
Università degli Studi di Cagliari

DOTTORATO DI RICERCA

Matematica e Informatica

Ciclo XXIX

TITOLO TESI

Verification of contract-oriented systems

Settore scientifico disciplinare di afferenza

INF/01

Presentata da: Maurizio Murgia

Coordinatore Dottorato: Giuseppe Rodriguez

Tutor: Massimo Bartoletti

Esame finale anno accademico 2015 – 2016

Tesi discussa nella sessione d’esame marzo – aprile 2017

Contents

List of Figures v

List of Tables vi

1 Introduction 1

I Background 5

2 Order theory 6
2.1 Partial orders . 6
2.2 Monotonic functions and lattices . 7

3 Labelled Transition Systems 9
3.1 Labelled transition systems . 9
3.2 Processes . 10

4 Kripke Structures, Linear Temporal Logic and Model checking 12
4.1 Kripke Structures . 12
4.2 Linear temporal logic . 13

5 Timed Automata 15
5.1 Basic definitions . 15
5.2 Timed automata . 16
5.3 Networks of timed automata . 17
5.4 Regions and zones . 19

II Honesty in contract-oriented computing 20

6 Contracts 21
6.1 Session types as contracts . 21

6.1.1 Syntax . 21
6.1.2 Semantics . 22
6.1.3 Compliance . 23

ii

CONTENTS iii

6.1.4 Culpability . 25
6.1.5 Kripke structure semantics of contracts 26
6.1.6 Maude implementation . 27

7 Contract oriented computing and CO2 32
7.1 Contract-oriented computing & Honesty . 32

7.1.1 Syntax . 32
7.1.2 Semantics . 34
7.1.3 Honesty . 36

8 Verification of honesty 41
8.1 Model checking honesty . 41

8.1.1 Value abstraction . 42
8.1.2 Context abstraction of contracts . 44
8.1.3 Context abstraction of systems . 47
8.1.4 Main result . 49
8.1.5 Maude implementation . 49

9 Experiments 53
9.1 Experiments . 53

9.1.1 Online store with bank . 53
9.1.2 Voucher distribution system . 54
9.1.3 Car loan . 55
9.1.4 Blackjack . 57
9.1.5 Travel agency . 59
9.1.6 Benchmarks . 61

III A timed contract model 62

10 Timed session types 63
10.1 Timed session types: syntax and semantics 63
10.2 Compliance between TSTs . 66
10.3 Case study: Paypal User Agreement . 67

11 Admissibility of a compliant and subtyping 69
11.1 Admissibility of a compliant . 69
11.2 Computability of the canonical compliant . 72
11.3 Subtyping . 74

12 Encoding timed session types into timed automata 76
12.1 Encoding TSTs into Timed Automata . 76

12.1.1 Defining equations . 77
12.1.2 Encoding DE-TST into TA . 79
12.1.3 Decidability of compliance . 81

CONTENTS iv

13 Monitoring timed session types 82
13.1 Runtime monitoring of TSTs . 82

IV Concluding remarks 87

14 Related work 88

15 Conclusions 94

Bibliography 96

A Appendix for Part II 103
A.1 Proofs for Section 6.1 . 103
A.2 Proofs for Section 8.1 . 107

A.2.1 Proofs for Section 8.1.1 . 107
A.2.2 Proofs for Section 8.1.2 . 118
A.2.3 Proofs for Section 8.1.3 . 120

B Appendix for Part III 134
B.1 Proofs for Section 10.2 . 134
B.2 Proofs for Section 11.1 . 136
B.3 Proofs for Section 11.2 . 143
B.4 Proofs for Section 12.1 . 144
B.5 Proofs for Section 13.1 . 151

List of Figures

3.1 Operational semantics of processes. 11

5.1 Transition relation of networks of TA. 18

6.1 Semantics of contracts . 23
6.2 Semantics of value-abstract contracts . 24

7.1 Structural equivalence for CO2 . 33
7.2 Reduction semantics of CO2. 35

8.1 Reduction semantics of value-abstract systems 43
8.2 Semantics of context-abstract contracts. 45
8.3 Reduction semantics of context-abstract contracts and systems 48

10.1 Semantics of timed session types . 65

11.1 Kind system for TSTs. 70
11.2 Canonical compliant of a TST. 71
11.3 Kind inference rules. 72

12.1 Patterns for TA composition . 77
12.2 Semantics of DE-TST . 78
12.3 Encoding of an internal choice (left) and of an external choice (right). 79
12.4 Encoding of the TSTs in Example 12.1.10. 80

13.1 Monitoring semantics . 83

A.1 Reduction semantics of value-abstract systems. 107
A.2 Reduction semantics of context-abstract systems (full set of rules). 121
A.3 Graph of module importation. 132
A.4 Dependencies among the proofs. 133

B.1 Semantics of networks of TA (symmetric rules omitted). 145
B.2 Dependencies among the proofs. 157

v

List of Tables

7.1 Summary of notation. 33

9.1 Benchmarks for the honesty checker. 61

vi

Abstract

In this thesis we address the problem of modelling and verifying contract-oriented systems,
wherein distributed agents may advertise and stipulate contracts, but — differently from
most other approaches to distributed agents — are not assumed to always respect them.
A key issue is that the honesty property, which characterises those agents which respect
their contracts in all possible execution contexts, is undecidable in general. We develop
a sound verification technique for honesty, targeted at agents modelled in a value-passing
version of the calculus CO2. To do that, we safely over-approximate the honesty property
by abstracting from the actual values and from the contexts a process may be engaged with.
We develop a model-checking technique for this abstraction, we describe its implementation
in Maude, and we discuss some experiments with it. We then introduce timed session types,
an extension of binary session types, formalising timed communication protocols between
two participants at the endpoints of a session. They feature a decidable compliance relation,
which generalises to the timed setting the usual progress-based notion of compliance between
untimed session types. We show a sound and complete technique to decide when a timed
session type admits a compliant one, and if so, to construct the most precise session type
compliant with a given one, according to the subtyping preorder induced by compliance.
Decidability of subtyping follows from these results.

Chapter 1

Introduction

Motivation

Contract-oriented computing [28] is a design paradigm for distributed systems wherein the
interaction between services is disciplined at run-time through contracts. A contract specifies
an abstraction of the intended behaviour of a service, both from the point of view of what it
offers to the other services, and of what it requires in exchange. Services advertise contracts
when they want to offer (or sell) some features to clients over the network, or when they
want to delegate the implementation of some features to some other services. New sessions
are established between services whose advertised contracts are compliant ; such contracts
are then used to monitor their interaction in the sessions. When a service diverges from
its contract, it can be sanctioned by the runtime monitor (e.g., by decreasing the service
reputation, as in [84]).

For instance, consider an online store that wants to allow clients to order items, and wants
to delegate to a bank the activity of checking payments. Both these behaviours (ordering
items, checking payments) can be formalised as contracts (see e.g. Example 7.1.8 later on).
If other services advertise contracts which are compliant with those of the store (e.g., a client
advertises its interest in ordering one of the available items), then the store can establish
new sessions with such services.

When services behave as prescribed by all their advertised contracts, they are called
honest. Instead, when services are not honest, they do not always respect the contracts
they advertise, at least in some execution context. This may happen either unintentionally
(because of errors in the service specification or in its implementation), or even because of
malicious behaviour. Since discrepancies between the advertised and the actual behaviour
can be sanctioned, a new kind of attacks becomes possible: if a service does not behave
as promised, an attacker can induce it to a situation where the service is sanctioned, while
the attacker is not. A crucial problem is then how to ensure that a service will never
result responsible of a contract violation, before deploying it in an unknown (and possibly
adversarial) environment.

1

CHAPTER 1. INTRODUCTION 2

Contract-oriented computing in CO2 The distributed, contract-oriented systems
outlined in the previous paragraph can be formally modelled and studied in CO2, a core
process calculus for contract-oriented computing [28, 26]. CO2 is not tied to a specific
language or semantics for contracts. This flexibility allows to adopt one of the many different
contract formalisms available in literature: these include behavioural types [41, 70, 71, 49],
Petri nets [96, 14, 15], multi-player games [17, 16], logics [28, 26], etc. Among behavioural
types, session types [69, 70] have been devoted a lot of attention in the last few years, both
at the foundational level [71, 36, 48, 77, 58, 44, 98, 66, 46, 33, 24] and at the application
level [54, 101, 87, 63]. In their simplest incarnation, session types are terms of a process
algebra featuring a selection construct (i.e., an internal choice among a set of branches), a
branching construct (i.e., an external choice offered to the environment), and recursion. In
this thesis, we adopt CO2 with binary session types as our contract model of choice. Once
formalised in CO2, a service will be represented as an agent A[P] that can offer (or require)
some behaviour by advertising it in the form of a session type c. In order to establish a
session, a compliant contract needs to be advertised by another agent: compliance, which
is strongly related to the standard notions of duality and subtyping [65, 64, 10], ensures
that, when run in parallel, the two session types enjoy progress. Thus, when an agent B[Q]
advertises a session type d which is compliant with c, a new session s between A[P] and
B[Q] is created. Then, A[P] and B[Q] can start interacting through s, by performing the
actions prescribed by c and d, respectively — or even by choosing not to do so.

The problem of verifying honesty, even with this simplistic contract model, and in the
most basic version of CO2, is not trivial: the honesty of an agent turns out to be undecidable
(the proof in [27] exploits the fact that the value-free fragment of CO2 is Turing-powerful).

Time In order to fully take advantage of contract-oriented computing, the infrastructure
should be able to detect (and possibly sanction) contract violations, and this should be
accomplished inspecting only the state of opened sessions. The latter requirement seems
impossible to realize with the contract model mentioned above: a participant is always able
to recover from culpability by performing a finite number of actions (Lemma 6.1.10), making
culpability a transient status. A fair infrastructure should sanction only those agents which
are permanently culpable of contract violations. We believe that a natural approach to
the above problem is to enrich the contract model with timing constraints, enabling the
specification of deadlines. In this way, a participant becomes (definitively) culpable when
she has not fulfilled her obligations within the time window prescribed by her contract.

Formal methods for time have already approached the realm of session types [38, 86].
However, these approaches introduce time into an already sophisticated framework, featuring
multiparty session types with asynchronous communication (via unbounded buffers). While
on the one hand this has the advantage of extending to the timed setting type techniques
which enable compositional verification [71], on the other hand it seems that some of the
key notions of the untimed setting (e.g., compliance, duality) have not been explored yet in
the timed case.

We think that studying timed session types in a basic setting (synchronous communi-
cation between two endpoints, as in the seminal untimed version) is worthy of attention.

CHAPTER 1. INTRODUCTION 3

From a theoretical point of view, the objective is to lift to the timed case some decidability
results, like those of compliance and subtyping. Some intriguing problems arise: unlike in
the untimed case, a timed session type not always admits a compliant; hence, besides decid-
ing if two session types are compliant, it becomes a relevant problem whether a session type
has a compliant. From a more practical perspective, decision procedures for timed session
types, like those for compliance and for dynamic verification, enable the implementation of
programming tools and infrastructures for the development of safe communication-oriented
distributed applications. For instance, the message-oriented middleware in [13] exploits
timed session types to allow disciplined interactions between mutually distrusting services.

Contributions

Verification of honesty In Part II we devise and implement a sound verification tech-
nique for honesty in an extended version of CO2, featuring expressions, value-passing, and
conditionals. The main technical insight is an abstract semantics of CO2 which preserves
the transitions of an agent A[P], while abstracting from values and from the context wherein
A[P] is run. Building upon this abstract semantics, we devise an abstract notion of hon-
esty (α-honesty, Definition 8.1.12), which approximates the execution context. The main
technical result is Theorem 8.1.14, which states that our approximation is correct (i.e., α-
honesty implies honesty), and that — under certain hypotheses on the syntax of processes
— it is also complete (i.e., honesty implies α-honesty). We then propose a model-checking
approach for verifying α-honesty, and we provide an implementation in Maude. A relevant
fact about our theoretical work is that, although in this thesis we have focussed on binary
session types, our verification technique appears to be directly reusable to deal with different
contract models, e.g. all models satisfying Theorem 8.1.7. We have validated our technique
through a set of case studies; quite notably, our implementation has allowed us to determine
the dishonesty of a supposedly-honest CO2 process appeared in [27] (see Section 9.1.2). The
Maude implementation of our technique has an important role in the tool-chain Diogenes
[4, 6].

Timed contracts In Part III we present a theory of binary timed session types (TSTs),
and we explore its viability as a foundation for programming tools to leverage the complexity
of developing distributed applications.

The semantics of TSTs is a conservative extension of the synchronous semantics of un-
timed session types [10], adding clock valuations to associate each clock with a positive real.
We also extend to the timed setting the standard semantic notion of compliance, which
relates two session types whenever they enjoy progress until reaching success.

Despite the semantics of TSTs being infinite-state (while it is finite-state in the untimed
case), we develop a sound and complete decision procedure for verifying compliance (Theo-
rem 10.2.7). To do that, we reduce this problem to that of model-checking deadlock freedom
in timed automata [3], which is decidable, and we implement our technique using the Uppaal
model checker [31]. We detail the encoding of TSTs into timed automata in Section 12.1.

CHAPTER 1. INTRODUCTION 4

We develop a procedure to detect whether a TST admits a compliant. This takes the
form of a kind system which associates, to each TST p, a set of clock valuations under
which p admits a compliant. The kind system is sound and complete (Theorem 11.1.6
and Theorem 11.1.8), and it can be used to define the canonical compliant of a given TST
(Definition 11.1.5).

In Section 11.2 we prove that kind inference is decidable (Theorem 11.2.4), and from this
we infer a decidable (sound and complete) procedure for the existence of compliant, and the
computability of the canonical compliant construction (Theorem 11.2.5).

In Section 11.3 we study the semantic subtyping preorder [10] for TSTs. We then show
that the canonical compliant of p is the greatest TST compliant with p, according to the
subtyping preorder (Theorem 11.3.2). Decidability of subtyping (Theorem 11.3.3) follows
from that of compliance and kind inference. This provides us with an effective way of
checking if a service with type p can be replaced by one with a subtype p′ of p, guaranteeing
that all the services which interacted correctly with the old one will do the same with the
new one.

In Section 13.1 we address the problem of dynamically monitoring interactions regulated
by TSTs. To do that, we will provide TSTs with a monitoring semantics, which detects when
a participant is not respecting its TST. This semantics enjoys some desirable properties: it is
deterministic, and it guarantees that in each state of an interaction, either we have reached
success, or someone is in charge of a move, or not respecting its TST.

Timed session types are used as the contract model of choice in the contract-oriented
middleware described in [13, 5], which implements the contractual primitives of CO2.

Part of the material presented in this thesis is borrowed by the papers where our results
were originally presented. In particular, the material in Part II borrows from [21, 20], while
the material in Part III borrows from [11, 12].

Part I

Background

5

Chapter 2

Order theory

In this chapter we introduce partial orders, complete lattices, and order preserving functions
between them. We illustrate some of their properties, in particular the Knaster-Tarski fixed
point theorem, which will be useful in the subsequent development of this thesis. The
material in this chapter is taken from [89, 2].

2.1 Partial orders

Definition 2.1.1 A partially ordered set (poset for short) is a set together with a partial
order relation, that is, a structure (D,≤), where D is a set and ≤⊆ D × D is a relation
satisfying:

1. ∀d ∈ D : d ≤ d (reflexivity)

2. ∀d, d′, d′′ ∈ D : d ≤ d′ ∧ d′ ≤ d′′ =⇒ d ≤ d′′ (transitivity)

3. ∀d, d′ ∈ D : d ≤ d′ ∧ d′ ≤ d =⇒ d = d′ (antisymmetricity)

Definition 2.1.2 Let (D,≤) be a poset and let X ⊆ D and element d ∈ D is said:

• An upper bound of X iff, for all x ∈ X, x ≤ d.

• The least upper bound of X, denoted as lub(X), iff d is an upper bound of X and, for
any d′ upper bound of X, it holds that d ≤ d′.

• A lower bound of X iff, for all x ∈ X, d ≤ x.

• The greatest lower bound of X, denoted as glb(X), iff d is a lower bound of X and,
for any d′ lower bound of X, it holds that d′ ≤ d.

Note that lubs and glbs not always exist, but when they exist, they are unique.

6

CHAPTER 2. ORDER THEORY 7

Definition 2.1.3 An infinite sequence ~d = d0d1 . . . of elements in a poset (D,≤) is said
decreasing iff di+1 ≤ di for any i ∈ N. We refer to infinite decreasing sequences with the
term ω-chains. We write lub(~d) (resp. glb(~d)) for the least upper bound (resp. greatest

lower bound) of the set of elements appairing in ~d. Given a function f : D → D, we

write f(~d) for the sequence resulting from the application of f to the elements of ~d, i.e.

f(~d) = f(d0)f(d1) . . ., and we write fn(d) for the n-th iteration of f starting from d, formally:

f 0(x) = x
fn+1(x) = f(fn(x))

We write ~f(x) for the (not necessarly decreasing) sequence f 0(x)f 1(x)

2.2 Monotonic functions and lattices

Definition 2.2.1 Let (D,≤) be a poset and let f be a function from D to D.

• We say that f is monotonic iff d ≤ d′ =⇒ f(d) ≤ f(d′).

• We say that f is cocontinuous iff, for any ω-chain ~d of elements in D, f(glb(~d)) =

glb(f(~d))

Definition 2.2.2 Let (D,≤) be a poset, and let f be a monotonic function from D to D.
Let d ∈ D, then:

• d is a pre-fixed point of f iff f(d) ≤ d.

• d is a post-fixed point of f iff d ≤ f(d).

• d is a fixed point of f iff d = f(d). We write gfp(f) and lfp(f) referring to, respectively,
the greatest and the least fixed point of f (if they exist).

Definition 2.2.3 A complete lattice is a poset (D,≤) such that, for every X ⊆ D, both
lub(X) and glb(X) exist. The top and bottom elements of (D,≤), lub(D) and glb(D), are
denoted, respectively, by the symbols > and ⊥ when D is clear from the context.

We now state the fundamental Knaster-Tarski fixed point theorem, which basically says
that the set of fixed points of a monotonic endofunction f over a complete lattice is a
complete lattice as well (ordered with the relation of the starting lattice). Hence both gfp(f)
and lfp(f) exist (as the top and bottom elements of F). Furthermore, top and bottom
elements correspond, respectively, to the greatest pre-fixed point and to the least post-fixed
point of f .

Theorem 2.2.4 (Knaster-Tarski fixed point theorem [93]) Let (D,≤) be a complete
lattice, and let f be a monotonic function from D to D. Then (F,≤), where F is the set of
fixed points of f , is a complete lattice. In particular, we have:

lub(F) = lub({x |x ≤ f(x)}) glb(F) = glb({x | f(x) ≤ x})

CHAPTER 2. ORDER THEORY 8

The following lemma recalls some well known facts about functions over complete lattices
and their fixed points. These facts will be used to prove that kind inference in Chapter 11
is decidable. Note that, by Theorem 2.2.4, gfp(f) exists in Items (b) and (c) below.

Lemma 2.2.5 Let (D,≤) be a complete lattice, and let f be a monotonic function from D
to D. Then:

(a) if D is finite, then f is cocontinuous.

(b)

gfp(f) ≤ glb(~f(>))

(c) if f is cocontinuous, then

gfp(f) = glb(~f(>))

Proof. For item (a), let d0, d1, . . . be a decreasing sequence of elements in D. By finiteness
of D, there must exist some n such that, for all n′, dn = dn+n′ . Clearly, f(

d
i di) = f(dn).

By monotonicity, the sequence f(d0), f(d1), . . . is decreasing, and its meet has to be f(dn).

For item (b), we show, by induction on n, that, for all n ≥ 0, gfp(f) ≤ fn(>). The base
case is trivial, since f 0(>) = >. For the induction case, suppose that gfp(f) ≤ fn(>). By
monotonicity of f we have that: gfp(f) = f(gfp(f)) ≤ f(fn(>)) = fn+1(>).

For item (c), see [89].

Chapter 3

Labelled Transition Systems

In this chapter we illustrate Labelled Transition Systems (LTS), and we show how to use
them to give operational semantics to a language for concurrent systems. The material in
this chapter is taken from [89, 2].

3.1 Labelled transition systems

LTS are a very general formalism which can be used to model a variety of concrete systems
(e.g., computing machines). Basically, the idea is that a system can be abstractly described
by a set of states, plus a set of transitions from state to state, which model its behaviour.

Definition 3.1.1 (LTS) A labelled transition system (LTS) is a triple (Q,Σ,−→), where:

• Q is a set (called the set of states),

• Σ is a set (called the set of labels), and

• −→⊆ Q× Σ×Q is a relation (called transition relation).

We often write q
a−→ q′ as a shorthand for (q, a, q′) ∈ −→. An initial LTS is a tuple (Q,Σ,→

, q0), where (Q,Σ,→) is an LTS, and q0 ∈ Q is the initial state.

We now introduce the concept of deterministic LTS, namely those LTSs for which the
next state is uniquely determined by the transition label.

Definition 3.1.2 (Deterministic LTS) An LTS is deterministic when:

∀q, q′, q′′ ∈ Q : ∀a ∈ Σ : q
a−→ q′ ∧ q

a−→ q′′ =⇒ q′ = q′′

9

CHAPTER 3. LABELLED TRANSITION SYSTEMS 10

3.2 Processes

We now introduce an idealized language for the representation of a simple class of LTSs. This
kind of languages are usually referred as Process Algebras or Process Calculi in the literature
[7]. The language in this section is basically the Calculus of Communicating Systems (CCS
for short, [82]), although we omit recursion and relabelling for simplicity. Before giving the
definition of the syntax of processes, we add some structure to the set of labels. In particular
we will assume a special label τ , and an involutive unary operator on non-τ labels.

Definition 3.2.1 (Names, labels, and actions) We define the following sets:

• A, a countably infinite set of names (ranged over by a, b, . . .);

• Ā = {ā | a ∈ A}, the set of co-names;

• L = A ∪ Ā, the set of labels; we extend complementation .̄ to all the elements of L,
and we impose ¯̄a = a for all a ∈ A.

• Σ = L ∪ {τ}, the set of actions (ranged over by α, β, . . .). The action τ models an
internal operation of a process, which is not observable by the environment.

Definition 3.2.2 (Processes) The set Proc of processes is inductively defined as follows:

P,Q ::= 0 (Stuck process)

| α.P (Prefixed process, α ∈ Σ)

| P +Q (Choice)

| P | Q (Parallel composition)

| P \ L (Restriction, L ⊆ L)

Intuitively, 0 represents a stuck process, which does nothing; the process α.P first “fires”
the prefix α, and then proceeds as P ; the process P + Q may proceed either as P or as Q;
the process P | Q behaves as the interleaving of the actions of P and Q, or synchronise dual
actions; the process P \L behaves as P except for actions (and their co-actions) in L, which
are blocked.

Definition 3.2.3 (Semantics of processes) The semantics of a process P is defined as
the initial LTS (P,Proc,Σ,→), where → is the least relation closed under the rules in Fig-
ure 3.1.

CHAPTER 3. LABELLED TRANSITION SYSTEMS 11

α.P
α−→ P

[Pref]
P

α−→ P ′

P +Q
α−→ P ′

[SumL]
Q

α−→ Q′

P +Q
α−→ Q′

[SumR]

P
α−→ P ′

P | Q α−→ P ′ | Q
[ParL]

Q
α−→ Q′

P | Q α−→ P | Q′
[ParR]

P
a−→ P ′ Q

ā−→ Q′

P | Q τ−→ P ′ | Q′
[Com]

P
α−→ P ′ α, ᾱ 6∈ L
P \ L α−→ P ′ \ L

[Res]

Figure 3.1: Operational semantics of processes.

Chapter 4

Kripke Structures, Linear Temporal
Logic and Model checking

Model checking is a formal verification technique for assessing functional properties of sys-
tems [8]. Functional properties considered are usually combinations of safety properties
(something bad never happens, [74]) and liveness properties (something good eventually
happens, [74]). Given a model of the system under consideration, model checking automat-
ically checks whether it satisfies a given property. This is accomplished trough an exaus-
tive exploration of the state space of the model. In this chapter we will briefly illustrate
Kripke Structures (KS for short, [73]) and Linear Temporal Logic (LTL for short, [88]), two
mathematical tools for the specification of, respectively, the behaviour of systems and their
properties.

4.1 Kripke Structures

The intuition behind KSs is very similar to that of LTSs, i.e. to describe the behaviour of
systems trough states and transitions between them. However, the two formalisms promote
two rather different points of view on what is observable about a system. In LTSs the basic
observables are action labels, and the emphasis is (usually) on the interaction capabilities
with an external agent, tipically the execution context or the user. KSs, instead, focus on
the, possibly internal, properties of the system: in KSs transitions are unlabelled, while each
state is associated with the set of atomic propositions which are satisfied by it. However,
the two models can be related through appropriate mappings, see [57], or Definition 6.1.11
of this thesis for an ad hoc transformation of the LTS semantics of contracts into a KS.

Definition 4.1.1 (Kripke structure[51]) Let AP be a set of atomic propositions. A
Kripke structure is a triple (S,−→, L), where:

• S is a set of states;

• −→⊆ S × S is a transition relation such that, for all s ∈ S, there is s′ ∈ S with s −→ s′;

12

CHAPTER 4. MODEL CHECKING 13

• L : S → 2AP, the labelling function, associates with each state the atomic propositions
satisfied by it.

Given a Kripke strucure (S,−→, L) and a state s0 ∈ S, we define the set of maximal traces
starting from s0, Paths(s0), as follows:

{L(s0)L(s1) · · · | ∀i > 0. si−1 → si}

4.2 Linear temporal logic

LTL is a propositional temporal logic [62], able to specify linear time properties. Very
roughly, temporal logics are logical formalisms used for the representation of assertions about
time. Time here is dealt with abstractly, without explicit time-stamps, enabling the reasoning
about the causal dependencies between events but not about numerical timing constraints.
LTL, and linear time properties in general, are based on the assumption that time is an
infinite line. Indeed, a linear time property is denoted by a set of traces, specifying all and
only the allowed executions [8].

LTL can express statements like “the system will eventually leave the critical section”,
or “the system is always in a not deadlock state”, with formulae ♦crit and �¬deadlock,
where crit and deadlock are atomic propositions holding, respectively, in critical section
states and deadlock states. Modalities � and ♦ are not primitive in LTL, as they can be
derived from connective U (until). Roughly, the formula φ1 U φ2 holds in those states which
satisfy φ1 for a finite numer of steps (possibly 0) and then satisfy φ2 for ever. Another useful
modality is © (next): ©φ is satisfied by those states which satisfies φ at the next step.

Definition 4.2.1 (LTL syntax) The syntax of LTL formulae is given by the following pro-
ductions:

φ ::= true
∣∣ a

∣∣ φ1 ∧ φ2

∣∣ ¬φ ∣∣ © φ
∣∣ φ1 U φ2

where a ∈ AP. The other boolean connectives can be derived in the usual way. The modalities
♦ and � are derivable as follows:

♦φ
def
= true U φ �φ

def
= ¬♦¬φ

We now define when an infinite sequence of AP subsets satisfies an LTL formula. This is
instrumental for the definition of the satisfaction relation over states of KSs.

Definition 4.2.2 (LTL semantics over traces) Given a set S, we define the set Sω as
the set of infinite sequences of elements in S:

Sω
def
= {σ0σ1 . . . | ∀i ∈ N : σi ∈ S}

Given an infinite sequence σ = σ0σ1 . . ., we denote with σ[i . . .] the infinite suffix of σ starting
from i, i.e. σ[i . . .] = σiσi+1 We define the satisfaction relation over infinite traces as

CHAPTER 4. MODEL CHECKING 14

the least relation between (2AP)ω and LTL formulae satisfying:

σ |= true

σ |= a iff a ∈ σ0

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= ¬φ iff σ 6|= φ
σ |= ©φ iff σ[1 . . .] |= φ
σ |= φ1 U φ2 iff ∃j ≥ 0∀i < j : σ[i . . .] |= φ1 and σ[j . . .] |= φ2

Definition 4.2.3 (LTL semantics over states) Given a Kripke structure M = (S,−→
, L), we define the satisfaction relation over states s ∈ S as follows:

s |= φ iff ∀σ ∈ Paths(s) : σ |= φ

Chapter 5

Timed Automata

Timed automata are a classical formalism for modelling real-time systems, introduced by
Alur and Dill in the early 90’s [3], and extended in many subsequent works [99]. Since then,
timed automata have become widely used both in the industry and in the academia, also
thanks to successful tools (most notably Uppaal [31]), which enable the modelling and veri-
fication of realistic timed systems. Roughly, a timed automaton (TA) is a finite automaton,
annotated with timing contraints and reset predicates using real valued clocks. We refer to
[32, 99, 2, 8] for more details about the material in this chapter.

5.1 Basic definitions

Before formalising TA, we introduce some auxiliary notions and notation. Let C be a set of
clocks, ranged over by t, t′, . . . and let d, d′, . . . range over the set N of natural numbers. We
use R, T , . . . ⊆ C to range over sets of clocks. Let A be a set of action names. We define
the set of output action A! = {a! | a ∈ A} and the set of input actions A? = {a? | a ∈ A}. We
denote with Lτ = A! ∪ A? ∪ {τ} the set of labels, ranged over by `τ , `τ

′,

Definition 5.1.1 (Guard) We define the set GC of guards over clocks C as follows:

g ::= true
∣∣ ¬g ∣∣ g ∧ g

∣∣ t ◦ d
∣∣ t − t′ ◦ d where ◦ ∈ {<,≤,=,≥, >}

The semantics of guards is defined in terms of clock valuations : they are functions which
associate each clock in C with a value in R≥0. These values are not associated with a
particular unit of time (i.e., seconds, hours, . . .); so, we will call clocks values generically
time units (abbreviated t.u.).

Definition 5.1.2 (Clock valuation) We denote with V[C] : C → R≥0 the set of clock
valuations over C. We write V as a shortcut for V[C] when C is clear from the context. We
use ν, η, . . . to range over V, and ν0, η0, . . . to denote the valuations mapping each clock to 0.
We use K,K′ , . . . to range over subsets of V.

15

CHAPTER 5. TIMED AUTOMATA 16

Definition 5.1.3 (Time increment and reset) We write ν + δ for the clock valuation
which increases ν by δ, i.e., for all t ∈ C:

(ν + δ)(t) = ν(t) + δ

For a set R ⊆ C, we write ν [R] for the reset of the clocks in R, i.e., for all t ∈ C:

ν [R](t) =

{
0 if t ∈ R
ν(t) otherwise

When R is a singleton, e.g. R = {x}, we shall usually write ν [x] instead of ν [{x}].

Definition 5.1.4 A set of clock valuations K is said past closed if and only if:

ν + δ ∈ K =⇒ ν ∈ K

Definition 5.1.5 (Semantics of guards) For all guards g, we define the set of clock val-
uations JgK inductively as follows, where ◦ ∈ {<,≤,=,≥, >}:

JtrueK = V J¬gK = V \ JgK Jg1 ∧ g2K = Jg1K ∩ Jg2K

Jt ◦ dK = {ν | ν(t) ◦ d} Jt − t′ ◦ dK = {ν | ν(t)− ν(t′) ◦ d}

A guard g is said past closed when JgK is past closed.

5.2 Timed automata

We are now ready to give the definition of timed automata. They are composed by a finite
set of locations, one of which is the initial location. Every location is associated with a
past closed guard, called invariant, which specifies when the control can be in that location.
A subset of locations, the urgent locations, are used to model states that “do not let time
pass”, i.e. force the next transition to be a discrete action. Urgent locations do not add
expressive power to the model, since urgency can be specified through invariants [31], and
often do not appair in definitions of TA. However, we prefer to have them explicitly, as this
will simplify the technical threatment in section 12.1. Locations are connected by edges.
Basically, edges have a similar role to transition functions of non-deterministic finite states
automata, further enriched with a guard specifing when that transition is enabled, and with
a set of clocks which are reset (exactly) when the transition is taken.

Definition 5.2.1 (Timed automaton) A TA is a tuple A = (Loc ,Locu , l0,E, I) where:
Loc is a finite set of locations; Locu ⊂ Loc is the set of urgent locations; l0 ∈ Loc is the
initial location; E ⊆ Loc × Lτ × GC × 2C × Loc is a set of edges; and I : Loc → GC is the
invariant function. We require that, for all locations l ∈ Loc, I(l) is past closed.

The semantics of TA is defined in terms of timed LTSs. These are LTSs much alike those
in Definition 3.1.1, except for the fact that, besides actions, labels also include time delays.

CHAPTER 5. TIMED AUTOMATA 17

Definition 5.2.2 (Timed LTS) A timed labelled transition system (TLTS) is a triple
(Q, Lδ,−→), where:

• Q is a set (called the set of configurations),

• Lδ ⊇ R≥0 is a set (called set of labels, and ranged over by α, β, . . .),

• −→⊆ Q× Lδ ×Q is a relation (called transition relation).

An initial TLTS is a tuple (Q, Lδ,→, q0), where (Q, Lδ,→) is a TLTS, and q0 ∈ Q is the
initial configuration.

We are now ready to define the semantics of TA. For the moment, we will assume a TA
which runs in isolation, i.e. without interacting with other TA.

Definition 5.2.3 (Semantics of timed automata) Let A = (Loc ,Locu , l0,E, I) be a TA
over a set of clocks C. We define the initial TLTS JAK as follows:

JAK = (Loc × V[C], {τ} ∪ R≥0, −→, (l0, ν0))

where the transition relation −→ is specified by the following two rules:

1. (l, ν)
`τ−→ (l′, ν ′) if (l, `τ , g, R, l

′) ∈ E ∧ ν ∈ JgK ∧ ν ′ = ν [R] ∈ JI(l′)K

2. (l, ν)
δ−→ (l, ν + δ) if ν + δ ∈ JI(l)K ∧ l 6∈ Locu

A configuration (l, ν) is reachable when (l0, ν0) −→∗ (l, ν).

We now comment the two rules in Definition 5.2.3:

• rule 1 allows to perform an action. This does not involve any time delay, but after
the action has been performed, all the clocks in R are reset to zero. The action is
permitted if the guard g on the edge is satisfied by the current clock valuation, and
the invariant I(l′) of the target location is satisfied after the clock reset.

• rule 2 allows time to pass, provided that this does not break the invariant of the current
(not urgent) location. Note that all the clocks progress with the same pace.

5.3 Networks of timed automata

We now introduce networks of TA, i.e. sets of TA which can interact by synchronizing on
channels via input/output actions.

Definition 5.3.1 (Networks of TA) A network of TA is a finite set of TA (over a given
set of clocks C). We denote with A1 | · · · | An the network composed by A1, . . . , An.

CHAPTER 5. TIMED AUTOMATA 18

We now define the semantics of networks of TA. The configurations of a network A1 | · · · |
An are tuples of the form (l1, . . . , ln, ν), where l1, . . . , ln represent the current locations in the
automata, and ν is an evaluation of all the clocks in the network. Similarly to the semantics
of isolated TA (Definition 5.2.3), the semantics of a network is a TLTS, whose states are
configurations, and labels are internal actions, delays, and channels (for synchronisations).

Definition 5.3.2 (Semantics of networks of TA) Let Ai = (Loci,Locu
i, l0

i,Ei, Ii) be TA
over a set of clocks C, for i ∈ 1..n. We define the behaviour of the network N = A1 | · · · | An
as the initial TLTS JNK = (Q, Lδ,→, q0), where:

• Q = Loc1 × · · · × Locn × V[C]

• Lδ = C ∪ {τ} ∪ R≥0

• → is the relation defined in Figure 5.1

• q0 = (l0
1, . . . , l0

n, ν0).

(lk, τ , g, R, l
′
k) ∈ Ek ν ∈ JgK ν [R] ∈ J

∧
i∈{1..n}\{k} Ii(li)K ν [R] ∈ JIk(l

′
k)K

(l1, . . . , lk, . . . , ln, ν)
τ−−−−→ (l1, . . . , l

′
k, . . . , ln, ν [R])

[Tau]

ν + δ ∈ J
∧
i∈{i..n} Ii(li)K l1 6∈ Locu

1 . . . ln 6∈ Locu
n

(l1, . . . , ln, ν)
δ−−−−→ (l1, . . . , ln, ν + δ)

[Delay]

(lh, a!, gh, Rh, l
′
h) ∈ Eh

(lk, a?, gk, Rk, l
′
k) ∈ Ek

ν ∈ Jgh ∧ gkK ν [Rh ∪Rk] ∈
J
∧
i∈{1..n}\{h,k} Ii(li)K
∩ JIh(l

′
h)K ∩ JIk(l

′
k)K

(l1, . . . , lh, . . . , lk, . . . , ln, ν)
a−−−−→ (l1, . . . , l

′
h, . . . , l

′
k, . . . , ln, ν [Rh ∪Rk])

[Com]

Figure 5.1: Transition relation of networks of TA.

Rule [Tau] states that one of the TA can take an internal edge, provided that its guard is
satisfied, and that the invariants of all the locations in the target configuration are satisfied.
Rule [Delay] allows time to elapse, at the same pace for all TA in the network, provided that
the invariants at the current locations of all TA are satisfied after the delay. Rule [Com] allows
two TA to synchronize on a channel a, provided that the following three conditions hold:
(i) at their current locations, the two TA can fire complementary actions (such as a! and
a?); (ii) the clock valuation satisfies the guards of those edges; (iii) the invariants of the
target locations are satisfied after the clock reset.

If the current locations of a state have no outgoing edges, then such state is called
success, while a state is called deadlock if it is not success and no action-transitions are
possible (neither in the current clock valuation, nor in the future).

CHAPTER 5. TIMED AUTOMATA 19

Definition 5.3.3 (Deadlock freedom) A location of a TA is called success when it has
not outgoing edges. Let s be a network state. Then, s is called success when all its locations
are success. We say that s is deadlock whenever: (i) s is not success, and (ii) 6 ∃δ ≥ 0, aτ ∈
A ∪ {τ} : s

δ−→N
aτ−→N . A network is deadlock-free if none of its reachable states is deadlock.

5.4 Regions and zones

This section illustrates the concepts of regions and zones, two fundamental tools for the
algorithmic verification of clock-based timed systems. Regions are sets of clock valuations,
parametric w.r.t. a natural number d (choosen as the maximal constant in the TA under
analysis) which give rise to a finite partition of V [3]. The equivalence relation induced by
this partiton (seen as a set of equivalence classes) is particularly meaningful in the context of
timed automata. Indeed, given two clock valuations ν, ν ′ belonging to the same region, the
configurations of any TA (l, ν) and (l, ν ′) are time abstract bisimilar [2] and satisfy the same
TCTL assertions [8]. Without going into details, regions can be used to transform the infinite
states LTS semantics of TA into untimed finite states LTSs, called region graphs, amenable
of verification through standard model checking techniques. However, region graphs are
usually too fine grained for the purposes of algorithmic analysis, as the number of regions
grows exponentially in the number of clocks used. Thus, state of the art model checkers of
TA are based on different tools, namely zones, which are basically unions of regions. The
use of zones gives a more compact rappresentation of the symbolic state space, leading to
more efficient (both in time and space) algorithms for the verification of TA, in the average
case [32].

We now formally define the concepts discussed above. Regions were first introduced in
[3], but without considering diagonal contraints. The definition below is an adaptation of
the one in [68], which further introduced zones (called regions there) for the first time.

Definition 5.4.1 (Zones and regions) For all d ∈ N, a d-zone1 is a set of clock valua-
tions K such that there exists a guard g, with all constants bounded by d, and JgK = K.
A d-region is a minimal nonempty d-zone, i.e. a nonempty d-zone K such that, for any
nonempty d-zone K′, K′ ⊆ K =⇒ K = K′.

Zones are closed under some useful operations on set of clocks valuations, past and inverse
reset. The past and the inverse reset of a set K are composed by those clock valuations which
will be part of K, respectively, after some (possibly none) idling and after resetting a given
set of clocks.

Definition 5.4.2 (Past and inverse reset) For all sets K of clock valuations, the set of
clock valuations ↓ K (the past of K) and K[T]−1 (the inverse reset of K) are defined as:

↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K} K[T]−1 = {ν | ν [T] ∈ K}

1The term “zone” is often referred to convex sets of clocks, while our definition includes non-
convex ones.

Part II

Honesty in contract-oriented
computing

20

Chapter 6

Contracts

6.1 Session types as contracts

In this chapter we describe the contract model used in this thesis, namely an adaptation of
binary session types [70]. We introduce a novel operational semantics (Definition 6.1.2) for
them, more suited to contract-oriented computing with respect to the standard semantics
of [10]. In particular, our semantics simplifies the threatment of monitoring and culpa-
bility, which are crucial notions of contract-oriented computing. Session types are terms
of a process algebra featuring internal/external choice, and recursion. Hereafter, the term
contract will always be used as a shorthand for binary session type. Compliance between
contracts (Definition 6.1.3) ensures their progress, until a successful state is reached. We
show that compliance can be decided by model-checking finite-state systems (Lemma 6.1.6),
and we provide an implementation in Maude. We prove that in each non-final state of a
contract there is exactly one participant who is culpable, i.e., expected to make the next
move (Lemma 6.1.9). Furthermore, a participant can always recover from culpability in a
bounded number of steps (Lemma 6.1.10).

6.1.1 Syntax

We assume a set of participants (ranged over by A,B, . . .), a set of branch labels (ranged over
by a, b, . . .), and a set of sorts ranged over by T, T′, . . . (e.g. int, bool, unit). Each sort T

is populated by a set of values, ranged over by v, v′, . . .; as usual, we write v : T to indicate
that v has sort T.

Definition 6.1.1 (Contracts) Contracts are binary session types, i.e. terms defined by the
grammar:

c, d ::=
⊕
i∈I

ai!Ti . ci
∣∣ ∑

i∈I

ai?Ti . ci
∣∣ recX . c

∣∣ X

where

1. the index set I is finite,

21

CHAPTER 6. CONTRACTS 22

2. the labels ai in the prefixes of each summation are pairwise distinct, and

3. recursion variables X are prefix-guarded.

An internal sum
⊕

i ai!Ti . ci allows a participant to choose one of the labels ai, to pass
a value of sort Ti, and then to behave according to the branch ci. Dually, an external sum∑

i ai?Ti . ci allows to wait for the other participant to choose one of the labels ai, and then
to receive a value of sort Ti and behave according to the branch ci. Empty internal/external
sums are identified, and they are denoted with 0, which represents a success state wherein
the interaction has terminated correctly.

We use the (commutative and associative) binary operators to isolate a branch in a sum:
e.g., c = a!T . c′⊕ c′′means that c has the form

⊕
i∈I ai!Ti . ci and there exists some i ∈ I

such that a!T . c′ = ai!Ti . ci. Note that prefixing operator . has more precedence than sum
operators ⊕ and +. Hereafter, we will omit the unit sort and the trailing occurrences of 0,
and we will only consider contracts without free occurrences of recursion variables X .

6.1.2 Semantics

While a contract describes the intended behaviour of one of the two participants involved in a
session, the behaviour of two interacting participants A and B with, respectively, contracts c
and d is modelled by the contract configuration A : c | B : d. We specify in Definition 6.1.2 an
operational semantics of such contract configurations, where the two participants alternate in
firing actions. To do that, we extend the syntax of Definition 6.1.1 with the term rdy a?v . c,
which models a participant ready to input a value v in a branch with label a, and then to
continue as c. In other words, rdy a?v acts as a one-position buffer shared between the two
participants.

Definition 6.1.2 (Semantics of contract configurations) A contract configuration γ
is a term of the form A : c | B : d, where A 6= B and the syntax of contracts is extended
with terms rdy a?v . c. We postulate that at most one occurrence of rdy is present, and if so
rdy is at the top-level. We define a congruence relation ≡ between contracts as the least equiv-
alence including α-conversion of recursion variables, and satisfying recX . c ≡ c{recX.c/X}.
Also, we assume that A : c | B : d is equivalent to B : d | A : c. The semantics of contract
configurations is modelled by the labelled transition relation −→→, which is the smallest relation
closed under the rules in Figure 6.1 and under ≡. We denote with −→→∗ the reflexive and
transitive closure of −→→. A computation (of an initial configuration γ0) is a possibly infinite
sequence of transitions γ0 −→→ γ1 −→→ · · · .

In rule [IntExt], A can perform any of the actions in the intersection between its internal
sum labels, and the external sum labels of B; then, B is forced to commit to the corresponding
branch in its external sum. This is done by marking such a committed branch with rdy a?v,
while discarding all the other branches; the transition label A : a!v models A selecting the
branch with label a, and passing value v. Participant B can then perform his action in
the subsequent step, by rule [Rdy]. Note that this semantics causes an alternation between

CHAPTER 6. CONTRACTS 23

A : (a!T . c ⊕ c′) | B : (a?T . d + d′)
A:a!v−−−→→ A : c | B : rdy a?v . d if v : T [IntExt]

A : rdy a?v . c | B : d
A:a?v−−−→→ A : c | B : d [Rdy]

Figure 6.1: Semantics of contract configurations (symmetric rules for B actions omitted)

output and input actions, not present in other semantics of sessions types (for instance, the
one in [10]). This alternation allows for a “contractual” interpretation of session types: when
a transition with label A : · · · is enabled, it means that A is in charge to perform the next
contractual action. In particular, A is in charge either when she has an internal choice, or she
is committed to a branch of an external choice (with rdy). Observe that this interpretation
would not fit with standard CCS-style synchronisation, since the latter does not allow to
distinguish A’s turn in sending from B’s turn in receiving.

6.1.3 Compliance

We now define a notion of compliance between contracts. The intuition is that if a contract c
is compliant with a contract d, then in all the configurations of a computation of A : c | B : d,
whenever a participant wants to choose a branch in an internal sum, the other participant
always offers the opportunity to do it. Compliance guarantees that whenever a computation
of A : c | B : d becomes stuck, then both participants have reached the success state 0.

Definition 6.1.3 (Compliance) We say that a configuration γ is safe iff either:

(i) γ = A :
⊕

i∈I ai!Ti . ci | B :
∑

j∈J aj?Tj . dj with ∅ 6= I ⊆ J

or (ii) γ = A : rdy a?v. c | B : d

or (iii) γ = A : 0 | B : 0

Then, we say that c and d are compliant (in symbols, c ./ d) whenever, for any γ :

A : c | B : d −→→∗ γ =⇒ γ safe

We observe that the notion of compliance in Definition 6.1.3 is equivalent to that of
progress in [18, 9, 24]. This can be proved as in [16], by exploiting the fact that the alternating
semantics of session types is turn-bisimilar to the standard LTS semantics (as shown in
Lemma 5.10 in [16]).

Example 6.1.4 Let γ = A : c | B : d, where c = a! . c1 ⊕ b! . c2 and d = a? . d1 + c? . d2.
If participant A internally chooses label a, then γ will take a transition to A : c1 | B :
rdy a?v. d1, for some v. Suppose instead that A chooses b, which is not offered by B in

his external choice. In this case, for all v, γ 6 A:b!v−−−→→, and indeed γ is not safe according
to Definition 6.1.3. Therefore, c and d are not compliant.

CHAPTER 6. CONTRACTS 24

A : (a . c ⊕ c′) | B : (co(a) . d + d′)
A:a−−→→? A : c | B : rdy co(a) . d [AbsIntExt]

A : rdy a . c | B : d
A:a−−→→? A : c | B : d [AbsRdy]

Figure 6.2: Semantics of value-abstract contract configurations (symmetric rules for B actions
omitted)

The following lemma states that each contract has a compliant one.

Lemma 6.1.5 For all contracts c, there exists some d such that c ./ d.

Proof. See appendix A.1 on page 104.
Definition 6.1.3 cannot be directly exploited as an algorithm for checking compliance,

as the transition system of contracts is infinite state (and infinitely branching), because of
values v in transition labels and in states. However, note that values do not play any role
in the dynamics of contracts, except for their occurrence in transition labels (which will be
exploited later on in Section 7.1). Therefore, for the sake of checking compliance we can
consider an alternative semantics of contracts, where we abstract from values (Figure 6.2).
The configurations in this semantics are terms of the form A : α?(c) | B : α?(d), where the
abstraction α? encodes sorts in branch labels, and removes values from rdy. For instance,
a!T. c is abstracted as (a, T)!. α?(c), while rdy a?v. c is abstracted as rdy (a, T)?. α?(c) when-
ever v : T. The branch labels of value-abstract contracts (ranged over by a, b, . . .) are terms
of the form (a, T)◦, where ◦ ∈ {!, ?}. We postulate an involution operator co(·) of value-
abstract branch labels, satisfying co((a, T)?) = (a, T)! and co((a, T)!) = (a, T)?. Further
details about the definition of value-abstract contracts and of the abstraction function α?

are provided in Appendix A.2. In the following we will range over vale-abstract contracts
and configurations with the same symbols of contracts and configurations, namely c, d, . . .
and γ, γ ′, When refering to non value-abstract contracts, we will often write concrete
contracts.

The semantics of value-abstract contracts leads to a finite state system, so it provides
us with a model-checkable characterisation of compliance (see Section 6.1.6 for some imple-
mentation details).

Lemma 6.1.6 For all contracts c, d:

c ./ d ⇐⇒ (∀γ. A : α?(c) | B : α?(d) −→→?
∗ γ =⇒ γ safe)

Proof. See appendix A.1 on page 106.

Example 6.1.7 (Online store) An online store A has the following contract: buyers can
iteratively add items to the shopping cart (addToCart); when at least one item has been
added, the client can proceed to checkout. Then, the client can either cancel the order, or

CHAPTER 6. CONTRACTS 25

pay. In the latter case, the store can accept the payment (ok), or decline it (no, in which
case it lets the user try again), or it can abort the transaction. Such a contract may be
expressed as the session type cA below:

cA = addToCart?int . (recZ . addToCart?int . Z + checkout? . cpay)

where cpay = recY .
(
pay?string . (ok! ⊕ no! . Y ⊕ abort!) + cancel?

)
A possible contract of some buyer B could be expressed as follows:

cB = recZ .
(
addToCart!int . Z ⊕ checkout! . c′pay

)
where c′pay = pay!string .

(
ok? + no? . cancel! + abort?

)
The above contracts are not compliant: in fact, cB can choose to perform the branch checkout

before doing an addToCart. Instead, the contract c′B = addToCart!int . cB is compliant with
cA.

6.1.4 Culpability

We now tackle the problem of determining who is expected to make the next step in an
interaction. We call a participant A culpable in γ if she is expected to perform some actions
so to make γ progress. Note that culpability does not imply a permanent status of contract
configurations; instead, it is a transient notion, because (as formally stated in Lemma 6.1.10),
a participant can always move out from this state. Note that definitions and results of this
section refer to not value abstract contracts, altough they can be easily lifted to the value
abstract case.

Definition 6.1.8 (Culpability) A participant A is culpable in γ (A ˙ȧγ in symbols) iff

γ
A:a◦v−−−→→ for some a, v and ◦ ∈ {!, ?}. When A is not culpable in γ we write A ˙˙̀ γ .

Lemma 6.1.9 below establishes that, when starting from a configuration of compliant
contracts, exactly one participant is culpable in all subsequent configurations (the culpable
participant can change during the interaction). The only exception is A : 0 | B : 0, which
represents a successfully terminated interaction, where nobody is culpable.

Lemma 6.1.9 (Unique culpable) Let c ./ d. If A : c | B : d −→→∗ γ , then either γ = A :
0 | B : 0, or there exists a unique culpable in γ .

Proof. See appendix A.1 on page 106.
The following lemma states that a participant is always able to recover from culpability

by performing a bounded number of actions.

Lemma 6.1.10 (Contractual exculpation) Let γ = A : c | B : d, with c ./ d, and let
γ −→→∗ γ ′. Then:

1. γ ′ 6−→→ =⇒ A ˙˙̀ γ ′ and B ˙˙̀ γ ′

CHAPTER 6. CONTRACTS 26

2. A ˙ȧγ ′ =⇒ ∀γ ′′ : γ ′ −→→ γ ′′ =⇒

{
A ˙˙̀ γ ′′, or

∀γ ′′′ : γ ′′ −→→ γ ′′′ =⇒ A ˙˙̀ γ ′′′

Proof. Item 1 follows directly from Definition 6.1.8.

For item 2, we proceed by cases on the rule used to deduce γ ′ −→→ γ ′′ (the symmetric cases
are omitted).

[IntExt] We have that γ ′ = A : a!T . c′⊕ c′′ | B : a?T . d′ + d′′, and γ ′′ = A : c′ | B : rdy a?v. d′.
Now, γ ′′ can only take a move of B (by rule [Rdy]). Therefore, A ˙˙̀ γ ′′.

[Rdy] We have that γ ′ = A : rdy a?v. c′ | B : d′, and γ ′′ = A : c′ | B : d′. Now we have two
further subcases. If A ˙˙̀ γ ′′, then we have the thesis. Otherwise, if A ˙ȧγ ′′, since c′ and
d′ are rdy-free, then γ ′′ must have the form A : a!T . c′⊕ c′′ | B : a?T . d′ + d′′. By rule

[IntExt] we have that, if γ ′′
A:b!v−−−→→ γ ′′′ for some b and v, then γ ′′′ will have the form

A : c′′′| B : rdy b?v. d′′′, for some c′′′, d′′′. Therefore, A ˙˙̀ γ ′′′.

Item (1) of Lemma 6.1.10 says that no participant is culpable in a stuck configuration.
Item (2) says that if A is culpable, then she can always exculpate herself in at most two
steps: one step if A has an internal choice, or a rdy followed by an external choice; two steps
if A has a rdy followed by an internal choice.

6.1.5 Kripke structure semantics of contracts

In this section we briefly describe a simple Kripke structure semantics of contract con-
figurations, useful for assessing properties of them through model checking, thus enabling
participants to infer informations about the sessions they are engaged with. This knowledge
can then be used to make decisions at runtime. Properties are expressed as LTL formulae,
with atomic propositions composed of value abstract labels. The inuition is that an atomic
proposition holds in those states which are reached firing that label (in the value abstract
semantics). In order to achieve the above, we simply append the last fired label to each
contract configuration (or the dummy label ε to the initial state).

More formally, fix AP as the set whose elements are terms of the form (a, T)◦, where a is
a branch label, T is a sort, and ◦ ∈ {!, ?}. We let `, `′, . . . range over AP ∪ {ε}, where ε is a
special label not in AP.

Definition 6.1.11 We define the kripke structure TS = (Σ,→, L) as follows:

• Σ = {(`, γ) | ` ∈ AP ∪ {ε}, and γ is a configuration of compliant contracts},

• the transition relation → ⊆ Σ× Σ is defined by the following rules:

(`, γ) → (`, γ) if γ 6−→→
(`, γ) → ((a, T)◦, γ ′) if γ

A:a◦v−−−→→ γ ′ and v : T

CHAPTER 6. CONTRACTS 27

• the labelling function L : Σ→ 2AP is defined as:

L((`, γ)) =

{
{`} if ` ∈ AP;

∅ otherwise.

Then, we write γ ` φ whenever (ε, γ) |= φ holds in LTL.

The last line of Definition 6.1.11 explains the use of the symbol ε: it is a dummy label,
needed to decorate the initial state of a trace. Note that we have added a self loop to
terminal states. This transformation is standard, as terminal states are forbidden in Kripke
Structures.

6.1.6 Maude implementation

In this section we describe our executable specification of (value abstract) contracts in Maude,
aimed to be a practical tool for compliance and culpability checking. Maude is a high-
performance reflective language and system supporting both equational and rewriting logic
specification and programming for a wide range of applications [52]. Here we are interested
in using Maude as a semantic framework for concurrent systems. For instance, we exploit
Maude equational logic to express structural equivalence and basic term transformations
(like, e.g., variable substitution), and rewriting rules to model labelled transition semantics.
The Maude features will be introduced as needed.

We use sorts to specify the syntactic categories of contracts, some of which are linked by
the subsort relation. Sorts and subsorts for contracts are defined as follows:

sorts UniContract Participant AdvContract BiContract IGuarded EGuarded IChoice
EChoice Var Id RdyContract .

sorts BType InAction OutAction IOAction ActName .
subsort Id < IGuarded < IChoice < UniContract < RdyContract .
subsort Id < EGuarded < EChoice < UniContract < RdyContract .
subsort Var < UniContract .
subsort InAction < IOAction .
subsort OutAction < IOAction .

The sort UniContract describes session types as in Definition 6.1.1; here we are speci-
fying internal/external sums as commutative and associative binary operators between sin-
gleton internal/external sums; the neutral element is the only inhabitant of sort Id. The
sorts IGuarded and EGuarded represent singleton internal/external sums, respectively, while
IChoice and EChoice are for arbitrary internal/external sums. Id represents empty sums,
which is a subsort of both internal/external sums. RdyContract is for contracts which may
have a top-level rdy, AdvContract is the sort of contracts advertised by some participant,
and BiContract is for contract configurations.

Sorts are inhabited by operators, which are defined by the keyword op, with the general
schema:

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort> [<OperatorAttributes>] .

CHAPTER 6. CONTRACTS 28

where <OpName> is the name of the operator, <Sort-1> ... <Sort-k> is the (possibly empty)
list of sorts of the operator parameters, <Sort> is the sort of the result and <OperatorAttributes>

is an optional parameter for specifying the operator attributes. Constants are represented
as operators without parameters. The special symbol in OpName is used for expressing
operators in mixfix form. The operator attribute prec establishes the operator precedence.
The attribute ctor is used to specify constructors, while operators declared without ctor

are defined functions. The attribute frozen restricts the application of rewriting rules (to
be specified later) at the top-level, only. The attributes comm and assoc are used to specify,
respectively, commutative and associative operators, while the attribute id:<t> declares the
neutral element.

The Maude specification of the contract syntax is the following:

op _!_ : ActName BType -> OutAction [prec 20 ctor] .
op _?_ : ActName BType -> InAction [prec 20 ctor] .
op 0 : -> Id [ctor] .
op _._ : InAction UniContract -> EGuarded [frozen ctor] .
op _._ : OutAction UniContract -> IGuarded [frozen ctor] .
op _+_ : EChoice EChoice -> EChoice [frozen comm assoc id: 0 ctor] .
op _(+)_ : IChoice IChoice -> IChoice [frozen comm assoc id: 0 ctor] .
op ready _._ : InAction UniContract -> RdyContract [frozen ctor] .
op rec _._ : Var IChoice -> UniContract [frozen ctor] .
op rec _._ : Var EChoice -> UniContract [frozen ctor] .
op _ says _ : Participant RdyContract -> AdvContract [ctor] .
op _ | _ : AdvContract AdvContract -> BiContract [comm ctor] .

Operations between terms can be expressed by means of equations (with keyword eq).
They are interpreted by the Maude engine as simplification rules (applied left-to-right).
In order to be computationally meaningfull, they are required to be Church-Rosser and
terminating.

For instance, the involution co(·) on branch labels is specified as follows:

op co : IOAction -> IOAction .
eq co(a ! T) = (a ? T) .
eq co(a ? T) = (a ! T) .

To model the labelled transition semantics of contract configurations, we will exploit
Maude rewriting rules, which specify local concurrent transitions of terms. Unlike equations,
rewriting rules are not required to be Church-Rosser nor terminating. Rewriting rules can be
either unconditional (keyword rl), or conditional (keyword crl), with the following schema:

rl [<Label>] : <Term-1> => <Term-2> [<StatementAttributes>] .

crl [<Label>] : <Term-1> => <Term-2>
if <Condition-1> /\ ... /\ <Condition-k> [<StatementAttributes>] .

The evaluation strategy adopted by Maude is to first apply equations to reduce terms in
normal form (which exists and is unique by the assumption of Church-Rosser and terminating
equations), and then to apply rewriting rules. Systems specified with rewriting rules can be
verified with the Maude LTL model-checker [61], and with the Maude search capabilities.

CHAPTER 6. CONTRACTS 29

The semantics of contract configurations is an almost-literal translation of that in Fig-
ure 6.1 using rewriting rules. A minor difference is that, since transitions in rewritings are
unlabelled, we decorate states with labels, as done in [97]. Concretely, this is done by spec-

ifying the labelled transition γ
µ−→→? γ

′ as the unlabelled transition γ −→→? {µ}γ ′. In Maude,
this is specified as follows:

sort LBiContract .
subsort BiContract < LBiContract .
sort Label .

op _ says _ : Participant IOAction -> Label [ctor] .
op {_}_ : Label LBiContract -> LBiContract [frozen ctor] .

crl [AbsIntExt] : A says ol . c (+) ci | B says il . d + de
=> { A says ol } A says c | B says ready co(ol) . d
if co(il) = ol .

rl [AbsRdy] : A says ready il . c | B says d =>
{ A says il } A says c | B says d .

Note that, since the operator contructor for LBiContract has the frozen attribute, the
above rewriting rules can be directly used for computing one step successors, only. Sequences
of transitions can be obtained similarly to [97]: we define the constructor < >, and we provide
it with the rewriting rule [Rifl] below, which computes one step successors for decorated
states too, and keeps track of the last label, only. This choice is motivated by the following
reasons: first, keeping track of the whole trace might make the set of states in the transition
system infinite; second, the last label is needed to correctly implement queries on contract
configurations (see Definition 6.1.11). The Maude code for the transition relation is the
following:

sort TBiContract .
op <_> : LBiContract -> TBiContract [frozen] .
op dummy : -> Label [ctor] .

eq < g > = < { dummy } g > .

crl [Rifl] : < { l’} g > => < { l } g’ > if g => { l } g’ .

The compliance relation is defined as suggested by Lemma 6.1.6, exploiting the Maude
LTL model-checker. Basically, we model the predicate safe as an atomic proposition, defined
by its satisfaction relation |= :

op safe : -> Prop .
op isSafe : BiContract -> Bool .

eq isSafe(A says 0 | B says 0) = true .
ceq isSafe(A says IS | B says ES) = IS subset ES if IS =/= 0 .
eq isSafe(A says ready il . c | B says d) = true .
eq isSafe(C:BiContract) = false [owise] .

eq < { l } g > |= safe = isSafe(g) .

CHAPTER 6. CONTRACTS 30

where Prop is the built-in sort for propositions, the attribute owise (for otherwise) tells
Maude to apply the equation only if the other ones do not apply, and ceq is the keyword for
conditional equations.

The compliance relation c |X| d is implemented by verifying that the configuration A :
c | B : d satisfies the LTL formula [] safe (i.e., “globally” safe). This is done through the
Maude LTL model checker.

op _|X|_ : UniContract UniContract -> Bool .
eq c |X| d = modelCheck(< Al says c | Bo says d >, ([] safe)) == true .

We implement culpability as follows. The predicate {l} g |= --A-->> holds whenever
{l} g has been reached by some transitions of A (i.e. l is of the form A says a). Therefore,
according to Definition 6.1.8, participant A is culpable in a configuration g if proposition
--A-->> is satisfied by an immediate successor state of g. However, the value-abstract se-
mantics of contracts (Figure 6.2) guarantees that this holds for all immediate successor state
or none fo them. So, the participant A is culpable in g, written A :C g, if g satisfies the LTL
formula O --A-->> (where O is the “next” operator of LTL). The Maude implementation of
the above is as follows:

op --_->> : Participant -> Prop .
eq {A says a} g |= -- A ->> = true .
eq {l} g |= -- A ->> = false [owise] .
op _ :C _ : Participant BiContract -> Bool .
eq A :C g = modelCheck(g, O -- A ->>) == true .

We conclude this section with an example.

Example 6.1.12 The contracts from Example 6.1.7 can be specified as follows:

ops Y Z : -> Var .
ops addToCart checkout pay ok no abort cancel : -> ActName [ctor] .
ops CA CPay : -> UniContract .
ops CB CB’ : -> UniContract .

eq CPay = rec Y . (pay ? string . (ok ! unit . 0 (+)
no ! unit . Y (+)
abort ! unit . 0) +

cancel ? unit . 0) .

eq CA = addToCart ? int . (rec Z . (addToCart ? int . Z +
checkout ? unit . CPay)) .

eq CB = rec Z . (addToCart ! int . Z (+)
checkout ! unit . pay ! string . (ok ? unit . 0 +

no ? unit .
(cancel ! unit . 0) +

abort ? unit . 0)) .

eq CB’ = addToCart ! int . CB .

CHAPTER 6. CONTRACTS 31

In order to check compliance, we can ask Maude to reduce the term CA |X| CB (to a boolean).
This is accomplished through the following command:

red CA |X| CB .

The Maude output is:

==
reduce in ONLINE-STORE : CA |X| CB .
rewrites: 180 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: false
==

The contracts are not compliant, as anticipated in Example 6.1.7. We can check compliance
between CA and CB’ (which are compliant, according to Example 6.1.7) in a similar way:

red CA |X| CB’ .

The Maude output is:

==
reduce in ONLINE-STORE : CA |X| CB’ .
rewrites: 751 in 0ms cpu (1ms real) (~ rewrites/second)
result Bool: true
==

Chapter 7

Contract oriented computing and CO2

7.1 Contract-oriented computing & Honesty

In this chapter we introduce the contract-oriented computing paradigm and the related
notion of honesty. We model agents and systems in the process calculus CO2 [28, 27, 22],
which we instantiate with the contracts introduced in Section 6.1. In Section 7.1.1 we provide
the syntax of CO2: its primitives allow agents to advertise contracts, to open sessions between
agents with compliant contracts, to fulfil them by performing the required actions, and to
query contracts. Then, in Section 7.1.2 we define the semantics of CO2, and in Section 7.1.3
we formalise the concept of honesty.

7.1.1 Syntax

Let V andN be disjoint sets of variables (ranged over by x, y, . . .) and names (ranged over by
s, t, . . .). We assume a language of expressions (ranged over by e, e ′, . . .), containing variables,
values, and compositions of them through operators (e.g. the usual arithmetic/logic ones).
The actual choice of operators is almost immaterial for the subsequent technical development;
here we just postulate a function J·K which maps (closed) expressions to values. We assume
that the sort of an expression is uniquely determined by the sorts of its variables. We use
u, v, . . . to range over V∪N , we use ~u,~v, . . . to range over sequences of variables/names, and ~e
to range over sequences of expressions. To make symbols lookup easier, we have summarised
the syntactic categories and some notation in Table 7.1.

Definition 7.1.1 The syntax of CO2 is defined as follows:

S ::= 0
∣∣ A[P]

∣∣ s[γ]
∣∣ (u)S

∣∣ S | S ∣∣ {↓u c}A
P ::=

∑
i∈I πi .Pi

∣∣ if e then P else P
∣∣ X(~u,~e)

∣∣ (u)P
∣∣ P | P

π ::= τ
∣∣ tell ↓u c

∣∣ dou a!e
∣∣ dou a?x : T

∣∣ askuφ

If ~u = u0, . . . , un, we will use (~u)S and (~u)P as shorthands for (u0) · · · (un)S and (u0) · · · (un)P ,
respectively. We also assume the following syntactic constraints on processes and systems:

32

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 33

A,B, . . . Participant names
a, b, . . . Branch labels
T, T′, . . . Sorts
v, v′, . . . Values
c, d, . . . Contracts
γ, γ ′, . . . Contract configurations
γ −→→ γ ′ Transition of contracts
e, e ′, . . . Expressions

u, v, . . . Union of:
s, t, . . . ∈ N Session names
x, y, . . . ∈ V Variables

Z,Z ′, . . . Union of:
P ,Q, . . . Processes
S, S ′, . . . Systems

S −→ S ′ Transition of systems

Table 7.1: Summary of notation.

commutative monoidal laws for | on processes and systems

A[(v)P] ≡ (v)A[P] Z | (u)Z ′ ≡ (u)(Z | Z ′) if u 6∈ fv(Z) ∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u 6∈ fv(Z) ∪ fn(Z) {↓s c}A ≡ 0

Figure 7.1: Structural equivalence for CO2.

1. each occurrence of named processes X(~u,~e) is prefix-guarded;

2. in (~u)(A[P] | B[Q] | · · ·), it must be A 6= B;

3. in (~u)(s[γ] | t[γ ′] | · · ·), it must be s 6= t.

Systems S, S ′, . . . are the parallel composition of participants A[P], sessions s[γ], delim-
ited systems (u)S , and latent contracts {↓u c}A. A variable binded latent contract {↓x c}A
represents a contract c (advertised by A) which has not been stipulated yet; upon stipulation,
the variable x will be instantiated to a fresh session name.

Processes P ,Q, . . . are prefix-guarded (finite) sums of processes, conditionals
if e then P else Q (where e is a boolean valued expression), named processes X(~u,~e) (used
e.g. to specify recursive behaviours), delimited processes (u)P , and parallel compositions
P | P .

Prefixes π include silent action τ , contract advertisement tell ↓u c, output action dou a!e,
input action dou a?x : T, and contract query asku φ (where φ is an LTL formula on γ). In
each prefix π 6= τ , the index u refers to the target session involved in the execution of π.

The only binder for names is the delimitation (u), both in systems and processes. In-
stead, variables have two binders: delimitations (x) (both in systems and processes), and
input actions. Namely, in a process dou a?x : T. P , the variable x in the prefix binds the
occurrences of x within P . Note that “value-kinded” variables in input actions will be re-
placed by values, while “name-kinded” variables used in delimitations will be replaced by
session names. Accordingly, we avoid confusion between these two kinds of variables. For
instance, we forbid dou a?x. dox b!v and (x) dou a!x.

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 34

Free session names/variables in a prefix are defined as follows: fnv(τ) = ∅, and
fnv(tell ↓u c) = {u} = fnv(dou a!e) = fnv(dou a?x : T). Free variables/names of sys-
tems/processes are defined accordingly, and they are denoted by fv and fn. A system or a
process is closed when it has no free variables.

We write π1 .P 1 + π2 .P 2 for
∑

i∈{1,2} πi .P i, and 0 for
∑
∅ P . We stipulate that each

process identifier X has a unique defining equation X(x1, . . . , xj)
def
= P such that fv(P) ⊆

{x1, . . . , xj} ⊆ V . We will sometimes omit the arguments of X(~u,~e) when they are clear
from the context. As usual, we omit trailing occurrences of 0 in processes.

7.1.2 Semantics

The operational semantics of CO2 systems is formalised by the labelled transition relation
−→ in Figure 7.2, where we consider processes and systems up-to the congruence relation ≡
in Figure 7.1. The axioms for ≡ are fairly standard — except the bottom-rightmost one,
which collects garbage terms possibly arising from variable substitutions. This may happen
when telling two different contracts in the same variable (see Section 9.1.3 for a meaningful
process which exploits this possibility). The labels µ of the transition relation can be of the
following forms: A : π (where π is not do), A : if, A : dos a!v, A : dos a?v, or K : fuse.
Participant K plays the role of the contract broker. We postulate that participant K does not
appair in systems (i.e. systems in the forms K[P], s[K : c | . . .], and {↓x c}K are forbidden).

We now briefly discuss the rules in Figure 7.2. Rule [Tau] just fires a τ prefix. Rule [Tell]

advertises a latent contract {↓x c}A. Rule [Fuse] finds agreements among the latent contracts:
this happens when there exist {↓x c}A and {↓y d}B such that A 6= B and c ./ d. Once an
agreement is found, a fresh session containing γ = A : c | B : d is created. Rule [If] evaluates
the guard of a conditional, and then proceeds with one of the branches. Rule [Do!] allows a
participant A to choose a branch label in a contract configuration γ within session s, and to
send the value resulting from the evaluation of e (which results in γ evolving to a suitable
γ ′). Rule [Do?] allows A to receive a value v, resulting from a [Rdy] transition of the contract
configuration γ within session s, and to bind to v the free occurrences of x within the
continuation P . Rule [Ask] allows A to proceed only if the contract γ at session s satisfies the
formula φ (the predicate γ ` φ used in the rule premise is specified in Definition 6.1.11). The
last three rules are mostly standard. In rule [Del] the label π fired in the premise becomes
τ in the consequence, when π contains the delimited name/variable. This transformation is

defined by the function delu(π): for instance, (x)A[tell ↓x c.P]
A: τ−−→ (x) (A[P] | {↓x c}A).

Here, it would make little sense to have the label A : tell ↓x c, as x (being delimited) may
be α-converted.

Hereafter, we shall assume that systems are always well-typed, i.e.:

1. the syntactic constraints required in Section 7.1.1 are respected;

2. the guards in conditionals have sort bool;

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 35

A[τ .P + P ′ |Q]
A: τ−−→ A[P |Q] [Tau]

A[tell ↓u c.P + P ′ |Q]
A: tell ↓uc−−−−−−→ A[P |Q] | {↓u c}A [Tell]

c ./ d γ = A : c | B : d σ = {s/x,y} s fresh

(x, y)(S | {↓x c}A | {↓y d}B)
K: fuse−−−−→ (s)(Sσ | s[γ])

[Fuse]

A[(if e then P true else P false) |Q]
A: if−−→ A[P JeK |Q] [If]

JeK = v γ
A:a!v−−−→→ γ ′

A[dos a!e.P + P ′ |Q] | s[γ]
A: dos a!v−−−−−→ A[P |Q] | s[γ ′]

[Do!]

γ
A:a?v−−−→→ γ ′ v : T

A[dos a?x : T.P + P ′ |Q] | s[γ]
A: dos a?v−−−−−→ A[P {v/x} |Q] | s[γ ′]

[Do?]

γ ` φ
A[asks φ.P + P ′ |Q] | s[γ]

A: asks φ−−−−−→ A[P |Q] | s[γ]
[Ask]

X(~x, ~y)
def
= P A[P {~u/~x}{~e/~y} |Q] | S µ−→ S ′

A[X(~u,~e) |Q] | S µ−→ S ′
[Def]

S
µ−→ S ′

S | S ′′ µ−→ S ′ | S ′′
[Par]

S
A:π−−→ S ′

(u)S
A: delu(π)−−−−−→ (u)S ′

[Del] where delu(π) =

{
τ if u ∈ fnv(π)

π otherwise

Figure 7.2: Reduction semantics of CO2.

3. the sorts of the expressions passed to named processes are coherent with those in the
corresponding defining equations.

Ensuring such form of well-typedness can be easily done through standard type checking
techniques.

Example 7.1.2 (Online store) Recall cA from Example 6.1.7. A possible specification of
the store is:

PA = (x) (tell ↓x cA .dox addToCart?t.P add(x, t))

P add(x, t)
def
= dox addToCart?n.P add(x, n+ t) + dox checkout?.P pay(x, t)

P pay(x, t)
def
= dox pay?.P ack(x, t) + dox cancel?

P ack(x, t)
def
= if e(t) then dox ok! else dox no!.P pay(x, t)

The process PA first advertises the contract cA, and then waits that the user has performed
the first addToCart (note that it also requires that x is instantiated with a new session
containing cA). Then, the store enters a recursive process P add, wherein it accepts two user
choices: addToCart, which is followed by a recursive call to P add, and checkout, which passes
the control to process P pay. In the meanwhile, the overall amount to pay is accumulated in

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 36

variable t (we are assuming that the value n passed by addToCart is the price of an item;
in more concrete implementations, such value could be obtained e.g. from product database).
Within P pay, after the payment is received, the store internally chooses (through expression
e(t), which implements the store internal policy) whether to accept it or not: in the first
case, it terminates; in the second case, it proceeds with P pay, thus allowing the user to retry
the payment. In more concrete implementations (see e.g. Example 7.1.8), the process of
determining whether to accept the payment may be delegated to a third party, e.g. a bank.

Now, let B be a buyer with contract dB = addToCart?int. cB as in Example 6.1.7, and
let:

QB = (y) tell ↓y dB.Y Y
def
= doy addToCart!51.doy checkout!.doy pay!cc.doy ok?

A possible, successful computation of the system S = A[PA] | B[QB] is the following:

S −→∗(x, y)
(
{↓x cA}A | {↓y dB}B | A[PA

′] | B[Y]
)

PA
′ = dox addToCart?n. P add(x, n)

−→ (s)
(
A[PA

′{s/x}] | B[Y {s/y}] | s[A : cA | B : dB]
)

−→∗(s)
(
A[PA

′{s/x}] | B[dos checkout!. · · ·] | s[A : cA | B : cB]
)

−→∗(s)
(
A[P add(s, 51)] | B[dos checkout!. · · ·] | s[A : c′A | B : cB]

)
c′A = recZ. · · ·

−→∗(s)
(
A[P add(s, 51)] | B[dos pay!cc. dos ok?] | s[A : c′A | B : c′B]

)
c′B = pay!string. · · ·

−→∗(s)
(
A[P pay(s, 51)] | B[dos pay!cc. dos ok?] | s[A : cpay | B : c′B]

)
−→ (s)

(
A[P pay(s, 51)] | B[dos ok?] | s[A : rdy pay?cc . · · · | B : c′′B]

)
c′′B = ok? + · · ·

−→ (s)
(
A[P ack(s, 51)] | B[dos ok?] | s[A : cack | B : c′′B]

)
cack = ok! + · · ·

−→ (s)
(
A[0] | B[dos ok?] | s[A : 0 | B : rdy ok? . 0]

)
−→ (s)

(
A[0] | B[0] | s[A : 0 | B : 0]

)
Notice that the buyer has been quite lucky, since the store has chosen ok in the last step;
otherwise, the buyer would have been culpable of a contract violation at session s.

7.1.3 Honesty

CO2 allows for writing dishonest agents which do not fulfil their contractual obligations,
in some contexts. To formalise the notion of honesty, we start by defining the set OA

s (S)
of obligations of a participant A at a session s in S . The intuition is that, whenever A is
culpable at some session s, she has to fire one of the actions in OA

s (S) to exculpate herself
(possibly in two steps, according to Lemma 6.1.10).

Definition 7.1.3 (Obligations) We define the set of branch labels OA
s (S) as:

OA
s (S) =

{
a
∣∣∣ ∃γ, S ′, v, ◦ : S ≡ s[γ] | S ′ and γ

A:a◦v−−−→→
}

We say that A is culpable at s in S iff OA
s (S) 6= ∅.

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 37

A participant A is ready in a system S if, whenever A has some obligations in S , she
can fulfil some of them (so, if A does not occur in S or has no obligations there, then she is
trivially ready). To check if A is ready in S , we consider all the sessions s in S involving A.
For each of them, we check that some obligations of A at s are exposed after some steps of
A not preceded by other dos of A. Note that CO2 semantics (Figure 7.2) guarantees that
for every label A : dos a ◦ v fired by any system S , a ∈ OA

s (S). The set RdyA
s collects all the

systems where A may perform some action at s after a finite sequence of transitions of A not
involving any do at s. Note that A is vacuously ready in all systems in which she does not
have any obligations.

Definition 7.1.4 (Readiness) We define the predicates:

S
A: dos−−−→ ⇐⇒ ∃a, v, ◦, S ′ : S A: dos a◦v−−−−−→ S ′

S
A: 6=dos−−−−→ S ′ ⇐⇒ ∃π : S

A:π−−→ S ′ ∧ π 6= dos a ◦ v for all a, ◦, v

We define the set of systems RdyA
s as the smallest set such that:

1. S
A: dos−−−→ =⇒ S ∈ RdyA

s

2.
(
S

A: 6=dos−−−−→ S ′ ∧ S ′ ∈ RdyA
s

)
=⇒ S ∈ RdyA

s

Then, we say that:

1. A is ready at s in S whenever S ∈ RdyA
s .

2. A is ready in S iff ∀s, S ′, ~u : S ≡ (~u)S ′ ∧ OA
s (S ′) 6= ∅ =⇒ S ′ ∈ RdyA

s

We can now formalise when a participant is honest. Roughly, A[P] is honest in a fixed
system S when A is ready in all evolutions of A[P] | S . Then, we say that A[P] is honest
when she is honest in all systems S .

Definition 7.1.5 (Honesty) We say that:

1. S is A-free iff it has no variable binded latent contracts of A, opened sessions involving
A, nor processes of A

2. P is honest in S iff ∀A : (S is A-free ∧ A[P] | S −→∗ S ′) =⇒ A is ready in S ′

3. P is honest iff ∀S : P is honest in S .

Note that in item 2 we are quantifying over all A: this is just needed to associate P to
a participant name, with the only constraint that such name must not be present in the
environment S used to test P . In the absence of the A-freeness constraint, the notion of
honesty would be impractically strict: indeed, were S already carrying stipulated or latent
contracts of A, e.g. with S = s[A : pay100Keu! | B : pay100Keu?], it would be unreasonable
to ask participant A to fulfil them. Note however that S can contain latent contracts and
sessions involving any other participant different from A: in a sense, the honesty of A[P]
ensures a good behaviour even in the (quite realistic) case where A[P] is inserted in a system
which has already started.

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 38

Example 7.1.6 (Basic examples of honesty) Consider the following processes:

1. P 1 = (x) tell ↓x a!⊕ b!.dox a!

2. P 2 = (x) tell ↓x a!.(τ .dox a! + τ .dox b!)

3. P 3 = (x) tell ↓x a? + b?.dox a?

4. P 4 = (x) tell ↓x a? + b?.
(
dox a? + dox b? + dox c?

)
5. P 5 = (x, y) tell ↓x a?.tell ↓y b!.dox a?.doy b!

6. P 6 = (x) tell ↓x a!.X(x) X(x)
def
= τ .τ .X(x) + τ .dox a!

7. P 7 = (x) tell ↓x a!.X(x) X(x)
def
= if true then τ .X(x) else dox a!

We now discuss the honesty (or dishonesty) of these processes.

• P 1 is honest: it is advertising an internal choice between a! and b!, and then it is
doing a!.

• P 2 is dishonest: if the rightmost τ is fired, then the process cannot do the promised a!.
Note that P 2 is dishonest in all contexts where the session x is fused.

• P 3 is dishonest: indeed, if the other participant involved at session x chooses b!, then
P 3 cannot do the corresponding input. Note instead that P 3 is honest in all contexts
where either the session x is not fused, or the other participant at x does not fire b!.

• P 4 is honest: note that the branch c? can never be taken. Indeed, an action can be
fired by a process at session s only if it is enabled by the contract configuration in s
(see the premise of rule [Do?]).

• P 5 is dishonest, for two different reasons. First, in contexts where session y is fused
and x is not, the doy b! cannot be reached (and so the contract at session y is not
fulfilled). Second, also in those contexts where both sessions are fused, if the other
participant at session x never does a!, then doy b! cannot be reached. Note that P 5

tries to behave correctly (in a naive way), and indeed the failure is caused by the context.
However, in our framework, an agent is honest when she takes into account also the
possible misbehaviour of the context, which may be unknown at development time.

• P 6 is honest. The process is advertising a singleton internal choice, and then non-
deterministically choosing to either perform an internal action followed by the do ac-
tion, or to perform an internal action and then loop. Although there exists a compu-
tation where a! is never performed (the infinite sequence of internal actions), under
a fair scheduler the rightmost τs, which is enabled infinitely often, will be performed.
We now show that P 6 is honest in S = (y)({↓y a?}B), with A 6= B (the generalisation
to arbitrary contexts is straightforward). The reachable states from A[P 6] | S (up-to
structural congruence) are the following:

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 39

1. A[P 6] | S . Here A is vacuously ready, because no session has been established yet.

2. (x, y)(A[X(x)] | {↓x a!}A | {↓y a?}B). Here A is vacuously ready, as in the
previous item.

3. (s)(A[dos a!] | s[A : a! | B : a?]). Here A is ready, because A[dos a!] | s[A : a! | B : a?]
∈ RdyA

s , by item 1 of Definition 7.1.4.

4. (s)(A[X(s)] | s[A : a! | B : a?]). Since A[X(s)] | s[A : a! | B : a?]
A: τ−−→ A[dos a!] |

s[A : a! | B : a?], which is ready for the previous item, then A is ready.

5. (s)(A[0] | s[A : 0 | B : rdy a?]). Here A is vacuously ready, because she has not
obligations in s.

• P 7 is dishonest: it is advertising a singleton internal choice, and then, since the con-
dition in the if is true, it can never take the branch which would fulfil the obligation
to do a!.

Observe that items 6 and 7 in Example 7.1.6 show that it would be incorrect to verify
the honesty of a process if e then P else Q as we would do for process τ .P + τ .Q.

Example 7.1.7 (Online store) The specification of the online store PA in Example 7.1.2
is honest. Instead, the buyer process QB in the same example in not honest. For instance,
assume QB is run in the context PA. If the store chooses to refuse the payment (e.g., it
executes no!), then the system PA | QB reaches the state:

S ′ = (s) S ′′ where S ′′ = (s)
(
A[0] | B[dos ok?] | s[A : 0 | B : rdy no?. 0]

)
By Definition 7.1.3, we have that OB

s (S ′′) = {no}, and by Definition 7.1.4 it follows that
S ′′ 6∈ RdyB

s . Therefore, B is not ready in S ′, and so by Definition 7.1.5 we conclude that QB

is not honest.

Example 7.1.8 (Online store with bank) We now refine the specifications of the online
store provided in Example 7.1.2, by delegating a bank B to determine whether to accept or
not buyer payments. The store advertises the following contract between itself and a bank:

dB = recY . ccnum!string.
(
amount!int. (accept? + deny?. Y) ⊕ abort!

)
⊕ abort!

The store first sends a credit card number to the bank (ccnum), and then the amount to pay.
After this, it waits the response from the bank, which can be either accept or deny; in the
latter case, the whole procedure can be repeated. Note that each internal choice is associated
to an abort branch, which allows the store to terminate the interaction with the bank.

A possible implementation of the online store is the following:

PA = (x) (tell ↓x cA. dox addToCart?n. P add(x, n))

P add(x, t)
def
= dox addToCart?n. P add(x, n+ t) +

dox checkout?. (y) tell ↓y dB. P pay(x, y, t)

P pay(x, y, t)
def
= dox pay?w.P bank(x, y, w, t) + dox cancel?. doy abort!

P bank(x, y, w, t)
def
= doy ccnum!w. doy amount!t. P ack(x, y, t)

P ack(x, y, t)
def
= doy accept?. dox ok! + doy deny?. dox no!. P pay(x, y, t)

CHAPTER 7. CONTRACT ORIENTED COMPUTING AND CO2 40

We now comment the differences with respect to Example 7.1.2. After checkout, the process
P add advertises the contract dB for the bank. In process P bank, the store sends to the bank
the credit card number w provided by the buyer, and the amount t to pay. Then, in process
P ack, the store waits for the bank response, and it acknowledges the buyer accordingly.

The process PA is not honest. One reason is that if either the buyer or the bank is
dishonest, the store is not capable of keeping a correct interaction with the other party: for
instance, if the bank does not respond in process P ack, then the buyer will never receive the
expected ok/no message. Another reason is that if contract dB is not fused in a session (i.e.,
an agreement is not found with a bank), then P bank will be stuck, since session y will not
be initialised. Therefore, in both these scenarios the store will remain culpable of a contract
violation towards the buyer.

In Section 9.1.1 we will show how to use our Maude honesty checker to verify the dishon-
esty of the store. Further, we will show how to use the output of the tool in order to revise
the specification of the store, so to finally make it honest (and verified as such by the tool).

Example 7.1.9 (Unfair scheduler) Consider the following processes:

P = (x) tell ↓x a!. dox a! Q = (y) tell ↓y a?. X where X
def
= τ . X

We have the following computation in the system S = A[P] | B[Q]:

S
A: τ−−−→ (x)(A[dox a!] | B[Q] | {↓x a!}A)

B: τ−−−→ (x, y)(A[dox a!] | B[X] | {↓x a!}A | {↓y a?}B)

K: fuse−−−−→ (s) (A[dos a!] | B[X] | s[A : a! | B : a?]) = S ′
B: τ−−→ S ′

B: τ−−→ · · ·

In the above computation, an unfair scheduler prevents A from making her moves, and so A
remains persistently culpable in such computation. However, A is ready in S ′ (because the
dos a! is enabled), and therefore P is honest according to Definition 7.1.5. This is coherent
with our intuition about honesty: an honest participant will always exculpate herself in all
fair computations, but she might stay culpable in the unfair ones, because an unfair scheduler
might always give precedence to the actions of the context.

Chapter 8

Verification of honesty

8.1 Model checking honesty

We now address the problem of automatically verifying honesty. As mentioned in Chapter 1,
this is a desirable goal, because it alerts system designers before they deploy services which
could violate contracts at run-time (so possibly incurring in sanctions). Since honesty is
undecidable in general [27] (also when restricting to CO2 without value-passing), our goal is
a verification technique which safely over-approximates it: i.e., only honest processes must
be classified as such.

A first issue is that Definition 7.1.5 requires readiness to be preserved in all possible
contexts, and there is an infinite number of such contexts. Clearly, this prevents us from
using standard techniques for model checking finite-state systems. Another issue is that, even
considering a fixed context and the usual syntactic restrictions required to make processes
finite-state (e.g. no delimitation/parallel under process definitions), value-passing makes the
semantics of CO2 infinite-state.

To overcome these problems, we present below an abstract semantics of CO2 which safely
approximates the honesty property of a process P , while neglecting values and the actual
context wherein it is executed. The definition of the abstract semantics of CO2 is obtained
in two steps.

1. First, in Section 8.1.1 we devise a value abstraction α? of systems (Definition 8.1.1),
which replaces each expression e with a special value ?. In Theorem 8.1.5 we show that
value abstraction is sound with respect to honesty: i.e., if α?(P) is honest, then also
the concrete process P is honest. Furthermore, value abstraction is complete whenever
P contains no conditional expressions, i.e. if P is honest and it is if-free, then α?(P)
is honest, too.

2. Second, in Sections 8.1.2 and 8.1.3 we provide a context abstraction αA of contracts
and systems (Definitions 8.1.6 and 8.1.11, respectively). The abstraction αA is param-
eterised by the participant A the honesty of which is under consideration: basically,
αA(S) discards the part of the system S not governed by A, by over-approximating
its moves. Theorem 8.1.13 states that this abstraction is sound, too, and it is also
complete for ask-free processes.

41

CHAPTER 8. VERIFICATION OF HONESTY 42

Summing up, by composing the two abstractions we obtain a sound over-approximation
of honesty: namely, if αA(α?(P)) is honest, then the concrete process P is honest (The-
orem 8.1.14). Conversely, if P is honest, if-free and ask-free, then αA(α?(P)) is honest,
too. When P is a finite state process (i.e., without delimitation/parallel under process def-
initions), then the honesty of αA(α?(P)) can be verified by model checking its state space.
In Section 8.1.5 we outline an implementation in Maude of our verification technique.

8.1.1 Value abstraction

Our first step towards the verification of honesty is defining a transformation of CO2 pro-
cesses and systems which abstracts from values (Definition 8.1.1). We provide value-abstract
systems with a semantics (Figure 8.1), and in Definition 8.1.4 we accordingly refine the
notion of honesty. Theorem 8.1.5 states the soundness (and, for if-free processes, also the
completeness) of value abstraction.

Definition 8.1.1 (Value abstraction of processes) For all processes P , and for all func-
tions Γ from (value-kinded) variables to sorts, we define the value-abstract process α?Γ(P)
inductively as follows:

α?Γ(
∑

i πi .P i) =
∑

i α
?
Γ(πi .P i)

α?Γ(π .P) =


dou (a, T)!.α?Γ(P) if π = dou a!e and e : T in Γ

dou (a, T)?.α?Γ,x:T(P) if π = dou a?x : T

π .α?Γ(P) if π 6= do

α?(X(~u,~e)) = X(~u, ?)

α?Γ(if e then P else Q) = if ? then α?Γ(P) else α?Γ(Q)

α?Γ((u)P) = (u)α?Γ(P)

α?Γ(P |Q) = α?Γ(P) | α?Γ(Q)

and we simply write α?(P) when the mapping Γ is empty. The value abstraction of systems
just applies α?(·) to each process and contract configuration within a system (see Defini-
tion 8.1.3 for details).

Example 8.1.2 (Online store) The value-abstract counterpart of the process PA in Ex-
ample 7.1.2 is:

α?(PA) = (x) (tell ↓x cA. dox (addToCart, int)?. Qadd(x, ?))

Qadd(x, t)
def
= dox (addToCart, int)?. Qadd(x, ?) + dox (checkout, unit)?. Qpay(x, ?)

Qpay(x, t)
def
= dox (pay, string)?. Qack(x, ?) + dox (cancel, unit)?

Qack(x, t)
def
= if ? then dox (ok, unit)! else dox (no, unit)!. Qpay(x, ?)

CHAPTER 8. VERIFICATION OF HONESTY 43

A[(if ? then P 0 else P 1) | Q]
A: if−−→? A[P i |Q] (i ∈ {0, 1}) [α?If]

γ
A:a−−→→? γ

′

A[dos a.P + P ′ |Q] | s[γ]
A: dos a−−−−→? A[P | Q] | s[γ ′]

[α?Do]

γ `? φ
A[asks φ.P + P ′ |Q] | s[γ]

A: asks φ−−−−−→? A[P |Q] | s[γ]
[α?Ask]

Figure 8.1: Reduction semantics of value-abstract systems (full set of rules in Ap-
pendix A.2.1).

Definition 8.1.3 (Value abstraction of systems) For all systems S , we define the value
abstract system α?(S) as follows (see Definition A.1.4 for the specification of α?(γ)):

α?(A[P]) = A[α?(P)] α?(s[γ]) = s[α?(γ)]

α?({↓x c}A) = {↓x c}A α?(S | S ′) = α?(S) | α?(S ′)
α?((u)S) = (u) (α?(S)) α?(0) = 0

The semantics of value-abstract systems is given by a set of rules, most of which are similar
to those in Figure 7.2. Hence, in Figure 8.1 we only show those which differ substantially
from the rules for concrete systems (the full set of rules is provided in Appendix A.2.1).
When clear from the context, we shall overload the meaning of metavariables S, S ′, . . ., and
we use them also to range over value-abstract systems. Rule [α?If] takes into account the fact
that the guards in conditionals are abstracted as ?: hence, a correct over-approximation of
the concrete semantics requires to take both branches of a conditional. Rule [α?Do] abstracts
the concrete [Do!] and [Do?] rules. To do that, it just exploits the semantics −→→? of value-
abstract contracts (Section 6.1.3), whose transitions do not carry values. Rule [α?Ask] uses
in its premise a value-abstract entailment relation `? (this is a minor modification of the
concrete relation, see Definition A.2.1).

The notion of honesty for value-abstract systems (Definition 8.1.4 below) requires a slight
modification of that for concrete systems. When the move of A is an if, value-abstract readi-
ness requires that both branches of the conditional are ready at s (item 3). Note that this in-
troduces an approximation of readiness: for instance, if S = A[if true then dos a!v else 0],
then A is ready at s in S according to Definition 7.1.4, while A is not α?-ready at s in α?(S)
according to Definition 8.1.4, because item 3 is not satisfied.

CHAPTER 8. VERIFICATION OF HONESTY 44

Definition 8.1.4 (Value-abstract readiness) Given a session name s and participant A,
we define the set of value-abstract systems α?- RdyA

s as the smallest set such that:

1. S
A: dos−−−→? =⇒ S ∈ α?- RdyA

s

2.
(
S

A: 6={dos,if}−−−−−−−→? S
′ ∧ S ′ ∈ α?- RdyA

s

)
=⇒ S ∈ α?- RdyA

s

3. S
A: if−−→? ∧ (∀S ′ : S A: if−−→? S

′ =⇒ S ′ ∈ α?- RdyA
s) =⇒ S ∈ α?- RdyA

s

We say that A is α?-ready at s in S when S ∈ α?- RdyA
s .

We define value-abstract honesty (α?-honesty) as in Definition 7.1.5, except for using the
value-abstract notion of readiness instead of the concrete one.

Theorem 8.1.5 below states that α?-honesty is a sound over-approximation of the concrete
notion. This approximation is also complete in the absence of conditional statements.

Theorem 8.1.5 Let P be a concrete process. If α?(P) is α?-honest, then P is honest.
Conversely, if P is honest and if-free, then α?(P) is α?-honest.

Proof. See appendix A.2.1 on page 115.

8.1.2 Context abstraction of contracts

After having defined a value abstraction for CO2 systems (Section 8.1.1), we now introduce
our second step towards the verification of honesty: we fix a participant A, and we abstract
her contracts from the context, by removing all the information related to other participants
(whose names are abstracted as ctx). After introducing context abstraction for contracts
(Definition 8.1.6 and Figure 8.2), we will prove its main properties (Theorem 8.1.7), and
finally ensure that such an abstraction is sound with respect to the semantics of the CO2

ask primitive (Definition 8.1.8, Definition 8.1.9 and Lemma 8.1.10).

Let γ be a value-abstract contract configuration (Section 6.1.3): the context-abstraction
αA(γ) (Definition 8.1.6) maintains only the contract of A, while recording whether the op-
ponent contract has a rdy.

Definition 8.1.6 (Context abstraction of contracts) For all value-abstract contract con-
figurations γ , we define the context-abstract contract αA(γ) as follows:

αA(A : c | B : d) =

{
c if d is rdy-free

ctx a. c if d = rdy a. d′

For all participants A, the LTS −→→A on context-abstract contracts is defined by the rules
in Figure 8.2. Labels of −→→A are atoms, possibly prefixed with ctx — which indicates a
contractual action performed by the context. In an internal sum, A chooses a branch; in

CHAPTER 8. VERIFICATION OF HONESTY 45

a . c⊕ c′ a−→→A ctx co(a). c a . c+ c′
ctx :co(a)−−−−→→A rdy a. c rdy a. c

a−→→A c ctx a. c
ctx :a−−→→A c

Figure 8.2: Semantics of context-abstract contracts.

an external sum, the choice is made by the context; in a rdy a.c the atom a is fired. The
rightmost rule handles a rdy in the context contract.

The following theorem highlights some relevant properties of context abstraction of con-
tracts, which will be exploited to prove the correctness of our verification technique for hon-
esty. Items 1 and 2 state that each transition of a value-abstract contract configuration γ can
be simulated by its context abstraction αA(γ). Conversely, item 3 states that each (non-ctx)
transition of a context-abstract contract c can be simulated by all its concretisations γ c (the
ctx case is only needed to prove the completeness of our verification technique, and it is
dealt with by Lemma A.2.18). In the following, we will say that a contract configuration
γ = A : c | B : d is compliant whenever c ./ d.

Theorem 8.1.7 For all value-abstract contract configurations γ , γ ′, for all context-abstract
contracts c, c′:

1. γ
A:a−−→→? γ

′ =⇒ αA(γ)
a−→→A αA(γ ′)

2. γ
B:a−−→→? γ

′ =⇒ αA(γ)
ctx :a−−→→A αA(γ ′) (B 6= A)

3. c
a−→→A c

′ =⇒ ∀ compliant γ c :
(
αA(γ c) = c =⇒ ∃γ c′ : γ c

A:a−−→→? γ c′ ∧ αA(γ c′) = c′
)

Proof. See appendix A.2.2 on page 118.
Another desirable property of context abstraction of contracts is that also the satisfaction

relation `? used in rule [α?Ask] of the value-abstract semantics of CO2 (Figure 8.1) is safely
abstracted, in the sense formalised in Definition 8.1.8 below. Intuitively, given two relations
`A and `ctx between context-abstract contracts and formulae (of some temporal logic):

• item 1 requires that, whenever c `A φ, then also all (value-abstract) concretisations γ
of c entail φ. When this holds, each concrete transition of A enabled by rule [Ask] (with
premise γ `? φ) can be simulated by an abstract transition (with premise αA(γ) `A φ).
This allows for abstracting from the context of A — in particular, from the actual
contracts advertised by the other participants.

• item 2 plays the same role with the moves of the context. Here, soundness requires
that, whenever there exists some concretisation γ of c which entails φ, then c `ctx φ
must also hold.

Definition 8.1.8 (Sound context-abstract entailment) Let `A and `ctx be relations
between context-abstract contracts and formulae. We say that `A and `ctx are sound when-
ever they satisfy, respectively:

CHAPTER 8. VERIFICATION OF HONESTY 46

1. c `A φ =⇒ (∀ compliant γ : αA(γ) = c =⇒ γ `? φ)

2. c `ctx φ ⇐= (∃ compliant γ : αA(γ) = c ∧ γ `? φ)

In Section 8.1.3 we will use sound context-abstract entailment relations to define the
semantics of context-abstract CO2 systems (see the premises of rules [α-AskCtx] and [α-AskCtx]

in Figure 8.3). In Definition 8.1.9 below we show a possible instantiation of the relations `A
and `ctx , which is appropriate for the contract model introduced in Section 6.1. Lemma 8.1.10
will then show that these context-abstract relations are sound according to Definition 8.1.8.
Recall from Definition 6.1.11 that AP is the set of terms (a, T)◦, where a is a branch label.

Definition 8.1.9 (Context abstraction of entailment) For all participants A, we de-
fine the Kripke structure TSA = (Σ,→, L) as follows:

• Σ = {(`, c) | c is a context-abstract contract and ` ∈ AP ∪ {ε}},

• the transition relation → ⊆ Σ× Σ is defined by the following rule:

(`, c)→ (a, c′) if c
a−→→A c

′ ∨ c
ctx :a−−→→A c

′

(`, c)→ (`, c) if c 6−→→A

• the labelling function L : Σ→ 2AP is defined as:

L((`, c)) =

{
{`} if ` ∈ AP;

∅ otherwise.

We write c ` φ whenever (ε, c) |= φ holds in LTL. Then, we define the relations:

`A = {(c, φ) | c ` φ} `ctx = {(c, φ) | c 6` ¬φ}

Note that c 6` ¬φ is not equivalent to c ` φ in LTL. Lemma 8.1.10 below guarantees
the soundness of our instantiation of `A and `ctx with respect to Definition 8.1.8. Note
that item 1 of Lemma 8.1.10 ensures a stronger condition than item 1 of Definition 8.1.8:
this improves the accuracy of the analysis.

Lemma 8.1.10 For all context-abstract contracts c and for all LTL formulae φ:

1. c ` φ ⇐⇒ (∀ compliant γ : αA(γ) = c =⇒ γ `? φ)

2. c 6` ¬φ ⇐= (∃ compliant γ : αA(γ) = c ∧ γ `? φ)

Proof. See appendix A.2.3 on page 122.

CHAPTER 8. VERIFICATION OF HONESTY 47

8.1.3 Context abstraction of systems

After having defined a value abstraction for CO2 systems (Section 8.1.1), and a context
abstraction for contracts (Section 8.1.2), we now extend the latter to CO2 systems. For
all participants A, we define the context abstraction αA of value-abstract systems, which
just discards all the components not involving A, and “projects” the contracts involving
A. This final abstraction step requires a corresponding notion of context-abstract honesty
(Definition 8.1.12), whose properties (Theorem 8.1.13) will allow us to verify CO2 systems
via model checking (Section 8.1.5).

Definition 8.1.11 (Context abstraction of systems) For all value-abstract P , we de-
fine αA(P) = P . For all value-abstract S , we define the context-abstract system αA(S)
inductively as follows:

αA(A[P]) = A[P] αA(s[γ]) = s[αA(γ)] if γ = A : c | B : d

αA({↓x c}A) = {↓x c}A αA(S | S ′) = αA(S) | αA(S ′)

αA((u)S) = (u)(αA(S)) αA(S) = 0, otherwise

We now introduce the semantics of context-abstract systems. For all participants A, the
LTS −→A on context-abstract systems is defined by the rules in Figure 8.3. Labels of −→A are
either ctx or they have the form A : π, where A is the participant in −→A, and π is a CO2

prefix.

The rules in Figure 8.3 can be arranged in two groups:

Rules for A. Rule [α-If] is substantially unchanged w.r.t. value-abstract semantics (Fig-
ure 8.1). Rule [α-Do] requires a context-abstract transitions of contracts. Rule [α-Ask]

allows for a transition of A, whenever c entails φ according to a sound context-abstract
entailment relation `A. Item 1 of Definition 8.1.8 guarantees that such an ask φ will
pass in each possible value-abstract context with session s[A : c | B : · · ·].

Rules for ctx . Rule [α-Fuse] says that a latent contract of A may always be fused (the context
may choose whether this is the case or not). Rule [α-AskCtx] allows an ask φ to fire a
ctx transition, whenever c entails φ according to a sound context-abstract entailment
relation `ctx . Item 2 of Definition 8.1.8 ensures that, if ask φ would be fired in some
concrete system, then it can be fired also in the context-abstract one. The context
may also decide whether to perform actions within sessions ([α-DoCtx]). Non-observable
context actions are modelled by rules [α-Ctx] and [α-DelCtx].

The remaining context-abstract rules are similar to the value-abstract ones.

The notion of honesty for context-abstract systems (Definition 8.1.12), named α-honesty,
follows the lines of that of honesty in Definition 7.1.5. As expected, we use a notion of
readiness for context-abstract systems (named α-readiness): this is just a minor revisitation
of Definition 8.1.4, where we use the context-abstract semantics instead of the value-abstract
one (see Appendix A.2.3 for details).

CHAPTER 8. VERIFICATION OF HONESTY 48

A[(if ? then P 0 else P 1) | Q]
A: if−−→A A[P i | Q] (i ∈ {0, 1}) [α-If]

c
a−→→A c

′

A[dos a.P + P ′ | Q] | s[c] A: dos a−−−−→A A[P | Q] | s[c′]
[α-Do]

c `A φ

A[asks φ.P + P ′ | Q] | s[c] A: asks φ−−−−−→A A[P | Q] | s[c]
[α-Ask]

s fresh

(x)(S | {↓x c}A)
ctx−→A (s)(s[c] | S{s/x})

[α-Fuse]

c `ctx φ

A[asks φ.P + P ′ | Q] | s[c] ctx−→A A[P | Q] | s[c]
[α-AskCtx]

c
ctx :a−−→→A c

′

s[c]
ctx−→A s[c

′]
[α-DoCtx] S

ctx−→A S [α-Ctx]
S

ctx−→A S
′

(u)S
ctx−→A (u)S ′

[α-DelCtx]

Figure 8.3: Reduction semantics of context-abstract contracts and systems (full set of rules
in Appendix A.2.3).

Definition 8.1.12 (Context-abstract honesty) Let P be a context-abstract process. We
say that P is α-honest iff, for all context-abstract systems S such that A[P] −→A

∗ S , A is
α-ready in S .

Theorem 8.1.13 below establishes a link between context-abstract honesty and value-
abstract honesty: the former implies the latter, and the vice versa holds when the ask

primitive is not used. Since we have already established that value-abstract honesty implies
concrete honesty (Theorem 8.1.5), Theorem 8.1.13 is the final step for guaranteeing the
soundness (and completeness) of our verification technique (see Section 8.1.5).

Theorem 8.1.13 Let P be a context-abstract process. If P is α-honest, then P is α?-honest.
Conversely, if P is α?-honest and ask-free, then P is α-honest.

Proof. See appendix A.2.3 on page 131.
We now sketch the proof of Theorem 8.1.13 (full details are available in Appendix A.2.3).

Correctness of α-honesty (first part of Theorem 8.1.13) follows because value-abstract tran-
sitions of systems can be mimicked by context-abstract ones, and (for the moves of A) also
the vice versa holds. To prove these properties we exploit the corresponding properties of
the context abstraction of contracts (Theorem 8.1.7). More precisely, to show that P is
α?-honest we have to prove that, for all A-free value-abstract S :

A[P] | S −→?
∗ S ′ =⇒ A is α?-ready in S ′

By Theorem A.2.24 in Appendix A.2.3 we have that each value-abstract transition of A[P] | S
can be mimicked by a context-abstract transition of A[P], i.e. A[P] −→A

∗ S̃ ′, where S̃ ′ =

CHAPTER 8. VERIFICATION OF HONESTY 49

αA(S ′). By hypothesis we have that P is α-honest, and so A must be α-ready in S̃ ′.
Lemma A.2.25 in Appendix A.2.3 ensures that each context-abstract transition of A in S̃ ′

can be mimicked by a value-abstract transition of A in S ′. Therefore, A must be α?-ready
in S ′, and so P is α?-honest.

Completeness of α-honesty (second part of Theorem 8.1.13) follows by a similar argument.
Theorem A.2.28 in Appendix A.2.3 ensures that, in the ask-free fragment, each context-
abstract transition is mimicked by a value-abstract one. Lemma A.2.23 is then used to
prove that α?-readiness implies α-readiness.

8.1.4 Main result

We now put together the results of Sections 8.1.1 to 8.1.3, to devise a model checking
technique for honesty. The main result of Part II follows: it states that α-honesty safely
approximates honesty, and it is complete for processes without if and ask. This paves us
the way for a verification procedure for honesty.

Theorem 8.1.14 Let P be a concrete CO2 process, and let P̃ = αA(α?(P)). Then:

Soundness If P̃ is α-honest, then P is honest.

Completeness If P is honest, ask-free, and if-free, then P̃ is α-honest.

Decidability α-honesty of P̃ is decidable if P has no delimitation/parallel under process
definitions.

Proof. Soundness and completeness follow directly from Theorems 8.1.5 and 8.1.13. Decid-
ability involves two steps: first, we compute the value abstraction of P ; second, we model
check the state space of P (under the contex-abstract semantics), searching for states where
A is not α-ready. If the search fails, then A is honest. This is decidable for finite state
processes, such as those without delimitation/parallel under process definitions.

In Example 8.1.15 below we show two counterexamples to completeness, in case the
process under observation is not ask-free and if-free.

8.1.5 Maude implementation

In order to implement α-honesty in Maude, we proceed similarly to Section 6.1.6: we provide
abstract systems and contracts with one-step semantics; then, we define the operator < > to

specify sequences of transitions. We then specify the relation S̃
A: 6={dos,if}−−−−−−−→A S̃ ′, which is

needed to implement α-readiness (see Definition A.2.30 in the appendix). This is done as
follows:

op prefCheck : Prefix SessionName -> Bool .
eq prefCheck (do s a , s) = false .
eq prefCheck (pi , s) = true [owise] . // ‘if’ is not a Prefix

sort ASystem .
op <_>_ : LSystem SessionName -> ASystem [ctor frozen] .
crl < S > s => < S’ > s if S => { A : pi } S’ /\ prefCheck (pi, s) .

CHAPTER 8. VERIFICATION OF HONESTY 50

The predicate “A is α-ready at s in S” is implemented as the operator ready-at, which
is defined recursively. To guarantee its termination, we collect the visited states through the
recursive calls: in this way, no state is visited twice. To allow for a more fine-grained control
over ready-at, we also add the parameter b, of the built-in sort Bound. This parameter
specifies the maximum depth of the search, when model checking α-readiness. By default,
b is the constant unbounded, but it can also be a number. When analysing processes with
no parallel/delimitation under recursion, the unbounded default leads to a complete analysis
w.r.t. α-readiness. In the general case (arbitrary processes), fixing a value for b guarantees
termination of ready-at: this makes us lose completeness, while soundness is preserved.
Increasing the value b improves the accuracy of the analysis.

Function ready-at is defined by conditional equations, corresponding to the three items
of Definition A.2.30 in the appendix. The first one checks for the base case, where the
required do action is immediately available.

ceq ready-at(s,S,M:Module,b, set) = true if
b =/= 0 /\ not S in set /\ not RDempty(s,S,M:Module) .

With b =/= 0 we check that the bound is not zero, with not S in set we check that S has

not already been visited, while the function RDempty(s,S,M:Module) checks that S 6 A: dos−−−→A.

The second conditional equation instead checks if there is a next state, reached without
using dos or if, from which (recursively) the process is found ready. This exploits the Maude
search capabilities; technically, the abstract semantics of CO2 is reflected at the meta-level,
where the search is performed using the metaSearch function. Intuitively, metaSearch takes
a starting state, and searches for all the reachable states matching a given pattern and
condition. Below, metaSearch is fed with (the meta-representation of): the starting state <

S > s; the searched pattern < S’:System > s; the condition, involving the recursive call to
ready-at (with S’ as starting state, b decremented and S added to the set of visited states).
Further, the parameter ’+ stands for the transitive (but not reflexive) closure of −→A; the
parameter 1 specifies the depth of the search (we are looking for one-step successors only);
the last parameter is 0 asking for the the first element of the solution set. If the metaSearch

succeeds, then ready-at returns true.

ceq ready-at(s,S,M:Module,b, set) = true if
b =/= 0 /\
not S in set /\
metaSearch(M:Module,
upTerm(< S > s),
’<_>_[’S’:System , upTerm(s)],
’ready-at[upTerm(s),’S’:System,upTerm(M:Module),upTerm(pred(b)),

’_‘,_[upTerm(S),upTerm(set)]] = ’true.Bool,
’+,
1,
0
) =/= failure .

The third conditional equation checks that an if transition is enabled, and that all
such transitions lead to ready states. With not succIfempty(S,M:Module) we verify that

CHAPTER 8. VERIFICATION OF HONESTY 51

S̃
A: if−−→A. To check that all the if transitions lead to a ready state, we search for a coun-

terexample, i.e., a transition leading to a non-ready one: when the search fails, we return
true. We call metaSearch with the following parameters: the abstract system S; the pattern
{l:ASLabel}S’:System; the condition requiring an if transition (l:ASLabel = A :if) and
the non-readiness of the residual (a recursive call to ready-at must return false).

ceq ready-at(s,S,M:Module,b,set) = true if
b =/= 0 /\
not S in set /\
not succIfempty(S,M:Module) /\
metaSearch(M:Module,
upTerm(S),
’‘{_‘}_[’l:ASLabel,’S’:System],
’_:if[upTerm(A)] = ’l:ASLabel /\
’ready-at[upTerm(s),’S’:System,upTerm(M:Module),upTerm(pred(b)),

’_‘,_[upTerm(S),upTerm(set)]] = ’false.Bool,
’+,
1,
0
) == failure .

Finally, ready-at returns false in the other cases.

eq ready-at(s,S,M:Module,b,set) = false [owise] .

The function search-dishonest searches for reachable non-ready states. It returns a term
of the built-in sort ResultTriple?: this is either failure, representing an unsuccessful search,
or a counterexample whenever the process P is not α-honest. To implement search-dishonest
we exploit the auxiliary function ready, which just applies ready-at (discussed above) to
check that A is ready at all sessions s where A has some obligations.

op search-dishonest : Process Module Bound -> ResultTriple? .
eq search-dishonest(P , M:Module , b) = metaSearch(M:Module,
upTerm(< A[P] >),
’<_>[’S:System],
’ready[’S:System,’S:System, upTerm(M:Module), upTerm(b)] = ’false.Bool,
’*,
unbounded,
0) .

Finally, the function honest verifies α-honesty, by exploiting search-dishonest. When
honest does not return true, it returns a state where the participant is potentially not
α-ready (see e.g. Section 9.1.2).

ceq honest (P , M:Module , b) = true if search-dishonest (P , M:Module , b) == failure .
ceq honest (P , M:Module , b) = downTerm (T:Term , < (0).System >)

if { T:Term , Ty:Type , S:Substitution } := search-dishonest (P , M:Module , b) .

CHAPTER 8. VERIFICATION OF HONESTY 52

Example 8.1.15 Consider the following processes:

P if = (x) tell ↓x a!. if true then dox a! else 0

P ask = (x) tell ↓x a? + b?.
(
askx 2¬b?.dox a? + askx 2¬a?.dox b?

)
Both P if and P ask are honest, but they are not α-honest. The honesty of P if is straightfor-
ward; however, P if is not α-honest, because A[P if] −→A

∗ (s) (A[0] | s[a!]), wherein A is not
α-ready.

Checking the honesty of P ask is a bit more complex. The key observation is that, if the
session x is fused, then either the participant B at the other endpoint of x stays culpable,
or one of the two asks will eventually be fired. If the leftmost ask is fired, then either the
contract of B was just a!, or it was a!⊕ b!, but B has already committed to branch a!. In
both cases, A is ready to fire the required input a?. The other ask branch is symmetrical.
To check that P ask is not α-honest, it is enough to use the Maude tool, since α-honesty is
decidable on such process. The output produced by the tool is the following:

result TSystem: < ($ 0)(A[do $ 0 b ? unit . (0).Sum] | $ 0[ready a ? unit . 0]) >

This means that A[P ask] −→A
∗ (s) (A[dos b?] | s[rdy a?]), wherein A is not α-ready. To stati-

cally verify this process as honest we could refine the context-abstract semantics of contracts,
by keeping information about which ask prefixes have passed. More precisely, after an ask

passes, we gain information on the contract of the counterparty, and this additional infor-
mation could be used to prove honesty. Our analysis instead completely abstracts from the
context, discarding such information.

Chapter 9

Experiments

9.1 Experiments

In this chapter we validate our verification technique through some experiments. We consider
five case studies: the online store with bank (Section 9.1.1), a voucher distribution system
(Section 9.1.2), a car purchase financed with a loan (Section 9.1.3), an online casino featuring
blackjack (Section 9.1.4), and a travel agency (Section 9.1.5). We specify each of these
case studies in CO2, and we (successfully) verify their honesty using our tool. Finally,
in Section 9.1.6 we evaluate the performance of our model checking tool.

The full Maude implementation of all our experiments is available at http://tcs.unica.
it/software/co2-maude.

9.1.1 Online store with bank

Our first experiment concerns the online store with bank introduced in Example 7.1.8. When
using the Maude honesty checker to verify it, we obtain:

reduce in ONLINE-STORE : honest(PA, [’ONLINE-STORE], unbounded) .

result TSystem: < ($ 0,$ 1)
(A[do $ 0 pay ? string . Pbank(($ 0) ; ($ 1) ; expr)

+ do $ 0 cancel ? unit . do $ 1 abort ! unit . (0).Sum]
| $ 0[pay ? string . (ok ! unit . 0(+)no ! unit .

(rec Y . pay ? string . (ok ! unit . 0(+)no ! unit . Y(+)abort ! unit . 0)
+ cancel ? unit . 0)(+)abort ! unit . 0)

+ cancel ? unit . (0).Id]
| $ 1[ccnum ! string . · · · omitted · · · (+) abort ! unit . 0] >

The output produced by Maude is a counterexample to honesty. By analysing it, the
source of the dishonesty of the store becomes apparent. The store is enabling pay? and
cancel? on session x (in Maude, denoted $ 0). On session y (in Maude, $ 1), the store
has the obligation to do either action ccnum! or abort!: however, if the other endpoint at
session x does not perform pay! or cancel!, then the store is not ready to fulfil its obligaton
at session y.

53

http://tcs.unica.it/software/co2-maude
http://tcs.unica.it/software/co2-maude

CHAPTER 9. EXPERIMENTS 54

We now revise the specification of the store. In order to make it honest, we have to deal
with all the cases — as the one shown above — where the other endpoint involved in a session
does not fulfil its obligations. This is done by adding branches (prefixed by τ ’s, modelling
timeouts) whenever the store is waiting some input on a session. In all these branches, the
revised store does all the actions needed to exculpate itself in the other sessions.

For instance, process P pay in Example 7.1.8 is modified as follows:

P pay(x, y, t)
def
= dox pay?w.P bank(x, y, w, t) + dox cancel?. doy abort! +

τ .(P abortC(x) | P abortB(y))

P abortB(y)
def
= doy abort! | (doy accept? + doy deny?)

P abortC(x)
def
= dox abort! | (dox pay?w + dox cancel?)

Note that in the processes P abortB and P abortC, only one output is performed (abort!); the
other do prefixes are only needed to receive residual pending inputs, if any.

The honesty of the revised store is correctly verified by the Maude model checker.

9.1.2 Voucher distribution system

A store A offers buyers two payment options: clickPay or clickVoucher. If a buyer B chooses
clickPay, A requires B to pay; otherwise, A checks the validity of the voucher with V, an
online voucher distribution system. If V validates the voucher (ok), B can use it (voucher),
otherwise (no) B must pay.

We specify the contracts cB (between A and B) and cV (between A and V) as follows:

cB
def
= clickPay? . pay?string + clickVoucher? .

(reject! . pay?string ⊕ accept! . voucher?string)

cV
def
= ok? + no?

In [27] a CO2 process for A was specified as follows:

P = (x)
(
tell ↓x cB .(dox clickPay?.dox pay? + dox clickVoucher?.(y) tell ↓y cV .Q)

)
Q = doy ok?.dox accept!.dox voucher? + doy no?.dox reject!.dox pay? + τ .R

R = dox reject!.dox pay?

Variables x and y in P correspond to two separate sessions, where A interacts with B and V,
respectively. The advertisement of cV causally depends on the stipulation of the contract cB,
because A must fire clickVoucher before the rightmost tell . In process Q the store waits
for an answer from V: if V validates the voucher (first branch), then A accepts it from B;
if V rejects the voucher (second branch), then A requires B to pay. The third branch τ .R
allows A to fire a τ action, and then reject the voucher. Here τ models a timeout, to deal
with the fact that cV might either not be stipulated, or V might take too long to answer.

The process P above was erroneously classified as honest in [27]. The Maude model
checker has determined the dishonesty of that process, and by exploiting the Maude tracing
facilities we managed to fix it. Actually, when we check the honesty of P , Maude gives the
following output:

CHAPTER 9. EXPERIMENTS 55

red honest(P , [’VOUCHER], unbounded) .
rewrites: 36668 in 76ms cpu (76ms real) (482473 rewrites/second)
result TSystem: < ($ 0,$ 1)(A[do $ 0 reject ! unit . do $ 0 pay ? string . (0).Sum] |
$ 0[accept ! unit . voucher ? string . 0(+)reject ! unit . pay ? string . 0] |
$ 1[ready ok ? unit . 0]) >

The last three lines of the output above show a state where A is not ready: there, A must
do ok in session $1 (which corresponds to variable y in the CO2 specification), while A is
only ready to do a reject at session $0 (which corresponds to x). This problem occurs when
branch τ.R is chosen (actually, the code within A[...] is that of R). Since P is ask-free and
if-free, by completeness of abstract honesty (Theorem 8.1.14) it follows that P is dishonest.
To recover honesty, it suffices to replace R with the following process R′, where A is ready
to handle V’s answer when y is istantiated:

R′ = (dox reject!.dox pay?) | (doy no? + doy ok?)

Let P ′ be the store process with the modifications above. Using the Maude model checker,
now we obtain:

red honest(P’ , [’VOUCHER], 3) .
rewrites: 51201 in 44ms cpu (42ms real) (1163659 rewrites/second)
result Bool: true

Therefore, by Theorem 8.1.14 we deduce that the P ′ is honest.

9.1.3 Car loan

In this example, we show how the ask prefix allows to query an already established session.
Alice wants to buy a car, but she is undecided between an used one, or a new Ferrari: it
depends on whether she will manage to obtain a loan, and on its amount. Therefore, she
plans to ask for either a e 10,000 or a e 200,000 loan by advertising the following contracts:

c10K = loan10K!⊕ abort10K! c200K = loan200K!⊕ abort200K!

Advertising these contracts, Alice is looking for a bank which is willing to commit to an
offer for a loan. Alice instead is not committing herself to the loan, right now: after one of
the two contracts is fused, Alice will then choose whether to actually accept the offer (e.g.,
loan10k!), or not (e.g., abort10k!). Then, depending on which loan can be granted, she
plans to advertise one of the following contracts for actually buying the car:

cU = used! . (ok? + no?)⊕ abortU! cF = ferrari! . (ok? + no?)⊕ abortF!

CHAPTER 9. EXPERIMENTS 56

where she can either select the car (and then accept ok? or no? as an answer from the car
dealer), or abort the transaction. Her CO2 process is the following:

P = (x) tell ↓x c10K . tell ↓x c200K .
(

askxO(loan10k! ∨ abort10k!) . (y) tell ↓y cU . P used(y)

+ askxO(loan200k! ∨ abort200k!) . (y) tell ↓y cF . P ferrari(y)
)

P used(y)
def
= doy used! . (doy ok? . dox loan10K! + doy no? . dox abort10K!

+ τ . P abortU1) + τ . P abortU

P ferrari(y)
def
= doy ferrari! . (doy ok? . dox loan200K! + doy no? . dox abort200K!

+ τ . P abortF1) + τ . P abortF

In P , Alice tells the two loan contracts c10K and c200K on the same session variable
x: this guarantees that only one of them can be fused into a new session (more on this
later). Then, P performs a choice whose two branches are guarded by askx: by rule [Ask] on
Figure 7.2, they will both be blocked until x is replaced by some session name s (i.e., after
rule [Fuse] is applied and a new session is established). Then, we have that:

• the first branch will only pass if the next step of the contracts fused on x is either
loan10K! or abort10K! (the symbol O denotes the standard “next” operator in LTL);

• similarly, the second branch will only pass if the next step of the contracts fused on x
is either loan200K! or abort200K!.

The first askx prefix passes only if c10K is fused, and thus Alice can obtain a e 10,000
loan: in this case, she advertises the contract cU above on session y, and then executes
P used(y): there, she tries to buy an used car on y, and if the car dealer’s answer is ok?, she
selects loan10K! on x.

The second askx-guarded branch is similar — except that its askx passes only if c200K is
fused, and thus Alice can obtain a e 200,000 loan: in this case, she advertises cF on y, and
executes P ferrari(y); there, she tries to buy a Ferrari on y, and if the car dealer’s answer is
ok?, she selects loan200K! on x.

The processes P abortU1, P abortU, P abortF1 and P abortF1 are used to ensure that all the
sessions are aborted correctly, whenever the participants at the other endpoints are not
cooperating.

P abortU1(x, y)
def
= dox abort10K! | (doy ok? + doy no?)

P abortU(x, y)
def
= dox abort10K! | doy abortU!

P abortF1(x, y)
def
= dox abort200K! | (doy ok? + doy no?)

P abortF(x, y)
def
= dox abort200K! | doy abortF!

The Maude model checker correctly verifies that P is honest. In particular, it correctly
determines that only one contract between c10K and c200K can be fused on x. In fact, after

CHAPTER 9. EXPERIMENTS 57

the first two tell prefixes of A[P] are fired, we have a system of the form:

(x, . . .)
(
A[askx · · · + askx · · ·] | {↓x c10K}A | {↓x c200K}A | S

)
| · · ·

Depending on the context S , rule [Fuse] might be fired by involving c10K or c200K . In the first
case, we obtain:

(s, . . .)
(
A[asks · · · + asks · · ·] | s[γ] | {↓s c200K}A | · · ·

)
| · · ·

i.e., c10K becomes part of γ , while c200K remains latent. However, x has now been replaced
by s: this prevents rule [Fuse] to be fired on {↓s c200K}A, and allows such a term to be
garbage-collected by the last rule in Figure 7.1. Instead, if c200K is fused in a session, then
c10K remains latent, and {↓s c10K}A can be garbage-collected. The outcome of this session
establishment will later influence the behaviour of the askx-guarded choices in P . This chain
of events is precisely reflected by the abstract semantics of CO2 — in particular, by rules
[α-Fuse] and [α-Ask] in Figure 8.3: this allows the model checker to establish that P is α-honest,
and hence honest.

9.1.4 Blackjack

We model an online blackjack server, using simplified casino rules. The game involves two
players: P (for player) and A (for dealer). The goal of P is to beat the dealer, by accumulating
a hand of cards whose value is greater than that of the dealer; furthermore, the value of the
hand must not exceed 21. The game has two turns: first the player turn, and then the dealer
turn. In the player turn, A deals cards to the player; after a card is received, the player can
decide whether to get another one (hit) or to terminate his turn (stand). In the dealer
turn, A deals cards for himself, with the goal of obtaining a hand with value greater than
the player’s hand. The player (possibly, A) which exceeds 21 loses the game.

The contract advertised by the dealer to players is the following:

cP = recZ . hit? . chit + stand? . cend

chit = card!int . Z ⊕ lose! ⊕ abort!

cend = win! ⊕ lose! ⊕ abort!

Players can choose between taking a card (hit) or passing the turn (stand). In the first case,
the dealer either gives a card to the player (and returns to the beginning of the contract),
or it notifies that the player loses (or it may abort the game). In the second case (stand),
the dealer notifies to the player if he has won or lost (or if the game has been aborted).

To implement the game, the dealer resorts to an external service which provides the
features of a deck of cards. The contract between the dealer and the deck of cards is
formalised by cD as follows:

cD = recZ . next! . card?int . Z ⊕ abort!

The dealer can recursively ask for a new card (next) and receive it (card) as an integer value,
or it may abort the interaction with the deck of cards service.

CHAPTER 9. EXPERIMENTS 58

We specify the dealer as the following process P :

P = (xd) (xp) tell ↓xd cD . askxd true . tell ↓xp cP . P play(xp, xd, 0)

The first tell in P advertises the contract for the deck of cards. The dealer waits (via the
ask prefix) that such contract is fused, and then it advertises the contract for the player
(with the second tell). At this point the control is passed to the process P play, which is
specified as follows:

P play(xp, xd, np)
def
= doxp hit? . doxd next! . P deck(xp, xd, np)

+ doxp stand? . Qstand(xp, xd, np, 0)

+ τ . doxd abort! . P abortP(xp)

Process P play waits for a player decision. If the player chooses hit then the dealer asks the
deck for the next card, and the control passes to P deck. Instead, if the player chooses stand,
the control passes to Qstand. The third branch models a timeout, where the dealer stops
waiting for the player decision, and it just aborts all the sessions. The parameter np is used
to accumulate the value of the player hand (i.e., the summation of the value of the cards he
has received).

P deck(xp, xd, np)
def
= doxd card?n . P card(xp, xd, np + n, n) + τ . doxp abort! . P abortD(xd)

Process P deck waits for the value n of the card provided by the deck, and then passes the
control to P card. Also in this case, a timeout branch ensures that sessions are aborted in
case the deck does not reply timely.

P card(xp, xd, np, n)
def
= if np ≤ 21 then doxp card!n . P play(xp, xd, np)

else doxp lose! . P abortD(xd)

Process P card checks whether the player hand exceeds 21: if so, it tells the player that he
has lost; otherwise, the player is allowed to take another turn.

Qstand(xp, xd, np, nd)
def
= if nd ≤ 21 then doxd next! . Qdeck(xp, xd, np, nd)

else doxp win! . doxd abort!

Process Qstand is invoked upon the player has decided to stand. The dealer checks that the
value nd of its hand (initially set to 0) is less then 21. If so, the dealer asks the deck for the
next card, and the control passes to Qdeck; otherwise, it tells the player that he has won.

Qdeck(xp, xd, np, nd)
def
= doxd card?n .Qcard(xp, xd, np, nd + n) + τ . doxp abort! . P abortD(xd)

Process Qdeck waits for the card, and then proceeds to Qcard (as above, also in this case we
use a timeout branch to avoid deadlock).

Qcard(xp, xd, np, nd)
def
= if nd < np then Qstand(xp, xd, np, nd) else doxp lose! . P abortD(xd)

CHAPTER 9. EXPERIMENTS 59

Process Qcard compares the hand np of the player with that nd of the dealer. If the dealer
hand has not reached np, the dealer takes another card; otherwise, the player has lost.

P abortP(xp)
def
= doxp hit? . doxp abort! + doxp stand? . doxp abort!

P abortD(xd)
def
= doxd abort! | doxd card? . doxd abort!

Finally, processes P abortP and P abortD ensure that the sessions with the player and with the
deck of cards, respectively, are aborted correctly.

The Maude honesty checker correctly determines that P is honest.

9.1.5 Travel agency

A travel agency A queries in parallel an airline ticket broker F and a hotel reservation service
H in order to organise a trip for some user U.

The contract cU between the travel agency and the user first requires U to provide the
trip details and the available budget; then, it chooses either to send a quote to U, or to
abort the transaction. In the first case, the continuation c′ requires first U to pay (the details
of the payment are abstracted away; see Example 7.1.8 for a more concrete treatment of
payments). Then, the agency may decide whether to commit the transaction or to abort it:

cU = tripDets?string . budget?int . (quote!int . c′⊕ abort!)

c′ = pay? . (commit!⊕ abort!)

The contract cF between the travel agency and the ticket broker first requires A to send the
flight details to F. Then, F replies with a quote for the ticket, after which A can choose
whether to pay or abort the transaction. If A opts to pay, then it will receive a confirmation,
after which it may eventually choose to commit or to abort the transaction:

cF = flightDets!string . d

d = quote?int .
(
pay! . d′ ⊕ abort!

)
d′ = confirm? . (commit!⊕ abort!)

The contract cH between the agency and the hotel reservation service is similar (except for
the first action):

cH = hotelDets!string . d

In addition to the contracts above, the agency should respect the following constraints:

1. the agency commits the transaction with U iff both the transactions with F and H are
committed;

2. A pays the ticket and the hotel reservation only after it has received the payment from
U;

CHAPTER 9. EXPERIMENTS 60

3. either both the transactions with F or H are committed, or they are both aborted.

A specification of the travel agency respecting the above constraints is given by the
following process P :

P = (xu) tell ↓xu cU . doxu tripDets?yt . doxu budget?yb . P ′

P ′ = (xf xh) (P flight | P hotel | P quote(xu, xf , xh, yb))

P flight = tell ↓xf cF . doxf flightDets!yt
P hotel = tell ↓xh cH . doxh hotelDets!yt

Process P first advertises the contract cU, then receives from U the trip details and the
budget. Then, process P ′ advertises the contracts cF and cH, and requests in parallel the
quotes to F and H.

P quote(x, x1, x2, y)
def
= P quote1(x, x1, x2, y) + P quote1(x, x2, x1, y) + τ . P abort(x, x1, x2)

P quote1(x, x1, x2, y)
def
= dox1 quote?y1 . if y1 < y thenP quote2(x, x1, x2, y1, y)

elseP abort(x, x1, x2)

P quote2(x, x1, x2, y1, y)
def
= (dox2 quote?y2 . if y1 + y2 < y thenP pay(x, x1, x2, y1 + y2)

elseP abort(x, x1, x2))
+τ . P abort(x, x1, x2)

In the continuation P quote, the agency receives the quotes from F and H. In the left-
most invocation P quote1(xu, x1, x2, y) the quote from F is received first, while in the right-
most invocation P quote1(xu, x2, x1, y), the priority is given to the quote from H. The branch
τ . P abort(x, x1, x2) models a timeout, where the agency stops waiting for the quotes, and it
just aborts all the sessions. These are aborted also in case one of the quotes (or their sum)
is greater than the user budget.

P abort(x, x1, x2)
def
= dox abort! | dox1 abort! | dox2 abort!

| dox pay? | dox1 quote? | dox2 quote? | dox1 confirm? | dox2 confirm?

The second line of process P abort ensures that pending input messages that might remain
are eventually consumed. After both quotes are received, the control passes to P pay.

P pay(x, x1, x2, y)
def
= dox quote!y . (dox pay? . P confirm1(x, x1, x2) + τ . P abort(x, x1, x2))

P confirm1(x, x1, x2)
def
= dox1 pay! . dox2 pay! .

(
(dox1 confirm? . P confirm2(x, x1, x2))

+ τ . P abort(x, x1, x2)
)

P confirm2(x, x1, x2)
def
= (dox2 confirm? . P commit) + τ . P abort(x, x1, x2)

In process P pay, the agency sends the overall quote to U. Then, it waits for the user
payment, or it aborts all the sessions if a timeout has occurred. If the payment from U is
received, the agency proceeds to pay the ticket and the hotel reservation. Then, in P confirm1 it
waits the confirmation from F, and after that, in P confirm2 waits the confirmation from H. As
above, waiting can always be terminated by a timeout, which is followed by P abort. Finally,
in process P commit the agency commits all the transactions.

The Maude honesty checker correctly determines that P is honest.

CHAPTER 9. EXPERIMENTS 61

Example Ref. Rewritings Avg. time (ms) Std. dev.

Online store (dishonest) 7.1.8 18478 36.8 1.03
Online store (honest) 9.1.1 223379 147.6 2.27
Voucher (dishonest) 9.1.2 36668 49.8 1.03

Voucher (honest) 9.1.2 51201 54.8 2.69
Car loan 9.1.3 110804 114.8 5.00
Blackjack 9.1.4 125720 140.9 3.14

Travel Agency 9.1.5 15143028 6118 80.95

Table 9.1: Benchmarks for the honesty checker.

9.1.6 Benchmarks

To empirically valuate the effectiness of our verification technique, we have applied the Maude
honesty checker on all the case studies in Section 9.1. The experiments have measured, for
each case study, the total number of rewritings, and the average completion time. The
testing environment is a PC with an Intel Core i7-4790K CPU @ 4.00GHz and 32G of RAM,
running Ubuntu 14.04. The results are reported in Table 9.1.

Part III

A timed contract model

62

Chapter 10

Timed session types

10.1 Timed session types: syntax and semantics

In this chapter we introduce binary timed session types, giving their syntax and semantics.
We refer to Chapter 5 for syntax and semantics of guards, and notation. A TST p models

the behaviour of a single participant involved in an interaction (Definition 10.1.1). To give
some intuition, we consider two participants, Alice (A) and Bob (B), who want to interact.
A advertises an internal choice

⊕
i ai!{gi, Ri} . pi when she wants to do one of the outputs

ai! in a time window where gi is true; further, the clocks in Ri will be reset after the output
is performed. Dually, B advertises an external choice

∑
i ai?{gi, Ri} . qi to declare that he

is available to receive each message ai in any instant within the time window defined by gi
(and the clocks in Ri will be reset after the input).

Definition 10.1.1 (Timed session type) Timed session types p, q, . . . are terms of the
following grammar:

p ::= 1
∣∣ ⊕

i∈I

ai!{gi, Ri} . pi
∣∣ ∑

i∈I

ai?{gi, Ri} . pi
∣∣ recX . p

∣∣ X

where (i) the set I is finite and non-empty, (ii) the actions in internal/external choices
are pairwise distinct, (iii) recursion is guarded (e.g., we forbid both recX . X and recX .
recY . p).

Except where stated otherwise, we consider TSTs up-to unfolding of recursion. A TST
is closed when it has no recursion variables. If q =

⊕
i∈I ai!{gi, Ri} . pi and 0 6∈ I, we write

a0!.p0 ⊕ q for
⊕

i∈I∪{0} ai!{gi, Ri} . pi (the same for external choices). True guards, empty
resets, and trailing occurrences of the success state 1 can be omitted.

Example 10.1.2 (Simplified PayPal) Along the lines of PayPal User Agreement [1], we
specify the protection policy for buyers of a simple on-line payment platform, called PayNow
(see Section 10.3 for the full version). PayNow helps customers in on-line purchasing, pro-
viding protection against seller misbehaviours. In case a buyer has not received what he has
paid for, he can open a dispute within 180 days from the date the buyer made the payment.

63

CHAPTER 10. TIMED SESSION TYPES 64

After opening of the dispute, the buyer and the seller may try to come to an agreement. If
this is not the case, within 20 days, the buyer can escalate the dispute to a claim. However,
the buyer must wait at least 7 days from the date of payment to escalate a dispute. Upon
not reaching an agreement, if still the buyer does not escalate the dispute to a claim within
20 days, the dispute is considered aborted. During a claim procedure, PayNow will ask the
buyer to provide documentation to certify the payment, within 3 days of the date the dispute
was escalated to a claim. After that, the payment will be refunded within 7 days. PayNow’s
agreement is described by the following TST p:

p = pay?{tpay}. (ok? + dispute?{tpay < 180, td}. p′) where

p′ = ok?{td < 20} +

claim?{td < 20 ∧ tpay > 7, tc}.rcpt?{tc < 3, tc}.refund!{tc < 7} +

abort?

Semantics

To define the behaviour of TSTs we use clock valuations, which associate each clock with
its value. The state of the interaction between two TSTs is described by a configuration
(p, ν) | (q, η), where the clock valuations ν and η record (keeping the same pace) the time
of the clocks in p and q, respectively. The dynamics of the interaction is formalised as a
transition relation between configurations (Definition 10.1.3). This relation describes all and
only the correct interactions: e.g., we do not allow time passing to make unsatisfiable all
the guards in an internal choice, since doing so would prevent a participant from respecting
her protocol. In Section 13.1 we will study another semantics, which can also describe the
behaviour of dishonest participants who do not respect their protocols.

Definition 10.1.3 (Semantics of TSTs) A configuration is a term of the form (p, ν) |
(q, η), where p, q are TSTs extended with committed choices [a!{g,R}] p. The semantics
of TSTs is a labelled relation −→ over configurations (Figure 10.1), whose labels are either
silent actions τ , delays δ, or branch labels, and where we define the set of clock valuations
rdy(p) as:

rdy(p) =


↓
⋃

JgiK if p =
⊕

i∈I ai!{gi, Ri} . pi
V if p =

∑
· · · or p = 1

∅ otherwise

As usual, we write p
α−→ p′ as a shorthand for (p, α, p′) ∈−→, with α ∈ L ∪ {τ} ∪ R≥0. We

denote with −→∗ the reflexive and transitive closure of the relation
τ−→ ∪ δ−→.

We now comment the rules in Figure 10.1. The first four rules describe the behaviour of
a TST in isolation. Rule [⊕] allows a TST to commit to the branch a! of her internal choice,
provided that the corresponding guard is satisfied in the clock valuation ν . This results in
the term [a!{g,R}] p, which represents the fact that the endpoint has committed to branch

CHAPTER 10. TIMED SESSION TYPES 65

(a!{g,R}. p ⊕ p′, ν)
τ−→ ([a!{g,R}] p, ν) if ν ∈ JgK [⊕]

([a!{g,R}] p, ν)
a!−→ (p, ν [R]) [!]

(a?{g,R}. p + p′, ν)
a?−→ (p, ν [R]) if ν ∈ JgK [?]

(p, ν)
δ−→ (p, ν + δ) if δ > 0 ∧ ν + δ ∈ rdy(p) [Del]

(p, ν)
τ−→ (p′, ν ′)

(p, ν) | (q, η)
τ−→ (p′, ν ′) | (q, η)

[S-⊕]

(p, ν)
δ−→ (p, ν ′) (q, η)

δ−→ (q, η ′)

(p, ν) | (q, η)
δ−→ (p, ν ′) | (q, η ′)

[S-Del]

(p, ν)
a!−−→ (p′, ν ′) (q, η)

a?−−→ (q ′, η ′)

(p, ν) | (q, η)
τ−→ (p′, ν ′) | (q ′, η ′)

[S-τ]

Figure 10.1: Semantics of timed session types (symmetric rules omitted).

a! in a specific time instant: this term can only fire a! through rule [!] (which also resets
the clocks in R), while time cannot pass. Rule [?] allows an external choice to fire any of its
input actions whose guard is satisfied. Rule [Del] allows time to pass; this is always possible
for external choices and success term, while for an internal choice we require that at least
one of the guards remains satisfiable; this is obtained through the function rdy. The last
three rules deal with configurations. Rule [S-⊕] allows a TST to commit in an internal choice.
Rule [S-τ] is the standard synchronisation rule à la CCS; note that B is assumed to read a
message as soon as it is sent, so A never blocks on internal choices. Rule [S-Del] allows time
to pass, equally for both endpoints.

Example 10.1.4 Let p = a!⊕b!{t > 2}, let q = b?{t > 5}, and consider the computations:

(p, ν0) | (q, η0)
7−→ τ−→ ([b!{t > 2}] , ν0 + 7) | (q, η0 + 7)

τ−→ (1, ν0 + 7) | (1, η0 + 7) (10.1)

(p, ν0) | (q, η0)
δ−→ τ−→ ([a!] , ν0 + δ) | (q, η0 + δ) (10.2)

(p, ν0) | (q, η0)
3−→ τ−→ ([b!{t > 2}] , ν0 + 3) | (q, η0 + 3) (10.3)

The computation in (10.1) reaches success, while the other two computations reach a deadlock
state. In (10.2), p commits to the choice a! after some delay δ; at this point, time cannot
pass (because the leftmost endpoint is a committed choice), and no synchronisation is possible
(because the other endpoint is not offering a?). In (10.3), p commits to b! after 3 time
units; here, the rightmost endpoint would offer b?, but not in the time chosen by the leftmost
endpoint. Note that, were we allowing time to pass in committed choices, then we would
have obtained e.g. that (b!{t > 2}, ν0) | (q, η0) never reaches deadlock — contradicting our
intuition that these endpoints should not be considered compliant.

Note that, even when p and q have shared clocks, the rules in Figure 10.1 ensure that
there is no interference between them. For instance, if a transition of (p, ν) resets some clock

CHAPTER 10. TIMED SESSION TYPES 66

t, this has no effect on a clock with the same name in q, i.e. on a transition of (p, ν) | (q, η).
Thus, w.l.o.g. hereafter we will assume that the clocks in p and in q are disjoint.

10.2 Compliance between TSTs

We extend to the timed setting the standard progress-based compliance between (untimed)
session types [10, 18], related to the compliance relations studied for the more general for-
malism of contracts for web services [75, 49]. If p is compliant with q, then whenever an
interaction between p and q becomes stuck, it means that both participants have reached the
success state. Intuitively, when two TSTs are compliant and participants behave honestly
(according to their TSTs), then the interaction will progress, until both of them reach the
success state. We recall that ν0, η0 are initial clock valuations, i.e. functions associating 0 to
each clock (Definition 5.1.2).

Definition 10.2.1 (Compliance) We say that (p, ν) | (q, η) is deadlock whenever (i) it is
not the case that both p and q are 1, and (ii) there is no δ such that (p, ν + δ) | (q, η+ δ)

τ−→.
We then write (p, ν) ./ (q, η) whenever:

(p, ν) | (q, η) −→∗ (p′, ν ′) | (q ′, η ′) implies (p′, ν ′) | (q ′, η ′) not deadlock

We say that p and q are compliant whenever (p, ν0) ./ (q, η0) (in short, p ./ q).

Note that item (ii) of the definition of deadlock can be equivalently phrased as follows:
(p, ν) | (q, η) 6 τ−→ (i.e., the configuration cannot do a τ -move in the current clock valuation),

and there does not exist any δ > 0 such that (p, ν) | (q, η)
δ−→ τ−→ .

Example 10.2.2 The TSTs p = a?{t < 5}.b!{t < 3} and q = a!{t < 2}.b?{t < 3} are
compliant, but p is not compliant with q ′ = a!{t < 5}.b?{t < 3}. Indeed, if q ′ outputs a

at, say, time 4, the configuration will reach a state where no actions are possible, and time
cannot pass: a deadlock state, according to Definition 10.2.1.

Example 10.2.3 Consider a customer of PayNow (Example 10.1.2) who is willing to wait
10 days to receive the item she has paid for, but after that she will open a claim. Further,
she will instantly provide PayNow with any documentation required. The customer contract
is described by the following TST, which is compliant with PayNow’s p in Example 10.1.2:

pay!{tpay}.(ok!{tpay < 10} ⊕
dispute!{tpay = 10}.claim!{tpay = 10}.rcpt!{tpay = 10}.refund?)

Compliance between TSTs is more liberal than the untimed notion, as it can relate terms
which, when cleaned from all the time annotations, would not be compliant in the untimed
setting. For instance, the following example shows that a recursive internal choice can be
compliant with a non-recursive external choice — which can never happen in untimed session
types.

CHAPTER 10. TIMED SESSION TYPES 67

Example 10.2.4 Let p = recX.
(
a! ⊕ b!{x ≤ 1}. c?. X

)
, q = a? + b?{y ≤ 1}. c!{y > 1}. a?.

We have that p ./ q. Indeed, if p chooses the output a!, then q has the corresponding input,
and they both succeed; instead, if p chooses b!, then it will read c? when x > 1, and so at
the next loop it is forced to choose a!, since the guard of b! has become unsatisfiable.

Definition 10.2.5 and Lemma 10.2.6 below coinductively characterise compliance between
TSTs, by extending to the timed setting the coinductive compliance for untimed session types
in [9]. Intuitively, an internal choice p is compliant with q when (i) q is an external choice,
(ii) for each output a! that p can fire after δ time units, there exists a corresponding input
a? that q can fire after δ time units, and (iii) their continuations are coinductively compliant.
The case where p is an external choice is symmetric.

Definition 10.2.5 We say R is a coinductive compliance iff (p, ν)R(q, η) implies:

1. p = 1 ⇐⇒ q = 1

2. p =
⊕

i∈I ai!{gi, Ri} . pi =⇒ ν ∈ rdy(p) ∧ q =
∑

j∈J aj?{gj, Rj} . qj ∧
∀δ, i : ν + δ ∈ JgiK =⇒ ∃j : ai = aj ∧ η + δ ∈ JgjK ∧ (pi, ν + δ[Ri])R(qj, η + δ[Rj])

3. p =
∑

j∈J aj?{gj, Rj} . pj =⇒ η ∈ rdy(q) ∧ q =
⊕

i∈I ai!{gi, Ri} . qi ∧
∀δ, i : η + δ ∈ JgiK =⇒ ∃j : ai = aj ∧ ν + δ ∈ JgjK ∧ (pj, ν + δ[Rj])R(qi, η + δ[Ri])

Lemma 10.2.6 p ./ q ⇐⇒ ∃Rcoinductive compliance : (p, ν0)R(q, η0)

Proof. See appendix B.1 on page 135.
The following theorem establishes decidability of compliance. To prove it, we reduce the

problem of checking p ./ q to that of model-checking deadlock freedom in a network of timed
automata constructed from p and q. The translation of TSTs into timed automata is quite
involved, and is explained in detail in Section 12.1. We anticipate here the statement about
decidabiliy for presentationl reasons.

Theorem 10.2.7 Compliance between TSTs is decidable.

Proof. Straightforward consequence of Theorem 12.1.12 in Section 12.1 and by the decid-
ability of deadlock freedom in timed automata [3, 95].

10.3 Case study: Paypal User Agreement

As a case study, we formalise as a TST (part of) the “protection for buyers” section of the
PayPal User Agreement [1], which regulates the interaction between Paypal and buyers in
trouble during online purchases. When a buyer has not received the item they have paid
for (inr), or if they have received something significantly different from what was described
(snad), they can open a dispute. The dispute can be opened within 180 days (tpay < 180)
of the payment date (pay). After opening the dispute, the buyer and the seller may try

CHAPTER 10. TIMED SESSION TYPES 68

to solve the problem, or it might be the case that the item finally arrives; otherwise, if an
agreement (ok) is not found within 20 days (tinr < 20), the buyer can escalate the dispute
to a claim (claimINR,claimSNAD). However, in case of an item not received, the buyer must
wait at least 7 days from the date of payment to escalate the dispute (tpay > 7). Upon not
reaching an agreement, if still the buyer does not escalate the dispute to a claim within 20
days (tpay > 20), PayPal will close the dispute (close).

During the claim process, PayPal may require the buyer to provide documentation to
support the claim, for instance receipts (rcpt) or photos (photo), and the buyer must
comply in a timely manner to what they are required to do. For SNAD claims, if the claim
is accepted, PayPal may require the buyer to ship the item back to the Seller, to PayPal, or
to a third party and to provide proof of delivery. In case the item is counterfeit, the item
will be destroyed (destroy) and not shipped back to the seller(sendBack). After that, the
buyer will be refunded. In some cases, the buyer is not eligible for a refund (notEligible).

We can formalise this agreement as the following TST:

pay?{true, tpay}.(ok?

+ inr?{tpay < 180, tinr}.(ok?{tinr < 20}+ close?{tpay ≥ 20}
+ claimINR?{tinr < 20 ∧ tpay > 7, tc}.rcpt?.(refund!⊕ notEligible!)

+ snad?{tpay < 180, tsnad}.(ok?{tsnad < 20}+ close?{tpay ≥ 20}
+ claimSNAD?{tsnad < 20, tc}.photo?.

(sendBack!.ackSendBack?.refund!⊕ destroy!.ackDestroy?.refund!⊕ notEligible!))

Let us consider a possible buyer Alice, who wants to see if she may entrust PayPal for her
transactions. Alice is willing to wait 10 days to receive the item she has paid for, but after
that she will open a claim. She will readily provide PayPal with every documentation they
may need in order to issue the refund. In case she receives an item significantly different
from what she has paid for, she will complain to PayPal by opening a claim as soon as the
item is received. Alice will timely comply to do whatever PayPal requires (either to destroy
the item or to send it back) in order to be refunded. Alice’s requirements can be formalised
as the following TST:

pay!{true, tpay}.(ok!{tpay < 10}
⊕inr!{tpay = 10}.claimINR!{tpay = 10}.rcpt!{tpay = 10}.(refund? + notEligible?)
⊕snad!{tpay < 10, tsnad}.claimSNAD!{tsnad = 0}.photo!{tsnad = 0}.

(sendBack?{tc}.ackSendBack!{tc < 3}.refund?
+ destroy?{tc}.ackDestroy!{tc < 3}.refund? + notEligible?))

Alice’s and PayPal’s TSTs are compliant, according to Definition 10.2.1. However, we
can see that PayPal’s TST lacks some important details: what does it means timely comply
to what is required? And, most importantly: how long will it take for a buyer to be refunded?
Without a deadline on the refund! action, Alice may possibly wait forever.

Chapter 11

Admissibility of a compliant and
subtyping

11.1 Admissibility of a compliant

In the untimed setting, each session type p admits a compliant, i.e. there exists some q
such that p ./ q. For instance, we can compute q by simply swapping internal choices with
external ones (and inputs with outputs) in p (this q is called the canonical dual of p in some
papers [67]). A näıve attempt to extend this construction to TSTs can be to swap internal
with external choices, as in the untimed case, and leave guards and resets unchanged. This
construction does not work as expected, as shown by the following example.

Example 11.1.1 Consider the following TSTs:

p1 = a!{x ≤ 2}. b!{x ≤ 1} p2 = a!{x ≤ 2} ⊕ b!{x ≤ 1}. a?{x ≤ 0}
p3 = recX . a?{x ≤ 1 ∧ y ≤ 1}. a!{x ≤ 1, {x}}. X

The TST p1 is not compliant with its näıve dual q1 = a?{x ≤ 2}. b?{x ≤ 1}: even though
q1 can do the input a? in the required time window, p1 cannot perform b! if a! is performed
after 1 time unit. For this very reason, no TST is compliant with p1. Note instead that
q1 ./ a!{x ≤ 1}. b!{x ≤ 1}, which is not its näıve dual. In p2, a similar deadlock situation
occurs if the b! branch is chosen, and so also p2 does not admit a compliant. The reason
why p3 does not admit a compliant is more subtle: actually, p3 can loop until the clock y
reaches the value 1; after this point, the guard y ≤ 1 can no longer be satisfied, and then p3

reaches a deadlock.

To establish when a TST admits a compliant, we define a kind system which associates to
each p a set of clock valuations K (called kind of p). The kind of a TST is unique, and each
closed TST is kindable (Theorem 11.1.4). If p has kind K, then there exists some q such that,
for all ν ∈ K, the configuration (p, ν) | (q, ν) never reaches a deadlock (Theorem 11.1.6).
Also the vice versa holds: if, for some q, (p, ν) | (q, ν) never reaches a deadlock, then ν ∈ K

69

CHAPTER 11. ADMISSIBILITY OF A COMPLIANT AND SUBTYPING 70

Γ ` 1 : V [T-1]

Γ ` pi : Ki ∀i ∈ I
Γ `

∑
i∈I ai?{gi, T i} . pi :

⋃
i∈I ↓

(
JgiK ∩ Ki[T i]−1

) [T-+]

Γ ` pi : Ki ∀i ∈ I
Γ `

⊕
i∈I ai!{gi, T i} . pi :

(⋃
i∈I ↓ JgiK

)
\
(⋃

i∈I ↓ (JgiK \ Ki[T i]−1)
) [T-⊕]

Γ, X : K ` X : K [T-Var]

Γ, X : K ` p : K′
Γ ` recX . p :

⋃
{K0 | ∃K1 : Γ, X : K0 ` p : K1 ∧ K0 ⊆ K1}

[T-Rec]

Figure 11.1: Kind system for TSTs.

(Theorem 11.1.8). Therefore, p admits a compliant whenever the initial clock valuation ν0

belongs to K. We give a constructive proof of the correctness of the kind system, by showing
a TST co(p) which we call the canonical compliant of p.

Definition 11.1.2 (Kind system for TSTs) Kind judgements Γ ` p : K are defined in
Figure 11.1, where Γ is a partial function which associates kinds to recursion variables.

Rule [T-1] says that the success TST 1 admits a compliant in every ν : indeed, 1 is
compliant with itself. The kind of an exernal choice is the union of the kinds of its branches
(rule [T-+]), where the kind of a branch is the past of those clock valuations which satisfy
both the guard and, after the reset, the kind of their continuation. Internal choices are dealt
with by rule [T-⊕], which computes the difference between the union of the past of the guards
and a set of error clock valuations. The error clock valuations are those which can satisfy a
guard but not the kind of its continuation. Rule [T-Var] is standard. Rule [T-Rec] looks for a
kind which is preserved by unfolding of recursion (hence a fixed point).

Example 11.1.3 Recall p1 = a!{x ≤ 2}. b!{x ≤ 1}, q1 = a?{x ≤ 2}. b?{x ≤ 1}, and
p2 = a!{x ≤ 2} ⊕ b!{x ≤ 1}. a?{x ≤ 0} from Example 11.1.1. We have the following
kinding derivations:

` 1 : V
[T-⊕]

` b!{x ≤ 1} : ↓ Jx ≤ 1K \ ↓ (Jx ≤ 1K \ V) = Jx ≤ 1K \ ∅ = Jx ≤ 1K
[T-⊕]

` p1 : ↓ Jx ≤ 2K \ ↓ (Jx ≤ 2K \ Jx ≤ 1K) = Jx ≤ 2K \ Jx ≤ 2K = ∅

As noted in Example 11.1.1, intuitively p1 has no compliant; this will be asserted by The-
orem 11.1.8 below, as a consequence of the fact that ν0 6∈ ∅.

` 1 : V
[T-+]

` b?{x ≤ 1} : ↓ (Jx ≤ 1K ∩ V) = Jx ≤ 1K
[T-+]

` q1 : ↓ (Jx ≤ 2K ∩ Jx ≤ 1K) = Jx ≤ 1K

From Example 11.1.1, q1 has compliants, and indeed ν0 ∈ Jx ≤ 1K.

CHAPTER 11. ADMISSIBILITY OF A COMPLIANT AND SUBTYPING 71

coΓ(1) = 1

coΓ

(∑
i∈I ai?{gi, T i} . pi

)
=

⊕
i∈I ai!{gi ∧ Ki[T i]−1, T i} . coΓ(pi) if Γ ` pi : Ki

coΓ

(⊕
i∈I ai!{gi, T i} . pi

)
=

∑
i∈I ai?{gi, T i} . coΓ(pi)

coΓ(X) = X if Γ(X) defined

coΓ(recX . p) = recX . coΓ{K/X}(p) if Γ ` recX . p : K

Figure 11.2: Canonical compliant of a TST.

` 1 : V
` 1 : V

[T-+]
` a!{x ≤ 0} : ↓ Jx ≤ 0K ∩ V = Jx ≤ 0K

[T-⊕]
` p2 :

(
↓ Jx ≤ 2K ∪ ↓ Jx ≤ 1K

)
\
(
↓ Jx ≤ 2K \ V) ∪ ↓ Jx ≤ 1K \ Jx ≤ 0K

)
= K

where K = J(x > 1) ∧ (x ≤ 2)K. From Example 11.1.1, p2 has no compliant. However, since
K is non-empty, Theorem 11.1.6 guarantees that there exists q such that (p2, ν) ./ (q, ν), for
all clock valuations ν ∈ K.

The following theorem states that every closed TST is kindable, as well as uniqueness
of kinding. We stress that being kindable does not imply admitting a compliant: this holds
if and only if the initial clock valuation ν0 belongs to the kind. Note that uniqueness of
kinding holds at the semantic level, but the same kind can be represented syntactically in
different ways. In Section 11.2 we show that uniqueness of kinding may be obtained also at
the syntactic level, by representing kinds as guards in normal form [32].

Theorem 11.1.4 (Uniqueness of kinding) For all p and Γ with fv(p) ⊆ dom(Γ), there
exists unique K such that Γ ` p : K.

Proof. See appendix B.2 on page 136.
By exploiting the kind system we define the canonical compliant of kindable TSTs.

Roughly, we turn internal choices into external ones (without changing guards nor resets),
and external into internal, changing the guards so that the kind of continuations is preserved.

Definition 11.1.5 (Canonical compliant) For all kinding environments Γ and p kindable
in Γ, we define the TST coΓ(p) in Figure 11.2. We will abbreviate coΓ(p) as co(p) when
Γ = ∅.

The following theorem states the soundness of the kind system: is particular, if the initial
clock valuation ν0 belongs to the kind of p, then p admits a compliant.

Theorem 11.1.6 (Soundness) If ` p : K and ν ∈ K, then (p, ν) ./ (co(p) , ν).

Proof. See appendix B.2 on page 140.

CHAPTER 11. ADMISSIBILITY OF A COMPLIANT AND SUBTYPING 72

Γ `I 1 : V [I-1]

Γ `I pi : Ki ∀i ∈ I
Γ `I

⊕
i∈I ai!{gi, T i} . pi :

(⋃
i∈I ↓ JgiK

)
\
(⋃

i∈I ↓ (JgiK \ Ki[T i]−1)
) [I-⊕]

Γ, X : K `I X : K [I-Var]

Γ `I pi : Ki ∀i ∈ I
Γ `I

∑
i∈I ai?{gi, T i} . pi :

⋃
i∈I ↓

(
JgiK ∩ Ki[T i]−1

) [I-+]

Γ `I recX . p :
d
i≥0 F̂

i
Γ,X ,p(V) [I-Rec] where F̂Γ,X ,p(K) = K′ iff Γ, X : K `I p : K′

Figure 11.3: Kind inference rules.

Example 11.1.7 Recall q1 = a?{x ≤ 2}. b?{x ≤ 1} from Example 11.1.1. We have co(q1) =
a!{x ≤ 1}. b!{x ≤ 1}. Since ` q1 : K = Jx ≤ 1K and ν0 ∈ K, by Theorem 11.1.6 we have
that q1 ./ co(q1), as anticipated in Example 11.1.1.

The following theorem states the kind system is also complete: in particular, if p admits
a compliant, then the initial clock valuation ν0 belongs to the kind of p.

Theorem 11.1.8 (Completeness) If ` p : K and ∃q, η. (p, ν) ./ (q, η), then ν ∈ K.

Proof. See appendix B.2 on page 142.
Compliance is not transitive, in general: however, Theorem 11.1.10 below states that

transitivity holds when passing through the canonical compliant.

Lemma 11.1.9 For all p, q, ν , η and p′, ν ′ such that ` p′ : K and ν ′ ∈ K:

(p, ν) ./ (p′, ν ′) ∧ (co(p′) , ν ′) ./ (q, η) =⇒ (p, ν) ./ (q, η)

Proof. See appendix B.2 on page 142.

Theorem 11.1.10 If p ./ p′ and co(p′) ./ q, then p ./ q.

Proof. Straightforward after Lemma 11.1.9.

11.2 Computability of the canonical compliant

In this section we show that the canonical compliant construction is computable. To prove
this, we first show the decidability of kind inference (Theorem 11.2.4). This fact is not
completely obvious, because the cardinality of the set of kinds is 22ℵ0 ; however, the kinds
constructed by our inference rules can always be represented syntactically by guards.

The following lemma recalls some well known facts about functions over complete lattices
and their fixed points. These facts will be used to prove that kind inference is decidable.

CHAPTER 11. ADMISSIBILITY OF A COMPLIANT AND SUBTYPING 73

We start by showing that the kind obtained by rule [T-Rec] in Figure 11.1 is the greatest
fixed point (over the lattice (2V,⊆)) of the functional FΓ,X ,p defined as follows:

FΓ,X ,p(K) = K′ whenever Γ, X : K ` p : K′ (11.1)

where we will omit the subscript from FΓ,X ,p when clear from the context.
Note that, by uniqueness of kinding, F is a function; further, Theorem 11.1.4 ensures that

F is total when fv(p) ⊆ dom(Γ) ∪ {X}. The following lemma states that F is monotonic.
Then, the Knaster-Tarski fixed point theorem [93] ensures that [T-Rec] yields the gfp of F .

Lemma 11.2.1 The function FΓ,X ,p is monotonic, for all Γ, X, p with fv(p) ⊆ dom(Γ) ∪
{X}.

Proof. See appendix B.3 on page 143.
To prove decidability of the kinding relation, we introduce in Figure 11.3 an alternative

set of rules, with judgements of the form Γ `I p : K. Lemma 11.2.3 below shows that the
kind relations ` and `I are equivalent. The new set of rules can be exploited as a kind
inference algorithm: in particular, rule [I-Rec] allows for computing the kind of a recursive
TST recX . p by evaluating the non-increasing sequence F̂ i

Γ,X ,p(V) until it stabilizes. The
following lemma states that the kinds inferred through the relation `I are zones. By [32] it
follows that the kind of a TST can always be represented as a guard.

Lemma 11.2.2 If Γ `I p : K, for some Γ which maps variables to zones, then K is a zone.

Proof. Easy, by induction on the structure of p and inspection of the kind inference rules.

Lemma 11.2.3 For all Γ mapping variables to zones, and for all p such that fv(p) ⊆
dom(Γ):

Γ ` p : K ⇐⇒ Γ `I p : K

Proof. By structural induction on p. The only non-trivial case is when p = recX . p′.

For the (⇒) direction, suppose that:

Γ, X : K′′ ` p′ : K′′′
Γ ` recX . p′ :

⋃
{K0 | ∃K1 ⊇ K0 : Γ, X : K0 ` p′ : K1} = K [T-Rec]

and recall that K = gfp(FΓ,X ,p). By the induction hypothesis, for all zones Z :

FΓ,X ,p′(Z) = F̂Γ,X ,p′(Z) (11.2)

Hence, Lemma 11.2.1 implies that F̂Γ,X ,p′ is monotonic (on the lattice of zones). Since

this lattice is finite, then F̂Γ,X ,p′ is cocontinuous (item (a) of Lemma 2.2.5). By (11.2)

and Theorem 11.1.4, F̂ i
Γ,X ,p(K0) is defined for all K0 and i. Hence, by rule [I-Rec] and item (c)

of Lemma 2.2.5:

Γ `I recX . p′ :
d
i≥0 F̂

i
Γ,X ,p′(V) = K̂ = gfp(F̂Γ,X ,p′) (11.3)

CHAPTER 11. ADMISSIBILITY OF A COMPLIANT AND SUBTYPING 74

To conclude that K = K̂ it is enough to show that gfp(FΓ,X ,p′) = K̂. By (11.2) and (11.3)

it follows that K̂ is a fixed point of FΓ,X ,p′ , and so by definition of gfp, K̂ ⊆ gfp(FΓ,X ,p′).

By (11.2) and item (b) of Lemma 2.2.5 we conclude that gfp(FΓ,X ,p′) ⊆ K̂.

For the (⇐) direction, suppose that by rule [I-Rec] we have:

Γ `I recX . p′ :
d
i≥0 F̂

i
Γ,X ,p′(V)

Since
d
i≥0 F̂

i
Γ,X ,p′(V) is defined, the induction hypothesis gives Γ, X : V ` p′ : FΓ,X ,p′(V),

hence the premise of rule [T-Rec] is satisfied. We can conclude with the same argument as in
the previous case.

Theorem 11.2.4 Kind inference is decidable.

Proof. By Lemma 11.2.3, kinds of closed TSTs can be inferred by the rules in Figure 11.3.
All the operations between zones used in Figure 11.3 (except F̂) are well know to be com-
putable [68, 32]. By finiteness of the set of zones, also F̂ is computable.

The following theorem states that the canonical compliant construction is computable.

Theorem 11.2.5 The function co(·) is computable.

Proof. It follows by the fact that all the operations in Definition 11.1.5 are computable.

11.3 Subtyping

In this section we study the semantic subtyping preorder, which is a sound and complete
model of the Gay and Hole subtyping relation (in reverse order) for untimed session types [10].
Intuitively, p is subtype of q if every q ′ compliant with q is compliant with p, too.

Definition 11.3.1 (Semantic subtyping) For all TSTs p, we define the set (p, ν)./ as:

(p, ν)./ = {(q, η) | (p, ν) ./ (q, η)}

Then, we define the preorder v between TSTs as follows:

p v q whenever (p, ν0)./ ⊇ (q, ν0)./

The following theorem states that, as in the untimed setting, the canonical compliant of
p is the maximum (i.e., the most “precise”) in the set of TSTs compliant with p.

Theorem 11.3.2 q ./ p =⇒ q v co(p)

Proof. Assume that q ./ p and ` p : K, and let (r, η) ∈ (co(p) , ν0)./. Since (q, ν0) ./ (p, ν0),
by Theorem 11.1.8 we obtain ν0 ∈ K. Therefore, by (co(p) , ν0) ./ (r, η) and Lemma 11.1.9
we conclude that (q, ν0) ./ (r, η). So, (r, η) ∈ (q, ν0)./, from which the thesis follows.

The following theorem reduces the problem of deciding p v q to that of checking com-
pliance between p and co(q), when q admits a compliant (otherwise (q, η0)./ = ∅, so q is
supertype of every p). Since compliance, the canonical compliant construction, and checking
the admissibility of a compliant are all decidable (Theorem 10.2.7, Theorem 11.2.5), this
implies decidability of subtyping.

CHAPTER 11. ADMISSIBILITY OF A COMPLIANT AND SUBTYPING 75

Theorem 11.3.3 For all TSTs p, q:

p v q ⇐⇒

{
p ./ co(q) if q admits a compliant

true otherwise

Proof. If q does not admit a compliant then the thesis is trivial, so assume that (q, η0)./ 6= ∅.
For the (⇒) direction, assume that p v q. Since q admits a compliant, by Theorem 11.1.8
there exists some K such that ` q : K 3 ν0. By Theorem 11.1.6, it follows that co(q) ./ q.
Then, by Definition 11.3.1 we conclude that p ./ co(q). For the (⇐) direction, assume that
p ./ co(q), and let q ′ be such that q ′ ./ q. Then, by Theorem 11.1.10 we conclude that
q ′ ./ p, from which the thesis follows.

Theorem 11.3.4 (Decidability of subtyping) Subtyping between TSTs is decidable.

Proof. Immediate consequence of Theorem 10.2.7 and Theorem 11.3.3.
Unlike in the untimed case, the canonical compliant construction is not involutive, i.e.

co(co(p)) is not equal to p, in general. However, p and co(co(p)) are still strongly related,
as they have the same set of compliant TSTs, in every ν in the kind of p (Theorem 11.3.5).
By Definition 11.3.1, this implies that p vw co(co(p)), for all kindable p.

Theorem 11.3.5 Let ` p : K and ν ∈ K. Then: (p, ν)./ = (co(co(p)) , ν)./.

Proof. Suppose that ` p : K and ν ∈ K. By Theorem 11.1.6:

(p, ν) ./ (co(p) , ν) (11.4)

Assume that ` co(p) : K′ . By (11.4) and Theorem 11.1.8 it follows that ν ∈ K′ . By repeating
the same argument twice, we also obtain that:

(co(p) , ν) ./ (co(co(p)) , ν) (11.5)

(co(co(p)) , ν) ./ (co(co(co(p))) , ν) (11.6)

To prove (p, ν)./ ⊆ (co(co(p)) , ν)./, let (q, η) ∈ (p, ν)./. By applying Lemma 11.1.9 on
(q, η) ./ (p, ν) and on (11.5), we obtain (q, η) ./ (co(co(p)) , ν).

To prove (p, ν)./ ⊇ (co(co(p)) , ν)./, let (q, η) ∈ (co(co(p)) , ν)./. By applying Lemma 11.1.9
on (11.4) and (11.6) (and using commutativity of compliance), we obtain:

(co(co(co(p))) , ν) ./ (p, ν) (11.7)

Finally, by applying Lemma 11.1.9 on (q, η) ./ (co(co(p)) , ν) and on (11.7), we conclude
that (q, η) ./ (co(co(p)) , ν).

Chapter 12

Encoding timed session types into
timed automata

12.1 Encoding TSTs into Timed Automata

In this chapter we define a semantic-preserving encoding of TSTs into timed automata
(Definition 12.1.9), and we exploit it to devise an effective procedure to decide compliance
(Theorem 12.1.12).

We start introducing some combinators of TA. The union of a set of TA collects all the
locations and all the edges; the invariant on a location is the conjunction of all the invariants
defined on that location; the initial location is specified as a parameter. The Idle pattern
creates a TA with only a location, used to model succesful states; the Pfx pattern adds a
starting location to a TA; finally, the Br pattern prefixes a location to a set of TA, using
guarded edges.

Definition 12.1.1 (Union) For all i ∈ I, let Ai = (Loci,Locu
i, l

0
i ,Ei, Ii), and let l ∈⋃

i Loci. We define
⊔ l
i∈I Ai = (

⋃
i Loci,

⋃
i Locu

i, l,
⋃
i Ei, I), where I(lj) =

∧
i Ii(lj) for all

lj ∈
⋃
i Loci.

Definition 12.1.2 (Idle pattern) Let l0 be a location. Then, Idle(l0) = ({l0}, ∅, l0, ∅, ∅).

Definition 12.1.3 (Prefix pattern) Let A = (Loc1,Locu
1, l

0
1 ,E1, I1) be a TA, let `τ ∈ Lτ ,

l0 6∈ Loc1, and R ⊆ C. Then, Pfx(l0, `τ , R,A) = (Loc1 ∪ {l0},Locu
1 ∪ {l0}, l0,E, I1{true/l0}),

where E = E1 ∪ {(l0, `τ , true, R, l01)}.

Definition 12.1.4 (Branch pattern) For all i ∈ I, let Ai = (Loci,Locu
i, l

0
i ,Ei, Ii), and let

gi, g ∈ GC, Ri ⊆ C, `τ i ∈ Lτ . Then, Br(l0, g, {(`τ i , gi, Ri, Ai) | i ∈ I}) = (Loc ,Locu , l0,E, I),
where: Loc =

⋃
i Loci ∪ {l0}, Locu =

⋃
i Locu

i, E =
⋃
iEi ∪

⋃
i{(l0, `τ i , gi, Ri, l

0
i)}, and

I =
⋃
i Ii ∪ {(l0, g)}.

76

CHAPTER 12. ENCODING TIMED SESSION TYPES INTO TIMED AUTOMATA 77

l0

Idle(l0)

U A
`, Rl0

Pfx(l0, `, R,A)

g

l0
A1

g1, `1, R1

An
gn, `n, Rn

Br(l0, g, {`i, gi, Ri, Ai}i)

Figure 12.1: Patterns for TA composition, represented as in [60]. Circles denote loca-
tions (those marked with U are urgent), and arrows denote edges. Internal actions, true
guards/invariants and empty resets are left blank. A TA is depicted as a triangle, whose
left vertex represents its initial location (a double circle). An arrow from l0 to triangle A
represents an edge from l0 to the initial location of A.

12.1.1 Defining equations

The first step of our encoding from TSTs to TA is to put TSTs in a normal form where
recursive terms recX. p are replaced by defining equations. This alternative representation
of infinite-state processes is common in concurrency theory [83], hence we will defer some
standard technicalities to Appendix B.4. In our normal form (called DE-TST) each process
is represented as a pair, composed of a recursion variable and a set of defining equations of
the form X i , pi, where X i is a recursion variable and pi is a term where every recursion
variable is guarded by exactly one action (Definition 12.1.5).

Definition 12.1.5 (Defining-equation normal form) A DE-TST is a pair (X,D), where
D is a set of defining equations of the form X ′ , p, where p has the following syntax:

p ::= 1
∣∣ ⊕

i∈I

ai!{gi, Ri} . X i

∣∣ ∑
i∈I

ai?{gi, Ri} . X i

and (i) the index set I is finite and non-empty, and (ii) the actions in internal/external
choices are pairwise distinct

Given a DE-TST (X,D), we denote with uv(D) the set of recursion variables used in D,
and with dv(D) the set of recursion variables defined in D. We say that (X,D) is closed
when {X} ∪ uv(D) ⊆ dv(D), and each X ∈ uv(D) is defined exactly once. Every TST
p can be translated into a DE-TST 〈p〉

V
(where V is a set of fresh recursion variables,

see Definition B.4.2) in a way that preserves closedness (Lemma B.4.4) and compliance
(Lemma 12.1.8). Hereafter, we will always assume closed DE-TST.

To define the semantics of DE-TST, we use a new set S of terms (Definition 12.1.6).
Intuitively, in the state τX the process has performed an internal move (without choosing
the branch), while in [a!{g,R}]X it has committed to the branch a!.

Definition 12.1.6 (Semantics of DE-TST) Let S be a set of terms of the form:

t ::= τX
∣∣ [a!{g,R}]X

∣∣ X (where a ∈ A, g ∈ GC, and R ⊆ C)

CHAPTER 12. ENCODING TIMED SESSION TYPES INTO TIMED AUTOMATA 78

(X , p) ∈ D p =
⊕
. . . ν ∈ rdy(p)

(X, ν)
τ−→D (τX, ν)

[DE-τ]
(X , a!{g,R}. Y ⊕ p) ∈ D ν ∈ JgK

(τX, ν)
τ−→D ([a!{g,R}]Y , ν)

[DE-⊕]

([a!{g,R}]Y , ν)
a!−→D (Y , ν [R])

[DE-!]
(X , a?{g,R}. Y + p) ∈ D ν ∈ JgK

(X, ν)
a?−→D (Y , ν [R])

[DE-?]

(X ,
∑
. . .) ∈ D ∨ (X , 1) ∈ D

(X, ν)
δ−→D (X, ν + δ)

[DE-Del1]
X , p ∈ D ν + δ ∈ rdy(p)

(τX, ν)
δ−→D (τX, ν + δ)

[DE-Del2]

(s, ν)
τ−→D (s′, ν)

(s, ν) | (t, η)
τ−→D (s′, ν) | (t, η)

[DES-⊕]

(s, ν)
δ−→D (s, ν ′) (t, η)

δ−→D (t, η ′)

(s, ν) | (t, η)
δ−→D (s, ν ′) | (t, η ′)

[DES-Del]

(s, ν)
a!−−→D (s′, ν ′) (t, η)

a?−−→D (t′, η ′)

(s, ν) | (t, η)
a−→D (s′, ν ′) | (t′, η ′)

[DES-τ]

Figure 12.2: Semantics of DE-TST (symmetric rules omitted).

and let D be a set of defining equations. Then, the relation −→D is inductively defined by the
set of rules in Figure 12.2, where we use t, s . . . to range over S.

There is almost a one-to-one correspondence between the rules of −→ and −→D, aside from
the syntactic differences between TST and DE-TST. Rules [DE-Del1] and [DE-Del2] allow time
to pass in the same way as [Del] does: they have been split in two only to accommodate with
the new term τX . Rule [DE-τ] forces every internal choice to perform an internal step before
committing to a branch. However, this is done only if ν ∈ rdy(p), i.e. if at least one of the
branches is available. Note that before the internal step has been performed, time cannot
pass, hence the only possible move is via [DE-⊕] (so, a sequence of rules [DE-τ] and [DE-⊕]

corresponds to rule [⊕] in −→).

Definition 12.1.7 (Compliance for DE-TST) A state (X, ν) | (Y , η) in −→D is dead-
lock whenever (i) it is not the case that both X , 1 and Y , 1 are in D, and (ii) there is
no δ and no aτ ∈ A ∪ {τ} such that (X, ν + δ) | (Y , η + δ)

aτ−−→D. We write (x, ν) ./D (y, η)
when:

(x, ν) | (y, η) −→∗D (x′, ν ′) | (y′, η ′) implies (x′, ν ′) | (y′, η ′) not deadlock

and we write (x,D′) ./ (y,D′′) whenever (x, ν0) ./D′∪D′′ (y, η0).

Lemma 12.1.8 Let p and q be two closed TSTs with no shared clocks. Let V1 and V2 be
two sets of recursion variables not occurring in p and q and such that V1 ∩ V2 = ∅. Then:

p ./ q ⇐⇒ 〈p〉
V1
./ 〈q〉

V2

CHAPTER 12. ENCODING TIMED SESSION TYPES INTO TIMED AUTOMATA 79

X

U
rdy(p)

τX

g1 U

[a1!{g1, R1}]X1

a1!R1

X1

U

[an!{gn, Rn}]Xn

an!Rngn

Xn

X

g1 a1? R1

X1

gn an? Rn

Xn

Figure 12.3: Encoding of an internal choice (left) and of an external choice (right).

Proof.(Sketch). Rules in−→ and−→D have a strong correspondence: first of all, all the terms in
configurations but one are the same, secondly every move but one in one system corresponds
to one move in the other. The only exception concerns rule [⊕] in −→ which corresponds to
pair ([DE-τ], [DE-⊕]) in −→D, and vice-versa. Hence, the proof is done by contradiction: if only
one of the systems were deadlock and the other not, the other could still move and since
rules and configurations are the same, also could the first one, leading to a contradiction.

12.1.2 Encoding DE-TST into TA

In Definition 12.1.9 we transform DE-TST into TA: first, we use the function J·K to transform
each defining equation into a TA; then, we compose all the resulting TA with the union
operator

⊔
(introduced in Definition 12.1.1). Our encoding produces a location for every

term in S reachable in −→D; it creates an edge for each move that can be performed by a TST,
so that, in the end, the moves performed by the network associated to (X,D) coincide with
the moves of X in −→D. To avoid some technicalities in proofs, we assume that disjunctions
never occur in guards (while they can occur in invariants).

Definition 12.1.9 (Encoding of DE-TST into TA) For all closed DE-TST (X,D), we
define the function T (X,D) =

⊔X
d∈D JdK, where:

JX , pK =



Idle(X) if p = 1

Br(X, rdy(p) , {(ai?, gi, Ri, Idle(X i))}i) if p =
∑
i∈I

a?{gi, Ri}.X i

Pfx(X, τ, ∅,Br(τX, rdy(p) , {(τ , gi, ∅, Ai)}i),where

Ai = Pfx([ai!{gi, Ri}]X i, ai!, Ri, Idle(X i))
if p =

⊕
i∈I

ai!{gi, Ri}.X i

The encoding of X , 1 produces an idle TA (Definition 12.1.2), with a single success
locationX . The encoding of an external choice X ,

∑
i∈I ai?{gi, Ri}.X i generates a location

X (with true invariant), and outgoing edges towards all the locations X i: these edges have
guards gi, reset sets Ri, and synchronization labels ai? (see Figure 12.3, right). Basically,
the TA is listening on all its channels ai?, and since the location X is not urgent, time
can pass forever while in there. The encoding of X , p when p is an internal choice⊕

i∈I ai!{gi, Ri}.X i is a bit more complex (see Figure 12.3, left). First, we generate an
urgent location X , and an edge leading to a non-urgent location τX with invariant rdy(p).

CHAPTER 12. ENCODING TIMED SESSION TYPES INTO TIMED AUTOMATA 80

X

U
t < 7 ∨
c ≤ 2

τX

c = 2 U

[a!{c = 2, {c}}]X

a! {t}

t < 7

U
[b!{t < 7, ∅}]W

b!
W

Y

(r > 1 ∧ r < 5) a? {r}

r < 7 b?
Z

Figure 12.4: Encoding of the TSTs in Example 12.1.10.

Note that, although rdy(p) is a semantic object (a set of clock valuations), it can always be
represented syntactically as a guard [68]. Second, we connect the latter location to i urgent
locations (named [ai!{gi, Ri}]X i) via internal edges with guards gi; each of these locations is
connected to X i through an edge with reset set Ri and label ai!. The resulting TA can wait
some time before deciding on which branch committing, since time can pass in location τX ;
however, time passing cannot make all the guards on the branches unsatisfiable, because the
invariant rdy(p) on τX ensures that the location is left on time. As soon as this happens,
since the arriving location is urgent, time cannot pass anymore, and a synchronization is
performed (if possible). The reason we use both locations X and τX is that, in some
executions, all the guards of an internal choice may have already expired. In this case,
the invariant rdy(p) on location τX would be false, and the system could not enter it, so
preventing a previous action (if any) to be done. To avoid this problem, we have put an
extra location (X) before τX .

Since location names are in S, every defined/used variable X has a location called X ,
in every TA which defines/uses it. When the TA obtained from different equations are
composed with

⊔
, locations with the same name collapse, therefore connecting together the

call of a recursion variable with its definition.

Example 12.1.10 Let p1 = recX1. (a!{c = 2, {c}}.X1 ⊕ b!{t < 7}), and let V1 be a set of
recursion variables not in p1. The DE-TST of p1 is 〈p1〉

V1
= (X,D), where:

D = { X , p, W , 1 } where p = a!{c = 2, {c}}.X ⊕ b!{t < 7}.W

Figure 12.4 (left) shows the TA T (X,D). All the locations but τX and W are urgent; all
the invariants are true, except for I(τX) = rdy(p) = ↓ (Jc = 2K ∪ Jt < 7K) (represented by
the guard c ≤ 2 ∨ t < 7).

Now, let q1 = recY 1 . a?{r > 1 ∧ r < 5, {r}}.Y 1 + b?{r < 7}, and let V2 be a set of
recursion variables not in q1. The DE-TST of q1 is 〈q1〉

V2
= (Y , F), where:

F = { Y , q, Z , 1 } where q = a?{r > 1 ∧ r < 5, {r}}.Y + b?{r < 7}.Z

Figure 12.4 (right) shows the TA T (Y , F). Its locations are Y and Z (both non-urgent),
with invariants I(Z) = true and I(Y) = rdy(q) = V (represented by the guard true).

CHAPTER 12. ENCODING TIMED SESSION TYPES INTO TIMED AUTOMATA 81

Lemma 12.1.11 shows a strict correspondence between the timed LTSs −→D and −→N :
matching states are strongly bisimilar. To make explicit that some state q belongs to a LTS
→, we write it as a pair (q,→).

Lemma 12.1.11 Let (X,D′) and (Y ,D′′) be DE-TST such that dv(D′) ∩ dv(D′′) = ∅. Let
N = T (X,D′) | T (Y ,D′′). Then:

((X, ν0) | (Y , η0),−→D′∪D′′) ∼ ((X, Y , ν0 t η0),−→N)

Proof. See appendix B.4 on page 146.

12.1.3 Decidability of compliance

To prove that compliance between TSTs is decidable, we reduce such problem to that of
checking if a network of TA is deadlock-free — which is known to be decidable [3].

Theorem 12.1.12 Let p and q be two closed TSTs. Let V1 and V2 be two sets of recursion
variables not occurring in p and q and such that V1 ∩ V2 = ∅. Then:

p ./ q ⇐⇒ T 〈p〉
V1
| T 〈q〉

V2
is deadlock-free

Proof. Let (X,D′) = 〈p〉
V1

and (Y ,D′′) = 〈q〉
V2

. We show that:

(X,D′) ./ (Y ,D′′) ⇐⇒ T (X,D′) | T (Y ,D′′) is deadlock-free (12.1)

For the (⇒) direction, assume by contradiction that (X,D′) ./ (Y ,D′′) but the associated
network N is not deadlock-free. By Definition 5.3.3, there exist a reachable deadlock state
s, i.e. (X, Y , ν0 t η0) −→∗N s = (x, y, ν t η) and there are no δ ≥ 0 and aτ ∈ A ∪ {τ} such

that s
δ−→N

aτ−→N . By Lemma 12.1.11, (X, ν0) | (Y , η0) −→∗D′∪D′′ (x, ν) | (y, η), and the last
state is bisimilar to s. However, since (X,D′) ./ (Y ,D′′), the state (x, ν) | (y, η) is not
deadlock according to Definition 12.1.7. Here we have two cases. 1. If x = 1 and y = 1, then
by Definition 12.1.9 x and y are success locations — contradiction, because s is not success;
2. (x, ν+δ) | (y, η+δ)

aτ−−→D′∪D′′ for some δ and no aτ ∈ A∪{τ}. Then, by Lemma 12.1.11 also
s can fire that moves — contradiction. The direction (⇐) is similar. The main statement
follows from (12.1) and from Lemma 12.1.8.

Example 12.1.13 Let us consider the two TSTs in Example 12.1.10. Since the associated
network of TA (Figure 12.4) is deadlock-free, by Theorem 12.1.12 we conclude that p1 ./ q1.

Our implementation of TSTs (co2.unica.it) uses Uppaal [31] to check compliance.
Uppaal can verify deadlock-freedom of a network of TA through its query language, which is
a simplified version of Time Computation Tree Logic. In Uppaal , the special state formula
deadlock is satisfied by all deadlock states; hence, a network is deadlock-free if none of
its reachable states satisfies deadlock. Note that checking deadlock-freedom with the path
formula A[] not deadlock would not be correct, because Definition 5.3.3 does not consider
as deadlock the success states. The actual Uppaal query we use takes into account success
states. E.g., let N = A1 | A2 be a network of TA, with l1 success location of A1, and
l2, l3 success locations of A2. The query A[] deadlock imply (A1.l1 && (A2.l2 || A2.l3))

correctly checks deadlock freedom according to Definition 5.3.3.

co2.unica.it

Chapter 13

Monitoring timed session types

13.1 Runtime monitoring of TSTs

In this chapter we study runtime monitoring based on TSTs. The setting is the following:
two participants A and B want to interact according to two (compliant) TSTs pA and pB ,
respectively. This interaction happens through a server, which monitors all the messages
exchanged between A and B, while keeping track of the passing of time. If a participant
(say, A) sends a message not expected by her TST, then the monitor classifies A as culpable
of a violation. There are other two circumstances where A is culpable: (i) pA is an internal
choice, but A loses time until all the branches become unfeasible, or (ii) pA is an external
choice, but A does not readily receive an incoming message sent by B.

Note that the semantics in Figure 10.1 cannot be directly exploited to define such a
runtime monitor, for two reasons. First, the synchronisation rule is purely symmetric, while
the monitor outlined above assumes an asymmetry between internal and external choices.
Second, in the semantics in Figure 10.1 all the transitions (both messages and delays) must
be allowed by the TSTs: for instance, (a!{t ≤ 1}, ν) cannot take any transitions (neither a!
nor δ) if ν(t) > 1. In a runtime monitor we want to avoid such kind of situations, where no
actions are possible, and the time is frozen. More specifically, our desideratum is that the
runtime monitor acts as a deterministic automaton, which reads a timed trace (a sequence
of actions and time delays) and it reaches a unique state γ , which can be inspected to find
which of the two participants (if any) is culpable.

To reach this goal, we define the semantics of the runtime monitor on two levels. The
first level, specified by the relation −→→, deals with the case of honest participants; however,
differently from the semantics in Section 10.1, here we decouple the action of sending from
that of receiving. More precisely, if A has an internal choice and B has an external choice,
then we postulate that A must move first, by doing one of the outputs in her choice, and then
B must be ready to do the corresponding input. The second level, called monitoring seman-
tics and specified by the relation −→→M , builds upon the first one. Each move accepted by the
first level is also accepted by the monitor. Additionally, the monitoring semantics defines
transitions for actions not accepted by the first level, for instance unexpected input/output
actions, and improper time delays. In these cases, the monitoring semantics signals which

82

CHAPTER 13. MONITORING TIMED SESSION TYPES 83

(a!{g,R}. p ⊕ p′, [], ν) ‖ (q, [], η)
A:a!−−→→ (p, [a!], ν [R]) ‖ (q, [], η) if ν ∈ JgK [M-⊕]

(p, [a!], ν) ‖ (a?{g,R}. q + q ′, [], η)
B:a?−−→→ (p, [], ν) ‖ (q, [], η[R]) if ν ∈ JgK [M-+]

ν + δ ∈ rdy(p) η + δ ∈ rdy(q)

(p, [], ν) ‖ (q, [], η)
δ−→→ (p, [], ν + δ) ‖ (q, [], η + δ)

[M-Del]

(p, c, ν) ‖ (q, d, η)
λ−→→ (p′, c′, ν ′) ‖ (q ′, d′, η ′)

(p, c, ν) ‖ (q, d, η)
λ−→→M (p′, c′, ν ′) ‖ (q ′, d′, η ′)

[M-Ok]

(p, c, ν) ‖ (q, d, η) 6 A:`−−→→
(p, c, ν) ‖ (q, d, η)

A:`−→→M (0, c, ν) ‖ (q, d, η)
[M-FailA]

(d = [] ∧ ν + δ 6∈ rdy(p)) ∨ d 6= []

(p, c, ν) ‖ (q, d, η)
δ−→→M (0, c, ν + δ) ‖ (q, d, η + δ)

[M-FailD]

Figure 13.1: Monitoring semantics (symmetric rules omitted).

of the two participants is culpable.

Definition 13.1.1 (Monitoring semantics of TSTs) Monitoring configurations γ, γ ′, . . .
are terms of the form P ‖Q, where P and Q are triples (p, c, ν), such that p is either
a TST or 0, and c is a one-position buffer (either empty or containing an output la-
bel). The transition relations −→→ and −→→M over monitoring configurations, with labels
λ, λ′, . . . ∈ ({A,B} × L) ∪ R≥0, are defined in Figure 13.1.

In the rules in Figure 13.1, we always assume that the leftmost TST is governed by
A, while the rightmost one is governed by B. In rule [M-⊕], A has an internal choice, and
she can fire one of her outputs a!, provided that its buffer is empty, and the guard g is
satisfied. When this happens, the message a! is written to the buffer, and the clocks in R
are reset. Then, B can read the buffer, by firing a? in an external choice through rule [M-+];
this requires that the buffer of B is empty, and the guard g of the branch a? is satisfied.
Rule [M-Del] allows time to pass, provided that the delay δ is permitted for both participants,
and both buffers are empty. The last three rules specify the runtime monitor. Rule [M-Ok]

says that any move accepted by −→→ is also accepted by the monitor. Rule [M-FailA] is used
when participant A attempts to do an action not permitted by −→→: this makes the monitor
evolve to a configuration where A is culpable (denoted by the term 0). Rule [M-FailD] makes
A culpable when time passes, in two cases: either A has an internal choice, but the guards
are no longer satisfiable; or she has an incoming message. The latter case is motivated by
the fact that we are studying synchronous TSTs, and hence dalayed inputs are forbidden.

The following lemma establishes that the monitoring semantics is deterministic, i.e., if

γ
λ−→→M γ ′ and γ

λ−→→M γ ′′, then γ ′ = γ ′′. This is a very desirable property indeed, because it

CHAPTER 13. MONITORING TIMED SESSION TYPES 84

ensures that the culpability of a participant at any given time is uniquely determined by the
past actions. Further, for all finite timed traces ~λ (i.e., sequences of actions A : ` or time
delays δ), there exists some configuration γ reachable from the initial one.

Lemma 13.1.2 Let γ0 = (p, [], ν0) ‖ (q, [], η0). If p ./ q, then (−→→M , γ0) is deterministic,

and for all finite timed traces ~λ there exists (unique) γ such that γ0

~λ−→→M γ .

Proof. A simple inspection of the rules in Figure 13.1 and an induction on the length of the
timed traces ~λ.

The goal of the runtime monitor is to detect, at any state of the execution, which of the
two participants is culpable (if any). Further, we want to identify who is in charge of the
next move. This is formalised by the following definition.

Definition 13.1.3 (Duties & culpability) Let γ = (p, c, ν) ‖ (q, d, η). We say that A is
culpable in γ iff p = 0. We say that A is on duty in γ if (i) A is not culpable in γ , and
(ii) either c is empty and p is an internal choice, or d is not empty.

Lemma 13.1.4 states that, in each reachable configuration, only one participant can be
on duty; and if no one is on duty nor culpable, then both participants have reached success.

Lemma 13.1.4 If p ./ q and (p, [], ν0) ‖ (q, [], η0) −→→∗M γ , then:

1. there exists at most one participant on duty in γ ,

2. if there exists some culpable participants in γ , then no one is on duty in γ ,

3. if no one is on duty in γ , then γ is success, or someone is culpable in γ .

Proof. Straightforward by Definition 13.1.3 and by the rules in Figure 13.1.
Note that both participants may be culpable in a configuration. For instance, let γ =

(a!{true}, [], η0) ‖ (a?{true}, [], η0). By applying [M-FailA] twice, we obtain:

γ
A:b?−−→→M (0, [], ν0) ‖ (a?{true}, [], η0)

B:b?−−→→M (0, [], ν0) ‖ (0, [], η0)

and in the final configuration both participants are culpable.
The following example shows three scenarios in which culpability arises.

Example 13.1.5 Let p = a!{2 < t < 4} and q = a?{2 < t < 5} + b?{2 < t < 5} be
the TSTs of participants A and B, respectively. Participant A declares that she will send a

between 2 and 4 time unit (abbr. t.u.), while B declares that he is willing to receive a or b if
they are sent within 2 and 5 t.u. We have that p ./ q. Let γ0 = (p, [], ν0) ‖ (q, [], ν0).

A correct interaction is given by the timed trace ~λ =
·

= 1.2, A : a!, B : a?. Indeed,

γ0

~λ−→→M (1, [], ν0) ‖ (1, [], ν0). On the contrary, things may go awry in three cases:

(i) a participant does something not permitted. E.g., if A fires a at 1 t.u., by [M-FailA]:

γ0
1−→→M

A:a!−−→→M (0, [], ν0 + 1) ‖ (q, [], η0 + 1), where A is culpable.

CHAPTER 13. MONITORING TIMED SESSION TYPES 85

(ii) a participant avoids to do something she is supposed to do. E.g., assume that after 6

t.u., A has not yet fired a. By rule [M-FailD], γ0
6−→→M (0, [], ν0 +6) ‖ (q, [], η0 +6), where

A is culpable.

(iii) a participant does not receive a message as soon as it is sent. For instance, after a is

sent at 1.2 t.u., at 5.2 t.u. B has not yet fired a?. By [M-FailD], γ0
1.2−→→M

A:a!−−→→M
4−→→M

(1, [a!], ν0 + 5.2) ‖ (0, [], η0 + 5.2), where B is culpable.

To relate the monitoring semantics in Figure 13.1 with the one in Figure 10.1 we use
the notion turn-simulation of [16]. This relation is between states of two arbitrary LTSs→1

and →2, and it is parameterised over two sets S1 and S2 of success states. A state (s2,→2)
turn-simulates (s1,→1) whenever each move of s1 can be matched by a sequence of moves
of s2 (ignoring the labels), and stuckness of s1 implies that s2 will get stuck in at most one
step. Further, turn-simulation must preserve success.

Definition 13.1.6 (Turn-simulation [16]) For i ∈ {1, 2}, let →i be an LTS over a state
space Zi, and let Si be a set of states of →i. We say that a relation R ⊆ Z1 × Z2 is a
turn-simulation iff s1Rs2 implies:

(a) s1 →1 s
′
1 =⇒ ∃s′2 : s2 →∗2 s′2 and s′1Rs′2

(b) s2 →2 s
′
2 =⇒ s1 →1 or (s1Rs′2 and s′2 6→2)

(c) s2 ∈ S2 =⇒ s1 ∈ S1

If there is a turn-simulation between s1 and s2 (written s1Rs2), we say that s2 turn-simulates
s1. We denote with 4 the greatest turn-simulation. We say that R is a turn-bisimulation
iff both R ⊆ Z1 × Z2 and R−1 ⊆ Z2 × Z1 are turn-simulations.

The following lemma establishes that the two semantics of TSTs (Definitions 10.1.3
and 13.1.1) are turn-bisimilar.

Lemma 13.1.7 ((p, ν) | (q, η),−→) is turn-bisimilar to ((p, [], ν) ‖ (q, [], η),−→→).

Proof. See appendix B.5 on page 151.
When both participants behave honestly, i.e., they never take [M-Fail*] moves, the monitor-

ing semantics preserves compliance (Theorem 13.1.9). The monitoring compliance relation
./M is the straightforward adaptation of that in Definition 10.2.1, except that −→→ transitions
are used instead of −→ ones (Definition 13.1.8).

Definition 13.1.8 (Monitoring Compliance) We say that a monitoring configuration γ
is deadlock whenever (i) it is not the case that both p and q in γ are 1, and (ii) there is no

λ such that γ
λ−→→. We then write (p, c, ν) ./M (q, d, η) whenever:

(p, c, ν) ‖ (q, d, η) −→→∗ γ implies γ not deadlock

We write p ./M q whenever (p, [], ν0) ./M (q, [], η0).

CHAPTER 13. MONITORING TIMED SESSION TYPES 86

Theorem 13.1.9 ./ = ./M .

Proof. For the inclusion ⊆, assume that p ./ q. By Lemma 13.1.7, the states (p, ν0) | (q, η0)
and (p, [], ν0) ‖ (q, [], η0) are turn-bisimilar. By (p, [], ν0) ‖ (q, [], η0) 4 (p, ν0) | (q, η0) and
(p, ν0) ./ (q, ν0), Lemma 5.9 in [16] implies that (p, [], ν0) ./M (q, [], η0), hence p ./M q. The
other inclusion is similar.

Part IV

Concluding remarks

87

Chapter 14

Related work

Maude The development of the tool presented in this thesis witnesses the usefulness and
flexibility of rewriting logic (in general) and of Maude (in particular) as a support for the spec-
ification and verification of concurrent programming languages. Indeed, rewriting logic [80]
has been successfully used for more than two decades as a semantic framework wherein many
different programming models and logics are naturally formalised, executed and analysed.
Just by restricting to models for concurrency, there exist Maude specifications and tools for
CCS [97], the π-calculus [94], Petri nets [91], Erlang [85], Klaim [100], adaptive systems [42],
etc. A more comprehensive list of calculi, programming languages, tools and applications
implemented in Maude is collected in [81].

CO2 and contract-oriented computing To the best of our knowledge, the concept of
contract-oriented computing (in the meaning used in this thesis) has been introduced in [28].
CO2, a contract-agnostic calculus for contract-oriented computing has been instantiated with
several contract models — both bilateral [27, 22] and multiparty [26, 76, 19]. Here we have
instantiated it with binary session types (Section 6.1). A minor difference w.r.t. [27, 22, 76]
is that here we no longer have fuse as a language primitive, but rather the creation of fresh
sessions is performed non-deterministically by the context (rule [Fuse]). This is equivalent
to assume a contract broker which collects all contracts, and may establish sessions when
compliant ones are found. Another difference w.r.t. [27] is that there a participant A is
considered honest when, in each possible context, she can always exculpate herself by a
sequence of A-solo moves. Here, instead, we require that A is ready (Definition 7.1.4) in all
possible contexts, similarly to [22, 76]. We conjecture that these two notions are equivalent
in the contract model based on binary session types considered in this thesis.

In [23], which extends [22], a type system has been proposed to safely over-approximate
honesty. The type of a process P is a function which maps each session variable to a
channel type. These are behavioural types (in the form of Basic Parallel Processes) which
essentially preserve the structure of P , by abstracting the actual prefixes as “non-blocking”
and “possibly blocking”. The type system of [23] allows to type check some kinds of infinite-
state processes, which are not dealt with in the implementation described in this thesis (based
on the direct model checking of the abstract semantics in Section 12.1.3). Furthermore, in
[23] only the core fragment of CO2 is addressed, which roughly corresponds to the CO2

88

CHAPTER 14. RELATED WORK 89

subset in which α-honesty is also complete.
The programming model envisioned by CO2 has been implementated as a contract-

oriented middleware [13], which uses timed session types [12] as contracts to regulate the
interaction of distributed services. Such a middleware collects the contracts advertised by
services, and upon finding a pair of compliant contracts, it creates a session between the re-
spective services. The infrastructure then behaves as a message-oriented middleware (MOM),
which additionally monitors all the messages exchanged in sessions (also checking that the
time constraints are respected). When a participant is culpable of a contract violation, its
reputation is decreased (similarly to [84]): as a consequence, its chances of being involved in
further sessions are reduced.

Comparison with other calculi CO2 takes inspiration from Concurrent Constraint Pro-
gramming (CCP [90]): processes advertise (with the tell prefix) contracts representing
promises on the future interactions, and once a session is established, the involved contracts
can be queried (with the ask prefix). In CCP, the notion of consistency of the constraint
store plays a central role, e.g. the primitive checkϕ allows to proceed only if the constraint
store is consistent with ϕ. In session types, consistency is immaterial, thus check is not
present in the process calculus. For other analogies and differences between CO2 and CCP,
and a discussion of alternative primitive sets for CO2, see [26].

In cc-pi [43], CCP is mixed with communication via name fusion so that parties establish
Service Level Agreements by merging the constraints (values in a nominal c-semiring) rep-
resenting their requirements. cc-pi borrows the standard tell primitive from CCP, which is
used to put constraints on names. Additionally, it features a communication primitive à la π-
calculus: two processes can interact via prefixes x̄〈z〉 and y〈w〉, provided that the constraint
store entails the equality x = y; when this happens, the equality z = w is added to the store,
unless doing so leads to an inconsistency. A main consequence of this mechanism is that
performing a tell restricts the future possible interactions with the other processes, since
adding z = w will lead to more inconsistencies. In a sense, initially a name can interact with
every other name, and then its interaction capabilities can be constrained through tell. By
contrast, in CO2 performing a tell enables interaction with other participants. A session
variable can not interact unless one or more tells are performed to advertise contracts. The
effect of a tell is therefore dual to that of cc-pi: in a sense, CO2 advertises promises, while
cc-pi advertises requirements.

One peculiar feature of CO2 is that sessions are monitored with the contracts used to
establish them, thus ensuring that “wrong” messages cannot be sent nor received. A similar
notion can be found in [50, 35]; the main difference w.r.t. CO2 is that, in those works,
monitors discard unexpected messages without blocking the sender, whereas in CO2 an agent
process committing to the “wrong” output will get stuck; in other words, in the terminology
of [79], the monitors of [50, 35] implement suppression, whereas CO2’s monitoring is closer
to truncation.

Honesty vs. safety and progress Honesty ensures that a CO2 process will interact in
a session according to some specific contract. This implies that P will communicate safely

CHAPTER 14. RELATED WORK 90

(i.e., will not diverge from its contracts), but, in general, does not imply that an honest
process P also enjoys deadlock-freedom: this depends on its execution context. In fact, if an
honest agent A[P] is involved in a session with a dishonest agent B[Q], then A[P] may get
stuck — albeit A will not be culpable (in any session). Deadlock freedom holds for systems
where all processes are honest [30]: specifically, all open sessions can be carried forward until
their successful termination.

The problem of ensuring safe communication is tackled in the session types literature,
whose origins date back to [69, 92, 70] (and from which the contract model adopted in
Part II is borrowed). Session typing systems do not include a notion of “culpability”, and
(besides some exceptions, discussed below) are generally unable to guarantee progress for
processes interacting on multiple interleaved sessions — unless some strong assumptions
are made about their execution context. Intuitively, progress holds when assuming that a
participant is always available to join a session, and all participants will respect their types,
without deadlocking or performing unexpected communications. As a consequence, a well-
session-typed process that interacts with other well-session-typed processes through multiple
interleaved sessions may still get stuck — possibly in a state that, in our setting, would be
deemed culpable. Consider, for instance, the following processes:

P = (x, y) tell ↓x a?.tell ↓y b!.dox a?.doy b! (14.1)

Q = (y, x) tell ↓y b?.tell ↓x a!.dox b?.doy a! (14.2)

Under the “classic” session typing approach, the two (dishonest) processes P and Q above
would be well-typed, because their do prefixes match the contracts at x and y. However,
the composition A[P] | B[Q] would deadlock after fusing the two sessions: in fact, A would
remain waiting on x (while being persistently culpable at y), and B would remain waiting
on y (while being persistently culpable at x).

The problem of guaranteeing both safety and progress of a given composition of session-
typed processes is tackled in [59, 34, 47, 53], using type systems which track the dependencies
among the active sessions: the result is that well-typed compositions of processes can interact
on multiple interleaved sessions without incurring in deadlocks — and thus, in our setting,
without remaining persistently culpable. For instance, the parallel composition of processes
P and Q in (14.1) and (14.2) would not be typeable. Indeed, to guarantee deadlock freedom
in case of interleaved sessions, a strong typing discipline is imposed on communications: for
instance, in [47] all the interactions on a session must end before another session can be
used. This restriction prevents the typing of e.g. P , which interleaves sessions x and y. In
our approach, we do not necessarily classify as dishonest processes containing interleaved
uses of sessions. For instance,

(x, y) tell ↓x a?.tell ↓y b!.
(
dox a?.doy b! + doy b!.dox a?

)
is honest, despite it would not be typeable according to [47].

In [45], deadlock-freedom is obtained by using global types [71] (i.e., multiparty protocol
specifications) to typecheck a choreography. A choreography is a global program that de-
scribes the active threads of each participant, when they are spawned, the sessions they are

CHAPTER 14. RELATED WORK 91

involved in, their communications, who performs conditional choices, and where. A chore-
ography C is used to synthesise a parallel composition of endpoint processes, reflecting the
structure of the threads of C. The result is that if C is well-typed and linear (i.e., there
are no race conditions among its threads), then the synthesised composition will be race-free
and error-free, and its behaviour will match that of C. Thus, the communication will be
“safe” and deadlock-free, conforming to the global type.

Under this kind of approach, the main results depend on the whole execution context
being known upfront. In our technique, instead, the process of a given participant is model-
checked “in isolation” and without any assumptions about the context where it will run. In
order to guarantee that A will never remain persistently culpable, the only requirement on
the context is that it must be initially A-free. Despite progress is not implied by honesty
in our framework, if all participants in a system are assumed honest, then no session will
remain stuck before its conclusion, and so we obtain global progress. In a sense, assuming
the honesty of the context is similar to assume its typeability.

Timed session types Compliance between TSTs is loosely related to the notion of com-
pliance between untimed session types (in symbols, ./u). Let u(p) be the session type
obtained by erasing from p all the timing annotations. It is easy to check that the semantics
of (u(p), ν0) | (u(q), ν0) in Section 10.1 coincides with the semantics of u(p) | u(q) in [10].
Therefore, if u(p) ./ u(q), then u(p) ./u u(q). Instead, semantic conservation of compliance
does not hold, i.e. it is not true in general that if p ./ q, then u(p) ./u u(q). E.g., let
p = a!{t < 5}⊕b!{t < 0}, and let q = a?{t < 7}. We have that p ./ q (because the branch
b! can never be chosen), whereas u(p) = a! ⊕ b! 6./u a? = u(q). Note that, for every p,
u(co(p)) = co(u(p)).

In the context of session types, time has been originally introduced in [38]. However, the
setting is different than ours (multiparty and asynchronous, while ours is bi-party and syn-
chronous), as well as its objectives: while we have focussed on primitives for the bottom-up
approach to service composition [26], [38] extends to the timed case the top-down approach.
There, a choreography (expressing the overall communication behaviour of a set of partici-
pants) is projected into a set of local session types, which in turn are refined as processes,
to be type-checked against their session type in order to make service composition preserve
the properties enjoyed by the choreography. Also a mapping from timed local types to
communicating timed automata [72] is presented, which extends to the timed setting the
transformation in [58].

Our approach is a conservative extension of untimed session types, in the sense that
a participant which performs an output action chooses not only the branch, but the time
of writing too; dually, when performing an input, one has to passively follow the choice
of the other participant. Instead, in [38] external choices can also delay the reading time.
Extending our semantics to an asynchronous one would make compliance undecidable (as it
is for untimed asynchronous session types [58]).

Note that our notion of compliance does not imply progress with the semantics of [38]
(adapted to the binary case). For instance, consider the TSTs:

p = a?{x ≤ 2}. a!{x ≤ 1} q = a!{y ≤ 1}. a?{y ≤ 1}

CHAPTER 14. RELATED WORK 92

These TSTs are compliant according to Definition 10.2.1, while using the semantics of [38]:

(ν0, (p, q, ~w0)) −→∗ (ν, (a!{x ≤ 1}, a?{y ≤ 1}, ~w0)) with ν(x) = ν(y) > 1

This is a deadlock state, hence p and q do not enjoy progress according to [38]. The notion
of correct interaction studied in [38] is called feasibility : a choreography is feasible iff all its
reducts can reach the success state. This property implies progress, but it is undecidable
in general, as shown by [72] in the context of communicating timed automata. However,
feasibility is decidable for the subclass of infinitely satisfiable choreographies [38]. The prob-
lem of deciding if, given a local type T , there exists a choreography G such that T is in the
projection of G and G enjoys (global) progress is not addressed in [38]. A possible way to
deal with this problem would be to adapt our kind system (in particular, rule [T-+]).

Dynamic verification of timed multiparty session types is addressed by [86], where the
top-down approach to service composition is pursued [71]. Our middleware instead composes
and monitors services in a bottom-up fashion [26].

The work [37] studies communicating timed automata, a timed version of communicating
finite-state machines [40]. In this model, participants in a network communicate asyn-
chronously through bi-directional FIFO channels; similarly to [38], clocks, guards and resets
are used to impose time constraints on when communications can happen. A system enjoys
progress when no deadlock state is reachable, as well as no orphan messages, unsuccess-
ful receptions, and unfeasible configurations. Since deadlock-freedom is undecidable in the
untimed case, then a fortiori progress is undecidable for communicating timed automata.
So, the authors propose an approximated (sound, but not complete) decidable technique to
check when a system enjoys progress. This technique is based on multiparty compatibility,
a condition which guarantees deadlock-freedom of untimed systems [78]. A classical prop-
erty of timed systems addressed by [37] is zenoness, i.e. the situation in which all the paths
from a reachable state are infinite and time-convergent. Again, multiparty compatibility
is exploited by [37] to devise an approximated decidable technique which guarantees non-
zenoness of communicating timed automata. In our setting, an example of zenoness is given
by the following TSTs:

p = recX . a!{x ≤ 1}. X q = recX . a?{x ≤ 1, x}. X

Although p ./ q, the total elapsed time cannot exceed 1. This implies that, in order to
respect p, a participant should have to perform infinitely many writings in a single time
unit. This problem can be solved imposing some restrictions to TSTs, in order to have
the property that composition of TSTs is always non-zeno. For instance, this is guaranteed
by the notion of strong non-zenoness of [95], which can be computed efficiently but is not
complete. Another possibility is to check non-zenoness directly in the network of timed
automata constructed for checking compliance, using one of the techniques appeared in the
literature [68, 95, 39].

In [55] timed specifications are studied in the setting of timed I/O transition systems
(TIOTS). They feature a notion of correct composition, called compatibility, following the
optimistic approach pursued in [56]: roughly, two systems are compatible whenever there ex-
ists an environment which, composed with them, makes “undesirable” states unreachable. A

CHAPTER 14. RELATED WORK 93

notion of refinement is coinductively formalised as an alternating timed simulation. Refine-
ment is a preorder, and it is included in the semantic subtyping relation (using compatibility
instead of ./). Because of the different assumptions (open systems and broadcast commu-
nications in [55], closed binary systems in TSTs), compatibility/refinement seem unrelated
to our notions of compliance/subtyping. Despite the main notions in [55] are defined on
semantic objects (TIOTS), they can be decided on timed I/O automata, which are finite
representations of TIOTS. With respect to TSTs, timed I/O automata are more liberal:
e.g., they allow for mixed choices, while in TSTs each state is either an input or an output.
However, this increased expressiveness does not seem appropriate for our purposes: first, it
makes the concept of culpability unclear (and it breaks one of the main properties of ours,
i.e. that at most one participant is on duty at each execution step); second, it seems to
invalidate any dual construction. This is particularly unwelcome, since this construction is
one of the crucial primitives of contract-oriented interactions.

Chapter 15

Conclusions

We have devised a verification technique for honesty in contract-oriented systems. This is
the problem of deciding whether a participant always respects the contracts she advertises,
in all possible contexts [27]. Several case studies (e.g. Section 9.1.5 and Example 7.1.8)
show that writing honest processes is not a trivial task, especially when multiple sessions
are needed for realising a contract.

We have dealt with the problem of verifying honesty in three steps. First, we have spec-
ified a model of contracts and of contract-oriented systems: we have formalised their syntax
and semantics, and the crucial notions of compliance and honesty (Sections 6.1 and 7.1).
We have then devised a verification technique for deciding when a participant is honest,
and we have proved its soundness and (under some conditions) also its completeness (The-
orem 8.1.14). Finally, we have provided an implementation of this technique in Maude, and
we have validated our technique against a set of case studies (Sections 8.1.5 and 9.1).

The feedback obtained from the validation phase allows us to draw some preliminary con-
clusions about the proposed technique, and in general about the contract-oriented approach.
A first observation is that the current version of the CO2 calculus seems expressive enough
to model sophisticated applications, like e.g. the online store with bank, the blackjack, and
the travel agency case studies (Example 7.1.8 and Sections 9.1.4 and 9.1.5). In all these
case studies, we managed to write a specification whose honesty is automatically verified by
our Maude tool. When more than two participants are involved in an application, writing
honest processes has required us to deal with all those cases where an expected input is
not received. This has been done by extending the code which performs the input with a
timeout branch, which (basically) aborts all the sessions. In some cases, the assumption that
all the participants may act dishonestly may be seen too strong, especially when some of
them belong to the same organization (as it could be the case, e.g., for the dealer A and the
deck of cards D in the blackjack case study). A possible improvement would be to verify the
honesty of a participant (e.g., the dealer) under the assumption that some other participant
(e.g., the deck of card) is honest. This would allow us to simplify the code of the participant
under observation, and, possibly, also to increase the precision of the analysis.

A remarkable fact about our verification technique is that its correctness only depends on
two properties of contracts, namely those stated in Theorem 8.1.7 (for the ask-free fragment),
and in Definition 8.1.8 (for the ask statement). While in this thesis we have shown that

94

CHAPTER 15. CONCLUSIONS 95

these properties hold for binary session types, we expect that similar results can be found for
other contract models, e.g. the multiparty session types of [76]. For instance, the conditions
in Definition 8.1.8 can be achieved trivially, for any contract model and logic, when `A is
the empty relation and `ctx is the cartesian product between the set of abstract contracts
and the set of formulae (actually, in this thesis we have used a more precise abstraction;
see Definition 8.1.9 and Lemma 8.1.10). Therefore, our verification technique for honesty
can be reused in any instantiation of CO2 where binary session types are replaced by a
contract model which admits a context-abstraction function αA of contracts and a transition
relation −→→A satisfying Theorem 8.1.7 and the conditions in Definition 8.1.8.

We have then studied a theory of session types (TSTs), featuring timed synchronous
communication between two endpoints. We have defined a decidable notion of compliance
between TSTs, a decidable procedure to detect when a TST admits a compliant, a com-
putable canonical compliant construction, a decidable subtyping relation, and a decidable
runtime monitoring of interactions based on TSTs.

We remark that the work in this thesis is part of a larger picture, namely the resarch on
contract-oriented computing. This research direction has led to several fundational studies
[28, 29, 25, 27, 26, 22, 19, 30, 23] and tools based on them. For instance, the programming
model envisioned by CO2 has been implemented as a contract-oriented middleware [13, 5],
which uses timed session types as contracts to regulate the interaction of distributed services.
Such a middleware collects the contracts advertised by services, and upon finding a pair of
compliant contracts, it creates a session between the respective services. The infrastructure
then behaves as a message-oriented middleware (MOM), which additionally monitors all
the messages exchanged in sessions (also checking that the time constraints are respected).
When a participant is culpable of a contract violation, its reputation is decreased (similarly
to [84]): as a consequence, its chances of being involved in further sessions are reduced.
The tool-chain Diogenes [4, 6] supports the design and development of contract-oriented
applications running on top of the middleware above, offering the following features:

1. writing CO 2 specifications of services within an Eclipse plugin;

2. verifying honesty of these specifications;

3. generating from them skeletal Java programs which use the contract-oriented APIs of
the middleware;

4. verifying the honesty of Java programs upon refinement.

Diogenes uses the Maude-based tools described in Section 8.1.5 as its core verification en-
gine.

Bibliography

[1] PayPal buyer protection. https://www.paypal.com/us/webapps/mpp/ua/

useragreement-full#13. Accessed: December 31, 2015.

[2] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive
Systems: Modelling, Specification and Verification. Cambridge University Press, New
York, NY, USA, 2007.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[4] Nicola Atzei and Massimo Bartoletti. Developing honest java programs with diogenes.
In FORTE, pages 52–61, 2016.

[5] Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande, Maurizio Mur-
gia, Alessandro Sebastian Podda, and Livio Pompianu. Contract-oriented program-
ming with timed session types, Submitted, 2016. http://tcs.unica.it/papers/

co2-middleware-tutorial.pdf.

[6] Nicola Atzei, Massimo Bartoletti, Maurizio Murgia, Emilio Tuosto, and Roberto
Zunino. Contract-oriented design of distributed applications: a tutorial, Submitted,
2016. http://tcs.unica.it/papers/diogenes-tutorial.pdf.

[7] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2):131 – 146, 2005.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[9] Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for session-based
client/server systems. In PPDP, pages 155–164, 2010.

[10] Franco Barbanera and Ugo de’Liguoro. Sub-behaviour relations for session-based
client/server systems. Math. Struct. in Comp. Science, pages 1–43, 1 2015.

[11] Massimo Bartoletti, Tiziana Cimoli, and Maurizio Murgia. Timed session types. Ac-
cepted for publication in Logical Methods in Computer Science, 2016.

96

https://www.paypal.com/us/webapps/mpp/ua/useragreement-full#13
https://www.paypal.com/us/webapps/mpp/ua/useragreement-full#13
http://tcs.unica.it/papers/co2-middleware-tutorial.pdf
http://tcs.unica.it/papers/co2-middleware-tutorial.pdf
http://tcs.unica.it/papers/diogenes-tutorial.pdf

BIBLIOGRAPHY 97

[12] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda,
and Livio Pompianu. Compliance and subtyping in timed session types. In FORTE,
pages 161–177, 2015.

[13] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda,
and Livio Pompianu. A contract-oriented middleware. In FACS, LNCS. Springer,
2015. http://co2.unica.it.

[14] Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna. Lending Petri nets and
contracts. In FSEN, volume 8161 of LNCS, pages 66–82. Springer, 2013.

[15] Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna. Lending Petri nets. Science
of Computer Programming, 2015. (to appear).

[16] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, and Roberto Zunino. Contracts
as games on event structures. J. Log. Algebr. Meth. Program., 85(3):399–424, 2016.

[17] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. A theory of agreements and
protection. In POST, volume 7796 of LNCS, pages 186–205. Springer, 2013.

[18] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Compliance in behavioural
contracts: a brief survey. In PLABS, volume 9465 of LNCS. Springer, 2015.

[19] Massimo Bartoletti, Julien Lange, Alceste Scalas, and Roberto Zunino. Choreographies
in the wild. Science of Computer Programming, 109:36–60, 2015.

[20] Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto Zunino. Modelling
and verifying contract-oriented systems in Maude. In WRLA, volume 8663 of LNCS,
pages 130–146, 2014.

[21] Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto Zunino. Verifiable
abstractions for contract-oriented systems. J. Log. Algebr. Meth. Program., 86(1):159–
207, 2017.

[22] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. Honesty by
typing. In FMOODS/FORTE, volume 7892 of LNCS, pages 305–320, 2013.

[23] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. Honesty by
typing. Logical Methods in Computer Science, 2017. Pre-print available as: https:

//arxiv.org/abs/1211.2609.

[24] Massimo Bartoletti, Alceste Scalas, and Roberto Zunino. A semantic deconstruction
of session types. In CONCUR, pages 402–418, 2014.

[25] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contracts in distributed
systems. In ICE, 2011.

[26] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-oriented computing
in CO2. Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

http://co2.unica.it
https://arxiv.org/abs/1211.2609
https://arxiv.org/abs/1211.2609

BIBLIOGRAPHY 98

[27] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. On the realizability of con-
tracts in dishonest systems. In COORDINATION, volume 7274 of LNCS, pages 245–
260, 2012.

[28] Massimo Bartoletti and Roberto Zunino. A calculus of contracting processes. In LICS,
pages 332–341, 2010.

[29] Massimo Bartoletti and Roberto Zunino. Primitives for contract-based synchroniza-
tion. In ICE, 2010.

[30] Massimo Bartoletti and Roberto Zunino. On the decidability of honesty and of its
variants. In WSFM-BEAT, LNCS. Springer, 2015.

[31] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on Uppaal. In
Formal methods for the design of real-time systems, pages 200–236. Springer, 2004.

[32] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In
ACPN, pages 87–124, 2003.

[33] Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model
session types. In CONCUR, pages 387–401, 2014.

[34] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multi-
party sessions. In CONCUR, pages 418–433, 2008.

[35] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko
Yoshida. Monitoring networks through multiparty session types. In FORTE, volume
7892 of LNCS, pages 50–65. Springer, 2013.

[36] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-
by-contract for distributed multiparty interactions. In CONCUR, pages 162–176, 2010.

[37] Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In
CONCUR, pages 283–296, 2015.

[38] Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types.
In CONCUR, pages 419–434, 2014.

[39] Howard Bowman and Rodolfo Gómez. How to stop time stopping. Formal Asp.
Comput., 18(4):459–493, 2006.

[40] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

[41] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography
conformance and contract compliance. In Software Composition, pages 34–50, 2007.

BIBLIOGRAPHY 99

[42] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and An-
drea Vandin. Modelling and analyzing adaptive self-assembly strategies with Maude.
In WRLA, volume 7571 of LNCS, pages 118–138, 2012.

[43] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based language for
specifying service level agreements. In ESOP, pages 18–32, 2007.

[44] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, pages 222–236, 2010.

[45] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty asyn-
chronous global programming. In POPL, pages 263–274, 2013.

[46] Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, logically.
In CONCUR, pages 47–62, 2014.

[47] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca
Padovani. Foundations of session types. In PPDP, pages 219–230, 2009.

[48] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global
types and multi-party session. Logical Methods in Comp. Sci., 8(1), 2012.

[49] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web
services. ACM Transactions on Programming Languages and Systems, 31(5):19:1–
19:61, 2009.

[50] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko
Yoshida. Asynchronous distributed monitoring for multiparty session enforcement. In
Roberto Bruni and Vladimiro Sassone, editors, Trustworthy Global Computing, volume
7173 of Lecture Notes in Computer Science, pages 25–45. Springer Berlin Heidelberg,
2012.

[51] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, 1986.

[52] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and José F. Quesada. Maude: Specification and programming in
rewriting logic. TCS, 2001.

[53] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida.
Inference of global progress properties for dynamically interleaved multiparty sessions.
In COORDINATION, pages 45–59, 2013.

[54] Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhargavan, and
James J. Leifer. A secure compiler for session abstractions. Journal of Computer
Security, 16(5), 2008.

BIBLIOGRAPHY 100

[55] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, Louis-Marie Traonouez,
and Andrzej Wasowski. Real-time specifications. STTT, 17(1):17–45, 2015.

[56] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ACM SIGSOFT,
pages 109–120, 2001.

[57] Rocco De Nicola and Frits W. Vaandrager. Action versus state based logics for tran-
sition systems. In Irène Guessarian, editor, Semantics of Systems of Concurrent Pro-
cesses, LITP Spring School on Theoretical Computer Science, La Roche Posay, France,
April 23-27, 1990, Proceedings, volume 469 of Lecture Notes in Computer Science,
pages 407–419. Springer, 1990.

[58] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicat-
ing automata: Characterisation and synthesis of global session types. In ICALP, pages
174–186, 2013.

[59] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. On progress
for structured communications. In Trustworthy Global Computing, Third Symposium,
TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Papers,
pages 257–275, 2007.

[60] Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang Yi. Timed automata
patterns. IEEE Trans. Software Eng., 34(6):844–859, 2008.

[61] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL model
checker. Electr. Notes Theor. Comput. Sci., 71:162–187, 2002.

[62] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B). North-Holland Pub. Co./MIT
Press, 1990.

[63] Juliana Franco and Vasco Thudichum Vasconcelos. A concurrent programming lan-
guage with refined session types. In SEFM Workshops: BEAT2, pages 15–28, 2013.

[64] Simon Gay and Malcolm Hole. Subtyping for session types in the Pi calculus. Acta
Inf., 42(2), 2005.

[65] Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
ESOP, pages 74–90, 1999.

[66] Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(1):19–50, 2010.

[67] Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(1):19–50, 2010.

[68] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

BIBLIOGRAPHY 101

[69] Kohei Honda. Types for dyadic interaction. In CONCUR, pages 509–523, 1993.

[70] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In ESOP, volume 1381
of LNCS, pages 22–138, 1998.

[71] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, pages 273–284. ACM, 2008.

[72] Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous,
the more difficult to verify. In CAV, pages 249–262, 2006.

[73] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16(1963):83–94, 1963.

[74] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng., 3(2):125–143, 1977.

[75] Cosimo Laneve and Luca Padovani. The must Preorder Revisited. In CONCUR, pages
212–225, 2007.

[76] Julien Lange and Alceste Scalas. Choreography synthesis as contract agreement. In
ICE, pages 52–67, 2013.

[77] Julien Lange and Emilio Tuosto. Synthesising choreographies from local session types.
In CONCUR, pages 225–239, 2012.

[78] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to
graphical choreographies. In POPL, pages 221–232, 2015.

[79] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety poli-
cies. ACM Trans. Inf. Syst. Secur., 12(3), 2009.

[80] José Meseguer. Rewriting as a unified model of concurrency. In CONCUR, volume
458 of LNCS, pages 384–400, 1990.

[81] José Meseguer. Twenty years of rewriting logic. JLAP, 81(7-8), 2012.

[82] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

[83] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[84] A. Mukhija, Andrew Dingwall-Smith, and D.S. Rosenblum. Qos-aware service compo-
sition in Dino. In ECOWS, pages 3–12, 2007.

[85] Martin Neuhäußer and Thomas Noll. Abstraction and model checking of core Erlang
programs in Maude. ENTCS, 176(4), 2007.

BIBLIOGRAPHY 102

[86] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring
for multiparty conversations. In BEAT, pages 19–26, 2014.

[87] Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In COORDINA-
TION, pages 131–146, 2014.

[88] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), pages 46–57, Oct 1977.

[89] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cambridge University
Press, 2012.

[90] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint programming. In
POPL, pages 232–245, 1990.

[91] Mark-Oliver Stehr, José Meseguer, and Peter Csaba Ölveczky. Rewriting logic as a
unifying framework for Petri nets. In Unifying Petri Nets, pages 250–303, 2001.

[92] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and
its typing system. In PARLE, pages 398–413, 1994.

[93] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math., 5(2):285–309, 1955.

[94] Prasanna Thati, Koushik Sen, and Narciso Mart́ı-Oliet. An executable specification of
asynchronous pi-calculus semantics and may testing in Maude 2.0. ENTCS, 71, 2002.

[95] Stavros Tripakis. Verifying progress in timed systems. In Formal Methods for Real-
Time and Probabilistic Systems, 5th International AMAST Workshop, pages 299–314,
1999.

[96] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl, and Karsten
Wolf. Multiparty contracts: Agreeing and implementing interorganizational processes.
Comput. J., 53(1):90–106, 2010.

[97] Alberto Verdejo and Narciso Mart́ı-Oliet. Implementing CCS in Maude 2. Electr.
Notes Theor. Comput. Sci., 71:282–300, 2002. WRLA 2002, Rewriting Logic and Its
Applications.

[98] Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.

[99] Md Tawhid Bin Waez, Juergen Dingel, and Karen Rudie. A survey of timed automata
for the development of real-time systems. Computer Science Review, 9:1 – 26, 2013.

[100] Martin Wirsing, Jonas Eckhardt, Tobias Mühlbauer, and José Meseguer. Design and
analysis of cloud-based architectures with KLAIM and Maude. In WRLA, volume
7571 of LNCS, pages 54–82, 2012.

[101] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble
protocol language. In TGC, pages 22–41, 2013.

Appendix A

Appendix for Part II

A.1 Proofs for Section 6.1

Lemma A.1.1 If γ −→→ A : rdy a?v. c | B : d, then d is rdy-free.

Proof. By Definition 6.1.1, only one rdy can occur in γ , and if so it must occur at top-level
of a contract. This properties are preserved by transitions (Definition 6.1.2). The thesis
then follows by straightforward analysis of the rules in Figure 6.1.

Below we establish that contracts are deterministic. Determinism ensures that the obli-
gations of participants at any given time are uniquely determined by their past actions.

Lemma A.1.2 (Determinism) For all transition labels µ of −→→:

γ
µ−→→ γ ′ ∧ γ

µ−→→ γ ′′ =⇒ γ ′ ≡ γ ′′

Proof. Let γ = A : c | B : d. We have the following two cases, according to the rule used to

deduce γ
µ−→→ γ ′ (w.l.o.g. we assume that µ is a move of A):

[Rdy] Straightforward consequence of Lemma A.1.1.

[IntExt] The thesis follows by the assumption that the branch labels in c and d are pairwise
distinct (item 2 of Definition 6.1.1).

Lemma A.1.3 If γ ≡ γ ′, then γ is safe iff γ ′ is safe.

Proof. Straightforward by Definition 6.1.3 and by the definition of the equivalence ≡ (Defi-
nition 6.1.2).

The following lemma guarantees, for all contracts c, the existence of a contract d compli-
ant with c. Intuitively, we can construct d from c by turning internal choices into external
ones (and viceversa), and by turning actions into co-actions.

103

APPENDIX A. 104

Proof of Lemma 6.1.5:
For all contracts c, there exists some d such that c ./ d.

Let the contract co(c) be inductively defined as follows:

co(
⊕

i ai!Ti . ci) =
∑

i ai?Ti . co(ci) co(recX . c) = recX . co(c)

co(
∑

i ai?Ti . ci) =
⊕

i ai!Ti . co(ci) co(X) = X

Now, let R be the smallest relation such that, for all rdy-free c:

(c, co(c)) ∈ R (A.1)

(c, rdy a?v. co(c)) ∈ R (A.2)

(rdy a?v. co(c) , c) ∈ R (A.3)

Also, for all pairs X of contracts, let:

F (X) =

{
(c, d)

∣∣∣∣ A : c | B : d is safe, and
A : c | B : d −→→ A : c′ | B : d′ =⇒ (c′, d′) ∈ X

}
By the coinduction proof principle, we have to show that R ⊆ F (R). Suppose that (c, d) ∈
R. The three equations defining R satisfy the first requirement of F (safety). This is trivial
for equations A.2 and A.3, while for A.1 it can be easily proved by cases on the structure of
c. We now prove that (c, d) satisfies the second requirement of F . We have the following
three cases, according to the equation used to prove (c, d) ∈ R.

(A.1) d = co(c). We have two subcases, according to the form of c. Assume first that c is an
external choice, i.e. c = (a?T . c′) + c′′. Then d = a!T . co(c′)⊕ co(c′′). By rule [IntExt],
A : c | B : d −→→ A : c′ | B : rdy a?v. co(c′). We obtain the thesis by observing that
(c′, rdy a?v. co(c′)) ∈ R follows by (A.2). The case where c is an internal choice is
similar.

(A.2) d = rdy a?v. co(c). By rule [Rdy], A : c | B : d −→→ A : c | B : co(c). The thesis follows
by observing that (c, co(c)) ∈ R follows by (A.1).

(A.3) c = rdy a?v. co(d). Similar to the previous case.

Summing up, R is a compliance relation, hence by item (A.1) it follows that c ./ co(c).

Definition A.1.4 (Value abstraction of contracts) Value-abstract contracts are terms
of the grammar:

ĉ ::=
⊕
i∈I

(ai, Ti)! . ĉi
∣∣ ∑

i∈I

(ai, Ti)? . ĉi
∣∣ rdy (ai, Ti)?.ĉ

∣∣ recX . ĉ
∣∣ X

where

1. the index set I is finite,

APPENDIX A. 105

2. the labels ai in the prefixes of each summation are pairwise distinct,

3. recursion variables X are guarded, and

4. rdy occurs at the top-level, only.

For all (concrete) contracts c, we define the value-abstract contract α?(c) as follows

α?(c) =



⊕
i∈I (ai, Ti)! . α

?(ci) if c =
⊕

i∈I ai!Ti . ci∑
i∈I (ai, Ti)? . α

?(ci) if c =
∑

i∈I ai?Ti . ci

rdy (a, T)?. α?(c) if c = rdy a?v. c and v : T

recX . α?(c) if c = recX . c

X if c = X

For contract configurations γ = A : c | B : d, we define α?(γ) = A : α?(c) | B : α?(d).

Lemma A.1.5 For all contracts configurations γ, γ ′, values v, sorts T, and ◦ ∈ {!, ?}:

1. γ
A:a◦v−−−→→ γ ′ ∧ v : T =⇒ α?(γ)

A:(a,T)◦−−−−→→? α
?(γ ′)

2. α?(γ)
A:(a,T)◦−−−−→→? γ̂

′ ∧ v : T =⇒ ∃γ ′ . γ A:a◦v−−−→→ γ ′ ∧ γ̂ ′ = α?(γ ′)

Proof. For item 1 we proceed by cases on the rule used to deduce γ
A:a◦v−−−→→ γ ′. By the

semantics of concrete and value-abstract contracts and by Definition A.1.4, we have:

• [IntExt]

γ = A : a!T . c ⊕ c′ | B : a?T . d + d′

A:a!v−−−→→ A : c | B : rdy a?v. d

= γ ′

α?(γ) = A : (a, T)! . α?(c)⊕ α?(c′) | B : (a, T)? . α?(d) + α?(d′)

A:(a,T)!−−−−→→? A : α?(c) | B : rdy (a, T)?. α?(d)

= α?(γ ′)

• [Rdy]

γ = A : rdy a?v. c | B : d
A:a?v−−−→→ A : c | B : d = γ ′

α?(γ) = A : rdy (a, T)?. α?(c) | B : α?(d)
A:(a,T)?−−−−→→? A : α?(c) | B : α?(d) = α?(γ ′)

For item 2 we proceed by cases on the rule used to deduce α?(γ)
A:(a,T)◦−−−−→→? γ̂ ′. By the

semantics of concrete and value-abstract contracts and by Definition A.1.4, we have:

APPENDIX A. 106

• [AbsIntExt]

α?(γ) = A : (a, T)! . α?(c)⊕ α?(c′) | B : (a, T)? . α?(d) + α?(d′)

A:(a,T)!−−−−→→? A : α?(c) | B : rdy (a, T)?. α?(d)

= γ̂ ′

γ = A : a!T . c ⊕ c′ | B : a?T . d + d′

A:a!v−−−→→ A : c | B : rdy a?v. d

= γ ′

Hence by Definition A.1.4 we conclude that α?(γ ′) = γ̂ ′.

• [AbsRdy]

α?(γ) = A : rdy (a, T)?. α?(c) | B : α?(d)
(a,T)?−−−→→? A : α?(c) | B : α?(d) = γ̂ ′

γ = A : rdy a?v. c | B : d
A:a?v−−−→→ A : c | B : d = γ ′

Hence by Definition A.1.4 we conclude that α?(γ ′) = γ̂ ′.

Proof of Lemma 6.1.6:
For all contracts c, d:

c ./ d ⇐⇒ (∀γ. A : α?(c) | B : α?(d) −→→?
∗ γ =⇒ γ safe)

Straightforward consequence of Lemma A.1.5 and of the fact that γ is safe iff α?(γ) is such.

Lemma 6.1.9. Let c ./ d. If A : c | B : d −→→∗ γ , then either γ = A : 0 | B : 0, or there
exists a unique culpable in γ .

Proof of Lemma 6.1.9:
Let c ./ d. If A : c | B : d −→→∗ γ, then either γ = A : 0 | B : 0, or there
exists a unique culpable in γ.

Let γ = A : c′ | B : d′. By Definition 6.1.3 it follows that γ is safe. Hence, by Definition 6.1.3
we have the following three cases (symmetric ones are omitted):

• γ = A : 0 | B : 0, from which the thesis follows directly.

• γ = A : rdy a?v. c′ | B : d′, with d′ rdy-free (Lemma A.1.1). We have only one
transition from γ , given by rule [Rdy], which prescribes a move of A. By Definition 6.1.8,
we have that A ˙ȧγ and B ˙˙̀ γ .

• γ = A :
⊕

i∈I ai!Ti . ci | B :
∑

i ai∈I?Ti . di +
∑

j bj?Tj . dj, with I 6= ∅. Only rule
[IntExt] can be applied, and it prescribes a move of A. By Definition 6.1.8, we conclude
that A ˙ȧγ and B ˙˙̀ γ .

APPENDIX A. 107

A[τ .P + P ′ |Q]
A: τ−−→? A[P |Q] [α?Tau]

A[(if ? then P 0 else P 1) |Q]
A: if−−→? A[P i | Q] (i ∈ {0, 1}) [α?If]

A[tell ↓u c.P + P ′ |Q]
A: tell ↓uc−−−−−−→? A[P |Q] | {↓u c}A [α?Tell]

c ./ d γ = A : c | B : d σ = {s/x,y} s fresh

(x, y)(S | {↓x c}A | {↓y d}B)
K: fuse−−−−→? (s)(Sσ | s[γ])

[α?Fuse]

γ
A:a−−→→ γ ′

A[dos a.P + P ′ |Q] | s[γ]
A: dos a−−−−→? A[P |Q] | s[γ ′]

[α?Do]

γ `? φ
A[asks φ.P + P ′ |Q] | s[γ]

A: asks φ−−−−−→? A[P |Q] | s[γ]
[α?Ask]

X(~u,~?)
def
= P A[P {~v/~u} |Q] | S µ−→? S

′

A[X(~v,~?) |Q] | S µ−→? S
′ [α?Def]

S
µ−→? S

′

S | S ′′ µ−→? S
′ | S ′′

[α?Par]

S
A:π−−→? S

′

(u)S
A: delu(π)−−−−−→? (u)S ′

[α?Del] where delu(π) =

{
τ if u ∈ fnv(π)

π otherwise

Figure A.1: Reduction semantics of value-abstract systems.

A.2 Proofs for Section 8.1

A.2.1 Proofs for Section 8.1.1

We shall use metavariables Ŝ , Ŝ
′
, . . . to range over value-abstract systems. However, when

there is no ambiguity about whether we are referring to a concrete or to a value-abstract
system, we shall use the standard metavariables S, S ′. We adopt similar conventions for
value-abstract contract configurations.

We now formalise the meaning of the relation ` used in rule [Ask]. We denote with AP
the set of atomic propositions, whose elements are terms of the form (a, T)◦, where a is a
branch label, T is a sort, and ◦ ∈ {!, ?}. Let `, `′, · · · range over AP ∪ {ε}.

Definition A.2.1 We define the Kripke structure TS? = (Σ,→, L) as follows:

• Σ = {(`, γ̂) | ` ∈ AP ∪ {ε}, and γ̂ is a configuration of compliant value-abstract contracts},

• the transition relation → ⊆ Σ× Σ is defined by the following rule:

(`, γ̂)→ (a, γ̂ ′) if γ̂
A:a−−→→? γ̂

′

(`, γ̂)→ (`, γ̂) if γ̂ 6−→→?

APPENDIX A. 108

• the labelling function L : Σ→ 2AP is defined as:

L((`, γ̂)) =

{
{`} if ` ∈ AP;

∅ otherwise.

We write γ̂ `? φ whenever (ε, γ̂) |= φ holds in LTL.

Lemma A.2.2 For all compliant γ :

Paths((ε, γ)) = Paths((ε, α?(γ)))

Proof. Straightforward consequence of Lemma A.1.5

Corollary A.2.3 For all compliant γ :

γ ` φ ⇐⇒ α?(γ) ` φ

Definition A.2.4 (Value-abstract labels) For all transition labels µ of −→ (CO2 seman-
tics, Figure 7.2), we define the value-abstract label α?(µ) as:

α?(µ) =


A : dos (a, T)◦ if µ = A : dos a ◦ v and v : T

A : tell ↓u α?(c) if µ = A : tell ↓u c
µ otherwise

Lemma A.2.5 For all substitutions σ and systems S :

α?(S)σ = α?(Sσ)

Furthermore, if σ is a value-substitution:

α?(S)σ = α?(S)

Proof. By structural induction on S .

Lemma A.2.6 Let µ = A : π and α?(µ) = A : π̂. Then:

α?(A : delu(π)) = A : delu(π̂)

where delu(·) is defined in Figure 7.2.

Proof. Trivial.

Lemma A.2.7 S
µ−→ S ′ =⇒ α?(S)

α?(µ)−−−→? α
?(S ′)

Proof. Suppose S
µ−→ S ′. We proceed by rule induction, rewriting the transitions according

to Definition A.2.4 and Figure A.1:

APPENDIX A. 109

[Tau] Assume:

S = A[τ .P + P ′ |Q]
A: τ−−→ A[P |Q] = S ′

Then:

α?(S) = A[τ .α?(P) + α?(P ′) | α?(Q)]
A: τ−−→? A[α?(P) | α?(Q)] = α?(S ′)

[Tell] Assume:

S = A[tell ↓u c.P + P ′ |Q]
A: tell ↓uc−−−−−−→ A[P |Q] | {↓u c}A = S ′

We have that:

α?(S) = A[tell ↓u α?(c).α?(P) + α?(P ′) | α?(Q)]

Then:

α?(S)
A: tell ↓uα?(c)−−−−−−−−−→? A[α?(P) | α?(Q)] | {↓u α?(c)}A = α?(S ′)

[Fuse] Assume:

c ./ d γ = A : c | B : d σ = {s/x,y} s fresh

S = (x, y)(S ′′ | {↓x c}A | {↓y d}B)
K: fuse−−−−→ (s)(S ′′σ | s[γ]) = S ′

By Lemma 6.1.6 (RHS of the double implication) and Definition 6.1.3, with an obvious
overloading of ./ we have α?(c) ./ α?(d). We have that:

α?(S) = (x, y)(α?(S ′′) | {↓x α?(c)}A | {↓y α?(d)}B)

Then, by Lemma A.2.5:

α?(c) ./ α?(d) γ̂ = A : α?(c) | B : α?(d) = α?(γ) σ = {s/x,y} s fresh

α?(S) =
K: fuse−−−−→? (s)(α?(S ′′σ) | s[α?(γ)]) = α?(S ′)

[If] Suppose JeK = true (the other case is similar) and:

S = A[(if e then P true else P false) |Q]
A: if−−→ A[P true |Q] = S ′

We have that:

α?(S) = A[(if ? then α?(P true) else α
?(P false)) | α?(Q)]

Then:
α?(S)

A: if−−→ A[α?(P true) | α?(Q)] = α?(S ′)

APPENDIX A. 110

[Do!] Suppose:

JeK = v γ
A:a!v−−−→→ γ ′

S = A[dos a!e.P + P ′ |Q] | s[γ]
A:dos a!v−−−−−→ A[P |Q] | s[γ ′] = S ′

Assuming v : T, we have that:

α?(S) = A[dos (a, T)!.α?(P) + α?(P ′) | α?(Q)] | s[α?(γ)]

Then, by item 1 of Lemma A.1.5:

α?(γ)
A:(a,T)!−−−−→→ α?(γ ′)

α?(S)
A:dos (a,T)!−−−−−−→ A[α?(P) | α?(Q)] | s[α?(γ ′)] = α?(S ′)

[Do?] Suppose:

γ
A:a?v−−−→→ γ ′ v : T

S = A[dos a?x : T.P + P ′ |Q] | s[γ]
A:dos a?v−−−−−→ A[P {v/x} |Q] | s[γ ′] = S ′

Assuming v : T, we have that:

α?(S) = A[dos (a, T)?.α?(P) + α?(P ′) | α?(Q)] | s[α?(γ)]

Then, by item 1 of Lemma A.1.5 and the “furthermore. . . ” part of lemma A.2.5:

α?(γ)
A:(a,T)?−−−−→→ α?(γ ′)

α?(S) =
A:dos (a,T)!−−−−−−→ A[α?(P) | α?(Q)] | s[α?(γ ′)] = α?(S ′)

[Ask] Suppose:

γ ` φ
S = A[asks φ.P + P ′ |Q] | s[γ]

A: asks φ−−−−−→ A[P |Q] | s[γ] = S ′

We have that:

α?(S) = A[asks φ.α
?(P) + α?(P ′) | α?(Q)] | s[α?(γ)]

We can now notice that, by Definition 8.1.9, the premise γ ` φ only depends on
the labels (and ignores the values) along the transitions of γ ; therefore, since α?(γ)
preserves such labels (see Definition A.1.4), with an obvious overloading of ` we obtain
γ ` φ ⇐⇒ α?(γ) ` φ. Hence, we have:

α?(γ) ` φ
α?(S)

A: asks φ−−−−−→? A[α?(P) | α?(Q)] | s[α?(γ)] = α?(S ′)

APPENDIX A. 111

[Def] Suppose:

X(~x, ~y)
def
= P A[P {~u/~x}{~e/~y} |Q] | S ′′ µ−→ S ′

S = A[X(~u,~e) |Q] | S ′′ µ−→ S ′

Then, by applying the induction hypothesis, and by Lemma A.2.5:

X(~u,~?)
def
= α?(P) A[α?(P){~v/~u} | α?(Q)] | α?(S ′′) α?(µ)−−−→? α

?(S ′)

α?(S) = A[X(~v,~?) | α?(Q)] | α?(S ′′) α?(µ)−−−→? α
?(S ′)

[Par] Suppose:

S0
µ−→ S ′0

S = S0 | S ′′
µ−→ S ′0 | S ′′ = S ′

Then, by applying the induction hypothesis:

α?(S0)
α?(µ)−−−→ α?(S ′0)

α?(S) = α?(S0) | α?(S ′′) α?(µ)−−−→ α?(S ′0) | α?(S ′′) = α?(S ′)

[Del] Suppose:

S0
A:π−−→ S ′0

S = (u)S0

A: delu(π)−−−−−→ (u)S ′0 = S ′

Then, by applying the induction hypothesis, and by Lemma A.2.6:

α?(S0)
α?(A:π)−−−−−→? α

?(S ′0)

α?(S) = (u)α?(S0)
α?(A: delu(π))−−−−−−−−→? (u)α?(S ′0) = α?(S ′)

Lemma A.2.8 For all systems S , value-abstract systems Ŝ
′

and labels µ̂:

α?(S)
µ̂6=A:if−−−−→? Ŝ

′
=⇒ ∃µ, S ′ : S µ−→ S ′ ∧ α?(µ) = µ̂ ∧ α?(S ′) = Ŝ

′

Proof. We proceed by induction on the rule used to derive Ŝ = α?(S)
µ̂−→? Ŝ

′
(excluding the

case µ̂ = A : if):

[Tau] Assume S = A[τ .P + P ′ |Q]. We have:

α?(S) = A[τ .α?(P) + α?(P ′) | α?(Q)]
µ̂=A: τ−−−−→? A[α?(P) | α?(Q)] = Ŝ

′

Then:
S

µ=A: τ−−−−→ A[P |Q] = S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

APPENDIX A. 112

[Tell] Assume S = A[tell ↓u c.P + P ′ |Q]. We have:

α?(S) = A[tell ↓u α?(c).α?(P) + α?(P ′) | α?(Q)]

And:

α?(S) =
µ̂=A: ↓uα?(c)−−−−−−−→? A[α?(P) | α?(Q)] | {↓u α?(c)}A = Ŝ

′

Then:
S

µ=A: ↓uc−−−−−→ A[P |Q | {↓u c}A] = S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

[Fuse] Assume S = (x, y)(S ′′ | {↓x c}A | {↓y d}B). We have:

α?(S) = (x, y)(α?(S ′′) | {↓x α?(c)}A | {↓y α?(d)}B)

And:

α?(c) ./ α?(d) γ̂ = A : α?(c) | B : α?(d) = α?(γ) σ = {s/x,y} s fresh

α?(S)
µ̂=K: fuse−−−−−→? (s)(α?(S ′′σ) | s[α?(γ)]) = Ŝ

′

By Definition 6.1.3 and Lemma 6.1.6 (LHS of the double implication), we have c ./ d.
Hence, by Lemma A.2.5:

c ./ d γ = A : c | B : d σ = {s/x,y} s fresh

S
K: fuse−−−−→ (s)(S ′′σ | s[γ]) = S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

[Do] We have:
α?(S) = A[dos a.α

?(P) + α?(P ′) | α?(Q)] | s[α?(γ)]

And:
α?(γ)

A:a−−→→? γ̂
′

α?(S)
µ̂=A: dos a−−−−−−→? A[α?(P) | α?(Q)] | s[γ̂ ′]

There are two cases, according to the form of a:

– a = (a, T)!. Then S has the form A[dos a!e .P + P ′ |Q] | s[γ], with e : T and

JeK = v. By item 2 of Lemma A.1.5, there exists γ ′ such that γ
A:a!v−−−→→ γ ′ and

α?(γ ′) = γ̂ ′. Then, by rule [Do!]:

JeK = v γ
A:a!v−−−→→ γ ′

S = A[dos a!e.P + P ′ |Q] | s[γ]
µ=A:dos a!v−−−−−−−→ A[P |Q] | s[γ ′] = S ′

from which the thesis follows, because α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

APPENDIX A. 113

– a = (a, T)?. Here S has the form A[dos a?x : T.P + P ′ |Q] | s[γ] (recall that S is
assumed to be well typed). By item 2 of Lemma A.1.5, there exists γ ′ such that

γ
A:a?v−−−→→ γ ′ and α?(γ ′) = γ̂ ′. Then, by rule [Do?]:

γ
A:a?v−−−→→ γ ′ v : T

S = A[dos a?x : T. P + P ′ | Q] | s[γ]
µ=A:dos a?v−−−−−−−→ A[P {v/x} | Q] | s[γ ′] = S ′

Hence we have α?(µ) = µ̂, and by lemma A.2.5, we also have α?(S ′) = Ŝ
′
.

[Ask] Assume S = A[asks φ.P + P ′ |Q] | s[γ]. We have:

α?(S) = A[asks φ.α
?(P) + α?(P ′) | α?(Q)] | s[α?(γ)]

And:
α?(γ) ` φ

α?(S)
µ̂=A: asks φ−−−−−−→? A[α?(P) | α?(Q)] | s[α?(γ)] = Ŝ

′

By Corollary A.2.3(RHS of the double implication) we have:

γ ` φ
S

µ=A: asks φ−−−−−−→ A[P |Q] | s[γ] = S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

[Def] Assume S = A[X(~u,~e) | Q] | S ′′. By applying the induction hypothesis, we have that

∃µ, S ′ such that S ′′′ = A[P {~u/~x}{~e/~y} | Q] | S ′′ µ−→ S ′ and α?(S ′′′)
µ̂−→? Ŝ

′
= α?(S ′), with

µ̂ = α?(µ). Therefore, we have:

X(~u,~?)
def
= α?(P) α?(S ′′′) = A[α?(P){~v/~u} | α?(Q)] | α?(S ′′) µ̂−→? Ŝ

′
= α?(S ′)

α?(S) = A[X(~v,~?) | α?(Q)] | α?(S ′′) µ̂−→? Ŝ
′

Then, by Lemma A.2.5:

X(~x, ~y)
def
= P A[P {~u/~x}{~e/~y} | Q] | S ′′ µ−→ S ′

S
µ−→ S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

[Par] Assume S = S0 | S ′′. By applying the induction hypothesis, we have that ∃µ, S ′0 such

that S0
µ−→ S ′0 and α?(S0)

µ̂−→ α?(S ′0), with µ̂ = α?(µ). Therefore, we have:

α?(S0)
µ̂−→ α?(S ′0)

α?(S) = α?(S0) | α?(S ′′) µ̂−→ α?(S ′0) | α?(S ′′) = Ŝ
′

Then:
S0

µ−→ S ′0
S

µ−→ S ′0 | S ′′ = S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

APPENDIX A. 114

[Del] Assume S = (u)S0. By applying the induction hypothesis and Lemma A.2.6we have

that ∃π, S ′0 such that S0
A:π−−→ S ′0 and α?(S0)

A: π̂−−→? α
?(S ′0), with π̂ = α?(π). There-

fore, we have:

α?(S0)
µ̂=A: π̂−−−−→? α

?(S ′0)

α?(S) = (u)α?(S0)
A: delu(π̂)−−−−−→? (u)α?(S ′0) = Ŝ

′

Then:

S0
µ=A:π−−−−→ S ′0

S
A: delu(π)−−−−−→ (u)S ′0 = S ′

and therefore α?(µ) = µ̂ and α?(S ′) = Ŝ
′
.

Lemma A.2.9 α?(S)
A:if−−→? =⇒ ∃S ′ : S A:if−−→ S ′ ∧ α?(S)

A:if−−→? α
?(S ′).

Proof. Suppose α?(S)
A:if−−→?. We proceed by rule induction.

[If] Assume:

A[(if ? then α?(P 0) else α?(P 1)) | α?(Q)]
A: if−−→?

Then, we necessarily have S = (if e then P 0 else P 1) |Q for some e, and either:

A[S]
A: if−−→ A[P 0] = S ′ or A[S]

A: if−−→ A[P 1] = S ′

In both cases, we have α?(S)
A:if−−→? α

?(S ′).

[Par] Assume S = S ′′ | S ′′′, and:

α?(S ′′)
A: if−−→?

α?(S) = α?(S ′′ | S ′′′) = α?(S ′′) | α?(S ′′′) A: if−−→?

Then, by applying the induction hypothesis, there exists S ′′1 such that S ′′
A: if−−→ S ′′1 and

α?(S ′′)
A:if−−→? α

?(S ′′1). Hence:

S ′′
A: if−−→ S ′′1

S = S ′′ | S ′′′ A: if−−→ S ′′1 | S ′′′ = S ′

and we have α?(S)
A:if−−→? α

?(S ′).

The cases for rule [Def] and [Del] are similar to [Par], using, respectively, Lemma A.2.6 and
Lemma A.2.5.

Lemma A.2.10 For all systems S , participant A and session names s:

A ready at s in α?(S) =⇒ A ready at s in S

APPENDIX A. 115

Proof. Suppose A is ready at s in α?(S). We proceed by induction on the item/rule of Def-
inition 8.1.4 which guarantees S ∈ α?- RdyA

s :

• item 1. By Lemma A.2.8, item 1 of Definition 7.1.4 follows trivially.

• item 2. Then α?(S)
A:π̂−−→? Ŝ

′
, with π̂ 6∈ {dos , if}, and A is ready at s in Ŝ

′
.

By Lemma A.2.8, it follows that S
A:π−−→ S ′, with α?(A : π) = A : π̂ and α?(S ′) =

Ŝ
′
. By applying the induction hypothesis, A is ready at s in S ′. Hence, item 2 of

Definition 7.1.4 holds for S .

• item 3. By Lemma A.2.9 S
A:if−−→ S ′ — because of an underlying if prefix chosing one

of its branches.

By item 3 of Definition 8.1.4 it follows A that is ready at s in α?(S ′) (actually, A is
ready in both branches of the abstracted if). By applying the induction hypothesis, A
is ready at s in S ′, and hence item 2 of Definition 7.1.4 holds for S .

Lemma A.2.11 For all if-free systems S , participant A and session names s:

A ready at s in S =⇒ A ready at s in α?(S)

Proof. Direct consequence of Lemma A.2.7.

Lemma A.2.12 Let S be a concrete system and Ŝ be the value-abstract system such that
α?(Ŝ) = S . Then, if Ŝ is α?−ready then S is ready. Conversely, if S is ready and if-free
then Ŝ is α?−ready.

Proof. Direct consequence of Lemma A.2.10 and Lemma A.2.11.

Proof of Theorem 8.1.5:
Let P be a concrete process. If α?(P) is α?-honest, then P is honest.
Conversely, if P is honest and if-free, then α?(P) is α?-honest.

Direct conseguence of Lemma A.2.7, Lemma A.2.8 and Lemma A.2.12

When defining honesty, we consider contexts that cannot delimit the free variables of
a participant. This is necessary in order to rule out tricky cases in which a context with
properly crafted delimitations would make a participant trivially dishonest. A notion of
“safe” handling of delimitation, called A-safety, is formalised in Definition A.2.13 below.

We now give an intuition about the problems at hand. Consider, for instance, the process
P = tell ↓x c, where c = a! . 0.

P above is trivially honest: in fact, it advertises the contract c using a free variable x;
and since rule [Fuse] requires x to be delimited, c will never be stipulated if A[P] is composed
in parallel with some A-free system, as per Definition 7.1.5.

APPENDIX A. 116

However, if A[P] is put in a context which delimits x, then c may indeed be stipulated.
Consider, for instance, the system S = (x)(A[P] | B[tell ↓x d]), where d = a? . 0: we have
S −→∗ (s)(A[0] | B[0] | s[A : c | B : d]) = S ′, and hence A is not ready in S ′.

We can rule out these situations by only focusing on A-safe systems, which intuitively
can be split in two parts:

1. A-solo system SA containing the process of A, the contracts advertised by A and all
the sessions containing contracts of A;

2. an A-free system Sctx .

For instance, we have that the system S above is not A-safe: since the delimitation (x)
includes both A’s and B’s processes, then S cannot be rewritten (via congruence rules) in
the form (~s)(SA | Sctx) with SA A-solo and Sctx A-free.

In the following lemmata we will show that the A-safety property is preserved both by
abstractions and reductions.

Definition A.2.13 (A-solo and A-safe systems) We say that S is A-solo iff one of the
following holds:

S ≡ 0 S ≡ A[P] S ≡ s[A : c | B : d] S ≡ {↓x c}A
S ≡ S ′ | S ′′ where S ′ and S ′′ A-solo S ≡ (u)S ′ where S ′ A-solo

We say that S is A-safe iff S ≡ (~s)(SA | Sctx), with SA A-solo and Sctx A-free.

We naturally extend the A-solo/safe/free definitions to value- and context-abstract sys-
tems.

Proposition A.2.14 (A-safety abstraction) Let S be A-safe. Then, both α?(S) and
αA(S) are A-safe.

Proof. Trivial.
In Lemma A.2.15 below we show that A-safety is preserved by transitions. Consequently,

since the initial contexts where honesty is defined are themselves A-safe, w.l.o.g. we can
consider A-safe systems only.

Lemma A.2.15 For all systems S, S ′ such that S −→? S
′:

(1) If S is A-solo, then S ′ is A-solo.

(2) If S is A-free, then S ′ is A-free.

(3) If S is A-safe, then S ′ is A-safe.

APPENDIX A. 117

Proof. Items (1) and (2) are straightforward by Definition A.2.13 and by induction on the
semantic rules of value-abstract systems.

For item (3), we proceed by induction on the depth of the derivation of S −→? S
′. Let

S be A-safe. Then, by Definition A.2.13, S ≡ (~s)(SA | Sctx), for some A-solo SA and A-free
Sctx .

By repeatedly applying rule [Del] backwards, we can remove the top-level delimited ses-
sions and obtain:

...

SA | Sctx −→? S
′
0

...
[Del]

S ≡ (~s)(SA | Sctx) −→? (~s)S ′0 = S ′
[Del]

We have then the following cases, according to the rule used to deduce SA | Sctx −→ S ′0.

[Do] There are the following three subcases.

• The do is fired by A. Then, S ′0 = S ′A | Sctx . By item (1), S ′A is A-solo, hence S ′

is A-safe.

• The do is fired by some B 6= A, in a session not involving A. Then, S ′0 = SA | S ′ctx .
By item (2), S ′ctx is A-free, hence S ′ is A-safe.

• The dos a is fired by some B 6= A, in a session s involving A. We have that
SA ≡ S ′′A | s[γ], with γ = A : c | B : d, and Sctx = B[dos a.P +Q |R] | S ′ctx .
Then, by rule [Do]:

γ
B:a−−→→? γ

′

SA | Sctx −→? S
′′
A | s[γ ′] | B[P |R] | S ′ctx

We have that S ′′A | s[γ ′] is A-solo, and B[P |R] | S ′ctx is A-free. Therefore, S ′ is
A-safe.

[Ask] Similar to the case [Do].

[Fuse] We have SA ≡ (x)(S ′A | {↓x c}A), Sctx ≡ (y)(S ′ctx | {↓y d}B), and:

c ./ d γ = A : c | B : d σ = {s/x,y} s fresh

SA | Sctx ≡ (x, y)(S ′A | {↓x c}A | S ′ctx | {↓y d}B) −→? (s)(S ′Aσ | s[γ] | S ′ctxσ) = S ′0

We have that S ′Aσ | s[γ] is A-solo, and S ′ctxσ is A-free, then by Definition A.2.13, S ′0 is
A-safe. Therefore, S ′ = (~s)S ′0 is A-safe as well.

[Par] We have the following two subcases.

• SA −→? S
′
A, and S0 = S ′A | S ctx . By item (1), S ′A is A-solo, hence S ′ is A-safe.

• S ctx −→? S
′
ctx . By item (2), S ′ctx is A-free, hence S ′ is A-safe.

[Def] We have two subcases, according to which participant has moved.

APPENDIX A. 118

A has moved. We have that SA = A[X(~v) | Q] | S ′A, for some A-solo S ′A, and:

X(~u)
def
= P A[P {~v/~u} | Q] | S ′A | Sctx

µ−→? S
′
0

SA | Sctx
µ−→? S

′
0

[Def]

Since A[P {~v/~u} | Q] | S ′A is A-solo, then by applying the induction hypothesis it
follows that S ′0 is A-safe. Therefore, S ′ = (~s)S ′0 is A-safe as well.

B 6= A has moved. Similar to the previous case, but considering that A[P {~v/~u} | Q] |
S ′A remains unchanged (and A-solo), while (by item (2)) the context reduces
remaining A-free.

A.2.2 Proofs for Section 8.1.2

We shall sometimes use metavariables c̃, d̃, . . . to range over context-abstract contracts. We
will drop the decoration when there is no ambiguity; similar notational conventions apply
for context-abstract systems.

The following lemmata state the correspondence between the concrete and the abstract
semantics of contracts.

Proof of Theorem 8.1.7:
For all value-abstract contract configurations γ, γ ′, for all context-
abstract contracts c, c′:

1. γ
A:a−−→→? γ

′ =⇒ αA(γ)
a−→→A αA(γ ′)

2. γ
B:a−−→→? γ

′ =⇒ αA(γ)
ctx :a−−→→A αA(γ ′) (B 6= A)

3. c
a−→→A c

′ =⇒ ∀ compliant γc :
(
αA(γc) = c =⇒ ∃γc′ : γc

A:a−−→→?

γc′ ∧ αA(γc′) = c′
)

For item 1 we proceed by cases on the rule being used:

[AbsIntExt] By the semantics of concrete and abstract contracts and by Definition 8.1.6, we
have:

γ = A : a . c ⊕ c′ | B : co(a) . d + d′
A:a−−→→? A : c | B : rdy co(a).d = γ ′

αA(γ) = a . c ⊕ c′ a−→→A ctx co(a) .c = αA(γ ′)

[AbsRdy] Since d is ready-free, we have:

γ = A : rdy a.c | B : d
A:a−−→→? A : c | B : d = γ ′

αA(γ) = rdy a.c
a−→→A c = αA(γ ′)

APPENDIX A. 119

For item 2 we proceed by cases on the rule being used:

[AbsIntExt] We have:

γ = A : (co(a) . c + c′) | B : (a . d ⊕ d′) B:a−−→→? A : rdy co(a).c | B : d = γ ′

αA(γ) = co(a) . c + c′
ctx :a−−→→A rdy co(a).c = αA(γ ′)

[AbsRdy] We have:

γ = A : c | B : rdy a.d
B:a−−→→? A : c | B : d = γ ′

αA(γ) = ctx a.c
ctx :a−−→→A d = αA(γ ′)

For item 3, we have two cases:

• For c = a . c′′⊕ c′′′we have that c
a−→→A ctx co(a) .c′′ = c′. Let γ = A : c | B : d,

d = co(a) . d′′+ d′′′. Clearly γ
A:a−−→→? A : c′′ | B : rdy co(a).d′′ = γ ′. Of course αA(γ) = c

and αA(γ ′) = c′.

• For c = rdy a.c′ we have that c
a−→→A c

′. Let γ = A : c | B : d, with d ready-free and

d ./ c′. γ
A:a−−→→? A : c′ | B : d = γ ′. Clearly αA(γ) = c and αA(γ ′) = c′.

Definition A.2.16 Let γA
B be a function defined as follows:

γA
B(ctx a.ĉ) = A : ĉ | B : rdy a. co(ĉ)

γA
B(rdy a.ĉ) = A : rdy a.ĉ | B : co(ĉ)

γA
B(ĉ) = A : ĉ | B : co(ĉ) otherwise

Lemma A.2.17 For all abstract contracts c̃:

(1) c̃
a−→→A c̃

′ =⇒ γA
B(c̃)

A:a−−→→? γ
A
B(c̃′)

(2) c̃
ctx :a−−→→A c̃

′ =⇒ γA
B(c̃)

B:a−−→→? γ
A
B(c̃′)

(3) αA(γA
B(c̃)) = c̃

Proof.

(1) There are two cases:

• c̃ = a . ĉ ⊕ ĉ′ a−→→A ctx co(a) . ĉ = c̃′

γA
B(c̃) = A : a . ĉ ⊕ ĉ′ | B : co(a) . co(ĉ) + co(ĉ′)
γA
B(c̃′) = A : ĉ | B : rdy co(a) . co(ĉ)

Clearly: γA
B(c̃)

A:a−−→→? γ
A
B(c̃′)

• c̃ = rdy a . ĉ′
a−→→A ĉ

′ = c̃′

γA
B(c̃) = A : rdy a . ĉ′ | B : co(ĉ′)

A:a−−→→? A : ĉ′ | B : co(ĉ′) = γA
B(c̃′)

APPENDIX A. 120

(2) There are two cases:

• c̃ = co(a) . ĉ + ĉ′
ctx :a−−→→A rdy co(a) . ĉ = c̃′

γA
B(c̃) = A : co(a) . ĉ + ĉ′ | B : a . co(ĉ)⊕ co(ĉ′)
γA
B(c̃′) = A : rdy co(a) .ĉ | B : co(ĉ)

Clearly: γA
B(c̃)

B:a−−→→? γ
A
B(c̃′)

• c̃ = ctx a . ĉ
ctx :a−−→→A ĉ = c̃′

γA
B(c̃) = A : ĉ | B : rdy a . co(ĉ)

B:a−−→→? A : ĉ | B : co(ĉ) = γA
B(c̃′)

(3) By cases on the form of c̃:

• αA(γA
B(ctx a.ĉ)) = αA(A : c | B : rdy a.co(ĉ)) = ctx a.ĉ = c̃

• αA(γA
B(rdy a.ĉ)) = αA(A : rdy a.ĉ | B : co(ĉ)) = rdy a.ĉ = c̃

• αA(γA
B(ĉ)) = αA(A : ĉ | B : co(ĉ)) = ĉ = c̃, with ĉ rdy-free.

Lemma A.2.18 For all abstract contracts c̃:

c̃
ctx :a−−→→A c̃

′ =⇒ ∃γ̂ , γ̂ ′ . γ̂ B:a−−→→? γ̂
′ ∧ αA(γ̂) = c̃ ∧ αA(γ̂ ′) = c̃′

Proof. We already know, by items (2) and (3) of Lemma A.2.17, the thesis holds, and in
particular γ = γA

B(c̃).

A.2.3 Proofs for Section 8.1.3

Lemma A.2.19 For all substitutions σ and value-abstract systems Ŝ (αA(Ŝ))σ = αA(Ŝ σ).

Proof. Straightforward structural induction.

Lemma A.2.20 For all value-abstract systems Ŝ : fv(αA(Ŝ)) ∪ fn(αA(Ŝ)) ⊆ fv(Ŝ) ∪ fn(Ŝ)

Proof. We proceed by induction on the structure of Ŝ . There are the following cases:

• αA(Ŝ) = 0. The thesis holds trivially.

• A[P̃]. Obvious, by the fact that αA(A[P̃]) = A[P̃].

• s[A : ĉ | B : d̂]. We have αA(Ŝ) = s[ĉ]. Clearly u not free in Ŝ only if u 6= s. But
this holds also for αA(Ŝ).

• {↓x ĉ}A. We have αA(Ŝ) = {↓x ĉ}. Clearly u is not free in Ŝ only if x 6= s. But this
holds also for αA(Ŝ).

APPENDIX A. 121

A[τ .P̃ + P̃ ′ | Q̃]
A: τ−−→A A[P̃ | Q̃] [α-Tau]

A[(if ? then P̃ 0 else P̃ 1) | Q̃]
A: if−−→A A[P̃ i | Q̃] (i ∈ {0, 1}) [α-If]

A[tell ↓x c̃.P̃ + P̃ ′ | Q̃]
A: tell ↓xc̃−−−−−−→A A[P̃ | Q̃] | {↓x c̃}A [α-Tell]

c̃
a−→→A c̃

′

s[c̃] | A[dos a.P̃ + P̃ ′ | Q̃]
A: dos a−−−−→A s[c̃

′] | A[P̃ | Q̃]
[α-Do]

s fresh

(x)(S̃ | {↓x c̃}A)
ctx−→A (s)(s[c̃] | S̃{s/x})

[α-Fuse]

c̃ `A φ

A[asks φ.P̃ + P̃ ′ | Q̃] | s[c̃] A: asks φ−−−−−→A A[P̃ | Q̃] | s[c̃]
[α-Ask]

c̃ `ctx φ

A[asks φ.P̃ + P̃ ′ | Q̃] | s[c̃] ctx−→A A[P̃ | Q̃] | s[c̃]
[α-AskCtx]

X(~x)
def
= P̃ A[P̃ {~u/~x} | Q̃] | S̃ µ−→A S̃

′

A[X(~u) | Q̃] | S̃ µ−→A S̃
′ [α-Def]

S̃
µ−→A S̃

′

S̃ | S̃ ′′ µ−→A S̃
′ | S̃ ′′

[α-Par]

S̃
A:π−−→A S̃

′

(u)S̃
A: delu(π)−−−−−→A (u)S̃ ′

[α-Del]
S̃

ctx−→A S̃
′

(u)S̃
ctx−→A (u)S̃ ′

[α-DelCtx]

c̃
ctx−→→A c̃

′

s[c̃]
ctx−→A s[c̃

′]
[α-DoCtx] S̃

ctx−→A S̃ [α-Ctx]

Figure A.2: Reduction semantics of context-abstract systems (full set of rules).

• Ŝ
′
| Ŝ
′′
. We have αA(Ŝ) = αA(Ŝ

′
) | αA(Ŝ

′′
). By induction hypothesis we have that

(u not free in Ŝ
′

=⇒ u not free in αA(Ŝ
′
)) ∧ (u not free in Ŝ

′′
=⇒ u not free in

αA(Ŝ
′′
)). Assume that u is not free in Ŝ , so u must be not free in Ŝ

′
and in Ŝ

′′
, but

then, by induction hypotesis, we have that u is not free in αA(Ŝ
′
) and in αA(Ŝ

′′
), which

implies u not free in αA(Ŝ).

• (u′)Ŝ
′
. We have αA(Ŝ) = (u′)(αA(Ŝ

′
)). Under the assumption that u is not free in

Ŝ , we have that u = u′ or u is not free in Ŝ
′
. If the first holds we are done. If u is not

free in Ŝ
′

the thesis follows by induction hypothesis.

Lemma A.2.21 Let Γc̃ = {γ̂ |αA(γ̂) = c̃}. Then, for all a ∈ A ∪ {ε}, and for all c̃:

Paths((a, c̃)) =
⋃
γ̂∈Γc̃

Paths((a, γ̂))

APPENDIX A. 122

Proof. ⊇: Suppose that:

a0a1... ∈
⋃
γ̂∈Γc̃

Paths((a, γ̂))

i.e.:
∃γ̂ ∈ Γc̃ . a0a1... ∈ Paths((a, γ̂))

Let s0 = (a0, γ̂0), with a0 = a and γ̂0 = γ̂ . By Definition 6.1.11, there exists a path s1, s2, . . .
such that L(si) = ai and si−1 → si, for all i. For all i, s̃i = (ai, αA(γ̂i)). L(si) = L(s̃i). We

have to show that s̃i → s̃i+1, i.e., by Definition 8.1.9, αA(γ̂i)
µ̃−→→A αA(ˆγi+1) with µ̃ = ai+1

or µ̃ = ctx : ai+1. Since si → si+1 holds by hypothesis, by Definition 6.1.11 we have that

γ̂i
µ−→→ ˆγi+1, with µ = A : ai+1 or µ = B : ai+1. But then, by Theorem 8.1.7, the thesis follows.

⊆: Suppose that a0a1... ∈ Paths((a, c̃)). Let s̃0 = (a, c̃). By Definition 6.1.11, there exists
a path s̃1, s̃2, . . . such that L(s̃i) = ai and s̃i−1 → s̃i for all i. Let si = (ai, γ

A
B(c̃i)), for all

i. Clearly, L(si) = L(s̃i). We have to show that, for all i > 0, γA
B(c̃i−1)

µ−→→ γA
B(c̃i), with

µ = A : ai or B : ai. This follows by Definition 8.1.9 and items (1) and (2) of Lemma A.2.17.

Proof of Lemma 8.1.10:
For all context-abstract contracts c and for all LTL formulae φ:

1. c ` φ ⇐⇒ (∀ compliant γ : αA(γ) = c =⇒ γ `? φ)

2. c 6` ¬φ ⇐= (∃ compliant γ : αA(γ) = c ∧ γ `? φ)

(1) For the =⇒ direction, suppose that c̃ ` φ. By definition of `, it follows that
∀λ ∈ Paths(ε, c̃) . λ ` φ. Let γ̂ be such that αA(γ̂) = c̃. Suppose λ ∈ Paths(ε, γ̂).
By Lemma A.2.21 we can conclude that λ ∈ Paths(ε, c̃) and then λ ` φ.

For the ⇐= direction, suppose that c̃ 6` φ. By definition of `, it follows that ∃λ ∈
Paths(ε, c̃) . λ 6` φ. By Lemma A.2.21 we know that ∃γ̂ . λ ∈ Paths(ε, γ̂). But then,
γ̂ 6` φ.

(2) Assume that ∃γ̂ . αA(γ̂) = c̃ ∧ γ̂ ` φ. Then it also holds that ∃γ̂ . αA(γ̂) = c̃ ∧ γ̂ 6` ¬φ.
By item 1 we obtain the thesis.

Lemma A.2.22 For all A-safe value-abstract systems Ŝ , whenever Ŝ ≡ (x1, ..., xn, ~s)(ŜA |
Ŝ ctx):

xi is free in ŜA =⇒ xi is not free in Ŝ ctx

Proof. Suppose, by contradiction, that there exists i such that xi is free in both ŜA and

Ŝ ctx . Then no rule of Figure 7.1 allows to put Ŝ in the form (~s)(Ŝ
′
A | Ŝ

′
ctx), and so Ŝ is not

A-safe.

Lemma A.2.23 For all value-abstract systems Ŝ , Ŝ
′
, and for all labels µ:

APPENDIX A. 123

(1) Ŝ
µ−→? Ŝ

′
=⇒ ∃µ̃ . αA(Ŝ)

µ̃−→A αA(Ŝ
′
)

(2) furthermore, if µ = A : dos a or (µ = A : π ∧ Ŝ ask-free) then µ = µ̃.

Proof. By induction on the depth of the derivation of Ŝ
µ−→ Ŝ

′
. According to the last rule

used in such derivation, we have the following exhaustive cases:

[Tau] We have two subcases, according to which participant has moved:

• Ŝ ≡ A[τ .P̃ + P̃ ′ | Q̃]
A: τ−−→? A[P̃ | Q̃] = Ŝ

′
. Both the theses (1) and (2) follow

because αA(Ŝ) = Ŝ , αA(Ŝ
′
) = Ŝ

′
, and Ŝ

A: τ−−→A Ŝ
′

by rule [α-Tau].

• Ŝ ≡ B[τ .P̃ + P̃ ′ | Q̃]
B: τ−−→? B[P̃ | Q̃] = Ŝ

′
. The thesis (1) follows because, by

rule [α-Ctx], αA(Ŝ) = 0
ctx−→A 0 = αA(Ŝ

′
). The thesis (2) follows trivially.

[If] Similar to [Tau]

[Tell] We have two subcases, according to which participant has moved:

• Ŝ ≡ A[tell ↓x ĉ.P̃ + P̃ ′ | Q̃]
A: tell ↓xĉ−−−−−−→? A[P̃ | Q̃] | {↓x ĉ}A = Ŝ

′
. Both the

theses (1) and (2) follow because αA(Ŝ) = Ŝ , αA(Ŝ
′
) = Ŝ

′
, and Ŝ

A: tell ↓xĉ−−−−−−→A Ŝ
′

by rule [α-Tell].

• Ŝ ≡ B[tell ↓x ĉ.P̃ + P̃ ′ | Q̃]
B: tell ↓xĉ−−−−−−→? B[P̃ | Q̃] | {↓x ĉ}B = Ŝ

′
. The thesis (1)

follows because, by rule [α-Ctx], αA(Ŝ) = 0
ctx−→A 0 = αA(Ŝ

′
). The thesis (2)

follows trivially.

[Do] We have three subcases, the first for A moves, the others for context moves:

• Ŝ ≡ s[γ̂] | A[dos a.P̃ + P̃ ′ | Q̃]
A: dos a−−−−→ s[γ̂ ′] | A[P̃ | Q̃] = Ŝ

′
, where γ̂

A:a−−→→ γ̂ ′.
By item 1 of Theorem 8.1.7 we have αA(γ̂)

a−→→A αA(γ̂ ′). Therefore both the

theses (1) and (2) follow because αA(Ŝ) = s[αA(γ̂)] | A[dos a.P̃ + P̃ ′ | Q̃]
A: dos a−−−−→A

s[αA(γ̂ ′)] | A[P̃ | Q̃] =
˜̂′
S = αA(Ŝ

′
), by rule [α-Do].

• Ŝ ≡ s[γ̂] | B[dos a.P̃ + P̃ ′ | Q̃]
B: dos a−−−−→ s[γ̂ ′] | B[P̃ | Q̃] = Ŝ

′
, where γ̂

B:a−−→→ γ̂ ′ and

γ̂ = B : ĉ | B′ : d̂. The thesis (1) follows because αA(Ŝ) = 0
ctx−→A 0 = αA(Ŝ

′
), by

rule [α-Ctx]. The thesis (2) holds trivially.

• Ŝ ≡ s[γ̂] | B[dos a.P̃ + P̃ ′ | Q̃]
B: dos a−−−−→ s[γ̂ ′] | B[P̃ | Q̃] = Ŝ

′
, where γ̂

B:a−−→→ γ̂ ′

and γ̂ = A : ĉ | B : d̂. By item 2 of Theorem 8.1.7, αA(γ̂)
ctx :a−−→→A αA(γ̂ ′). The

thesis (1) follows because αA(Ŝ) = s[αA(γ̂)]
ctx−→A s[αA(γ̂ ′)] = Ŝ

′
= αA(Ŝ

′
), by

rule [α-DoCtx]. The thesis (2) holds trivially.

[Del] We have two subcases, according to which participant has moved:

APPENDIX A. 124

• Ŝ ≡ (u)Ŝ 0
A:π−−→ (u)Ŝ

′
0 = Ŝ

′
, with Ŝ 0

A:π′−−→ Ŝ
′
0 and π = delu(π

′). By the

induction hypothesis, there exists µ̃′ such that αA(Ŝ 0)
µ̃′−→A αA(Ŝ

′
0). There are

two further subcases, according to the form of the label π:

– π = dos a. Then it must be π = π′ . By the induction hypothesis of item (2),
it follows that µ̃′ = A : π′ . Then, by rule [α-Del]:

αA(Ŝ 0)
A:π′−−→A αA(Ŝ

′
0)

(u)αA(Ŝ 0)
µ̃−→A (u)αA(Ŝ

′
0)

where µ̃ = A : delu(π
′)

The thesis (1) follows because αA(Ŝ) = (~u)αA(Ŝ 0) and αA(Ŝ
′
) = (~u)αA(Ŝ

′
0).

The thesis (2) follows because µ̃ = A : delu(π
′) = A : delu(π) = µ.

– µ = A : π and Ŝ ask-free. Similar to the previous case.

– Otherwise, by rule [α-DelCtx]:

αA(Ŝ 0)
ctx−→A αA(Ŝ

′
0)

(u)αA(Ŝ 0)
ctx−→A (u)αA(Ŝ

′
0)

The thesis (1) follows because αA(Ŝ) = (~u)αA(Ŝ 0) and αA(Ŝ
′
) = (~u)αA(Ŝ

′
0).

The thesis (2) follows trivially.

• Ŝ ≡ (u)Ŝ 0
B:π−−→ (u)Ŝ

′
0 = Ŝ

′
. Then Ŝ 0

B:π′−−→ Ŝ
′
0, with π = delu(π

′). By the

induction hypothesis αA(Ŝ 0)
µ̃−→A αA(Ŝ

′
0) for some µ̃, so αA(Ŝ)

µ̃−→A αA(Ŝ
′
).

[Par] Let Ŝ ≡ Ŝ
′′
| Ŝ

′′′
. Assuming that Ŝ

′′ µ−→ Ŝ
′′′′

we have Ŝ
µ−→ Ŝ

′′′′
| Ŝ

′′′
= Ŝ

′
, and by

induction hypothesis for thesis (1), we have:

αA(Ŝ
′′
)
µ̃−→A αA(Ŝ

′′′′
)

αA(Ŝ
′′
)|αA(Ŝ

′′′
)
µ̃−→A αA(Ŝ

′′
)|αA(Ŝ

′′′′
)

[α-Par]

Using the induction hypothesis for thesis (2):

αA(Ŝ
′′
)

A:π−−→A αA(Ŝ
′′′′

)

αA(Ŝ
′′
)|αA(Ŝ

′′′
)

A:π′−−→A αA(Ŝ
′′
)|αA(Ŝ

′′′′
)

[α-Par]

[Def] We can have two subcases:

• Let X(~u)
def
= P̃ , Ŝ ≡ A[X(~v) | Q̃] | Ŝ

′′
, and assume that A[P̃ {~v/~u} | Q̃] | Ŝ

′′ A:π−−→ Ŝ
′
.

Both the theses (1) and (2) hold, assuming they hold in the premise of the rule:

X(~u)
def
= P̃ A[P̃ {~v/~u} | Q̃] | ˜̂

S
A:π−−→A

˜̂′
S

A[X(~v) | Q̃] | ˜̂
S

A:π−−→A

˜̂′
S

[α-Def].

APPENDIX A. 125

• Let X(~u)
def
= P̃ , Ŝ ≡ B[X(~v) | Q̃] | Ŝ

′′
, and assume that B[P̃ {~v/~u} | Q̃] | Ŝ

′′ µ−→ Ŝ
′
.

By the induction hypothesis αA(B[P̃ {~v/~u} | Q̃] | Ŝ
′′
) = αA(Ŝ

′′
)

µ̃−→A αA(Ŝ
′
). But

then both the theses (1) and (2) hold: αA(Ŝ) = αA(Ŝ
′′
)
µ̃−→A αA(Ŝ

′′
) = αA(Ŝ

′
).

[Fuse] There are two cases:

i. Let Ŝ ≡ (x, y)(ŜA | Ŝ ctx), with Ŝ ctx ≡ Ŝ
′
ctx | {↓x ĉ}B | {↓y d̂}B′ . Suppose:

ĉ ./ d̂ γ̂ = B : ĉ | B′ : d̂ σ = {s/x,y} s fresh

Ŝ
K: fuse−−−−→ (s)((ŜA | Ŝ

′
ctx)σ | s[γ̂]) = Ŝ

′ [Fuse]

By Lemma A.2.22 both x and y are not free in ŜA, and then Ŝ
′
≡ (s)(ŜA | Ŝ

′
ctxσ |

s[γ̂]). By rule [α-Fuse]: αA(Ŝ) = αA(ŜA)
ctx−→A αA(ŜA) = S̃ .

αA(Ŝ
′
) = αA((s)(ŜA)) ≡ αA(ŜA) = S̃ ′.

ii. Let Ŝ ≡ (x, y)(ŜA | Ŝ ctx), with ŜA ≡ Ŝ
′
A | {↓x ĉ}A and Ŝ ctx ≡ Ŝ

′
ctx | {↓y d̂}B.

Suppose:

ĉ ./ d̂ γ̂ = A : ĉ | B : d̂ σ = {s/x,y} s fresh

Ŝ
K: fuse−−−−→ (s)((Ŝ

′
A | Ŝ

′
ctx)σ | s[γ̂]) = Ŝ

′ [Fuse]

By Lemma A.2.22 y is not free in ŜA and then αA(Ŝ) = (x, y)(αA(Ŝ
′
A) | {↓x ĉ}A) ≡

(x)(αA(Ŝ
′
A) | {↓x ĉ}A). By rule [α-Fuse]: αA(Ŝ)

ctx−→A (s)(αA(Ŝ
′
A){s/x} | s[ĉ]) =

S̃ ′.

αA(Ŝ
′
) =

(s)(αA(Ŝ
′
Aσ) | s[ĉ]) ≡

(s)(αA(Ŝ
′
A{s/x}) | s[ĉ]) ≡ because y is not free in αA(Ŝ

′
A)

(s)(αA(Ŝ
′
A){s/x} | s[ĉ]) = by Lemma A.2.19

S̃ ′.

[Ask] There are two cases, according to the participant which has moved:

• Ŝ ≡ A[asks φ.P̃ + P̃ ′ | Q̃] | s[γ̂]
A: asks φ−−−−−→ A[P̃ | Q̃] | s[γ̂]. Let γ̂ = A : ĉ | B : d̂.

By item 2 of Definition 8.1.8, ĉ `ctx φ. The thesis (1) holds because, by rule [α-

AskCtx]:

ĉ 6` ¬φ
αA(Ŝ) = A[asks φ.P̃ + P̃ ′ | Q̃] | s[αA(γ̂)]

ctx−→A A[P̃ | Q̃] | s[αA(γ̂)]

The thesis (2) follows trivially.

APPENDIX A. 126

• Ŝ ≡ B[asks φ.P̃ + P̃ ′ | Q̃] | s[γ̂]
B: asks φ−−−−−→ B[P̃ | Q̃] | s[γ̂]. The thesis (1) follows by

rule [α-Ctx]:

αA(Ŝ)
ctx−→A αA(Ŝ) = αA(Ŝ

′
)

The thesis (2) follows trivially.

Theorem A.2.24 For all A-safe value-abstract systems S , and for all traces η:

S
η−→?
∗S ′ =⇒ ∃η̃ : αA(S)

η̃−→A
∗αA(S ′)

Furthermore, if η is A-solo and S is ask-free, then η = η̃.

Proof. We proceed by induction on the length of the derivation. The base case holds trivially.

For the inductive case, suppose that Ŝ
η′−−→n Ŝ

′′
, for n > 0. By the induction hypothesis,

we have:

∃η̃′ : αA(Ŝ)
η̃′−−→A

n αA(Ŝ
′′
) (A.4)

η′ A-solo and Ŝ ask-free =⇒ η′ = η̃′ (A.5)

Now, assume that Ŝ
′′ µ−→ Ŝ

′
, and let η = η′µ. By Lemma A.2.23, it follows that:

∃µ̃ : αA(Ŝ
′′
)
µ̃−→A αA(Ŝ

′
) (A.6)

µ = A : π ∧ Ŝ ask-free =⇒ µ = µ̃ (A.7)

By (A.4) and (A.6), it follows that:

αA(Ŝ)
η̃−−→A

n αA(Ŝ
′′
)
µ̃−→A αA(Ŝ

′
)

For the “furthermore” part, let η̃ = η̃′µ̃, and assume that η is A-solo and Ŝ is ask-free.
Therefore, by (A.5) and (A.7) we conclude that: η = η′ µ = η̃′ µ̃ = η̃.

Lemma A.2.25 αA(Ŝ)
A:π−−→A S̃

′ =⇒ ∃Ŝ
′
A-safe . Ŝ

A:π−−→ Ŝ
′
∧ αA(Ŝ

′
) = S̃ ′

Proof. Let Ŝ ctx be an A-free system. Below, we proceed by rule induction, reconstructing
the system Ŝ from αA(Ŝ) in each case.

[α-Tau] Let Ŝ ≡ A[τ .P̃ + P̃ ′ | Q̃] | Ŝ ctx , and let αA(Ŝ) ≡ A[τ .P̃ + P̃ ′ | Q̃]
A: τ−−→A A[P̃ | Q̃] =

S̃ ′. We have Ŝ
A: τ−−→ A[P̃ | Q̃] | Ŝ ctx = Ŝ

′
= αA(Ŝ

′
) = S̃ ′.

[α-If] Consider the case in which the “true” branch is taken. Then, let
Ŝ ≡ A[(if e then P̃ else P̃ ′) | Q̃] | Ŝ ctx , and let

αA(Ŝ) ≡ A[(if e then P̃ else P̃ ′) | Q̃]
A: if−−→A A[P̃ | Q̃] = S̃ ′. We have Ŝ

A: if−−→
A[P̃ | Q̃] | Ŝ ctx = Ŝ

′
= αA(Ŝ

′
) = S̃ ′. The case in which the “false” branch is taken is

similar.

APPENDIX A. 127

[α-Tell] Let Ŝ ≡ A[tell ↓x ĉ.P̃ + P̃ ′ | Q̃] | Ŝ ctx , and also let

αA(Ŝ) ≡ A[tell ↓x ĉ.P̃ + P̃ ′ | Q̃]
A: tell ↓xĉ−−−−−−→A A[P̃ | Q̃] | {↓x ĉ}A = S̃ ′. We have

Ŝ
A: tell ↓xĉ−−−−−−→ A[P̃ | Q̃] | {↓x ĉ}A | Ŝ ctx = Ŝ

′
= αA(Ŝ

′
) = S̃ ′.

[α-Do] Let αA(γ̂)
a−→→A c̃′ — which, by item 3 of Theorem 8.1.7, implies γ̂

A:a−−→→ γ̂ ′, with

αA(γ̂ ′) = c̃′. Furthermore, let Ŝ ≡ s[γ̂] | A[dos a.P̃ + P̃ ′ | Q̃] | Ŝ ctx , and Ŝ
A: dos a−−−−→

s[γ̂ ′] | A[P̃ | Q̃] | Ŝ ctx = Ŝ
′
. We have αA(Ŝ) = s[ĉ] | A[dos a.P̃ + P̃ ′ | Q̃]

A: dos a−−−−→A

s[ĉ′] | A[P̃ | Q̃] = αA(Ŝ
′
) = S̃ ′.

[α-Ask] We have Ŝ ≡ s[γ̂] | A[asks φ.P̃ + P̃ ′ | Q̃] | Ŝ ctx , ĉ `A φ and:

αA(Ŝ) = s[ĉ] | A[asks φ.P̃ + P̃ ′ | Q̃]
A: asks φ−−−−−→A s[ĉ′] | A[P̃ | Q̃] = αA(Ŝ

′
) = S̃ ′

By item 1 of Definition 8.1.8, since ĉ `A φ and αA(γ̂) = ĉ, then γ̂ ` φ. Then, by
rule [Ask]:

Ŝ
A: asks φ−−−−−→ s[γ̂] | A[P̃ | Q̃] | Ŝ ctx = Ŝ

′

[α-Del] Let Ŝ ≡ (u)Ŝ
′′

and Ŝ
A:π−−→ (u)Ŝ

′′′
= Ŝ

′
. Also, let αA(Ŝ) ≡ (u)αA(Ŝ

′′
). Assuming

αA(Ŝ
′′
)

A:π′−−→A S̃ ′′′, we have, by induction hypothesis, Ŝ
′′ A:π′−−→ Ŝ

′′′
and αA(Ŝ

′′′
) =

S̃ ′′′ (note that π and π′ may differ, depending on whether u ∈ fnv(π′)). But then

αA(Ŝ)
A:π−−→A (u)αA(Ŝ

′′′
) = S̃ ′. Clearly αA(Ŝ

′
) = S̃ ′.

[α-Par] Let Ŝ ≡ Ŝ
′′
| Ŝ

′′′
and Ŝ

′′ A:π′−−→A Ŝ
′′′′

— and therefore, Ŝ
A:π′−−→ Ŝ

′′′′
| Ŝ

′′′
= Ŝ

′
.

We have αA(Ŝ) ≡ αA(Ŝ
′′
) | αA(Ŝ

′′′
). Assuming that αA(Ŝ

′′
)

A:π−−→ S̃ ′′′′ we have, by

induction hypothesis, αA(Ŝ
′′′′

) = S̃ ′′′′. But then αA(Ŝ)
A:π−−→A αA(Ŝ

′′′′
) | αA(Ŝ

′′′
) = S̃ ′.

Clearly αA(Ŝ
′
) = S̃ ′.

[α-Def] Let X(~u)
def
= P̃ . Also, let Ŝ ≡ A[X(~v) | Q̃] | Ŝ

′′
and A[P̃ {~v/~u}) | Q̃] | Ŝ

′′ A:π−−→ Ŝ
′
.

We have αA(Ŝ) ≡ A[X(~v) | Q̃] | αA(Ŝ
′′
). Suppose A[P̃ {~v/~u}) | Q̃] | αA(Ŝ

′′
)

A:π−−→A S̃ ′.

By applying the induction hypothesis, we have αA(Ŝ
′
) = S̃ ′. Then the thesis follows

trivially.

Lemma A.2.26 For all A-safe systems Ŝ , and for all A-solo traces η:

αA(Ŝ)
η−→A
∗S̃ ′ =⇒ ∃Ŝ

′
A-safe . Ŝ

η−→∗Ŝ
′
∧ αA(Ŝ

′
) = S̃ ′

Proof. By induction on the length of the derivation. Base case holds trivially. Suppose

that αA(Ŝ)
η′−→n S̃ ′′, with η′ A-solo. By inductive hypothesis Ŝ

η′−→n Ŝ
′′
∧ αA(Ŝ

′′
) = S̃ ′′.

Let αA(Ŝ
′′
)

A:π−−→A S̃
′. By Lemma A.2.25 it trivially follows that ∃Ŝ

′
A-safe . Ŝ

′′ A:π−−→ Ŝ
′
∧

αA(Ŝ
′
) = S̃ ′.

APPENDIX A. 128

Lemma A.2.27 For all A-safe systems Ŝ
′
, and for all ask-free abstract systems S̃ :

S̃ −→A S̃
′ ∧ αA(Ŝ

′
) = S̃ ′ =⇒ ∃Ŝ A-safe . Ŝ −→ Ŝ

′
∧ αA(Ŝ) = S̃

Proof. In the following Ŝ ctx is a generic A-free system. We show that lemma holds by rule
induction:

[α-Tau] Let S̃ = A[τ .P̃ + P̃ ′ | Q̃] −→A A[P̃ | Q̃] = S̃ ′. Ŝ
′

must be in the form A[P̃ | Q̃] | Ŝ ctx .
Then Ŝ = A[τ .P̃ + P̃ ′ | Q̃] | Ŝ ctx .

[α-If] Consider the case in which the “true” branch is taken. Then, let

S̃ = A[(if e then P̃ else P̃ ′) | Q̃] −→A A[P̃ | Q̃] = S̃ ′. Ŝ
′

must be in the form
A[P̃ | Q̃] | Ŝ ctx . Then Ŝ = A[(if e then P̃ else P̃ ′) | Q̃] | Ŝ ctx . The case in which
the “false” branch is taken is similar.

[α-Tell] Let S̃ = A[tellx ĉ.P̃ + P̃ ′ | Q̃] −→A A[P̃ | Q̃] | {↓x ĉ}A = S̃ ′. Ŝ
′

must be in the form
A[P̃ | Q̃] | {↓x ĉ}A | Ŝ ctx . Then Ŝ = A[tellx ĉ.P̃ + P̃ ′ | Q̃] | Ŝ ctx .

[α-Do] Let c̃, c̃′ be abstract contracts such that c̃
a−→→A c̃′, and let S̃ = s[c̃] and S̃ ′ = s[c̃′].

We have that S̃ −→A s[c̃′] = S̃ ′. Then Ŝ
′

= s[γ̂ ′] | Ŝ ctx , with αA(γ̂ ′) = c̃′. Let γ̂
be a contract configuration such that αA(γ̂) = c̃. By Lemma A.2.18 and item 3 of
Theorem 8.1.7 γ̂ −→→ γ̂ ′. So Ŝ = s[γ̂] | Ŝ ctx −→ s[γ̂ ′] | Ŝ ctx .

[α-Fuse] Suppose:
s fresh

S̃ = (x)(S̃0 | {↓x ĉ}A)
ctx−→A (s)(s[ĉ] | S̃0{s/x}) = S̃ ′

[α-Fuse].

Ŝ
′

must be in the form (s′)(s′[γ̂] | Ŝ
′
A | Ŝ

′
ctx), with s′ not free in S̃0, γ̂ = A : ĉ | B : d̂

and αA(Ŝ
′
A) = S̃0{s′/x}.

αA(Ŝ
′
) =

(s′)(s′[ĉ] | S̃0{s′/x}) =

(s)(s[ĉ]) | (S̃0{s′/x}){s/s′}) = s is fresh then trivially not free in S̃0

(s)(s[ĉ]) | (S̃0{s/s′}){s/x}) =

(s)(s[ĉ] | S̃0{s/x}) = s′ is not free in S̃0

S̃ ′.

Ŝ can be as follows: Ŝ = (x, y)(ŜA | {↓x ĉ}A | Ŝ ctx | {↓y d̂}B), with αA(ŜA) = S̃0, y

not free in both ŜA and Ŝ
′
ctx , Ŝ ctx = Ŝ

′
ctx{y/s′}, x not free in Ŝ ctx and s′ fresh.

ĉ ./ d̂ γ̂ = A : ĉ | B : d̂ σ = {s′/x,y} s fresh

(x, y)(ŜA | {↓x ĉ}A | Ŝ ctx | {↓y d̂}B)
K: fuse−−−−→ (s′)((ŜA | Ŝ ctx)σ | s′[γ̂])

[Fuse]

αA(Ŝ) =

(x, y)(S̃0 | {↓x ĉ}A) =

(x)(S̃0 | {↓x ĉ}A) = since y not free in ŜA, by Lemma A.2.20, y is not free in Ŝ 0

S̃ .

APPENDIX A. 129

[α-Def] Assume αA(Ŝ
′
) = S̃ ′ and suppose:

X(~u)
def
= P̃ A[P̃ {~v/~u} | Q̃] | S̃0 −→A S̃

′

S̃ = A[X(~v) | Q̃] | S̃0 −→A S̃
′

Let Ŝ 0 be a system such that αA(Ŝ 0) = S̃0. By the induction hypothesis applied to
the premise of the rule above, we have:

X(~u)
def
= P̃ A[P̃ {~v/~u} | Q̃] | Ŝ 0 −→ Ŝ

′

Ŝ = A[X(~v) | Q̃] | Ŝ 0 −→ Ŝ
′ [Def]

[α-Par] Assume αA(Ŝ 1) = S̃1, αA(Ŝ 2) = S̃2 and suppose:

S̃0 −→ S̃1

S̃ = S̃0 | S̃2 −→A S̃1 | S̃2

By induction hypothesis αA(Ŝ 0) = S̃0. Then we have:

Ŝ 0 −→ Ŝ 1

Ŝ = Ŝ 0 | Ŝ 2 −→ Ŝ 1 | Ŝ 2

[Par]

[α-Del][α-DelCtx] These cases can be treated together, since we are ignoring labels. Assume
αA(Ŝ 1) = S̃1 and suppose:

S̃0 −→A S̃0

(u)S̃0 −→A (u)S̃1

By induction hypothesis αA(Ŝ 0) = S̃0 and:

Ŝ 0 −→ Ŝ 1

(u)Ŝ 0 −→ (u)Ŝ 1

[α-DoCtx] Let c̃, c̃′ be abstract contracts such that c̃
ctx :a−−→→A c̃′, and let S̃ = s[c̃] and S̃ ′ =

s[c̃′]. We have that S̃ −→A s[c̃′] = S̃ ′. Then Ŝ
′

= s[γ̂ ′] | Ŝ ctx , with αA(γ̂ ′) = c̃′.
By Lemma A.2.18 and item 3 of Theorem 8.1.7 we have that there exists a γ̂ such that
αA(γ̂) = c̃ and γ̂ −→→ γ̂ ′. So Ŝ = s[γ̂] | Ŝ ctx −→ s[γ̂ ′] | Ŝ ctx .

[α-Ctx] Suppose S̃
µ−→A S̃

′. Must be: Ŝ
′

= ŜA | Ŝ
′
ctx . Clearly αA(Ŝ

′
) = S̃ ′. Then Ŝ = ŜA |

Ŝ ctx , with Ŝ ctx = Ŝ
′
ctx | B[τ] such that B do not appear in Ŝ

′
ctx . Clearly Ŝ

ctx−→ Ŝ
′
.

Theorem A.2.28 For all ask-free context-abstract systems S̃ :

S̃ −→A
∗ S̃ ′ =⇒ ∃S, S ′ A-safe : αA(S) = S̃ ∧ S −→?

∗ S ′ ∧ αA(S ′) = S̃ ′

APPENDIX A. 130

Proof. By induction on the length n of the derivation. For n = 0 (base case), the thesis
holds trivially. For the inductive step, suppose that S̃ −→A S̃ ′′ −→A

n S̃ ′. By the induction

hypothesis, there exist Ŝ
′′
, Ŝ
′
A-safe such that αA(Ŝ

′′
) = S̃ ′′, αA(Ŝ

′
) = S̃ ′, and Ŝ

′′
−→∗ Ŝ

′
.

Since S̃ −→A S̃
′′, Lemma A.2.27 guarantees that there exists Ŝ A-safe such that αA(Ŝ) = S̃

and Ŝ −→∗ Ŝ
′′
. Summing up, we conclude that Ŝ −→∗ Ŝ

′
.

Definition A.2.29 (Context-abstract obligations) We define the following set:

OA
s (S̃) =

{
a
∣∣∣ S̃ ≡ s[ĉ] | S̃ ′ ∧ ĉ

a−→→A

}
Definition A.2.30 (Context-abstract readiness) Given a session name s and partici-
pant A, we define the set of context-abstract systems α- RdyA

s as the smallest set such that:

1. S̃
A: dos−−−→A =⇒ S̃ ∈ α- RdyA

s

2.
(
S̃

A: 6={dos,if}−−−−−−−→A S̃
′ ∧ S̃ ′ ∈ α- RdyA

s

)
=⇒ S̃ ∈ α- RdyA

s

3. S̃
A: if−−→A ∧ (∀S̃ ′ : S̃ A: if−−→A S̃

′ =⇒ S̃ ′ ∈ α- RdyA
s) =⇒ S̃ ∈ α- RdyA

s

We say A is α-ready at s in S̃ when S̃ ∈ RdyA
s , and that A is α-ready in S̃ when

S̃ ≡ (~u)S̃ ′ ∧OA
s (S̃ ′) 6= ∅ =⇒ A α-ready at s in S̃ ′

Lemma A.2.31 For all A-safe Ŝ , and for all s:

(1) OA
s (Ŝ) = OA

s (αA(Ŝ)),

(2) A α-ready at s in αA(Ŝ) =⇒ A α?-ready at s in Ŝ

(3) A α?-ready at s in Ŝ =⇒ A α-ready at s in αA(Ŝ), if Ŝ is ask-free.

Proof.

• (1) We have that OA
s (Ŝ) ⊆ OA

s (αA(Ŝ)) follows by item 1 of Theorem 8.1.7. The
reverse inclusion holds by item 3 of Theorem 8.1.7.

• (2) By induction: Assume A α-ready at s in αA(Ŝ). There are three cases according
to the items of Definition A.2.30:

– 1 By Lemma A.2.25 trivially follows that item 1 of Definition 8.1.4 holds for
Ŝ .

– 2 Let S̃ ′ be the system such that αA(Ŝ)
A: 6={dos,if}−−−−−−−→A S̃

′, with A α-ready at s

in S̃ ′. By Lemma A.2.25 we have that exists Ŝ
′

such that Ŝ
A: 6={dos,if}−−−−−−−→? Ŝ

′
and

αA(Ŝ
′
) = S̃ ′. By induction hypothesis A α?-ready at s in Ŝ

′
, and hence item 2

of Definition 8.1.4 holds for Ŝ .

APPENDIX A. 131

– 3 By Lemma A.2.25 Ŝ
A: if−−→?. Let S̃ ′ be an abstract system such that

αA(Ŝ)
A: if−−→A S̃

′. Again, Lemma A.2.25 guarantees Ŝ
A: if−−→? Ŝ

′
, with αA(Ŝ

′
) = S̃ ′.

Since A is α-ready at s in S̃ ′, by induction hypothesis, A is ready at s in Ŝ
′
, and

hence item 3 of Definition 8.1.4 holds for Ŝ .

• (3) By induction: Let Ŝ be an ask-free system, and assume A α?−ready at s in
Ŝ . There are three cases according to the items of Definition 8.1.4:

– 1 By Lemma A.2.23 trivially follows that item 1 of Definition A.2.30 holds
for αA(Ŝ).

– 2 Let Ŝ
′

be the system such that Ŝ
A: 6=s,if−−−−→? Ŝ

′
, with A α?-ready at s in

Ŝ
′
. By Lemma A.2.23 αA(Ŝ)

A: 6=s,if−−−−→A αA(S̃ ′), with A α-ready at s in αA(Ŝ
′
) by

induction hypothesis. Clearly item 2 of Definition A.2.30 holds for αA(Ŝ).

– 3 Let Ŝ
′

be a system such that Ŝ
a: if−−→? Ŝ

′
. A must be ready at s in Ŝ

′
.

By Lemma A.2.23 αA(S̃)
A: 6=s,if−−−−→A αA(Ŝ), with A α-ready at s in αA(S̃ ′) by

induction hypothesis. Clearly item 3 of Definition A.2.30 holds for αA(Ŝ).

Lemma A.2.32 For all A-safe Ŝ :

(1) if A is α-ready in αA(Ŝ), then A is α?-ready in Ŝ .

(2) if A is α?-ready in Ŝ and Ŝ is ask-free, then A is α-ready in αA(Ŝ).

Proof. Straightforward consequence of Lemma A.2.31

Proof of Theorem 8.1.13:
Let P be a context-abstract process. If P is α-honest, then P is
α?-honest. Conversely, if P is α?-honest and ask-free, then P is
α-honest.

For the first part, let P̃ be an α-honest abstract process. Let Ŝ ctx be an A-free value-
abstract system, and assume that A[P̃] | Ŝ ctx −→∗ Ŝ for some Ŝ . Since A[P̃] | Ŝ ctx is A-safe,
then by item (3) of Lemma A.2.15 it follows that Ŝ is A-safe as well. Let S̃ = αA(Ŝ).
By Theorem A.2.24 it follows that A[P̃] −→A

∗ S̃ . Since P̃ is α-honest, then A is α-ready
in S̃ . Therefore, item (1) of Lemma A.2.32 guarantees that A is α?-ready in Ŝ . Hence,
by Definition 7.1.5 we conclude that P̃ is α?-honest.

For the second part, suppose that P̃ is α?-honest and ask-free. Let S̃ be a context-abstract

system such that A[P̃] −→A
∗ S̃ . By Theorem A.2.28 it follows that there exist Ŝ , Ŝ

′
A-safe

such that αA(Ŝ) = A[P̃], αA(Ŝ
′
) = S̃ , and Ŝ −→∗ Ŝ

′
. Since P̃ is α?-honest, then A is α?-

ready in Ŝ
′
, and so by item (2) of Lemma A.2.32 it follows that A is α-ready in S̃ ′. Hence,

by Definition 8.1.12 we conclude that P̃ is α-honest.

APPENDIX A. 132

CULPABILITY

CO2− SYNTAX

CO2− ABS− SEM

MODEL− CHECKER

LTL− SIMPLIFIER

SATISFACTION

CONTR− UTILS

CO2− SEM

COMPLIANCE

META− LEVEL

CONTR− SEM

CO2− ABS

ASK

CO2− ABS− SYNTAX

CONTR− SYNTAX

Figure A.3: Graph of module importation.

The diagram in Figure A.4 illustrates the dependencies among the proofs. The dia-
gram Figure A.3 illustrates the graph of module importation used in our Maude implemen-
tation. The complete code of our verification tool is available at http://tcs.unica.it/

software/co2-maude.

http://tcs.unica.it/software/co2-maude
http://tcs.unica.it/software/co2-maude

APPENDIX A. 133

8.1.13

A.2.7

A.2.17

A.2.8

A.2.20

A.2.24

A.2.23

A.2.31 A.2.27

A.2.19

A.2.28

A.2.25

A.2.2

A.2.32

8.1.10

6.1.6 A.2.6A.1.5 A.2.5

A.2.9

A.2.10

8.1.14

A.2.22

A.2.12

A.2.21 A.2.3

8.1.7

A.2.18

A.2.11

8.1.5

A.2.15

Figure A.4: Dependencies among the proofs.

Appendix B

Appendix for Part III

B.1 Proofs for Section 10.2

Lemma B.1.1 For all (p, ν), (q, η) such that (p, ν) ./ (q, η):

p =
⊕

i∈I ai!{gi, Ri} . pi =⇒ q =
∑

j∈J aj?{gj, Rj} . pj
p =

∑
i∈I ai?{gi, Ri} . pi =⇒ q =

⊕
j∈J aj!{gj, Rj} . pj

Proof. Trivial.

Lemma B.1.2 Let R be a coinductive compliance relation, and let (p, ν)R(q, η). Then:

1. (p, ν) | (q, η) not deadlock

2. (p, ν) | (q, η)
τ−→ γ =⇒ ∃ ! p′, q ′, ν ′, η ′ : γ

τ−→ (p′, ν ′) | (q ′, η ′) ∧ (p′, ν ′)R(q ′, η ′)

3. (p, ν) | (q, η)
δ−→ (p′, ν ′) | (q ′, η ′) =⇒ (p′, ν ′)R(q ′, η ′)

Proof. Assume that (p, ν)R(q, η). We proceed by cases on the form of p, modulo unfolding
of recursion (note that R does not talk about committed choices, i.e. terms of the form
[a!{g,R}] p). If p = 1, then by Definition 10.2.5 we have q = 1, and so all items are trivial.
If p is an internal choice, i.e. p =

⊕
i∈I ai!{gi, T i} . pi, by Definition 10.2.5 we have that

q =
∑

j∈J aj?{gj, T j} . qj. Take some δ and i such that ν + δ ∈ JgiK (their existence is
guaranteed by Definition 10.2.5). Let ν ′ = ν + δ and η ′ = η + δ. Then:

ν ′ ∈ JgiK
[⊕]

(
⊕

i∈I ai!{gi, T i} . pi, ν ′)
τ−→ ([ai!{gi, T i}] pi, ν ′)

[S-⊕]
(
⊕

i∈I ai!{gi, T i} . pi, ν ′) | (q, η ′)
τ−→ ([ai!{gi, T i}] pi, ν ′) | (q, η ′)

(B.1)

Hence, (p, ν) | (q, η) is not deadlock, which proves item 1.

134

APPENDIX B. 135

For item 2, assume (p, ν) | (q, η)
τ−→ γ . The derivation of such step must be as in (B.1),

with δ = 0 and γ = ([ai!{gi, T i}] pi, ν) | (q, η). By Definition 10.2.5, there exists j ∈ J such
that ai = aj, η ∈ JgjK and piRqj. Hence:

[!]

([ai!{gi, T i}] pi, ν)
ai!−−→ (pi, ν [T i])

η ∈ JgjK
[?]

(q, η)
aj?−−→ (qj, η[T j])

[S-τ]

γ
τ−→ (pi, ν [T i]) | (qj, η[T j])

Note that the target state is unique, because branch labels in choices are pairwise distinct.

For item 3, assume (p, ν) | (q, η)
δ−→ (p′, ν ′) | (q ′, η ′). Its derivation must be as follows:

ν + δ ∈ rdy(p) = ↓
⋃

JgiK
[Del]

(p, ν)
δ−→ (p, ν + δ)

η + δ ∈ rdy(q) = V
[Del]

(q, η)
δ−→ (q, η + δ)

[S-Del]

(p, ν) | (q, η)
δ−→ (p, ν + δ) | (q, η + δ)

(B.2)

Let ν ′ = ν + δ and η ′ = η + δ. We have to show (p, ν ′)R(q, η ′). By (B.2) we have that
ν ′ ∈ rdy(p). It remains to show that, whenever ν ′+ δ′ ∈ JgiK, there exist j such that ai = aj
and η ′ + δ′ ∈ JgjK and (pi, ν

′ + δ′[T i])R(qj, η
′ + δ′[T j]). This follows by the assumption

(p, ν)R(q, η). The case where p is an external choice is similar.

Proof of Lemma 10.2.6:
p ./ q ⇐⇒ ∃Rcoinductive compliance : (p, ν0)R(q, η0)

We prove the more general statement:

(p, ν) ./ (q, η) ⇐⇒ ∃Rcoinductive compliance : (p, ν)R(q, η)

For the (⇒) direction we proceed by showing that ./ is a coinductive compliance relation.
Assume (p, ν) ./ (q, η). We show the case where p =

⊕
i∈I ai!{gi, T i} . pi (the case of external

choice is similar, and the case p = 1 is trivial). By Lemma B.1.1, q =
∑

j∈J aj?{gj, T j} . qj.
Since (p, ν) | (q, η) is not deadlock, it must be ν ∈ rdy(p). By Definition 10.2.5 it remains
to show that, for all δ, i:

ν + δ ∈ JgiK =⇒ ∃j : ai = aj ∧ η + δ ∈ JgjK ∧ (pi, (ν + δ)[T i]) ./ (qj, (η + δ)[T j])

By contradiction, suppose this is not the case, and take a δ and an i such that:

ν + δ ∈ JgiK ∧ (∀j : ai 6= aj ∨ η + δ 6∈ JgjK ∨ (pi, (ν + δ)[T i]) 6./ (qj, (η + δ)[T j])

There are two cases. If δ = 0, then:

(p, ν) | (q, η)
τ−→ ([ai!{gi, T i}] pi, ν) | (q, η) = γ

If, for all j, ai 6= aj ∨ ν + δ 6∈ JgjK, then γ is deadlock. Otherwise:

γ
τ−→ (pi, (ν + δ)[T i]) | (qj, (η + δ)[T j]) = γ ′

APPENDIX B. 136

with (pi, (ν + δ)[T i]) 6./ (qj, (η + δ)[T j]), and so, by Definition 10.2.1, there exists some
deadlock configuration γ ′′ such that γ ′ −→∗ γ ′′. Hence (p, ν) 6./ (q, η). If δ > 0:

(p, ν) | (q, η)
δ−→ (p, ν + δ) | (q, η + δ)

The thesis follows by an argument similar to the case with δ = 0.

The (⇐) direction is a straightforward consequence of Lemma B.1.2

B.2 Proofs for Section 11.1

Proof of Theorem 11.1.4:
For all p and Γ with fv(p) ⊆ dom(Γ), there exists unique K such that
Γ ` p : K.

We have to prove that:

fv(p) ⊆ dom(Γ) =⇒ ∃ !K : Γ ` p : K

Let Γ as in the statement. By induction on the structure of p, we have the following cases:

• p = 1. Trivial.

• p is a choice (internal or external). Straightforward by the induction hypothesis.

• p = X . Since fv(p) ⊆ dom(Γ), the thesis follows by rule [T-Var].

• p = recX . p′. Since fv(p) ⊆ dom(Γ), then for all K′ : fv(p′) ⊆ fv(p) ∪ {X} ⊆
dom(Γ) ∪ {X} = dom(Γ, X : K′). Hence, by the induction hypothesis we have that
∃ !K′′ : Γ, X : K′ ` p′ : K′′ . The thesis follows by rule [T-Rec].

Lemma B.2.1 For all K,K′ such that K ⊆ K′, and for all sets of clocks T :

↓ K ⊆ ↓ K′ and K[T]−1 ⊆ K′ [T]−1

Proof. Straightforward by Definition 5.4.2.
Hereafter, we assume substitutions to be capture avoiding.

Lemma B.2.2 (Substitution) Let Γ ` p′ : K′. Then, for all p:

Γ, X : K′ ` p : K ⇐⇒ Γ ` p{p′/X} : K

Proof. We prove that, under the assumption Γ ` p′ : K′ , the following items hold:

1. Γ, X : K′ ` p : K =⇒ ∃K′′ ⊇ K : Γ ` p{p′/X} : K′′ .

2. Γ ` p{p′/X} : K =⇒ ∃K′′ ⊇ K : Γ, X : K′ ` p : K′′ .

APPENDIX B. 137

Before proving the two items, we show that together they imply the thesis. Assume that
Γ, X : K′ ` p : K. By item 1, Γ ` p{p′/X} : K′′ for some K′′ ⊇ K. Then, by item 2, Γ, X :
K′ ` p : K′′′ for some K′′′ ⊇ K′′ . Therefore, by uniqueness of kinding, K′′ ⊆ K′′′ = K ⊆ K′′ .
The other direction follows by a similar argument.

To prove item 1, assume Γ, X : K′ ` p : K. We proceed by induction on the typing rules.

• [T-1], [T-Var]. Trivial.

• [T-⊕]. We have:

Γ, X : K′ ` pi : Ki
Γ, X : K′ `

⊕
ai!{gi, T i} . pi :

(⋃
↓ JgiK

)
\
(⋃
↓ (JgiK \ Ki[T i]−1)

)
By the induction hypothesis:

Γ ` pi{p′/X} : K̃i ⊇ Ki
Γ `

⊕
ai!{gi, T i} . (pi{p′/X}) :

(⋃
↓ JgiK

)
\
(⋃
↓ (JgiK \ K̃i[T i]−1)

)
The thesis follows by Lemma B.2.1.

• [T-+]. Similar to [T-⊕].

• [T-Rec]. p must have the form recY . p′′. If X = Y the thesis is trivial; otherwise:

∃K0,K′0 : Γ, X : K′ , Y : K0 ` p′′ : K′0
Γ, X : K′ ` recY . p′′ :

⋃{
K̃ ⊇ K̃′

∣∣∣Γ, X : K′ , Y : K̃ ` p′′ : K̃′
}

= K

Since X 6= Y , then p{p′/X} = recY . (p′′{p′/X}), and for all K0,K′0:

Γ, X : K′ , Y : K0 ` p′ : K′0 ⇐⇒ Γ, Y : K0, X : K′ ` p′ : K′0 (B.3)

The kinding derivation for p{p′/X} must be as follows:

∃K0,K′0 : Γ, Y : K0 ` (p′′{p′/X}) : K′0
Γ ` p{p′/X} :

⋃{
K̃
∣∣∣Γ, Y : K̃ ` (p′′{p′/X}) : K̃′ ∧ K̃ ⊆ K̃′

}
= K′′ (B.4)

We first show that the premise of (B.4) holds. Since substitutions are capture avoiding,
Y is not free in p′, and hence Γ, Y : K ` p′ : K′ as well as Γ. Then, by Equation (B.3)
together with the induction hypothesis, the thesis follows. It remains to show K ⊆ K′′ .
If K is empty the thesis holds trivially. Otherwise, take some K̃, K̃′ such that:

Γ, X : K′ , Y : K̃ ` p′′ : K̃′ ∧ K̃ ⊆ K̃′

By (B.3), together with the induction hypothesis, we have that, for some K̃′′ :

Γ, Y : K̃ ` p′′{p′/X} : K̃′′ ⊇ K̃′

from which the thesis follows.

APPENDIX B. 138

To prove item 2, assume Γ ` p{p′/X} : K. We proceed by induction on the structure of p.

• p = 1. Trivial.

• p =
⊕

ai!{gi, T i} . pi.

Γ ` pi{p′/X} : Ki
Γ `

⊕
ai!{gi, T i} . (pi{p′/X}) :

⋃
↓ JgiK \

⋃
↓ (JgiK \ Ki[T i]−1)

[T-⊕]

By induction hypothesis:

Γ{Ki/X} ` pi : K̃i ⊇ Ki
Γ, X : K′ `

⊕
ai!{gi, T i} . pi :

⋃
↓ JgiK \

⋃
↓ (JgiK \ K̃i[T i]−1)

[T-⊕]

The thesis follows by Lemma B.2.1.

• p =
∑

ai?{gi, T i} . pi. Similar to the internal choice case.

• p = Y . If Y 6= X the thesis follows trivially. Otherwise, let p = X . Then Γ `
p{p′/X} = p′ : K′ and Γ, X : K′ ` p = X : K′ .

• p = recY . p′′. Assume X 6= Y (otherwise the thesis holds trivially).

∃K0,K′0 : Γ, Y : K0 ` (p′′{p′/X}) : K′0
Γ ` p{p′/X} :

⋃{
K̃
∣∣∣Γ, Y : K̃ ` (p′′{p′/X}) : K̃′ ∧ K̃ ⊆ K̃′

}
= K

As in the proof of (1), we have Γ, Y : K ` p′ : K′ . Then, by (B.3) and the induction
hypothesis:

∃K0,K′0 : Γ, X : K′ , Y : K0 ` p′′ : K′0
Γ, X : K′ ` recY . p′′ :

⋃{
K̃
∣∣∣Γ, X : K′ , Y : K̃ ` p′′ : K̃′ ∧ K̃ ⊆ K̃′

}
= K′′

It remains to prove K ⊆ K′′ . If K is empty the thesis holds trivially. Otherwise, take
some K̃, K̃′ such that:

Γ, Y : K̃ ` p′′{p′/X} : K̃′ ∧ K̃ ⊆ K̃′

By (B.3), together with the induction hypothesis, we have that, for some K̃′′ :

Γ, X : K′ , Y : K̃ ` p′′ : K̃′′ ⊇ K̃′

from which the thesis follows.

Lemma B.2.3 (Substitution under dual) Let Γ ` p′ : K, with X not free in p′. Then,
for all p such that p is kindable with environment Γ, X : K:

coΓ,X :K(p) {coΓ(p′)/X} = coΓ(p{p′/X})

APPENDIX B. 139

Proof. By induction on the structure of p:

• p =
⊕

ai!{gi, T i} . pi:
coΓ,X :K(p) {coΓ(p′)/X} =

=
∑

ai?{gi, T i} . (coΓ,X :K(pi) {coΓ(p′)/X})
=

∑
ai?{gi, T i} . coΓ(pi{p′/X}) by induction hypothesis

= coΓ(p{p′/X})

• p =
∑

ai?{gi, T i} . pi: Let Γ, X : K ` pi : Ki for all i ∈ I. Then:

coΓ,X :K(p) {coΓ(p′)/X} =

=
⊕

ai!{gi ∧ Ki[T i]−1, T i} . (coΓ,X :K(pi) {coΓ(p′)/X})
=

⊕
ai!{gi ∧ Ki[T i]−1, T i} . coΓ(pi{p′/X}) by induction hypothesis

= coΓ(p{p′/X}) by Lemma B.2.2

• p = 1: Trivial

• p = Y : Trivial, whether or not Y = X

• p = recY .p′′: If Y = X the thesis is trivial. Otherwise, assume Γ, X : K ` recY .p′′ :
K′ . First note that, since we are assuming capture avoiding substitutions, Y must not
be free in p′. Indeed, if Y were free in p′, then Y would be captured in p{p′/X}. Then:

coΓ,X :K(p) {coΓ(p′)/X} =

= recY . (coΓ,X :K,Y :K′ (p
′′) {coΓ(p′)/X}) by Definition 11.1.5

= recY . (coΓ,Y :K′ ,X :K(p′′) {coΓ(p′)/X}) since X 6= Y
= recY . (coΓ,Y :K′ ,X :K(p′′) {coΓ,Y :K′(p

′)/X}) since Y is not free in p′

= recY . coΓ,Y :K′ (p
′′{p′/X}) by induction hypothesis

= coΓ,Y :K′ (p{p′/X}) by Definition 11.1.5
= coΓ(p{p′/X}) since Y is not free in p{p′/X}

Note that the induction hypothesis is trivially applicable: p is kindable in Γ, X : K, neces-
sarily by rule [T-Rec]. The premise of rule [T-Rec] implies p′′ is kindable in Γ, X : K, Y : K′ .

Lemma B.2.4 For all kindable p and q, we have that: p ≡ q =⇒ co(p) ≡ co(q).

Proof. The thesis follows by the following more general statement:

∀Γ : ∀p, q kindable in Γ : p ≡ q =⇒ coΓ(p) ≡ coΓ(q)

where, as usual, recX . p ≡ p{recX.p/X} does not hold when the substitution captures
some variable free in recX . p. The proof is by easy induction on the structure of p,
using Lemma B.2.3 in the case p = recX . p′.

Lemma B.2.5 Every closed p is structurally equivalent to a TST of the following shape:

1
⊕

ai!{gi, T i} . pi
∑

ai?{gi, T i} . pi
Proof. Trivial.

APPENDIX B. 140

Proof of Theorem 11.1.6:
Soundness

Let:
R = {((p, ν), (co(p) , ν)) | ∃K : Γ ` p : K ∧ ν ∈ K}

By Lemma 10.2.6, it is enough to show that R is a coinductive compliance relation (Defi-
nition 10.2.5). Assume that Γ ` p : K and ν ∈ K. We proceed by cases on the shape of p.
According to Lemma B.2.5, we have the following cases:

• p ≡ 1. By Lemma B.2.4 co(p) ≡ 1, from which the thesis follows.

• p ≡
⊕

ai!{gi, T i} . pi. By Lemma B.2.4, co(p) ≡
∑

ai?{gi, T i} . co(pi). By rule [T-⊕]

it follows that ν ∈ rdy(p). To conclude:

∀δ, i : ν + δ ∈ JgiK =⇒ (pi, (ν + δ)[T i])R(co(pi) , (ν + δ)[T i])

Let ` pi : Ki. By the typing rule [T-⊕] we have that:

K =
(⋃
i∈I

↓ JgiK
)
\
(⋃
i∈I

↓ (JgiK \ Ki[T i]−1)
)

=
(⋃
i∈I

↓ JgiK
)
\ {ν | ∃δ, i : ν + δ ∈ JgiK ∧ ν + δ[T i] 6∈ Ki}

from which the thesis follows.

• p ≡
∑

ai?{gi, T i} . pi. By Lemma B.2.4, co(p) =
⊕

ai!{gi ∧ Ki, T i} . co(pi) with
` pi : Ki. By rule [T-+]:

K =
⋃
↓
(
JgiK ∩ Ki[T i]−1

)
= {ν | ∃δ, i : ν + δ ∈ JgiK ∧ (ν + δ)[T i] ∈ Ki}

from which the thesis follows.

Definition B.2.6 We define the function Φ from TSTs to sets of clock valuations as follows:

Φ(p)
def
= {ν | ∃q, η : (p, ν) ./ (q, η)}

Lemma B.2.7 Let Γ = X1 : Φ(p1), . . . , Xm : Φ(pm), where all pi are closed, and let ~X =

(X1, . . . , Xm),~p = (p1, . . . , pm). Then, for all p such that fv(p) ⊆ ~X :

Γ ` p : K =⇒ Φ(p{~p/~X}) ⊆ K

Proof. We start with an auxiliary definition. The recursion nesting level (RL) for a TST is
inductively defined as follows:

RL(1)
def
= RL(X)

def
= 0 RL(

∑
i∈I ai?{gi, T i} . pi)

def
= max {RL(pi)}i∈I

RL(recX . p)
def
= 1 + RL(p) RL(

⊕
i∈I ai!{gi, T i} . pi)

def
= max {RL(pi)}i∈I

APPENDIX B. 141

RL(1)
def
= 0

RL(
∑

i∈I ai?{gi, T i} . pi)
def
= max {RL(pi)}i∈I

RL(
⊕

i∈I ai!{gi, T i} . pi)
def
= max {RL(pi)}i∈I

RL(X)
def
= 0

RL(recX . p)
def
= 1 + RL(p)

We then define the relation ≺ as:

p ≺ q whenever RL(p) < RL(q) ∨ (RL(p) = RL(q) ∧ p is a strict subterm of q)

It is trivial to check that ≺ is a well-founded relation (exploiting the fact that the strict
subterm relation is well-founded as well). We then proceed by well-founded induction on ≺.
We have the following cases, according to the form of p:

• p = 1. Since K = V (by kinding rule [T-1]), the thesis follows trivially.

• p = X i, for some i ∈ {1, . . . ,m}. K = Γ(X i) = Φ(pi) = Φ(X i{~p/~X}).

• p =
∑

i∈I ai?{gi, T i} . pi.

Γ ` pi : Ki for i ∈ I
Γ `

∑
i∈I ai?{gi, T i} . pi :

⋃
i∈I ↓

(
JgiK ∩ Ki[T i]−1

)
= K [T-+]

Since, for all i ∈ I it holds pi ≺ p, by the induction hypothesis:

Φ(pi{~p/~X}) ⊆ Ki (B.5)

Now suppose, by contradiction, Φ(p{~p/~X}) 6⊆ K. Then there exist ν, η, q such that
Φ(p{~p/~X}) 3 ν 6∈ K and (p{~p/~X}, ν) ./ (q, η). By Definition 10.2.5 we have q =⊕

j∈J aj!{gj, T j} . qj, with η ∈ rdy(q) and

∀δ, j : η + δ ∈ JgjK =⇒

∃i : ai = aj ∧ ν + δ ∈ JgiK ∧ (pi{~p/~X}, (ν + δ)[Ri]) ./ (qj, (η + δ)[Rj])

But then, by Definition B.2.6 and Equation (B.5):

(ν + δ)[Ri] ∈ Φ(pi{~p/~X}) ⊆ Ki

Since K is past closed (i.e. for all ν, δ: ν + δ ∈ K =⇒ ν ∈ K), it follows ν ∈ K, a
contradiction.

• p =
⊕

i∈I ai!{gi, T i} . pi. Similar to the external choice case.

• p = recY . p′. By rule [T-Rec]:

Γ, Y : K0 ` p′ : K′0
Γ ` recY . p′ :

⋃
{K | ∃K′ ⊇ K : Γ, Y : K ` p′ : K′} = K

APPENDIX B. 142

To prove Φ(p{~p/~X}) ⊆ K, it is enough to show that, for some K′ ⊇ Φ(p{~p/~X}):

Γ, Y : Φ(p{~p/~X}) ` p′ : K′

Since compliance is preserved by unfolding of recursion (because TSTs are considered
up-to ≡ in Definition 10.1.3), by Definition B.2.6 it follows that:

Φ(p{~p/~X}) = Φ(p′{~p/~X\{Y }}{recY.(p′{~p/~X\{Y }})/Y }) = Φ(p′{~p′/ ~X ′})

where ~X ′ and ~p′ are defined as follows:

~X ′ =

{
~XY if Y 6∈ ~X
~X otherwise

~p′ =

{
(p1, . . . , pi−1, p{~p/~X}, pi+1, . . . , pm) if Y = X i

~p(p{~p/~X}) otherwise

Since RL(p′) < RL(p), by the induction hypothesis we have:

Γ, Y : Φ(p′{~p′/ ~X ′}) ` p′ : K′ =⇒ Φ(p′{~p′/ ~X ′}) ⊆ K′

Since fv(p) ⊆ ~X = dom(Γ) it follows that fv(p′) ⊆ ~X ′ = dom(Γ, Y : Φ(p′{~p′/ ~X ′})), and
hence, by Theorem 11.1.4, the premise of the induction hypothesis is satisfied, and we
can conclude Φ(p′{~p′/ ~X ′}) ⊆ K′ .

Proof of Theorem 11.1.8:
Completeness

Suppose ` p : K and ∃q, η. (p, ν) ./ (q, η). By instantiating Lemma B.2.7 with the empty
kinding environment, we obtain Φ(p) ⊆ K. Hence, by Definition B.2.6 we conclude that
ν ∈ K.

Proof of Lemma 11.1.9:
For all p, q, ν, η and p′, ν ′ such that ` p′ : K and ν ′ ∈ K:

(p, ν) ./ (p′, ν ′) ∧ (co(p′) , ν ′) ./ (q, η) =⇒ (p, ν) ./ (q, η)

We prove that the relation:

R = {((p, ν), (q, η)) | ∃p′, ν ′ : (p, ν) ./ (p′, ν ′) ∧ (co(p′) , ν ′) ./ (q, η)}

is a coinductive compliance relation (Definition 10.2.5). We proceed by cases on the form
of p:

• p = 1. Trivial.

APPENDIX B. 143

• p =
⊕

ai!{gi, T i} . pi. It must be:

p′ =
∑

aj?{gj, T j} . pj ′ and co(p′) =
⊕

aj!{gj ∧ Kj[T j]−1, T j} . co(pj
′)

with ` pj : Kj for all j ∈ J and, by Definition 10.2.5, for all δ, i such that ν + δ ∈ JgiK,
there exists j such that ai = aj, ν

′ + δ ∈ JgjK, (pi, (ν + δ)[T i]) ./ (pj
′, (ν ′ + δ)[T j]),

and ν + δ ∈ rdy(p). Hence, q =
∑

ak?{gk, T k} . pk, and for all δ, j such that ν ′ +
δ ∈ JgjK, there exists k such that ak = aj, η + δ ∈ JgkK, (co(pj

′) , (ν ′ + δ)[T j]) ./
(qk, (η + δ)[T k]), and ν ′ ∈ rdy(co(p′)). Now, assume ν + δ ∈ gi for some δ, i, and
suppose, by contradiction, ν ′+δ 6∈ Kj[T j]−1 for some j such that ai = aj. But then we
should have (pi, (ν + δ)[T i]) ./ (pj

′, (ν ′ + δ)[T j]) and (ν ′ + δ)[T j] 6∈ Kj — contradiction
by Theorem 11.1.8.

• p =
∑

ai?{gi, T i} . pi. It must be:

p′ =
⊕

aj!{gj, T j} . pj ′ and co(p′) =
∑

aj?{gj, T j} . co(pj)

and for all δ, j such that ν ′ + δ ∈ JgjK, there exists i such that aj = ai, ν + δ ∈ JgiK,
(pj
′, ν ′ + δ[T j]) ./ (pi, ν + δ[T j]), and ν ′ ∈ rdy(p′). Hence, q =

⊕
ak?{gk, T k} . pk,

and for all δ, k such that η + δ ∈ JgkK, there exists j such that ak = aj, ν
′ + δ ∈

JgjK, (qk, (η + δ)[T k]) ./ (pj
′, (ν + δ)[T i]), and η ∈ rdy(q). The thesis follows by the

composition of the above.

B.3 Proofs for Section 11.2

Proof of Lemma 11.2.1:
The function FΓ,X ,p is monotonic, for all Γ, X, p with fv(p) ⊆ dom(Γ)∪
{X}.
We define the partial order v between environments as follows:

Γ v Γ′ ⇐⇒ ∀X ∈ dom(Γ) : Γ(X) ⊆ Γ′(X)

and we show that, for all Γ,Γ′ such that Γ v Γ′ :

Γ ` p : K =⇒ ∃K′ ⊇ K : Γ′ ` p : K′ (B.6)

Suppose Γ v Γ′ and Γ ` p : K. By induction on the structure of p:

• p = 1: Trivial.

• p =
∑

i∈I ai?{gi, T i} . pi: By rule [T-+], it must be:

K =
⋃
i∈I

↓
(
JgiK ∩ Ki[T i]−1

)
, with Γ ` pi : Ki

APPENDIX B. 144

Then, by the induction hypothesis, ∀i ∈ I : ∃K′i ⊇ Ki such that:

Γ′ ` pi : K′i

The thesis follows by Lemma B.2.1.

• p =
⊕

i∈I ai!{gi, T i} . pi: Similar to the external choice case.

• p = X : Trivial by definition of v and kinding rule [T-Var].

• p = recX . p′: By rule [T-Rec], it must be, for some K0,K′0:

Γ, X : K0 ` p′ : K′0
Γ ` recX . p′ :

⋃
{K | ∃K′ ⊇ K : Γ, X : K ` p′ : K′} = K (B.7)

By the induction hypothesis, for some K′′0:

Γ′, X : K0 ` p′ : K′′0
Γ′ ` recX . p′ :

⋃
{K | ∃K′ ⊇ K : Γ′, X : K ` p′ : K′} = K′ (B.8)

It remains to show K ⊆ K′ . To see this, take some ν ∈ K. By eq. (B.7), there exist
some K0,K′0, with ν ∈ K0 ⊆ K′0 such that:

Γ : X,K0 ` p′ : K′0

By the induction hypothesis, there is some K′1 ⊇ K′0:

Γ′, X : K0 ` p′ : K′1

Then, by eq. (B.8), K0 ⊆ K′ , from which the thesis follows.

Back to the main statement, let fv(p) ⊆ dom(Γ) ∪ {X}, and suppose K ⊆ K′ . We have to
show F (K) ⊆ F (K′). Expanding (11.1): Γ, X : K ` p : K0 and Γ, X : K′ ` p : K1, for some
K0,K1 such that K0 ⊆ K1. Such K0,K1 exist and are unique (Theorem 11.1.4); K0 ⊆ K1

follows by (B.6).

B.4 Proofs for Section 12.1

For readabiliy, we use a simplified version of the semantics of network of TA, which considers
only networks composed by two automata.

Definition B.4.1 (Semantics of TA) Let Ai = (Loci,Locu
i, l

0
i ,Ei, Ii) be TA, for i ∈ {1, 2}.

We define the behaviour of the network A1 | A2 as the timed LTS (S, s0,Lab,−→N), where:
S = Loc1 × Loc2 ×V; s0 = (l01 , l

0
2 , ν0); Lab = A ∪ {τ} ∪R≥0; −→N is defined in Figure B.1.

We now define a transformation from TST to DE − TST . Technically, it is a relation,
parametric w.r.t. a set V of recursion variables. However, since the order in which the
variables are chosen from V is imaterial (from a semantical point of view), we will regard
the transformation as a function.

APPENDIX B. 145

(l1, τ , g, R, l
′
1) ∈ E1 ν ∈ JgK ν [R] ∈ JI1(l′1) ∧ I2(l2)K

(l1, l2, ν)
τ−−−−→N (l′1, l2, ν [R])

[TA1]

(l1, a!, g1, R1, l
′
1) ∈ E1 (l2, a?, g2, R2, l

′
2) ∈ E2 ν ∈ Jg1 ∧ g2K ν [R1][R2] ∈ JI1(l′1) ∧ I2(l′2)K

(l1, l2, ν)
a−−−−→N (l′1, l

′
2, ν [R1][R2])

[TA2]

∀i ∈ {1, 2} : (ν + δ) ∈ JIi(li)K ∧ li 6∈ Locui

(l1, l2, ν)
δ−−−−→N (l1, l2, ν + δ)

[TA3]

Figure B.1: Semantics of networks of TA (symmetric rules omitted).

Definition B.4.2 (DE-TST transformation) Let p be a TST according to Definition 10.1.1.
Let V be an infinite set of recursion variables not occurring in p. Then, the DE-TST of p,
denoted by 〈p〉

V
, is given by:

(a) 〈#n
i=1`i{gi, Ri}.pi〉

V
= (X0,

⋃n
i=1 Di ∪ {X0 , #n

i=1`i{gi, Ri}.X i})
for # ∈ {⊕,

∑
}, with X0 ∈ V and

(X i, Di) = 〈pi〉
V \Wi

and

Wi = ({X0} ∪
⋃i−1
j=1 dv(Dj))

(b) 〈recX . p′〉
V

= (X0, D[X0/X]) where (X0, D) = 〈p′〉
V

(c) 〈X 〉
V

= (X, ∅)
(d) 〈1〉

V
= (X0, {X0 = 1}) where X0 ∈ V

For short, we indicate the normal form of p, with 〈p〉.

Example B.4.3 Consider the following translations of TSTs, where V is a set of recursion
variables not occurring in any pi (we omit guards and reset sets).

〈a!⊕ b!〉 = (X0, {X0 , a!.X1 ⊕ b!.X2, X1 , 1, X2 , 1})

〈a!.recX . (b!.X ⊕ c!)〉 = (X0, {X0 , a!.X1, X1 , b!.X1 ⊕ c!.X2, X2 , 1})

〈recX . a!.recY . (b!.X ⊕ c!.Y)〉 = (X0, {X0 , a!.X1, X1 , b!.X0 ⊕ c!.X1})

〈recX . (a!.recX . b!.X ⊕ c!.X)〉 = (X0, {X0 , a!.X1 ⊕ c!.X0, X1 , b!.X1})

Lemma B.4.4 If p is closed, then 〈p〉 is closed.

Proof.(Sketch). A DE-TST is closed if its used recursion variables plus the initial one are
defined exactly once. In the transformation, we see by construction that all the new variable
are first declared. The only open issue is caused by variables already presents in the TST.
However, if a TST is closed, then all its used variables are in the scope of some rec declaration,
and hence they will be correctly renamed by rule B.4.2(b).

APPENDIX B. 146

Lemma B.4.5 Let (X,D) be a DE-TST, and let A = JDKX = (Loc ,Locu , l0,E, I). Then:

I(l) =

{
rdy(p) if l = τY , for some Y and X , p ∈ D
true otherwise

(∀l ∈ Loc)

Proof. By Definition 12.1.1, the invariant of A is given by I(l) =
∧
i Ii(l) for all l, where each

Ii is the invariant of the encoding of some defining equation in D. By Definition 12.1.9, the
only location with invariant other than true has the form τY , which can only be obtained
by encoding Y , p. Since (X,D) is closed, there is exactly one defining equation for Y .
Hence, τY occurs only in one TA (say, in Aj), and so I(l) =

∧
i Ii(l) = Ij(l) = rdy(p).

In Definition B.4.6 we recall the definition of strong bisimulation.

Definition B.4.6 (Strong bisimulation) A binary relation R between states of an LTS
is a bisimulation if whenever whenever s1Rs2, and α is an action:

1. if s1
α−→ s′1 then there is a transition s2

α−→ s′2 such that s′1Rs′2

2. if s2
α−→ s′2 then there is a transition s1

α−→ s′1 such that s′1Rs′2

Two states s1 and s2 are bisimilar, written s1 ∼ s2, iff there is a bisimulation that relates
them. Henceforth the relation ∼ will be referred to strong bisimulation equivalence or strong
bisimilarity.

Proof of Lemma 12.1.11:
Let (X,D′) and (Y ,D′′) be DE-TST such that dv(D′) ∩ dv(D′′) = ∅.
Let N = T (X,D′) | T (Y ,D′′). Then:

((X, ν0) | (Y , η0),−→D′∪D′′) ∼ ((X, Y , ν0 t η0),−→N)

Let (X,D′) and (Y ,D′′) as in the statement, and let T (X,D′) = (Loc1,Locu
1, l

0
1 ,E1, I1) and

T (Y ,D′′) = (Loc2,Locu
2, l

0
2 ,E2, I2). We show that:

R = {((x, ν)|(y, η), (x, y, ν t η)) |x, y, z ∈ S and ν ∈ JI1(x)K and η ∈ JI2(y)K} (B.9)

is a bisimulation. We denote with ck(D) the set of clocks used in D. First, we show that
every possible move from (x, ν)|(y, η) in −→D is matched by a move of (x, y, ν ∪ η) in −→N ,
and that the resulting states are related by R. We have the following cases, according to
the rule used to move:

• [DES-⊕].
(x, ν)

τ−→D (x′, ν)

(x, ν) | (y, η)
τ−→D (x′, ν) | (y, η)

According to this rule, we have two sub cases in which the premise can fire a τ move:

APPENDIX B. 147

[DE-τ]: (x, ν)
τ−→D (τX, ν) with x = X and X , p ∈ D with p = ⊕ . . . and ν ∈ rdy(p).

According to Definition 12.1.9, the mapping of an internal choice is JX , pK =
Pfx(X, τ, ∅,Br(τX, rdy(p) , {(τ , gi, ∅, Ai)}i) for some Ai and gi. Hence, according
to Definition 12.1.3 of Pfx pattern, there exists an edge in E1 such as (X, τ, true, ∅, τX).
According to Definition 12.1.4 of Br pattern and to Lemma B.4.5, I1(τX) =
rdy(p). In our case rule [TA1] of Definition B.4.1 states that:

(X, τ, true, ∅, τX) ∈ E1 ν t η ∈ JtrueK (ν t η)[∅] ∈ JI1(τX) ∧ I2(y)K
(X, y, ν t η)

τ−−−−→N (τX, y, ν t η)

We must show that ν t η ∈ JtrueK and ν t η ∈ JI1(x) ∧ I2(y)K. The former holds
trivially. For the second, according to Lemma B.4.5 we have I1(τX) = rdy(p);
by premises in [DES-⊕] we have ν ∈ rdy(p) and, since ck(D′) ∩ ck(D′′) = ∅, we
have ν t η ∈ rdy(p). ν t η ∈ JI2(y)K holds by hypothesis in the definition of
R in Equation (B.9). Hence (X, y, ν t η)

τ−→N (τX, y, ν t η) and the resulting
states belong to R.

[DE-⊕]: (x, ν)|(y, η)
τ−→D (x′, ν)|(y, η) with x = τX and X , a!{g,R}. Y ⊕p′ and ν ∈ JgK

and x′ = [a!{g,R}]Y . According to Definition 12.1.9, the mapping of an internal
choice is

JX , pK = Pfx(X, τ, ∅,Br(τX, rdy(p) , {(τ , g, ∅, A)} ∪ S)

for some set S, and with A = Pfx([a!{g,R}]Y , a!, R, Idle(Y)). According to Def-
inition 12.1.4 of Br pattern and Lemma B.4.5, there exists an edge in E1 such
as (τX, τ , g, ∅, x′) with I1(x′) = true. In our case rule [TA1] of Definition B.4.1
states that:

(τX, τ , g, ∅, x′) ∈ E1 ν t η ∈ JgK (ν t η)[∅] ∈ JI1(x′) ∧ I2(y)K
(τX, y, ν t η)

τ−−−−→N (x′, y, ν t η)

We must show that ν t η ∈ JgK and ν t η ∈ JI1(x′) ∧ I2(y)K. The former holds
by hypothesis since ν ∈ JgK. For the second, according to Lemma B.4.5 we
have I1(τX) = true– hence ν t η ∈ JI1(x′)K is trivially true; and ν t η ∈
JI2(y)K holds by hypothesis in the definition of R in Equation (B.9). Hence
(τX, y, ν t η)

τ−→N (x′, y, ν t η) and the resulting states belong to R.

• [DES-Del].

(x, ν)
δ−→D (x, ν ′) (y, η)

δ−→D (y, η ′)

(x, ν) | (y, η)
δ−→D (x, ν ′) | (y, η ′)

According to this rule, we have several possible combinations of the premises to fire a
δ move:

– Case [DE-Del2] applied twice:

X , p ∈ D ν + δ ∈ rdy(p)

(τX, ν)
δ−→D (τX, ν + δ)

Y , q ∈ D ν + δ ∈ rdy(q)

(τY , ν)
δ−→D (τY , ν + δ)

(τX, ν) | (τY , η)
δ−→D (τX, ν + δ) | (τY , η + δ)

APPENDIX B. 148

According to Definition 12.1.9 and Lemma B.4.5, there is only a case in which
a location name has prefix τ , and in that case we have I1(τX) = rdy(p) and
τX 6∈ Locu

1. Similarly, I2(τY) = rdy(q) and τY 6∈ Locu
2 . In our case rule [TA3]

of Definition B.4.1 states that:

((ν t η) + δ) ∈ JI1(τX) ∧ I2(τY)K τX 6∈ Locu
1 τY 6∈ Locu

2

(τX, τY , ν t η)
δ−−−−→N (τX, τY , (ν t η) + δ)

By [DE-Del2] rule, we have ν + δ ∈ rdy(p), hence, since ck(D′) ∩ ck(D′′) = ∅ and
so (ν t η) + δ ∈ rdy(p). Similarly, since η + δ ∈ rdy(q), it follows (ν t η) +
δ ∈ rdy(q). We already noted that τY and τX are not urgent, so we conclude

(τX, y, ν t η)
δ−→N (τX, y, ν + δ t η + δ). The resulting states belong to R.

– Case [DE-Del2] and [DE-Del1]:

(X , . . .) ∈ D ∨ (X , 1) ∈ D
(X, ν)

δ−→D (X, ν + δ)

Y , q ∈ D ν + δ ∈ rdy(q)

(τY , ν)
δ−→D (τY , ν + δ)

(X, ν) | (τY , η)
δ−→D (X, ν + δ) | (τY , η + δ)

According to Definition 12.1.9 and Lemma B.4.5, there is only a case in which
a location name has prefix τ , and in that case we have I2(τY) = rdy(q) and
τY 6∈ Locu

2 . For X we have two possibilities: either (i) it is an internal choice or
(i) it is a success term.

(i) In the first case, according to Definition 12.1.9 and Lemma B.4.5, the mapping
for an external choice is: JX , pK = Br(X, rdy(p) , S) for some set S. Since
rdy(p) is true for external choices, then there exists a location X with invariant
I1(X) = rdy(p) = true and τY 6∈ Locu

1 . In this case rule [TA3] of Definition B.4.1
states that:

((ν t η) + δ) ∈ Jtrue ∧ I2(τY)K X 6∈ Locu
1 τY 6∈ Locu

2

(X, τY , ν t η)
δ−−−−→N (X, τY , (ν t η) + δ)

By [DE-Del2] rule, we have η + δ ∈ rdy(q), it follows (ν t η) + δ ∈ rdy(q). We

already noted that τY and X are not urgent, so we conclude (X, y, ν t η)
δ−→N

(X, y, ν + δ t η + δ). The resulting states belong to R.

(ii) In the second case, according to Definition 12.1.9, the mapping for the success
termination is: JX , 1K = Idle(X). Hence, according to Definition 12.1.2 of Idle
pattern and Lemma B.4.5, the location X is not urgent, with I1(X) = true.
Again τY 6∈ Locu

1 . In this case rule [TA3] of Definition B.4.1 states that:

((ν t η) + δ) ∈ Jtrue ∧ I2(τY)K X 6∈ Locu
1 τY 6∈ Locu

2

(X, τY , ν t η)
δ−−−−→N (X, τY , (ν t η) + δ)

By idrule rule, we have η + δ ∈ rdy(q), it follows (ν t η) + δ ∈ rdy(q). We

already noted that τY and X are not urgent, so we conclude (X, y, ν t η)
δ−→N

(X, y, ν + δ t η + δ). The resulting states belong to R.

APPENDIX B. 149

– Case [DE-Del1] applied twice: Similar to previous cases.

• [DES-τ].

(x, ν)
a!−−→D (x′, ν ′) (y, η)

a?−−→D (y′, η ′)

(x, ν) | (y, η)
a−→D (x′, ν ′) | (y′, η ′)

According to this rule, we can synchronize on a only if

([a!{g,R}]X ′ , ν)
a!−→D (X ′ , ν [R])

(Y , a?{f , T }. Y ′ + q) ∈ D η ∈ Jf K
(Y , ν)

a?−→D (Y ′ , η[T])

([a!{g,R}]X ′ , ν) | (Y , η)
a−→D (X ′ , ν [R]) | (Y ′ , η[T])

Let x = [a!{g,R}]X ′ . According to Definition 12.1.9, the last part of the mapping
for an internal choice is such as Pfx(x, a!, R, Idle(X ′)). Hence, according to Defini-
tion 12.1.3 of Pfx pattern and Lemma B.4.5 , there exists an edge (x, a!, true, R,X ′) ∈
E1 and I1(X ′) = true. According to Definition 12.1.9, the mapping for an external
choice is: JY , a?{f , T }. Y ′ + qK = Br(Y , true, {(a?, f , T , Idle(Y ′))} ∪ S) for some
S. Hence, according to Definition 12.1.4 of Br pattern and Lemma B.4.5, there exists
an edge (Y , a?, f , T , Y ′) and I1(Y ′) = true. In this case rule [TA2] of Definition B.4.1
states that:

(x, a!, true, R,X ′) ∈ E1 (ν t η) ∈ JtrueK
(Y , a?, f , T , Y ′) ∈ E2 (ν t η) ∈ Jf K (ν t η)[R][T] ∈ Jtrue ∧ trueK

(x, Y , ν t η)
a−−−−→N (X ′ , Y ′ , (ν t η)[R][T])

Since by hypothesis η ∈ Jf K, since ck(D′) ∩ ck(D′′) = ∅ and we obtain (η t ν) ∈ Jf K.
Hence by rule [TA2] of Definition B.4.1 , we have (x, Y , νtη)

a−→N (X ′ , Y ′ , ν t η[R][T].
The resulting states, belong to R.

We now show that every possible move of (x, y, ν t η) in −→N is matched by a move of
(x, ν)|(y, η) in −→D, and that the resulting states are related by R. We have the following
cases, according to the rules of Definition B.4.1 used to justify the move:

• [TA1].

(x, τ , g, R, x′) ∈ E1 (ν t η) ∈ JgK (ν t η)[R] ∈ JI1(x′) ∧ I2(y)K
(x, y, ν t η)

τ−−−−→N (x′, y, ν t η[R])

According to Definition 12.1.9, there exist two possibilities for an edge in network
N to display a τ label, and both derive from the mapping of an internal choice. Let
p = a!{g,R}Y ⊕ p′, then JX , pK = Pfx(X, τ, ∅,Br(τX, rdy(p) , {(τ , g, ∅, A)} ∪ S))
for some set S and automaton A. Hence, according to Definition 12.1.3 and Defini-
tion 12.1.4 of patterns and with Lemma B.4.5, we have two edges with τ label in E1: (i)
(X, τ, true, ∅, τX) with I1(τX) = rdy(p); and (ii) (τX, τ , g, ∅, Y) with I1(x′) = true.
So we have two sub-cases:

APPENDIX B. 150

(i) Let assume we fire the first edge (X, τ, true, ∅, τX). Hence x = X , x′ = τX and
R = ∅. By hypothesis ν t η ∈ JI1(τX)K = rdy(p). Since ck(D′)∩ ck(D′′) = ∅, we
derive ν ∈ rdy(p). Hence, we can use [DE-τ] and [DES-⊕] rule from Definition 12.1.6
to obtain:

(X , p) ∈ D p = ⊕ . . . ν ∈ rdy(p)

(X, ν)
τ−→D (τX, ν)

(X, ν) | (y, η)
τ−→D (τX, ν) | (y, η)

Since by [TA1], (ν t η)[∅] ∈ JI1(τX) ∧ I2(y)K, the resulting states, belong to R.

(ii) Let assume we fire the second edge (τX, τ , g, ∅, x′). Hence x = τX , x′ = Y and
R = ∅. By [TA1], ν t η ∈ JgK, since ck(D′) ∩ ck(D′′) = ∅, we derive ν ∈ JgK.
Hence, we can use [DE-⊕] and [DES-⊕] rules from Definition 12.1.6 to obtain:

(X , a!{g,R}Y ⊕ p′) ∈ D ν ∈ JgK
(τX, ν)

τ−→D ([a!{g,R}]Y , ν)

(τX, ν) | (y, η)
τ−→D ([a!{g,R}]Y , ν) | (y, η)

By hypothesis (ν t η)[∅] ∈ JI1(x′) ∧ I2(y)K, so the resulting states belong to R.

• [TA2].
(x, a!, g, R, x′) ∈ E1 (ν t η) ∈ JgK (ν t η)[R][T] ∈ JI1(x)K
(y, a?, f , T , y′) ∈ E2 (ν t η) ∈ Jf K (ν t η)[R][T] ∈ JI2(y)K

(x, y, ν t η)
a−−−−→N (x′, y′, (ν t η)[R][T])

According to Definition 12.1.9, a synchronization happens only if an internal-external
choice synchronize.

Hence x = [a!{g,R}]X and y = Y for some Y , a?{f , S}.Y ′ + p. Accord-
ing to Definition 12.1.9, the last part of the mapping for an internal choice is such
as Pfx(x, a!, R, Idle(X ′)). Hence, according to Definition 12.1.3 of Pfx pattern and
to Lemma B.4.5, there exists an edge (x, a!, true, R,X ′) ∈ E1 and I1(X ′) = true.
According to Definition 12.1.9, the mapping for an external choice is:
JY , a?{f , T }. Y ′ + qK = Br(Y , true, {(a?, f , T , Idle(Y ′))} ∪ S) for some S. Hence,
according to Definition 12.1.4 of Br pattern, there exists an edge (Y , a?, f , T , Y ′) and
I1(Y ′) = true. So in this case [TA2] becomes:

(x, a!, true, R,X ′) ∈ E1 (ν t η) ∈ JtrueK (ν t η)[R][T] ∈ JI1(X ′)K
(Y , a?, f , T , Y ′) ∈ E2 (ν t η) ∈ Jf K (ν t η)[R][T] ∈ JI2(Y ′)K

(x, Y , ν t η)
a−−−−→N (X ′, Y ′, (ν t η)[R][T])

Since ck(D′) ∩ ck(D′′) = ∅ and since (ν t η) ∈ Jf K, we derive η ∈ Jf K. Hence we can
apply [DE-?][DE-!] and [DES-τ] to obtain:

([a!{g,R}]X ′ , ν)
a!−→D (X ′ , ν [R])

(Y , a?{f , T }. Y ′ + q) ∈ D η ∈ Jf K
(Y , ν)

a?−→D (Y ′ , η[T])

([a!{g,R}]X ′ , ν) | (Y , η)
a−→D (X ′ , ν [R]) | (Y ′ , η[T])

By hypothesis (ν t η)[R][T] ∈ JI1(X) ∧ I2(Y)K, so the resulting states belong to R.

APPENDIX B. 151

• [TA3].

((ν t η) + δ) ∈ JI1(x)K x 6∈ Locu
1 ((ν t η) + δ) ∈ JI2(y)K y 6∈ Locu

2

(x, y, ν t η)
δ−−−−→N (x, y, (ν t η) + δ)

According to [TA3], time can pass in a network only if all the locations of the current
state are not urgent. According with Definition 12.1.9, this happens for: the second
location in the mapping of an internal choice or the first location in the mapping of an
external choice or a success location. Hence, we have several sub-cases:

(i) Let us assume that x derive from an internal choice and y from an external choice.
According to Definition 12.1.9 and to Lemma B.4.5 , x must be of the form
x = I1(τX) for some X , p ∈ D with p = ⊕ . . ., obtaining I1(τX) = rdy(p) and
τX 6∈ Locu

1. According to Definition 12.1.9 and to Lemma B.4.5 , y must be of the
form y = Y for some Y , q ∈ D with q = + . . ., obtaining I2(Y) = rdy(q) = true

and τY 6∈ Locu
2. So in this case [TA2] becomes:

((ν t η) + δ) ∈ JI1(τX)K (τX) 6∈ Locu
1 ((ν t η) + δ) ∈ JI2(Y)K (Y) 6∈ Locu

2

(l1, l2, ν t η)
δ−−−−→N (l1, l2, (ν t η) + δ)

By hypothesis of [TA2], ((νtη)+δ) ∈ JI1(τX)K = rdy(p). Since ck(D′)∩ck(D′′) =
∅, we derive ν + δ ∈ rdy(p). Hence, we have:

X , p ∈ D ν + δ ∈ rdy(p)

(τX, ν)
δ−→D (τX, ν + δ)

(Y = + . . .) ∈ D ∨ (Y = 1) ∈ D
(Y , ν)

δ−→D (Y , ν + δ)

(τX, ν) | (Y , η)
δ−→D (τX, ν + δ) | (Y , η + δ)

Since by hypothesis, ((ν tη)+δ) ∈ JI1(τX) ∧ I2(Y)K, the resulting states, belong
to R.

(ii) All the other combinations can be proved similarly to the previous one.

B.5 Proofs for Section 13.1

Proof of Lemma 13.1.7:
((p, ν) | (q, η),−→) is turn-bisimilar to ((p, [], ν) ‖ (q, [], η),−→→).

Let us consider the LTS −→ of Figure 10.1 and the set of success states
S1 = {(1, ν) | (q, η) | q TST, ν , η ∈ V}. Also, consider the LTS −→→M of Figure 13.1 and the

APPENDIX B. 152

set of success states S2 = {(1, [], ν) ‖ (q, [], η) | q TST, ν , η ∈ V}. Let R be the relation:

R = R[1] ∪ R[2] ∪ R[3] ∪ R[2S] ∪R[3S]

R[1] = {((p, ν) | (q, η), (p, [], ν) ‖ (q, [], η)) | p, q TST, ν , η ∈ V}
R[2] = {(([a!{g,R}] p, ν) | (q, η), (p, [a!], ν [R]) ‖ (q, [], η)) | (p, q TST, ν ∈ JgK}
R[3] = {(([a!{g,R}] p, ν) | ([b!{f , S}] q, η), (p, [a!], ν [R]) ‖ (b!{f , S}.q ⊕ q ′, [], η)) | · · · }
R[2S] = {((p, ν) | ([a!{f , S}] q, η), (p, [], ν) ‖ (q, [a!], ν [S])) | p, q TST, η ∈ Jf K}
R[3S] = {(([a!{g,R}] p, ν) | ([b!{f , S}] q, η), (a!{g,R}.p ⊕ p′, [], ν) ‖ (q, [b!], η[R]) | · · · }

Let s1 = (p, ν) | (q, η), and let s2 = (p, [], ν) ‖ (q, [], η). Clearly, s1Rs2, hence to obtain the
thesis we will prove that R is a turn-bisimulation. The proof is organised as follows. In Part
A we show that s2 turn-simulates s1 via R, and in Part B that s1 turn-simulates s2 via R.
Within each part, we proceed by cases on the form of s1 and s2: in Case 1 we assume that
(s1, s2) ∈ R[1], in Case 2 that (s1, s2) ∈ R[2], and in Case 3 that (s1, s2) ∈ R[3]. We omit
cases for R[2S] and R[3S], since they are specular to cases R[2] and R[3]. For each case,
we show that items ((a)), ((b)), and ((c)) of Definition 13.1.6 hold. We will only consider
the moves of the LHS of a composition P ◦Q; all the symmetric cases will be omitted.

Part A: s2 turn-simulates s1 via R.

Case 1: Let s1 = (p, ν) | (q, η) and s2 = (p, [], ν) ‖ (q, [], η).

(a) To prove item ((a)) of Definition 13.1.6, we consider the possible moves of s1:

– [S-⊕]. We have:
(p, ν)

τ−→ ([a!{g,R}] p′, ν)

s1
τ−→ ([a!{g,R}] p′, ν) | (q, η) = s′1

where the premise requires p = a!{g,R}.p′⊕p′′ and ν ∈ JgK. Hence, by rule [M-⊕]

we have:
s2

A:a!−−→→ (p′, [a!], ν [R]) ‖ (q, [], η) = s′2

Then, (s′1, s
′
2) ∈ R[2] ⊆ R.

– [S-τ]. This case does not apply.

– [S-Del]. We have:

(p, ν)
δ−→ (p′, ν + δ) (q, η)

δ−→ (q ′, η + δ)

s1
δ−→ (p′, ν + δ) | (q ′, η + δ) = s′1

The only rule which can be used in the premises of the above is [Del], which implies
that p = p′, q = q ′, ν + δ ∈ rdy(p) and η + δ ∈ rdy(q). Then, the thesis follows
by rule [M-Del].

(b) To prove item ((b)) of Definition 13.1.6, we consider the possible moves of s2:

APPENDIX B. 153

– [M-⊕]. We have p = a!{g,R}.p′ ⊕ p′′, ν ∈ JgK, and:

s2
A:a!−−→→ (p′, [a!], ν [R]) ‖ (q, [], η) = s′2

So, by rules [⊕] and [S-⊕] we have:

p
τ−→ ([a!{g,R}] p′, ν)

s1
τ−→ ([a!{g,R}] p′, ν) | (q, η)

= s′1

and we conclude that (s′1, s
′
2) ∈ R[2] ⊆ R.

– [M-+]. This case does not apply, since both buffers are empty.

– [M-Del]. We have ν + δ ∈ rdy(p), η + δ ∈ rdy(q), and:

s2
δ−→→ (p, [], ν + δ) ‖ (q, [], η + δ) = s′2

Then, rule [Del] yields (p, ν)
δ−→ (p, ν + δ) and (q, η)

δ−→ (p, η + δ). Hence, by
rule [S-Del] we conclude that:

s1
δ−→ (p, ν + δ) | (q, η + δ) = s′1

and the thesis follows because (s′1, s
′
2) ∈ R[1] ⊆ R .

(c) To prove item ((c)) of Definition 13.1.6, assume that s2 ∈ S2. By definition of S2, s2

has the form (1, [], ν) ‖ (q, [], η). Then, s1 = (1, ν) | (q, η) ∈ S1.

Case 2: Let s1 = ([a!{g,R}] p, ν) | (q, η) and s2 = (p, [a!], R[ν]) ‖ (q, [], η) with ν ∈ JgK.

(a) To prove item ((a)) of Definition 13.1.6, we consider the possible moves of s1:

– [S-⊕]. We have:

(q, η)
τ−→ ([b!{f , S}] q ′, S [η)]

s1
τ−→ ([a!{g,R}] p, ν) | ([b!{f , S}] q ′, S [η]) = s′1

where the premise requires q = a!{f , S}.q ′⊕q ′′ and η ∈ Jf K. Hence, by rule [M-⊕]

we have:
s2

B:b!−−→→ (p′, b, ν) ‖ (q ′, [b!], η[S]) = s′2

Then, (s′1, s
′
2) ∈ R[2] ⊆ R.

– [S-τ]. We have:

([a!{g,R}] p, ν)
a!−→ (p, ν [R]) (q, η)

a?−→ (q ′, η[S])

(p, ν) | (q, η)
τ−→ (p′, ν ′) | (q ′, η ′) = s′1

where the premise requires q = a?{f , S}.q ′ + q ′′, with ν ∈ JgK and η ∈ Jf K .
Since η ∈ Jf K, by rule [M-+] we have:

(p, [a!], ν) ‖ (a?{g,R}. q ′ + q ′′, [], η)
B:a?−−→→ (p, [], ν) ‖ (q ′, [], η[R]) = s′2

Then, (s′1, s
′
2) ∈ R[2] ⊆ R.

APPENDIX B. 154

– [S-Del]. This case does not apply, since one buffers is not empty.

(b) To prove item ((b)) of Definition 13.1.6, we consider the possible moves of s2:

– [M-⊕]. This case does not apply, given the form of s2.

– [M-+]. We have:

s2
B:a?−−→→ (p, [], ν [R]) ‖ (q ′, [], η[S]) = s′2

which requires q = a?{f , S}.q ′ + q ′′, with η ∈ Jf K. Since by hypothesis ν ∈ JgK,
by rule [S-⊕] we have:

([a!{g,R}] p, ν)
a!−→ (p, ν [R])

[⊕]
(a?{f , S}.q ′ + q ′′, η)

a?−→ (q ′, η[S])
[+]

s1
τ−→ (p, ν [R]) | (q ′, η[S]) = s′1

and the thesis follows because (s′1, s
′
2) ∈ R[1] ⊆ R.

– [M-Del]. This case does not apply, given the form of s2.

(c) To prove item ((c)) of Definition 13.1.6, assume that s2 ∈ S2. By definition of S2, s2

has the form (1, [], ν) ‖ (q, [], η). Then, this case does not apply.

Case 3: Let s1 = ([a!{g,R}] p | [b!{f , S}] q, ν), and let s2 = (p, [a!], ν [R]) ‖ (b!{f , S}.q⊕
q ′, [], η). The thesis follows trivially, since both s1 and s2 are stuck, and neither of them is
a success state.

Part B: s1 turn-simulates s2 via R.
Case 1: Let s1 = (p, ν) | (q, η) and s2 = (p, [], ν) ‖ (q, [], η).

(a) To prove item ((a)) of Definition 13.1.6, we consider the possible moves of s2:

– [M-⊕]. We have:

s2
A:a!−−→→ (p′, [a!], ν [R]) ‖ (q, [], η) = s′2

where the premise requires p = a!{g,R}.p′⊕ p′′ and ν ∈ JgK. Hence, by rule [S-⊕]

we have:
(p, ν)

τ−→ ([a!{g,R}] p′, ν)

s1
τ−→ ([a!{g,R}] p′, ν) | (q, η) = s′1

Then, (s′1, s
′
2) ∈ R[2] ⊆ R.

– [M-+]. This case does not apply.

– [M-Del]. We have:

s2
δ−→→ (p, [], ν + δ ‖ q, [], η + δ)

where the premise requires ν + δ ∈ rdy(p) and ν + δ ∈ rdy(q). Hence, by [Del] we
have:

(p, ν)
δ−→ (p, ν + δ) (q, η)

δ−→ (q, η + δ)

s1
δ−→ (p, ν + δ) | (q, η + δ) = s′1

Then, (s′1, s
′
2) ∈ R.

APPENDIX B. 155

(b) To prove item ((b)) of Definition 13.1.6, we consider the possible moves of s1:

– [S-⊕]. We have:

s1
⊕−→ ([a!{g,R}] p′, ν [R]) | (q, η)

whose premise requires p = a!{g,R}.p′ ⊕ p′′, with ν ∈ JgK. Hence s2
A:a!−−→→.

– [S-τ]. This case does not apply.

– [S-Del]. We have:

s1
δ−→ (p, ν + δ) | (q, η + δ)

where the premise requires ν + δ ∈ rdy(p) and ν + δ ∈ rdy(q). Hence, by [M-Del]

we have s2
δ−→→.

(c) To prove item ((b)) of Definition 13.1.6, assume that s2 ∈ S2. By definition of S − 2,
s2 has the form (1 | 1, [], ν). Then s1 = (1, ν) | (1, η) ∈ S1.

Case 2: Let s1 = ([a!{g,R}] p, ν) | (q, η), s2 = (p, [a!], ν [R]) ‖ (q, [], η), and ν ∈ JgK.

(a) To prove item ((a)) of Definition 13.1.6, we consider the possible moves of s2:

– [M-⊕]. This case does not apply.

– [M-+]. We have:

s2
B:a?−−→→ (p, [], ν [R]), ‖ (q ′, [], η[S]) = s′2

whose premise requires q = a?{f , S}.q ′ + q ′′ with η ∈ Jf K. Since by hypothesis
ν ∈ JgK, by [S-τ] we have:

([a!{g,R}] p, ν)
a!−→ (p, ν [R]) (q, η)

a?−→ (q ′, η[S])

(p, ν) | (q, η)
τ−→ (p′, ν ′) | (q ′, η ′) = s′1

Then, (s′1, s
′
2) ∈ R.

– [M-Del]. This case does not apply.

(b) To prove item ((b)) of Definition 13.1.6, we consider the possible moves of s1:

– [S-⊕]. We have:

s1
⊕−→ ([a!{g,R}] p, ν) | ([b!{f , S}] q, η) = s′1

whose premise requires q = b!{f , S}.q ′ ⊕ q ′′ and ν ∈ Jf K. We have that s2 is
stuck but so is s′1; and (s′1, s2) ∈ R.

– [S-τ]. We have:
s1

τ−→ (p, ν [R]) | (q ′, η[S])

whose premise requires q = b?{f , S}.q ′ + q ′′ and η ∈ Jf K. Hence s2
B:a?−−→→

(p ‖ q ′, [], ν [R] t η[S]) = s′2 and (s′1, s
′
2) ∈ R.

APPENDIX B. 156

– [S-Del]. This case does not apply.

(c) To prove (c), let us assume s2 ∈ S2, which implies s2 = (1 | 1, ν). By hypothesis of
case 2 this is not possible.

Case 3: Let s1 = ([a!{g,R}] p, ν) | ([b!{f , S}] q, η), s2 = (p, [a!], ν [R]) ‖ (b!{f , S}.q ⊕
q ′), [], η). In this case, both s1 and s2 are stuck and neither of them is a success state.

APPENDIX B. 157

11.2.5

11.3.3

10.2.6

B.4.5

11.3.2

B.2.7

11.3.5

11.1.8

13.1.2

11.1.4 2.2.5

11.2.4

11.1.10

B.2.3

13.1.9

B.4.4

11.2.2 2.2.4

11.1.6

B.2.4

11.3.4 13.1.4

B.2.2

B.2.1

B.1.1

11.1.9

13.1.7

12.1.11 12.1.8

11.2.3

12.1.12

11.2.1

10.2.7

B.2.5

B.1.2

Figure B.2: Dependencies among the proofs.

The diagram in Figure A.4 illustrates the dependencies among the proofs.

	List of Figures
	List of Tables
	Introduction
	I Background
	Order theory
	Partial orders
	Monotonic functions and lattices

	Labelled Transition Systems
	Labelled transition systems
	Processes

	Kripke Structures, Linear Temporal Logic and Model checking
	Kripke Structures
	Linear temporal logic

	Timed Automata
	Basic definitions
	Timed automata
	Networks of timed automata
	Regions and zones

	II Honesty in contract-oriented computing
	Contracts
	Session types as contracts
	Syntax
	Semantics
	Compliance
	Culpability
	Kripke structure semantics of contracts
	Maude implementation

	Contract oriented computing and CO2
	Contract-oriented computing & Honesty
	Syntax
	Semantics
	Honesty

	Verification of honesty
	Model checking honesty
	Value abstraction
	Context abstraction of contracts
	Context abstraction of systems
	Main result
	Maude implementation

	Experiments
	Experiments
	Online store with bank
	Voucher distribution system
	Car loan
	Blackjack
	Travel agency
	Benchmarks

	III A timed contract model
	Timed session types
	Timed session types: syntax and semantics
	Compliance between TSTs
	Case study: Paypal User Agreement

	Admissibility of a compliant and subtyping
	Admissibility of a compliant
	Computability of the canonical compliant
	Subtyping

	Encoding timed session types into timed automata
	Encoding TSTs into Timed Automata
	Defining equations
	Encoding DE-TST into TA
	Decidability of compliance

	Monitoring timed session types
	Runtime monitoring of TSTs

	IV Concluding remarks
	Related work
	Conclusions

	Bibliography
	Appendix for part:co2
	Proofs for sec:contracts
	Proofs for sec:part2:model-checking
	Proofs for sec:model-checking:value
	Proofs for sec:model-checking:context:contracts
	Proofs for sec:model-checking:context:systems

	Appendix for part:TST
	Proofs for sec:tst-compliance
	Proofs for sec:tst-duality
	Proofs for sec:comput-dual
	Proofs for sec:tst-to-ta
	Proofs for sec:tst-monitoring

