

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

INGEGNERIA ELETTRONICA ED INFORMATICA

XXIX Ciclo

SECURE MACHINE LEARNING AGAINST EVASION AND

POISONING ATTACKS

Settore scientifico disciplinare di afferenza

ING-INF/05: Sistemi di elaborazione delle informazioni

Presentata da: Paolo Russu

Coordinatore Dottorato Prof. Ing. Fabio Roli

Tutor Prof. Ing. Fabio Roli

Co-Tutor Dr. Ing. Battista Biggio

Esame finale anno accademico 2015 – 2016

Tesi discussa nella sessione d’esame aprile 2017

Dedicated to my family

Abstract

In the last decades, machine learning has been widely used in security applications like
spam filtering, intrusion detection in computer networks and biometric identity recogni-
tion. The adoption of such techniques has been mainly due to their high generalization
capability, which allows one to identify also new kinds of attacks.

However, in these applications, machine learning has to deal with intelligent and adap-
tive adversaries that aim to subvert its proper functioning to achieve their malicious scope.
Since machine learning has not been designed to take into account the presence of at-
tackers, it may exhibit novel, specific vulnerabilities that can be exploited in the wild.
Accordingly, identifying potential vulnerabilities and proposing new design schemes for
pattern recognition and machine learning techniques in adversarial environments are not
only two open problems, but also two among the major goals of adversarial classification.
This situation has led to an arms race between attackers and developers. In order to limit
the effects of the attackers, the designers should follow a proactive approach, i.e., they
should figure out how the adversary can interact with the system, in terms of points and
methods of attack, and to develop appropriate countermeasures. This should enforce the
attackers to spend a greater effort (in terms of time, skills, and resources) to find and ex-
ploit less intuitive vulnerabilities. In literature there are several attempts to create secure
systems, based on models that allow one to characterize the adversary’s behaviour with
respect to a particular classifier-application scenario. However, the frameworks used to
represent the attacker are customized for a specific setting, so it is difficult to readily apply
them to different applications. Moreover, the adoption of the proposed robust solutions
in practice is hampered by different factors, as the difficulty of meeting specific theoret-
ical requirements, the complexity of implementation, and scalability issues, in terms of
computational time and space required during training.

The main goal of this work regarded the development of methods to design pattern
recognition algorithms that are secure from the ground up, which can effectively cope
with malicious agents.

To start with, we show the usefulness of a recently proposed general threat model,
which allows one to analyse the security of several application domains, applying it to a
specific scenario. We show how to use this framework to analyse the security of biometric
recognition systems from a novel perspective, by enabling the categorization of known and

novel vulnerabilities, along with the corresponding attacks, countermeasures and defence
mechanisms.

Using the previous threat model as starting point to analyse systems in adversarial
settings, we develop novel solutions to improve the security of several types of classi-
fier. With respect to state-of-the-art methods, our non-trivial goal is to propose secure
learning algorithms that are not computationally more demanding than their non-secure
counterparts. We show that an adequate choice of the classifier’s parameters, related
to the specific hypothesized attack scenario, enables us to improve significantly system
security.

Contents

1 Machine Learning and Pattern Recognition 1
1.1 Learning from examples . 2

1.1.1 Collecting Data . 3
1.1.2 Data Pre-processing . 3
1.1.3 Feature Representation . 4
1.1.4 Model Selection and Sparsity . 5

1.2 Performance Measurements . 10
1.3 Type of classifiers . 12

1.3.1 Support Vectors Machine . 12
1.3.2 Decision Tree . 16
1.3.3 Random Forest . 17

1.4 Applications and Limitations . 18
1.5 Contributions of this thesis . 19

2 Adversarial Machine Learning 21
2.1 Threat Model . 23
2.2 Categorization of attack scenarios . 27

2.2.1 Evasion . 27
2.2.2 Poisoning . 28

2.3 Constructing real-world attack samples . 30
2.4 Related Work . 31
2.5 Open Issues . 31

3 Adversarial Biometric Recognition 35
3.1 Architecture of a Biometric Recognition Systems 36

3.1.1 The Attack Surface . 36
3.2 Biometric System Security . 39
3.3 Categorization of Biometric Attack Scenarios 41

3.3.1 Evasion . 42
3.3.2 Poisoning . 43
3.3.3 Privacy . 43

i

ii CONTENTS

3.4 Secure-by-Design Biometric Systems . 44
3.4.1 Countering Evasion . 44
3.4.2 Countering Poisoning . 44
3.4.3 Preserving Privacy . 45

3.5 Application Examples . 45
3.5.1 Improved Face Spoofing from Multiple Faces 45
3.5.2 Poisoning Biometric Systems that Learn from Examples 47

4 Secure Learning against Evasion Attacks 51
4.1 Solving the evasion problem . 52
4.2 Understanding classifier security . 54
4.3 Security and Regularization . 54
4.4 Classifier Security . 57

4.4.1 Linear Classifiers . 57
4.4.2 Nonlinear Kernel Machines . 61
4.4.3 Non-Differentiable Classifiers . 64

4.5 Application Examples . 65
4.5.1 Securing Linear Classifiers . 65
4.5.2 Securing Linear Classifiers with Limited Complexity 66
4.5.3 Securing Kernel Machines . 69
4.5.4 Securing Random Forests . 70

5 Conclusions 75
5.1 Future Work . 77

A Dataset 79

List of Figures

1.1 Design stages of a typical pattern recognition system. 2
1.2 Three examples of classifier in the feature space, sorted by complexity. The

samples are taken from two noisy banana-shape distributions. In each, the
function 𝑔(x) is plotted with a color map with high values (red-orange-
yellow) for the class labelled with +1 (red points), and low values (green,
cyan-blue) for the class labelled with −1 (blue points). The decision bound-
aries are shown in black. 6

1.3 Plot of the countour of the error function(black) along with the constraint
region for the LASSO (left) and ridge (right) regularizers, on which the
optimum value for the parameter vector w is denoted by w* [1]. 8

1.4 Unit balls for different norms. We will discuss the octagonal norm in Chap.4. 9
1.5 Example of ROC curves. 11
1.6 Left. Several hyperplanes can be used to separate two distributions. Cen-

ter. SVM in hard margin case (distribution linearly-separable). The sup-
port vectors are circled in blue. Right. SVM in soft margin case. The
support and error vectors are circled in blue and yellow, respectively. . . . 13

1.7 Example of two concentric distributions, that are impossible to separate
with a hyperplane [3]. Mapping the training samples in a transformed
feature space allows an easy linear separation. Note that the hyperplane in
the transformed feature space becomes an ellipsoid in the starting feature
space. 15

1.8 Typical example of decision tree building, regarding the decision to play
tennis based on the weather. Note that in different paths we evaluate
different attributes (humidity on the left and windy on the right) and that
not all of the properties are considered (temperature). 17

2.1 Common example of attack against an email spam filter. 22
2.2 Reactive (left) and Proactive (right) arms race. 23
2.3 Example of ℓ1 (sparse) attack against a kernel SVM [40]. 29

iii

iv LIST OF FIGURES

2.4 Poisoning attack against a linear classifier. The attacker injects a mali-
cious sample that causes the greatest classification error possible. Example
adapted from [24]. 30

3.1 Architecture of a biometric verification system and corresponding attack
points, highlighted with red circled numbers. During verification, the image
z ∈ 𝒵 (e.g., a face image) acquired by the sensor is processed by a feature
extractor 𝜑 : 𝒵 ↦→ 𝒳 to obtain a compact representation x ∈ 𝒳 (e.g., a
graph). The templates {x𝑘

𝑐}𝑚𝑘=1 of the claimed identity 𝑐 are retrieved from
the template database, and compared to x using a matching algorithm
𝑠 : 𝒳 × 𝒳 ↦→ R. The resulting scores {𝑠(x,x𝑘

𝑐)}𝑚𝑘=1 are combined by a
fusion rule, producing an aggregated score 𝑠𝑐(x) that expresses the degree
to which x is likely to belong to 𝑐. The score 𝑠𝑐(x) is then compared with
a decision threshold 𝑡𝑐 to decide whether the claim is genuine or impostor.
If template self-update is implemented, and 𝑠𝑐(x) is not lower than a self-
update threshold 𝜃𝑐, one of the templates in {x𝑘

𝑐}𝑚𝑘=1 is updated depending
on x, according to a given policy. 37

3.2 A conceptual representation of the adversary model and of the main attack
scenarios (given in terms of the corresponding security violation and attack
specificity) according to the framework. 40

3.3 Face spoofing from multiple images. The client’s templates {x𝑖}3𝑖=1, the
spoofed faces {x̂𝑗}3𝑗=1, and the final attack face x* (obtained solving Prob. 3.1)
are shown, along with the corresponding 𝑠𝑐 values. 46

3.4 (upper-left): Poisoning attack with perfect knowledge. The circles centered
on x𝑎 represent the objective function ||x− x𝑎||, minimized by the attack
point x on the feasible domain ‖x−x𝑐‖ ≤ 𝑑𝑐. The updated centroid x′

𝑐 and
the feasible domain for the next attack iteration are also shown. (upper-
right) GAR and FAR for poisoning with perfect (solid lines) and limited
(dashed lines) knowledge, at different iterations. (bottom) Attack samples
and victim’s centroids for poisoning with perfect knowledge, at different
iterations. 49

3.5 (Left) Template sanitization. If the current centroid x
(𝑖)
𝑐 falls outside the

sanitization hypersphere (dark grey area), as for the poisoning attack se-
quence (solid line), the centroid x

(𝑖−𝑘)
𝑐 is restored; otherwise, as for the

hypothesized genuine update sequence (dashed line), the center of the san-
itization hypersphere is updated to x

(𝑖−𝑘+1)
𝑐 (red circled point). (Right)

GAR and FAR values in the presence (solid lines) and in the absence
(dashed lines) of template sanitization, after different centroid updates,
including genuine (‘g’) and impostor (‘i’) attempts, and poisoning attacks
(‘p’) with perfect knowledge. 50

LIST OF FIGURES v

4.1 Evasion attacks against different classifiers, trained on blue (legitimate)
and red (malicious) samples. A linear SVM classifier against sparse (first
plot) and dense (second plot) evasion attacks, an SVM with the RBF ker-
nel (third plot) and a random forest (fourth plot) against sparse evasion
attacks. The initial malicious point x is found at the center of the distance
constraint, while the evasion sample x⋆ is denoted with a green star. For
each classifier, 𝑔(x) values are shown in colors, and the black line denotes
the decision boundary. 55

4.2 Decision boundaries for SVM (first plot), I-SVM (second plot), and their
cost-sensitive versions, C-SVM (third plot) and cI-SVM (fourth plot). In
the first and the second plot, we also report ℓ2 and ℓ1 balls over the mar-
gin support vectors, to visually clarify why the orientation of the decision
hyperplane changes. 58

4.3 Shape of the Octagonal regularizer unit ball for different values of 𝜌. 61

4.4 Decision boundaries, and 𝑔(x) values (in colors), for RBF-SVM (first plot),
cRBF-SVM (second plot), and 𝛾RBF-SVM (third plot). Note how the
classifiers in the second and third plot provide a better enclosing of the
legitimate data. 62

4.5 Security evaluation curves (TP at FP=1% vs 𝑑max) for the 9-vs-8 digit
classification task against dense (first plot) and sparse (second plot) evasion
attacks, and for the spam filtering data against sparse evasion attacks (third
plot). 66

4.6 Original and manipulated handwritten digits at 𝑑max = 3000 by sparse at-
tacks (top row), and at 𝑑max = 250 by dense attacks (bottom row), against
SVM (second column), c-SVM (third column), I-SVM (fourth column),
and cI-SVM (fifth column). Values of 𝑔(x) are also reported for each digit
and classifier, confirming that sparse attacks are less effective against I-
SVM and cI-SVM, and that dense attacks are less effective against SVM
and cSVM. Note also how the blurring effect induced by dense attacks is
more difficult to spot for humans than the salt-and-pepper noise induced
by sparse attacks. 67

4.7 Classifier performance under attack for PDF malware and spam data, mea-
sured in terms of AUC10% against an increasing number 𝑑max of modi-
fied features. For each classifier, we also report (𝑆,𝐸) percentage values
(Eqs. 4.15-4.16) in the legend. 68

vi LIST OF FIGURES

4.8 Initial digit “9” and its versions modified to be misclassified as “8”. Each col-
umn corresponds to a different classifier (from left to right): SVM, Infinity-
norm SVM, 1-norm SVM, Elastic-net SVM, Octagonal SVM. Top row :
sparse attacks (ℓ1), with 𝑑max = 2000. Bottom row : dense attacks (ℓ2),
with 𝑑max = 250. Values of 𝑔(x) < 0 denote a successful classifier evasion
(i.e., more vulnerable classifiers). 69

4.9 Security evaluation curves (TP at FP=1% vs 𝑑max) for PDF malware de-
tection against sparse evasion attacks. 70

4.10 ROC curves for PDF files embedding JavaScript (left) and for SWF files
embedding ActionScript (right). These curves report the results for Ran-
dom Forests (either by using all the features or the 100 most discriminant
ones, and for the 1.5C-MCS. 72

4.11 The decision function of our 1.5C-MCS (shown in colors) in the bi-dimensional
space spanned by the outputs of the combined classifiers. The decision
boundary is highlighted with a solid black line, while blue and red points
respectively represent benign and malicious files. Malicious files manipu-
lated with the mimicry attack strategy are reported as green points. 73

4.12 Detection rate of our classifiers against mimicry attacks in which an in-
creasing number of benign samples is added to each malware sample, for
JavaScript and ActionScript files. 73

List of Tables

2.1 The attack model proposed by Barreno et al. [17] 24

3.1 Categorization of attacks and countermeasures for biometric systems. For
each attack technique, we also report the targeted component (attack lo-
cation) and the attack point(s), according to Fig. 3.1. 38

3.2 Examples of categorization of previous work on biometric security accord-
ing to the three main attack scenarios defined in adversarial machine learn-
ing: evasion, poisoning, and privacy attacks. 42

vii

viii LIST OF TABLES

Chapter 1

Machine Learning and Pattern
Recognition

During their evolution, animals and, in particular, human beings have evolved a capacity,
more or less pronounced, to recognize in a fast and efficient way the reality in which
they are placed. This ability has been indispensable to ensure their own survival, from
the research for food (e.g., the separation between edible and not plants) to the social
interaction (recognition of a friend from an enemy or stranger).

The categorization problem is called pattern recognition, that is the act of taking in
raw data and taking an action based on the category of the pattern [2]. It resolves the
problem of classification, so the assignment of a new object to one or a set of classes which
are known beforehand. Furthermore, as soon as the sample is classified, an action may
be taken: eat or not the plant, avoid or fight or meet up with the stranger.

As an instance, if you were given a set of dogs and cats, you are perfectly and immedi-
ately able to separate the objects in these two classes, based on the dimensions, the length
and the color of the fur, the muzzle shape and so on. The ease with which we perform
this task, or we recognize a face, understand spoken words, read handwritten characters,
belies the amazingly complex processes that underlie these acts of pattern recognition,
the sophisticated neural and cognitive systems that we have evolved for such tasks.

It is natural that we should seek to design and build machines that can recognize
patterns. From automated speech recognition, fingerprint identification, optical character
recognition, DNA sequence identification and much more, it is clear that reliable, accurate
pattern recognition by machine would be immensely useful.

Although the problem of distinguishing dogs and cats does not look very complicated,
automating this process turns out to be fairly complicated. After all, what should be the
basis for the categorization of an animal as ‘cat’ or as a ‘dog’? Usually this decision is
taken by combining all the stimulations that we can perceive with our five senses. Also,
if some parts of an item are missing, our brain is able to override this lack, connecting
the object to something that we have already seen and allowing us to recognize it. Even

1

2 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

FEATURE
EXTRACTION

DATA
PREPROCESSING

DATA
ACQUISITION

MODEL
SELECTION /

TRAINING
CLASSIFICATION

Figure 1.1: Design stages of a typical pattern recognition system.

the top computer scientists will not be able to translate this process into an algorithm
(as accurate as you), since the recognition process is carried out subconsciously. In other
words, it is very difficult to explain in detail how the recognition process works.

Pattern recognition and machine learning address the problem of automatic pattern
classification, including the above mentioned problems as well as many others. They
offer a variety of algorithms which can be used in many classification tasks. They are
typically referred to as classification algorithms, or classifiers for short. A classifier is
usually trained on a set of collected samples whose class labels are known (referred to
as training set), and infers some properties from the data. When a sample has to be
classified, the classifier exploits the acquired knowledge to assign it to one among the
given classes. The main advantage of such algorithms is their generalisation capability,
i.e., their ability to correctly classify unseen samples (that is, samples which were not
present in the training set). The generalization capability depends on several factors, like
the characteristics of the data used to train the classifier, the number of patterns, the
type and number of features used, just to cite a few. Indeed, there is no best classifier,
but it is possible to exploit different techniques to select the classification algorithm which
performs better on the task at hand.

In the next section we will see the typical design scheme for pattern recognition sys-
tems, the steps to follow to design a good classifier. Then, we introduce the classical
parameters used to measure the performance of a classifier, to decide if it works well or
not for a specific setting. Finally, we give an overview on the type of classifiers that we
have used for the work of this thesis.

1.1 Learning from examples

In many classification problems explicit rules do not exist, but examples can be obtained
easily. It is difficult to design a classifier, i.e., a function which outputs a class label for
each input object, from known rules. Therefore, in pattern recognition, one tries to infer
a classifier from a (limited) set of training examples. The use of examples thus elevates
the need to explicitly state the rules for the classification by the user. The goal is to
obtain models and learning rules to learn from the examples and predict the labels of
future objects.

1.1. LEARNING FROM EXAMPLES 3

Broadly speaking, the design stages of a pattern recognition system can be summarised
as depicted in Fig.1.1. Firstly, a set of training data has to be collected and potentially
pre-processed. For instance, this could be the case of a face recognition system, where
the acquired face images need to be pre-processed before feature extraction. After that,
features can be extracted from each sample and used to train a classifier, chosen among
different classification algorithms. Once a classifier is trained, a set of unseen samples may
be used to estimate its performance. In the following, we give you a more detailed expla-
nation of the setting steps, with a more formal view of these problems, and highlighting
their main issues.

1.1.1 Collecting Data

The notion of "object" is taken very broadly, it can range from apples and pears to
handwritten digits, from speech signals to the Internet traffic. A certain quantity of data
should be collected to allow an appropriate representation of the classes distribution. The
number of the necessary samples depends on the complexity of the classifier that we will
use and on the specific application. For example, in a biometric recognition system, the
training usually requires a number of traits (faces, fingerprints) to categorize each user. In
security setting, instead, it needs at least a number of samples in the order of thousands,
so as to represent all the potential intra and extra classes variations.

It is quite simple to collect a sufficient number of objects for the application at hand. In
biometric systems, the users give spontaneously their traits. In medical settings, evidences
of healthy and ill patients are easily collected. In computer security applications, the
designer can monitor the environment for a period of time, or develop a honeypot. 1, in
order to have examples of legitimate and illegal traffic.

Usually, in statistical pattern recognition the unknown distribution 𝑝(X,Y) is sup-
posed to be independent and identically-distributed (i.i.d.). Identically Distributed means
that it is stationary, the samples drawn for both training and test sets come from the same
𝑝(X,Y). Independent means that the samples are all independent events; in other words,
they are not connected to each other in any way.

1.1.2 Data Pre-processing

Once collected, input samples should be processed to remove or mitigate potential natural
or sensor noise. Only rarely, indeed, they can be readily used in the successive phases of
the design process. For this reason, they have to be ‘cleaned’ and ‘uniformed’, in order to
reduce the quantity of useless information that should be analysed, to simplify subsequent

1A honeypot is a computer security mechanism set to detect attempts at unauthorized use of informa-
tion systems. Generally, a honeypot consists of data (for example, in a network site) that appears to be a
legitimate part of the site but is actually isolated and monitored, and that seems to contain information
or a resource of value to attackers, which are then blocked.

4 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

operations, and to uniform them. These operations are influenced by the knowledge of
the usage scenario, only in this case we are able to understand how to handle the data so
that we can improve their representativeness. For instance, in a face recognition system,
we apply filters to the images to reduce differences of lighting, to mitigate the noise
introduced by the camera. We identify the faces in the photos and separate them from
the background (i.e., the segmentation process). We manipulate the extracted faces in
order to have, more or less, the same dimensions for every acquisition and to compare
them in a fair way. Typical procedures are:

∙ Data cleaning. Reduction of the noise of the samples, due to the acquisition device,
the overlapping from other signal sources, etc.

∙ Data integration. Combination in a single coherent data of the information origi-
nated from different sources. It allows one to build samples that are better repre-
sentative for a particular classification setting.

∙ Data reduction. Extraction of the main relevant features from the samples. For
example, the separation of an object from the background in a photo. This operation
permits to reduce substantially the amount of data per sample that will be analyse
and/or stored, leaving the distinctness of the object, more or less, unchanged.

∙ Data transformation. The samples have to be manipulated in order to be com-
parable with each other; for instance, they are rescaled, normalized, translated or
re-oriented.

1.1.3 Feature Representation

The decision about which characteristics to use to represent the objects is, probably, the
most important operation in the design of a pattern recognition system. This choice
strongly influences the ability of the classifier to recognize the nature of an unseen sample
in the operating phase. Starting from the pre-processed samples, we select particular
characteristics and we measure their values or occurrences. What are the main character-
istics that one should select to represent data in a compact manner? To be able to make
a distinction between objects and classes of objects, the measurements should contain
enough information to distinguish the objects, namely, those values are significantly dif-
ferent (similar) for objects belonging to different classes (the same class). In other words,
they should have enough discriminative power such that a classifier will show sensible
generalization. When only noise measurements are available, we cannot expect to infer a
good classification. The feature extraction allows us to further reduce the amount of data
to represent each sample. We assume that objects are described by vectors containing a
set of d real valued measurements, thus an object i is represented by the feature vector

x𝑖 = (𝑥𝑖,1, ..., 𝑥𝑖,𝑑), 𝑥𝑖,𝑗 ∈ R (1.1)

1.1. LEARNING FROM EXAMPLES 5

Each object is thus represented as a point in a feature space R𝑑. Furthermore, we assume
that all components in the vector are known and that there are no missing values. In
practice it might happen that some measurements are not performed, due to costs in time,
money and effort, or because it is expected that they do not provide useful information
(this can happen, for instance, in medical applications). The missing values introduce ex-
tra complications and we will not consider them. We assume all objects are characterized
with the same set of measurements.

1.1.4 Model Selection and Sparsity

Now, a classification algorithm may be trained on the training data to find a classification
function, namely, a function which classifies any sample in the feature space in one of
the classes, according to its feature values. Notice that this corresponds to partition the
feature space in different decision regions, each one corresponding to a different class. The
boundary which separates such regions in the feature space is named decision boundary.
Different classification functions may be obtained by training different algorithms on the
given data. Since pattern recognition could be used in several settings, one should choose
the most appropriate classification model for the task at hand, based on its performance
estimation. This evaluation is mainly focused on assessing the generalisation capability
of classifiers using specific performance measures, although sometimes it may involve
other criteria as well, like computational efficiency, depending on the specific application
domain. To estimate the classifier’s performance, usually the entire initial dataset is
divided in two separate parts, the training set, used to train the system, and the test set,
used to evaluate the operative characteristics.

For example, a test set can be built by simply extracting (and removing) a number
of samples from the training set, before training the classifier. It will then provide a
predicted class label for each sample. The overall performance can be evaluated, as an
instance, by comparing the estimated class labels with the true ones. If the classification
performance meets the application requirements, the system can be finally released.

The two-class problem is considered as the basic classification problem; also a general
multiclass setting can be decomposed in several two-class classification problems, where
the classes are taken one by one and compared with the remaining ones.

In a two-class classification problem, the two classes 𝜔1 and 𝜔2 will be labelled by -1
and +1 respectively. The training set is a set of objects for which a label 𝑦𝑖 is attached
to each object x𝑖:

𝐷 = {(x𝑖, 𝑦𝑖) | 𝑖 = 1, .., 𝑁} (1.2)

Now, the classification problem can be stated as the problem of finding a classification
function which optimally maps any input pattern x to the corresponding class

𝑓 * = R𝑑 → {−1,+1} (1.3)

6 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

In statistical pattern recognition, both the input pattern and its class label are assumed
to be random variables, and the aim is to find a function 𝑓 (i.e., an estimate of 𝑓 *)
which minimises the classification errors. Notice that other measures of performance can
be adopted, depending on the given application. The function 𝑓 assigns one of the two
labels (two-class problem) to each point in the feature space thresholding a continuous
discriminant function

𝑔 : R𝑑 ↦→ R (1.4)

Usually, we assume that 𝑓(x) = −1 if 𝑔(x) < 0, and +1 otherwise. In the case of 𝑔(x) = 0,
the label is assigned indifferently to one class. So, we can state that 𝑓(x𝑖) = 𝑠𝑖𝑔𝑛(𝑔(x𝑖))

In Fig.1.2 we can see three examples of how the classifier works in the feature space.
The plots are sorted in ascending order of complexity of the function 𝑔(x). The samples
are taken from two noisy banana-shape distributions, one in front of the other. 2

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

3.07

2.40

1.73

1.06

0.39

0.28

0.95

1.62

2.29

2.96

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.52

0.41

0.29

0.17

0.06

0.06

0.17

0.29

0.40

0.52

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

31.76

25.20

18.64

12.09

5.53

1.03

7.59

14.14

20.70

27.26

Figure 1.2: Three examples of classifier in the feature space, sorted by complexity. The
samples are taken from two noisy banana-shape distributions. In each, the function 𝑔(x)
is plotted with a color map with high values (red-orange-yellow) for the class labelled with
+1 (red points), and low values (green, cyan-blue) for the class labelled with −1 (blue
points). The decision boundaries are shown in black.

Under the previous considerations, we can re-write the classifier’s function as 𝑓(𝑔(x)) =
𝑓(x;w) to state explicitly the dependence on the parameters or weights w of the discrim-
inant function.
Data-Dependent Error. To find the optimal parameters w* for the function 𝑓 on a
given training set 𝐷, an error function ℰ(𝑓,w, 𝐷) has to be defined. The independence
assumption on training data allows you to decompose it as the sum of the classification
errors on the single samples:

min
w
ℰ(𝑓,w, 𝐷) = min

w

1

𝑁

∑︁
𝑖

𝑒(𝑓(x𝑖;w), 𝑦𝑖) (1.5)

2http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

1.1. LEARNING FROM EXAMPLES 7

Different definitions for the error function are possible, according to the type of
𝑓(x𝑖;w). The first possibility, the simplest one, is the 0-1 loss. This counts the num-
ber of wrongly classified objects:

𝑒(𝑓(x𝑖;w), 𝑦𝑖) =

{︃
0, if 𝑓(x𝑖;w) = 𝑦𝑖

1, otherwise
(1.6)

Other more complex error functions are:

∙ square loss: (1− 𝑦𝑖𝑓(x𝑖))
2,

∙ hinge loss: max(0, 1− 𝑦𝑖𝑓(x𝑖)),

∙ logistic loss: 1
ln 2

ln(1 + exp−𝑦𝑖𝑓(x𝑖)).

By minimizing the error ℰ on the training set, one hopes to find a good set of weights w
such that a good classification is obtained.

Note that the choice of a more accurate classification model is not always an advantage.
In many pattern recognition problems, the amount of data we can obtain easily is often
quite limited. They are a sampling of the true probability distributions of the categories.
So, using an overly complex model may allow you to reach a perfect classification of the
training samples, but probably it does not give a good classification of novel patterns. This
situation is known as overfitting [1,2]. In general, it occurs when the model is excessively
complex, such as having too many parameters relative to the number of observations.
In Fig.1.2, we can see that by increasing the complexity of the classifier we can reach
higher classification performance: in the third plot the samples are perfectly discriminated
in the respectively classes. However, this solution doesn’t approximate properly the real
distributions of the samples, so it potentially will misclassify the unseen samples in the
operation phase, resulting useless.
Regularizer. To avoid overfitting, we can rewrite the optimization problem as the trade-
off between two error terms

min
w
ℰ𝑡𝑜𝑡(𝑓,w, 𝐷) = min

w
ℰ𝐷(𝑓,w, 𝐷) + 𝜆ℰw(w) (1.7)

The first term is the data-dependent term, while the second one, ℰw(w), is the reg-
ularizer. It controls the overfitting of the vector w on the training data, trying to limit
the amplitude of the function coefficients. Usually, this term corresponds to a 2-norm, or
Euclidean norm, of the vector w and it is called quadratic regularizer or ridge . The ridge
regressor tends to penalize the square of the coefficients of w, so it tries to push down the
elements with big weights with respect to the small ones. In this way every coefficient,
more or less, is important in the classification task.

In general, we can use any type of norm as regularizer. To take into account applica-
tions where there are constraints on energy consumption and computational complexity,

8 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

it has been introduced the LASSO regularizer [6], that computes the 1-norm of the w in
the regularization term. It has the opposite behaviour respect to the ridge, it drives the
smaller elements to zero and leading to a sparse solution. Having a sparse w vector re-
duces significantly the computational requests and makes more intuitive the classification
task: the presence of a few non-zero weights highlights the most discriminant features for
the objects recognition.

W*

w1

w2

W*

w1

w2

Figure 1.3: Plot of the countour of the error function(black) along with the constraint
region for the LASSO (left) and ridge (right) regularizers, on which the optimum value
for the parameter vector w is denoted by w* [1].

Although the LASSO has shown success in many situations, it has some limitations:
∙ In the 𝑝 > 𝑛 case, with 𝑝 the number of features and 𝑛 the number of samples, the

LASSO selects at most 𝑛 variables before it saturates, because of the nature of the
convex optimization problem.

∙ If there is a group of variables among which the pairwise correlations are very high,
then the LASSO tends to select only one variable from the group and does not care
which one is selected; for instance, if in Fig.1.3-left the ellipse is narrow and parallel
or orthogonal to an edge of the ℓ1 ball, the solution could be indifferently one of the
two vertices.

∙ For usual 𝑛 > 𝑝 situations, if there are high correlations between predictors, it
has been empirically observed that the prediction performance of the LASSO is
dominated by ridge [6].

1.1. LEARNING FROM EXAMPLES 9

(a) ℓ2 (b) ℓ∞ (c) ℓ1 (d) elastic net (e) octagonal

Figure 1.4: Unit balls for different norms. We will discuss the octagonal norm in Chap.4.

To overcome these limitations, Zou et al. [78] have proposed the elastic-net regular-
izer, that is a tradeoff between ridge and LASSO:

‖w‖𝑒𝑙_𝑛𝑒𝑡 = (1− 𝜆)‖w‖1 + 𝜆
2
‖w‖22. (1.8)

The addition of the quadratic penalty term to the LASSO makes the regularizer strictly
convex, and therefore it has a unique minimum.

Another important regularizer, that we will use in Chap.4, is the ℓ∞ norm. We remind
the reader that ‖w‖∞ = max𝑗=1,...,d |𝑤𝑗|; so, in the optimization problem, this regularizer
tries to force the coefficients to have, more or less, the same value.

In Fig.1.4 we can see the different unit balls corresponding to different regularizers.

One of the most important areas of research in statistical pattern classification is de-
termining how to adjust the complexity of the model, not so simple that it cannot explain
the differences between the categories, yet not so complex as to give poor classification
during the operating phase. We might be satisfied with slightly poorer performance on
the training samples if it means that our classifier will have better performance on novel
patterns.

So far, several classification algorithms have been proposed in the literature, like sup-
port vector machines (SVMs), neural networks, bayesian classifiers, decision trees and
k-nearest neighbour classifiers, just to cite a few. Broadly speaking, classification algo-
rithms can be divided into discriminative and generative models. The former are based
on the direct estimation of the decision boundaries between classes (like SVMs and neu-
ral networks), while the latter (e.g., bayesian classifiers) are based on the estimation of
the class-conditional pattern distributions, which consequently provide a partition in the
feature space corresponding to the different decision regions. Unfortunately, as previously
mentioned, there is not an absolute best classification algorithm, since the generalisation
capability of any classifier mainly depends on the specific application and the character-
istics of the data, like number of features and training samples, and correlation between
feature values. Some classifiers use very simple models for classification, either in terms of
complexity of the decision function or dimensionality of the feature space. Several times

10 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

they may perform better than more complex models, although complex models may be
intuitively expected to have a higher generalisation capability.

To reach higher performance, the more complicated models typically require a higher
number of parameters to set. Consequently, larger training sets are required to provide a
reliable estimation of such parameters, and to avoid the problem of overfitting. Moreover,
also the number of features used to build a classifier influences its generalisation capability.
Intuitively, one may expect that the more features are used the better, since more detailed
information about the samples is given to the classifier. However, as the number of features
increase, the volume of the feature space increases exponentially, and a very large number
of training samples is typically required to obtain a good estimation of the classification
function. The reason behind is that high-dimensional functions can be much more complex
than low-dimensional ones, and such complexities are harder to learn from data (unless a
very large amount of data is available). This problem is generally known in the literature
as curse of dimensionality [1,2]. A possible method to overcome this problem is to include
some knowledge about the data during the classifier design, namely, assuming some model
for the class-conditional pattern distributions, or a specific kind of classification function
(i.e., linear, quadratic). Another possibility is to use feature selection or dimensionality
reduction approaches, like principal component analysis (PCA), or linear discriminant
analysis (LDA) [1, 2]. The above mentioned issues are typical examples of why simple
classification models may be preferred in some applications.

1.2 Performance Measurements

To compare different classifiers and to decide which of them is the most suitable for a
specific problem, we evaluate their performances on the test set, which give us an idea,
an approximation of how the classifiers will work in the operational condition.

The most straightforward method for error computation is to compute the rate of
misclassified patterns of the test set 𝑛𝑒𝑟𝑟/𝑛, that is called apparent error, because it is a
very optimistic estimate of the true error that our classifier will do in the future. However
this measure is restrictive, it is preferable to separate the error terms on the classes,
because usually the recognition task is associated to actions will be taken, and which
have different importance for the different classes. For example, in cancer recognition
settings, misclassify an ill patient as healthy is much worse than the opposite case, a
healthy patient classified as ill. So, it is better to choose a classifier that minimizes the
error on the class linked to the most critical action. For this reason the overall error is
splitted in two parts:

∙ the False Positive Rate (FPR): the probability to assign a sample from the class
labelled with −1 (the negative one) to the class labelled with 1 (the positive one).
The complement is the True Negative Rate (TNR);

1.2. PERFORMANCE MEASUREMENTS 11

∙ the False Negative Rate (FNR): the probability to assign a sample from the
class labelled with 1 to the class labelled with −1. The complement is the True
Positive Rate (TPR)

𝐹𝑃𝑅 =
𝑛𝑝

𝑁
𝐹𝑁𝑅 =

𝑝𝑛
𝑃

(1.9)

where 𝑁 and 𝑃 are the total number of negative and positive examples, and 𝑛𝑝 (𝑝𝑛) are
the negative (positive) samples classified as positives (negatives). These measures define
the working point of the classifier.

Another possible measure is the receiver operating characteristic (ROC), or
ROC curve; it is a graphical plot that shows how the performances of a binary classifier
change in terms of true positive rate against the false positive rate, as its discrimination
threshold is varied. The best possible prediction method would yield a point in the upper

1

0,9

0,8

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

0 1 0,9 0,1 0,2 0,3

0,4

0,5 0,6 0,7 0,8

False Positive Rate

Worthless
Acceptable
Good

Figure 1.5: Example of ROC curves.

left corner or coordinate (0,1) of the ROC space, representing 100% of right classification
of the positive and negative samples. It corresponds to have an optimal system, stable
for any value of decision threshold. A completely random guess would give a point along
a diagonal line (the so-called line of no-discrimination) from the left bottom to the top
right corners (regardless of the positive and negative base rates). This curve represents
the worst case. The diagonal divides the ROC space. Curves above the diagonal repre-
sent good classification results (better than random), curves below the line indicate the

12 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

necessity to invert the decision function to have a good classifier.

Often a more concise performance measure is used, given by the Area Under the
ROC Curve (AUC)

𝐴𝑈𝐶 =

∫︁ 1

0

𝑇𝑃 (𝐹𝑃) 𝑑𝐹𝑃 (1.10)

The AUC values range from 0 to 1: AUC=0 corresponds to a classifier which misclassify
all the samples. Notice that, by inverting the decisions of such a classifier, we obtain a
perfect classifier (namely, a classifier which correctly classifies all samples), whose AUC
value is equal to 1. When AUC=0.5, the classifier is not able to distinguish between
the two classes. Basically, it classifies a sample completely at random, namely, either as
negative or as positive with the same probability. Sometimes it can be more useful to
look at a specific region of the ROC rather than at the whole curve. As an instance, in
security settings is preferable to focus to the classifiers behaviour within low values of FP,
because the systems usually work in this range (if a classifier has a high working FP, it
results inadequate). So, it is possible to compute the partial AUC as:

𝑝𝐴𝑈𝐶 =

∫︁ 𝑎

0

𝑇𝑃 (𝐹𝑃) 𝑑𝐹𝑃
1

𝑎
(1.11)

where 𝑎 indicates the FP value within you want to compute the partial AUC; note that
the result is divided by 𝑎 to rescale it in the 0-1 range, otherwise it would be too small.

1.3 Type of classifiers
Now, we give a short description of the classifiers used throughout this thesis.

1.3.1 Support Vectors Machine

A Support Vector Machine (SVM) is basically a linear classifier, namely, it finds a hyper-
plane in the feature space which separates the two classes. Its decision function can be
generally written as

𝑔(x) = w𝑇x− 𝑏 , (1.12)

w e 𝑏 are parameters which determine the position of the decision hyperplane in the
feature space: its orientation by the hyperplane normal w and its displacement by 𝑏. In
general, there are many hyperplanes that might correctly classify the data (Fig.1.6-left).

1.3.1.1 Hard margin

If the training data are linearly separable, we can select two parallel hyperplanes which
separate the two classes, so that the distance between the closest positive and negative

1.3. TYPE OF CLASSIFIERS 13

samples is as large as possible. This distance is called "margin", and the maximum-
margin hyperplane is the one that lies halfway in between the two parallel hyperplanes
(Fig.1.6-center). The latter can be described by the equations

w𝑇x− 𝑏 = 1 𝑎𝑛𝑑 w𝑇x− 𝑏 = −1 . (1.13)

Geometrically, the distance between these two hyperplanes is 2
‖w‖ . By requiring each

data point to lie on the correct side of the margin, we obtain the following constrained
optimization problem:

min
w,𝑏

1

2
‖w‖2 (1.14)

s.t. 𝑦𝑖(w
𝑇x− 𝑏) ≥ 1 . (1.15)

error vectors

ξ1

ξ2

ξ3

support vectors support vectors

Figure 1.6: Left. Several hyperplanes can be used to separate two distributions. Center.
SVM in hard margin case (distribution linearly-separable). The support vectors are circled
in blue. Right. SVM in soft margin case. The support and error vectors are circled in
blue and yellow, respectively.

1.3.1.2 Soft margin

The presence of linearly-separable data is an ideal condition, almost never found in a real
situation. In [5], SVMs were subsequently extended to cope with this type of problem,
for which some samples are allowed to violate the margin (Fig.1.6-right). In this case, the

14 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

problem becomes

min
w,𝑏,𝜉

1

2
‖w‖2 + 𝐶

𝑛∑︁
𝑖=1

𝜉𝑖 (1.16)

s.t. 𝑦𝑖(w
𝑇x− 𝑏) ≥ 1− 𝜉𝑖, 𝑖 = 1, .., 𝑛, (1.17)
𝜉𝑖 ≥ 0, 𝑖 = 1, .., 𝑛. (1.18)

where the variables 𝜉𝑖, referred to as slack variables, represent the extent to which the
samples x𝑖, violate the margin. The parameter C tunes the trade-off between reducing
classification error on the training data (measured using the hinge-loss function), and
margin maximization (enforced by penalizing the ℓ2 norm of the classifier weights). Prob-
lems 1.14/1.16 are referred to as the primal problems, and they are solved by means of
their dual Lagrange multipliers. Their solutions are given by

w =
𝑛∑︁

𝑖=1

𝛼𝑖𝑦𝑖x𝑖 (1.19)

𝑛∑︁
𝑖=1

𝛼𝑖𝑦𝑖 = 0 (1.20)

{︃
𝛼𝑖 ≥ 0, if hard margin
0 ≤ 𝛼𝑖 ≤ 𝐶, if soft margin.

(1.21)

where 𝛼𝑖 are the Lagrange multipliers. Interesting properties of the SVM arise from
its dual form. Firstly, the normal to the hyperplane w can be expressed as a convex
linear combination of the training samples. Secondly, the solution to the dual problem is
sparse, and only samples that lie on or within the hyperplane margin exhibit a non-zero
contribution: if 𝛼 = 𝐶, the sample violates the margin (error vector); if 0 < 𝛼 < 𝐶,
the sample lies exactly on the margin (support vector); if 𝛼 = 0 the sample is correctly
classified. As a consequence, the displacement 𝑏 is typically determined by averaging
w𝑇x𝑖 − 𝑦𝑖 over the set of support vectors.

1.3.1.3 Kernel Trick

Sometimes, a linear classifier can not separate in appropriate way the two class distri-
butions, it is not complex enough. To overcome this problem, we can use a non-linear
function 𝜑 : R𝑑 → Φ, that maps the training samples into a higher dimensional feature
space. This allows the algorithm to fit the maximum-margin hyperplane in a transformed
feature space, that may be non-linear in the original input space (Fig.1.7).

1.3. TYPE OF CLASSIFIERS 15

X2

X1

Z2

Z1

Z3

X2

Φ:𝑅2 → 𝑅3

𝑥1, 𝑥2 ⟶ 𝑧1, 𝑧2, 𝑧3 ≔ (𝑥1
2, 2𝑥1𝑥2, 𝑥2

2)

X1

Figure 1.7: Example of two concentric distributions, that are impossible to separate with
a hyperplane [3]. Mapping the training samples in a transformed feature space allows
an easy linear separation. Note that the hyperplane in the transformed feature space
becomes an ellipsoid in the starting feature space.

The above solution can be derived by the method of Lagrangian multipliers which
yields the dual problem. In matrix form, this dual can be expressed as

min
𝛼

1

2
𝛼𝑇Q𝛼− 1𝑇

𝑛𝛼, (1.22)

s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, .., 𝑛, (1.23)∑︀𝑛
𝑖=1 𝛼𝑖𝑦𝑖 = 0 (1.24)

where Q = K ∘ 𝑦𝑦𝑇 (the Hadamard product of K and 𝑦𝑦𝑇), and 1𝑛 is a column vector
of n ones. K is the kernel matrix, whose elements are 𝐾𝑖,𝑗 = 𝜑(x𝑖)

𝑇𝜑(x𝑗) (𝐾𝑖,𝑗 = x𝑇
𝑖 x𝑗

in the linear case). Since only inner products between samples are required to compute
the solution and predict the class labels, one does not need to know 𝜑 explicitly, but only
the corresponding kernel function. This is known as the kernel trick, and, due to its wide
adoption, SVMs are often learned by directly solving the dual problem. The most used
kernel is the gaussian Radial Basis Function (RBF):

K(x𝑖,x𝑗) = 𝑒𝑥𝑝(−𝛾 ‖ x𝑖 − x𝑗‖2), 𝑓𝑜𝑟 𝛾 > 0 (1.25)

1.3.1.4 One-Class SVM

For particular applications, it can be difficult or expensive to find samples from each class.
An example is the classification of the operational status of a nuclear plant as ‘normal’;

16 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

in this scenario, there are (fortunately) few or no examples of catastrophic system states,
only the statistics of normal operation are known.

To cope with this problem, Schölkopf et al. [4] have introduced the One-Class SVM. It
infers the properties of normal cases and from these properties it can predict effectively if
the inputs correspond to a normal situation or not. The OC-SVM basically separates all
the data points from the origin, in feature space, and maximizes the distance from this
hyperplane to the origin. This results in a binary function which captures regions in the
input space where the probability density of the data lives. The quadratic programming
minimization function is slightly different from the two-class version stated above:

min
w,𝜌,𝜉

1

2
‖w‖2 +

1

𝜈𝑛

𝑛∑︁
𝑖=1

𝜉𝑖 − 𝜌 (1.26)

s.t. (w𝑇𝜑(x𝑖) ≥ 𝜌− 𝜉𝑖, 𝑖 = 1, .., 𝑛, (1.27)
𝜉𝑖 ≥ 0, 𝑖 = 1, .., 𝑛. (1.28)

where 𝜌 indicates the distance from the origin and 𝜈 corresponds to the fraction of outliers,
i.e., training examples misclassified, that we accept in the learning phase. Moreover, it
represents a lower bound on the number of training examples used as support vectors.
Due to the importance of 𝜈 parameter, this machine is also called 𝜈-SVM. Solving the
problem with Lagrange multipliers we obtain

w =
𝑛∑︁

𝑖=1

𝛼𝑖𝜑(x𝑖) (1.29)

𝛼𝑖 ≤
1

𝜈𝑛
(1.30)

𝑛∑︁
𝑖=1

𝛼𝑖 = 1 (1.31)

1.3.2 Decision Tree

Decision tree is a type of supervised learning algorithm that works for both categorical
and continuous input and output variables. In this technique, we split the population of
samples into two or more homogeneous sets (or sub-populations), through a sequence of
questions, in which the next question asked depends on the answer to the current one.
This approach is particularly useful for non-metric data, since all of the questions can be
asked in a "yes/no" or "true/false" or "value(property) ∈ set of values" style that does
not require any notion of metric [2]. The structure of a decision tree follows the shape of
a real tree, it starts from the root, up to the canopy; we can see in Fig.1.8 an example

1.3. TYPE OF CLASSIFIERS 17

of decision tree. The first node, or root node, is displayed at the top, that asks for the
value of a particular property of the pattern. It is connected by successive (directional)
branches to other nodes, each one corresponds to different possible values of the answer.
The next step is to make the decision at the appropriate subsequent node, which can be
considered the root of a sub-tree. We continue this way until we reach a leaf node, which
has no further question. Each leaf node bears a category label and the test pattern is
assigned to the category of the leaf node reached.

The most important step while training this classifier is the choice of the attribute to
consider for each node. Different algorithms use different metrics to select these attributes,
based on the homogeneity of the target variable within their values. This yields different
classification functions.

Temperature Outlook Humidity Windy Play Tennis

hot sunny high false no

hot sunny high true no

hot overcast high false yes

cool rain normal false yes

cool overcast normal true yes

mild sunny high false no

cool sunny normal false yes

mild rain normal false yes

mild sunny normal true yes

mild overcast high true yes

hot overcast normal false yes

mild rain high true no

cool rain normal true no

mild rain high false yes

Outlook

Humidity Windy

yes

yes

yes no no

sunny

overcast

rain

high normal false true

Figure 1.8: Typical example of decision tree building, regarding the decision to play
tennis based on the weather. Note that in different paths we evaluate different attributes
(humidity on the left and windy on the right) and that not all of the properties are
considered (temperature).

1.3.3 Random Forest

Even if we identify the most discriminant rules for each node, the Trees could become
very deep and tend to learn highly irregular patterns, overfitting their training sets. To
overcome this possible behaviour, the so-called Random Forest classification algorithm
has been proposed. It is an ensemble learning method for classification, which operates
by constructing a multitude of Decision Trees. Each Decision Tree is trained using the
bootstrap aggregating procedure: starting from the initial training set D, this technique

18 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

generates m new training sets, each one for a different tree, obtained by sampling data
from D uniformly and with replacement. This clearly means that some samples from D
may repeatedly appear in several of the new training sets. During operation, the Random
Forest assigns a sample to the class corresponding to the mode of the predicted ones from
the individual trees.

1.4 Applications and Limitations

Thanks to its generalization capability, machine learning is widely used in computer secu-
rity applications. Nowadays, computer technology is pervasively entered in our everyday
life, and a lot of activities depend on it. We are inclined to share, more or less consciously,
sensitive information about us. We access and manage resources, from personal computers
to industrial control plants, through computer systems.

These systems can be targeted by attacks from malicious agents, motivated by eco-
nomical (e.g., credit card numbers theft) or terrorist (e.g., sabotage of nuclear plants)
scopes. To ensure that these attacks target as many users as possible, a lot of malicious
software (malware) have been developed during these years. Such software mainly aim to
take the control of the victim’s device, in order to steal their private information, encrypt
their data, or perform additional malicious actions that address other systems.

Due to their diffusion and dangerousness, it is crucial to provide adequate protections
against malware. A number of anti-malware commercial solutions have been developed
(e.g., Antiviruses, IDSs) that consistently increase the users’ security, based on signa-
ture mechanisms or some rules/heuristics. These software detect the attacks finding out
the presence of malicious characteristic feature, as the MD5 value of the codes, or the
presence of a particular command, stored in a reference database. These solutions are
able to protect the users from many known threats and, in many cases, they are able
to clean detected infections. However, polymorphism and various obfuscation techniques
are widely used by the attackers. This forces the detectors to continuously update their
reference databases, in order to detect the new malware ’versions’. As an alternative way
to detect malware in a more reliable way, several authors have shown that machine learn-
ing can be very effective. Despite the introduction of this advantage, machine learning is
not immune to malicious alterations of the input objects. In fact, as we will discuss in
Chap.2, it is not designed to cope with intelligent and adaptive adversaries; it potentially
introduces novel vulnerabilities that can be exploited from the attackers to evade detec-
tion or to mislead the learning process. Previous work has proposed several techniques
to prevent or to limit the attacker’s actions, among which we highlight [37, 38]. In these
works the authors proposed a general attacker’s behaviour model that allows one to assess
the security of machine learning algorithms, also accounting for some application-specific
issues. The proposed model is based on simulating how the attacker may interact with the
system, allowing one to discover new unknown vulnerabilities and, if possible, to design

1.5. CONTRIBUTIONS OF THIS THESIS 19

countermeasures to prevent malicious actions. Following this secure-by-design approach,
in the last years adversary-aware learning algorithms have been developed ([32, 52, 53]),
exploiting secure optimization and game-theoretical models to incorporate knowledge of
potential adversarial data manipulations into the learning algorithm. Despite these tech-
niques have been shown to be effective in some adversarial learning tasks, their adoption
in practice is hindered by different factors, including the difficulty of meeting specific the-
oretical requirements, the complexity of implementation, and scalability issues, in terms
of computational time and space required during training.

1.5 Contributions of this thesis
Throughout this thesis, we present the work carried out to achieve the design of more
secure classifier systems.

We firstly show, in Chap.2, the state of the art concerning the works proposed to
counter the adversaries in security settings. We introduce the general framework to rep-
resent the attacker’s behaviour, that allows us to understand how she can interact with
the systems and how the designer can reduce the classifier vulnerabilities. It is shown
that, following this taxonomy, it is possible to categorize the attacks in two scenarios:
poisoning and evasion. We finally present the attempts proposed to counter these two
attack categories.

In Chap.3, we show how the aforementioned general model for the attacker can be used
to specific setting, in particular to review previous work on biometric security. This allows
us to highlight novel insights on the security of biometric systems when operating in the
presence of intelligent and adaptive attackers. We show how this framework enables the
categorization of known and novel vulnerabilities of biometric recognition systems, along
with the corresponding attacks, countermeasure and defence mechanisms.

Then, in Chap.4, we propose some techniques about the development of secure systems
against evasion attacks that are not computationally more demanding than their non-
secure counterparts. We show that, based on the specific application setting and the
possible attacker’s moves, the choice of proper parameters for the classifier is crucial to
improve the security of a system.

Finally, in Chap.5, we highlight the conclusions about our proposals and the future
works.

20 CHAPTER 1. MACHINE LEARNING AND PATTERN RECOGNITION

Chapter 2

Adversarial Machine Learning

In the last decades, machine learning has been increasingly used in security-sensitive ap-
plications, such as spam filtering, malware detection, network intrusion detection and
biometric recognition systems. The reason is that traditional security systems were not
able to generalise, namely, to detect new (never-before-seen) kinds of attacks, while pat-
tern recognition algorithms have indeed a good generalisation capability.

These applications differ from the classical machine-learning setting in which the un-
derlying data distribution is assumed to be stationary (training and testing data follow
the same distribution). Conversely, in security-sensitive applications, samples (and, thus,
their distribution) can be actively manipulated by an intelligent, adaptive adversary to
undermine classifier operation.

Machine learning was originally designed to reach optimal accuracy, precision perfor-
mances in classification task, not to deal with adversaries. As a consequence, these algo-
rithms can introduce additional, specific vulnerabilities that can be exploited by carefully-
crafted attacks to cause different security violations. This may eventually compromise the
whole system security.

The attacks can be devised at any stage of the design process, as well as at operation
phase. As an instance, an adversary may compromise the training set used to build
a classifier, by injecting carefully designed samples during the data acquisition phase [7]
(training phase). Moreover, she can devise some attacks to mislead the feature extraction,
e.g., to avoid detection, spam emails are often modified by obfuscating common spam
words or inserting words associated with legitimate emails [8–11] (operating phase).

There are also examples of adversarial classification tasks not directly related to se-
curity: in data analysis and information retrieval environments, a malicious webmaster
may manipulate search engine rankings to artificially promote her web site [12,13].

To secure a system, a common approach used in engineering and cryptography is
security by obscurity, that relies on keeping secret some of the system details to the
adversary. This approach often leads to a reactive arms race between the adversary and
the classifier designer, in which each player attempts to achieve his goal by reacting to the

21

22 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

legitimate

malicious

x1

x2
f(x)

cheap

che@p

Figure 2.1: Common example of attack against an email spam filter.

changing behaviour of his opponent. At each step, the adversary analyses the system, and
develops an attack strategy to exploit the potential vulnerabilities. The designer reacts
by analysing the novel attack samples, and searches patches to counter the attacks, trying
to do that as soon as possible.

For instance, a spammer may gather some knowledge of the words used by the targeted
anti-spam filter to block spam, and then manipulate the textual content of spam emails
accordingly; e.g., words like "cheap" that are indicative of spam can be misspelled as
"che4p". Secondly, the pattern recognition system designer reacts by analysing the novel
attack samples and updating the system consequently; e.g., by retraining the classifier on
the newly collected samples, and/or by adding features that can better detect the novel
attacks. In the previous spam example, this amounts to retraining the filter on the newly
collected spam and, thus, to adding novel words into the filter’s dictionary (che4p may
be now learned as a spammy word). This reactive arms race continues in perpetuity as
illustrated in the left plot in Fig.2.2.

However, reactive approach to this arms race does not anticipate the next generation
of security vulnerabilities, i.e., they do not attempt to forecast future attacks and thus
the system potentially remains vulnerable to new attacks.

Adversarial Machine Learning is a novel research field that allows to overcome these
problems, following a different paradigm, security by design. It advocates that systems
should be designed from the ground-up to be secure, without assuming that the adversary
may ever find out some important system details. Accordingly, the system designer should

2.1. THREAT MODEL 23

Adversary

1) Analyze

classifier

Classifier Designer

2) Devise and

execute attack

3) Analyze

attack’s effect

4) Develop

countermeasure

Classifier Designer

1) Model

Adversary

Classifier Designer

2) Simulate

Attack

3) Evaluate

attack’s impact

4) Develop

countermeasure

Figure 2.2: Reactive (left) and Proactive (right) arms race.

anticipate the adversary by simulating a proactive arms race to (i) figure out the most
relevant threats and attacks and (ii) devise proper countermeasures, before deploying the
classifier (see Fig.2.2-right). This paradigm typically improves security by delaying each
step of the reactive arms race, as it requires the adversary to spend a greater effort (time,
skills, and resources) to find and exploit vulnerabilities. The scope of security evaluation
is to address issue (i) above, i.e., to simulate a number of realistic attack scenarios that
may incur during operation phases, and to assess the impact of the corresponding attacks
on the targeted classifier to highlight the most critical vulnerabilities. This amounts to
performing a what-if analysis [14], which is a common practice in security. Although secu-
rity evaluation may also suggest specific countermeasures, the design of secure classifiers,
i.e., issue (ii) above, remains a distinct open problem. In this way, pattern recognition
systems that are properly designed according to the reactive and proactive security ap-
proaches should remain useful for a longer time, with less frequent supervision or human
intervention and with less severe vulnerabilities.

2.1 Threat Model

The key point to design a more secure system following the secure-by-design approach
is the construction of an adversary’s model, based on the knowledge of her goals and
capabilities. This way the designer can identify himself with the attacker and find out
new vulnerabilities in the system, in order to, if possible, remedy them.

In the literature we can find works where the authors performed security evaluation
as a what-if analysis, based on empirical simulation methods ([10], [15] - [25]), and others
that proposed analytical methods to evaluate the security of learning algorithms or of some
classes of decision functions ([26] - [32]). Their goal was either to point out a previously
unknown vulnerability, or to evaluate security against a known attack. In some cases,
specific countermeasures were also proposed, according to a proactive/security-by-design
approach.

24 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

The most relevant proposal is represented by the taxonomy presented in [17], [18],
and subsequently extended in [27], that is shown in Tab.2.1. However, in these stud-
ies the attacks were simulated by manipulating training and testing samples according
to application-specific criteria only, without reference to more general guidelines; con-
sequently, such techniques can not be directly exploited by a system designer in more
general cases.

Table 2.1: The attack model proposed by Barreno et al. [17]

Integrity Availability
Causative: Targeted Permit a specific intrusion Create sufficient errors to

make system unusuable for
one person or service

Indiscriminate Permit at least one intru-
sion

Create sufficient errors to
make classifier unusable

Exploratory: Targeted Find a permitted intrusion
from a small set of possibil-
ities

Find a set of points misclas-
sified by the classifier

Indiscriminated Find a permitted intrusion

Starting from the previous proposals and considerations, a more general framework has
been formalized, which allows to modelling the adversary’s behaviour in every application,
making explicit presumptions on the attacker’s goal, knowledge of the target system and
capabilities of manipulating the input data or the system’s components [37, 38]. This
allows one to derive the corresponding optimal attack strategy.

The aim is threefold: (i) to provide a well-structured categorization of the vulnera-
bilities of the systems and of the corresponding attacks, also through the definition of
different, pertinent attack scenarios; (ii) to provide a formal characterization of existing
attacks within the framework, and envision more sophisticated and effective attack strate-
gies; and (iii) to identify suitable countermeasures and defences inspired by previous work
on adversarial machine learning.

We give now a short overview on this general taxonomy.

Adversary’s goal.
As in [29], it is formulated as the optimization of an objective function. This function is
based on the desired security violation

∙ integrity : to gain unauthorized access to the system,

∙ availability : to generate many classification errors to compromise the normal system
operations,

2.1. THREAT MODEL 25

∙ privacy : to obtain confidential information from the classifier

and on the attack specificity

∙ targeted : the attack focus is on a few specific samples,

∙ indiscriminate: the focus is on all malicious samples

according to the taxonomy in [17,27]. For instance, the goal of an indiscriminate integrity
violation may be to maximize the fraction of misclassified malicious samples [9, 10, 27];
the goal of a targeted privacy violation may be to obtain some specific, confidential infor-
mation from the classifier (e.g., the biometric trait of a given user enrolled in a biometric
system) by exploiting the class labels assigned to some "query" samples, while minimiz-
ing the number of query samples that the adversary has to issue to violate privacy [16,27].

Adversary’s knowledge.
Assumptions on the adversary’s knowledge have only been qualitatively discussed in pre-
vious works, mainly depending on the application at hand. Here it is proposed a more
systematic scheme for their definition, with respect to the knowledge of the single com-
ponents of a pattern classifier

∙ the training data: the adversary might know the data D or only a portion of it.
More realistically, she may not know D exactly, but she may be able to obtain a
surrogate dataset sampled from the same distribution as D.

∙ The feature set: the adversary could know how the features are extracted from each
sample. Similarly to the previous case, she may know how to compute the whole
feature set, or only a subset of the features.

∙ The learning algorithm and the kind of decision function (e.g., a linear SVM).

∙ The classifier’s decision function and its parameters (e.g., the feature weights of a
linear classifier).

∙ The feedback available from the classifier, if any (e.g., the class labels assigned to
some "query" samples that the adversary issues to get feedback [16,27]).

It is worth noting that realistic and minimal assumptions about what can be kept fully
secret from the adversary should be made, as discussed in [27].
The worst-case scenario in which the attacker has full knowledge of the attack system is
usually referred to as perfect knowledge (PK) case, and it allows one to empirically eval-
uate an upper bound on the performance degradation that can afflict the system under
attack. Attacks with limited knowledge (LK) have also been considered, to simulate more
realistic settings. In this case, the attacker is assumed to have only partial knowledge of

26 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

the system: for example, she can collect data to create a surrogate dataset, but she knows
the feature set and the feature selection algorithm. She can thus replicate the behaviour
of the attacked system using the surrogate data, to construct a set of attack samples. The
effectiveness of these attacks is then assessed against the target system (trained on the
true data).

Adversary’s capability.
It refers to the control that the adversary has on training and testing data, and where
she locates the attacks. This task defines the malicious actions in terms of

∙ the attack influence:

– causative, if the attack undermines the learning algorithm to cause subsequent
misclassification,

– exploratory, if it exploits knowledge of the trained classifier to cause misclassi-
fication, without affecting the learning algorithm

as defined in [17, 27]. Thus, causative attacks may influence both training and
testing data, or only training data, whereas exploratory attacks affect only testing
data;

∙ whether and to what extent the attack affects the class priors;

∙ how many and which training and testing samples can be controlled by the adversary
in each class;

∙ which features can be manipulated, and to what extent, taking into account application-
specific constraints (e.g., correlated features can not be modified independently, and
the functionality of malicious samples can not be compromised [9, 10]).

It is clear that excessive obfuscation or manipulation of the samples is not possible with-
out compromising the functionality of the attack. This behaviour has been formalized
in terms of application-dependent constraints in previous works [40, 41]; in particular, in
terms of bounds on the distance between the initial malicious sample x and the manipu-
lated one x′ in feature space.
As discussed in [41], two kinds of constraints have been mostly used when we model
real-world adversarial settings, leading one to define sparse (ℓ1) and dense (ℓ2) attacks.
Bounding the ℓ1 distance between x and x′ yields a sparse attack, as it represents the case
where the cost depends on the number of modified features. For example, when instances
correspond to text (e.g., the email’s body) and each feature represents the occurrences of
a given term in the text, the attacker usually aims to change as few words as possible.
Instead, the ℓ2 distance yields a dense attack, as it represents the case in which the cost to
modify features is proportional to the distance between the original and modified sample

2.2. CATEGORIZATION OF ATTACK SCENARIOS 27

in Euclidean space. For instance, when considering images as the input data, usually the
attacker prefers making small changes to many or even all pixels, rather than significantly
modifying only few of them. This amounts to only slightly blurring the image, instead
of obtaining a salt-and-pepper noise effect (as produced by sparse attacks), and the final
effect is less visible to the human eye.

Adversary’s strategy.
One can finally define the optimal attack strategy, namely, how training or testing data
should be quantitatively modified to optimize the objective function characterizing the
adversary’s goal. Such modifications are defined in terms of:

∙ how the class priors are modified;

∙ what fraction of samples of each class is affected by the attack;

∙ how features are manipulated by the attack.

According to the adversary’s goal (generally expressed in terms of an objective function
𝑔(𝑎; 𝜃)), knowledge (given in terms of the parameter vector 𝜃 ∈ Θ) and capability (which
defines the feasible set of attack strategies 𝑎 ∈ 𝒜), an optimal attack strategy can be
defined to implement the attack, as:

max
𝑎∈𝒜

𝑔(𝑎; 𝜃) (2.1)

2.2 Categorization of attack scenarios
Looking at the attacks from the broader perspective opened by the previous framework
allows us to identify two main scenarios.

2.2.1 Evasion

Evasion attacks are the most prevalent type of attacks that may be encountered in adver-
sarial settings during system operations. In this setting, malicious samples are modified
at test time to evade detection in order to be misclassified as legitimate. No influence over
the training data is assumed. Here we formalize evasion attacks in terms of the model
previously explained.
Attacker’s goal. In evasion attacks, the goal is to cause an integrity violation: the
attacker modifies malicious samples (e.g., a spam email) to have it misclassified as legiti-
mate (with the largest confidence) by the classifier, without the necessity to compromise

28 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

its functionality. Moreover, the specificity can be targeted or indiscriminate, it depends
on how many samples she wants to change.
Attacker’s knowledge. The attacker can have different levels of knowledge of the

targeted classifier; she may have limited or perfect knowledge about the training data, the
feature set, and the classification algorithm [37,40]. Usually we focus on perfect-knowledge
(worst-case) attacks. Although it may be overly pessimistic to assume that the attacker
knows everything about the targeted system, this often reveals interesting properties of
learning algorithms, as it highlights the worst possible performance degradation that may
be incurred under attack.
Attacker’s capability. In evasion attacks, the attacker operates during the operating

phase, without altering the training process (exploratory influence), and she can modify
only malicious samples. The amount of feasible manipulations is often bounded, as the
malicious data has to preserve its intrusive functionality. For example, malware has to
embed a valid exploitation code for the attack to be effective, and spam emails have to
remain readable by humans.
Attack strategy. Having defined the attacker’s goal, knowledge and capability, one can
finally formalize the attack strategy, i.e., the procedure for obfuscating malicious data
to evade detection, in terms of an optimization problem. Let us denote the legitimate
and malicious class labels respectively with −1 and +1, and assume that the classifier’s
decision function is 𝑓(x) = sign (𝑔(x)), where 𝑔(x) ∈ R is the discriminant function, and
x is the representation of a sample in a d -dimensional feature space. For example, for
linear classifier, 𝑔(x) = w⊤x+ 𝑏 ∈ R, where w ∈ Rd are the feature weights, and 𝑏 ∈ R is
the bias. Given a malicious sample x, the goal is to find the sample x* that minimizes the
classifier’s discriminant function 𝑔(·) (i.e., that is classified as legitimate with the highest
possible confidence) subject to the constraint that x* lies within a distance 𝑑max from x:

x* = arg min
x′

𝑔(x′) (2.2)

s.t. 𝑑(x′,x) ≤ 𝑑max , xlb ⪯ x′ ⪯ xub , (2.3)

where xlb ⪯ x′ ⪯ xub represents a box constraint (it defines the min and max values
allowed for each feature: for example, in case of features normalized between 0 and 1,
the attacker have to modify the features of her samples remaining in [0 : 1] range), and
the distance measure 𝑑(·, ·) is defined in terms of the cost of data manipulation (e.g., the
number of modified words in each spam) [9,11,28,37,40]. Sparse and dense evasion attacks
are simply defined based on whether 𝑑(·, ·) corresponds to the ℓ1 or to the ℓ2 distance,
respectively. Examples of evasion attacks are shown in Fig.2.1,2.3.

2.2.2 Poisoning

Machine learning algorithms are often re-trained on data collected during the operation
phase to adapt to changes in the underlying data distribution. Within this scenario, an

2.2. CATEGORIZATION OF ATTACK SCENARIOS 29

x

1

x '

Figure 2.3: Example of ℓ1 (sparse) attack against a kernel SVM [40].

attacker may poison the training data by injecting carefully designed samples to eventually
compromise the whole learning process and consequently lead to misclassify as many
samples as possible at test time. Poisoning may thus be regarded as an adversarial
contamination of the training data.
Attacker’s goal. For a poisoning attack, the attacker’s goal is to find a set of points

whose addition to the training set maximizes the classifier’s errors. She causes both in-
tegrity violation, because after the attack she can evade the classifier without modifying
her malicious samples, and availability violation, because the system does not recognize
anymore the legitimate accesses. The specificity of the attacks can be targeted or indis-
criminate, depending on how many samples the attacker wants to modify.
Attacker’s knowledge. As for the evasion scenario, we assume that the adversary

knows the training samples, the feature representation and the classification algorithm.
In the same way, usually we focus on the perfect-knowledge attacks, so as to consider the
worst-case and to compute the maximum error rate that the adversary can inflict through
the poisoning.
Attacker’s capability. In this scenario the attacker has a causative influence, she

operates during the learning phase, adding attack samples into the training set in order
to modify the class priors and the class-conditional distributions. Even here, she can alter
the feature values of the attack data within some lower and upper bounds.
Attack strategy. Under the previous setting, we can formalize the attack strategy in

terms of an optimization problem. As in evasion setting, let us denote the legitimate and
malicious class labels respectively with −1 and +1, x is the representation of a sample
in a d-dimensional feature space, the classifier’s decision function is 𝑓(x) = sign (𝑔(x)),

30 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

where 𝑔(x) ∈ R is the classifier’s discriminant function. Moreover, we introduce the
function 𝐿𝑜𝑠𝑠(x′), that expresses the error computed by the classifier on the samples in
the operating phase, after the injection of the malicious sample x′ inside the training set.
The optimization problem can be thus written as:

x* = arg max
x′

𝐿𝑜𝑠𝑠(x′) =
𝑚∑︁
𝑘=1

(1− 𝑦𝑘𝑓x′(x𝑘)) (2.4)

s.t. 𝑑(x′,x) ≤ 𝑑max , xlb ⪯ x′ ⪯ xub , (2.5)

where 𝑓x′(·) is the initial decision function modified by the addition of x′ in the training
set. The constraint on the maximum possible modifications is defined as for the evasion
case.

Classification error = 0.022

xc

Classification error as a function of xc

xc

Classification error = 0.039

1

Figure 2.4: Poisoning attack against a linear classifier. The attacker injects a malicious
sample that causes the greatest classification error possible. Example adapted from [24].

2.3 Constructing real-world attack samples

The attack strategies discussed in this section allows one to find a malicious sample in
terms of a set of desired feature values. Clearly, feature mappings in real-world security-
related tasks can be very difficult to reverse-engineer and, accordingly, constructing the
corresponding real-world attack samples (e.g., malware samples) may not be trivial. As
widely discussed in previous work [27, 37, 38, 40], it is clear that this problem demands
for application-specific solutions, and it is thus out of the scope of this work. On the
other hand, in some cases, feature mappings can be easily inverted and the corresponding
samples easily constructed.

2.4. RELATED WORK 31

2.4 Related Work

According to the paradigm of security-by-design, several recent works have proposed mod-
ifications to learning algorithms and novel learning techniques, that explicitly take into
account a specific kind of adversarial data manipulation.
Evasion. For linear classifiers, the underlying rationale has been that of devising clas-
sifiers with more evenly-distributed feature weights, to intuitively enforce the attacker
to manipulate more feature values to evade detection. Based on this intuition, different
heuristic techniques have been proposed [10,38].

Bruckener at al. [32] have proposed to model the interactions between the attacker and
the classifier as a game in which players aim to maximize their own payoff function. The
adversary’s goal is to evade detection by minimally manipulating some attack samples,
while the classifier is retrained to correctly classify them. This procedure is iterated
until a Nash equilibrium point is reached, i.e., when no player can improve his payoff
function unilaterally by playing a different strategy. To simulate the attacker’s actions,
one can resolve the optimization problem with many well-known techniques, like gradient
descent, or quadratic techniques such as Newton’s method, BFGS, or L-BFGS. If the
function is not differentiable, as in Random Forest, the attacks are simulated using black-
box optimization strategies, like genetic algorithm [58] and greedy descent techniques [59].
Another method is the learning with invariances, essentially a minimax approach in which
the learning algorithm is modified to minimize the maximum loss incurred under worst-
case manipulations of the attack samples. In particular, different variants of the SVM
learning algorithm have been proposed to account for a maximum number of worst-case
feature manipulations, including deletion, insertion, and rescaling [52,53].
Poisoning. To significantly compromise the training phase of a learning algorithm, an
attack has to exhibit some characteristics that are different from those shown by the rest of
the training data, otherwise it would have no impact at all. Following this consideration,
some proposed techniques generate a model of the plausible distribution of the classes,
in order to sanitize the training from the malicious outlier [54]; other solutions exploit
robust statistics [49,50] to mitigate the outliers’ impact on learning (e.g., robust principal
component analysis [19]).

2.5 Open Issues

Through this chapter we have seen how important the proactive approach is to design a
more secure system. The framework that we previously presented provides to designers
general guidelines to empirically evaluate the classifier security in any adversarial envi-
ronment.

In Chap.3 we show how to apply this framework to the case of biometric recognition
systems. We highlight that it enables one to generate a well-structured categorization of

32 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

the systems’ vulnerabilities and of the corresponding known attacks. Moreover, we show
that it allows one to identify novel attacks and mechanisms to improve the security of
biometric systems. In particular, we present an efficient countermeasure for a recently
proposed type of poisoning attack.

The use of this framework to study a particular scenario allows the designers to un-
derstand how and where attackers can attack the classifier. Accordingly, by taking into
account such potential threats, one may design specific countermeasures to increase the
system security level. State-of-the-art solutions, as shown in the last section, present
however several problems that limit their usability in real applications:

∙ standard optimization techniques can be used to solve the optimization problems
corresponding to evasion and poisoning attacks (Eq.2.2-2.4), but they can be very
computationally demanding depending on the scenario at hand. As an example,
standard optimizers are not very efficient when dealing with discrete input spaces.
To overcome this problem, in Chap.4 we present an evasion algorithm based on
gradient descent, specifically tailored to the given kind of attack and characteristics
of the input feature space. In particular, the latter two considerations allow making
our algorithm faster and more suitable for every application setting with respect to
the other solvers.

∙ Regarding non-differentiable classifiers, as Random Forests, the strategies to simu-
late the attacks are very slow and with high computational complexity. To make
the evasion attack practicable in this setting, we construct a differentiable surrogate
of the non-differentiable classifier, trained on the training set re-labelled from the
latter one, that will be evaded with the aforementioned evasion algorithm.

∙ In evasion settings,

– for linear classifiers, the countermeasures based on learning more evenly-distributed
feature weights to improve security are mainly heuristic. Thus, a clear under-
standing of the conditions under which they can be effective, or even optimal,
is still lacking. In Chap.4 we provide a clearer and theoretically-sound expla-
nation to this approach, and show how to improve it.

– Some solutions propose to repeatedly attack and retrain the classifier on the
attack samples. These mechanisms enable us to account for potential attacks
during the design phase, although they may be computationally expensive. In
Chap.4 we propose some solutions that are not computationally more demand-
ing than their non-secure counterparts.

It is worth noting that the aim of the application examples presented in the biometric
chapter is to show, in a simple and clear manner, how the threat model works in a

2.5. OPEN ISSUES 33

particular setting and how it can help finding new vulnerabilities and developing novel
countermeasures.

In the secure learning chapter, we present a more rigorous study on the proposed
countermeasures to improve the security of a classifier.

34 CHAPTER 2. ADVERSARIAL MACHINE LEARNING

Chapter 3

Adversarial Biometric Recognition

In the previous chapter we presented a general threat taxonomy to model the attacker’s
behaviour, highlighting its flexibility to be used in any adversarial pattern recognition
scenario, in order to analyse vulnerabilities of the systems and potential threats. We now
show how it is possible to use this framework in a specific application setting, involving
biometric recognition systems. The results of this work were published in [39].

Biometric identity recognition is a clear example of a widespread and still growing
application field in which security is a key issue, and pattern recognition techniques play a
major role. Different vulnerabilities of biometric systems, specific attacks that can exploit
them, and some corresponding countermeasures have been analysed in the literature [33,
42] and in research projects. However, all existing efforts disregarded the potential, specific
vulnerabilities introduced by pattern recognition algorithms used in biometric systems,
and thus the investigation of the corresponding attacks and countermeasures.

In our work, we argued that looking at biometric system security from the perspective
of adversarial machine learning not only provides an original categorization of existing
attacks against such systems, but it also allows us to consider more sophisticated attacks
targeting vulnerabilities of the learning algorithms used in these systems, along with the
countermeasures already proposed in the field of adversarial machine learning.

This chapter is organised as follows. First we introduce the standard architecture of a
biometric recognition system. Then we give the definition of a more complete taxonomy
of attacks against biometric systems, based on the model explained in Chap.2, which
allows one to identify novel attack scenarios associated to specific vulnerabilities of ma-
chine learning and pattern recognition algorithms, besides encompassing known attacks.
Furthermore, we show how this model enables us to design corresponding countermea-
sures, building on solutions proposed in adversarial machine learning, which can give rise
to the design of novel, secure-by-design algorithms capable of improving adversarial bio-
metric identity recognition. We finally discuss two application examples of the possible
aforementioned achievements. We first show how a skilled attacker may fabricate more ef-

35

36 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

fective face spoofing attacks, and then highlight a new vulnerability of adaptive biometric
systems, devising the corresponding attack and a possible countermeasure.

3.1 Architecture of a Biometric Recognition Systems

Biometric recognition systems operate either in enrollment or in recognition mode [33].
During enrollment, each client provides his biometric traits and identity, in the pres-
ence of a human supervisor. A set of reference templates for each client is then stored
in the template database along with the corresponding identity. During recognition,
the biometric system is expected to recognize a previously-enrolled client by comparing
the submitted traits with those stored in the template database. Biometric systems may
operate either in an verification or in a identification setting. In verification settings,
biometric systems are often used to control access to protected resources, including con-
fidential information or services. A user aiming to access them has to provide his/her
biometric trait and claim an identity. The system then verifies whether the claim is gen-
uine (i.e., the user’s identity is the claimed one) or not (i.e., the user is an impostor
trying to impersonate another client), and allows access only in the former case. This
procedure is illustrated in Fig. 3.1, which is general enough to also account for multi-
biometric systems; in this case, the fusion rule 𝑠𝑐 should aggregate the matching scores
coming from all biometric traits. In identification settings, instead, no identity claim is
made: a user provides only the requested biometric trait x, and the system is expected
to correctly recognize the identity among the ones in the template database, by matching
x against all the known clients’ templates; the corresponding scores 𝑠𝑐(x) are then sorted
in descending order to provide a list of the most likely candidate identities.

To account for natural changes of biometric traits over time (i.e., biometric aging),
and changes in the environmental or acquisition conditions during verification, adaptive
biometric systems have been proposed, to automatically update the stored templates
during verification [34,35]. A popular technique is template self-update: if the submitted
trait is sufficiently similar to the reference templates of the claimed identity, one of such
templates is updated by exploiting information coming from the submitted trait, according
to a given policy. A simple update policy is called nearest-out self-update, and replaces
the most similar template to the submitted trait with the latter [24, 36].

3.1.1 The Attack Surface

Previous work has identified the main attack points and vulnerabilities of biometric recog-
nition systems, along with the corresponding attacks [33,42]. First, any system is subject
to intrinsic failures not produced by adversarial attempts, i.e., rejected genuine claims
and accepted zero-effort impostors (i.e., impostors that do not exert any special effort
to intrude). Besides this, a number of adversarial attacks have been also considered
in early work, leading to the identification of eight potentially vulnerable attack points

3.1. ARCHITECTURE OF A BIOMETRIC RECOGNITION SYSTEMS 37

highlighted by the red circled numbers 1–8 in Fig. 3.1 [42]. We additionally consider here
points 9-11: they correspond to vulnerabilities of adaptive biometric systems that update
clients’ templates during operation, which we recently exploited to implement a template
poisoning attack [24, 36]. The set of all attack points defines the attack surface of a bio-
metric recognition system. The corresponding attacks can be categorized into four main
groups, according to the targeted system component [33]: attacks to the sensor (point
1), to interfaces and channels connecting different modules (points 2, 4, 7), to process-
ing modules and algorithms (points 3, 5, 8–11), and to the template database (point 6).
We discuss them below, along with the corresponding countermeasures proposed so far,
that are also summarized in Table 3.1. It is also worth mentioning here a special cate-
gory of attacks, known as insider attacks, where the attacker is colluded with a system
administrator or exercises coercion to escalate privileges [33].

sc ≥θctrue

Feature
extractor sc ≥ tc

genuine

impostor

true

false

s(x, xc
k){ }k=1

m

Template
update

xz Matcher
 s(⋅, ⋅)

Fusion
rule

sc (x)

φ : Z→ X

Template
database

xc
k{ }k=1

m

Claimed
identity

Sensor

Biometric
trait(s)

1

2

3

4

5

6

7

8 9

10 11

Figure 3.1: Architecture of a biometric verification system and corresponding attack
points, highlighted with red circled numbers. During verification, the image z ∈ 𝒵 (e.g.,
a face image) acquired by the sensor is processed by a feature extractor 𝜑 : 𝒵 ↦→ 𝒳 to
obtain a compact representation x ∈ 𝒳 (e.g., a graph). The templates {x𝑘

𝑐}𝑚𝑘=1 of the
claimed identity 𝑐 are retrieved from the template database, and compared to x using a
matching algorithm 𝑠 : 𝒳 × 𝒳 ↦→ R. The resulting scores {𝑠(x,x𝑘

𝑐)}𝑚𝑘=1 are combined by
a fusion rule, producing an aggregated score 𝑠𝑐(x) that expresses the degree to which x
is likely to belong to 𝑐. The score 𝑠𝑐(x) is then compared with a decision threshold 𝑡𝑐 to
decide whether the claim is genuine or impostor. If template self-update is implemented,
and 𝑠𝑐(x) is not lower than a self-update threshold 𝜃𝑐, one of the templates in {x𝑘

𝑐}𝑚𝑘=1 is
updated depending on x, according to a given policy.

Spoofing attacks consist of fabricating a fake biometric trait to impersonate an enrolled
client. They target the sensor (point 1), so they are also referred to as direct attacks.
Current defenses are based on liveness detection methods, which aim to verify whether
the submitted trait is “alive” or “fake” by looking at specific patterns (e.g., perspiration

38 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

Table 3.1: Categorization of attacks and countermeasures for biometric systems. For each
attack technique, we also report the targeted component (attack location) and the attack
point(s), according to Fig. 3.1.

Attack Technique Attack Location Attack
Point(s)

Defense

Spoofing Sensor 1 Liveness Detection, Multibiometrics (Secure
Fusion)

Replay Interfaces / Channels 2, 4, 7 Encrypted Channel, Timestamp, Challenge-
Response, Physical Isolation

Hill-Climbing Interfaces / Channels 2, 4 Encrypted Channel, Timestamp, Challenge-
Response, Physical Isolation, Score Quanti-
zation

Malware Infection Modules / Algorithms 3, 5, 8-11 Secure Code, Specialized Hardware, Algo-
rithmic Integrity

Template Theft, Sub-
stitution, and Dele-
tion

Template Database 6 Template Encryption, Cancelable / Revok-
able Templates

patterns during fingerprint acquisition, or eye blinking during face verification). Multibio-
metric systems have been also proposed as a defense; however, to avoid spoofing them by
only using a single fake trait, the matching scores coming from the different traits should
be properly combined, using a secure score-level fusion rule [43,44].
Replay attacks can be staged at interfaces between modules by replaying a stolen image
of the biometric trait of the targeted client to the feature extractor (point 2), or directly
the corresponding feature values to the matcher (point 4). An attacker may even replay
a signal to replace the features of a given template of the claimed identity (point 7). This
attack can be clearly staged if the corresponding communication channels are insecure,
but also over encrypted channels, as the encrypted signal can be stolen and replayed into
the channel directly. This can be avoided by encrypting a timestamp into the signal,
or using challenge-response mechanisms. Another possible countermeasure is physical
isolation, to avoid sending data over insecure channels (e.g., the Internet) subject to man-
in-the-middle attacks. A popular example of physical isolation is the use of smart cards
performing match-on-card operations. However, this technique has its own disadvantages,
including limitations in terms of computational resources and memory, and the fact that
the user should always use the smart card to be authenticated [33].
Hill-climbing attacks, similarly to replay ones, affect insecure communication channels
between modules, and, in particular, point 2 and 4 in Fig. 3.1. Their goal is to reconstruct
a template image by iteratively sending a bunch of slightly perturbed images to the
feature extractor (point 2), or their features to the matcher (point 4), and retaining the
one that maximizes the matching score 𝑠𝑐(x), where x is the current image (or set of
features) submitted by the attacker. In practice, it is a gradient-ascent technique that
approximates the gradient of 𝑠𝑐(x) numerically. In this case, the attacker is assumed

3.2. BIOMETRIC SYSTEM SECURITY 39

to be able to observe 𝑠𝑐(x) for any queried image, which may only be feasible if the
system provides (or leaks) such information. In fact, besides the aforementioned channel
protection schemes, an additional defense mechanism consists of quantizing the matching
score to provide less accurate information to the attacker. However, attacks based on more
sophisticated black-box optimization techniques, suited to quantized objective functions,
can also be considered to make these countermeasures ineffective [45].
Malware Infection. The algorithmic implementations of the software modules (points
3, 5, 8–11) may exhibit vulnerabilities that can be exploited by a skilled attacker through
well-known hacking techniques (e.g., buffer overflow), to install malicious software, i.e.,
malware, including worms, trojan horses, etc. This threat can be avoided or mitigated
by exploiting well-known programming practices, like secure code programming, or using
specialized hardware to perform some critical operations [33]. A secure programming
practice is to check algorithmic integrity, i.e., that each algorithm and function correctly
handles any input parameter and never shows any unexpected behavior. For instance, if
the matching algorithm expects a vector x ∈ R𝑑 as input, and instead receives an input
with a different format, is it going to crash or provide anyway an output? In the latter
case, how is such an output handled by the subsequent modules? Does it lead to accepting
by error the given claim as genuine or not?
Template Theft, Substitution, and Deletion attacks target the template database
(point 6). If templates are not protected properly, one may be able to steal them, and
use them to create a spoof (i.e., a fake template), to perform a replay attack, or to
impersonate the targeted client on a different system and perform other operations, e.g.,
searching on protected databases (function creep) [33]. Another possibility is to replace a
template to impersonate a client without requiring any sophisticated attack as spoofing
or replay; e.g., an attacker may add his own fingerprint template to the set of templates
belonging to another client. Additionally, templates of a given client can be deleted to
cause a denial of service, i.e., to avoid the targeted client to be recognized successfully.
Countermeasures include template encryption, and also the use of cancelable / revokable
templates, which can be used only on a specific system, and reissued if stolen. The idea
is to encode the templates using a key or pin code that can be changed to re-enroll the
user and create a novel, different encrypted template [33].

3.2 Biometric System Security reviews from the adver-
sarial perspective

We analyse here biometric system security in terms of the previously-discussed framework,
by making assumptions on the adversary’s goal, knowledge, capability, and attack strat-
egy, suited to biometric applications. Our aim is threefold: (𝑖) to provide a well-structured
categorization of the vulnerabilities of biometric systems and of the corresponding attacks,
also through the definition of different, pertinent attack scenarios; (𝑖𝑖) to provide a formal

40 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

Goal
Security)viola.on)(Integrity,+Availability,+Privacy)+
Specificity+(Targeted,+Indiscriminate)+

Influence+(Enrollment/Update,+Verifica?on)++
Loca.on)(Sensor,+Interfaces/Channels,+
+++Modules/Algorithms,+Template+Database))

System)components/algorithms)(Limited,+Perfect)+Knowledge

Capability Security)
viola.on!

Influence!

Evasion!

Poisoning!

Privacy!

Adversary!Model! Main!A/ack!Scenarios!

Figure 3.2: A conceptual representation of the adversary model and of the main attack
scenarios (given in terms of the corresponding security violation and attack specificity)
according to the framework.

characterization of existing attacks within the framework, and envision more sophisticated
and effective attack strategies; and (𝑖𝑖𝑖) to identify suitable countermeasures and defenses
inspired by previous work on adversarial machine learning.
Adversary’s Goal. It is defined in terms of security violation and attack specificity.
Biometric system security can be violated by an attacker that aims at impersonating a
genuine user (integrity violation), at compromising the template galleries of genuine users
to deny them access to the system, causing a denial of service (availability violation),
or at violating the privacy of genuine users, e.g., by inferring their templates through a
hill-climbing attack (privacy violation). The attack specificity can be targeted, if the
attack targets a specific set of clients, or indiscriminate, if any client may be affected.
Adversary’s Knowledge. We define it by leveraging on the definition of the attack
surface of biometric systems given in the previous section, by making specific assumptions
on what the attacker knows of the system components and how they work. According to
Fig. 3.1 and Table 3.1, the attacker may know: (𝑖) the kind of sensor used (point 1), e.g.,
an optical or capacitive fingerprint sensor; (𝑖𝑖) which interfaces / channels are used to
implement connections (points 2, 4, 7), e.g., if an insecure channel over the Internet is used
to send the acquired images to the feature extractor (point 2); (𝑖𝑖𝑖) how the modules /
algorithms work, and whether they are vulnerable or not (points 3, 5, 8-11), in particular,
the feature mapping 𝜑 (point 3), the matching algorithm 𝑠 (point 5), the decision threshold
𝑡𝑐 (point 8), the fusion rule 𝑠𝑐 (point 9), and, if template update is implemented, the self-
update threshold 𝜃𝑐 (point 10) and the template update policy (point 11); (𝑖𝑣) some of
the templates stored in the template database (point 6). The attacker may also be able
to collect images of the same biometric traits using other techniques; e.g., acquiring latent
fingerprints, or collecting face images of the targeted clients from social networks. From
a machine learning perspective, this amounts to having different levels of knowledge of
the classifier’s training data. In practice, it is worth noting that attackers typically have
limited knowledge of the sensors and algorithms used, of the users’ templates, and of any
other system components (e.g., communication channels, template encryption schemes,

3.3. CATEGORIZATION OF BIOMETRIC ATTACK SCENARIOS 41

etc.). Several previous works have however considered vulnerabilities of biometric systems
without clearly pointing out the underlying assumptions on the adversary’s knowledge
required to perform the corresponding attack. Under the framework, such assumptions
become clearly explicit.
Adversary’s Capability. It can be also defined in terms of the attack location: (𝑖) the
sensor (point 1); (𝑖𝑖) interfaces / channels (2,4,7); (𝑖𝑖𝑖) the internals or even the output
of modules and algorithms (3,5,8–11), e.g., through malware infection attacks; and (𝑖𝑣)
the template database (6). In addition, one has to define the attack influence, i.e., the
capability of manipulating the input data (e.g., using fake biometric traits), and how such
data may be used to update the system (e.g., in adaptive biometric systems the attacker
can produce spoofing attacks that can subsequently poison the clients’ templates [24,36]).
Accordingly, the attack can influence only verification, or also enrollment / update.
Attack Strategy. According to the adversary’s goal (generally expressed in terms of
an objective function 𝑔(𝑎; 𝜃)), knowledge (given in terms of the parameter vector 𝜃 ∈ Θ)
and capability (which defines the feasible set of attack strategies 𝑎 ∈ 𝒜), an optimal
attack strategy can be defined to implement the attack, as explained before (see Eq. 2.1).
For instance, assume that the attacker aims to impersonate an enrolled client (integrity
targeted attack), and she is only able to acquire a latent fingerprint of the client, with-
out having any other knowledge of the system components and algorithms. Then, the
corresponding optimal attack strategy amounts to fabricating a fake fingerprint that is
as similar as possible to the latent one, and using it to perform a spoofing attack. In
this case, 𝑔(𝑎; 𝜃) can be regarded as a measure of the similarity between the fake and the
latent fingerprint, as 𝜃 only contains information related to the latent fingerprint, and
𝑎 corresponds to the fake fingerprint. A more skilled attacker may however also know
the matching algorithm 𝑠 and the fusion rule 𝑠𝑐 used by the system, and may be able
to collect more than a single fingerprint image of the targeted client. As an application
example of the framework, we will show that, under this setting, more sophisticated and
effective spoofing attacks can be fabricated. As another application example, we will also
consider a poisoning attack against an adaptive face verification system, and propose a
novel countermeasure based on the sanitization of the client’s templates.

In the following, we define a set of representative attack scenarios to categorize known
attacks according to the framework. The framework and the considered attack scenarios
are also represented in Fig. 3.2.

3.3 Categorization of Biometric Attack Scenarios

Previous work has categorized attacks to biometric systems and countermeasures simply
in terms of the attack points of Fig. 3.1 (e.g., spoofing attacks to the sensor, countered by

42 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

Table 3.2: Examples of categorization of previous work on biometric security accord-
ing to the three main attack scenarios defined in adversarial machine learning: evasion,
poisoning, and privacy attacks.

Goal Knowledge Capability Attack Strategy
Violation Specificity Influence Location

Evasion attacks
Matsumoto et al. [47],
Rodrigues et al. [43],
Johnson et al. [46]

Integrity Targeted,
Indiscrimi-
nate

Perfect (consen-
sual fake)

Verification Sensor Spoofing

Poisoning attacks
Biggio et al. [24, 36] Integrity,

Availabil-
ity

Targeted,
Indiscrimi-
nate

Perfect, Limited
(unknown tem-
plates)

Enrollment
/ Update

Sensor Spoofing
(face)

Privacy attacks
Adler [45], Galbally et
al. [48], Martinez et
al. [51]

Privacy Targeted,
Indiscrimi-
nate

Limited (un-
known tem-
plates)

Verification Matcher Hill-
climbing

liveness detection techniques, and attacks to a compromised channel, countered by channel
encryption). Instead, looking at them from the broader perspective opened by the general
framework [37, 38], allows us to identify three main attack scenarios, described in the
following, in which the attacks and countermeasures discussed in the previous sections
play different roles. A few examples of known attack and defenses are categorized in
Table 3.2 in terms of these attack scenarios. This also opens the way both to identify novel,
more sophisticated attacks against biometric systems, and to adapt the corresponding
countermeasures from the adversarial learning field.

3.3.1 Evasion

The goal of this attack scenario is to impersonate a client (integrity, targeted/ indiscrim-
inate attack). To this end, knowledge of the client’s biometric trait is required, e.g., to
create a fake trait or to carry out a replay attack. Attacks exploiting perfect knowledge
of the targeted client’s biometric trait include the so-called consensual method (in which
the targeted client voluntarily provides the required biometric trait to the attacker), and
template stealing. Conversely, exploiting a latent fingerprint is an example of limited
knowledge, since the attacker may only partially know or observe the required biometric
trait. A limited knowledge about the rest of the biometric system can also be sufficient.
In this scenario the capability of the attacker consists of manipulating data during the
verification step, whereas no influence on the enrollment/update step is assumed (in par-
ticular, she can not access the template database). Most frequently, the attack strategy
corresponding to an evasion attack consists of submitting a fake trait (spoof) to the sen-
sor (point 1), or of replaying the acquired image (point 2) into the system. In rarer

3.3. CATEGORIZATION OF BIOMETRIC ATTACK SCENARIOS 43

cases (disregarded here), the biometric system can be infected by a malware, which al-
lows the attacker to arbitrarily manipulate the functionality or the output of any system
component.

3.3.2 Poisoning

This non-trivial attack scenario has been originally defined in the context of adaptive
biometric systems in previous work [24,36], inspired by the adversarial learning framework,
and by work on poisoning learning algorithms [17,27,37,38]. The goal of poisoning attacks
can be either an integrity or availability security violation; it can be either targeted to a
specific client, or indiscriminate (see below). The adversary’s knowledge can be perfect
or limited, depending on whether each of the system’s components is known exactly to
the attacker. More precisely, the attacker may have perfect (or limited) knowledge of
each of the components discussed in Fig. 3.1, including the targeted clients’ templates,
the matching algorithm, the template update algorithm, and the decision and update
thresholds. The attacker’s capability consists of modifying the template database, either
by directly manipulating it (e.g., through malware infection), or, more realistically, by
submitting fake traits that are erroneously used to update the template gallery of a given
client. In terms of security violation, an integrity violation thus amounts to replacing a
victim’s template with an attacker’s template, or to adding an attacker’s template in the
victim’s gallery. This indeed allows the attacker to impersonate the victim without using
any further spoofing or replay attack, but directly using her own biometric trait. The
goal of an availability violation is to cause a denial of service, instead, by replacing or
compromising the majority of templates in the victim’s gallery. This will indeed deny the
victim to correctly access the system. Under this setting, the attack strategy amounts
to compromising the template gallery either by introducing an attacker’s template in
the victim’s gallery (i.e., integrity violation), or by compromising the maximum number
of victim’s templates (i.e., availability violation). If the template database can not be
compromised directly, the attacker can produce a well-crafted sequence of fake traits to
gradually drift the victim’s template gallery towards the desired set of templates, while
minimizing the number of fake traits required to complete the attack. An example of such
an attack will be given below.

3.3.3 Privacy

In this case, the goal is to retrieve confidential information (i.e., one or more templates)
about either a given set of clients (targeted attack) or about any client (indiscriminate
attack). This is typically a preliminary step before performing another kind of attack (eva-
sion or poisoning), when no simpler way to retrieve information on the victims’ templates
exists (e.g., acquiring a face image through a social network, or a latent fingerprint). To
this end, the attacker can gain knowledge from the system’s feedback, e.g., the outcome

44 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

of the verification decision (either accept or reject), or the score value 𝑠𝑐(x) (as in hill-
climbing attacks). In common settings (i.e., disregarding cases like malware infection),
the capability consists of sending a number of query images through a remote channel
and observing the available feedback; e.g., if the sensor and the matcher are remotely
operating, and interconnected through the Internet, an attacker may perform a man-in-
the-middle attack, and send replayed images through the channel. It is thus clear that
the attack strategy in this case corresponds to an hill-climbing attack.

3.4 Secure-by-Design Biometric Systems

The considered adversary model can be exploited not only to provide a different cate-
gorization of known defense mechanisms for biometric recognition systems, but also to
identify novel countermeasures among those proposed in adversarial learning, that can
help countering attacks against machine learning and pattern recognition algorithms used
in biometric systems. We discuss them below, with reference to the three aforementioned
attack scenarios.

3.4.1 Countering Evasion

In this scenario, the main attack strategies involve spoofing and replay. As reported in
Table 3.1, the pertinent defenses thus are: liveness detection, multibiometric systems with
secure score-level fusion rules, encrypted channels and timestamp / challenge-response
schemes, and physical isolation (e.g., match-on-smart-cards). Novel defense mechanisms
can also be devised, inspired by the adversarial machine learning field. In particular, to
counter evasion attacks, one can consider secure learning techniques. They consist of
modifying existing learning algorithms, and developing novel ones, that explicitly take
into account a specific kind of adversarial data manipulation. They follow the paradigm
of security by design, which advocates that a system should be designed from the ground
up to be secure. In the context of biometric systems, secure learning techniques can be
exploited to design trainable score-level fusion rules, such as those based on game theory,
or on the framework of learning with invariances [9, 32, 52, 53]. Investigating this issue
would be an interesting research direction for future work.

3.4.2 Countering Poisoning

Spoofing and replay are the main attack strategies also under this scenario and, thus,
the same defenses listed in Table 3.1 can be also exploited in this case. In addition,
other countermeasures can be considered, among those proposed in adversarial learning,
to improve the security of the training phase in the presence of poisoning, which may
occur when the system is retrained on data collected during operation [19, 54]. These

3.5. APPLICATION EXAMPLES 45

include secure learning (see above) and data sanitization. In a biometric system, the
latter consists of detecting outlying template updates that may compromise the template
gallery of a given client, e.g., by adding an impostor’s template to the targeted client’s
gallery, or by replacing some of the client’s templates. We will give a concrete example
of a novel defense based on template sanitization in the next section. We point out that
these additional defenses can be considered complementary to those listed in Table 3.1,
like liveness detection and channel encryption.

3.4.3 Preserving Privacy

Known defenses that can be exploited against attacks targeting the template database
are mainly based on template encryption schemes [33] (Table 3.1). Score quantization
has been also proposed to counter hill-climbing attacks, but it has already been shown
to be ineffective [45]. Moreover, attacks proposed in adversarial learning have already
been capable of reverse engineering the classifier by only exploiting only feedback on
its decisions [16,55]; thus, even by only looking at genuine or impostor classifications, an
attacker may be able to successfully perform an hill-climbing attack. Among the proposed
countermeasures that have not been yet considered for biometric systems, it would be
worth investigating in future work the ones based on randomization and disinformation.
They follow the paradigm of security by obscurity, aiming to improve system security
by hiding information to the attacker. They have been suggested in adversarial learning
to counter reverse-engineering attacks. This can be achieved by denying access to the
actual classifier or training data, and randomizing the classifier’s output to give imperfect
feedback to the attacker [17, 27,37,38,56].

3.5 Application Examples

We consider here two application examples that we studied by applying the framework
to biometric recognition systems, respectively related to the development of sophisticated
spoofing and poisoning attacks against face verification systems. For the simulations we
use the DIEE dataset (Appendix A).

3.5.1 Improved Face Spoofing from Multiple Faces

Let us assume we are given a face verification system that authenticates clients by match-
ing the acquired face image against the template gallery of the claimed identity (consisting
of 𝑛 images acquired during enrollment), and then thresholding the corresponding average
score. According to the architecture depicted in Fig. 3.1, we assume that our system maps
the submitted face image z ∈ 𝒵 onto a reduced vector space 𝒳 using principal component
analysis (PCA), and computes the matching score for client 𝑐 as 𝑠𝑐(x) = 1

𝑛

∑︀𝑛
𝑖=1 𝑠(x,x𝑖),

46 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

Template 1 Template 2 Template 3 Template 4 Template 5Score = 0.5247 Score = 0.4645 Score = 0.5621 Score = 0.5739 Score = 0.5054Score = 0.6284

Template(Gallery(Spoofed(Faces(
A4ack(Face(

x1 x2 x3 x̂1 x̂2 x̂3 x∗

sc x̂1() = 0.52 sc x̂2() = 0.46 sc x̂2() = 0.56 sc x
∗() = 0.63

Figure 3.3: Face spoofing from multiple images. The client’s templates {x𝑖}3𝑖=1, the
spoofed faces {x̂𝑗}3𝑗=1, and the final attack face x* (obtained solving Prob. 3.1) are shown,
along with the corresponding 𝑠𝑐 values.

where 𝑠(x,x𝑖) = exp{−‖x− x𝑖‖}, and x𝑖 is the i-th template of the claimed identity. We
further assume the attack scenario detailed below.
Adversary’s Goal. The attacker aims to impersonate a targeted client (integrity, tar-
geted attack).
Adversary’s Knowledge. She is assumed to know: (𝑖) the feature extraction algorithm,
(𝑖𝑖) the matching algorithm 𝑠, (𝑖𝑖𝑖) the fusion rule 𝑠𝑐, and (𝑖𝑣) a set of 𝑛 face images
{x̂𝑗}𝑛𝑗=1 of the targeted client, different from those in the client’s template gallery (e.g.,
potentially collected from a social network).
Adversary’s Capability. She can only submit printed photos of faces to the sensor,
during verification. Regarding the type of attack, the adversary makes a dense (ℓ2) attack.
She makes small changes in many pixel, potentially all of them, in the images.
Adversary’s Strategy. Under these assumptions, the attacker can approximate the
score 𝑠𝑐(x) computed by the targeted system for the claimed identity 𝑐 using the collected
face images of the victim, i.e., she can compute an estimate 𝑠𝑐(x) = 1

𝑛

∑︀𝑛
𝑗=1 𝑠(x, x̂𝑗).

Accordingly, the optimal attack strategy is given by:

x* = arg max
x

𝑠𝑐(x) =
1

𝑛

𝑛∑︁
𝑗=1

𝑠(x, x̂𝑗) , (3.1)

where 𝑠𝑐 is the attacker’s goal function 𝑔(𝑎, 𝜃), and x* is the attack sample that maximizes
the objective in the PCA-induced feature space. The above problem can be solved by a
simple gradient-ascent algorithm, and the resulting attack sample x* can then be projected
back onto the space of face images 𝒵 (where each feature corresponds to the gray-level
value of a pixel) by inverting the PCA-induced mapping. This is also possible if more
sophisticated matching algorithms and feature representations are used, using well-crafted
heuristics. We refer the reader to [36] for further details.

An example of this improved spoofing technique on a simple case involving 𝑛 = 3
templates is shown in Fig. 3.3, where we also report the values of 𝑠𝑐 for each of the

3.5. APPLICATION EXAMPLES 47

client’s face images {x̂𝑗}𝑛𝑗=1. It can be seen that the final attack face x* yields a higher
probability (i.e., 𝑠𝑐 value) of successfully impersonating the victim, than using any of the
available images {x̂𝑗}3𝑗=1.

3.5.2 Poisoning Biometric Systems that Learn from Examples

We report now a different application example focusing on a poisoning attack against
an adaptive face recognition system, and on the development of a corresponding defense.
Recent works ([24,36]) have shown that an attacker may exploit the system’s adaptation
mechanism to compromise the templates of a given client by presenting a well-crafted
sequence of fake faces to the camera, with the goal of denying him access to the system. At
the same time, if the attacker replaces the targeted client’s templates with her templates,
she may also impersonate the client without presenting any fake trait to the sensor.

The face verification system considered in this example, as in [24, 36], authenticates
clients based on matching the acquired face image with a stored average template, referred
to as centroid. For each client, the centroid is updated using the self-update algorithm: if
the submitted face image is similar enough to the centroid, the latter is updated incorpo-
rating the new image into the computation of the average face image. As in the previous
case, we consider a PCA-based mapping to map face images from 𝒵 onto a reduced vector
space 𝒳 . The matching score for client 𝑐 is computed here as 𝑠𝑐(x) = exp{−‖x− x𝑐‖2},
where x𝑐 is the client’s centroid. The centroid x𝑐 is initially computed as the average of
𝑛 templates and, when 𝑠𝑐(x) ≥ 𝜃𝑐, updated as x′

𝑐 = x𝑐 + 1
𝑛

(x− x𝑐), i.e., slightly drifted
towards x. Accordingly, in the PCA-based feature space, x𝑐 is updated if the acquired
image x is within an hypersphere centered on x𝑐, with radius 𝑑𝑐 dependent on the update
threshold 𝜃𝑐. The complete attack scenario is given below.
Adversary’s goal. It is that of replacing the centroid x𝑐 of a given client with an
attacker’s template x𝑎, both to deny access to client 𝑐, and to allow the attacker to
impersonate 𝑐 using her own face (i.e., a targeted attack violating both system availability
and integrity).
Adversary’s Knowledge. The attacker is assumed to know: (𝑖) the feature extraction
algorithm; (𝑖𝑖) the matching algorithm; (𝑖𝑖𝑖) the template update algorithm; and (𝑖𝑣) the
decision and self-update threshold. In the case of perfect knowledge, she also knows the
centroid x𝑐 of the targeted client 𝑐, while when limited knowledge is considered, only a
good estimate of x𝑐 is available to the attacker, e.g., a frontal face image of the victim
collected from a social network.
Adversary’s Capability. The attacker can modify the template database by presenting
fake faces at the sensor that enable template self-update. Even here, as in the improved
spoofing example, the adversary makes an 𝑒𝑙𝑙2 attack. The attack influence is thus over
the enrollment / update phase.
Attack Strategy. Under these assumptions, the shortest sequence of fake traits required
to replace the victim’s centroid x𝑐 with that of the attacker x𝑎 can be found by solving the

48 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

following optimization problem, for each sample x in the attack sequence: minx ‖x−x𝑎‖2,
subject to the update condition ‖x−x𝑐‖ ≤ 𝑑𝑐 (see Fig. 3.4-upper-left). At each iteration,
this amounts to finding the closest attack sample to x𝑎 that enables update of x𝑐. The
solution is simply given as x = x𝑐+𝑑𝑐�⃗�, where �⃗� = x𝑎−x𝑐

‖x𝑎−x𝑐‖ is the so-called attack direction.
In practice, each attack sample x is found at the intersection between the hypersphere
corresponding to the update condition, and the line connecting x𝑎 and x𝑐. As in the
previous example, the face images for the attack sequence can be obtained by projecting
the attack samples from the PCA-induced space 𝒳 onto the space of face images 𝒵. Then,
the attacker can fabricate the corresponding fake faces (e.g., by printing them on paper),
and present them in the right order to the sensor. An example of how the victim’s centroid
is gradually updated by the corresponding sequence of attack faces, under the assumption
of perfect knowledge, and for 𝑛 = 5, is given in Fig. 3.4.bottom. In Fig. 3.4-upper-right,
we show how the Genuine and False Acceptance Rate (GAR and FAR, other names to
call the True and False Negative Rates) vary as the attack proceeds, under perfect and
limited knowledge of the victim’s template. Note how the probability of authenticating
the attacker (without presenting any fake face) as the victim (i.e., the FAR) increases,
while the probability of correctly authenticating the victim as a genuine user (i.e., the
GAR) decreases, since the victim’s template is gradually morphed towards the attacker’s
face during the attack progress. Results for the perfect and limited knowledge attacks
are similar, despite the latter case requires more iterations (i.e., submitting more fake
faces) to compensate the lack of knowledge of the victim’s template. The exact number
of iterations required to complete both attacks can also be analytically computed [36].

3.5.2.1 Template Sanitization

In the remainder of this section, we present a novel countermeasure based on the idea of
sanitizing the template gallery (i.e., identifying anomalous template updates), inspired
by the countermeasures proposed in adversarial machine learning against poisoning at-
tacks [17,27,37,38,54].

The underlying idea is to analyze whether the sequence of the most recent 𝑘 updated
centroids x(𝑖−𝑘)

𝑐 , . . . ,x
(𝑖)
𝑐 (where 𝑖 denotes the current iteration) falls within a given region

of the feature space, called sanitization hypersphere (see Fig. 3.5.left). If the current
centroid x

(𝑖)
𝑐 falls within the sanitization hypersphere, i.e., if ‖x(𝑖)

𝑐 −x
(𝑖−𝑘)
𝑐 ‖ ≤ 𝑑𝑠, then the

center of the sanitization hypersphere is updated to the next centroid in the sequence, i.e.,
x
(𝑖−𝑘+1)
𝑐 ; otherwise, the current center of the sanitization hypersphere x

(𝑖−𝑘)
𝑐 is restored

as the current centroid. In this case, an alert may be also (or alternatively) raised to the
system administrator to report the anomalous update. The rationale of this approach is
to identity sequences of centroid updates that consistently drift the centroid towards a
given, biased direction, within a small number of iterations (as it happens in the presence
of a poisoning attack), assuming that genuine updates exhibit a different (i.e., less biased
and more random) behavior. The parameter 𝑘 and the hypersphere radius 𝑑𝑠 of the

3.5. APPLICATION EXAMPLES 49

Nov. 7th, 2012 Poisoning adaptive biometric systems - B. Biggio et al. - SPR 2012

xaxc !xc x

1

dc a

0 5 10 15
0

0.2

0.4

0.6

0.8

1

num. of iterations

GAR

FAR

attack (1) attack (3) attack (6) attack (9)

centroid (0) centroid (2) centroid (5) centroid (8) centroid (9)

attack (1) attack (5) attack (9)

centroid (0) centroid (4) centroid (5) centroid (9)

Figure 3.4: (upper-left): Poisoning attack with perfect knowledge. The circles centered
on x𝑎 represent the objective function ||x− x𝑎||, minimized by the attack point x on the
feasible domain ‖x − x𝑐‖ ≤ 𝑑𝑐. The updated centroid x′

𝑐 and the feasible domain for
the next attack iteration are also shown. (upper-right) GAR and FAR for poisoning with
perfect (solid lines) and limited (dashed lines) knowledge, at different iterations. (bottom)
Attack samples and victim’s centroids for poisoning with perfect knowledge, at different
iterations.

proposed approach should thus be chosen such that 𝑑𝑠 ≤ 𝑘 𝑑𝑐
𝑛

, otherwise poisoning attacks
will not be detected, as they drift the centroid of an amount equal to 𝑑𝑐

𝑛
at each iteration.

In Fig. 3.5.right, we report an example using the same attacker and victim pair considered
in the previous case. Initially, we simulate a number of random accesses to the system,
including genuine and impostor attempts, which do not significantly affect GAR and
FAR. Then, the attacker launches a poisoning attack, and, as in the previous case, the
GAR decreases and the FAR increases. If template sanitization is not implemented, the
attack succeeds, and system integrity and availability are compromised. Conversely, in
the presence of template sanitization, the attack is detected after four iterations, and
a previous centroid is restored. This avoids the attack to succeed, preserving normal
system operation and security. Although this simple countermeasure can be misled by a
poisoning attack in which the attack samples are closer to the current centroid (instead of
lying exactly at the boundary of the feasible domain), this would require the attacker to
perform a significantly higher number of iterations to complete the attack. We can thus
conclude that the proposed sanitization technique helps improving system security.

50 CHAPTER 3. ADVERSARIAL BIOMETRIC RECOGNITION

xa

2

dc

xc
(i−k)

ds

xc
(i)

xc
(i)

0

0.2

0.4

0.6

0.8

1

g i i g g p p p p p p p p p p p p p g g

GAR
FAR

Figure 3.5: (Left) Template sanitization. If the current centroid x
(𝑖)
𝑐 falls outside the

sanitization hypersphere (dark grey area), as for the poisoning attack sequence (solid line),
the centroid x

(𝑖−𝑘)
𝑐 is restored; otherwise, as for the hypothesized genuine update sequence

(dashed line), the center of the sanitization hypersphere is updated to x
(𝑖−𝑘+1)
𝑐 (red circled

point). (Right) GAR and FAR values in the presence (solid lines) and in the absence
(dashed lines) of template sanitization, after different centroid updates, including genuine
(‘g’) and impostor (‘i’) attempts, and poisoning attacks (‘p’) with perfect knowledge.

Chapter 4

Secure Learning against Evasion
Attacks

As we have seen previously, learning algorithms have been originally designed by assuming
that training and testing samples are drawn from the same distribution. Such assumption
is clearly violated when attackers manipulate the input data either at training or testing
time. From a very general theoretical viewpoint, this means that the class-conditional
distribution of malicious samples observed at test time is different from that observed at
training time. In the case of evasion attacks, only malicious data at test time is affected.
Thus, by denoting the input samples with x ∈ 𝒳 (in a continuous feature space), and
their class labels with 𝑦 ∈ {−1,+1} (respectively, for legitimate and malicious samples),
this can be formalized as:

𝑝ts(x
′|𝑦 = +1) =

∫︁
x∈𝒳

𝑝(x′|x, 𝑦 = +1)𝑝tr(x|𝑦 = +1)𝑑x ,

where x′ = 𝑎(x), being 𝑎 : 𝒳 ↦→ 𝒳 a manipulation function representing the attack
strategy, i.e., defining how the attacker manipulates the initial malicious data x as x′ to
evade detection at test time. The term 𝑝(x′|x, 𝑦 = +1) characterizes the probability of
having the initial malicious sample x modified as x′, and 𝑝ts and 𝑝tr respectively denote
the testing and training class-conditional distributions of the malicious samples. This
straightforward model, albeit being not directly useful to design secure learning algorithms
(see, e.g., [57]), clarifies the connection between the manipulation function 𝑎 and the
adversarial drift that it induces in the probability distribution of malicious samples. To
account for this potential, adversarial drift between training and testing distributions,
adversary-aware learning algorithms have been developed, based on secure optimization,
and probabilistic and game-theoretical models (see, e.g., [32,52,53]). The underlying idea
of these algorithms is that of incorporating knowledge of the potential adversarial data
manipulations into the learning phase, either by simulating such manipulations at training
time, through the definition of suitable manipulation functions 𝑎(x), or by modeling

51

52 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

the distribution drift directly (in generative models). In practice, both options reflect a
similar effect, i.e., an adversarial shift of the malicious distribution, as witnessed by the
aforementioned probability model. The only difference is the level at which assumptions
on the attacker model are made, i.e., either at the level of each malicious sample, or at the
higher level of their global probability distribution. Clearly, making assumptions at the
sample level allows one to more finely define the potential adversarial data manipulations,
which can be advantageous when application-specific constraints on data manipulation can
be accounted for. On the other hand, secure learning techniques based on this approach
tends to exhibit a much higher training complexity, especially in terms of computational
time and space. For example, game-theoretical approaches (as that advocated in [32])
require simulating the attacks during training, and iteratively adjust the classification
function. Another issue is that such approaches require specific assumptions to be met,
to guarantee existence of a unique equilibrium in the game. For instance, in [32] the
objective function of the attacker is required to be twice differentiable, and this is clearly
not the case for sparse attacks (since the ℓ1 distance representing the attacker’s cost to
modify data is not differentiable). This means in turn that this approach can not deal
with sparse attacks, at least in principle. The underling idea of the work in [52, 53] is
instead to consider a worst-case loss suited to sparse attacks in which features can be set
to their maximum/minimum values. In this case too, training complexity becomes higher
with respect to the non-secure versions of the same algorithms. The huge computational
necessity, in terms of calculus and memory space, introduced by these works is one of
the main factors that hinders the adoption of these algorithms in practice, along with the
difficulty of meeting some theoretical requirements. In this chapter, we aim to overcome
these limitations by developing secure classifiers against evasion attacks that are not
computationally more demanding than their non-secure counterparts.

4.1 Solving the evasion problem
Firstly, we need to find an evasion algorithm that would be efficient and effective. De-
pending on the kind of decision function and distance metric, Problem (2.2)-(2.3) can be
casted in terms of a linear or a non-linear programming problem.1 For linear classifiers,
the global minimum can be found, either in the case of ℓ1 or ℓ2 constraints. For non-
linear 𝑔(x), the solution is typically found at a local minimum of the objective function.
Problem (2.2)-(2.3) can be solved with standard solvers in both cases, although they may
not be very efficient, as they do not exploit specific knowledge about the evasion problem
(e.g., sparsity of the solution, compact domain, etc.). We thus devise an ad-hoc solver
based on exploring a descent direction aligned with the gradient of 𝑔(x) by means of a
bisect line search. Its basic structure is given as Algorithm 1 [74]. To reduce the number

1Note that Problem (2.2)-(2.3) becomes linear only for linear classifiers and sparse evasion attacks
(using the ℓ1 distance).

4.1. SOLVING THE EVASION PROBLEM 53

Algorithm 1 Evasion Attack

Input: x: the malicious sample; x(0): the initial location of the attack sample; 𝑑max: the
maximum distance between x and x′ ; xlb, xub: the box constraint bounds (Eq. 2.3);
𝜖: a small positive constant.

Output: x′: the evasion attack sample.
1: 𝑖← 0
2: repeat
3: 𝑖← 𝑖 + 1
4: 𝑡′ = arg min𝑡 𝑔(x(𝑖−1) − 𝑡∇𝑔(x(𝑖−1))) (line search)
5: x(𝑖) ← x(𝑖−1) − 𝑡′∇𝑔(x(𝑖−1))
6: if constraints in Eq. (2.3) are violated then
7: Project x(𝑖) onto the feasible domain
8: end if
9: until 𝑔(x(𝑖))− 𝑔(x(𝑖−1)) > 𝜖

10: return x(𝑖)

of iterations, and ensure quick convergence, we explore one feature at a time in the case of
ℓ1 attacks (starting from the more promising feature, i.e., the one exhibiting the highest
gradient variation), as the solution will be sparse. Conversely, we simultaneously explore
all the features in the case of ℓ2 attacks, as the solution will be likely to modify all feature
values. We also minimize the number of gradient and function evaluations to further
speed up our evasion algorithm; e.g., we only re-compute the gradient of 𝑔(x) when no
better point is found on the descent direction under exploration. Finally, in the case of
non-linear 𝑔(x), we exploit multiple initializations for x(0) to mitigate issues related to the
presence of multiple local minima. Usually, the data have to be normalized, in order to
lead on a common scale the values measured on different feature. Our algorithm allows
one to solve the optimization problem considering the radius of the distance constraint
differently normalized for each dimension. Moreover, it is possible to find the solution in
the presence of a discrete feature space: the evading sample obtained for the continuous
case is compared with the discrete neighbourhood, to chose the one that minimizes the dis-
criminant function remaining inside the distance bound. Examples of (sparse and dense)
evasion attacks against Support Vector Machines (SVMs) and Random Forests are shown
in Fig. 4.1. As Random Forests have a non-differentiable discriminant function 𝑔(x), we
construct a differentiable approximation 𝑔(x) by learning a surrogate SVM on the same
training data used to learn the random forest, but replacing the (true) training labels with
the classification labels assigned by the Forest to such data. Then, the surrogate SVM
can be used to find a suitable descent direction, and run the evasion attack against the
random forest. Learning a surrogate (differentiable) model to solve the evasion problem
should be more computationally efficient, at least in principle.

54 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

4.2 Understanding classifier security
Observing the shape of the non-linear decision functions in Fig. 4.1 (third and fourth
plot), and the corresponding evasion samples, one may interestingly note that, in some
cases (see, e.g., the evasion sample in the third plot), to evade detection, it suffices to
create a sample that is far enough from the known malicious samples (learned by the
classifier during training), without even mimicking any legitimate sample. In some other
cases (see, e.g., the evasion sample in the fourth plot), the attacker is instead required
to mimic the characteristics exhibited by the legitimate samples, which can be a much
harder task in real-world applications. This reveals an interesting insight on the security of
non-linear classifiers, as also already pointed out in recent work [40,60], i.e., that decision
functions that better enclose the legitimate data tend to be more secure against evasion
attacks. In practice, the main vulnerability of learning algorithms relies upon the fact that,
sometimes, it is possible to evade detection by creating samples which are far enough from
the rest of the training data.2 In previous work [60], this vulnerability has been referred to
as a vulnerability of the classification algorithm. Conversely, if the classifier only allows
evasion if the attack sample is close enough to the legitimate data, and the attacker
can nevertheless construct evasion samples successfully, then the vulnerability is related
to the feature representation. In fact, if a legitimate and a malicious sample become
indistinguishable from each other in terms of their feature values, then the vulnerability
is clearly related to the choice of the feature representation.

4.3 Security and Regularization
We clarify here the connection between regularization and input data uncertainty high-
lighted by the recent findings in [63–67]. In particular, Xu et al. [63] have considered the
following secure optimization problem:

min
w,𝑏

max
u1,..,un∈𝒰

∑︀n
𝑖=1

(︀
1− 𝑦𝑖(w

⊤(x𝑖 − u𝑖) + 𝑏)
)︀
+
, (4.1)

where (𝑧)+ is equal to 𝑧 ∈ R if 𝑧 > 0 and 0 otherwise, u1, ...,un ∈ 𝒰 define a set of
bounded perturbations of the training data {x𝑖, 𝑦𝑖}n𝑖=1 ∈ Rn × {−1,+1}n, and the so-
called uncertainty set 𝒰 is defined as

𝒰 Δ
= {(u1, . . . ,un)|

∑︀n
𝑖=1 ‖u𝑖‖* ≤ 𝑐} , (4.2)

being ‖ · ‖* the dual norm of ‖ · ‖. By definition, a norm is connected to its dual by the
equation

‖x‖* = max
‖z‖≤1

z𝑇x , (4.3)

2They have been also referred to as blind spots in [55], and as adversarial examples in recent work
related to the evasion of deep learning algorithms [61,62].

4.3. SECURITY AND REGULARIZATION 55

1.5 1.0 0.50.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5 1.0 0.50.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2 1 0 1 2
2

1

0

1

2

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 4.1: Evasion attacks against different classifiers, trained on blue (legitimate) and
red (malicious) samples. A linear SVM classifier against sparse (first plot) and dense
(second plot) evasion attacks, an SVM with the RBF kernel (third plot) and a random
forest (fourth plot) against sparse evasion attacks. The initial malicious point x is found
at the center of the distance constraint, while the evasion sample x⋆ is denoted with a
green star. For each classifier, 𝑔(x) values are shown in colors, and the black line denotes
the decision boundary.

56 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

where x and z are two vectors. More generally, Hölders’s inequality shows that the dual
of the ℓ𝑝 norm is the ℓ𝑞 norm, where q satisfies 1

𝑝
+ 1

𝑞
= 1.

Typical examples of uncertainty sets according to the above definition include ℓ1 and
ℓ2 balls [63, 64].

Problem (4.1) amounts to minimizing the hinge loss for a two-class classification prob-
lem under worst-case, bounded perturbations of the training samples x𝑖, i.e., a typical
setting in secure optimization [63–67]. Under some mild assumptions easily verified in
practice (including non-separability of the training data), the authors have shown that
the above problem is equivalent to the following non-secure, regularized optimization
problem (cf. Th. 3 in [63]):

minw,𝑏 𝑐‖w‖+
∑︀n

𝑖=1

(︀
1− 𝑦𝑖(w

⊤x𝑖 + 𝑏)
)︀
+
. (4.4)

This means that, if the ℓ2 norm is chosen as the dual norm characterizing the uncertainty
set 𝒰 , then w is regularized with the ℓ2 norm, and the above problem is equivalent to
a standard SVM. If input data uncertainty is modelled with the ℓ1 norm, instead, the
optimal regularizer would be the ℓ∞ regularizer, and vice versa.3

Uncertainty sets and cost-sensitive learning The work by Xu et al. [63] only con-
siders uncertainty sets of the same size, i.e., the same perturbation is applied on both the
legitimate and the malicious class. However, it is clear that, under evasion, the malicious
samples are potentially affected by a stronger worst-case perturbation than legitimate
data. Interestingly, in their recent work, Katsumata and Takeda [66] have shown that dif-
ferent uncertainty sets can be accounted for on each sample (and thus, on each class too),
by simply modifying the cost of each classification error. This means that it suffices to
penalize differently errors in different classes to consider uncertainty sets of different sizes.
In the SVM learning algorithm, this can be simply accounted for by setting a different 𝐶
value for legitimate and malicious samples. This in turn suggests that classifier security
can be improved by unbalancing the costs of classification errors in different classes.
Kernelization. To conclude, note that these findings mostly hold for linear classifiers.
In the case of non-linear (kernelized) classifiers, the authors have essentially repeated
their analysis but considering perturbations directly in the feature space induced by the
kernel function, instead of retaining them in the input space. Although this may be
useful to understand how to regularize non-linear functions, the resulting perturbation
in the feature/kernel space depends on the kernel mapping itself, and it is not trivial
to understand how it could be modified by the kernel function. For instance, if one
considers an ℓ1 perturbation in input space, and an RBF kernel 𝑘(x, z) = exp(−𝛾‖x−z‖22),
the corresponding perturbation in the feature/kernel space is likely to become dense for
sufficiently small 𝛾 values. Intuitively, this can be explained by the fact that a sparse
modification on an input sample x tends to affect almost all kernel values computed

3Note that the ℓ1 norm is the dual norm of the ℓ∞ norm, and vice versa, while the ℓ2 norm is the dual
norm of itself.

4.4. CLASSIFIER SECURITY 57

between x and the rest of the training data. This analysis is thus not very helpful in
the case of evasion attacks, as the corresponding perturbations are clearly applied in the
input space. As we will see in the next section, in fact, for non-linear classifiers it is not
the choice of the regularization term that plays a crucial role for improving security, but
rather the selection of a proper kernel function.

4.4 Classifier Security

We discuss here different strategies we have proposed in [73,74,76], that can be exploited
to improve security of linear and non-linear classifiers. For linear and non-linear differ-
entiable classifiers, our rationale is to show that the maximum variation of a classifier’s
discriminant function under an evasion attack can be bounded, highlighting the factors
that may harm classifier security, and discussing how to limit their impact. This will
give us a set of guidelines to help designing more secure learning algorithms against eva-
sion. It is also worth remarking that, very interestingly, some of the results arising from
our analysis corroborate the findings discussed in the previous section for linear classi-
fiers. Differently, in case of non-differentiable discriminant functions, we can not apply
the aforementioned considerations. So, we present a solution that follows the approach
highlighted in Sect.4.2: the closure of the benign region in the feature space.

4.4.1 Linear Classifiers

Works in the adversarial machine learning literature have already investigated the security
of linear classifiers to evasion attacks [10,68], suggesting the use of more evenly-distributed
feature weights as a mean to improve their security. Such a solution is however based
on heuristic criteria, and a clear understanding of the conditions under which it can be
effective, or even optimal, is still lacking. In our works we have given a clearer explanation
of this heuristic criteria and we have provided a theoretically-sound approach to devise
secure linear classifiers. We start by analysing the worst-case variation of the discriminant
function of a linear classifier under evasion. The discriminant function of a linear classifier
is simply given as 𝑔(x) = w⊤x + 𝑏. Assuming that x is an initial malicious sample, and
x′ the corresponding manipulated evasion sample, one yields:

∆𝑔 = 𝑔(x)− 𝑔(x′) = w⊤(x− x′) . (4.5)

Note that, from the attacker’s perspective, this variation has to be maximized to in-
crease chances of successfully evade the targeted classifier, as the attacker’s strategy in
Problem (2.2)-(2.3) aims to minimize 𝑔(x′).

58 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

5 0 5

5

0

5
SVM

5 0 5

5

0

5
I-SVM

5 0 5

5

0

5
SVM
c-SVM

5 0 5

5

0

5
I-SVM
cI-SVM

Figure 4.2: Decision boundaries for SVM (first plot), I-SVM (second plot), and their
cost-sensitive versions, C-SVM (third plot) and cI-SVM (fourth plot). In the first and the
second plot, we also report ℓ2 and ℓ1 balls over the margin support vectors, to visually
clarify why the orientation of the decision hyperplane changes.

4.4.1.1 Dense Attacks

Under dense evasion attacks, instead, the worst-case increase of ∆𝑔 corresponds to a linear
shift of x towards the decision boundary (along the opposite direction to the hyperplane
normal w), i.e., x′ = x− ‖x− x′‖2 w

‖w‖2 (see Fig. 4.1, second plot), which implies that:

∆𝑔 ≤ w⊤w

‖w‖2
× ‖x− x′‖2 = ‖w‖2 × ‖x− x′‖2 . (4.6)

4.4. CLASSIFIER SECURITY 59

4.4.1.2 Sparse Attacks

Under sparse evasion attacks, it is not difficult to see that ∆𝑔 (from Eq. 4.5) is upper
bounded by the following quantity:

∆𝑔 ≤ ‖w‖∞ × ‖x− x′‖1 , (4.7)

where we remind the reader that ‖w‖∞ = max𝑗=1,...,d |𝑤𝑗|. In fact, for sparse attacks,
the solution x′ is found by modifying the features that have been assigned the highest
absolute weight values (see, e.g., Fig. 4.1, first plot). In the worst case, the maximum ∆𝑔
is attained by modifying the most relevant feature of a quantity equal to ‖x− x′‖1.

The analysis of the worst-case ∆𝑔 values for linear classifiers highlights two interesting
facts. The former is that the feature values should be bounded, to bound the maximum
variation of the relevant features. This is normally not a problem, if feature normalization
is used, as normalization techniques often map the input samples onto a compact domain.
The latter fact is that, under sparse attacks, one should bound the infinity-norm of w,
while under dense attacks, it is better to penalize its ℓ2 norm. This means that it is better
to use ℓ∞ and ℓ2 regularization respectively against sparse and dense evasion attacks. This
novel result in the context of adversarial learning also confirms the findings by Xu et al. [63]
related to the relationship between security and regularization of learning algorithms.

4.4.1.3 Countering Dense Attacks

Based on our previous discussion, and on the findings in [63], one should consider ℓ2 regu-
larization to counter ℓ2 attacks. Furthermore, as suggested in [66], also using unbalanced
classification costs may improve classifier security.
SVM. Accordingly, the SVM learning algorithm, with different values of 𝐶 for each class,
should guarantee a higher level of security against dense evasion attacks. It finds w and
𝑏 by solving the following quadratic programming problem:

minw,𝑏
1
2
‖w‖22 +

∑︀n
𝑖=1 𝑐𝑖 (1− 𝑦𝑖𝑔(x𝑖))+ , (4.8)

where 𝑐𝑖 = 𝐶+ (𝑐𝑖 = 𝐶−) for malicious (legitimate) data.

4.4.1.4 Countering Sparse Attacks

For sparse attacks, our analysis, as that in [63,66], suggests the use of ℓ∞ regularization,
potentially with unbalanced costs.
Infinity-norm SVM (I-SVM). We thus consider the SVM formulation, but changing
the regularization term:

minw,𝑏 ‖w‖∞ +
∑︀n

𝑖=1 𝑐𝑖 (1− 𝑦𝑖𝑔(x𝑖))+ , (4.9)

60 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

where the 𝑐𝑖’s are set as in the SVM case. Differently from the SVM learning problem,
this one can be solved using a simpler linear programming approach.
Remark I. Examples of decision boundaries for the considered classifiers are shown in
Fig. 4.3. Note that the effect of unbalanced classification costs tends to shift the decision
boundary farther from the malicious class. Despite this may yield higher security, it
may increase the fraction of misclassified legitimate samples (i.e., the false positive rate).
Therefore, its effectiveness as a valid defence strategy needs to be empirically assessed in
detail, especially in those applications where keeping the false positive rate low is crucial.
Remark II. Another interesting observation is that the decision hyperplane of the I-
SVM tends to yield more evenly-distributed weight values, i.e., weights that are all equal
in absolute value. This is clear from Fig. 4.3, as the hyperplane normal tends to align
with a bisect line, i.e., w u (1, 1). This is an important property for the security of
linear classifiers, empirically validated in previous work [10, 68]. However, based on the
interpretation of security and regularization in [63], and on our analysis, we have provided
more theoretically-sound explanations behind the meaning of “evenly-distributed weights”,
and on how to enforce this behaviour with a proper regularizer (instead of exploiting
heuristic techniques).

4.4.1.5 Security and Sparsity

There are some settings where the previous considerations are not applicable. In [73] we
investigated on classifiers used for mobile and embedded systems; these applications usu-
ally demand for strict constraints on storage, processing time and energy consumption.
So, the linear classifiers are the preferred choice as they provide easier-to-interpret deci-
sions (with respect to non-linear classification methods). For instance, the widely-used
SpamAssassin anti-spam filter exploits a linear classifier.4 In this case, in presence of
an ℓ1-attack the I-SVM is unusable; a classifier with non-zero weight for each dimension
of the feature space, with the increasing of the number of features used to represent the
samples, requires a lot of memory and big computational requests to analyse each sample,
and this conflicts with the application constraints. So, in this scenario, sparse weights are
more desirable than evenly-distributed ones. For this reason we propose a novel octagonal
(8gon) regularizer,5 given as a linear (convex) combination of ℓ1 and ℓ∞ regularization
(Fig.1.4):

‖w‖8gon = (1− 𝜌)‖w‖1 + 𝜌‖w‖∞ , (4.10)

where the ℓ1 pushes to a sparse solution, ℓ∞ pushes to an evenly-distribute one, and
𝜌 ∈ (0, 1) can be increased to trade this two characteristics.

4See also http://spamassassin.apache.org.
5Note that octagonal regularization has been previously proposed also in [72]. However, differently

from our work, the authors have used a pairwise version of the infinity norm, for the purpose of selecting
(correlated) groups of features.

http://spamassassin.apache.org

4.4. CLASSIFIER SECURITY 61

a) ρ = 0 b) ρ = 0.3 c) ρ = 0.5 d) ρ = 0.7 e) ρ = 1

Figure 4.3: Shape of the Octagonal regularizer unit ball for different values of 𝜌.

4.4.2 Nonlinear Kernel Machines

Let us now analyse how to bound the maximum variation of ∆𝑔 for decision functions of
the form:

𝑔(x) =
∑︀n

𝑖=1 𝛼𝑖𝑘(x,x𝑖) + 𝑏 , (4.11)

where 𝑘 : 𝒳 × 𝒳 ↦→ R is the kernel function, and x𝑖’s are the training samples. For
example, for SVMs, the 𝛼𝑖’s are not null only for the support vectors, and positive (re-
spectively, negative) for malicious (legitimate) samples. The value of ∆𝑔 in these cases is
simply given as:

∆𝑔 =
n∑︁

𝑖=1

𝛼𝑖 (𝑘(x,x𝑖)− 𝑘(x′,x𝑖)) . (4.12)

As we aim to obtain decision functions that can potentially enclose the legitimate
data (as discussed in Sect. 4.2), we focus here on kernels with an exponential form,
including the RBF and the Laplacian kernel. They are respectively given by 𝑘(x,x′) =
exp(−𝛾‖x− x′‖𝑝𝑝), with 𝑝 = 1, 2. The reason is that such kernels yield decision functions
whose values tend to decrease while getting farther from the training data, thus yielding
enclosing decision functions around one of the two classes.6 For these kernels, it is not
difficult to see that:

𝑘(x′,x𝑖) = 𝑒−𝛾‖x′−x𝑖‖𝑝𝑝 ≥ 𝑒−𝛾‖x′−x‖𝑝𝑝𝑒−𝛾‖x−x𝑖‖𝑝𝑝 , (4.13)

where we use the triangle inequality ‖(x′ − x) + (x − x𝑖)‖𝑝 ≤ ‖x′ − x‖𝑝 + ‖x − x𝑖‖𝑝 to
upper bound the ℓ𝑝 norm (valid for 𝑝 = 1, 2). Substituting the above lower bound for
𝑘(x′,x𝑖) into Eq. (4.12), you get:

∆𝑔 ≤
n∑︁

𝑖=1

𝛼𝑖𝑘(x,x𝑖)
(︁

1− 𝑒−𝛾‖x′−x‖𝑝𝑝
)︁
. (4.14)

6This has also been discussed in [69], exploiting a probabilistic model defined for open-set recognition,
where the goal is to find enclosed decision functions around known training classes, to be able to detect
novel classes at test time.

62 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

Figure 4.4: Decision boundaries, and 𝑔(x) values (in colors), for RBF-SVM (first plot),
cRBF-SVM (second plot), and 𝛾RBF-SVM (third plot). Note how the classifiers in the
second and third plot provide a better enclosing of the legitimate data.

This upper bound reveals some interesting properties about the security of nonlin-
ear kernels. First, it is clear that, if x′ = x, ∆𝑔 = 0. Instead, if ‖x′ − x‖𝑝𝑝 → ∞,
∆𝑔 =

∑︀
𝑖 𝛼𝑖𝑘(x,x𝑖) and, thus, 𝑔(x′) = 𝑏. This means that, if 𝑏 ≥ 0 and x′ is far enough

from the training data, the decision function encloses the legitimate class, and x′ is clas-
sified as malicious (and vice versa for 𝑏 < 0), confirming the class-enclosing property of
such kernels.

Kernel selection. The upper bound in Eq. (4.14) depends on ‖x′ − x‖𝑝𝑝. Since sparse
and dense evasion attacks tend to minimize the ℓ1 and the ℓ2 distance between the same
points, it should be clear that 𝑝 should be chosen accordingly. Namely, if the evasion
attack is sparse, then one should select the Laplacian kernel; otherwise, in case of dense

4.4. CLASSIFIER SECURITY 63

attacks, the RBF kernel should be preferred. The reason is that such choices will minimize
the value of ‖x′−x‖𝑝𝑝, i.e., they will enable one to map the evasion samples in a region of
the kernel space which is closer to the non-manipulated malicious samples (thus yielding
a lower variation of 𝑔, and requiring more modifications to evade detection). This is an
important observation, and it has a similar effect to the choice of the regularization term
for linear classifiers; in fact, if one knows whether a sparse or a dense attack is deemed
more likely, then a better regularizer (for linear classifiers) or kernel function (for non-
linear classifiers) can be selected.

Cost-sensitive Learning. Another non-trivial suggestion coming from Eq. (4.14) is to
set a lower value of the cost of classification for malicious samples. The reason is that
the (absolute) 𝛼𝑖 values obtained from SVM learning are bounded by the corresponding
value of the SVM parameter 𝐶. Thus, if we set a lower 𝐶 value for the malicious samples,
their 𝛼𝑖 values will decrease. This will in turn decrease the value of ∆𝑔, and thus, the
impact of evasion attacks. Similarly, one may think of increasing 𝐶 for legitimate data, to
further decrease ∆𝑔. Recall however that the balance condition in SVM learning requires∑︀n

𝑖=1 𝛼𝑖 = 0 and, thus, the final 𝛼𝑖 values will clearly depend on the data at hand (it is not
generally the case that they will be equal to the corresponding 𝐶 value). Moreover, if one
subsequently adjusts the value of 𝑏 on a validation set to meet some specific requirements
(e.g., a desired false positive rate), then it may be even convenient to unbalance costs in a
very different way. It is thus difficult to draw general conclusions from Eq. (4.14), despite
the fact that cost-sensitive learning may be useful to shape the decision boundary in a
different way, potentially improving security.

Kernel correction. Our analysis also suggests that reducing the value of 𝛾 should be
beneficial, as it yields smoother functions. Furthermore, one may also think of assign-
ing a different 𝛾 to each class, and reduce only that assigned to the malicious training
samples (as they are in turn assigned positive 𝛼𝑖 values). Despite this breaks the positive-
semidefiniteness and symmetry of the kernel function, it could improve classifier security
by reducing the maximum value of ∆𝑔. Although standard SVM learning algorithms may
not converge if the kernel function is not symmetric, we can still learn a linear SVM in the
similarity space induced by our kernel, by essentially using the kernel matrix as the set
of input features. This is a well-known technique in similarity-based classification, which
amounts to learning the SVM on the squared kernel [70, 71].

Similarly to the previous section, we consider here secure kernel machines against
dense and sparse attacks.

4.4.2.1 Countering Dense Attacks

Based on the discussion in Sect. 4.4.2, to counter ℓ2 attacks, one may train a standard
SVM with the RBF kernel (RBF-SVM), potentially using unbalanced classification costs

64 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

(cRBF-SVM). A further option could be to assign distinct values of 𝛾 for the malicious
and legitimate training samples (𝛾RBF-SVM). Examples of decision boundaries for these
classifiers are shown in Fig. 4.4.

4.4.2.2 Countering Sparse Attacks

In the case of sparse attacks, similar considerations can be made, despite the fact that
one should use a Laplacian kernel. We thus consider the following classifiers: SVM with
the Laplacian kernel (Lap-SVM), Lap-SVM with unbalanced costs (cLap-SVM), and Lap-
SVM with different 𝛾 values for each class (𝛾Lap-SVM).

4.4.3 Non-Differentiable Classifiers

For non-differentiable classifiers, as the Decision Tree and the Random Forest, the previous
considerations are not applicable. So, the only solution to improve the security of these
classifiers is to find out a method that reduces as much as possible the region in the feature
space assigned to the benign class. In a recent work [76], we have proposed a solution to
cope against mimicry attacks, in particular for the scenarios where the attacker can modify
her malicious samples only by adding features typically used in benign files, but without
the possibility to remove them, so as to avoid the impairment of the intrusive functionality
of the malware sample. It has been shown that this attack strategy is very effective
against systems that are not designed to be secure against targeted evasion attempts [40].
To tackle this issue, we exploit an approach similar to that advocated in [60], named
one-and-a-half-class (1.5C) classification. The underlying idea is to combine a two-class
classifier with a one-class classifier to detect potential, anomalous samples during testing.
In fact, most of the evasion samples constructed to evade detection by a two-class classifier
can be considered anomalous with respect to the training (benign) data, and can be thus
detected using this simple strategy. In particular, we build our 1.5C Multiple Classifier
System (1.5C-MCS) using three distinct classifiers: (i) a Random Forest classifier trained
on both benign and malicious data; (ii) a one-class SVM RBF trained only on benign
data; and (iii) another one-class SVM RBF trained on the outputs of the aforementioned
classifiers, using only benign data. In this way we can combine the very-good classification
performance of the Forest in absence of attacks and the very-good anomaly-detection of
the one-class in presence of them. The latter SVM will basically output an aggregated
score to be thresholded to make the final decision. To better understand the behaviour
of this system of classifiers, see Fig.4.11 in the next section.

4.5. APPLICATION EXAMPLES 65

4.5 Application Examples

In this section we report some experiments to support the considerations that we have
made previously in this chapter. For our simulations we use several datasets, described
in Appendix A. We point out that, concerning the MNIST dataset, we use the samples
corresponding to 8 and 9, respectively for legitimate and malicious classes, in order to
consider a binary problem.

4.5.1 Securing Linear Classifiers

In these experiments, we consider the SVM (i.e., 2-norm regularization), the I-SVM (i.e.,
infinity-norm regularization) and their version with unbalanced costs, as described in
Sect. 4.4.1.
Experimental Setup. We randomly select 500 legitimate and 500 malicious samples
from MNIST dataset, 2500 legitimate and 2500 malicious samples from the Spam dataset,
and equally subdivide them to create a training and a testing set. We optimize the reg-
ularization parameter 𝐶 (or the cost-sensitive parameters 𝐶+, 𝐶−) of each SVM through
3-fold cross-validation, maximizing a trade-off between the detection rate (i.e., the frac-
tion of correctly-classified malicious samples, also referred to as true positive rate, TP)
at 1% false positive rate (FP) in the absence of attack, and under attack, estimated by
simulating the attacks on a validation set (a subset of the training set), for different 𝑑max

values.
After classifier training, we perform sparse and dense evasion attacks on all malicious

digit testing samples, and sparse evasion attacks on all malicious spam testing samples, for
increasing values of 𝑑max. For the digit data, 𝑑max represents either the ℓ2 or ℓ1 distance
between the non-manipulated and the manipulated images, respectively, for dense and
sparse attacks. In the case of sparse attacks, this corresponds to the number of gray-level
pixel values modified by the attack. For spam filtering, it instead represents the number
of modified words in each spam. We evaluate the corresponding performance in terms
of TP at FP=1%, against an increasing value of 𝑑max (recall that the performance in
the absence of attack corresponds to 𝑑max = 0). We repeat this procedure five times,
and report the average results on the original and modified test data. The corresponding
(averaged) curves are called security evaluation curves [37, 40].
Experimental Results. Results are reported in Fig. 4.5. The reported security eval-
uation curves show that the main improvement in classifier security is due to the choice
of a proper regularizer. In fact, I-SVM is much more secure than SVM against sparse
attacks, and vice versa for dense attacks, confirming the discussion in Sect. 4.4.1. The use
of different classification costs only introduces a slight improvement in terms of security,
as it is difficult to achieve an improved level of security while retaining FP=1%. Images
of manipulated digits under dense and sparse evasion attacks are reported in Fig. 4.6.

66 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1
Handwritten digits (sparse attack)

T
P

 a
t

F
P

=
1

%

d
 max

SVM

cSVM

I−SVM

cI−SVM

0 200 400 600
0

0.2

0.4

0.6

0.8

1
Handwritten digits (dense attack)

T
P

 a
t

F
P

=
1

%

d
 max

SVM

cSVM

I−SVM

cI−SVM

0 5 10 15
0

0.2

0.4

0.6

0.8

1
Spam filtering (sparse attack)

T
P

 a
t

F
P

=
1

%

d
 max

SVM

cSVM

I−SVM

cI−SVM

Figure 4.5: Security evaluation curves (TP at FP=1% vs 𝑑max) for the 9-vs-8 digit clas-
sification task against dense (first plot) and sparse (second plot) evasion attacks, and for
the spam filtering data against sparse evasion attacks (third plot).

4.5.2 Securing Linear Classifiers with Limited Complexity

This setting refers to a situation in which the system has strict constraints in terms of
computational complexity, as discussed in Chap.4.4.1.5.

Firstly, we consider dense and sparse attacks in the context of handwritten digit recog-
nition, using the MNIST dataset, to visually demonstrate their blurring and salt-and-
pepper effect on images. Then, we consider two real-world application examples includ-
ing spam and PDF malware detection, using Spam and Lux0r datasets, investigating the
behaviour of different regularization terms against (sparse) evasion attacks. As in [77],
we select a subset of 100 features from the training data, by retaining those exhibiting
higher values in malicious data, such that mimicking legitimate samples becomes more
difficult. We consider different versions of the SVM classifier obtained using the different
regularizers introduced in Sect.1.1.4 (2-norm, infinity-norm, 1-norm and elastic-net) and
in Sect.4.4.1.5 (8-gon), shown in Fig. 1.4. We call them SVM, inf-SVM, 1-Norm SVM,
Elastic-Net SVM and Octagonal SVM, respectively.

Sparsity and Security Measures. We evaluate the degree of sparsity 𝑆 of a given

4.5. APPLICATION EXAMPLES 67

original sample

5 10 15 20 25

5

10

15

20

25

SVM g(x)= −0.216

5 10 15 20 25

5

10

15

20

25

cSVM g(x)= −0.158

5 10 15 20 25

5

10

15

20

25

I−SVM g(x)= 0.112

5 10 15 20 25

5

10

15

20

25

cI−SVM g(x)= 0.148

5 10 15 20 25

5

10

15

20

25

original sample

5 10 15 20 25

5

10

15

20

25

SVM g(x)= 0.213

5 10 15 20 25

5

10

15

20

25

cSVM g(x)= 0.242

5 10 15 20 25

5

10

15

20

25

I−SVM g(x)= −0.163

5 10 15 20 25

5

10

15

20

25

cI−SVM g(x)= −0.018

5 10 15 20 25

5

10

15

20

25

Figure 4.6: Original and manipulated handwritten digits at 𝑑max = 3000 by sparse attacks
(top row), and at 𝑑max = 250 by dense attacks (bottom row), against SVM (second
column), c-SVM (third column), I-SVM (fourth column), and cI-SVM (fifth column).
Values of 𝑔(x) are also reported for each digit and classifier, confirming that sparse attacks
are less effective against I-SVM and cI-SVM, and that dense attacks are less effective
against SVM and cSVM. Note also how the blurring effect induced by dense attacks
is more difficult to spot for humans than the salt-and-pepper noise induced by sparse
attacks.

linear classifier as the fraction of its weights that are equal to zero:

𝑆 = 1
d
|{𝑤𝑗|𝑤𝑗 = 0, 𝑗 = 1, . . . , d}| , (4.15)

being | · | the cardinality of the set of null weights.
To evaluate security of linear classifiers, we define a measure 𝐸 of weight evenness,

similarly to [10,68], based on the ratio of the ℓ1 and ℓ∞ norm:

𝐸 =
‖w‖1
d‖w‖∞

, (4.16)

where dividing by the number of features d ensures that 𝐸 ∈
[︀
1
d
, 1
]︀
, with higher values

denoting more evenly-distributed feature weights. In particular, if only a weight is not
zero, then 𝐸 = 1

d
; conversely, when all weights are equal to the maximum (in absolute

value), 𝐸 = 1.
Experimental Setup. We randomly select 500 legitimate and 500 malicious samples
from each dataset, and equally subdivide them to create a training and a test set. We
optimize the regularization parameter 𝐶 of each SVM (along with 𝜆 and 𝜌 for the Elastic-
net and Octagonal SVMs, respectively) through 5-fold cross-validation, maximizing the

68 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
PDF Malware Detection

A
U

C
1
0
%

d
 max

SVM (0, 47)

∞−norm (0, 100)

1−norm (91, 2)

el−net (55, 13)

8gon (69, 29)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Spam Filtering

A
U

C
1
0
%

d
 max

SVM (0, 37)

∞−norm (4, 96)

1−norm (86, 4)

el−net (67, 6)

8gon (12, 88)

Figure 4.7: Classifier performance under attack for PDF malware and spam data, mea-
sured in terms of AUC10% against an increasing number 𝑑max of modified features. For
each classifier, we also report (𝑆,𝐸) percentage values (Eqs. 4.15-4.16) in the legend.

following objective on the training data:

AUC + 𝛼𝐸 + 𝛽𝑆 (4.17)

where AUC is the area under the ROC curve, and 𝛼 and 𝛽 are parameters defining the
trade-off between security and sparsity. We set 𝛼 = 𝛽 = 0.1 for the PDF and digit data,
and 𝛼 = 0.2 and 𝛽 = 0.1 for the spam data, to promote more secure solutions in the latter
case. These parameters allow us to accept a marginal decrease in classifier security only
if it corresponds to much sparser feature weights. After classifier training, we perform
evasion attacks on all malicious test samples, and evaluate the corresponding performance
as a function of the number of features modified by the attacker. We repeat this procedure
five times, and report the average results on the original and modified test data.

Experimental Results. We consider first PDF malware and spam detection. In these
applications, as mentioned before, only sparse evasion attacks make sense, as the attacker
aims to minimize the number of modified features. In Fig. 4.7, we report the AUC at
10% false positive rate for the considered classifiers, against an increasing number of
words/keywords changed by the attacker. This experiment shows that the most secure
classifier under sparse evasion attacks is the Infinity-norm SVM, as expected, given that
its regularizer corresponds to the dual norm of the attacker’s cost/distance function.
Notably, the Octagonal SVM yields reasonable security levels while achieving much sparser
solutions, as expected. This experiment really clarifies how much the choice of a proper
regularizer can be crucial in real-world adversarial applications.

By looking at the values reported in Fig. 4.7, it may seem that the security measure 𝐸
does not properly characterize classifier security under attack; e.g., note how Octagonal
SVM exhibits lower values of 𝐸 despite being more secure than SVM on the PDF data.
The underlying reason is that the attack implemented on the PDF data only considers
feature increments, while 𝐸 generically considers any kind of manipulation. Accordingly,

4.5. APPLICATION EXAMPLES 69

Initial digit

5 10 15 20 25

5

10

15

20

25

SVM g(x)= −0.19

5 10 15 20 25

5

10

15

20

25

∞−norm g(x)= 1.1

5 10 15 20 25

5

10

15

20

25

1−norm g(x)= −4.2

5 10 15 20 25

5

10

15

20

25

el−net g(x)= −0.68

5 10 15 20 25

5

10

15

20

25

8gon g(x)= 0.032

5 10 15 20 25

5

10

15

20

25

SVM g(x)= 0.24

5 10 15 20 25

5

10

15

20

25

∞−norm g(x)= −0.84

5 10 15 20 25

5

10

15

20

25

1−norm g(x)= −0.083

5 10 15 20 25

5

10

15

20

25

el−net g(x)= 1.8

5 10 15 20 25

5

10

15

20

25

8gon g(x)= −0.11

5 10 15 20 25

5

10

15

20

25

Figure 4.8: Initial digit “9” and its versions modified to be misclassified as “8”. Each column
corresponds to a different classifier (from left to right): SVM, Infinity-norm SVM, 1-norm
SVM, Elastic-net SVM, Octagonal SVM. Top row : sparse attacks (ℓ1), with 𝑑max = 2000.
Bottom row : dense attacks (ℓ2), with 𝑑max = 250. Values of 𝑔(x) < 0 denote a successful
classifier evasion (i.e., more vulnerable classifiers).

one should define alternative security measures depending on specific kinds of data ma-
nipulation. However, the security measure 𝐸 allows us to properly tune the trade-off
between security and sparsity also in this case and, thus, this issue may be considered
negligible.

Finally, to visually demonstrate the effect of sparse and dense evasion attacks, we
report some results on the MNIST handwritten digits. In Fig. 4.8, we show the “9” digit
image modified by the attacker to have it misclassified by the classifier as an “8”. Note
how dense attacks are more effective, as they only produce a slightly-blurred effect on the
image, while sparse attacks create more evident visual artefacts. This simple example also
confirms that Infinity-norm and Octagonal SVM are more secure against sparse attacks,
while SVM and Elastic-net SVM are more secure against dense attacks.

4.5.3 Securing Kernel Machines

For nonlinear differentiable classifiers, we consider an adversarial application example
involving the detection of malware in PDF files (Lux0r dataset). We apply the same
feature selection explained in the setting of the previous example.
Experimental Setup. We consider the classifiers secure to sparse evasion attacks de-
scribed in Sect. 4.4.2, namely, Lap-SVM, cLap-SVM, and 𝛾Lap-SVM. We randomly split
the dataset into training and testing sets of 5,000 samples each, and optimize the classi-
fiers’ parameters as done in the previous experimental setup.

To set the system, we simulate attacks starting from a subset of the training set, and

70 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

0 20 40 60 80 100
dmax

0.0

0.2

0.4

0.6

0.8

1.0

TP
 a

t F
P=

1%

Lap-SVM
cLap-SVM
g-Lap-SVM

PDF Malware Detection (Sparse Attack)

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1
Handwritten digits (sparse attack)

T
P

 a
t
F

P
=

1
%

d
 max

SVM

cSVM

I−SVM

cI−SVM

Figure 4.9: Security evaluation curves (TP at FP=1% vs 𝑑max) for PDF malware detection
against sparse evasion attacks.

we chose the parameters that allow the best trade-off between the accuracy pre and post
attacks. However, this mechanism is computational demanding, so we hold off on finding
a better solution to next works.
Experimental Results. The results averaged over five repetitions are reported in
Fig. 4.9. It is easy to appreciate how the secure variants of the Lap-SVM algorithms
outperform the baseline algorithm. Another conclusion, that we can see from these re-
sults, is that the unbalancing of the costs on the error classification is preferable respect
to the unbalancing of the 𝛾 values for each class.

4.5.4 Securing Random Forests

In this experiment, we tested the resilience of the proposed approach against the mimicry
attacks, described previously, for Lux0r and SWF datasets.
Experimental Setup. For each dataset, we randomly split the data in a training and
a test set, respectively consisting of 70% and 30% of the total number of samples (Lux0r
contains 17826 samples, SWF 6776). The feature sets of the two datasets, consisting
respectively of 3272 and 2587 elements, are reduced through feature selection, to ob-
tain a more compact feature set and facilitate the training process of our classifiers, by
tackling the so-called curse of dimensionality [1]. In particular, we exploit a feature selec-
tion criterion, slightly different from [77], based on information gain, and select the first
100 features with the highest occurrence score 𝑆 = |𝑝(𝑥𝑖|𝑀)− 𝑝(𝑥𝑖|𝐵)|, being 𝑥𝑖 the 𝑖-th
feature value, and 𝑀 and 𝐵 the sets of malicious and benign samples [1]. The selected fea-
tures include functions, attributes and classes that are often used by malware to perform
their actions. For example, selected features among Flash files are flash.events.Event,
flash.utils.ByteArray, Math and other classes that are often used to manipulate mem-
ory to perform attacks. With respect to JavaScript, selected features include, among

4.5. APPLICATION EXAMPLES 71

others, app.ViewerVersion, app.[’eval’], app.PlugIns. Such features are often used
to obfuscate code. We used Random Forest and SVM RBF classifiers, as described in
Sect.4.4.3, and we optimize the parameters of each classifier through a 5-fold cross val-
idation, maximizing the accuracy performed on the training set. Finally, the malicious
files of the test set were modified according to the mimicry strategy. It is worth not-
ing that we are not building the real sample corresponding to the manipulated malicious
file, but we are only simulating the effect of the attack at the feature level, i.e., we are
simulating changes in the feature values of each malicious sample that can be practically
implemented also to build a real malware sample. In particular, we only consider adding
API calls from benign samples. As mentioned in Sect.4.4.3, removing API calls from a
malicious sample may compromise the intrusive functionality of the embedded exploita-
tion code. This process was repeated five times, to avoid biases due to the quality of a
specific training-test split. For each split, we compare the classification performance, in
terms of ROC curve, of the Random Forest, trained on the training set with all of the
feature, with another Forest and the 1.5C-MCS proposed, both trained on the dataset
with feature selection.

Then, we evaluate the security of the previous classifiers against mimicry attacks,
showing their detection rate, at a given false positive rate, for each classifier (for JavaScript,
we set 𝐹𝑃 = 0.2%, whilst for ActionScript we set 𝐹𝑃 = 1%).
Experimental Result. In Fig.4.10 we report the results for the standard performance
of the classifiers. Notably, there are clear differences between the results attained on
JavaScript and ActionScript. In particular, although the results are very good for both
languages, classifying ActionScript files is significantly more difficult than classifying
JavaScript files. The reason is that benign and malicious ActionScript files are more
similar, in terms of API calls, than their JavaScript counterparts. Selecting features
allows one to attain better performances with Random Forests for Action-Script codes.
The 1.5C-MCS exhibits essentially the same performance of the best Random Forest
classifier. This was somehow expected, as the one-class component has been designed
specifically to detect targeted, anomalous attacks that significantly deviate from benign
data.

Fig.4.12 shows how the performances of the considered classifiers decrease under
mimicry attacks.

The first thing to observe is that the attack is tremendously effective against the
ActionScript dataset. On the JavaScript dataset the effect is lower, but it can be
increased by raising up the amount of added samples (up to 100, see [77]). Random
Forests classifiers are considerably vulnerable to this attack, while the 1.5C-MCS remains
significantly secure. The underlying reason is that, in the latter case, the one-class SVM is
able to correctly spot the anomalous behaviour of the attack samples with respect to the
rest of the training data used to learn the classifier. To better explain this phenomenon,
in Fig. 4.11 we report a scatter plot that depicts benign (blue points), malicious (red

72 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

0 0.002 0.004 0.006 0.008 0.01
0.6

0.7

0.8

0.9

1

T
P

FP

RF (no sel.)

RF

1.5C−MCS

(a) Performances on JavaScript

0 0.005 0.01 0.015 0.02
0.6

0.7

0.8

0.9

1

T
P

FP

RF (no sel.)

RF

1.5C−MCS

(b) Performance on ActionScript

Figure 4.10: ROC curves for PDF files embedding JavaScript (left) and for SWF files
embedding ActionScript (right). These curves report the results for Random Forests
(either by using all the features or the 100 most discriminant ones, and for the 1.5C-MCS.

.

points) and attack (green points) data in the space characterized by the outputs of the
two combined classifiers. In addition, the decision function of the 1.5C-MCS is also shown.
Differently to what happens with SVM RBF and stand-alone Random Forest, the circular
shape of the 1.5C-MCS encloses all the benign samples, so that malicious and attack
samples (which are located in a different position compared to standard malicious samples
- see the green points) are considered anomalous. Notably, while the scores assigned to
the attack samples by the Random Forest classifier are closer to those assigned by the
same classifier to the benign data (, they would evade detection by this classifier), the
one-class SVM is able to well-separate them from the rest of the data. This also applies to
the 1.5C-MCS, which is able to correctly assign a high score value to the attack samples,
and, therefore, to successfully detect them.

4.5. APPLICATION EXAMPLES 73

0.0 0.2 0.4 0.6 0.8 1.0
Random Forest

0.0

0.2

0.4

0.6

0.8

1.0

1C
 (S

VM
-R

BF
)

Benign
Malicious
Attack

0.299
0.063
0.426
0.789
1.152
1.514
1.877
2.240
2.603
2.965
3.328
3.691
4.054
4.416
4.779
5.142
5.505
5.867
6.230
6.593

Figure 4.11: The decision function of our 1.5C-MCS (shown in colors) in the bi-
dimensional space spanned by the outputs of the combined classifiers. The decision
boundary is highlighted with a solid black line, while blue and red points respectively
represent benign and malicious files. Malicious files manipulated with the mimicry attack
strategy are reported as green points.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

D
e

te
c
ti
o

n
 R

a
te

 (
a

t
F

P
=

0
.2

%
)

Number of Added Benign

RF (no sel.)

RF

1.5C−MCS

(a) Performances on JavaScript (fp=0.2%)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

D
e

te
c
ti
o

n
 R

a
te

 (
a

t
F

P
=

1
%

)

Number of Added Benign

RF (no sel.)

RF

1.5C−MCS

(b) Performances on ActionScript
(fp=1%)

Figure 4.12: Detection rate of our classifiers against mimicry attacks in which an in-
creasing number of benign samples is added to each malware sample, for JavaScript and
ActionScript files.

74 CHAPTER 4. SECURE LEARNING AGAINST EVASION ATTACKS

Chapter 5

Conclusions

In recent years, machine learning has been widely used in security sensitive applications.
Due to their intrinsic adversarial nature, these scenarios differ from the classical machine
learning settings. They are characterized by the presence of intelligent adversaries who
can deliberately attack the classifier by carefully manipulating malicious data to subvert
the system normal operation. It is so clear the need to analyse this problem and find out
countermeasures, in order to make the attacks ineffective, or at list to limit their influence.

In this work, we have proposed security mechanisms for classification systems to oppose
the attackers’ actions.

Firstly, we have presented a general framework to characterize the attacker’s behaviour
introduced by [37,38], that enables us to analyse the security of a system in any application
setting. Then, we have shown how this model can be easily adapted to a specific scenario
like the one related to biometric recognition systems. We have discussed how this novel
perspective may not only inspire the simulation of more sophisticated attack scenarios,
but also how, based on such scenarios, more effective countermeasures can be proactively
developed. As concrete application examples, we have developed a sophisticated spoof-
ing attack and a novel countermeasure to contrast a recently proposed poisoning attack
against an adaptive face verification system. This countermeasure has proved to be ef-
ficient in the attack detection; the keypoint for its success is the appropriate choice of
the radius of the ‘normal-updates’ hypersphere. One should choose it according to an
hypothetical genuine behaviour, otherwise the attacks will not be detected or the number
of rejected genuine updates will increase, depending on whether the radius is too big or
too small. In both cases, the system would become useless. Note that the attacker could
reach her scope anyway, if she limits the distance of each attack, increasing the number of
attempts. However, there could be some mechanisms to limit the number of consecutive
accesses or it may happen some genuine updates during the sequence of attacks. These
problems would further slow the achievement of her goal, and the effort would become
too big respect to the possible benefits.

Secondly, we have shown the current state of the art of the methods to make classi-

75

76 CHAPTER 5. CONCLUSIONS

fiers more secure against adversaries’ attacks, highlighting their disadvantages. To over-
come the limitations concerned the countermeasures for evasion attacks at test time, we
have proposed solutions to improve the security of classification systems retaining the
same computational complexity of their non-secure versions. Our ideas essentially re-
volve around the intuition of finding more secure parameter configurations for existing
algorithms, rather than overly-complicating existing ones. We believe that this would
help overcoming the intrinsic limitations of current secure learning algorithms, namely,
their strong theoretical requirements, complexity of implementation, and scalability is-
sues due to their training complexity, to finally favour the wide adoption of more secure
learning algorithms in practical settings. To represent the attacker, we have used the
general taxonomy previously explained, and to simulate the manipulations she can make
on the samples, we have designed a set of algorithms that includes knowledge about the
application scenario at hand, obtaining more accurate and faster solutions with respect
to other existing solvers. We have highlighted that an appropriate choice of the classi-
fier parameters, connected to an adequate comprehension of the given scenario and the
related attack, allows us to significantly reduce the effectiveness of the malicious actions.
We have explained that, to improve the security of linear SVMs, it is necessary to select
a correct type of regularizer and an appropriate balance of the cost of classification er-
rors on the different classes. In fact, in the presence of sparse attacks, our experiments
have shown that Infinity-norm SVMs can drastically outperform the security of standard
SVMs. When dense attacks are instead deemed more likely, the standard SVM may be
retained a good compromise. The results have also shown that a proper choice of the
regularization term is the key factor for significantly improving the security of linear clas-
sifier, while unbalancing the costs of classification errors in different classes introduces
only a slight enhancement. Moreover, we have proposed a new octagonal regularizer that
enables trading sparsity for a marginal loss of security under sparse evasion attacks. This
is extremely useful in applications where sparsity and computational efficiency at test
time are crucial. In this setting, in presence of dense attacks, one may trade some level
of security for sparsity using the Elastic-net SVM. The same considerations are valid for
the kernel SMVs, where it is also possible to set the type of the kernel function and its
parameters. With respect to the results obtained for the linear classifiers, in this case,
unbalancing the classification costs introduces a significant improvement in security. For
some classifiers, including Random Forests, it is clearly not possible to apply the afore-
mentioned countermeasure. For this reason we have proposed a different defence strategy,
based on enforcing the attacker to mimic as much as possible the characteristics of benign
samples to evade detection. To this scope, we have combined the output of the Random
Forest classifier with that of a One-Class SVM, aiming to detect outlying evasion samples.
As shown in our results, this solution allows us to drastically improve the detection of
evasive malicious samples, at the cost of only misclassifying a small fraction of benign
objects.

5.1. FUTURE WORK 77

5.1 Future Work
As short-term future work, we aim to better systematize the state of the art in secure
learning, and to extend our experimental analysis also to current secure-learning ap-
proaches. It may be worth considering also application settings in which the attack can
be a combination of sparse and dense attacks, and try to mitigate their impact by ex-
ploiting a convex combination of infinity-norm and ridge regularization. Moreover, we
plan to investigate, in a similar manner, the security properties of learning algorithms
against poisoning attacks. Since in poisoning scenario the attacker can only inject few
samples into the training set to mislead learning, this type of attack can be considered
as sparse (in terms of the number of samples). Thus, an interesting idea may be to con-
sider an infinity-norm regularization on the values of non-linear kernel machines, such
that more evenly-distributed weights are assigned to the training samples. This should
indeed reduce the impact of each poisoning (outlying) sample in the training set, making
learning more secure even in the presence of poisoning. Regarding the solution proposed
to non-differentiable classifiers, we plan to test our approach against obfuscated samples
and more sophisticated evasive attacks.

As long-term future work, we want to study and analyse the security of other learning
algorithms, in particular deep neural networks. The technological progress has allowed
us to apply these powerful classifiers to many areas, from robotic vision (e.g., iCub1) to
intelligent personal digital assistants (e.g., Cortana, Siri). In some of these applications,
such as the recognition of the surrounding environment in self-driving vehicles, or the
central data management in IoT Smart Cities, the robustness against potential malicious
attacks is very sensitive, because the effects would have a significant impact on people
safety. Thus, it is evident that developing novel methods capable of improving the security
level of these systems remains a relevant open research issue.

1http://www.icub.org/

78 CHAPTER 5. CONCLUSIONS

Appendix A

Dataset

In this appendix we present the datasets used to the previous simulations.
MNIST dataset. It is a large database of handwritten digits from 0 to 9, contains around
70,000 images [80]. Each image is represented by a vector of 784 features, corresponding
to its gray-level pixel values. As in [40], we simulate an adversarial classification problem
where the digits 8 and 9 correspond to the legitimate and malicious classes, respectively.
TREC 2007. Most spam filters include an automatic text classifier that analyses the
email’s body text. In the simplest case Boolean features are used, each representing
the presence or absence of a given term. For our experiments we use the TREC 2007
spam track data, consisting of about 25000 legitimate and 50000 spam emails [81]. We
extract a dictionary of terms (features) from the first 5000 emails (in chronological or-
der) using the same parsing mechanism of SpamAssassin, and then select the 200 most
discriminant features according to the information gain criterion [79]. We simulate a
well-known (sparse) evasion attack in which the attacker aims to modify only few terms.
Adding or removing a term amounts to switching the value of the corresponding Boolean
feature [10, 16,28,37,40].
Lux0r dataset. The PDF-Reader is an application that is often targeted by attackers. A
PDF file can host different kinds of contents, like Flash and JavaScript, making it an ap-
pealing vector to convey malware. In fact, such third-party applications can be exploited
by attacker to execute arbitrary operations. To simulate an attack involving PDF files, we
use the Lux0r dataset [77], which consists of 17,826 unique PDF documents embedding
JavaScript code: 12,592 malicious samples and 5,234 benign samples. The whole dataset
is the result of an extensive collection of PDF files until 2016 from security blogs such
as “Contagio”, and “Malware don’t need Coffee”, analysis engines such as VirusTotal, and
search engines such as Google and Yahoo. Every file is represented using 736 features
that correspond to the number of occurrences of a predefined set of Javascript function
calls (API), where every API represents an action performed by one of the objects that
are contained into the PDF file (e.g., opening another document that is stored inside the
file).

79

80 APPENDIX A. DATASET

Note that an attacker cannot trivially remove an API from a PDF file without corrupt-
ing its functionality. Conversely, she can easily add new APIs by inserting new function
calls. For this reason, we simulate this attack by only considering feature increments (i.e.,
decrementing a feature value is not allowed). Accordingly, the most convenient strategy
to mislead a malware detector (classifier) is to insert as many occurrences of a given API
as possible, which is a sparse attack.1

SWF dataset. ActionScript, as JavaScript, is derived from ECMAScript, a standard-
ized programming language maintained by Ecma with the ECMA-262 standard. While
JavaScript is mostly used for web applications and to extend functionality of third parties
formats such as PDF, ActionScript is used as an essential support for delivering Flash-
based content. In particular, ActionScript is mainly employed in SWF files, although it
can also be employed in PDF files to show Flash animations inside a document. This
dataset contains 6,776 examples of SWF files, 4,425 of which are benign and the remain-
ing 2,351 are malicious. Each sample is represented from 2,587 features. Differently from
the Lux0r dataset, there are more benign files than malicious ones, as Flash-based attacks
have only considerably increased since 2015. These files were collected until 2016 by using
the VirusTotal service.
DIEE Face. It is a dataset consisting of 40 different clients with 60 images each, for a
total of 2,400 face images. The face images of each client were collected into two session,
using a commercial webcam, with a time interval of about two weeks between them,
under different lighting conditions and facial expressions. This induced a high intra-class
variability of the face images, which makes face recognition particularly challenging.

1Despite no upper bound on the number of injected APIs may be set, we set the maximum value for
each API to the corresponding one observed during training.

Bibliography

[1] Christopher M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 1 edition, October 2007

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-Interscience
Publication, 2000

[3] http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_
tutorial.pdf

[4] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, R. C. Williamson,
Estimating the support of a high-dimensional distribution. Neural Computation,
13(7):1443–1471, 2001.

[5] C. Cortes and V. Vapnik, Support-vector networks. Machine Learning, 20:273–297,
1995.

[6] R. Tibshirani, Regression Shrinkage and Selection via the lasso. Journal of the Royal
Statistical Society. Series B (methodological) 58 (1). Wiley: 267–88, 1996

[7] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, Misleading worm signature
generators using deliberate noise injection. In Security and Privacy. IEEE Symposium
on, pages 15–31, 2006

[8] B. Biggio, G. Fumera, F. Roli, Multiple classifer systems for robust classifer design in
adversarial environments. Int’l J. of Machine Learning and Cybernetics 1(1), 27–41,
2010

[9] N. Dalvi, P. Domingos, Mausam, S. Sanghai, D. Verma, Adversarial classifcation.
In: 10th ACM SIGKDD Int’l Conf. on Knowl. Discovery and Data Mining (KDD).
pp. 99–108, 2004

[10] A. Kolcz, C.H. Teo, Feature weighting for improved classifer robustness. In: Sixth
Conf. on Email and Anti-Spam (CEAS). Mountain View, CA, USA, 2009

81

http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf
http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf

82 BIBLIOGRAPHY

[11] D. Lowd, C. Meek, Adversarial learning. In: Press, A. (ed.) Proc. of the Eleventh
ACM SIGKDD Int’l Conf. on Knowl. Disc. and D. Mining (KDD). pp. 641–647,
Chicago, IL., 2005

[12] D. B. Skillicorn, Adversarial knowledge discovery. IEEE Intell.Syst., vol. 24, pp.
54–61, 2009

[13] D. Fetterly, Adversarial information retrieval: The manipulation of web content.
ACM Computing Reviews, 2007

[14] S. Rizzi, What-if analysis. Enc. of Database Systems, pp. 3525–3529, 2009.

[15] G. L. Wittel and S. F. Wu, On attacking statistical spam filters. In 1st Conf. on
Email and Anti-Spam, CA, USA, 2004.

[16] D. Lowd and C. Meek, Good word attacks on statistical spam filters. In 2nd Conf.
on Email and Anti-Spam, CA, USA, 2005.

[17] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, Can machine
learning be secure? In Proc. Symp. Inf., Computer and Commun. Sec. (ASIACCS)
. NY, USA: ACM, 2006, pp. 16–25.

[18] M. Barreno, B. Nelson, A. Joseph, and J. Tygar, The security of machine learning.
Machine Learning, vol. 81, pp. 121–148, 2010

[19] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S. Lau, S. Rao, N. Taft, and
J. D. Tygar, Antidote: understanding and defending against poisoning of anomaly
detectors In Proc. 9thACM SIGCOMM Internet Measurement Conf., ser. IMC 09.
NY,USA: ACM, 2009, pp. 1–14.

[20] M. Kloft and P. Laskov, Online anomaly detection under adversarial impact. In
Proc. 13th Int’l Conf. on Artificial Intell. and Statistics, 2010, pp. 405–412.

[21] O. Dekel, O. Shamir, and L. Xiao, Learning to classify with missing and corrupted
features. Machine Learning, vol. 81, pp.149–178, 2010.

[22] B. Biggio, G. Fumera, and F Roli, Design of robust classifiers for adversarial envi-
ronments In IEEE Int’l Conf. on Systems, Man,and Cybernetics, 2011, pp. 977–982.

[23] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, Bagging classifiers for
fighting poisoning attacks in adversarial environments. In Proc. 10th Int’l Workshop
on Multiple Classifier Systems, ser. LNCS, vol. 6713. Springer-Verlag, 2011, pp. 350–
359.

BIBLIOGRAPHY 83

[24] B. Biggio, G. Fumera, F. Roli, and L. Didaci, Poisoning adaptive biometric systems.
In Structural, Syntactic, and Statistical Pattern Recognition, ser. LNCS, vol. 7626.
Springer, 2012, pp. 417–425.

[25] B. Biggio, B. Nelson, and P. Laskov, Poisoning attacks against support vector ma-
chines. In Proc. 29th Int. Conf. on Machine Learning, 2012

[26] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, Adversarial classifica-
tion. In 10th ACM SIGKDD Int. Conf. On Knowl. Discovery and Data Mining, WA,
USA, 2004, pp. 99–108.

[27] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D. Tygar, Adversarial
machine learning In 4th ACM Workshop on Artificial Intelligence and Security, IL,
USA, 2011, pp. 43–57

[28] F. Zhang, P. Chan, B. Biggio, D. Yeung, and F. Roli. Adversarial feature selection
against evasion attacks. IEEE Transactions on Cybernetics, 46(3):766–777, 2016.

[29] P. Laskov and M. Kloft, A framework for quantitative security analysis of machine
learning In Proc. 2nd ACM Workshop on Security and Artificial Intelligence. NY,
USA: ACM, 2009, pp. 1–4

[30] A. A. Cardenas, J. S. Baras, and K. Seamon, A framework for the evaluation of
intrusion detection systems. In Proc. IEEE Symp. On Security and Privacy. DC,
USA: IEEE CS, 2006, pp. 63–77.

[31] B. Biggio, G. Fumera, and F. Roli, Multiple classifier systems for adversarial classi-
fication tasks In Proc. 8th Int’l Workshop on Multiple Classifier Systems, ser. LNCS,
vol. 5519. Springer, 2009, pp. 132–141.

[32] M. Bruckner, C. Kanzow, and T. Scheffer, Static prediction games for adversarial
learning problems J. Mach. Learn. Res., vol. 13, pp.2617–2654, 2012

[33] A. K. Jain, K. Nandakumar, and A. Nagar, Biometric template security. J. Adv.
Sign. Proc., vol. 2008, pp. 1–17, 2008.

[34] U. Uludag, A. Ross, and A. K. Jain, Biometric template selection and update: a case
study in fingerprints Patt. Rec., vol. 37, no. 7, pp. 1533–1542, 2004.

[35] C. Ryu, H. Kim, and A. K. Jain, Template adaptation based fingerprint verification
In Proceedings of the 18th Int’l Conf. on Pattern Recognition - Volume 04, ser. ICPR
’06. Washington, DC, USA: IEEE CS, 2006, pp. 582–585.

[36] B. Biggio, L. Didaci, G. Fumera, and F. Roli, Poisoning attacks to compromise face
templates. In 6th IAPR Int’l Conf. Biometrics, Madrid, Spain, 2013, pp. 1–7.

84 BIBLIOGRAPHY

[37] B. Biggio, G. Fumera, and F. Roli, Security evaluation of pattern classifiers under
attack. IEEE Trans. Knowl. Data Eng., vol. 26, no. 4, pp. 984–996, 2014.

[38] B. Biggio, G. Fumera, and F. Roli, Pattern recognition systems under attack: Design
issues and research challenges Int’l J. Patt. Recogn. Artif. Intell., vol. 28, no. 7,
1460002, 2014.

[39] B. Biggio, G. Fumera, P. Russu, L. Didaci and F. Roli, Adversarial Biometric Recog-
nition: a review on biometric system security from the adversarial machine-learning
perspective IEEE Signal Processing Mag., vol. 32, no. 5, pp. 31–41, 2015.

[40] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli, Evasion attacks against machine learning at test time. In H. Blockeel,
K. Kersting, S. Nijssen, and F. Železný, editors, European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), Part III, volume 8190 of Lecture Notes in Computer Science, pages 387–402.
Springer Berlin Heidelberg, 2013.

[41] F. Wang, W. Liu, and S. Chawla, On sparse feature attacks in adversarial learning.
In IEEE Int’l Conf. on Data Mining (ICDM), pages 1013–1018. IEEE, 2014.

[42] N. K. Ratha, J. H. Connell, and R. M. Bolle, An analysis of minutiae matching
strength. In AVBPA, ser. LNCS, J. Bigün and F. Smeraldi, Eds., vol. 2091. Springer,
2001, pp. 223–228.

[43] R. N. Rodrigues, L. L. Ling, and V. Govindaraju, Robustness of multimodal biometric
fusion methods against spoof attacks. J. Vis. Lang. Comput., vol. 20, no. 3, pp. 169–
179, 2009.

[44] B. Biggio, Z. Akhtar, G. Fumera, G. L. Marcialis, and F. Roli, Security evaluation of
biometric authentication systems under real spoofing attacks. IET Biometrics, vol. 1,
no. 1, pp. 11–24, 2012.

[45] A. Adler, Vulnerabilities in biometric encryption systems. in 5th Int’l Conf. Audio-
and Video-Based Biometric Person Auth., ser. LNCS, Springer, July 20-22 2005, pp.
1100–1109.

[46] P. Johnson, B. Tan, and S. Schuckers, Multimodal fusion vulnerability to non-zero
effort (spoof) imposters. in IEEE Int’l Workshop on Information Forensics and Se-
curity, 2010, pp. 1–5.

[47] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, Impact of artificial
"gummy" fingers on fingerprint systems. Datenschutz und Datensicherheit, vol. 26,
no. 8, 2002.

BIBLIOGRAPHY 85

[48] J. Galbally, C. McCool, J. Fierrez, S. Marcel, and J. Ortega-Garcia, On the vulner-
ability of face verification systems to hill-climbing attacks. Pattern Recogn., vol. 43,
no. 3, pp. 1027–1038, 2010.

[49] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statis-
tics: The Approach Based on Influence Functions. Probability and Mathematical
Statistics. John Wiley and Sons, NY, USA, 1986

[50] R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust Statistics: Theory and
Methods. Probability and Mathematical Statistics. John Wiley and Sons, NY, USA,
2006

[51] M. Martinez-Diaz, J. Fierrez, J. Galbally, and J. Ortega-Garcia, An evaluation of
indirect attacks and countermeasures in fingerprint verification systems. Patt. Rec.
Letters, vol. 32, no. 12, pp. 1643 – 1651, 2011.

[52] A. Globerson and S. T. Roweis, Nightmare at test time: robust learning by feature
deletion. In Proceedings of the 23rd Int’l Conf. on Mach. Learn., W. W. Cohen and
A. Moore, Eds., vol. 148. ACM, 2006, pp. 353–360.

[53] C. H. Teo, A. Globerson, S. Roweis, and A. Smola, Convex learning with invariances.
In NIPS 20 : MIT Press, 2008, pp. 1489–1496.

[54] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis, Casting
out demons: Sanitizing training data for anomaly sensors. in IEEE Symp. Security
and Privacy. Los Alamitos, CA, USA: IEEE CS, 2008, pp. 81–95.

[55] B. Nelson, B. I. Rubinstein, L. Huang, A. D. Joseph, S. J. Lee, S. Rao, and J. D.
Tygar, Query strategies for evading convex-inducing classifiers. J. Mach. Learn. Res.,
vol. 13, pp. 1293–1332, 2012.

[56] A. D. Joseph, P. Laskov, F. Roli, J. D. Tygar, and B. Nelson, Machine Learning
Methods for Computer Security (Dagstuhl Perspectives Workshop 12371). Dagstuhl
Manifestos, vol. 3, no. 1, pp. 1–30, 2013.

[57] J. Bi and T. Zhang. Support vector classification with input data uncertainty. In
Advances in Neural Information Processing Systems 17, 2004.

[58] W. Xu, Y. Qi, and D. Evans. Automatically evading classifiers. In Proc. 23rd Annual
Network & Distributed System Security Symposium (NDSS). The Internet Society,
2016.

[59] A. Kantchelian, J. D. Tygar, and A. D. Joseph, Evasion and hardening of tree
ensemble classifiers. In 33rd ICML, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2387–2396. JMLR.org, 2016.

86 BIBLIOGRAPHY

[60] B. Biggio, I. Corona, Z.-M. He, P. P. K. Chan, G. Giacinto, D. S. Yeung, and F. Roli,
One-and-a-half-class multiple classifier systems for secure learning against evasion
attacks at test time. In F. Schwenker, F. Roli, and J. Kittler, editors, Multiple
Classifier Systems, volume 9132 of Lecture Notes in Computer Science, pages 168–
180. Springer International Publishing, 2015.

[61] A. M. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), pages 427–436. IEEE, 2015.

[62] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, The
limitations of deep learning in adversarial settings. In Proc. 1st IEEE European
Symposium on Security and Privacy, pages 372–387. IEEE, 2016.

[63] H. Xu, C. Caramanis, and S. Mannor, Robustness and regularization of support vector
machines. Journal of Machine Learning Research, 10:1485–1510, July 2009.

[64] S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine Learning. The MIT
Press, 2011.

[65] R. Livni, K. Crammer, A. Globerson, E.-i. Edmond, and L. Safra, A simple geomet-
ric interpretation of SVM using stochastic adversaries. In JMLR W&CP - Proc.,
volume 22 of AISTATS ’12, pages 722–730, 2012.

[66] S. Katsumata and A. Takeda, Robust cost sensitive support vector machine. In
G. Lebanon and S. Vishwanathan, editors, 18th Int’l Conf. on Artificial Intelligence
and Statistics (AISTATS), volume 38 of JMLR Workshop and Conference Proceed-
ings, pages 434–443. JMLR.org, 2015.

[67] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii, Distributional smoothing
with virtual adversarial training. In International Conference on Learning Represen-
tation, 2016.

[68] B. Biggio, G. Fumera, and F. Roli, Multiple classifier systems for robust classifier
design in adversarial environments. Int’l J. Mach. Learn. and Cybernetics, 1(1):27–
41, 2010.

[69] W. Scheirer, L. Jain, and T. Boult, Probability models for open set recognition. IEEE
Trans. Patt. An. Mach. Intell., 36(11):2317–2324, 2014.

[70] E. Pekalska, P. Paclik, and R. P. Duin, A generalized kernel approach to dissimilarity
based classification. Journal of Machine Learning Research, 2:175–211, 2001.

[71] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti, Similarity-based
classification: Concepts and algorithms. J. Mach. Learn. Res., 10:747–776, June 2009.

BIBLIOGRAPHY 87

[72] Bondell, Reich, Simultaneous regression shrinkage, variable selection, and supervised
clustering of predictors with OSCAR, (2008)

[73] A. Demontis, P. Russu, B. Biggio, G. Fumera, e F. Roli, On Security and Sparsity
of Linear Classifiers for Adversarial Settings. In Joint IAPR Int’l Workshop on
Structural, Syntactic, and Statistical Pattern Recognition, Merida, Mexico, 2016,
vol 10029 of LNCS, pagg 322-332.

[74] P. Russu, A. Demontis, B. Biggio, G. Fumera, e F. Roli, Secure Kernel Machines
against Evasion Attacks. In 9th ACM Workshop on Artificial Intelligence and Secu-
rity, Vienna, Austria, 2016, pagg 59-69

[75] J. Zhu, S. Rosset, R. Tibshirani, T. Hastie, 1-norm support vector machines. In
Thrun, S., Saul, L., Schölkopf, B., eds.: NIPS 16, MIT Press (2004) 49–56.

[76] D. Maiorca, P. Russu, I. Corona, B. Biggio, G. Giacinto, Detection of Malicious
Scripting Code through Discriminant and Adversary-Aware API Analysis. In Italian
Conference on Cybersecurity (ITASEC), Venezia, Italy 2017.

[77] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, Lux0r: Detection of malicious pdf-
embedded javascript code through discriminant analysis of API references. In Proc.
2014 Workshop on Artificial Intelligent and Security Workshop, AISec ’14, pages
47–57, New York, NY, USA, 2014. ACM.

[78] H. Zou, T. Hastie, Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society, Series B, pagg. 301–320, 2005.

[79] F. Sebastiani, Machine learning in automated text categorization. ACM Comput.
Surv., 34:1–47, March 2002.

[80] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Müller, E. Säckinger, P. Simard, and V. Vapnik. Comparison of learn-
ing algorithms for handwritten digit recognition. In Int’l Conf. on Artificial Neural
Networks, pages 53–60, 1995.

[81] G. V. Cormack. Trec 2007 spam track overview. In E. M. Voorhees and L. P.
Buckland, editors, TREC, volume Special Publication 500-274. National Institute of
Standards and Technology (NIST), 2007.

88 BIBLIOGRAPHY

List of Publications Related to the
Thesis

Published papers
∙ B. Biggio, G. Fumera, P. Russu, L. Didaci and F. Roli,Adversarial Biometric Recog-

nition: a review on biometric system security from the adversarial machine-learning
perspective. IEEE Signal Processing Mag., vol. 32, no. 5, pp. 31–41, 2015.

∙ A. Demontis, P. Russu, B. Biggio, G. Fumera, e F. Roli, On Security and Sparsity
of Linear Classifiers for Adversarial Settings. In Joint IAPR Int’l Workshop on
Structural, Syntactic, and Statistical Pattern Recognition, Merida, Mexico, 2016,
vol 10029 of LNCS, pagg 322-332.

∙ P. Russu, A. Demontis, B. Biggio, G. Fumera, e F. Roli, Secure Kernel Machines
against Evasion Attacks. In 9th ACM Workshop on Artificial Intelligence and Se-
curity, Vienna, Austria, 2016, pagg 59-69.

∙ D. Maiorca, P. Russu, I. Corona, B. Biggio, G. Giacinto, Detection of Malicious
Scripting Code through Discriminant and Adversary-Aware API Analysis. In Italian
Conference on Cybersecurity (ITASEC), Venezia, Italy 2017.

89

	Machine Learning and Pattern Recognition
	Learning from examples
	Collecting Data
	Data Pre-processing
	Feature Representation
	Model Selection and Sparsity

	Performance Measurements
	Type of classifiers
	Support Vectors Machine
	Decision Tree
	Random Forest

	Applications and Limitations
	Contributions of this thesis

	Adversarial Machine Learning
	Threat Model
	Categorization of attack scenarios
	Evasion
	Poisoning

	Constructing real-world attack samples
	Related Work
	Open Issues

	Adversarial Biometric Recognition
	Architecture of a Biometric Recognition Systems
	The Attack Surface

	Biometric System Security
	Categorization of Biometric Attack Scenarios
	Evasion
	Poisoning
	Privacy

	Secure-by-Design Biometric Systems
	Countering Evasion
	Countering Poisoning
	Preserving Privacy

	Application Examples
	Improved Face Spoofing from Multiple Faces
	Poisoning Biometric Systems that Learn from Examples

	Secure Learning against Evasion Attacks
	Solving the evasion problem
	Understanding classifier security
	Security and Regularization
	Classifier Security
	Linear Classifiers
	Nonlinear Kernel Machines
	Non-Differentiable Classifiers

	Application Examples
	Securing Linear Classifiers
	Securing Linear Classifiers with Limited Complexity
	Securing Kernel Machines
	Securing Random Forests

	Conclusions
	Future Work

	Dataset

