals of oscillations (namely “A” and “B”) appear on the optical
responses of all the tested diodes, regardless packaging architecture (fig.3.61). A
strong part-to-part variability is observed on the current threshold triggering the
1st time interval of oscillations (IthA) varying from 2.8A to ∼11A. However, this
value is quite constant between LDs originating from the same manufacturing
batch, regardless of the final packaging of the die.

Figure 3.61: Parasitic oscillations on the optical response of a CoS LD, driven at a
current of 8.76A. Two segments of oscillations (“A” and “B”) are clearly observed
(40ns/div).
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While measuring the spectrum of these LDs and LDMs under high current
pulsed conditions, a widening of the output spectrum has been observed specif-
ically when driving these LDs and LDMs over their IthA threshold. Therefore
we conducted a time spectral analysis to understand the dynamics of the tempo-
ral variations of the spectrum over the A-type oscillations threshold. The time-
spectral test bench realized, described in fig.3.62, is based on a time slicing of the
optical responses using an Electro-Optical Modulator (EOM) synchronized with
a pulsed LD driver (2-12A, 100ns). The output of the EOM is sent to an optical
spectrum analyzer (OSA). By generating a variable delay between the LD output
pulse and the EOM driving signal, time spectral charts of the LD output pulse are
achieved versus current conditions. Near-field pattern imaging of CoS Lasers front
facet is also characterized using a high magnification microscope system, based on
a 20x microscope objective coupled with a dedicated NIR camera.

Figure 3.62: Designed time-spectral analyzer.

A relationship between the value of IthA and the near-field profile widening
of the optical pulse is demonstrated, as reported on fig.3.63a and fig.3.63b. In
contrast, the occurrence of the second time interval of oscillations has not any
effect on the near field profile, suggesting a different origin for these oscillations.
fig.3.64a and fig.3.64b summarizes the time-spectral analysis results. As reported
on fig.3.64a, the maximum intensity of the pulse spectrum is located at 1060nm
as expected. At the beginning of the Laser pulse, the optical spectrum is rela-
tively wide, and rapidly narrows afterwards, so that the spectrum of the impulsion
reaches a steady state after ten nanoseconds. This large spectral width at the
beginning of the impulsion is explained by the multi-modal character of the gain
switching emission [136]. However, when the LD is driven with a peak current
higher than IthA, a temporary broadening of the optical spectrum is observed, as
shown on fig.3.64b (IthA=8.3A, ILD=9A), within a range from 15ns to 25ns af-
ter the beginning of the Laser pulse. This exactly matches the Atype oscillations
zone occurring above this specific driving current, thus confirming a relationship
between the occurrence of A-type oscillations on the optical response of a Laser
diode and a spectral broadening of the optical pulse.
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(a) (b)

Figure 3.63: Near-field profile of a CoS diode driven a) below and b) above IthA =
9.5A.

Figure 3.64: Time spectral analysis of a CoS LD output pulse, driven a) below
and b) above IthA=8.3A.

3.5.2 Aging results

In order to determine a potential relationship between the value of IthA and the
Safe Operating Area (SOA) of these LDs, three LDMs (LDM #4, LDM #1, LDM
#9, without FBG and with different values for IthA (3.9A, 7A, 11.2A respectively),
have been aged under step-stress accelerated pulsed conditions (variable current
and ageing time, 100ns, 200kHz). The aging setup is shown in fig.3.65. After each
step of the aging test, the IthA and IthB values have been measured.

Up to now, six ageing steps have been realized (6A/72h, 6A/120h, 6.5A/120h,
6.5A/380h, 7A/120h, 7.5A/120h), as seen on fig.3.66. No modification of the value
of IthA or IthB have been observed. However, after the “V6bis” aging test (7.5A,
120h), the LDM #4 failed during the IthA and IthB measurements. This LDM
is the one with the lowest IthA value. Through these preliminary investigations,
both the robustness of these devices is demonstrated over a large current pulse
magnitude compared to operating peak current (x 3.5). Aging tests are in progress
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especially to assess the behavior of the two other Laser diodes above 7.5A and the
relationship between stress current level and their respective intrinsic IthA values.

Figure 3.65: Aging setup

Figure 3.66: Step-stress conditions. For the “V6” and “V6bis” aging test, the
same aging conditions have been successively applied to the LDM with the highest
IthA value, and then to the two remaining LDMs.

The absolute optical output power and relative optical output power variation
of the LDM1, LDM4 and LDM9 diodes are monitored during the four ageing
processes. The results of two of them are summarized below:
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(a)

(b)

Figure 3.67: Optical power monitoring during a) the “V3” and b) the “V5” ageing
test.

As seen on fig.3.5.2 and fig.3.5.2 small fluctuations of the optical power are
observed all along every ageing tests. However, no long term decrease of any Laser
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diode output power was highlighted.
Investigations were carried out to understand the origin of A-type oscillations of

the optical response of LDs or LDMs when driven under high current/short pulses
conditions. In this context, we supplied three batches of Laser diodes, with dif-
ferent packaging, and measured the respective threshold current value over which
these oscillations appeared (IthA and IthB). We observed a strong batch-to-batch
variation in the value of IthA and not for IthB. We discussed the possible origins of
the A-type oscillations, and we conducted a near field profiling and spectral / time
spectral analysis of the LDs optical responses. Indeed, a correlation was observed
between the occurrence of A-type oscillations and the spectral widening of the
LDs optical response. Time spectral analysis was conducted, which highlighted a
link between A-type oscillations and a temporal broadening of the pulse spectrum.
Step-stress ageing tests were then carried out on three LDMs without FBGs. One
device failed after an ageing test carried out at 7.5A during 120h. However, the
same ageing conditions have had no effect on the two remaining devices, that could
withstand such severe driving conditions. Furthermore, no modification of their
IthA and IthB values have been observed yet. Further aging tests must be carried
out on several devices with low and high IthA values in order to highlight or revoke
a relationship between the SOA of a device and its IthA value.

Conclusions

In conclusion, in this last Chapter a list of failures, that the Author has studied
in the years of the PhD, has been reported. In subparagraph 3.1.3 have been
reported two practical cases in which the parameters extraction, before and after
some catastrophic event, could be useful to individuate failure mechanisms and
in some particular case, the method proposed could be the best way to address
failure analysis.

In the second part the case of the double-peaked spectrum in some DFB laser
diodes is demonstrated to relate to axially confined Catastrophic Optical Damage
(COD), followed by the excitation of a transversal optical mode. The melting-
regrowth kinetics of CODs also reveals another possibility of COD-induced side
optical modes in a fiber DBR pump laser diode.

The third case reported the test performed on 850-nm VCSELs forward and re-
verse HBM, MM, CDM ESD, together with EOS and overpower test. The physical
analysis of the tested devices showed a variety of damages not easily correlated to
the measured electro-optical degradations. The solution required the detailed in-
terpretation of the observed physical mechanism, by means of electron microscopy
and device modelling.

The fourth case about the proton irradiation on two kinds of commercial laser
diodes has shown optical effects evolving in time. The different geometries of
the two devices, and in particular the orientation of their planar active region
with respect to the proton beam, caused completely different effects. In this case
a simple model pointed out a proton diffusion process as the basic mechanism
driving the observed kinetics.

Finally, the atypical phenomenon observed on the optical response of InGaAs/Al-
GaAs 1060nm Laser Diodes (LDs) and Laser Diode Modules (LDMs) driven under
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high peak current condition: two segments of parasitic oscillations appear on the
optical response of every tested LD and LDM, when increasing the current above
two respective thresholds. For this case it has been studied the possible origins of
the oscillations observed, and we conducted spectral and time spectral analysis of
the LDs optical responses. A temporal spectral broadening, associated with the
occurrence of “A” type oscillations, was highlighted. Up to now, neither a drop in
the optical power of the LDs aged nor a variation in their and values, before and
after the ageing tests, were observed. The aged LDs were able to withstand the
chosen ageing conditions without any noticeable decrease of their performances.
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General conclusions

The kernel of the proposed study is the open problem of correlating failure
modes and failure mechanisms in laser diodes. It is known in failure analysis and,
in particular for photonics, that a gap exists between observations (failure modes)
and physical roots of degradation (failure mechanisms).

The answer to this issue prompted to develop that self-consistent model that
has been referred to and summarized in this Thesis.

The conclusion has been the validation of the basic model, and its quantitative
application to real cases.

The focus of the model has been shown to deal with the POUT (I) electron-
optical characteristics, but it resulted also able to deal with a larger set of pa-
rameters, as the proprieties of lateral areas concurring to current conduction and
confinement.

The combined observation of both current and voltage thresholds became im-
portant, as well as the Shockley-like parameters that rule over the whole sub-
threshold region of the I(V) characteristics of a real laser diode. Those parameters
result to be strongly related to photonic devices physics as well as failure physics:
saturation current increases because of the reduction of carrier lifetime; the emis-
sion factor points out the fraction of carriers recombining inside or outside the
depletion region; the series resistance speaks about the contact interfaces, etc.

A method for measuring the most part of those parameters, electrical and
optical, is then proposed, as a starting point before facing real failures. Along
that line, simple steps as reducing the external to the internal voltage led to
direct insight and measurement of the voltage threshold. All parameters shown in
Chapters 1 and 2, and their numerical values, come as a result of that decoding
procedure.

In the last part of the Thesis some demonstrations on real cases have been given
in detail, in which single parameters have been tested as independently as possible.
It is the case of the FIB modification that induced defects on the lateral sides of
a laser, showing modifications of the threshold current and the total efficiency
without any variation of total losses. These steps of practical cases helped to
confirm and improve and the model.

Here was the aim and, hopefully, the strength of this three years of PhD: to
perform and perfect the model and the method proposed in the last decade by
Vanzi et al.
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Appendix A

The role of band asymmetry

In order to discuss the role of the asymmetry parameter ε, as defined in (1.9),
we will limit ourselves to the simple case of density of states of an ideal Quantum
Well, that is a step function for both electrons and holes.

ge =
me

π}2
Ee > EC , 0 otherwise

gh =
mh

π}2
Ee < EV , 0 otherwise

(A.1)

From (1.1) and (1.4) we obtain

Ee + Eh
2kT

=
EC + EV

2kT
+
mh −me

mh +me

hν − Eg
2kT

(A.2)

On the other hand, for an undoped semiconductor the total number of electrons
equates the total number of holes, so that∫ ∞

EC

n(Ee)dEe =

∫ EV

−∞
p(Eh)dEh (A.3)

Using the definition of carrier densities given in Tab.1.1, and (A.1) for the densities
of states, one obtains

φn + φp
2kT

=
EC + EV

2kT
+ ln

(√
mh

me

)
=
Ei
kT

(A.4)

where the independence of the result on the applied bias V allows to identify the
mean value of the quasi-Fermi levels as the Fermi level Ei itself at equilibrium for
the undoped material. The result is:

(Ee + Eh)− (φn + φp)

2kT
=
mh −me

mh +me

hν − Eg
2kT

− ln

(√
mh

me

)
(A.5)

It is clear that for ideal symmetric bands (equal effective masses) this value is
null, and then (1.6) would be exact.

For asymmetric bands the two terms on the right-hand side of (A.5) partially
compensate, depending on the displacement of the peak emission hν with respect
to the energy gap Eg.
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The maximum absolute value is reached for the non-broadened distribution of
states, where that displacement is null, which makes the first of the two terms to
vanish. In any case, some non-null value of ε must be considered. The effect of ε
has been duly reported for all the relevant results previously obtained, but it can
be summarized as follows

1) The sub-threshold range of all currents, including the radiative current Iph is
not directly affected.

2) The threshold voltage Vth, at given peak frequency, temperature and optical
losses increases with increasing ε.

3) The threshold current Ith also increases with increasing ε, simply because it
depends on Vth.

Some further effects are caused by band asymmetry where the product of the
effective masses, instead of their ratio that defines ε, enters into play. This is the
case of the gain coefficient gm (1.30). This leads to the supplementary results:

1) Absorption increases with increasing gm (1.28)

2)Gain saturation is not affected, because of its upper limit at g = αT .

3) The radiative current Iph increases also in the sub-threshold range, because the
term Ish0 = Iph0(R/R + 1) in (1.48), (1.49) is proportional (equations (1.36) and
(1.47)) to αTgm/(αT + gm.)

The first and third results obviously follow the consideration that increasing
the product of the effective masses simply means the increase of the joint density
of states, and then the rate of optical transitions.

The previous considerations have a great relevance when one considers not only
band asymmetry, but also the multiplicity of the valence band, and in particular
the existence of the light and heavy hole sub-bands (the split-off band will be here
neglected because of its lower population, that is assumed to marginally affect the
main transition rates). Each sub-band contributes to optical transitions, giving
rise to two specific radiative currents Iphl, and Iphh that adds to build up the total
Iph.

The light-hole contribution Iphl has a lower “saturation current” in the sub-
threshold range than the heavy-hole term Iphh, but displays a lower threshold
voltage than the latter. As an example a numerical evaluation can be given for the
In1−xGaxAsyP1−y lattice-matched to InP to give emission at 1310 nm, as in the
previous fig.1.5 and 1.6, applying the parameter evaluation summarized by [32],
Ch.3. One gets ε = 0.33[(hν −Eg)/2kT ]− 0.34 for transition between conduction
band and the light-hole band, and ε = 0.79[(hν − Eg)/2kT ] − 1.06 when, on the
contrary, transitions involve heavy holes.

If we refer the results to the ideal case ε = 0, for room temperature, hν =
Eg = 0.9466eV , and R = 0.4, that would lead to Vth = 0.9905V , we obtain the
results listed in Table A, where the saturation current, the threshold voltage and
the threshold current are referred to the ideal case of symmetric bands.

When we realize that it is the lower threshold voltage to rule over the whole
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Relative Ish0 Relative Vth Relative Ith
ε = 0(symetric band) 1 1 1

ε = −0.34(light holes) 1 1 1
ε = −1.06(heavy holes) 1.34 1.012 1.6

Table A.1: Relative values of the relevant parameters for the symmetric band
model and the asymmetric models involving light and heavy holes.

Figure A.1: Expected Iph at the laser transition for the symmetric band model,
and for the light or heavy hole transitions in the 1310 nm emitter of fig.1.6.

system, this means that threshold is governed by the light-hole transitions. For
threshold voltages close to 1 V and threshold currents about 10 mA, the use of the
approximation ε = 0 would then give an error of 1 mV on Vth and of 0.4 mA on Ith.
FigA.1 draws and compares the three calculated plots of Iph. The symmetric band
approximation results nearly undistinguishable from the light-hole transitions.

This is the reason for considering the simpler version of the model, corre-
sponding to the non-realistic band symmetry approximation, an excellent tool for
practical applications. The only point to be kept in mind is that, for the given
case, the sub-threshold values of Iph will result some 30% lower in the theoretical
model than in experiments.
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Appendix B

Dimension of the join densities

A comment can be made about the physical dimensions of the joint densities.
Based on the standard definitions

n =

∫ ∞
EC

n(Ee)dEe

p =

∫ EV

−∞
p(Eh)dEh

(B.1)

one should first change the energy variables into frequency ones
Ee = EC +

m∗h
m∗h +m∗e

(hν − Eg)

Eh = EV −
m∗e

m∗e +m∗h
(hν − Eg)

(B.2)

and then identify
nν = h

m∗h
m∗h +m∗e

n

(
EC +

m∗h
m∗h +m∗e

(hν − Eg)
)

pν = h
m∗e

m∗h +m∗e
p

(
EV −

m∗e
m∗h +m∗e

(hν − Eg)
) (B.3)

in order to have n =

∫ ∞
Eg/h

nνdν, p =

∫ ∞
Eg/h

pνdν

The last step is to define the joint density as

pνnν =

∫
pνnν1δ(ν1 − ν)dν1 (B.4)

This makes the joint densities dimensions cm−6t an
[∫
pνnνdν

]
= cm−6. It

should be clearly reminded that
∫
pνnνdν 6= pn

Anyway, those densities never appear, but always combined with other terms,
including the Einstein coefficients that have been introduced. It will then be left to
the dimensional analysis of the ultimate results to properly recognize the suitable
dimensions of the relevant terms.
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Appendix C

The Hakki-Paoli consideration.

This appendix has the espouser to reconstruct the Hakki Paoli formula and to
compare it with 1) The similar equations that define the total losses and the gain
saturation limit 2) The result of the New Model for the laser spectrum.

C.1 Hakki-Paoli method

Let the field F0 describe the amplitude and phase of the optical field at the
beginning of the round trips, in some point of the cavity. After the first round trip
of length 2L the twice reflected wave F1 adds to the initial field in the same point

F1 = F0

[√
R0R1 exp

(
−αT

2
2L
)

exp (ik2L)
]

(C.1)

where R1 and R2 are the power reflectivities of the two mirrors, α is the net power
absorption coefficient (and for this reason, in an amplitude calculations we use
the square root of R1 and R2 and α/2 in the propagation exponential). The wave
propagation constant is k. After the second trip the additional field F2 is

F2 = F1

[√
R0R1 exp

(
−αT

2
2L
)

exp (ik2L)
]

= F0

[√
R0R1 exp

(
−αT

2
2L
)

exp (ik2L)
]2

(C.2)
Summing over all trips:

F =
∞∑
n=0

Fn = F0

∞∑
n=0

[√
R0R1 exp

(
−αT

2
2L
)

exp (ik2L)
]n

=

=
1

1−
[√

R0R1 exp
(
−αT

2
2L
)

exp (ik2L)
] (C.3)

154



The intensity of the field is now

|F |2 = |F0|2
1∣∣∣1− [√R0R1 exp

(
−αT

2
2L
)

exp (ik2L)
]∣∣∣2 =

= |F0|2
1

1−
[√

R0R1 exp
(
−αT

2
2L
)

exp (ik2L)
] 1

1−
[√

R0R1 exp
(
−αT

2
2L
)

exp (ik2L)
] =

= |F0|2
1

1 +R1R2 exp (−2αL)− 2
√
R1R2 exp

(
−2

α

2
L
)

cos (2kL)
(C.4)

This means that the intensity, because of positive or negative interference, will
oscillate between the two values

|F |2min = |F0|2
1[

1 +
√
R1R2 exp (−αL)

]2 (C.5)

|F |2MAX = |F0|2
1[

1−
√
R1R2 exp (−αL)

]2 (C.6)

Following Hakki-Paoli, let us calculate the ratio

ri =
|F |2min
|F |2MAX

=

[
1 +
√
R1R2 exp (−αL)

]2[
1−
√
R1R2 exp (−αL)

]2 (C.7)

now, it is possible to calculate the expression

1

L
ln

√
ri + 1√
ri − 1

= α− 1

L
ln
√
R1R2 (C.8)

If it defines the total reflectivity as

R2 = R1R2 (C.9)

it is possible to obtain:

1

L
ln

√
ri + 1√
ri − 1

+
1

L
lnR = α (C.10)

This is what Hakki-Paoli call the net gain ΓGi.

C.2 Etalon

Let us write the cosine in the alternative form

cos (2kL) = 1− 2 sin (kL) (C.11)
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this leads to

|F |2 = |F0|2
1

1 +R2 exp (−2αL)− 2R exp
(
−2

α

2
L
)

cos (2kL)
=

= |F0|2
1[

1 +R2 exp (−2αL)− 2R exp
(
−2

α

2
L
)]

+ 4R exp
(
−2

α

2
L
)

sin2 (kL)

(C.12)

This means

|F |2 = |F0|2
1

[1−R exp (−αL)]2 + 4R exp (−αL) sin2 (kL)
=

=
|F0|2

[1−R exp (−αL)]2
1

1 +
4R exp (−αL)

1−R exp (−αL)
sin2 (kL)

(C.13)

Looking at the dependence on positive or negative interference, it is obvious that
it is given by the last ratio, so that we can write the maximum as before (corre-
sponding to the minima of the sin2 function), and all other values as a modulation
of the maximum:

|F |2MAX = |F0|2
1

[1−R exp(−αL)]2
(C.14)

|F |2 = |F |2MAX

1

1 +
4R exp (−αL)

1−R exp (−αL)
sin2 (kL)

(C.15)

The modulating term is quite nice. Let us call it T . If we consider the case of zero
losses, and express the wavenumber k in terms of the light wavelength in vacuum
λ and of the refractive index n, we get

T =
1

1 +
4R

[1−R]2
sin2

(
2π
n

λ
L
) (C.16)

This is exactly the transmission function of an Etalon, whose thickness is L, and
whose reflectivity of the single interface is R. It makes sense, because an ideal
Etalon is supposed to be transparent (α = 0), without any gain or absorption.
The term 4R/ [1−R]2 corresponds to the finesse of the Etalon. Unfortunately it
is usually indicated by the letter F , that we will not introduce here, for avoiding
confusion with the field.

C.3 The meaning of α

From (C.1) it should be clear the α is the net power attenuation coefficient that
includes everything adds or subtracts intensity along the round trip. It excludes
the mirror losses (coefficient αm), but includes the internal losses (coefficient αi),
and the absorption losses (coefficient αabs) as well as, with a negative sign, the pure
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gain coefficient (coefficient G). The standard definition of the total loss coefficient
αT , that also enter the L-I equation, is

αT = αi + αm (C.17)

It follows that in the Hakki-Paoli theory the definition of α is

αHP = [αi + αabs −G] = αi − g = (αT − αm)− g =

[
αT −

1

2L
ln

(
1

R1R2

)]
− g

(C.18)
This is important, because at threshold g = αT , so that

αthreshold = − 1

2L
ln

(
1

R1R2

)
=

1

L
ln
(√

R1R2

)
(C.19)

and (C.1) at threshold becomes

F1 = F0

[√
R1R2 exp

(
−α

2
2L
)

exp (ik2L)
]
threshold

= F0 exp (ik2L)→ |F1|2 = |F2|2

(C.20)
The square modulus confirms that the intensity after the first round trip is

the same as at its beginning. It is the steady-state condition, that requires that
gain balances losses for sustaining the optical oscillation within a lossy cavity. It
follows that the definition of transparency is NOT g = 0, but g = αi.
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Appendix D

The distributed model

With reference to fig.D.1, we describe a network of vertical elements that rep-
resent the same element of the discrete numerical model (par.1.4.3) but in each of
its two possible states: the laser diode elements are or clamped at their threshold
voltage (in this case they are represented by a voltage generator fixed at Vth) or
their bias is lower than Vth, and then they are represented by a standard Shockley
diode. The horizontal connection, as in the discrete model, describes the metal
contact (region A) as an equipotential line, connecting all elements in parallel.
It is assumed that the device has reached its “first” and main threshold, that is
the transition to the lasing condition of the whole part of the active area directly
covered by the metal contact. It is then assumed that also some of the neighboring
diodes, out of the direct vertical contact to the metal layer, have reached their own
threshold and then have a clamped voltage. This is region B in fig.D.1. Last, a
region C includes all those diode elements that did not reach the threshold. The
extension W of the joint B and C region is physically defined by the geometry
of the device, while the extension H of the sole C region (leaving W −H for the
extension of region B) is unknown. H will result as the key parameter ruling over
the determination of bot voltages and currents in the proposed model.

Recalling the definitions of par.1.4.3, let RS be the total series resistance of the
sole region A (1.108). The total resistance of the B+C path will be RL (1.109).

Assuming dx as the horizontal distance by the vertical elements, each vertical
resistor in fig.D.1 rV will have a value

rV = R0
h

dx
(D.1)

Each horizontal resistor rL it will be

rL = R0
dx

h
(D.2)

In region A the vertical component of the current is easily given by the Ohm’s law

IA =
V − Vth
RS

(D.3)

This current will be complemented by the horizontal current that will flow
towards regions B and C, that will be indicated, in the next section, as Iin.
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Figure D.1: Electrical model for the distributed model, the voltage generators
represent the diodes clamped yet, the total resistance path represent the effective
distribution of resistances in the system.

When the diodes of region A just reach their threshold, a current Ith will flow
that allows to define the external threshold voltage VA

VA = Vth +RSIth (D.4)

We also express the saturation current of the diodes by means of the threshold
condition:

Ith = IV S exp

(
Vth
VT

)
(D.5)

that can be reversed

IV S = Ith exp

(
−Vth
VT

)
(D.6)

The current Ith so defined will be not exactly the real threshold current of the
device, but describes what should be its value if the lateral sideW were of negligible
extension. The measured threshold current will accordingly be Ith + Iin(VA).

Let us now proceed with the analysis of regions B and C.

Region B

In region B, let I(x) be the current flowing across the horizontal resistors and
with

iV =
V − Vth
rV

=
V − Vth
R0h

dx (D.7)

The current flowing along one of the vertical paths. Between the points x and
x+ dx we have: 

V (x+ dx) = V (x)− rLI(x)

I(x+ dx) = I(x)− iV
(D.8)
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That is: 
V ′(x) = −R0

h
I(x) (D.9a)

I ′(x) = −V − Vth
R0h

(D.9b)

Differentiating the first:

V ′′(x) = −R0

h
I ′(x) =

V − Vin
h2

(D.10)

whose solution is

V (x)− Vth = A exp
(x
h

)
+B exp

(
−x
h

)
(D.11)

from which

I(x) = − 1

R0

[
A exp

(x
h

)
−B exp

(
−x
h

)]
(D.12)

Now, we set the initial boundary conditions in x = 0 as the definitions of the
voltage Vin (that corresponds to the voltage of the metal contact) and of the
current Vin (that is the current to be added to IA in order to get the total current
I) 

V (0) = Vin

I(0) = Iin

(D.13)

This gives 
A+B = Vin − Vth

A−B = −R0Iin

(D.14)

and then 
A =

Vin − Vth −R0Iin
2

B =
Vin − Vth +R0Iin

2

(D.15)

This allows to rewrite the current and voltages in region B as
V (x)− Vth = [Vin − Vth] cosh

(x
h

)
−R0Iin sinh

(x
h

)
(D.16a)

I(x) = Iin cosh
(x
h

)
−
[
Vin − Vth

R0

]
sinh

(x
h

)
(D.16b)

It should be noticed that the solution is not yet completely defined, because of
the complete independence of the constants Iin and Vin. It is necessary to solve
the current-voltage equations also in region C and set the final boundary condition
and the connection with region B for reaching the final result, that is the current-
voltage relationship I(Vin) of the complete structure. Anyway, it is interesting to
have some insight in advance, considering the extreme case for which B extends
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for the whole lateral length W , that is considering H=0 and no region C. In this
case, the final value of the lateral current I(W ) would be null, and then

[Vin − Vth] cosh

(
W

h

)
= R0Iin sinh

(
W

h

)
(D.17)

The total current would then be

I = IA + Iin = [V − Vth]

 1

RS

+
1

R0 tanh

(
W

h

)
 (D.18)

This result indicates that final value of the equivalent of the series resistance dV/dI
would be smaller than its value just at threshold

Reff =

 1

RS

+
1

R0 tanh

(
W

h

)

−1

= RS

R0 tanh

(
W

h

)
R0 tanh

(
W

h

)
+RS

(D.19)

Region C

In this region C the vertical conduction involves diodes. For a generic element
at location x:

iV = IV
dx

L
= IV S

dx

L
exp

(
V (x)− rV iV

VT

)
= IV S

dx

L
exp

V (x)−R0
h

dx
IV
dx

L
VT

 =

= IV S
dx

L
exp

V (x)−R0IV
h

L
VT


(D.20)

As for region B, we have
V (x+ dx) = V (x)− rhI(x)

I(x+ dx) = I(x)− iV
(D.21)

From which 
V ′(x) = −R0

h
I(x) (D.22a)

I ′(x) = −IV
L

(D.22b)

The difference comes from the explicit expression of the second equation

I ′(x) = −IV S
L

exp

(
V (x) +R0hI

′(x)

VT

)
(D.23)
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Let us differentiate again

I ′′(x) = I ′(x)

(
V ′(x) +R0hI

′′(x)

VT

)
=
I ′(x)V ′(x)

VT
+
R0hI

′(x)I ′′(x)

VT
(D.24)

Substituting for V ′ by means of the first equation:

I ′′ = − R0

hVT
II ′ +

R0h

VT
I ′I ′′ (D.25)

The general integral is readily obtained:

I ′ = − R0

2hVT
I2 +

R0h

2VT
I ′2 + c (D.26)

Would h be null, we would be in the same case of the lateral currents (no vertical
ohmic paths) [2] that is summarized in (1.77). As for that case, let us write the
integration constant c as proportional to some current term I0, that should be
defined by the boundary conditions.

I ′ = − R0

2hVT
(I2 + I20 ) +

R0h

2VT
I ′2 (D.27)

Rewriting everything:

I ′2 − 2VT
R0h

I ′ − I2 + I20
h2

= 0 (D.28)

we can solve algebraically:

I ′ =
VT
R0h

−

√(
VT
R0h

)2

+
I2 + I20
h2

=
VT
R0h

1−

√
1 +

(
R0

VT

)2

(I2 + I20 )

 (D.29)

The negative sign was selected for the square root because the current I is expected
to decrease when x increases (it must be null at the end of the C region). The
point is now to integrate:

dI√
1 +

(
R0

VT

)2

(I2 + I20 )− 1

= − VT
R0h

dx (D.30)

We can transform the left side as:√1 +

(
R0

VT

)2

(I2 + I20 ) + 1

 dI
(
R0

VT

)2 (
I2 + I20

) = − VT
R0h

dx (D.31)

Rearranging:

dI

I2 + I20
+

√
1 +

(
R0

VT

)2

(I2 + I20 )

I2 + I20
dI = − R0

hVT
dx (D.32)
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For the sake of simplifying notations, let us temporarily set:

y = I
R0

VT
and y0 = I0

R0

VT
(D.33)

so that the last equation becomes[√
1 + y2 + y20 + 1

]
dy

y2 + y20
= −dx

h
(D.34)

The left side is a differential expression that has a known integral in the following
form:

1

y0
arctan

(
y

y0

)
+

1

y0
arctan

 y

y0

1√
1 + y2 + y20

+ln

(
y +

√
1 + y2 + y20

)
(D.35)

If now we consider that in x = W the current I (and then also y) must vanish, we
can write the complete solution:

1

y0
arctan

(
y

y0

)
+

1

y0
arctan

 y

y0

1√
1 + y2 + y20

+ln

y +
√

1 + y2 + y20√
1 + y20

 =
W − x
h

(D.36)
This is a complicate function, but is an analytical expression, that is a solution of
the given differential equation and fulfills the boundary condition in x = W .

The procedure, now, should be to impose that both I and I ′ have the same
values of the corresponding solution for the B region at the boundary x = W −H.
The two continuity constraints would allow to eliminate two of the remaining
undefined constants, one of which is surely I0 (that means y0 in the last notation).
The other should be the coordinate H of the separation point between region B
and C. The result would be an equation linking Iin to Vin, and then the total
equation for I(Vin).

At the time of closing the thesis, the ultimate analytical steps have been not
yet solved.

Anyway, an approximated expression has been tested, based on a heuristic
consideration on the current flowing in region C.

At the interface of regions B and C, the voltage V , measured along the horizon-
tal line of resistors, is exactly that limiting voltage VA, described at the beginning
of this Appendix, required to just bring the diode to its threshold:

I ′(W −H) = −IV S
L

exp

(
Vth
VT

)
(D.37)

V (W −H) = VA = Vth +RSIth (D.38)

Because the vertical current reduces the horizontal current that, at the last point
vanishes, we try to suppose that the current consumed in traveling from x = W−H
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to x = W (that is, traveling a distance H) decreases linearly from its maximum
to 0. The total current spent in this travel will then be

I(W −H) =
1

2

{
IV S
L

exp

(
Vth
VT

)}
(D.39)

Being the lateral structure symmetric (it does exists on both sides of the ridge),
we take twice this value, so that we assume

V (W −H) = VA = Vth +RSIth

I(W −H) = 2
1

2
IS
H

L
exp

(
VA
VT

)
= IS

H

L
exp

(
Vth +RSIth

VT

) (D.40)

Now, we can compare this boundary values with the solution for the B region
(D.16a) and (D.16b). Calculating this last pair at the boundary x = W − H we
get: 

Vin = Vth +RSIS
H

h
exp

(
Vth +RSIth

VT

)
sinh

(
W −H

h

)
+

+RSIth cosh

(
W −H

h

) (D.41a)

Iin = IS
H

L
exp

(
Vth +RSIth

VT

)
cosh

(
W −H

h

)
+

+ Ith
h

L
cosh

(
W −H

h

) (D.41b)

This is a set of two equations that can be solved for Vin and Iin, resulting in a
parametric definition of the Iin(Vin) relationship, and then making possible to plot
all current-voltage characteristics.

Figure D.2: Calculated and experimental dV/dI curves, according to the dis-
tributed model.
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Fig.D.2 shows the result of that plot superimposed to the experimental values
of a real laser diode. The puzzling point is that, in order to get that nice super-
position, the calibration constants, related to the geometry of the real ridge, were
quite unrealistic. For this reason the model has not yet been licensed. Anyway,
the functional correctness of the prediction is worth of appreciation.
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Appendix E

Laser diode technology and
investigation techniques

E.1 Introduction

Semiconductor lasers are similar to the solid-state laser ruby laser and helium-
neon gas laser. However, laser diodes differ from the other lasers because they are
small and easily modulated at high frequency simply by modulating the biasing
current. Because of these unique proprieties, the semiconductor laser is one of
the most important light source for optical-fiber communication. During the years
several structures for lasers have been developed, mostly orientated to improve
the confinement of the current inside the active region. In this section it will
be presented a summery of laser technology, starting from the simplest vertical
structure for laser diodes, describing how the confinement of the current and the
light can be achieved, and finally the most important techniques of investigation
to address failure analysis will be described at the end of this Appendix.

E.2 Epitaxy and heterostructure

When we consider the vertical stack of epitaxial layers, all laser diodes share
the common vertical features along a line that crosses the optically active part
of the device: a Double Heterostructure (DH) pn junction. The reason for such
a structure is that photons are created by electron-hole recombination in direct
band-gap semiconductor crystals. In order to have many photons, is then neces-
sary to bring many electrons and many holes to meet in the same place, and to
help them to the maximum extent to recombine. The first step, that is to bring
electrons and holes to meet, is easily obtained in a forward biased pn junction.
Anyway, in standard ideal junctions (pn homojunctions) electrons and holes run
in opposite directions but recombine in separate places: holes in the neutral n
region, and electrons in the neutral p region, skipping the whole depletion layer,
where jointly their densities p, n and their product pn are maximum. The second
step is to insert a thin layer (the active layer) of a different semiconductor ma-
terial, compatible with the surrounding ones, and with a band gap Eg as smaller
as possible than in the rest of the material. The reduced band gap makes the
recombination rate higher than in the other material, when the same electron and
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Figure E.1: Common vertical stack of layer of any laser diode

hole densities populate the depletion region. It follows that, different from a stan-
dard homojunction diode, strong recombination is forced inside the active layer,
despite its total immersion in the middle of the much wider depletion region. The
result is that the emitted light spectrum will be completely dominated by the sole
characteristics of the active layer. The most significant feature is that the peak
energy hν0 of the emitted photons will equate, within few percent, the band gap
energy Eg of the active material. Epitaxy is, of course, the solution for building
such a heterostructure. Some golden rules hold for the epitaxial process for laser
diodes (they will be described deeply in par.E.10):

1. All materials must share the same crystal structure (lattice), the same ori-
entation and the same lattice constant. The most part of suitable materials
has a zincblende structure, that is an fcc lattice with a binary atom basis.

2. A substrate, some hundreds micrometers thick, must be provided, whose role
is to make the structure robust and handling. It must be a stoichiometric
material, because of the cost and the technical difficulty to handle non-
stoichiometric layers at thicknesses larger than about one micrometer. For
vertical diodes, it must be conductive. It is usually n-doped.

3. Three layers must then be epitaxially grown on the substrate: one confining
layer (n-type), the active layer (usually undoped) and a second confining
layer (p-type). All three can be non stoichiometric (ternary or quaternary
compounds) [31].

4. The confining layer must have a band gap as higher as possible than the band
gap of the active layer. This ensures both the electron-hole confinement and
also the optical confinement of the created photons, building up an efficient
optical waveguide.
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5. a cap layer is usually grown on the top, to ease the electric ohmic contact of
the upper metallization.

6. The band gap of the substrate is of minor importance for edge emitters. For
vertical devices (i.e. VCSEL) must have a band gap larger than the active
layer, to avoid photon absorption.

Chemistry must also be developed, able to selectively etch even a single layer
without affecting the other ones. This in order to ensure patterning during some
particular non planar growth (as for buried crescent structures, see later subpara-
graph E.5.2) or to etch grooves from the top surface to confine current injection on
limited areas (see later paragraph E.5). At this point, the common vertical struc-
ture of any laser diode appears as in fig.E.2, which updates the previous image
fig.E.1.

Figure E.2: Update of the common vertical stack of layer of any laser diode with
respect to the fig.E.1.
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E.3 Lateral confinement

For the same reason that led to require a substrate (the optical active elements:
active and confinement layers, are too thin to stand alone), the lateral size of any
laser chip is much larger than the strictly needed one for laser operation. The
optically active region must then be laterally limited.

Roughly speaking, two main reasons lead to require small vertical and lateral
size for the optical cavity of a laser diode:

1. In order to keep the cavity unidimensional the vertical and lateral sizes of the
region where photons are produced must be comparable with the wavelength
of the emitted light (in order to suppress higher harmonics), that means must
lay in the micrometer range. It is not a problem for the thickness, that is so
thin to be comparable with the electron wavelength, but is a problem for the
lateral extension, that in a normal chip is several tens of a micron or larger.

2. The smaller the volume of the active region, the lower the current required
to pump it up to the laser threshold. Many different solutions have been
developed during the decades of the laser diode history. Here, based on
the [69] and with some integrations, a list of solutions for the edge emitters
will be reported.

E.4 Current confinement

One of the most practical ways to get light from a reduced portion of the active
region is to feed with current only a portion of the upper surface.

The simplest solution would simply pattern the upper metal in a stripe shape
(fig.E.3).

Figure E.3: Vertical structure with upper metal.
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This solution unfortunately has many disadvantages:

1. It reduces excessively the top metal surface, and makes impossible wire bond-
ing

2. The exposed remaining part of the cap layer must be protected by a passi-
vation, that should be then patterned to open a window for wire bonding.

E.4.1 Oxide stripe

The closest practical alternative has been a quite popular technology for GaAs
based devices, the Oxide Stripe geometry, that it is shown in fig.E.4.

Figure E.4: Oxide stripe geometry.

E.4.2 Ridge structure

The evolution of that solution has been the ridge structure, where the cap layer
is first patterned, and then the exposed part of the underlying p-confinement layer
is significantly reduced, also by chemical etching.

The result is a sort of funnel that focuses the current onto an even more limited
part of the active layer (see fig. E.5). The silicon oxide has been often replaced by
silicon nitride.
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Figure E.5: Ridge structure geometry.

E.4.3 Zn diffused planar

A third way is to replace the p-cap layer with a n-cap layer. This would create a
reverse-biased junction that would block any current from flowing into the device.
A Zn diffusion, limited to the current injection area, locally destroys the new
junction and creates an ohmic path from the upper metal and the p-confinement
layer (fig.E.6).

Figure E.6: Zn-diffused planar.
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E.5 Light confinement

A second approach is to physically limit the extension of the light producing
area.

E.5.1 Proton bombarded

A ”brutal” mode is to leave the whole active layer in place, but to destroy its
optically efficiency by proton bombardment of the sides of the wanted active area
(it is sufficient to shield it during the exposure to protons) (fig.E.7).

This will cause parasitic resistive conduction across the bombarded regions,
that acts as a current shunt, parallel to the surviving active diode. The very
low impedance of the diode under forward bias will allow its current to rapidly
dominate over the shunts.

Moreover, and even more important, the damage of the lattice perfection will
enormously enhance, inside the bombarded parts of the active layer, the non radia-
tive recombination. This, in turn, will dramatically reduce the number of photons,
and lead the bombarded material to change from gain to absorption for light. This
extinguishes the light that attempts to propagate laterally, and suppressed the side
modes of the cavity.

Figure E.7: Proton bombarded.

E.5.2 Buried Heterostructure (BH)

A much more sophisticated solution, usually created in the InP/InGaAsP sys-
tem, cuts the structure, as for the ridge geometry, but allows the etch to pattern
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Figure E.8: Technological steps to obtain the Buried Heterostructure structure.

the whole p-cap layer, the whole upper p-confinement layer, the whole active layer
and, finally, part of the underlying n-confinement layer.

Such a deep etch will usually require different steps for each layer (here chem-
istry enters into play at its maximum extent), and many of them employ anisotropic
etches (that, acting at different speeds on the different crystal orientations, produce
inclined plane surfaces), the steps are shown in fig.E.8.

The last etch, usually isotropic, leaves a curved surface, caused by the central
surviving column. At this point a sequence of p-InP, n-InP, n-InGaAsP layers is
epitaxially re-grown. The result is a device where side currents still survive, all
across pn InP homojunctions (fig.E.9). Here the lower impedance of the central
Double Heterostructure p-InP/InGaAsP/n-InP allows the active region to collect
more and more current as injection increases.
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Figure E.9: Buried Heterostructure (BH) structure.

E.5.3 Buried Crescent (BC) or v-grooved substrate BH

Finally, a similar approach, based on a more complex sequence, leads to the
Buried Crescent structure, here reported in E.10 from the ref. [69]. From the
topological and electrical point of view, it operates as the previous BH structure.

Figure E.10: Buried Crescent (BC) structure.

A mixed use of the various solution can be adopted, as in the following image
E.11, where a Buried Crescent structure is coupled with the Ridge technology.

A peculiar feature of the BH solution is that the active region is not only
thin but also narrow (and long), completely surrounded, laterally and vertically,
by higher bandgap material. This makes the active stripe optically guided also
laterally. This means that the active stripe could designed be not straight, forcing
the light to follow its shape, as in an optical fiber. This is useful when external
cavity configurations are employed (as for some tunable lasers), where the optical
resonances internal to the chip must be avoided (while they are requested for
internal cavity solution). The image in fig.E.12 shows an optical view from the

174



Figure E.11: Mixed solution, in which Buried Crescent structure is coupled with
the Ridge technology.

Figure E.12: Optical view from the top of a laser chip.

top of a laser chip, inserted between two external lenses, and the bent thin line
visible on the chip individuates the guided active stripe, with a transverse structure
probably quite similar to the SEM image reported in fig.E.11.

E.6 Quantum Wells (QW)

The spectrum of a laser diode comes out from the optical frequencies belonging
to its spontaneous emission range, that corresponds to the LED regime that holds
for current intensities lower than the threshold current Ith. This spontaneous
emission spectrum, in turn, is quite sensitive to temperature.

This is due to two reasons:

1. Temperature modulates the amplitude of the band gap

2. Temperature affects the density of electrons and holes
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Figure E.13: Comparison between the spectral shapes of the spontaneous emission
and the quantized optical transitions.

Both effects contribute to shift the peak and the shape (width) of the spectrum.
But when the thickness of the active layer becomes so small to be comparable

with the De Broglie wavelength associated to both Bloch electrons and holes,
quantum effects appear, that result in quantization of both electron and hole
energy levels inside the active layer.

This reduces the influence of temperature to the only thermal expansion of the
thickness of the active layer, that is by far smaller than the previously indicated
effects. In this way, wavelength is much more stable with respect to temperature
(fig.E.13).

E.6.1 Multiple Quantum Wells (MQW)

One disadvantage of creating an extremely thin active layer is that it reduces
the fraction of electron-hole pairs that are forced to recombine inside it.

The problem is solved by creating multiple quantum wells, that is a stack of
alternating quantum wells and thin confinement layers (usually undoped).

The stack is still so thin to remain quite well immersed inside the depletion
region of the pn diode.

Careful design can take full advantage of the resonances that such a periodic
structure can activate, and further enhance both recombination efficiency and
frequency selection.

E.6.2 Strained Lattice QW

The extremely small thickness of a QW, that corresponds to few crystal planes,
allows to create quite artificial situations, where a crystal that should have a
smaller lattice constant than the surrounding material (the upper and lower con-
finement layers) is forced to enlarge its spacing, to fit the dominant periodicity of
the more massive parts (fig.E.14).

This solution makes accessible unusual values for optical parameters as quan-
tum efficiency, refractive index (and then optical confinement) etc. It is usually
employed in the InGaP/GaAs systems.
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Figure E.14: Effect of the natural and forced spacing

E.7 Distributed Feedback (DFB)

The next paragraph E.8 will deal with the Fabry-Perot cavity, where light re-
flection inside the chip selects several possible optical frequencies for laser emission
from the initial spontaneous spectrum.

In order to select one specific emission line among the many possible ones,
one clever solution is to introduce a corrugated heterostructure inside one of the
confinement layers.

This structure is made of two layers, both with a bandgap larger than the
energy of the photons emitted by the active region, and with different refractive
index.

Their interface is shaped (by means of inferential lithography) in a periodic un-
dulation. The effect of such a structure is very well described by the fig.E.15, where
it is shown as the optical field due to the photons created inside the thin active
layer extends its tails deeply into the confinement (guide) layers. The longitudinal
propagation of such an optical field then senses the corrugation (grating).

Figure E.15: Effect of DFB structure.

It is a classical result of the wave propagation theory, first introduced by Bragg
for x-rays and then by Block for the Schroedinger waves, that a back-reflected wave
sets up when the optical propagating wavelength λ is equal to the periodicity a of
the grating.
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Figure E.16: Comparison of wavelength stability with temperature between the
FP and DFB structure.

The complete theorem states that this holds also for

λ

2
=

a

m
(E.1)

where m is an integer. But for laser diodes, the other possible wavelengths lay
out of the available spectrum. This structure, not only selects a wavelength, but
is also much more stable with respect to temperature, as reported in fig.E.16

E.8 Longitudinal confinement. Fabry-Perot op-

tical cavity

No matter the solution adopted for the lateral confinement, and after having
appreciated the common vertical structure for any laser chip, the longitudinal di-
mension remain to play the role of the one-dimensional optical cavity. Its extension
(in the order of many hundreds of a micrometer) is by far larger than the other two
dimensions. Its length L plays a fundamental role for the optical modes. Within
this cavity light must undergo several reflections before exiting.

The opposite facets of the longitudinal cavity must be planar at an optical level
of accuracy. This is easily achieved by cleaving them along the preferential crystal
directions (usually [110] planes). The difference in the refractive index between
the active material (n) and vacuum (n0=1) introduces a certain amount of natural
reflectivity

R0 =

(
n− 1

n+ 1

)2

(E.2)

that, on the other side, for standard semiconductor does not exceed the value
of 40%. This is not sufficient for laser requirements. A low reflection coefficient
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Figure E.17: Fabry-Perot structure.

means high total losses, that, in turn, increases the value of the threshold current.
The standard configuration of an edge emitter laser calls for different reflection
coefficients.

Light is indeed allowed to exit the cavity from both its opposite sides (fig.E.17).
From one of them the output light is collected (or directly by a fiber or by means
of an output window, possibly coupled with some focusing elements).

From the other side a minimum optical power is sent to a photodetector (a
diode). The role of the monitor diode (conventionally assumed to be on the back
of the laser diode, being the output facet on its front) is to supply the direct mea-
surement of the emitted optical power required to provide a feedback for constant-
power operation. Its function does not require as many light as the output system,
and then the back facet is highly (but not totally) reflecting, while the front facet
is mostly reflecting, too, but at a minor extent. For this reason the two facets are
often indicated as back and front mirror, respectively.

On a reliability ground, the different reflectivity means that the back mirror
is usually hotter than the front mirror. The needed reflectivity is achieved by
coating both facets with a carefully designed stack of dielectric layers, differing by
refractive index and thickness.

The final configuration shown in fig.E.17, that is the simplest one for a laser
chip, is known with the name of Fabry-Perot.

E.9 Vertical Cavity Surface Emitting Laser (VC-

SEL)

The vertical-cavity surface-emitting laser, or VCSEL, is a type of semiconduc-
tor laser diode where the emitted light leaves the device in a direction perpendicular
to the chip surface, contrary to conventional edge-emitting semiconductor lasers
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Figure E.18: Base schematic structure of a VCSEL.

(also in-plane lasers) which emit from surfaces formed by cleaving the individual
chip out of a wafer. The laser resonator consists of two distributed Bragg reflector
(DBR) mirrors parallel to the wafer surface with an active region consisting of
one or more quantum wells for the laser light generation in between. The pla-
nar DBR-mirrors consist of layers with alternating high and low refractive indices
(fig.E.18). In common VCSELs the upper and lower mirrors are doped as p-type
and n-type materials, forming a diode junction. In more complex structures, the
p-type and n-type regions may be embedded between the mirrors, requiring a more
complex semiconductor process to make electrical contact to the active region, but
eliminating electrical power loss in the DBR structure.

The vertical-cavity lasers typically consist of a circular dot geometry with lat-
eral dimensions of a few microns. This emitting aperture of a few microns fa-
cilitates coupling to optical fiber or other simple optics because it is sufficiently
narrow to support only a single lateral mode of the resulting optical waveguide,
but sufficiently wide to provide an emerging optical beam with a relatively small
refraction angle. However, VCSELs continue to be an important multi-mode fiber
optic market in which it is usually desired to use multimoded VCSELs that can
fill the modal spectrum of the fibers. Figure E.19 show a SEM image of a typical
VCSEl laser.

Figure E.19: Cross-section SEM imiage of a typical VCSEL.

The main methods for current and light confinement in a VCSEL are illustrated
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in fig.E.20, which shows the schematic VCSEL cross section for three typer of
lateral confinement structures. The first case (a) illustrates a proton-implanted
VCSEL that uses the implant together a current confinement aperture. The second
example illustrates the dieletrically apertured VCSEL. The aperture is usually
formed by an oxidation of AlAs or a high Al content AlGaAs layer very close to the
active region (sometimes referred to as”oxide-confined”). The low-index, insulating
aperture provides lateral current and optical confinement. As the aperture is close
to the active region, the current confinement tends to be quite good.

Figure E.20: Schematic of a VCSEL. (a) Proton-implanated, with only current con-
finement; (b) dieletrically apertured with current confinement; (c) mesa-confined
with possible current confinement.
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The optical confinement results from the lensing action of the dielectric aper-
ture that refocuses light resonating between the two planar mirror stack. The
third VCSEL example (c) also provides good optical and current confinement, but
in this case the inclusion of a small thickness semiconductor disk above the active
region provides the optical lensing element.

E.10 Epitaxial rules for DH lasers

The successful fabrication of laser diodes relies very heavily on the properties of
the materials involved. There is a very limited set of semiconductors that possess
all necessary properties to make a good laser. For the desired double heterostruc-
ture at least two compatible materials must be found, one fr the cladding layer
and another for the active region. The most fundamental requirement for these
different materials is that they have the same crystal structure and the same lattice
constant, so that single-crystal, defect-free films of one can be epitaxially grown
on the other. Defect generally became non-radiative recombination centers, which
can steals many of the injected carriers that otherwise would provide gain and
luminescence.

It is important to understand how to select materials that meet this funda-
mental boundary conditions. To this scope it is introduced fig.E.21, that plots the
bandgap versus lattice constant for several families of III-V semiconductor. These
III-V compounds have emerged as the material of choice for lasers that emit in the
0.7-1.6µm wavelength range.

Figure E.21: Energy gap vs. lattice constant of the two quaternary compounds
GaxIn1−xAsyP1−y and AlxGa1−xAsySb1−y.

The figure E.21 defines the two quaternary systems and GaxIn1−xAsyP1−y and
AlxGa1−xAsySb1−y. For each system, any choice of x and y identify a quaternary
compound that crystallizes in the zinc-blende form (face centered cubic, fcc) with
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Figure E.22: Energy gap vs. lattice constant: estimation the composition of the
binary compound.

binary basis made of the couple AB of different atoms. The index x indicates the
fraction of, say Ga and In, that fill the A position, while y does the same for As
and P in the B position into the basis of the crystal. Let us consider the first
one, highlighted with a red boundary. All possible compounds must lay inside
the bounded area, or on its boundary. It locates four stoichiometric compounds
(GaP , AlAs, GaAs, InAs) along the boundary. (It should be clear that in this
case, for instance, GaP = Ga1In0As0P1). For each compound, the horizontal axis
gives the lattice constant a, the left vertical axis the corresponding amplitude of
the energy gap Eg and the right vertical axis reads this value in terms of optical
emitted wavelengths. Before trying to design a true laser chip, let us try to find
the composition (that means the values of x,y) of a generic quaternary compound.
First of all, any point on the boundary has a measurable distance from the closest
pair of stoichiometric compounds, that always share one or the A or the B atoms.

For instance, in the fig.E.22, two points have been identified on the boundary,
and their composition has been calculated by means of simple proportionality: the
closest the point to one binary compound, the higher its relative abundance in the
ternary. The two points in fig.E.22 have been selected on the same vertical, keeping
in mind the next construction o fan epitaxial structure: having the same crystal
lattice, they must share the same lattice constant a, in order to allow defect-free
epitaxy. At this point, any intermediate point along the vertical line joining the
two given points is calculated by the same means (fig.E.23). Now, we are ready to
design a laser diode, following the rules given in the main text:

1. Select the emission wavelength on the right vertical axis.

2. Draw an horizontal line passing for that point

3. Search for a possible substrate drawing vertical lines across the binary com-
pound and looking for a cross point with the previous horizontal line that
lies inside one of the quaternary systems

4. Select the compound (ternary or quaternary) corresponding to that crossing
point. This is the active material.

5. Select on the same vertical line of the crossing point the highest possible
point that belongs to the same system. Often it lays on the upper boundary.
That is the material for the confinement layers.
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Figure E.23: Energy gap vs. lattice constant: estimation the composition of the
quaternary compound.

The following example deals with a 1300 nm laser diode. It is clearly grown on an
InP substrate, has a quaternary active region and again InP for the confinement
layers.

For a rough estimate of the compositions, we can appreciate that the point
where the lower boundary crosses the InP vertical line is a little bit closer to
InAs than to GaAs, that leads to a ternary Ga0.45In0.55As. The active region is
at a distance 1/3 from this ternary, whose abundance is then roughly 2/3 with
respect to InP at the upper extreme

(Ga0.45In0.55As1P0)
2

3
+ (Ga0In1As0P1)

1

3
= (Ga0.3In0.7As0.67P0.33)

Figure E.24: Energy gap vs. lattice constant: estimation of the composition.
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E.11 Fundamental investigation techniques for

failure analysis.

Failure analysis is an important tool for improving laser diode design and man-
ufacturing. It provides information necessary for technology advancement and for
corrective actions to improve quality and reliability. For this reason, in this last
paragraph of appendix E, the most important tools for failure analysis of laser
diodes are summarized.

Electron Microscopy is the basis of inspection for semiconductor devices, not
only because of the extraordinary detail imaging provided by the most important
tools are, of course, the Transmission Electron Microscope(TEM) and the Scan-
ning Electron Microscope (SEM), but also for some extremely peculiar obervation
modes possible at the SEM (the Electron Beam INduced Current, EBIC) and for
the amazing specimen preparation capabilities of the Focused Ion Beam (FIB).
For such reasons, a summary of the microscopic techniques and methods is here
given.

E.11.1 Focused Ion Beam (FIB).

The Focused Ion Beam (FIB) instrument is almost identical to a Scanning
Electron Microscope (SEM), but uses a beam of ions rather than electrons. The
focused ion beam can directly modify or “ill” the specimen surface, via the sput-
tering process, and this milling can be controlled with nanometer precision. By
carefully controlling the energy and intensity of the ion beam, it is possible to per-
form very precise nano-machining to produce minute components (lamellas) or to
investigate in a more precise part of the device. For instance in fig.E.25 is reported
an example in which are shown all the needed steps to preparing a lamella from a
semiconductor device (in this case it is not a laser diode).

The new lamella is useful for depth investigation of the structure of the devises
under test, indeed it can be analyzed with TEM that allows to observe structures
on the order of nm. For example in fig.E.26 is reported the lamella of an edge
emitter laser with ridge structure, in which it is possible to observe the presence
of the MQWs under the ridge, exactly where the active region is located. These
would be impossible to observe with SEM.

Otherwise the FIB can be used also to induce piloted modification on the de-
vices. For example consider the experiments in par.2.2 and [36, 49, 50], in which
FIB will help in modifying the optical cavity affecting the sole internal losses.
During this study, a reference sample DFB laser diode, that emits at 1310nm,
was modified, grooving a progressively enlarging trench with FIB, parallel to the
ridge and very close to it. The aim of such operation was to perturb the optical
propagation without affecting the mirror facets, and possibly keeping any electri-
cal modification negligibly small. The results of this operation had been deeply
described in subparagraphs 2.2.1 and 2.2.2.
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Figure E.25: Steps of FIB erosion to create a lamella: (a) SEM image that shows
the protective layer of platinum in the position in which is going to be dig the
section. (b) First digging on one side of the platinum layer. (c) Second digging
on the other side of the platinum layer. (d) The lamella is going to be detached
from the whole device. (e) The lamella has been linked up with the top of the
omniprobe and it is ready to leave the rest of the device. (f) The final lamella
(after several cleaning steps), ready for further investigation, for example at the
Transmission Electron Microscopy (TEM).
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Figure E.26: (a) TEM image of a edge emitter with ridge structure, in which are
evident the MQWs. (b) A zoomed image of fig.E.26a.

E.11.2 Electron Beam Induced Current (EBIC)

The role of EBIC in Failure Analysis has been assessed since decades [70,
71], and historically supported the development of the young Silicon technology,
supplying a tool for mapping electrically active defects inside the depletion layer of
a p–n or a Schottky junction [72–74]. The top achievement in EBIC measurements
was given by the theoretical assessment of its physical basis, performed by Donolato
in the 1980s of the past century [75].

An elegant Reciprocity Theorem completed the Donolato’s job [76,77], allowing
to give the EBIC detected defects those active role in junction degradation that
could not be recognized, in principle, for those detected by Electroluminescence,
the EBIC competitor for direct band-gap materials.

The Electron Beam Induced Current (EBIC) is a signal available at the SEM
when one observes a semiconductor device where at least one pn or Schottky
junction is present, is reached by the electron beam and is electrically connected
to a current amplifier.
EBIC has two main applications:
1) To reveal where junctions are
2) To detect electrically active defects (recombination centers) inside the junctions.

An evolution of the EBIC is the XEBIC [78], indeed of the FIB opened the
door to precise micro-sectioning, adding the possibility of complementing the stan-
dard EBIC top view in fig.E.27 with the cross-sectional EBIC in fig.E.28, shortly:
XEBIC. In fig.E.28 the superimposed EBIC and SEM images of the front-facet of
a laser diode show the simplest application of XEBIC. The facet coating has first
been removed by FIB and EBIC has been then recorded. The relevant information
is here the strong confinement of the junction activity under the ridge, despite the
junction itself extends also at right and left sides, up to the trenches. This tool
has been used in several works made during this three year of the Author’s PhD
and they are completely reported Chapter 2 and in [35,49,50].
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Figure E.27: Standard top view EBIC.

Figure E.28: Cross-sectional EBIC.
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