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Abstract

Evolutionary Game Theory represents a vibrant and interdisciplinary re-
search field, that is attracting the interest of scientists belonging to different
communities, spanning from physicists to biologists, and from mathemati-
cians to sociologists. In few words, it represents the attempt to study the
evolutionary dynamics of a population by the framework of Game Theory,
taking into account the Darwinian theory of natural evolution. As result,
Evolutionary Game Theory allows to model a number of scenarios, as so-
cial and biological systems, with a high level of abstraction. On one hand,
the contribution of the classical Game Theory can be identified at a local
level, i.e. in the interactions among the agents. For instance, when agents
play games like the Prisoner’s Dilemma, according to the Nash Equilibrium,
they should defect. On the other hand, in some conditions, it is possible to
observe final equilibria far from the expected one. Notably, here we identify
the contribution of the Darwinian theory, since the agents can change their
behavior according to adaptive mechanisms. Remarkably, often populations
reaching non-expected equilibria show emergent behaviors, resulting from
their interaction pattern, or from specific local behaviors. For this reason,
evolutionary games must be considered as complex systems. Accordingly,
we believe that statistical physics constitutes one of the most suitable ap-
proaches for studying and understanding their underlying dynamics. In this
scenario, one of the aims of this dissertation is to illustrate some models that
let emerge a direct link between Evolutionary Game Theory and statistical
physics. In addition, we show that the link between the two fields allows to
envision new applications beyond the current horizon of Evolutionary Game
Theory, as defining optimization strategies. So, at the beginning, we focus
on a statistical physics model devised for understanding ’why’ random mo-
tion, in continuous spaces (and within a particular speed range), is able to
trigger cooperation in the Prisoner’s Dilemma. Then, we study the role of
the temperature in the spatial Public Goods Game, defining a link between
this game and the classical Voter Model. Eventually, mapping strategies to
spins, we study the spatial Public Goods Game in presence of agents sus-
ceptible to local fields, i.e. fields generated by their nearest-neighbors. It
is worth to note that, from a social point of view, an agent susceptible to
a local field can be considered as a conformist, since it imitates the strat-
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egy (or behavior) of majority in its neighborhood. Later, we propose three
applications of Evolutionary Game Theory. In particular, the first one is a
new method for solving combinatorial optimization problems. The second
application is focused on the definition of a game for studying the dynamics
of Poker challenges. Finally, the third application aims to represent a phe-
nomenon of social evolution, named group formation. To conclude, we deem
that the achieved results shed new light on the relation between Evolution-
ary Game Theory and Statistical Physics, and allow to get insights useful
to devise new applications in different domains.
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Summary

In this work, we present some models and applications of Evolutionary Game
Theory. In particular, the general approach adopted in all investigations is
based on the framework of Statistical Physics. In particular, as discussed in
the first part, Evolutionary Games can be considered as Complex Systems,
therefore Statistical Physics becomes one of the most suitable tool for inves-
tigating their behavior. In addition, combining the two fields (i.e. Evolu-
tionary Game Theory and Statistical Physics), some interesting applications
can be envisioned. As result the work is organized in four different parts:
I) a general introduction to Evolutionary Game Theory, and to the main
mathematical and physical models used in the presented models and appli-
cations; II) three chapters focused on the studying of the relations between
Evolutionary Game Theory and Statistical Physics; III) three chapters fo-
cused on some applications arising from a combined view of Evolutionary
Game Theory and Statistical Physics; IV) a conclusion and an appendix.
Then, the content of each chapter can be summarized as follows:

Part I.
Chapter 1. Here, we provide a brief presentation of Evolutionary Game
Theory. From the main concepts, to the description of some mechanisms for
triggering Cooperation.
Chapter 2. This chapter is devised for describing the main mathematical
and physical models used in this dissertation. In particular, we provide a
brief overview of statistical physics models for studying the phase transi-
tions. Then, we present some models of population dynamics. The latter is
suported by a special case focused on a problem of sociophysics.

Part II
Chapter 3. The first analysis here presented is focused on a model, based on
the kinetic theory of gases, for investigating the motivations that lead ran-
dom motion to support (in a finite range of speeds) cooperative behaviors.
Chapter 4. Here, we analyze the dynamics of the spatial Public Goods
Game, and provide a link with the famous Voter Model. In particular, we
study the effects of noise in the dynamics of the population.
Chapter 5. In this chapter, we study the outcomes of the Public Goods
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Game when the population contains agents susceptible to a local field. In
particular, since strategies are mapped to spins, a set of agents generate a
field that can, in principle, affects the process of ’strategy selection’ of close
agents. From a social point of view, this phenomenon can be described as
conformity. Appendix A provides further details with investigations per-
formed on a more classical model (i.e. the q-Voter model).

Part III
Chapter 6. Here, we present an application of Evolutionary Game Theory
to a combinatorial optimization problem. In particular, we focus on the
Travelling Salesman Problem.
Chapter 7. Poker games are investigated by defining a simple evolutionary
game inspired by the rule of Texas Hold’em. In particular, we present an
investigation whose aim is to evaluate wether, and under which conditions,
Poker can be considered as a skill game. Chapter 8. In this chapter, we pro-
pose an investigation on the phenomenon of group formation, by defining
a simple game. In particular, we focus on the emergence of homogeneous
groups, that we can observe in different animal species.

Part IV
Chapter 9. Here, we briefly summarize the main results presented in this
dissertation, and discuss potential future works.
Appendix A. Eventually, we present results of an investigation on the q-voter
model in particular conditions. Notably, we study the dynamics in presence
of conformist agents, in order to show the role of this ’social behavior’ in-
vestigated in Chapter 5 (in relation to an evolutionary game).



Part I

General Introduction
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Chapter 1

Evolutionary Game Theory

Evolutionary Game Theory represents a vibrant and interdisciplinary re-
search field, that is attracting the interest of scientists belonging to different
communities, spanning from physicists to biologists, and from mathemati-
cians to sociologists [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19]. In particular, it represents the attempt to study the dynamics of
a population, combining the principles of Game Theory [20], and the Dar-
winian theory of evolution [21]. On one hand, the classical Game theory,
proposed by John von Neumann and Oskar Morgenstern, was devised for
modeling the human behavior mainly in economic contexts [22]. This field
was strongly influenced by the mathematician, and Nobel laureate, John
Nash who defined the so-called Nash Equilibrium. The latter can be viewed
as a particular state of equilibrium of a game, involving a number of ’ra-
tional’ agents that have to take an action without prior communications.
On the other hand, the Darwinian theory that can be considered as one of
the most important breakthrough in Biology and, after more than a cen-
tury, still constitutes a living theory and one of the major references in the
modern science. His father, Charles Darwin, yielded this theory after a long
journey around the world, then after direct of observations of nature was
able to envision a general theory for explaining natural evolution. Remark-
ably, Evolutionary Game Theory (EGT hereinafter) allows to model a wide
number of scenarios, spanning from social systems to biological processes. In
particular, it allows to study the dynamics of a population and its equilibria,
considering specific mechanisms, interaction patterns, and behaviors. It is
worth to emphasize that, even if EGT models consider ’rational’ agents, i.e.
agents that aim to increase their gain, interesting emergent phenomena not
predicted by the classical Game Theory, can be observed. The previous ob-
servation deserves a particular attention since emergent phenomena are one
of the topics studied in the modern area of complex systems. The latter has
a number of definitions, however in our view it can be summarized by the ti-
tle of the famous Anderson’s work ’More is different’ [23]. In particular, the
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complexity of many systems often cannot be observed locally, but only at a
macroscopic level, being the result of different mechanisms, as for instance
non-trivial interaction patterns. From this point of view, EGT models can
be framed in the area of complex system. In particular, they implement
agent populations whose local interactions are simple, and based on a spe-
cific game, like the Prisoner’s Dilemma later described. Then, during their
evolution, these populations show critical phase transitions and behaviors
that, as stated before, cannot be directly related to the local interactions.
For instance, considering a population playing the Prisoner’s Dilemma, EGT
models allow to investigate the emergence of an ordered state of cooperation.
The latter corresponds to an equilibrium characterized by all agents play-
ing as cooperators, despite the Nash Equilibrium of this game is ’defection’.
In particular, in absence of a prior communication, ’cooperation’ is a risky
strategy and the ’rational’ action is to defect. However, even if Game Theory
is a solid mathematical description of a scenario, a number of observations
both in nature and in the real societies show that cooperation is quite com-
mon. Therefore, one of the task of EGT is trying to understand, with the
support of the Darwinian theory, why and how the Nash Equilibrium is not
always reached. One of the key points of an evolutionary approach is pro-
viding a population with an adaptive mechanism. Remarkably, as Darwin
stated, the best (i.e. the fittest) individual is not the strongest one, but that
who is more able to adapt herself/himself to new environments/scenarios.
Accordingly, EGT models study populations whose agents can change their
strategy by a process named ’strategy revision phase’, later explained with
more details. In particular, agents can modify their strategy observing the
payoff of their opponents after an iteration. As result, the final equilibrium
of a population strongly depends on the interactions among the agents, and
to the mechanisms they adopt to modify their strategy over time. In general,
a game can have many strategies, and the resulting payoff function maps
all the possible combinations among strategies to a specific gain. In most of
the works here presented, we consider only 2-strategy games. Therefore, in
these cases, we might observe only two ordered phases, and a disordered one.
In particular, the ordered phases correspond to the two possible strategies,
while the disordered phase corresponds to an equilibrium (or a steady-state),
characterized by the co-existence of agents adopting the two strategies in the
population.

Nash Equilibrium

As previously stated, from the point of view of the classical Game Theory,
local interactions between two (or more) agents can be solved according to
the Nash Equilibrium of the considered game. The Nash Equilibrium [20]
corresponds to the solution of a game such that no player has anything to
gain whether she/he is the only one that changes her/his own strategy. Here,
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it is worth to recall that before an interaction, agents are not allowed to com-
municate, therefore for a rational agent the payoff function is a fundamental
reference to take an action (i.e. to select a strategy). The mathematical
definition of the Nash Equilibrium requires a more formal description of a
game. In general, the latter is described by a set S of strategy profiles,
and a payoff function f , i.e. by (S, f). A game might involve n players, so
that each one adopts a strategy. Then, a strategy profile S is defined as
S = S1 × S2 × ... × Sn, and the payoff function computes that gain for a
specific x ∈ S as f(x) = (f1(x), f2(x), ..., fn(x)).

Now, a set of strategies x∗ ∈ S is a Nash Equilibrium if ∀i, xi ∈ Si :
fi(x

∗
i , x
∗
−i) ≥ fi(xi, x

∗
−i). Accordingly, the expected equilibrium of a popu-

lation corresponds to the Nash Equilibrium of the game used to define the
agent interactions.

1.1 2-Strategy Games

In this section, we describe 2-strategy games, i.e. games with only two possi-
ble actions/strategies. In particular, we focus on the Prisoner’s Dilemma [20]
and on the Public Goods Game (also defined as n-person Prisoner’s Dilemma),
whose strategies are ‘Cooperation’ and ‘Defection’. Eventually, we remind
that in the third part of this work, we propose some applications of EGT
(combined with a statistical physics approach) where the number of strate-
gies can be higher than 2 and, in the case of 2-strategy games, the meaning
of each strategy can be different from those here defined (i.e. Cooperation
and Defection).

1.1.1 Prisoner’s Dilemma

The Prisoner’s Dilemma (PD hereinafter) is a very simple game where agents
may behave as cooperators or as defectors, then set of strategies is Σ =
{C,D}. In this game, the payoff function takes the form of a matrix, that
describes the gain each agent receives according to its strategy. In particular,
the payoff matrix reads

(C D

C 1 S
D T 0

)
(1.1)

with T representing the Temptation, i.e. the payoff an agent gains if it
defects while its opponent cooperates, while S representing the Sucker’s
payoff, i.e. the gain obtained by a cooperator while the opponent defects.
In principle, the matrix 3.1 can correspond also to other games, so it is
important to define the range of T and S. Notably, in the PD the values
of the two parameters T and S are in the following ranges: 1 ≤ T ≤ 2 and
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−1 ≤ S ≤ 0. Therefore, the dynamics of a population can be studied in
the TS-plane, in order to observe the final equilibria on varying the two
parameters within their range. For instance, for low values of T defectors
have a small increasing of their payoff when they play against cooperators,
whereas for high value of S cooperators have small losses (i.e. small risks)
when face defectors.

1.1.2 Public Goods Game

The Public Goods Game (PGG hereinafter) considers a population of N
agents that, as for the PD, can behave as cooperators or as defectors. In
this game, cooperators provide a unitary contribution to a common pool,
whereas defectors do the opposite, i.e. do not contribute. The summation
of all contribution is then enhanced by a numerical factor, named synergy
factor, and the final value is equally divided among all agents. According to
this set of rules, the payoff of a cooperator (i.e., πc) and that of a defector
(i.e., πd) read {

πc = rN
c

G − c
πd = rN

c

G

(1.2)

where N c is the number of cooperators among the G agents involved in the
game (it can be smaller than N in one iteration), r synergy factor, and
c agents’ contribution (we set to 1 for all cooperators, without the loss of
generality). The value of G depends on the considered topology, for instance
when agents are arranged in a square lattice, G = 5. Finally, we recall that
as for the PD, the Nash Equilibrium of the PGG is defection.

1.2 Modeling Evolutionary Games

Agent populations playing evolutionary games show critical behaviors, well
known in statistical physics, as order-disorder phase transitions [24, 25].
The main physical phenomena of interest in EGT are briefly presented in
the chapter 2. Here, we remind that early studies, in this direction, have
been proposed by Hauert and Szabo. For instance, in [26] authors refer to
the PD for illustrating several connections between Physics and EGT. It
is worth also to recall that other authors tried to link the classical Game
Theory with Physics, as reported in [27]. Therefore, it is important to under-
stand why Evolutionary Games have different points of contact with physical
phenomena. In particular, it is of interest to understand the mechanism un-
derlying the evolution of a population, usually defined as ’strategy revision
phase’. Before going through the details, we show some methods that can
be adopted for modeling the dynamics of evolutionary games (see [22] for
further details). Although analytical approaches can be often quite difficult,
mainly for problems related to the complexity of a specific scenario or to
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the number of features that characterize the agents, there are some mod-
els as the ’replicator dynamics’. The latter uses differential equations, and
has been proposed by Taylor and Jonker ( [28]), and later by many others
(e.g. [29, 30, 31]). One of the assumptions of this approach (i.e. replicator
dynamics) is that the payoff can be considered as a fitness. Notably, given
a strategy i, used with a frequency xi in a population, the frequency rate
reads

ẋi = xi(fi − φ) (1.3)

with fi expected payoff associated to the strategy i, and φ average pay-
off. In more recent years, different scientists focused their attention towards
structured populations, i.e. populations whose agent interactions depend
on a particular topology. Here, both simple structures, as regular lattices,
and more complex ones, as scale-free networks, have been widely investi-
gated in order to understand the relation between the interaction topology
and the equilibrium of a population. We start mentioning results obtained
with regular lattices [2, 4, 5, 6, 32, 33, 34], usually implemented with peri-
odic boundary conditions. For instance, in the case of the PGG, Perc and
Szolnoki computed a critical threshold of the synergy factor. In particular,
they found the minimum value of the synergy factor to allow cooperators
to survive (and even to succeed) [34]. Later on, different authors investi-
gated the influence of more complex topologies in many games. Just to cite
few, authors of [35] showed that heterogeneous networks do not promote
cooperation when humans play the PD. In [36] authors studied the evolu-
tion of cooperation in heterogeneous structured populations, demonstrating
that cooperation increases as the heterogeneity, of the network structure,
increases. In [37], authors studied an EGT model in growing and network-
structured populations, finding that as the network increases the level of
cooperation is smaller than that obtained in a static network; in [38] the ef-
fects of social punishment have been studied in complex networks, achieving
as result that different equilibria can be observed. Remarkably, Santos and
Pacheco [39, 40] found that scale-free networks support the emergence of co-
operation. Eventually, the fundamental role of the network topology in evo-
lutionary games was investigated in [41], where the role of hubs (i.e. nodes
with a high number of connections) as elements for sustain cooperation has
been clarified. Finally further works focused on EGT models using interde-
pendent networks (e.g. [42, 3]) and multiplex networks [43, 44, 45, 46, 47, 48]
as [49, 50]. It is worth to highlight that both in simple lattice structures and
in more complex ones, the analytical tractability of evolutionary games is
easily lost. As result, investigations must be performed by means of numer-
ical simulations. Then, let us present the mechanism defined as ’strategy
revision phase’. The latter can be implemented according to different meth-
ods, related to the analysis of the payoff of the involved agent. In addition,
further methods can consider different behaviors, as conformity (see chapter
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5, and pure imitation (see chapter 4). In general, those methods based on
the payoff analysis can be divided in the following categories:

• Comparison

• Self-evaluation

• Imitation

Notably, the first one, i.e. the payoff comparison, is often implemented as a
stochastic rule by a Fermi-like function. The latter allows to compute the
probability an agent y takes the strategy of an agent x, and reads

W (sy ← sx) =

(
1 + exp

[
πy − πx
Ky

])−1
(1.4)

where πx and πy correspond to the payoffs of two agents, and sx and sy
indicate their strategy. Ky > 0 is an agent-dependent parameter whose role
will be described in the chapter 4. The self-evaluation method entails an
agent decides to modify its strategy if the current payoff is smaller than the
previous one, thus it entails agents have some memory of the past events (in
many EGT models, the agent payoff is reset after each iteration). Eventually,
imitative mechanisms based on the payoff, usually lead an agent to imitate
a richer agent.

1.2.1 Emergence of Cooperation

Before to conclude this chapter, we briefly summarize some of the previ-
ous works in EGT, devised for identifying and describing mechanisms and
principles responsible for the emergence of cooperation in games character-
ized by a Nash equilibrium of defection. Let us begin with the famous 5
rules of cooperation, related to the concept of natural selection, presented
by Nowak [51]: kin selection, direct reciprocity, indirect reciprocity, net-
work reciprocity, and group selection. The kin selection is a simple principle
based on the similarity between the donor and the recipient of an altruistic
act. In particular, if a parental relation exists between the two individuals,
cooperation can be observed. The direct reciprocity comes from the ob-
servation that if a game involves many times always the same individuals,
cooperation might become a promising option. The indirect reciprocity is a
mechanism that explains why an individual acts as a donor, even if knows
that the one receiving the benefit is not in the condition to exchange the
favor. Notably, especially in the human society, forms of cooperation related
to indirect reciprocity can be observed because the donor gains the respect
of other individuals in the population, so that even in this case an indirect
benefit can be obtained. The network reciprocity is similar to the direct reci-
procity, and it can be observed in spatially structured populations, where
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the individuals interact always with the same neighbors. So, thanks to this
mechanism clusters of cooperators emerge. Finally, group selection refers
to forms of cooperation observed between people belonging to the same
group. Here, groups of cooperators can obtain more benefits than groups
of defectors. In the case of complex networks, as previously mentioned,
Moreno [35, 37], Pacheco and Santos [39, 40] widely illustrated the relevant
role of complex topologies for triggering cooperation in games like the Public
Goods Game, Prisoner’s Dilemma, and many others. In particular, in [39]
authors demonstrated the beneficial role of scale-free networks in supporting
the emergence of cooperation. In addition, a further interesting mechanism
responsible for the emergence of cooperation is the random motion. Indeed,
in this last case, we are considering agent populations in bidimensional con-
tinuous spaces. In particular, in [52, 53, 54] authors proposed and studied
the role of random motion (considering also Levy-flights [55]) in different
evolutionary games. In our view, one of the most interesting results in these
works is that cooperation emerges only in a short range of speeds. Therefore,
as reported in chapter 3, we propose a model based on the kinetic theory
of gases for investigating this behavior[56]. A further work, inspired by the
mechanism of random motion, and implemented on complex networks, can
be found here [57]. Notably, the latter considers a structured population
playing the PD, and a behavior defined ’competitiveness’. In particular,
after each iteration, agents with a high payoff generate new links (so that
can play with more opponents), while those with a low payoff reduce the
number of links. As result a time-varying network constitutes the topology
of the agent interactions, and the achieved results indicate that the presence
of competitive agents supports the emergence of cooperation, highlighting a
potential relation between ’cooperation’ and ’competitiveness’.
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Chapter 2

Mathematical and Physical
Models

In this chapter, we briefly present the main mathematical and physical mod-
els used in this work. In particular, we focus on the theory of phase transi-
tions, and on models of population dynamics. In both cases, we introduce
only the most relevant concepts, with a particular attention for those meth-
ods and phenomena of interest in EGT. Finally, we refer the readers to
further books and articles (listed among references) for a more complete
description of the following topics.

2.1 Phase Transitions

Phase transitions are one of the most important phenomena studied in
Thermodynamics and Statistical Physics [24, 58, 25]. In particular, the
latter tries to understand the relation between the macroscopic behavior
and the microscopic dynamics of a many-body system, in terms of local
rules and interactions. One of the most successful models for studying
phase transitions is the Ising model, i.e. a simple and powerful method
for studying interactions and processes in many systems. So, we begin pro-
viding a brief description of its main characteristics, and then we present
the Curie-Weiss model. Eventually, the Landau theory of phase transi-
tions ends the first part of this chapter. The second part presents gen-
eral models of population dynamics, and also a specific case used in socio-
physics [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. In particular, we report a
brief analysis of a population composed of three different species, and study
its equilibria and stability.
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2.1.1 Ising Model

The Ising Model considers a number of elements N arranged on a lattice
(see Figure 2.1). Here, the concept of element is very general, since it may
refer to atoms, neurons of a neural network, and so on and so forth. Then,

Figure 2.1: On the left, a simple square lattice. On the right, a toroid (i.e. a
square lattice with periodic boundary conditions).

each element is placed on a site i of the lattice and has a spin with a binary
value σi = ±1. For instance, in a magnetic system, the value of σ may
refer to a magnetic moment, pointing up or down. A pair of sites (e.g.
(i, j)) forms a bond (or edge in the jargon of network theory), and a set of
bonds is denoted as B. Now, for each bond in B we define an interaction
energy of value −Jσiσj , so that it is equal to −J for σi = σj , and to J in
the opposite case. If J is positive, the case σi = σj has an energy smaller
than the case σi = −σj , so the former is more stable. Positive interactions
(i.e. J > 0) are defined as ‘ferromagnetic’, while negative interactions as
‘antiferromagnetic’. In addition, some sites of the lattice can have an own
energy of value −hσi (here h may represent an external field). Thus, the
total energy, i.e. the Hamiltonian, of the Ising model reads

H = −J
∑

(i,j)∈B

σiσj − h
N∑
i=1

σi (2.1)

In general, given a Hamiltonian H, we can compute the average value of a
physical quantity using the Gibbs-Boltzmann distribution. For instance, in
the case of a spin configuration S the distribution reads

P (S) =
e−βH

Z
(2.2)

with Z partition function. The latter has a fundamental role, since allows
to normalize the distribution (i.e. eq. 2.2). However, computing its value
is not always trivial, and this task can become even impossible, in a finite
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time, due to its computational complexity. In general, it takes the following
form

Z =
∑
σ

e−βH (2.3)

It is worth to remind that in some cases, the value of σi can be different
from ±1, so other models can be considered (e.g. the XY model). Now, a
macroscopic view of the Ising model can be obtained by a parameter called
’magnetization’, defined as

m =
1

N
〈
N∑
i=1

σi〉 (2.4)

In the thermodynamic limit (i.e. for N → ∞), m allows to measure the
’order’ of a system, and for this reason it is an order parameter. Notably,
the magnetization vanishes when the system contains the same amount of
positive (i.e. +1) and negative (i.e. −1) spins. At low temperatures (i.e.
for β � 1), equation 2.2 implies that low-energy states are realized with
higher probability than high energy states. In addition, in absence of ex-
ternal fields (i.e. for h = 0), low energy states of the Ising model have all
spins pointing in the same direction, so that m gets close to 1. Now, in-
creasing the temperature T , states with various energies emerge with equal
probabilities. Accordingly, the macroscopic state of the Ising model becomes
disordered, and its magnetization goes to zero. As result, it is possible to
identify a relation between m and T and, most importantly, a critical tem-
perature Tc such that for T < Tc the magnetization is greater than zero,
while for T > Tc the magnetization reduces until its value vanishes (i.e.
m → 0). This phenomenon, from a macroscopic point of view, is a phase
transition, often defined as ’order-disorder phase transition’. In magnetic
systems, states achieved at T < Tc correspond to a ferromagnetic phase,
while those achieved at T > Tc result in a paramagnetic phase. Therefore,
Tc is a ’critical point’.

Mean Field

At the first glance, the Gibbs-Boltzmann distribution (i.e. equation 2.2)
suggests that it is possible to compute the expected value of any physical
quantity. However, as previously mentioned, due to the huge amount of
sums over 2N terms in the partition function (i.e. equation 2.3), this task
might become even impossible (in a finite time). In this case, methods of
approximation become mandatory, as for instance the mean-field approach
below described (see also [70, 71, 72, 73]). The underlying idea of the mean-
field theory is to neglect fluctuations of variables around the mean values.

So that one assumes m =
∑
i〈σi〉
N =

∑
i〈σi〉, and the deviation δσi = σi −m,

in addition the second-order term with respect to the fluctuation δσi is
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assumed to be enough small to be neglected. Following this approach the
Hamiltonian can be rewritten as

H = −J
∑

(i,j)∈B

(m+δσi)(m+δσj)−h
N∑
i=1

σi ∼ Jm2NB−Jm
∑ ∑

(i,j)∈B

(δσi+δσj)−h
N∑
i=1

σi

(2.5)
so now δσi and δσj , assigned at the ends of each bond, are summed up
to z times, with z number of bonds starting from a given site. Thus, the
Hamiltonian takes a new simplified form:

H = NBJm
2 − (Jmz + h)

N∑
i=1

σi (2.6)

Finally, due to the advent of the modern network science [75, 76, 77, 78, 79],
a number of works have been addressed toward the definition of different
physical models and processes on complex topologies, as scale-free networks
and small-world networks. Therefore, here we briefly report the equation
to compute the critical temperature of the Ising model implemented on
complex networks. As described in [80], in small-world networks generated
according to the Watts-Strogatz (hereinafter WS) model [81], the value of
Tc can be approximated as follows

Tc ∼
−Jm(m+ 1)

log(p)
(2.7)

with p rewiring probability of the WS model. In few words, the WS model
generates small-world networks by the following simple algorithm: start with
a regular ring of nodes; then according to a probability p rewire each edge
at random. Therefore a network, from a regular structure (i.e. a ring),
increases its disorder by the rewiring process, until becoming a completely
random network for p = 1.

2.1.2 Curie-Weiss Model

The Ising Model is valid only when the dimension of the system is very small.
In particular, in one dimension, the Ising Model has no phase transitions
at finite temperature; in two dimensions, according to the Onsager’s solu-
tion, there is a phase transition (at a finite temperature). Then, in higher
dimensions, although there is a phase transition, an analytical solution that
describes its behavior is still an open problem. Notably, in three dimen-
sions the problem has been solved only by a numerical approach. Therefore,
solving the Ising Model for dimensions D greater than 3 is still an open
problem in statistical mechanics. However an interesting toy model, useful
for describing the behavior of ferromagnetic transitions with an infinite di-
mension, is the Curie-Weiss (CW hereinafter) model [82, 83, 84, 138]. The
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latter has a great relevance both in statistical mechanics and in information
theory [86]. In this model, each spin is connected with all the others, so that
the Hamiltonian reads

H(σ1, ...σn) = − 1

N

∑
(i<j)

σiσj − h
N∑
i=1

σi (2.8)

with h external field. As result the CW model defines a complete graph
of N nodes, and N(N − 1)/2 links. Using the magnetization m before
introduced, and without to consider the contribution of an external field,
the Hamiltonian of the CW model has the following form

H(σ1, ...σn) = −N
2
m2 +O(1) (2.9)

eventually, the partition function of the CW model reads

Z =
∑
{σi}

e−βH(σ1,...,σN ) (2.10)

with H Hamiltonian defined in equation 2.8. Now, further calculations are
required to solve the equation, as for instance for computing the summation
over the spin variables appearing in eq. 2.10. However, here we recall that
the final equation of state of the CW model is the following

m = tanh(βJm+ βh) (2.11)

As illustrated in the following chapters, the CW model is very useful as
reference for studying the dynamics of EGT models.

2.1.3 Landau Theory of Phase Transitions

The analytical methods before presented for studying the phenomenology of
phase transitions by analytical methods (i.e. the Ising Model and the CW
model) allow to compute the partition function Z of a system. Therefore, in
principle, a number of quantities can be computed according to equation 2.2.
In particular, in order to study the final state of equilibrium of a system, the
thermodynamical potential named ’free energy’ can be analyzed. Notably,
the second law of thermodynamics states that a system evolves towards the
state that maximizes its entropy. So, since the Helmotz free energy is defined
as F = U − TS with U internal energy, T temperature and S entropy, the
thermodynamics law can be re-paraphrased as: the state of equilibrium of
a system corresponds to one that minimizes its free energy F . In addition,
we report the relation between the partition function and the free energy

−kbT lnZ = U − TS (2.12)
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with kb Boltzmann constant. Therefore, Z = e−βF . The mean-field theory
allows to get an approximated phase diagram of a system. However, for
studying the behavior of a system close the critical point (e.g. the critical
temperature), a suitable choice is given by the Landau theory of phase tran-
sitions. The latter assumes that a system close to the critical point has a
small order parameter (i.e. m), so the free energy can be expressed as the
summation of power series as follows

F (T ;m) = f(T ; 0) +
1

2
a(T )m2 +

1

4!
b(T )m4 + ... (2.13)

with coefficients a(T ) and b(T ) that can be computed analytically. Figure 2.2
shows the free energy of the CW model. In particular, for T > Tc there is

Figure 2.2: Free energy in functions of the order parameter m, in absence of an
external field.

only one minimum of free energy (at m = 0), corresponding to the state
called ’paramagnetic phase’. Instead, for T < Tc there are two possible
minima of free energy, and the symmetry m→ −m is spontaneously broken
(phenomenon defined as ’symmetry breaking’).

2.2 Population Dynamics

In general, population dynamics have been studied in the context of math-
ematical biology [87], with the aim to represent processes like population
growth, competitions among different communities or species living in the
same environment, and so on. Evolutionary Game Theory actually consti-
tutes a further framework for studying the behavior of a population. Here,
we present some basic approaches to the mathematical formulation of pop-
ulation dynamics, and then focus on a more complete example related to an
application in social dynamics [88]. Let us start with the case of a contin-
uous growth of a population composed of N individuals, living in a system
without competitors:

dN

dt
= rN (2.14)

with r growth rate (called also Malthusian parameter). The analytical so-
lution of eq. 2.14 is N(t) = N0e

rt, where N0 indicates the initial population
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size. Considering a system with two competing populations, the scenario
changes according to the rules of interactiong between the individuals of
the two species. For instance the Lotka-Volterra Model, also defined as
predator-prey model, describes the dynamics of interactions between two
species, i.e. predators (say A) and preys (say B).{

dA
dt = αAB − βA
dB
dt = γA− δAB

(2.15)

with alpha, beta, γ, delta parameters describing the interactions between
the two species. These parameters can change meaning depending on the
considered scenario. In order to provide a more complete overview of pop-
ulation dynamics, we now report some results applied in a sociophysical
model implemented for studying the phenomenon of radicalization [88].

2.2.1 Analytical Solution and Equilibria

In order to study the emergence of radicalization in a heterogeneous pop-
ulation we consider a system with N interacting agents distributed among
inflexible (I), peaceful (P ) and opponent (O) agents. Each category refers
to a different behavior or feeling. Inflexible and opponent agents have be-
haviors mapped respectively to states s = ±1. Peaceful agents have a be-
havior mapped to the state s = 0. Inflexible agents never change state (see
also [89]) while peaceful and opponent agents may shift state from one to
another over time. Opponents may become peaceful and peaceful may be-
come opponents. Hence, neither peaceful nor opponent agents may assume
the state of inflexible agents. Inflexible agents interact with sensitive agents
both peaceful and opponents. During these pairwise interactions when an
inflexible agent meets an opponent it may well turn the opponent to peaceful
via different paths. Among those paths most are spontaneous through nor-
mal social and friendship practices. But as it will appear latter, exchanges
could become intentional as to promote coexistence with sensitive agents
via monitored informal exchanges. To account for all interacting pairs a
parameter α is introduced to represent on average the rate per unit of time
of encounters where opponents become peaceful agents. In parallel and in
contrast we introduce the parameter β to account on average for the rate
of success of opponents in convincing peaceful agents to turn opponents.
Contrary to inflexible agents opponents are acting intentionally to increase
the support to their radical view within the sensitive population. The value
of β is a function of the power of conviction of opponents. It also takes into
account the activeness of opponent agents since opponents are activists. It
is not the case of the core inflexible agents who interact spontaneously with
sensitive agents without an a priori goal. It is worth to stress that both α
and β may in principle vary over time. However, the corresponding time
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scale for variation is expected to be much longer than the time scale of the
dynamics driven by pairwise interactions. This is why at the present stage
of our work α and β are assumed to be fixed and constant. We emphasize
that our analytical approach entails to consider the system as if it was con-
tinuous, i.e. analyzing the relative densities of agents in the various states.
Going to the analytical details of our model we defined the following system
of equations 

dσP (t)
dt = ασIσO(t)− βσO(t)σP (t)

dσO(t)
dt = βσO(t)σP (t)− ασIσO(t)

σI + σP (t) + σO(t) = 1

(2.16)

where σI is the constant density of inflexible agents, while σO(t) and σP (t)
are the respective densities of peaceful and opponent agents at time t. Deal-
ing with densities the third equation of system 2.16 allows to reduce the
number of ODEs to one equation. In particular, choosing the peaceful agents
density σP (t) we get

dσP (t)

dt
= ασI(1− σI − σP (t))− β(1− σI − σP (t))σP (t) (2.17)

The equilibrium state of the population can be obtained from dσP (t)
dt = 0,

which reads

βσP (t)2 − (ασI + β(1− σI))σP (t) + ασI(1− σI)) = 0 (2.18)

The two solutions of equation 2.18 read

< σP >=
ασI + β(1− σI)±

√
[ασI + β(1− σI)]2 − 4βασI(1− σI)

2β
(2.19)

where < σP > is the equilibrium value of peaceful agents. Those values
simplify to

< σP >=

{
1− σI ≡ p1
α
βσI ≡ p2

(2.20)

which implies the two associated equilibrium opponent values

< σO >=

{
0

1− α+β
β σI

(2.21)

Indeed equation 2.17 can be solved analytically to yield

σP (t) = p2 +
p1 − p2

1− σP (0)−p1
σP (0)−p2 e

β(p1−p2)t
(2.22)

Figure 2.3 shows the evolution of the system on varying the initial conditions.
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Figure 2.3: Evolution of the system on varying initial conditions: a σI = 0.3,
and σO = 0.3, α = 1.0, β = 1.0. b σI = 0.3, and σO = 0.3, α = 1.0, β = 2.0.
c σI = 0.3, and σO = 0.3, α = 4.0, β = 2.0. d σI = 0.28, and σO = 0.02,
α = 0.5, β = 0.5. e σI = 0.3, and σO = 0.3, α = 1.0, β = 5.0. f σI = 0.1,
and σO = 0.4, α = 4.0, β = 2.0. g σI = 0.1, and σO = 0.4, α = 12.0,
β = 2.0. h σI = 0.1, and σO = 0.4, α = 22.0, β = 2.0. i σI = 0.28, and
σO = 0.7, α = 0.5, β = 0.5.
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2.2.2 Analysis of the Stability

We analyze the respective stability ranges for p1 and p2:

dσP
dt

(σP ) ' dσP
dt

(< σP >) + (σP− < σP >)λ (2.23)

where dσP
dt (< σP >) = 0 and λ ≡ d2σP

dtdσP
|<σP>, we obtain

λ = −[ασI + β(1− σI)] + 2βσP (2.24)

Therefore, for respective values p1, p2 we obtain{
λ1 = −ασI + β(1− σI) = β(p1 − p2)
λ2 = ασI − β(1− σI) = −β(p1 − p2)

(2.25)

Stability being achieved for λ < 0, equation 2.25 shows that p1(p2) is stable
when p1 < p2(p1 > p2). Accordingly we get two stable regimes:{

p1 ≤ p2 ⇔ σI ≥ Ic
p1 ≥ p2 ⇔ σI ≤ Ic

(2.26)

with Ic ≡ β
α+β . These two regimes yield the respective equilibrium values

for peaceful and opponent agents as from 2.20 and 2.21{
< σP >= p1 = 1− σI , < σO >= 0

< σP >= p2 = α
βσI , < σO >= 1− σI

Ic
= p1 − p2

(2.27)

The first equation of system 2.27 highlights that in some conditions the
amount of opponent agents is equal to zero. Hence, we perform a fur-
ther investigation to study under which conditions it is possible to avoid
the phenomenon of radicalization (i.e. by reaching the equilibrium state
< σO >= 0). In terms of opinion dynamics these results indicate that under
appropriate conditions it is possible to remove one opinion from the system.

Extinction processes

From the above results radicalization can be totally thwarted if σI ≥ Ic.
Accordingly, given σI and β the individual involvement for the inflexible
population in striking up with individual opponents must be at least at a
level

α > (
1

σI
− 1)β (2.28)

Therefore, as seen from equation 2.28 the larger σI the less effort is required
from the inflexible population. However, the more active are the opponents
(i.e., larger β) the more involvement is required. To visualize the multi-
plicative factor by which α must overpass β it is worth to draw the curve
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Figure 2.4: The curve 1
σN
−1 is shown as a function of σN . All cases for which

the value of α
β is above the curve (yellow, clear) correspond to situations for

which radicalization is totally thwarted. When the value of α
β is below the

curve (blue, dark) radicalization takes place on a permanent basis.

1
σI
− 1 as a function of σI as shown in fig 2.4. From Equation 2.28 it is

seen that to prevent radicalization inflexible agents’s involvement must be
either lower (α < β) or larger (α > β) than that of opponents depending
on the magnitude of the multiplicative factor 1

σI
− 1. When 1

σI
− 1 < 1, i.e.

σI >
1
2 core agents do not need to much individual engagement as could be

expected in the case of a coexistence of a core majority population with a
sensitive minority subpopulation. More precisely, the engagement depends
on the opponent activism but the core population benefiting from its ma-
jority status. In this case its requirement is always lower than the opponent
involvement. However, the situation turns difficult when the initial sensitive
minority turns to a majority status as it occurred in some specific urban ar-
eas. In that case to avoid a radicalization requires a very high individual
engagement from the core agents, which may be rather hard to implement.
In particular since no collective information is available about the situation.
We thus have three different cases: 1) σI >

1
2 , 2) σI = 1

2 , and 3) σI <
1
2 to

consider to determine the respective level of individual core involvement to
avoid the phenomenon of radicalization.
Case 1. For σI >

1
2 core agents need little involvement to thwart totally

the radicalization of the sensitive subpopulation with values of α much lower
than β. Indeed, opponent agents need to produce very high values of β (com-
pared to α) to survive, precisely the condition β ≥ ασI

(1−σI) must be satisfied.
However, very large values of β can shrink to zero the amount of peaceful
agents yielding a fully radicalized sensitive population, which although in
a small minority status may produce substantial violence against inflexible
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agents.
Case 2. For σI = 1

2 the opponent activism must be counter with an equal
core counter activism since α ≥ β makes opponent agents to extinct. In-
stead, for α < β peaceful and opponent agents coexist and the former disap-
pear for large values of β with again a fully radicalized sensitive population
with < σO >= σI .
Case 3. For values σI <

1
2 , if α = β the equilibrium condition entails that

< σP >= σI (and < σO >= 1− 2σI). If α > β, we can reach the extinction
of opponent agents as σI

Ic
= 1. In contrast when α < β opponent agents

strongly prevail in the population.

Degree of radicalization

In order to asses the degree of radicalization in a population we can intro-
duce two parameters: ζ and η. The former is defined to evaluate the fraction
of opponent agents among flexible agents while the latter (i.e. η) evaluates
the ratio between opponent and inflexible agents. Therefore, ζ represents
the relative ratio of opponents among flexible agents and η gives a measure
about the real power of opponents agents in a population. An high value
of ζ (i.e. close to 1) in a population with σI � 0.5 indicates that strate-
gies to fight radicalization are too weak but at the same time opponents
are few. Therefore, in this case governments should take an action even if
the situation seems still under control. On the other hand, a low value of
ζ (i.e., close to 0) together with a high value of η represent an alarming
situation. Indeed, even if there are only a few opponents among flexible
agents their amount is bigger than that of inflexible ones [90]. To evaluate
these measures, ζ and η have been defined as follows{

ζ = σO
1−σI

η = σO
σI

(2.29)

hence, recalling that σO = 1− σI − σP and having solved analytically σP (t)
(see 2.22) we are able to compute values of both parameters ζ and η at
equilibrium and on varying the initial conditions —see Fig 2.5. It is worth
to note that the parameter ζ as defined in 2.29 has a range in [0, 1]. At
equilibrium ζ = 0 means that there are no opponent agents in the popula-
tion while ζ = 1 means that all flexible agents became opponents. On the
other hand, the parameter η has potentially an unlimited range from 0 to
∞ (in the case σI is very close to 0 and σO to 1). To conclude, this partic-
ular case allows to show the number of applications based on an analytical
approach to population dynamics, from biological phenomena to complex
social processes.
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Figure 2.5: Radicalization degree quantified according to the parameters ζ and
η, on varying initial conditions: a σI = 0.3, and σO = 0.3, α = 1.0, β = 1.0. b
σI = 0.3, and σO = 0.3, α = 2.0, β = 1.0. c σI = 0.3, and σO = 0.3, α = 1.0,
β = 2.0. d σI = 0.3, and σO = 0.3, α = 4.0, β = 1.0.
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Part II

Statistical Physics of
Cooperation
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Chapter 3

Phase Transitions in the
Prisoner’s Dilemma

In this chapter, we introduce an analytical model for studying the evolu-
tion towards equilibrium in spatial games, with ‘memory-aware’ agents, i.e.
agents that accumulate their payoff over time [56]. In particular, we focus
our attention on the spatial Prisoner’s Dilemma, as it constitutes an em-
blematic example of a game whose Nash equilibrium is defection. Previous
investigations showed that, under opportune conditions, it is possible to
reach, in the evolutionary Prisoner’s Dilemma, an equilibrium of coopera-
tion. Notably, it seems that mechanisms like motion may lead a population
to become cooperative. In the proposed model, we map agents to particles of
a gas so that, on varying the system temperature, they randomly move. In
doing so, we are able to identify a relation between the temperature and the
final equilibrium of the population, explaining how it is possible to break the
classical Nash equilibrium in this game, under the condition that agents are
able to increase their payoff over time. Moreover, we introduce a formalism
to study order-disorder phase transitions in these dynamics.

3.1 Introduction

Here, we try to provide an analytical description of the spatial PD, in order
to explain how a population can become cooperative and to strengthen the
link between EGT and statistical physics. It is worth to highlight that we
consider ‘memory-aware’ agents, i.e., agents that accumulate their payoff
over time. Remarkably, this last condition represents the major difference
with most of the evolutionary game models studied by computational ap-
proaches. On the other hand, considering ‘memory-aware’ agents makes the
problem more tractable from an analytical perspective.

47
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3.2 Model

In the proposed model, we are interested in studying the spatial prisoner’s
dilemma by an analytical approach. Let us start by introducing the general
form of a payoff matrix

(C D

C R S
D T P

)
(3.1)

where the set of strategies is Σ = {C,D}: C stands for ‘Cooperator’ and D
for ‘Defector’. In the matrix 3.1, R is the gain obtained by two interacting
cooperators, T represents the Temptation, i.e., the payoff that an agent gains
if it defects while its opponent cooperates, S the Sucker’s payoff, i.e., the
gain achieved by a cooperator while the opponent defects, eventually P the
payoff of two interacting defectors. In the case of the PD, matrix elements
of 3.1 are: R = 1, 0 ≤ S ≤ −1, 1 ≤ T ≤ 2 and P = 0. As stated before,
during the evolution of the system agents can change their strategy from
C to D, and vice versa, following an updating rule, as for instance the one
named ‘imitation of the best’ (see [52]), where agents imitate the strategy
of their richest neighbor.

Mean field approach

Now, we consider a mixed population of N agents with, at the beginning,
an equal density of cooperators and defectors. Under the hypothesis that all
agents interact together, at each time step the payoffs gained by cooperators
and defectors are computed as follows{

πc = (ρc ·N − 1) + (ρd ·N)S

πd = (ρc ·N)T
(3.2)

with ρc + ρd = 1, ρc density of cooperators and ρd density of defectors. We
recall that defection is the dominant strategy in the PD and, even if we
set S = 0 and T = 1, it corresponds to the final equilibrium because πd
is always greater than πc. At this point, it is important to highlight that
previous investigations [52, 54, 55] have been performed by ‘memoryless’
agents (i.e., agents that do not accumulate the payoff over time) whose in-
teractions were defined only with their neighbors, and focusing only on one
agent (and on its neighbors) at a time. These conditions are fundamental.
For instance, if at each time step we randomly select one agent interacting
only with its neighbors, there exists the probability to select consecutively a
number of close cooperators; thus, in this occurrence, very rich cooperators
may emerge and then prevail on defectors, even without introducing mecha-
nisms like motion. It is also worth to observe that as P = 0, a homogeneous
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population of defectors does not increase its overall payoff. Instead, accord-
ing to the matrix 3.1, a cooperative population continuously increases its
payoff over time.
Now, we consider a population divided into two groups by a wall: a group
Ga composed of cooperators, and a mixed group Gb, i.e., composed of coop-
erators and defectors in equal amount. Agents interact only with members
of the same group, then the group Ga never changes and, in addition, it
strongly increases its payoff over time. The opposite occurs in the group
Gb, as it converges to an ordered phase of defection, limiting its final pay-
off. Remarkably, in this scenario, we can introduce a strategy to modify
the equilibria of the two groups. In particular, we can both change to co-
operation the equilibrium of Gb, and to defection that of Ga. In the first
case, we have to wait a while, before moving one or few cooperators to Gb,
so that defectors increase their payoff, but during the revision phase they
change strategy to cooperation as the newcomers are richer than them. In
the second case, if we move after few time steps a small group of defectors
from Gb to Ga, the latter converges to a final defection phase. These pre-
liminary and theoretical observations let emerge an important property of
the ‘memory-aware’ PD: considering the two different groups, cooperators
may succeed when act after a long time and individually. Instead, defectors
may succeed acting fast and in group. Notably, rich cooperators have to
move individually since otherwise many rich cooperators risk to increase too
much the payoff of defectors that, in this case, will not change strategy. The
opposite holds for defectors that, acting in group, may strongly reduce the
payoff of a community of cooperators (for S < 0).

Mapping agents to gas particles

We hypothesize that the spatial PD, with moving agents, can be successfully
studied by the framework of kinetic theory [24]. Therefore, in the proposed
model, we map agents to particles of a gas. In doing so, the average speed

of particles is computed as < v >=
√

3Tskb
mp

, with Ts system temperature,

kb Boltzmann constant, and mp particle mass. Particles are divided into
two groups by a permeable wall, so that it can be crossed by particles, but
it avoids interactions among particles belonging to different groups. Now,
it is worth to emphasize that we can provide a dual description of our sys-
tem: one in the ‘physical’ domain of particles, the other in the ‘information’
domain of agents. Notably, to analyze the system in the ‘information’ do-
main we will introduce, as above discussed, the mapping of agents to a spin
system (see [91]). Summarizing, we map agents to gas particles in order to
represent their ‘physical’ property of motion, and we map agents to spins
for representing their ‘information’ property (i.e., their strategy). Remark-
ably, these two mappings can be viewed as two different layers for studying
how the agent population evolves over time. Although the physical property
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(i.e., the motion) affects the agent strategy (i.e., its spin), the equilibrium
can be reached in both layers/domains independently. This last observation
is important since we are interested in evaluating only the final equilibrium
reached in the ’information’ domain. Then, as stated before, agents interact
only with those belonging to the same group, so the evolution of the mixed
group Gb can be described by following equations

dρbc(t)
dt = pbc(t) · ρbc(t) · ρbd(t)− pbd(t) · ρbd(t) · ρbc(t)

dρbd(t)
dt = pbd(t) · ρbd(t) · ρbc(t)− pbc(t) · ρbc(t) · ρbd(t)

ρbc(t) + ρbd(t) = 1

(3.3)

with pbc(t) probability that cooperators prevail on defectors (at time t), and
pbd(t) probability that defectors prevail on cooperators (at time t). These
probabilities are computed according to the payoffs obtained, at each time
step, by cooperators and defectors{

pbc(t) = πbc(t)

πbc(t)+π
b
d(t)

pbd(t) = 1− pbc(t)
(3.4)

The system 3.3 can be analytically solved provided that, at each time step,
values of pbc(t) and pbd(t) be updated. So, the density of cooperators reads

ρbc(t) =
ρbc(0)

ρbc(0)− [(ρbc(0)− 1) · e
τt

Nb ]
(3.5)

with ρbc(0) initial density of cooperators in Gb, τ = pbd(t) − pbc(t), and N b

number of agents in Gb. Recall that setting Ts = 0, not allowed in a ther-
modynamic system, corresponds to a motionless case, leading to the Nash
equilibrium in Gb. Instead, for Ts > 0 we can find more interesting scenarios.
Now we suppose that, at time t = 0, particles of Ga are much closer to the
wall than those of Gb (later we will relax this constraint); for instance, let
us consider a particle of Ga that, during its random motion, it is following
a trajectory of length d (in the n-dimensional physical space) towards the
wall. Assuming this particle is moving with speed equal to < v >, we can
compute the instant of crossing tc = d

<v> , i.e., the instant when it moves

from Ga to Gb. Thus, on varying the temperature Ts, we can vary tc.
Let us consider the payoff of cooperators in the two groups. Each cooperator
in Ga gains

πac = (ρac ·Na − 1) · t (3.6)

On the other hand, the situation for cooperators in Gb is much more different
as, according to the Nash equilibrium, their amount decreases over time.
Therefore, we can consider how changes the payoff of the last cooperator
survived in Gb

πbc =

t∑
i=0

[(ρbc ·N b − 1) + (ρbd ·N b)S]i (3.7)
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Figure 3.1: From a to e: Evolution of the group Gb, with N = 100 and ε = 1,
on varying the temperature: a. Ts = 0. b. Ts = 0.1. c. Ts = 9. d. Ts = 15. e.
Ts = 50. Insets show the system magnetization over time. The istant t = tc, can
be detected in plots c,d,e as a discontinuity of the two lines (i.e., red and black). f.
Final magnetization M , of Gb, for different temperatures (Tc indicates the ‘critical
temperature’).

moreover, πbc → 0 as ρbc → 0. At t = tc, a new cooperator reaches Gb, with
a payoff computed with equation 3.6.

3.3 Results

The analytical solution 4.3 allows to analyze the evolution of the system
and to evaluate how initial conditions affects the outcomes of the model.
Let us observe that, if πac (tc) is enough big, the new cooperator may modify
the equilibrium of Gb, turning defectors to cooperators. Notably, the payoff
considered to compute pbc, after tc, corresponds to πac (tc), as the newcomer is
the richest cooperator in Gb. Furthermore, we note that πac (tc) depends on
Na, hence we study the evolution of the system on varying the parameter
ε = Na

Nb , i.e., the ratio between particles in the two groups. Eventually, for
numerical convenience, we set kb = 1 · 10−8, mp = 1, and d = 1.
Figure 3.1 shows the evolution of Gb, for ε = 1 on varying Ts and, depicted
in the inner insets, the variation of system magnetization over time (always
inside Gb) (see [92]). As discussed before, in the physical domain of particles,
heating the system entails the average speed of particles increases. Thus,
under the assumption that two agents play together if they stay close (i.e.,
in the same group) for a long enough time, we hypothesize that exists a
maximum speed such that for greater values interactions do not occur (in
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terms of game). This hypothesis requires a critical temperature Tc, above
which no interactions, in the ‘information’ domain, are possible. As shown
in plot f of figure 3.1, for temperatures in range 0 < Ts < Tmax the system
converges to a cooperation phase (i.e., M = +1), for Tmax < Ts < Tc the
system follows the Nash equilibrium (i.e., M = −1), and for T > Tc a
disordered phase emerges at equilibrium. Remarkably, results of our model
suggest that it is always possible to compute a range of temperatures to
obtain an equilibrium of full cooperation —see figure 3.2. Moreover, we

Figure 3.2: Maximum values of temperature Ts that allow the groupGb to converge
to cooperation. Red values correspond to results computed with ε = 0.5, while
blue values to those computed with ε = 1. Circles are placed in the TS diagram
indicating values of T and S, of the payoff matrix, used for each case. Even for
high values of T , and small values of S, it is possible to achieve cooperation.

study the variation of Tmax on varying ε (see figure 3.3) showing that, even
for low ε, it is possible to obtain a time tc that allows the system to converge
towards cooperation. Eventually, we investigate the relation between the
maximum value of Ts that allows a population to become cooperative and
its size N (i.e., the number of agents). Remarkably, as shown in figure 3.4,
the maximum Ts scales with N following a power-law function characterized
by a scaling parameter (i.e., an exponent) γ ∼ 2. The value of γ has been
computed by considering values of Ts shown in figure 3.2 for the case ε = 2.
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Figure 3.3: Maximum value of system temperature that allows to achieve cooper-
ation at equilibrium versus ε (i.e., the ratio between particles in the two groups).
Different colors identify different trends, fitted by power-law functions. After the
final green plateau, temperatures are too high to play the spatial PD.

Eventually, it is worth to highlight that all analytical results let emerge a link
between the system temperature and its final equilibrium. Recalling that we
are not considering the equilibrium of the gas, i.e., it does not thermalize in
the proposed model, we emphasize that the equilibrium is considered only
in the information domain.

Phase Transitions in the spatial PD

As discussed before, in the information domain we can study the system by
mapping agents to spins, whose value represents their strategy. In addition,
we can map the difference between winning probabilities, of cooperators
and defectors, to an external magnetic field: h = pbc − pbd. In doing so, by
the Landau theory [24], we can analytically identify an order-disorder phase
transition. Notably, we analyze the free energy F of the spin system on
varying the control parameter m [73] (corresponding to the magnetization
M)

F (m) = −hm± m2

2
+
m4

4
(3.8)
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Figure 3.4: Maximum value of Ts to achieve full cooperation at equilibrium in
function of N , i.e., the size of the population. The fitting function (dotted line) is
a power-law characterized by a scaling parameter equal to 2.

where the sign of the second term depends on the temperature, i.e., posi-
tive for Ts > Tc and negative for Ts < Tc; recalling that Tc represents the
temperature beyond which it is not possible to play the PD due to the high
particles speed (according to the condition before discussed). For the sake of
clarity, we want to emphasize that the free energy is introduced in order to
evaluate the nature of the final equilibrium achieved by the system. In par-
ticular, looking for the minima of F allows to investigate if our population
reaches the Nash equilibrium, or different configurations (e.g., full cooper-
ation). Figure 3.5 shows a pictorial representation of the phase transitions
that occur in our system, on varying Ts and the external field h. Finally,
the constraints related to the average speed of particles, and to the distance
between each group and the permeable wall, can in principle be relaxed as
we can imagine to extend this description to a wider system with several
groups (as done in previous investigations, e.g. [54]), where agents are uni-
formly spread in the whole space. It is worth to highlight that our results
are completely in agreement with those achieved by authors who studied the
role of motion in the PD (as [52, 54]), explaining why clusters of coopera-
tors emerge in their simulations [54]. We also recall that, in the proposed
model, we are using memory-aware agents, while in previous computational
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Figure 3.5: Order-disorder phase transitions in the population. For Ts < Tc,
the population is in a ferromagnetic phase: a. Applying an external negative
field, the system converges to the Nash equilibrium, corresponding to m = −1 (as
σ = −1 represents defection); b. Applying an external positive field, the population
converges to cooperation (σ = +1), corresponding to m = +1. c. For temperatures
higher than Tc, a disordered paramagnetic phase emerges.

investigations agents reset their payoff at each step, i.e., before to start new
interactions.

3.4 Conclusion

To conclude, in this chapter we provide an analytical description of the
spatial Prisoner’s Dilemma, by using the framework of statistical physics,
studying the particular case of agents provided with memory of their payoff
(defined memory-aware agents). This condition entails that their payoff
is not reset at each time step, so that they can increase it over time. In
particular, we propose a model based on the kinetic theory of gases, showing
how motion may lead a population towards an equilibrium far from the
expected one (i.e. the Nash Equilibrium). Remarkably, the final equilibrium
depends on the system temperature, so that we have been able to identify a
range of temperatures that triggers cooperation for all values of the payoff
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matrix (related to the PD). In addition, we found an interesting relation
between the maximum temperature that foster cooperation and the size of
the system. Notably, a scaling parameter in that relation has been computed
by investigating different orders of magnitude of the size of the system.
Furthermore, the dynamics of the resulting model have been also described
in terms of order-disorder phase transitions.



Chapter 4

The Role of the Temperature
in the Public Goods Game

In this chapter, we aim to analyze the role of the temperature in the spatial
PGG [93], one of the most famous games in EGT. The dynamics of this game
is affected by a number of parameters and processes, namely the topology of
interactions among the agents, the synergy factor, and the strategy revision
phase. The latter is a process that allows agents to change their strategy.
Notably, rational agents tend to imitate richer neighbors, in order to increase
the probability to maximize their payoff. By implementing a stochastic
revision process, it is possible to control the level of noise in the system, so
that even irrational updates may occur. In particular, we study the effect of
noise on the macroscopic behavior of a finite structured population playing
the Public Goods Game. We consider both the case of a homogeneous
population, where the noise in the system is controlled by tuning a parameter
representing the level of stochasticity in the strategy revision phase, and
a heterogeneous population composed of a variable proportion of rational
and irrational agents. In both cases numerical investigations show that the
Public Goods Game has a very rich behavior which strongly depends on
the amount of noise in the system and on the value of the synergy factor.
To conclude, our investigation sheds a new light on the relations between
the microscopic dynamics of the Public Goods Game and its macroscopic
behavior.

4.1 Introduction

Here, we aim to provide a description of the PGG by the lens of statisti-
cal physics, focusing in particular on the impact of noise in the population
dynamics. Notably, for each individual the noise is controlled by a parame-
ter adopted in the strategy revision phase (SRP), i.e., the process allowing
the agent to update their strategy. The SRP can be implemented in several
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ways, e.g. considering rational agents that aim to increase their payoff. Usu-
ally, rational agents tend to imitate their richer neighbors, while irrational
agents are those that randomly change their strategy. Remarkably, tuning
the level of noise to interpolate between configurations where agents fully
utilize payoff information (low noise) to those where they behave at random
(high noise), strongly affects the macroscopic behavior of a population. Al-
though previous works (e.g. [94, 95, 96, 13]) focused on this topic (i.e. the
role of noise) in this game, a complete analysis is still missing. In particular,
we study the effect of noise in two different scenarios. We first consider the
case of a homogeneous population, where the intensity of noise in the system
is controlled by tuning the level of stochasticity of all agents during the SRP,
by means of a global parameter. The latter is usually indicated by K, and
defined as temperature or as an inverse degree of rationality [34]. Then, we
consider a heterogeneous population, characterized by two types of agents,
rational and irrational ones. While the former take their decision consider-
ing the payoff of their neighbors, the latter take decisions randomly. In the
second case, the noise is controlled by tuning the density of irrational agents
in the population. In both cases, we study the macroscopic dynamics of the
population and the related steady states, achieved for different amount of
noise and values of the synergy factor. It is worth to emphasize that the
synergy factor, before mentioned, is a parameter of absolute relevance in
the PGG, as it supports cooperative behaviors by enhancing the value of
the total contributions provided by cooperators. Eventually, we recall that
the influence of rationality in the PGG has been studied, by a probabilistic
approach, in [97] where authors implemented agents able to select (with a
given probability) between a rational and an irrational behavior.

4.2 Model

The PGG is a simple game involving N agents that can adopt one of the
following strategies: cooperation and defection. Those playing as coopera-
tors contribute with a coin c (representing the individual effort in favor of
the collectivity) to a common pool, while those playing as defectors do not
contribute. Then, the amount of coins in the pool is enhanced by a synergy
factor r, and eventually equally divided among all agents. The cooperators’
payoff (i.e. πc) and that of defectors (i.e. πd) read{

πc = rN
c

G − c
πd = rN

c

G

(4.1)

where N c is the number of cooperators among the G agents involved in
the game, r synergy factor, and c agents’ contribution. Without loss of
generality, we set c = 1 for all agents.
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We now discuss the main properties and processes that characterize a
population playing the PGG.

The Structure of the population

In the case of well-mixed populations of infinite size, the behavior of the
system behavior can be predicted as a function of the synergy factor r [34]
by studying the related Nash equilibria. In particular, when agents play in
groups of G players, two different absorbing states appear separated at a
critical point rwm = G. The population falls into full defection for r < rwm

and into full cooperation for r > rwm. Conversely, when agents are placed in
the nodes of a network, surprisingly some cooperators can survive for values
of r lower than rwm. This effect is known as network reciprocity [22, 13, 98],
since a cooperative behavior emerges as a result of the same mutualistic
interactions taking place repeatedly over time. At the same time, the net-
work structure allows a limited number of defectors to survive also beyond
r = rwm. We refer to the two critical values of r at which cooperators first
appear, and defectors eventually disappear from the population, respectively
as rc1 and rc2. It is worth mentioning that most investigations in EGT are
performed by numerical simulations and an analytical definition of the criti-
cal thresholds (i.e. rc1 and rc2) identified in networked topologies is missing.
As a result, when studying EGT models by arranging agents in different
spaces, the values of critical thresholds are achieved by Monte Carlo simula-
tions. In a networked population, depending on the values of r and on how
agents are allowed to update their strategy, it is possible to observe different
regimes: two ordered equilibrium absorbing phases, where only one strategy
survives (either cooperation or defection), and an active but macroscopically
stable disordered phase [56] corresponding to the coexistence between the
two species (i.e. cooperators and defectors).

The noise and the general set up of the model

A crucial parameter appearing in equation 8.1 is Ky, which plays the role
of noise and then parametrizes the uncertainty in adopting a strategy. No-
tably, a low noise entails agents to strongly consider the difference in payoff
∆p = πy − πx while deciding their next strategy, whereas increasing the
noise the payoff difference plays a more marginal role. In the case of a ho-
mogeneous population K is equal for all individuals, such that by tuning
the value of this global variable we are able to control the level of noise in
the system. In the limit of K = 0, the y-th agent will imitate the strategy
of the x-th agent with probability W = 1 if πx > πy, and W = 0 otherwise.
Conversely, in the limit K →∞ the SRP becomes a coin flip, and the imi-
tation occurs with probability W = 1/2 no matter the value of the synergy
factor. In the latter case the behavior of the PGG is analogous to that of a
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classical voter model [99] where imitation between a pair of selected agents
takes place with probability W = 1/2. Our study aims to confirm compu-
tationally results reported in [95, 35], and to evaluate the relation between
r and K, in order to provide a complete description of the PGG, from the
microscopic dynamics to the global behavior of the population. According
to previous investigations, setting K = 0.5 is often considered as a good
choice to describe a rational population with a moderate level of noise and
where only a limited number of irrational updates may occur. In the case of
bidimensional lattices with periodic boundary conditions —see Figure 4.1,
since each agent has four neighbors, group interactions involve G = 5 players
at a time. It has been shown in [3] that for such K the values of rc1, at
which cooperators emerge, and rc2, where defectors completely disappears
from the population, are respectively equal to 3.75 and 5.5. Instead, a coex-
istence between cooperators and defectors occurs for intermediate values of r
between the two thresholds (i.e. rc1 and rc2). Conversely, in the correspond-
ing PGG on well-mixed populations, where games are organized in groups
of the same size G = 5, the full defection and full cooperation regimes are
separated at the critical point rwm = 5. It is also possible to consider the
case of heterogenous populations where agents are characterized by different
values K. In such scenario, the simplest set up is the one where only two
different sets of agents exist: one endowed with K1 and one with K2 > K1.
Recalling that a higher value of K implies lower rationality in the SRP, by
varying the density f of one species, with 0 ≤ f ≤ 1, it is possible to control
the level of noise in the system and study the outcomes of the model in dif-
ferent conditions. For instance, setting K1 = 0.5 and K2 =∞, it is possible
to evaluate the influence of a density f of rational agents in driving the pop-
ulation towards a particular state. This is particularly useful to analyze the
behavior of a population whose agents have a different sensibility to their
payoff and, from a social point of view, it allows to study the influence of ra-
tionality in driving the population towards an equilibrium (or steady state).
As shown in related works from the sociophysics literature [64, 60], random
imitation is not the only relevant non-rational behavior able to impact the
way in which agents choose their next strategy. Just to cite few, investi-
gations driven on simple principles such as social conformity [100] (see also
Appendix A) or nonconformity [101], extremism [88], stubbornness [102] or
multiplexity [103] showed how simple changes in the microscopic dynamics
of the agents can significantly affect the social dynamics of a given popula-
tion [64, 104, 105, 106, 107, 108, 109, 110, 111, 112]. Eventually, we note
that in a heterogeneous population it could be interesting to consider more
complicated cases where agents are characterized by a broad distribution
of values of K, and can possibly change their own degree of rationality, for
instance by thermalization-like processes (i.e. when two agents play, they
modify their degree of rationality taking the average value of their current
K). Since in the PGG, the strategy of the x-th agent can be described
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Figure 4.1: (Color online). Pictorial representation of the PGG on the considered
topology. Agents are arranged in bidimensional square lattice with continuous
boundary conditions, forming a toroid as shown in (a). Each agent belongs to five
groups of size G = 5: one where he is the central player, in red, and four as a
peripheral node, in black (b). At each time step, two agents x and y are randomly
selected and they play the PGG with all the players in their groups for all groups
of belonging. In (c), we show the group where x and y are central: the green nodes
are neighbors of node x, and this group has a orange shadow; while neighbors of
agent y are cyan and this group has a violet shadow. The dotted lines in the area
between x and y indicate the intersection between the groups formed by x and y.
Notably, y belongs to the group formed by x and vice versa. In (d) we show for
both x and y one of the possible groups where they are peripheral.

by a binary variable sx = ±1, with +1 representing cooperation and −1
defection, the average magnetization [92] reads

M =
1

N

N∑
i=1

si, (4.2)

where M = 1 corresponds to full cooperation, while M = −1 to full defec-
tion. Since we are not interested in the sign of the prevalent strategy, but
only to which extent the system is ordered, we consider the absolute value
of the magnetization |M |. From equation A.1 it is straightforward to derive
the density ρ of cooperators in the population

ρ =
M + 1

2
(4.3)
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so that we can identify the two (ordered, i.e. |M | = 1) absorbing states
corresponding to ρ = 1 (i.e. full cooperation) and ρ = 0 (i.e. full defection).
At last, another interesting order parameter useful to detect fluctuations
in the system’s behavior is the standard deviation of the fraction of coop-
erator σ(ρ) obtained over the different runs. In the following section, we
describe the macroscopic state of the system by reporting the average value
of ρ, σ(ρ), |M | and T averaged over 100 simulations for all the considered
configurations.

4.3 Results

We performed several numerical simulations of the PGG, for different val-
ues of the synergy factor r and the noise (measured either in terms of K
or density of irrational agents 1 − f), in a population of N = 104 agents
distributed on a bidimensional lattice with periodic boundary conditions.

Homogeneous Populations. Let us here show results for the homo-
geneous case, where the level of noise in the system is controlled by the
global variable K used in the SRP. We first analyze the strategy distri-
bution diagram, which reports the average density of cooperators 〈ρ〉 as a
function of r and K —Figure 4.2. Here, we observe that the PGG has
a very rich behavior. For instance, plot a of Figure 4.2 shows 5 different
regions (below described) of interest when studying the density of cooper-
ators at equilibrium. Notably, low values of K (i.e., K < 10) let emerge
three phases as a function of r in the considered range (i.e., from 3.4 to
6.0): two ordered phases (i.e., full defection and full cooperation) for low
and high values of r, and a mixed phase (i.e., coexistence) for intermediate
values of r. Therefore, at a first glance, an order-disorder phase transition
of second kind emerges crossing the region labeled (1) in the first strategy
distribution diagram (i.e., (a) of Figure 4.2). For higher values of K, next
to K = 10, the active phase vanishes and the population always reaches an
ordered phase. A more abrupt phase transition between the two ordered
phases, separating region (2A) (full defection) and (2B) (full cooperation),
appears, resembling analytical results obtained for the well-mixed approxi-
mation, even if fluctuations are possible near the critical point r = 5. For
greater values of K, the region of r around r = 5 such that both ordered
states are attainable increases. In such range of values the system behaves
as a biased voter model, where the absorbing states of cooperation (defec-
tion) is favored for r > 5 (r < 5). In the limit K → ∞, the behavior of
the system approaches that of a classical unbiased voter model, no matter
the value of the adopted synergy factor. Plots (b) and (c) of Figure 4.2
confirm the main differences among the five regions of plot (a). The former
shows that the population does not reach an ordered phase for intermediate
values of r around r = 5 and low K, and the simulation is only stopped
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Figure 4.2: (Color online). Strategy distribution diagram showing the average
density of cooperators 〈ρ〉 at the steady state (a), time to reach the absorbing
state T (b) and standard deviation of the density of cooperators 〈ρ〉 at the steady
state (c) as a function of the synergy factor r and the rationality K. Different
regions are highlighted. In region (1) the system is stuck in a metastable active
phase, macroscopically at the equilibrium, with coexistence of cooperators and
defectors due to network reciprocity (the simulations have been stopped after T =
106 updates per agent). In region (2) the system always reaches the absorbing
state predicted by the well-mixed population approximation, i.e. full defection for
r < rwm = 5 and full cooperation for r > rwm. In region (3) both steady states
become accessible with different probability, as in a biased voter model. Results
are averaged over 100 simulation runs.

once the average number of updates is equal to the considered maximum
number T = 106 with the system macroscopically at the steady state. Con-
versely, for different parameters the population reaches an absorbing state
(i.e. full defection or cooperation) relatively quickly. Instead, plot c shows
that the variance reaches a maximum value (as expected), σ(ρ) = 1/2, when
the PGG behaves like a voter model, while smaller non-null values are also
obtained for the active phase, due to the existence of fluctuations. In order
to obtain a deeper characterization of the phase transitions occurring in the
PGG, we study the average absolute value of the magnetization |M |, as a
function of the synergy factor for different K values. As shown in plot (a) of
Figure 4.3, only for values of K < 10 there are values of the synergy factors
r such that 〈|M |〉 6= 1, since at K ≈ 10 a more abrupt phase transition be-
tween full defection and full cooperation emerges, resembling the first-order
first transition predicted analytically in the case of well-mixed population of
infinite size. Then, we note that for all K values in the range [0 ≤ K ≤ 10],
it is possible to find a synergy factor r such that |M(r)| = 0. Notably, as
K increases, the difference between the two critical thresholds rc1 and rc2
goes to zero as both converge quickly towards rwm = 5, eventually hitting
such value at K ≈ 10 —see plot (b) of Figure 4.3. Furthermore, we also
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observe that the value of r0, for which cooperators and defectors coexist in
equal number in the active phase, is always smaller than rwm —see plot (b)
of Figure 4.3. Here, we remark that r0 separates the active phase in two
regions, where either defectors (1A) or cooperators (1B) are predominant.
Eventually, both plots (c) and (d) of Figure 4.3 clearly confirms the previ-
ous investigations. For instance, for K = 10000 the density of cooperators
becomes almost flat as in a Voter model (see plot (c) of Figure 4.3).

Heterogeneous Populations. We now consider the case of a het-
erogenous population, where a density of agents f (0 ≤ f ≤ 1) withK1 = 0.5
is inserted, spatially at random, in a population of irrational individuals
which perform coin flips to decide their strategy. In this configuration, the
level of noise is controlled by the variable f , and the lower its value the
higher the stochasticity in the population. As shown in Figure 4.4, the
strategy distribution diagram obtained as a function of the different values
of noise is qualitatively comparable to the previously considered case. As f
goes to 1 the PGG turns its behavior to the expected one for a population
composed of only rational individuals (i.e., rc1 = 3.75 and rc2 = 5.5). Re-
markably, the outcomes shown in Figure 4.4 suggest that for values as small
as f ∼ 3%, the PGG shows an active phase (i.e., the network reciprocity
still holds). Thus, very few rational agents are able to provide the popula-
tion an overall rational behavior at equilibrium. See plot (b) of Figure 4.4
to observe the scaling for the critical values of the synergy factor: rc1 (at
which cooperators first appear), rc2 (at which defectors disappears), and
r0 (where cooperators and defectors coexist in equal proportion). Finally,
considering both the homogenous and heterogenous case here presented, it
is important to highlight that our analyses do not study the evolution of
a population over time, but focus on the final equilibria (or steady-state).
Therefore, further investigations of the proposed models could be related to
this aspect (i.e. a time-dependent investigation). For instance, it would be
of absolute interest studying the emergence of clusters in the population, as
in the theory of percolation [24].

4.4 Conclusion

The aim of this work is to provide a detailed study of the role of noise in the
PGG by the lens of statistical physics. Notably, the proposed model allows to
define a clear relation between the noise introduced in the microscopic indi-
vidual behavior and the macroscopic properties of a population. To achieve
this goal, we start from the theoretical considerations presented in [94, 95],
then considering a richer scenario and controlling the noise in two different
cases: a homogeneous population (i.e. all agents have the same degree of
rationality) and a heterogeneous one (i.e. more degrees of rationality are
considered). The phase diagram resulting from numerical simulations shows
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the influence of the synergy factor r and of the noise in the macroscopic
behavior of the population. So, beyond confirming results reported in works
as [94, 13], our investigation extends to further insights. Notably, the phase
diagram (see Figure 4.2) shows many interesting regions. For a finite range
of values of low noise, there exists a second order phase transition between
two absorbing states as a function of r, with the presence of a metastable
regime between them (region (1) —see plot (a) of Figure 4.2). For higher
values of noise the active phase and network reciprocity disappears (regions
(2A) and (2B) —see plot (a) of Figure 4.2) and the system always reaches
an ordered state. In particular, cooperation (defection) is usually reached
if r is greater (smaller) than the group size G = 5, even if fluctuations are
possible next to the critical point due to the finite size of the system. As
the level of noise increases, the system approaches the behavior of a classical
voter model (region (3) —see plot (a) of Figure 4.2), where either one of
the two ordered phase is reached no matter the value of the synergy factor.
From the analysis of the heterogenous population case, we note that even
a very small density f of rational agents, f ≈ 3%, allows to observe a net-
work reciprocity effect. In such sense, beyond the physical interpretation
of our results, we deem important to highlight that, from the perspective
of EGT and from that of sociophysics, the PGG is a system that ’correctly
works’ even in the presence of few rational players. Here, saying that the
system ’correctly works’ means that the equilibrium predicted for given a
r by the analysis of the Nash equilibria of the system in the well-mixed
approximation is achieved. Finally, it might be interesting to investigate
the behavior of the PGG for populations with greater heterogeneity in the
rationality of the agents, and possibly change it over time. For instance, we
think that investigating a model where agents modify their K due to simple
interactions, as in thermalization-like contact processes, might be relevant
to get further insights on these dynamics. In particular, even if the average
value of K in the population is constant, we reckon that differences might
emerge with regard to the final steady state of the corresponding homoge-
neous population, due to the existence of a different initial transient where
the distribution of K is non-trivial. To conclude, this work extends results
reported in previous analyses on the role of noise in the spatial PGG and
aims to link evolutionary game theory to other spin models, such as the
voter model, more rigorously studied in the context of statistical physics.
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Figure 4.3: (Color online) In the top panels we focus on the transition from the
active phase towards the ordered phase. In (a) we show the average absolute
value of the magnetization 〈|M |〉 as a function of the synergy factor r for different
K. As the temperature K increases, the range of r giving rise to an active phase
shrinks around r = rwm = 5 up to a critical value beyond which network reciprocity
disappears. The scaling as a function of K of the two extreme points of the active
range, rc1 and rc2, as well as the value of r0 for which |M | = 0, are shown in
(b). In the bottom panels we show the average density of cooperators 〈ρ〉 (c) and
the standard deviation σ(ρ) for selected values of K (d). For the three smallest
temperatures the system crosses region (1), marked by a second order transition in
〈ρ〉 and small values of σ. For K = 50, on each single run the system always reaches
one of the two absorbing states. 〈ρ〉 is equal to 0 (1) for low (high) values of r, but
takes intermediate values around r = 5. The transition is quite steep and σ(ρ) = 0
unless around r = 5. For higher values of K, for even a greater range of values
of r around r = 5 both full defection or cooperation are achievable, 0 < 〈ρ〉 < 1
and σ > 0. In such regime the system behaves as a biased voter model under the
external field r − rwm. As K increases, the behavior of an unbiased voter model,
no matter the value of r, is approached. Results are averaged over 100 simulation
runs.
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Figure 4.4: (Color online) (a) Strategy distribution diagram showing the average
density of cooperators 〈ρ〉 as a function of the synergy factor r and the fraction of
rational agents in the population f , i.e., those provided with K1 = 0.5.(b Critical
thresholds rc1, rc2 of synergy factors, and the value r0 for which cooperators and
defectors coexist in equal number as function of the fraction f of rational agents.
Results are averaged over 100 simulation runs.
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Chapter 5

Collective Influence in the
Public Goods Game

In this chapter, we investigate the spatial PGG considering the presence
of agents susceptible to the local field generated by their nearest neigh-
bors [106]. Notably, in the PGG, agents can be usually defined as fitness-
driven agents when modify their strategy according to payoff-based rules.
At the same time, representing strategies as spins, allows to investigate the
role of local fields in the process of strategy selection (or ’strategy revision
phase’). In particular, some agents can be susceptible to their local fields,
while others are susceptible to their payoff. So, in social terms, agents sus-
ceptible to local fields can be considered as conformist agents. As result,
here we study a population composed of two kinds of agents: fitness-driven
agents and conformity-driven agents. The relevance of this investigation
is related to the number of behaviors we may observe in real social sys-
tems as stubbornness, altruism, and selfishness. In particular, the fitness is
mapped to the agents’ payoff, so that richer agents are those most imitated
by fitness-driven agents, while conformity-driven agents tend to imitate the
strategy assumed by the majority of their neighbors. Numerical simulations
aim to identify the nature of the transition, on varying the amount of the
relative density of conformity-driven agents in the population, and to study
the nature of related equilibria. Finally, we found that the susceptibility to
local fields generally fosters ordered cooperative phases, and may also lead
to bistable behaviors (see also Appendix A for further details on the role of
conformity in social processes).

5.1 Introduction

Here, we study the spatial PGG considering a population with agents sus-
ceptible to local fields. Notably, since strategies are mapped to spins, local
fields are generated by the strategy of a set of agents. Therefore, in social
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terms, being susceptible to local fields entails to behave as a conformist. As
result our population is composed of conformity-driven agents and fitness-
driven agents. Thus, while the former tend to update their strategy with
the most adopted one in their neighborhood, the latter tend to imitate their
richest neighbor (i.e., the most fitted). In physical terms, conformity-driven
agents correspond to agents susceptible to the influence of a local field, i.e.
that generated by their nearest-neighbors. Notably, a field results from a
number of spins, and the latter corresponds to the strategy of our agents. Al-
though the PGG exhibits a theoretically predicted Nash Equilibrium of de-
fection, previous works identified several strategies to support cooperation,
spanning from awarding mechanisms (e.g. [34]) to optimal game settings.
Notably, in [34] authors report that the synergy factor, usually indicated as
r, adopted to compute the agents’ payoff, can be opportunely tuned in or-
der to support cooperation on bi-dimensional regular lattices. This result is
very important as it entails that if the payoff of cooperators reaches, or over-
takes, a minimum value, all agents turn their strategy to cooperation. As
below, the minimum threshold of the synergy factor depends on the topol-
ogy of the population (i.e., the way agents are arranged). Therefore, adding
a social influence in the PGG implies dealing with two degrees of freedom:
the synergy factor r (whose individual effect is known) and the density of
conformist agents ρc. The proposed model is studied by means of numerical
simulations and performed by arranging agents that play a spatial PGG on
a bi-dimensional regular lattice with periodic boundary conditions.

5.2 Model

In general, the PGG considers a population of N agents that can adopt two
different strategies: cooperation and defection. At each time step, cooper-
ators provide a unitary contribution to a common pool, whereas defectors
do the opposite, i.e., not contribute. After all agents have made a deci-
sion and accumulated their corresponding payoff, they undergo a round of
strategy revision phase, i.e. they can change their strategy from coopera-
tion to defection, or vice versa. In doing so, the population evolves until
it reaches a final equilibrium (or steady-state). The synergy factor plays a
key role in this dynamics [34], as it promotes cooperation. Notably, it is
possible to compute, for a given topology (e.g. square lattice), the minimal
value of r, here denoted as rm, for which any r > rm allows cooperators
to survive, or even to dominate. From a statistical physics perspective, in
particular referring to the Curie-Weiss model [135], we can now identify two
different phases (or equilibria) [24]: a paramagnetic equilibrium in which
we observe the coexistence of cooperators and defectors, and a ferromag-
netic equilibrium, implying that one species prevails. Typically, the basic
dynamics of the PGG let agents change their strategy according to rules
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Figure 5.1: (Color online) Cooperation diagram on varying ρc in a population with
N = 104. a ρc in range ∈ [0.0, 1.0]. b ρc in range ∈ [0.9, 1.0]. Red corresponds to
areas of cooperation, while blue to those of defection. Results are averaged over 50
simulation runs and have been computed using 11× 11 parameter values.

based on the payoff [1], e.g. agents imitate their richest neighbor, which is
our definition of rational thinking [113]. In our model we aim to investigate
the outcomes of the PGG in heterogeneous populations, i.e. composed of
fitness-driven agents (FDAs) and conformity-driven agents (CDAs). Specif-
ically, we map the fitness to the agents’s payoff, so that the richest one is
the fittest one. This assumption is far from general, as the fitness might
be related to various factors, but we believe to be anyhow characterizing
several realistic economic systems. Thus, in our model, FDAs tend imitate
the richest neighbors, while CDAs tend imitate the most adopted strategy.
So the imitation process, in particular for CDAs, depends on the local con-
nectivity of the underlying interaction structure (i.e. the adopted topology).
As result our population is composed of N = Nf +Nc agents, with Nf is the
number of FDAs and Nc that of CDAs. Thus, we can introduce ρf = Nf/N
and ρc = Nc/N to identify the density of FDAs and CDAs, respectively. For
the sake of clarity, we use the convention in which upper indices refer to the
strategy (i.e. cooperation and defection), while lower indices to the agent’s
nature (i.e. conformity-driven and fitness-driven). Both FDAs and CDAs
change strategy by a stochastic rule. In particular, we implement a Fermi
rule [34] to compute the transition probability between two different strate-
gies for FDAs. CDAs adopt a simple majority voting [60] rule to decide their
next strategy: an agent computes the transition probability according to the
density of neighbors having the strategy of majority. In doing so, FDAs act
rationally, while CDAs follow a social behavior (i.e. conformism). Following
the prescription of [34], we arrange agents in a bi-dimensional regular lattice
of degree 4 with periodic boundary conditions (a torus). Summarizing, our
population evolves according to the following steps:

1. At t = 0, set an equal number of cooperators and defectors, and the



72CHAPTER 5. COLLECTIVE INFLUENCE IN THE PUBLIC GOODS GAME

density of conformists ρc ∈ [0, 1];

2. select randomly one agent x, and select randomly one of its neighbors
y;

3. each selected agent plays the PGG with all its five communities, then
computes its payoff;

4. agent y performs the strategy revision phase according to its nature;

5. repeat from (2) until an ordered phase is reached, or up to a limited
number of time steps elapsed.

We remark that the neighborhood for each agent has always 4 agents. There-
fore, one agent plays in 5 different groups at a time, all composed of 5
members. Finally, we remind that agents may change strategy, i.e. from
cooperation to defection (and vice versa), but they cannot change their na-
ture (i.e. fitness-driven and conformity-driven). Although in real social
systems individuals might change also their behavior (e.g. from CDA to
FDA), in this work we aim to analyze the relation between the density of
CDAs and the outcomes of the PGG. Therefore, we need to assume agents
keep constant their behavior.

5.3 Results

We investigate the behavior of the proposed model for different values of ρc,
from 0 to 1, and of r. The latter assumes values in the range [3, 6] since,
in this topology, it is known from [34] that the two thresholds for different
equilibria are rm = 3.74 and rM = 5.49 in a FDA population. The threshold
rm indicates that lower values of r lead the population towards a phase of
full defection at equilibrium. For intermediate values of r, i.e. rm ≤ r ≤ rM ,
the population reaches a disordered phase, i.e. a mixed phase characterized
by the coexistence of both species at equilibrium; eventually, for values of
r > rM cooperators succeed, i.e. the population reaches an ordered phase
of full cooperation. In order to investigate the proposed model, we perform
numerical simulations with populations of different size, from N = 102 to
N = 104. The first analysis is related to the distribution of strategies, at
equilibrium, on varying the synergy factor r and the density of conformists
ρc — see figure 5.1. It is worth noting that the disordered phase becomes
narrower as ρc increases. Notably, we observe that rm and rM are strongly
affected by ρc. At a first glance, as also reported in [4], conformism fosters
cooperation, as rM strongly reduces while increasing ρc. On the other hand,
for ρc = 1 a bistable behavior is expected as agents change strategy without
considering the payoff. In particular, the minimal threshold of synergy factor
to avoid cooperators disappear reduces to values smaller than r = 3.75
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Figure 5.2: (Color online) Variance (σM ) of the order parameter M as a function
of the synergy factor r, for different configurations: a N = 104. b ρc = 0.0. c
ρc = 0.3. d ρc = 0.6. Since we adopted a logarithmic scale for the y-axis, we
highlight that all values equal to 10−5 correspond to 0.

(computed in [34] and confirmed here for ρc = 0.0) when ρc is greater than
0.85. Moreover, considering the higher threshold rM (i.e. that to obtain
full cooperation for ρc = 0.0), we observe that even with low density of
conformist agents, rM decreases, up to reach a value slightly smaller than
4.0. In the range ρc ∈ [0.9, 1.0], a closer look allows to note a richer behavior
of our model — see plot b of figure 5.1. We notice that defectors succeed
only for values of r smaller than 3.6, while cooperators succeed for values
of r greater than 3.78. As result the mixed phase is obtained only in a
narrow range between the two listed values (i.e. 3.6 ≤ r ≤ 3.78). For values
of ρc ≥ 0.97 a bistable behavior can be observed: sometimes cooperators
succeed, while other times fail (i.e. defectors succeed). Thus, since our
results are computed as average values of different simulation runs, the colors
represented in both plots of figure 5.1 in some cases reflect the probability
to find the final population in a given status starting with those initial
conditions (i.e. r and ρc).

In order to characterize the transition at fixed ρc, since we observe qual-
itatively different phases, we tentatively try to identify the transition lines
by studying the behavior of the variance as a function of r, which as we
will see play the role of inverse ‘temperature’. Here, the variance σM is
referred to the magnetization of the system [92], which we identify as our
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Figure 5.3: (Color online) Probability to succeed as a function of the synergy factor
r, in a population with N = 104, for the two species: cooperators, i.e., red dotted
line (Diamonds 3), and defectors, i.e., blue dotted line (Circles ◦). a ρc = 0.0. b
ρc = 0.9. c ρc = 0.99.

order parameter (as discussed in chapter 2), and given by

M =
1

N

N∑
i=1

si (5.1)

with si strategy of the i-th agent, i.e. s = ±1. Hence, the variance σM is
computed numerically, but can be easily identified as the susceptibility of
the order parameter χ,

σM =
1

Z

Z∑
i=1

(Mi − 〈M〉)2 ≡ χ (5.2)

with Z number of simulations performed under the same conditions (i.e.
fixed r and ρc) and 〈M〉 average magnetization (computed in the same
conditions). Plot a of figure 5.2 (a) shows the variance σM for different values
of ρc: 0, 0.3, 0.6, 0.9, as a function of the synergy factor r. As expected, we
found that for ρc = 0.0 the variance is maximum at rm ∼ 3.75. Plots b, c,
d of figure 5.2 illustrate how these curves scale as we increase the number of
agents for ρc = 0.0, ρc = 0.3 and ρc = 0.6, respectively. We observe that in
the case ρc = 0.6, the limit N → ∞ is critical, i.e. we find that there seem
to exist a rcrit for which limN→∞ χN ≡ χ ≈ (r− rcrit)−α for some exponent
α > 0. The universality class will be studied elsewhere.

Then, in order to characterize the bistable behavior shown in Figure 5.1,
we study the probability for the system of being in the defecting or in the
cooperating phase at the end of the simulation, as a function of r (see
figure 5.3) and of ρc (see figure 5.4). In figure 5.3 the two dotted lines refer
to the winning probabilities of defectors (i.e., blue) and of cooperators (i.e.,
red). Therefore, for ρc = 0.0, the two curves are zero in the intermediate
range of r, i.e., 3.75 ≤ r ≤ rM , as none is expected to completely succeed.
Remarkably, increasing ρc we found a decreasing paramagnetic range of r,
disappearing for values ρc ≥ 0.8. As shown in plots b and c of figure 5.3,
at least one curve is always greater than zero. Although we are dealing
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Figure 5.4: (Color online) Probability to succeed as a function of the density of
conformists ρc, in a population with N = 104, for the two species: cooperators, i.e.,
red dotted line (Diamonds 3), and defectors, i.e., blue dotted line (Circles ◦). a
r = 3.75. b r = 4.0. c r = 5.25.

with success probabilities, it is worth noting that the summation of values
taken by the two curves has to be ≤ 1, thus even zero as it means that none
succeeds once the disordered phase is reached. Moreover, figure 5.3 allows
to observe the emergence of a bistable behavior, e.g. for ρc = 0.9 at r = 3.75
we have both curves having the same Pw, i.e., about 50% of cases defectors
prevail, while in the remaining cases cooperators succeed. Figure 5.4 aims
to characterize the same bistable behavior on varying ρc and keeping fixed
r. Plot a of Figure 5.4 refers to r = 3.75 and it lets emerge an interesting
result: in the range 0.2 ≤ ρc ≤ 0.7 defectors prevail. This indicates that
in this region conformism promotes defection, being 0 the expected value of
Pw for both species. Moreover, the bistable behavior emerges as ρc ≥ 0.8.
Plot b of figure 5.4 refers to r = 4.0 and shows that the upper bound of the
paramagnetic phase (i.e., rM ) is reduced to 4.0 as ρc ≥ 0.8. Then, a bistable
behavior emerges for ρc ≥ 0.92. Eventually, in plot c of figure 5.4 referred to
r = 5.25, we see that even for lower values of ρc cooperators succeed, and the
bistable behavior emerges for ρc ≥ 0.93. In the light of these results, we can
state that when r is close to the lower bound of the paramagnetic phase,
i.e., rm, conformism supports defection until the emergence of a bistable
behavior. While, for higher values of r, conformism supports cooperation,
and only for high values of ρc the system becomes bistable.

Finally, we construct an approximate phase diagram of our system —
see figure 5.5. In the top part we have the domination of cooperation (i.e.,
red), and in the lower one that of defection (i.e., blue). Along the line
separating the two parts above identified (at fixed r), we find an important
point indicated as ρ∗ below described. In an area of the left diagram between
defection and cooperation, for ρc < ρ∗ and rm < r < rM (ρc), defectors and
cooperators coexist, with the prevalence of the former. In this region, it
is possible to change the parameters to reach smoothly the cooperation
region. For ρc > ρ∗ we have the coexistence of cooperation and defection
on the transition line r = rm, due to the fact that rM approaches rm as an
increasing function of ρc. The point in which rM = rm is a triple point.
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Figure 5.5: (Color online) For rm < r < rM and ρc < ρ∗, we observe a
phase where defection and cooperation coexist, represented in the dashed
white line, where the variance is continuous. For ρc > ρ∗, the transition
from defection to cooperation is sharper at rc. This picture gives the idea
of the existence of a triple point at r = rm, ρc = ρ∗ where three different
behaviors coexist.

5.4 Conclusion

Summarizing, we studied the spatial PGG in the presence of agents sus-
ceptible to local fields, i.e. to the influence of their nearest neighbors. In
particular, we considered two different kinds of agents: conformity-driven
agents (CDAs) and fitness-driven agents (FDAs). The former are those
that tend imitate the strategy of majority, while the latter are those that
tend to imitate the richest players. In both cases, CDAs and FDAs up-
date their strategy by considering only their neighborhood. Previous stud-
ies [98, 114, 115] reported that social influences strongly affect evolutionary
games. The proposed model is different from those implemented in previ-
ous investigations (e.g. [98, 115]), results are similar and, on a quality level,
further extends their findings. Here, we highlight the prominent role of con-
formism in the spatial PGG: it seems that this social influence may lead
the population towards different phases and behaviors, as full cooperation
and bistable equilibria. In particular, conformism promotes the population
to reach an ordered phase, even when a disordered one is expected. For
intermediate densities of conformists (e.g. 0.5), the final equilibrium is that
closer to that one would expect considering only FDAs, at a given r. There-
fore, our investigations suggest that conformism drives the system towards
ordered states, with a prevalence for cooperative equilibria. Eventually, we
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focused on the identification of an order-disorder transition [24, 116] that
characterizes the behavior of our population on varying the degrees of free-
dom. To conclude, we found that the spatial PGG under social influences
has a very rich behavior, characterized by different final states.
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Part III

Applications
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Chapter 6

Solving Optimization
Problems by the Public
Goods Game

As first application, we introduce a method based on the Public Goods Game
for solving optimization tasks [117]. In particular, we focus on the Traveling
Salesman Problem, i.e. a problem whose search space exponentially grows
increasing the number of cities, then becoming NP-hard. The proposed
method considers a population whose agents are provided with a random
solution to the given problem. In doing so, agents interact by playing the
Public Goods Game using the fitness of their solution as currency of the
game. Notably, agents with better solutions provide higher contributions,
while those with lower ones tend to imitate the solution of richer agents
for increasing their fitness. Numerical simulations show that the proposed
method allows to compute exact solutions, and suboptimal ones, in the
considered search spaces. As result, beyond to propose a new heuristic
for combinatorial optimization problems, our work aims to highlight the
potentiality of evolutionary game theory beyond its current horizons.

6.1 Introduction

Here, we propose a method based on the Public Goods Game for solving
combinatorial optimization problems. In the last years, many evolution-
ary algorithms [118, 119] have been proposed for solving optimization prob-
lems [120, 121, 122], as for instance genetic algorithms [118] and ant colonies
heuristics [123]. Remarkably, optimization problems have been widely in-
vestigated also within the realm of statistical physics [124, 125, 126, 127,
128, 129, 130, 131], where theoretical physics and information theory meet
forming a powerful framework for studying complex systems [23, 132]. For
instance, a statistical physics mindset approach in combinatorial optimiza-

81
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tion problems emerges when the set of feasible solutions, of a problem like
the Traveling Salesman Problem [133, 134] (TSP hereinafter), is represented
in terms of an energetic landscape. In doing so, the searching of a solution
corresponds to the searching of a minimum of free energy, in a landscape
whose global minimum, i.e. the deepest valley, corresponds to the opti-
mal solution of the problem. Different models as the Curie-Weiss [135]
and spin glasses [136, 137] have an energy that can be studied by the Lan-
dau formulation of phase transitions [24]. These models are successfully
adopted for facing different issues as opinion dynamics [27], information re-
trieval [128, 138], optimization tasks [124, 139] and learning processes [128].
Using the metaphor of the energy, heuristics like genetic algorithms [118]
and swarm logics [123], implement strategies as genetic recombination, mu-
tation, and collective motions, for surfing the energetic landscape with the
aim to reach one of the deepest valleys in a finite time, i.e. a good subopti-
mal solution of a problem. Therefore, parameters as the mutation rate used
in genetic algorithms can be compared to physical parameters as the sys-
tem temperature. In the proposed model, we adopt a mechanism based on
partial imitation [139]: when an agent interacts with another one having a
higher fitness, the former imitates a part of the latter’s solution. For exam-
ple, in the TSP, the weaker agent imitates only a part of the path traveled
by a stronger opponent. In doing so, agents are able to generate solutions
over time, with the aim to achieve the optimal one. In physical terms, a par-
tial imitation can be interpreted as a slow cooling process of a spin particle
system, where the slowness comes from an imitative dynamics that is only
‘partial’ (i.e. only few entries of a solution array are imitated). Our model
considers an agent population, whose interactions are based on the Public
Goods Game (PGG hereinafter). As we know from evolutionary game the-
ory (EGT hereinafter) [34], the outcomes of the classical PGG are affected
by a parameter defined synergy factor r, used for supporting cooperators.
Here, as shown below, this parameter (i.e. r) has a marginal interest, how-
ever what is relevant for our investigations is that an ordered phase (i.e. the
prevalence of a species in the population) can be reached by an opportune
tuning of its value. Usually, in EGT models, a species indicates a set of
agents with the same strategy, e.g. cooperation, whereas in the proposed
model a species corresponds to a set of agents having the same solution of
a TSP. In general, ordered phases entail all agents have the same state (or
strategy in EGT), i.e. in physical terms all spins are aligned in the same di-
rection. The system magnetization allows to measure the state of order of a
system, and its value equals to ±1 in the ordered cases. Dealing with neural
networks, and in general with spin glasses, it is possible to introduce a gauge
for the magnetization so that its value goes to ±1 when the spin alignments
(i.e. agent states) follow particular patterns. For instance, in the case of the
TSP, a pattern can be a specific sequence of cities. The mentioned gauge
is defined Mattis magnetization [128], and it reads Mm = 1

n

∑
i εisi with εi
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value in the i-th position of the pattern, si value of the spin in the same po-
sition of a signal S of length n. As we can observe, when spins are perfectly
aligned with a pattern ε, the Mattis magnetization is 1. In the proposed
model, we introduce a similar approach. In particular, each agent is pro-
vided with a random solution of the TSP (i.e. an array of cities representing
a possible solution), and the order is reached when all agents hold the same
solution. Therefore, in our case, the value of Mm is computed assigning
the value of +1 when a city has the same position both in the pattern of
reference (i.e. the known optimal solution of a TSP problem), and in the
solution array computed by an agent, otherwise the value is −1. It is worth
to recall that the utilization of the Mattis magnetization, as measure for the
performance of our model, can be adopted only when the optimal solution
of a TSP is known in advance. Since our agents interact by the PGG, the
modification of their solution occurs during the phase of the game usually
defined as ‘strategy revision phase’ (previously described), that in our case
is renamed as ‘solution revision phase’. Furthermore, our agents use their
fitness as currency of the game, so that their payoff depends on the quality
of their solution and on those of their opponents. We performed several
numerical simulations to evaluate the quality of our method considering the
TSP as reference, i.e. a famous NP-hard problem. Results show that the
PGG can be successfully adopted for developing new heuristics, opening the
way to investigations that cross the current fences of EGT.

6.2 Model

Before introducing the proposed model we recall the basic dynamics of the
PGG. The latter considers a population with N agents and two possible
strategies: cooperation and defection. Cooperators contribute to a common
pool with a coin (usually of unitary value), while defectors contribute noth-
ing or, as in our case, provide a partial contribution (i.e. a coin whose value
is lower than that of coins provided by cooperators). Then, the total amount
of coins is enhanced by a synergy factor r (whose value is greater than 1),
and the resulting value is equally divided among all agents (no matter their
strategy). In doing so, each agent receives a payoff which readsπc = r

∑Nc

i=1 ci
G − c

πd = r
∑Nc

i=1 ci
G

(6.1)

with N c number of cooperators, G amount of agents involved in the game
(i.e. size of groups considered at each iteration that, in most EGT models,
is much smaller than N), ci unitary contribution (we set, without loss of
generality, equal for all agents, i.e. ci = c = 1), and πc and πd payoff of
cooperators and defectors, respectively. As the quantitative definition of the
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payoff suggests, defection is more convenient than cooperation, and it also
represents the Nash Equilibrium of this game. The role of the synergy factor
r is promoting cooperation and, as demonstrated in previous investigations,
its value may strongly affect the evolution of a population [34]. Remark-
ably, in square lattices, values of r smaller than 3.75 entail all agents become
defectors, whereas higher values allow cooperators to survive and even to
succeed (for r ≥ 5.49). As previously mentioned, the evolution of a popula-
tion results from the process defined as ‘strategy revision phase’. Notably,
after each iteration, an agent has the opportunity to change its strategy by
imitating that of a richer opponent (considering the gained payoff). In the
proposed model we consider a well-mixed population (in Appendix II the
model is briefly analyzed on structured populations), so that agents may
freely interact with their opponents. Moreover, agents are provided with a
random solution of a TSP (i.e. an array of cities). Notably, each solution is
evaluated by a fitness η computed as follows

η =
Z − 1

D
(6.2)

with Z number of cities and D, total distance of a path. In doing so, its
range is η ∈ [0, 1]. At each time step, one agent is randomly selected (say
the xth) and plays the PGG with 4 (randomly chosen) opponents, forming
a group with G = 5 agents. Now, every agent of the group contributes with
its fitness; then, as in the PGG before summarized, the total summation
of contributions is enhanced by a synergy factor r, and eventually equally
distributed among all agents of the group. It is worth noting that, in the
proposed model, all agents always contribute. However, some agents provide
a contribution higher/smaller than that of others. Therefore, ’below average
contributors’ (i.e. those having a low quality solution) can be considered as
defectors [140]. According to this setting, the payoff reduces to one equation

πx = r

∑5
i=1 ηi
G

− ηx (6.3)

with πx indicating the payoff of the xth agent, and ηx its fitness (i.e. that
corresponding to its solution). Finally, the ‘strategy revision phase’ is substi-
tuted with a ‘solution revision phase’: the randomly selected agent computes
the probability Πs to modify each entry of its solution by imitating that of
its best opponent (if exists)

Πs =
1

1 + e
ηx−πx
K

(6.4)

As in the PGG, K represents the uncertainty in imitating an opponent
(i.e. plays the role of temperature). Hence, setting K = 0.5 we implement
a rational approach during the revision phase [34]. In doing so, the xth
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agent imitates with probability Πs each entry of the solution of its best
opponent, if the latter has a greater or, at least, equal fitness (otherwise
the xth agent does not revise its solution). Summarizing, given a TSP,
we define a population whose agents at the beginning receive a random
solution of the problem. Then, local interactions, based on the PGG, allow
the population to converge towards a shared solution. From a local point
of view, at each time step, a randomly selected agent (say x) plays the
PGG with 4 (randomly chosen) opponents, and computes its payoff (i.e. by
Eq.( 6.3)). So, according to its fitness ηx and to the gained payoff πx, the
xth agent computes the probability Πs to imitate the solution of its best
opponent (say y, if exists). In particular, if ηy ≥ ηx, the xth agent revises
its solution, i.e. it imitates each entry of the solution of the yth agent with
probability Πs (i.e. each entry is modified according to Πs). The whole
process is repeated until the population reaches an ordered phase (i.e. all
agent share the same solution), or up to a limited number of time steps
elapsed. It is worth observing that as Πs goes to 1, the imitation process
tends to become full (not partial) as each entry can be imitated, provided
that the best agent has a greater (or an equal) fitness. Eventually, we remark
that when an agent performs a ’partial imitation’, to modifying for instance
one city along its path, the same city is never visited twice. In order to clarify
this point we provide a simple example. Let us consider an agent having the
following solution: [ Paris, New York, London, Miami, Rome, Madrid ], that
has to put in the third cell (now containing London) the city of Rome. Since
currently Rome is in the fifth cell, the algorithm swaps the values for the
third and fifth cells so that, after the whole process, the resulting array is:
[ Paris, New York, Rome, Miami, London, Madrid ]. Thus, repetitions are
completely avoided, and all solutions generated according to the proposed
heuristic are suitable solutions.

6.3 Results

Numerical simulations have been performed considering a number of cities
up to Z = 50 for defining the TSP. Agents know the starting city and
the landing one so, since each city can be visited only once, the number
of feasible solutions is (Z − 2)!. Moreover, without loss of generality, we
consider that the distance between two close cities is always equal to one
—see Fig. 6.1. Eventually, we set the synergy factor to r = 2. We remind
that in the present work we are not interested in studying phenomena as
the evolution of cooperation, but we aim to evaluate if agents are able to
converge towards an ordered phase, characterized by the existence of only
one shared solution of a TSP problem. Thus, the choice of setting r = 2
reflects this requirements, i.e. to use a value that in the PGG leads to
an ordered phase (i.e. full defection in the specific case). As illustrated
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Figure 6.1: General setting of the TSP considering Z = 6 cities forming a complete
graph. Each node represents a city, and some distances are reported in blue, close
to the related link. Then, the best solution is shown. Green nodes represent the
starting and the landing ones.

in Fig. 6.2, the ergodicity of the process always allows agents to converge
to one common solution. Moreover, we are able to verify the quality of
solutions both considering the related fitness and the Mattis magnetization
(see the inset of Fig. 6.2). In particular, the latter can be used when the
solution of a problem is known in advance, as in our case. An important

Figure 6.2: Number of solutions over time in a population of N = 900 agents
while solving a TSP with 10 cities (blue dotted line) and 20 cities (red line). The
inset shows the related Mattis magnetization for the two cases (both successful).
Results are averaged over different simulation runs.

relation to be considered is the one defined between the final average fitness
and the size of the population N , studied on varying the amount of cities
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Z —see plot a of Fig. 6.3. Moreover, as shown in plot b of Fig. 6.3, it is

Figure 6.3: a) Average fitness of final solution in function of N (i.e. the number
of agents), for different values of Z (i.e. the number of cities). b) Average fitness
of the final solution on varying the number of cities, for different agents N . Results
are averaged over different simulation runs.

worth noting that also good suboptimal solutions may be computed using
a number of agents N smaller than that required to compute the optimal
one. As expected, increasing Z the average value of η reduces (keeping
fixed the number of agents N). On the other hand, as shown in Fig. 6.4,
it is worth highlighting that it is possible to find an opportune N for each
considered Z in order to achieve the highest fitness (i.e. η = 1). We deem
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relevant to note that the number of agents to compute the best solution, i.e.
N(η = 1), is much smaller than the number of feasible solutions for each
problem, therefore our method can be considered a viable heuristic for facing
combinatorial optimization problems. Eventually, we focused on the number

Figure 6.4: Minimum number of agents to compute the optimal solution of a TSP
on varying the number of cities Z. Results are averaged over different simulation
runs.

of time steps to let the population converge, considering in particular the
successful cases, i.e. those leading to the optimal solution —see Fig. 6.5. As
expected, wide search spaces (e.g. Z = 50) require more time steps to let
the population converge to the same final (and optimal) solution. Moreover,
increasing N the number of time steps T increases accordingly for the same
problem (i.e. keeping fixed Z). These results are in full agreement with
converging processes that can be observed in generic agent-based models,
e.g. increasing the size of a population the number of time steps, required
to let agents converge towards the same state, increases [141].

6.4 Conclusion

In this work we show that evolutionary games as the PGG can be, in prin-
ciple, applied also for solving combinatorial optimization problems. In par-
ticular, the order-disorder phase transition occurring in a population in-
teracting by the PGG can be adopted for letting the population converge
towards a common solution of a given problem. Notably, the solution plays
the same role of the strategy in the classical PGG, and the order is reached
by implementing a mechanism of ‘partial imitation’ [139]. The latter allows
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Figure 6.5: Number time steps required for converging to the final (optimal) state
on varying Z, for different population sizes N . Results are averaged over different
simulation runs.

agents with a weak solution to partially imitate stronger (i.e. richer) oppo-
nents. From a physical perspective, this mechanism corresponds to a slow
cooling process that triggers the emergence of solutions over time, whereas
the ergodicity of the process allows the population to reach an absorbing
state of full order. In doing so, an ordered phase entails all agents share
the same solution. Under the hypothesis that an evolutionary dynamics
driven by the payoff, i.e. rational, may constitute the base for solving dif-
ficult problems as the TSP, we performed several numerical simulations by
considering a well-mixed population. Although we implemented a simplified
version of the TSP, with a limited number of cities, it is worth highlight-
ing that results indicate that the proposed model allows to compute the
optimal solution in all considered search spaces. Moreover, even using a
reduced number of agents, it is possible to compute a good suboptimal solu-
tion. Furthermore, we note that even introducing spatial constraints in the
TSP definition, the algorithm is able to face the problem, once the drive-
ability of the graph is known (as shown in Fig. 6.1). Therefore, in the light
of the achieved outcomes, we deem relevant to further investigate the po-
tential of evolutionary games in optimization problems, then enlarging the
domain of applications of EGT. However, it is important to emphasize that
in order to really appreciate the quality of the proposed model as algorithm
for solving the TSP, further investigations are required. In particular, those
for comparing the performances with other heuristics, as genetic algorithms
(see Appendix I). On the other hand, we remark that our results indicate



90CHAPTER 6. SOLVINGOPTIMIZATION PROBLEMS BY THE PUBLIC GOODS GAME

a clear relation between the size of a population and the complexity of the
faced problem. This last observation constitutes a first, even if theoretical,
advantage of our method respect to the others because, as far as we know,
similar relations are not available for other strategies. Now, from the point
of view of EGT, there are two important observations. First, the synergy
factor has a marginal role in the proposed model. We recall that, for the
aims of our work, we are interested in allowing the population to converge
towards an ordered state. On studying the PGG, the synergy factor is fun-
damental because, as before mentioned, some values may lead a population
towards a steady-state of coexistence between cooperators and defectors.
Therefore, since here we have to avoid similar outcomes, in principle, every
value of the synergy factor that supports a generic state of full order can
be adopted. At the same time, we think that the synergy factor should not
be too high, otherwise it might generate problems when computing tran-
sition probabilities during the ’solution revision phase’. In particular, as
indicated in Eq.( 6.4), the fitness and the payoff are compared when evalu-
ating whether one agent has to change its strategy. Thus, we suggest to use
small values, like the one we adopted (i.e. r = 2). The second observation is
related to the identification of defectors. Notably, here we refer to the PGG,
i.e. a simple game with two strategies: cooperation and defection. In the
classical version, cooperators contribute with a coin, while defectors do not
contribute. However, as reported in [140], when the amount of contributions
is not set to a specific value (e.g. a coin of unitary value), those agents that
contribute with a below-average contribution can be considered as defectors.
To conclude, the proposed heuristic shows that cooperative dynamics, lead-
ing from disordered to ordered states, may constitute the basic mechanism
for implementing optimization algorithms.

Appendix I

Here, we report results of a comparative analysis between the proposed
method and two heuristics: a genetic algorithm [119] (GA hereinafter) and
a strategy based on social imitation (SI hereinafter) [139]. Notably, although
GAs have been proposed several years ago, they currently constitute one of
more interesting methods in optimization (e.g. [142]). In addition, com-
paring the outcomes of the proposed model with those achieved by the SI
method (i.e. [139]) allows to evaluate the influence of the game dynamics
(i.e. of the PGG). Before showing a comparative table, we briefly summarize
how the GA has been implemented:

1. Define a population with N genes, assign each one a random solution
for the considered TSP, and define a maximum number of iterations
I;
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2. While the best fitness in the population is smaller than 1, or the num-
ber of iterations is smaller than I:

3. Compute the fitness η of each gene (i.e. the goodness of its solution);

4. Select the best half of the population according to fitness;

5. Generate two new solutions for each couple of genes, defined among
the set computed at the previous step;

6. Apply the random mutation, to each gene, with probability pm;

We set to 0.1 the probability pm (i.e. the random mutation), and to 30k
the maximum number of iterations I. In addition, we emphasize that the
crossover operator has been defined by cutting each gene parent (i.e. solu-
tion) in two different points, so generating an offspring by using the central
part of one parent and the side parts of the other parent. In the case this
process generates not viable solutions (e.g. in the presence of repetitions),
the duplicates are removed for adding the missing cities. In addition, we
briefly describe the SI method: given a TSP, start with a population com-
posed of agents having a random solution (i.e. an array of cities). At each
time step, randomly select two agents: the agent having the lower fitness
imitates one entry of the solution of the other selected agent. Then, repeat
this process until the population converges towards a shared solution (or
a maximum number of time steps elapses). Further details are described
in [139]. Table 6.1 shows the number of agents (or genes for the GA) for
computing the optimal solution on varying the number of cities, the average
number of time steps required to complete a simulation (computed on 20
different attempts) and, when smaller than 1, the average fitness.
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According to these results, we observe that the proposed method requires
the highest number of agents to solve a TSP. However, if compared to the SI
algorithm, our approach is much more faster (see the average number of time
steps < T >). Instead, the GA requires a smaller amount of agents than
PGG, and it is also faster. At the same time, it is important to observe that
the GA has a synchronous dynamics (while our method is asynchronous), i.e.
during the same time step, all agents are involved for generating offsprings
and updating their solution (according to the random mutation mechanism).
Therefore, further analyses are required for a complete time comparison.
Nevertheless we found that, considering 20 different simulation runs, the
average fitness of the best solution (found in the gene population) is smaller
than 1 when Z ≥ 40. Hence, the GA must be run several times for each task,
saving the best solution. To conclude, according to this analysis, we report
that a GA constitutes the best choice for solving simple problems (i.e. with
few cities), or for computing a good suboptimal solution in a short time. On
the other hand, when the number of cities increases, the proposed method
allows to reach a higher fitness in a smaller number of attempts than that
required by a GA.

Appendix II

Here, we present a brief analysis of the proposed model performed by us-
ing a structured population, i.e. agents arranged on a network. Notably,
we considered regular square lattices (with periodic boundary conditions),
and small-world networks implemented according to the Watts-Strogatz
model [81]. In particular, small-world networks have been defined start-
ing with a 2-dimensional ring with 8 neighbors per node, and then rewiring
with probability β each edge at random. Thus, using values of β higher
than 0, we obtained small-world networks. Figure 6.6 shows results of the
comparative analysis. For each type of network, we considered different real-
izations. So, we observe that the amount of agents to solve a TSP increases
using structured populations, in particular in small-world networks. There-
fore, the most convenient choice for solving a TSP remains the well-mixed
population. Now, we discuss a possible explanation of this result. Notably,
small-world networks contain few nodes with a number of connections (i.e.
degree) higher than the average value. These nodes are usually defined hubs.
On one hand, their role is fundamental in spreading processes, since they
make them faster than those implemented by using regular topologies. On
the other hand, when hubs are provided with a solution having a fitness
higher than that of their neighbors, they may constitute a limit during the
definition of new solutions. Notably, in this case all neighbors tend to im-
itate the solution of hubs thus, given a TSP with defined conditions (e.g.
number of cities), small-world networks require a number of agents higher



94CHAPTER 6. SOLVINGOPTIMIZATION PROBLEMS BY THE PUBLIC GOODS GAME

Figure 6.6: Minimum number of agents to compute the optimal solution of a TSP
on varying the number of cities Z. As indicated in the legend, the (dotted) black
line refers to results obtained in the well-mixed population. The (continuous) green
line refers to the regular square lattice, with periodic boundary conditions. The
(dotted) red line refers to small-word networks achieved with β = 0.1, and the blue
(continuous) line to those obtained in small-world networks achieved with β = 0.5.
Results are averaged over different simulation runs.

than that required in regular networks for solving the same problem. In few
words, hubs are able to affect the solution of too many opponents, reducing
the innovative potential of the whole population. Eventually, our observa-
tion is corroborated by comparing results obtained in small-world networks
generated with different β. In particular, increasing β the number of hubs
increases, and networks generated with β = 0.5 resulted less convenient than
those generated with β = 0.1. To conclude, in the light of results, we deem
that topologies containing hubs may reduce the computational power and
the innovative potential of an agent population.



Chapter 7

Modeling Poker as an
Evolutionary Game

This second application is focused on the evolutionary dynamics of Poker [143,
91, 113]. Notably, despite its wide diffusion and the raised scientific interest
around it, Poker still represents an open challenge. Recent attempts for
uncovering its real nature, based on statistical physics, showed that Poker
in some conditions can be considered as a skill game. In addition, pre-
liminary investigations reported a neat difference between tournaments and
’cash game’ challenges, i.e. between the two main configurations for play-
ing Poker. Notably, these previous models analyzed populations composed
of rational and irrational agents, identifying in the former those that play
Poker by using a mathematical strategy, while in the latter those playing
randomly. Remarkably, tournaments require very few rational agents to
make Poker a skill game, while ’cash game’ may require several rational
agents for not being classified as gambling. In addition, when the agent in-
teractions are based on the ’cash game’ configuration, the population shows
an interesting bistable behavior that deserves further attention. In the pro-
posed model, we aim to study the evolutionary dynamics of Poker by using
the framework of Evolutionary Game Theory, in order to get further insights
on its nature, and for better clarifying those points that remained open in
the previous works (as the mentioned bistable behavior). In particular, we
analyze the dynamics of an agent population composed of rational and irra-
tional agents, that modify their behavior driven by two possible mechanisms:
self-evaluation of the gained payoff, and social imitation. Results allow to
identify a relation between the mechanisms for update the agents’ behavior
and the final equilibrium of the population. Moreover, the proposed model
provides further details on the bistable behavior observed in the ’cash game’
configuration.

95
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7.1 Introduction

Poker is one of the most famous card games and constitutes also an open
challenge for artificial intelligence and game theory [144, 145, 146, 147]. In
last years, mainly due to the advent of online gaming platforms, Poker has
widely increased its popularity and its prestige, up to be considered even as
a profession. However, in this scenario, an important question is still feeding
an old debate: ’Is Poker a Skill Game?’. This question has not yet a clear
and shared answer, and its relevance is given by the related implications,
spanning from legal aspects to healthcare problems [148, 149, 150]. For in-
stance, considering Poker as gambling would entail the need to include it
in the list of dangerous activities, i.e. those that can lead to the emergence
of an addiction, and that can require clinical treatments. It is worth to
emphasize that the utilization of money and the influence of luck, barely
measurable, represent two main elements that support its classification as
’gambling’. On the other hand, the possibility to apply a rational strategy
(e.g. based on mathematics) for improving the success probabilities, sug-
gests that Poker can be really considered as a ’skill game’, e.g. like Chess.
In order to shed some light on this issue, two recent works [113, 91] analyzed
the dynamics of an agent population, whose interactions were based on a
simplified version of Poker. In particular, these mentioned models consider
agents behaving in two possible ways: ’rational’ and ’irrational’. Rational
agents are those that play Poker following a mathematical strategy, while
irrational agents are those that play randomly. In particular, in the model
presented in [91] agents can modify their strategy and the whole dynam-
ics has been studied by a compartmental approach. The latter, as some
models defined in epidemiology (e.g. SIS model [151]), allows to provide a
macroscopical description of the population, and it has been named RIR
model (i.e. Rational-Irrational-Rational). It is worth noting that the RIR
model [91] (see Appendix A for a full description) has been studied in two
different configurations: full challenge and one-round challenge. Full chal-
lenges entail each interaction lasts until the winner gains all the money of
its opponent, thus different rounds can be required. Instead, the second
configuration (i.e. one-round challenge) entails each interaction lasts for
only one betting round. After each interaction, in both configurations, the
amount of money of each player is set to the initial value. In addition, each
interaction considers only two agents at time, i.e. it is a pairwise interaction
defined ’heads-up’ in the Poker jargon. Here, the full challenge configuration
can be related to Poker tournaments, while the one-round challenge can be
related to the ’cash game’ variant. Since agents modify their behavior by
imitating that of the winner, after each challenge a well mixed population
reaches an ordered phase, i.e. after a number of interactions all agents share
the same strategy. Remarkably, the full challenge configuration indicates
that even with very few rational agents in the population, at t = 0, the
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final ordered phase is always composed of rational agents. A more complex
situation is observed in the case of one-round challenges, since a bistable
behavior emerges. In particular, considering the same initial density of ra-
tional agents, it is possible to reach both equilibria, i.e. full rational and full
irrational. Clearly, increasing the amount of rational agents at the begin-
ning of the challenge, increases the number of final equilibria corresponding
to full rational. As result the emergence of the bistable behavior described
in [91] still deserves attention. It is also worth to highlight that the statis-
tical physics approach to Poker, presented in these models [113, 91], leads
to two main conclusions: 1) the nature of Poker strongly depends on the
player’s behavior and 2) Poker tournaments can be classified as ’skill game’,
while ’cash-game’ challenges composed of few rounds make Poker similar to
gambling. Here, we aim to obtain further insights on Poker by using an ap-
proach based on EGT. The proposed model aims to study the equilibria that
can be reached in a population, considering rational and irrational agents,
by focusing on two degrees of freedom: the imitation probability pi and the
success probability of rational agents pr. The first degree (i.e. pi) indicates
the probability to modify a behavior (e.g. from rational to irrational) by
imitating the opponent, while pr indicates the success probability of ratio-
nal agents when play against irrational ones. Thus, as below explained, we
can avoid to focus on full challenges or on one-round challenges, because on
varying the value of pr we are able to consider different cases, i.e. from short
to long-lasting challenges. Here, it is important to evaluate the influence of
the imitation probability since in real Poker challenges, it is not always pos-
sible to imitate the winner (e.g. players can decide to hide the own cards
when the opponent folds). In addition, cash-game challenges can last few
or many rounds, therefore the success probability pr varies over time. In
order to take into account also the second observation, we studied also the
case with a variable value of pr (during the same challenge). In doing so, we
observed the same bistable behavior found in one-round challenges of [91].
Then, we compared the outcomes of the two models, i.e. the new one and
the previous one presented in [91]. To conclude, it is worth to note that
the proposed model constitutes a new application of EGT (see also [152]),
and allows to reach further insights for understanding the nature of Poker.
In addition, our results shed more light on the bistable behavior reported
in [91].

7.2 Model

In this section, we present the proposed model. We considered an agent pop-
ulation whose interactions are based on a simple game inspired from Poker
(in particular focusing on the variant named Texas Hold’em —see [153]).
The agents may follow two different strategies: rational and irrational. Ra-
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tional agents are those that take actions according to a mathematical strat-
egy, i.e. those that aim to maximize the probability to succeed by a ’ratio-
nal’ mindset. Irrational agents, on the contrary, are those that take actions
randomly, i.e. without to consider the value of their own cards nor other
strategies. According to results achieved in previous works [113, 91], the win-
ning probability of rational agents depends on the duration of a challenge.
Notably, rational agents have high probability to succeed against irrational
agents when the amount of rounds that constitute a challenge increases. For
instance, if challenges terminate when one agent wins all the money of its
opponent, the success probability of rational agents increases up to 80%. At
the same time, when a challenge is composed of only one round, a rational
agent succeeds against an irrational one with a probability close to 20%. In
the case the agents modify their strategy, imitating that of their winning
opponent, a mixed population (i.e. composed of 50% of rational agents at
t = 0) can reach two different equilibria: full rational and full irrational. As
previously discussed, in real scenarios the behavior of the winner is not al-
ways disclosed. Thus, the imitation probability, on average, is much smaller
than 1. In order to analyze a system, taking into account this last observa-
tion, we introduce a model inspired from EGT where agents play Poker and
modify their strategy according to the following mechanisms: imitation and
payoff evaluation. The former can be adopted when the winning opponent
reveals its strategy, while the latter entails to modify a behavior according
to the amount of the gained payoff. Thus, if after an iteration the agent’s
payoff decreases, it is more likely a rational agent becomes irrational, and
vice versa. From the EGT perspective, the two updating mechanisms al-
low to implement a ’strategy revision phase’. Notably, in the case a losing
agent (say y) decides to imitate its opponent (say x), it computes the tran-
sition probability (from rational to irrational, and vice versa) by using the
Fermi-like equation presented in Chapter 1. Instead, when an agent does
not imitate its opponent, it changes its strategy according to the following
probability

W (Ty) = (1.0− πy

4.0
)/2.0 (7.1)

where Ty indicates the transition probability of the y-th agent to modify its
strategy (from rational to irrational, and vice versa), πy indicates its payoff
divided by constant equal to 4. In particular, at each iteration, the two
agents are randomly selected and they play with 4 opponents. In addition,
since we studied both the well-mixed configuration and the spatially struc-
tured configuration, we highlight that in the second case the two randomly
selected agents, and their opponents, are nearest neighbors.

Now, it is worth to highlight that the payoff of this game is very simple:
when an agent wins a challenge, its payoff increases of 1, whereas each time it
loses a challenge the payoff decreases of 1. Thus, the mathematical definition
of the payoff reads: π =

∑3
i=0 ci, with ci outcome of the i-th challenge and
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equal to ci ± 1, i.e. +1 if successful, otherwise −1. According to these
rules, we considered the evolution of a population on varying pi and pr (i.e.
imitation probability and success probability of rational agents). We recall
that when two agents of the same kind face each other, both have the same
probability to succeed (i.e. 50%). Eventually, it is worth to emphasize that
the strategy imitation takes place only after comparing the payoffs of the
two considered agents. For example, if the agent y is undergoing a strategy
revision phase with pi = 1, it will imitate the agent x only after evaluating
the payoff difference, as defined in 8.1. For instance, if y wins 3 out of 4
challenges, losing only against the agent x that, in turn, wins only against y
and loses all the other challenges, πy is clearly bigger than πx. Accordingly,
the probability that the agent y imitates x is very low even if pi = 1. Finally,
we highlight that the well-mixed configuration allows to perform a mean field
analysis of the system, while the other one allows to evaluate the role of an
interaction topology (e.g. [154]). Remarkably, even a simple topology, like a
regular square lattice, can be strongly relevant in in the dynamics of some
games, a for instance the Public Goods Game (see [34]). Summarizing, our
population evolves according to the following steps:

1. At t = 0, set a number of rational and irrational agents in the popu-
lation;

2. select randomly one agent x, and select randomly one opponent y
(being a neighbor in the case of the lattice topology);

3. each selected agent plays the game with all its four opponents (ran-
domly composed in the well mixed case), then computes its payoff;

4. agent y performs the strategy revision phase according pi, then adopt-
ing eq 8.1 or eq. 7.1, to compute the weight probability to change its
behavior/strategy;

5. repeat from (2) until an ordered phase is reached, or up to a limited
number of time steps elapsed.

Then, before to show results of numerical simulations, we highlight that the
maximum number of time steps has been set to 108.

7.3 Results

Let us start considering the results achieved in [91], where a well-mixed
population played both full and one-round challenges —see figure 7.1. In
particular, considering the same starting conditions, as the initial density
of rational agents in the population, figure 7.1 clearly indicates that full
challenges support rational agents (i.e. all agents become rational after a
number of time steps), while one-round challenges entail sometimes rational
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succeed, other times all the population turns to irrational (i.e. irrational
succeed). As previously discussed, the bistable behavior of the population
playing one-round challenges needs further attention, in order to better un-
derstand the related motivation. According to the investigations performed
in [113, 91], rational agents have about 80% to succeed in full challenges,
and about 20% in one-round challenges. Therefore, increasing the number of
rounds from 1 to∞ entails to support rationals. In addition, the model pre-
sented in [91] considers that agents modify their behavior by imitating the
winning opponents. So, in order to represent scenarios closer to real chal-
lenges, it is important to observe that players are not always able to imitate
their opponent because the latter can also keep hidden her/his own cards
(notably, only in particular conditions players have to show their cards).
Accordingly, here we analyze the evolutionary model of Poker on varying
two relevant parameters: the imitation probability (i.e. pi) and the success
probability of rational agents (i.e. pr). Figure 7.2 shows results of numerical
simulations performed on a well mixed population with N = 10000 agents.
Since some games, as the Public Goods Game, show a different behavior in
networked topologies (as discussed in Chapter 1), we studied the proposed
model also in a regular square lattice with periodic boundary conditions.
Remarkably, we did not find any particular difference between the the well-
mixed case and the lattice topology, as reported in Figure 7.3 that shows
very small and non-correlated values. Then, we considered different initial
densities of rational agents (i.e. ρ(0)) and, as for games like the Public
Goods Game, we found that the process is independent from the value of
ρ(0), i.e. the latter does not affect the outcomes. Eventually, as anticipated
before, in order to make the model closer to real scenarios we analyzed it
on varying the value of pr during the same simulation (showing in the plot
the average result, as for the other cases) —see Figure 7.4. In particular, at
each time step, the value of pr can be 0.2, or 0.8, both with equal probabil-
ity (i.e. 50%). It is worth to observe that results achieved with one-round
challenges in [91] are very similar to those achieved on varying pr during
the same simulation. Therefore, in our view, the bistable behavior is due to
the variation, along the same challenge, of the success probability of ratio-
nal agents. In particular, the bistable behavior reported in [91], may reflect
the fact that strong card combinations, being opportunities for those that
play by using a mathematical strategy (i.e. rational agents), are not very
frequent (as real Poker players usually know from direct experience, and as
the theory of probability suggests given the structure of ’playing cards’ used
in Poker). Thus, several times rational agents fold without to participate.
So, since one-round challenges entail a loser imitates the winner, a rational
agent many times becomes irrational for this reason, i.e. for the low rate of
good own cards (defined as hand in the Poker jargon). Finally, it is worth
to point out that this last observation can be, in principle, provided only
considering the probability laws, and the dynamics of the model described
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in [91]. However, the evolutionary model here presented is able to prove it
by the numerical simulation.

7.4 Conclusion

In this work we propose a model based on EGT for studying the dynamics of
Poker, considering a simplified version of this game. In particular, our agents
are provided with two behaviors (or strategies), i.e. rational and irrational,
and we analyze the evolution of the population in function of two degrees
of freedom: the imitation probability and the success probability of rational
agents. We remind that rational agents represent players that take decisions
using a mathematical based strategy, while irrational agents are those that
play randomly. In addition, since our agents can modify their strategy over
time, they undergo a ’strategy revision phase’, whose aim is to increase their
payoff. In particular, according to an imitation probability, losing agents
may assume the strategy of their opponents, or they evaluate to change
strategy considering the trend of their payoff. In the first case, they know the
strategy of their opponent, while in the second case they do not. Before to
discuss about the achieved results, we deem relevant to clarify an important
conceptual point: even if the proposed model is based on EGT, it does not
constitute a dilemma game, like for instance the Prisoner’s dilemma [2, 12,
56, 57] and the Public Goods Game [6, 34, 106]. Notably, agents do not
have to chose between their own benefit and that of their community of
belonging. So, we analyzed the equilibria reached by the population, both
in the mean-field and in a structured configuration, on varying the degrees
of freedom before illustrated. In general, we found only two final equilibria:
full rational and full irrational, even with an imitation probability equal
to zero. It is worth to point out that when pi is equal to 1, an absorbing
state characterized by a full order is highly expected, as demonstrated in
a number of models embodying an imitative mechanism (the most simple
example is the voter model [99]). According to this observation, and as
shown in 7.2, the transition between full irrational to full rational appears
quite smooth for pi close to zero, and becomes more sharp increasing pi up to
1, where a critical threshold, i.e. pr = 0.5, between the two regimes can be
clearly identified. Although further analyzes are mandatory for classifying
the observed phase transition, on a quality level we can state that for low
pi a second order phase transition occurs, while for high pi emerges a first
order phase transition. Now, we recall that in the proposed model setting
pi to 1 does not ensure that, during an iteration, one agent imitates another
one. The motivation is that the imitation takes place with a probability
depending on the payoff difference between the selected agents. For instance,
if pi = 1 and the agent undergoing the ’strategy revision phase’ achieved a
payoff higher than that of its opponent, the imitation process does not take
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place. The role of a pure imitative mechanism has been investigated in [93],
where authors analyzed the link between the Public Goods Game and the
voter model. Notably, a voter model like mechanism emerges in the Public
Goods Game at high temperature, i.e. when agents change strategy without
to consider the payoff differences. Moreover, it is worth to recall that results
shown in 7.2 are independent from the initial density of rational agents.
Eventually, considering the results achieved on varying the pr during each
challenge, we found that they are very similar to those achieved by the ’one-
round’ configuration of the model presented in [91]. Therefore, the observed
bistable behavior of the population can be explained by the fact that during
a challenge, rational agents fold weak hands and, according to the theory
of probability (see also the Sklansky tables [153]), there are many more
weak hands than strong ones. To conclude, results achieved by numerical
simulations allow to get further insights on the game of Poker, showing the
relevance of models based on EGT and, in addition, allow to shed light on
the bistable behavior reported in [91].
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Figure 7.1: Mean field analysis of a population playing Poker. Amount of
rational agents over time R(t) (+1 indicates rational, −1 irrational) in the
two different configurations analyzed in [88], for the case with an equal start-
ing density of rational and irrational agents. Black line indicates the result
achieved with full challenges. Red line indicates the result achieved with
one-round challenges. Results have been averaged over different simulation
runs.
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Figure 7.2: Strategy distribution in the proposed model, on varying the de-
grees of freedom pi and pr, i.e. the imitation probability and the probability
a rational agent succeeds over an irrational one, respectively. Red indicates
full rational, while blue full irrational. Results have been averaged over 100
simulation runs.

Figure 7.3: Average difference, in the summation of states (+1 indicates ra-
tional, −1 irrational), obtained on varying the imitation probability, between
results achieved in a well mixed population and in a structured population
(i.e. regular square lattice with periodic boundary conditions). Results have
been averaged over 100 simulation runs.
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Figure 7.4: Comparison between the outcomes achieved in the model de-
scribed in [91], defined as ABM in the legend, and those achieved in this
work, defined as EGT in the legend. Amount of rational agents R (+1 indi-
cates rational, −1 irrational). In particular, this analysis aims to evaluate if
one-round challenges analyzed in [88] behave like an EGT based model with
a varying pr (i.e. probability of success of rational agents). Results have
been averaged over 100 simulation runs.
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Chapter 8

Modeling the Evolutionary
Dynamics of Group
Formation

Finally, we propose a model for studying the dynamics of group forma-
tion [155]. The latter constitutes a relevant phenomenon observed in dif-
ferent animal species, whose individuals tend to cluster together forming
groups of different size. Results of previous investigations suggest that this
phenomenon might have similar reasons across different species, such as
improving the individual safety, and increasing the probability to get food
resources. Remarkably, the group size might strongly vary from species to
species, and sometimes even within the same species. In the proposed model,
an agent population tries to form homogeneous groups. The homogeneity
is computed according to a spin vector, that characterizes each agent, and
represents a set of features (e.g. physical traits). Therefore, we analyze the
formation of groups of different size, on varying a parameter named ’individ-
ual payoff’, representing the gain that agents receive acting individually. In
particular, agents can form a group (receiving a ’group payoff’), or can act
individually (receiving an ’individual payoff’). Remarkably, the phase dia-
gram of our population shows a sharp transition between the ’group phase’
and the ’individual phase’, in correspondence of a critical ’individual pay-
off’. To conclude, our results support the hypothesis that the phenomenon
of group formation has evolutionary roots.

8.1 Introduction

The dynamics of group formation constitutes a topic of interest for a wide
number of researchers, spanning from anthropologists to zoologists [156, 157,
158, 159, 160, 161, 162], and from social psychologists to economists [163,
164, 165, 166, 167, 168]. In general, the formation of a group can be viewed
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as an emergent phenomenon [165, 169] where a number of individuals cluster
together for performing one or more actions. Accordingly, the lifespan (as
well as other characteristics) of a group can vary from case to case, and
individuals can change group over time [170, 171, 172]. In an ecological
system, many times being part of a group allows to receive benefits [171],
both being a predator and being a prey. For instance, the former can be
advantaged during a hunt, e.g. surrounding a prey, while the latter can
improve her/his safety staying inside a group [173]. Here, we remark that
the previous example, referring to predators and preys, can be considered
outdated in the case of the human species. However, we should remind
that millions of years ago, and maybe even in more recent times, humans
have played both roles in their ecosystem. Different studies suggest that the
formation of social groups has evolutionary roots [156, 174, 175, 176, 9, 177,
178], shared among animals belonging to different species. For instance, we
can observe groups of fishes (generally named as shoals), of mammalians
(named herds or families/tribes in the case of humans), and of birds (named
flocks) [175].

What differs, from species to species, is the average size of a group [179,
180, 181, 182, 183], e.g. shoals are usually much bigger than herds, herds
are bigger than families, and so on and so forth. In addition, even within
the same species, groups of different size can be observed. The formation
of groups is a phenomenon of interest also beyond the domain of evolution-
ary biology, as we can mention the formation of sport teams, of business
organizations [166], and of scientific communities. Even if the motivations
that lead to the formation of this kind of groups can be quite different from
those that trigger the emergence of groups in nature, in both cases individ-
uals cluster together driven by a rational mindset, i.e. aimed to increase
their wealth. Therefore, we think that the framework of EGT might be a
suitable choice for studying this phenomenon, since it embodies both the
rationality and the evolutionary aspect of group formation [13, 184]. When
studying the dynamics of group formation, it is important to evaluate the
role of similarity. In particular, the heterogeneity of a group can be an ad-
vantage, or a disadvantage, depending on the context of reference. Indeed,
heterogeneity might refers to different aspects, as physical traits, genetic
makeup, or skills. Previous studies (e.g. [185]) reported that social net-
works show a positive value of assortativity [76], i.e. it seems individuals
be more likely to generate links with their own similar, while other kinds of
complex networks [75] are more likely to be disassortative (according to an
entropic principle [185]). Thus, in the proposed model, we consider an agent
population that forms and breaks groups over time, according to the gain
agents receive acting in group or individually. The agent’s gain comes from
the difference between benefits and costs, in taking a particular action (i.e.
group or individual). The gain achieved in group is defined as ’group payoff’,
while that achieved singularly is defined ’individual payoff’. According to
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results reported in [185], here the ’group payoff’ is maximized for homoge-
neous groups. Results of numerical simulations indicate that for each group
size G, there is a critical ’individual payoff’ between a ’group phase’ and
an ’individual phase’ of the population, i.e. the formation of groups or the
individual action. In addition, forming groups of big size is more difficult
than forming small groups. To conclude, in our view, the achieved results
support the hypothesis of an evolutionary mechanism underlying the for-
mation of groups in nature. Notably, we speculate that each animal species
has its ’individual payoff’, i.e. a kind of gain its individuals receive when
they act as single members, and that this parameter might depend also on
the considered environment. In addition, in the case of human beings, we
suppose that the ’individual payoff’ might be related also to socio-cultural
conditions, leading to the formation of very small groups in the modern civ-
ilization, and to the formation of bigger groups (i.e. tribes) in more archaic
systems (see [186, 187, 188]). Notably, two important differences between
the modern civilization and the archaic ones are the living environment and
the cultural structure (e.g. relations, laws, etc) of a society, both making a
city more suitable than a forest for individual life styles.

8.2 Model

In the proposed model, we consider a population with N agents that can
cluster together forming groups of size G. Each agent is represented by a
spin vector S, of length L, e.g. for L = 6 the i-th agent can be represented
as Si = [+1,−1,−1,−1,+1,+1]. Here, each entry of the spin vector can be
viewed as a feature, so the homogeneity of a group is measured considering
the distance between spin vectors of its members. It is worth to note that
we refer to the concept of feature with its more general meaning, since it
may vary from species to species. For instance, for many animals (including
humans) a feature can be a physical trait, and in the case of humans it can
represent also a hobby, or a specific skill, and so on (i.e. not only physical
features). The dynamics of the proposed model is very simple. At each
time step a number G of agents, not belonging to any group, is randomly
selected. So, selected agents compute the potential payoff they could gain
acting together (depending on the homogeneity of the potential group). In
particular, the ’group payoff’ πg decreases when members have different spin
vectors. Then, the value of πg is compared to that of πi, i.e. the payoff that
agents would gain acting individually. In doing so, πi and πg are used to
compute the probability of forming a group of size G, with the selected
agents, which reads

W (G) =

(
1 + exp

[
πg − πi
K

])−1
(8.1)
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where the constant K parametrizes the uncertainty in taking a decision (i.e.
to form, or not, the group). By using K = 0.5, we implement a rational ap-
proach [3, 91]. After processing a new potential group, the model evaluates
if a previous one, randomly selected among those formed at previous time
steps, might be broken. The breaking process is performed according to the
same equation adopted to generate a group (i.e. Eq. 8.1). As mentioned
before, the homogeneity of a group is computed according to the spin vec-
tor of its members. Accordingly, the group payoff πg is defined as length
of the normalized average summation of each spin vector (composing the
considered group). In particular, since each entry can be positive (i.e. +1)
or negative (i.e. −1), after computing the average value of a single spin we
take its absolute value. So, given spin vectors of length L, the ’group payoff’
for a group of size G reads

πg =
1

L

1

G

L∑
j=1

|
G∑
i=1

vij | (8.2)

with vi elements of the spin vector of each agent. Eventually, it is worth
noting that the range of πg is [0,+1], while that of the ’individual payoff’ πi
spans the interval [−1,+1]. In doing so, we represent scenarios where acting
individually can be very risky (i.e. πi = −1), and very convenient (i.e.
πi = +1). At the same time, we assume that acting in group cannot never
lead to a negative payoff. Finally, we remark that during each simulation,
the value of πi remains constant. Summarizing, the proposed model can be
described as follows:

1. At t = 0 generate a population providing each agent with a random
spin array;

2. While the number of time step is smaller than T :

3. Randomly select G agents, not belonging to other groups;

4. Compute the probability the selected agents form a new group;

5. Randomly select a group among those previously formed, and
compute the probability to break it;

Since we consider an asynchronous dynamics, i.e. only a subset of agents
plays at a given time step, the value of T must be big enough in relation to
the population size.

8.3 Results

Numerical simulations have been performed in a population with N = 1000
agents, considering different conditions related to the ’group payoff’ and
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to the ’individual payoff’, i.e. πi in the range [−1,+1], and πg in the
range [0,+1]. In addition, we study the dynamics of the population for
different length of the spin vector characterizing our agents. Due to the
value of N , we analyzed the emergence of groups of the following size:
[2, 4, 5, 10, 25, 50, 100]. Figure 8.1 shows the phase diagram of our popu-
lation. Figure 8.2 indicates the density of the groups in function of the

Figure 8.1: Strategy distribution diagram of the population, group size G
versus the ’individual payoff’ πi, on varying the length of the spin vector
L. Yellow indicates the ’group phase’, while Blue the ’individual phase’. a
L = 3 and b L = 10. Results have been averaged over different simulation
runs.

’individual payoff’, on varying the length of the spin vector L. It is then

Figure 8.2: Density of groups ρg in function of the ’individual payoff’ πi,
on varying the length of the spin vector L: a L = 3. bL = 10. c L = 25.
Results have been averaged over different simulation runs.

possible to find the critical thresholds π̂i, on varying the group size G. For
instance, in the case L = 3, we observe π̂i = 0.55 for G = 2, π̂i = 0.15 for
G = 10, and π̂i = 0.05 for G = 25. It is then worth to evaluate if the length
L (i.e. the length of the spin vector) affects the outcomes of the model —see
Figure 8.3. In particular, one can observe that L does not influence the
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Figure 8.3: Density of groups ρg in function of the ’individual payoff’ πi, for
different vector spin length L, on varying the group size G. a) G = 2. b)
G = 10. c) G = 25. d) G = 50. Results have been averaged over different
simulation runs.

density of groups at equilibrium. Eventually, as reported in Figure 8.4, we
analyze the number of breaking groups (B(t)) over time. In particular, we
consider different group sizes G, and spin vector lengths L, on varying the
individual payoff.

8.4 Conclusion

In this work, we study the phenomenon of group formation using the frame-
work of EGT. In particular, we introduce a simple model where agents
evaluate if clustering together, or acting individually, according to a payoff
they may receive if acting in group (named ’group payoff’), or individually
(named ’individual payoff’). Under the assumption that the ’group payoff’
increases while increasing the homogeneity of a group, we study the for-
mation and the breaking of groups. Even if further investigations would
be required in order to evaluate the outcomes on varying the definition of
the ’group payoff’, we suppose that the achieved results can be considered
general enough for envisioning some interesting speculation related to the
evolutionary aspects of group formation in nature. Notably, observing that
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Figure 8.4: Breaking groups over time (i.e. B(t)). The legend indicates, for
each line, the considered group size G. a) Results achieved with L = 3. b)
Results achieved with L = 25. c) Comparison between results achieved with
L = 3 and L = 25. Results have been averaged over different simulation
runs.

groups form in species ranging from ants to birds, and from lions to hu-
man beings, we support the hypothesis that this process has evolutionary
roots [161, 175]. In addition, we suggest that the ’individual payoff’ is a
relevant parameter representing the ensemble of genetic traits, skills, living
environments, and even socio-cultural conditions one can observe in real
systems. For instance, we hypothesize that being part of a group is more
advantageous in a hostile environment than in a relaxed one, as suggested
by some theories related to the formation of shoals of fishes. So, even consid-
ering the same species, we can have individuals acting in very small groups
and others in big groups. For example, in the modern civilization [188, 186],
small groups named families are, nowadays, composed of very few mem-
bers, while tribes living in wilder environments are more copious. We deem
relevant to emphasize that the proposed model suggests the existence of a
critical threshold in the ’individual payoff’, leading to a sharp transition in
the phase diagram (see Figure 8.1), from a ’group phase’ achieved for low
values of πi to an ’individual phase’ achieved for high values of πg. Notably,
for high values of the critical πi the group formation is scarcely observed.
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Here, ’group phase’ and ’individual phase’ correspond to the two states our
population can achieve at equilibrium, i.e. with agents forming groups or
acting individually. Finally, results reported in figure 8.4 confirm previous
findings and provide a further detail. In particular, analyzing the average
number of breaking groups B(t), we observe that small groups are more
robust than big ones, and the maximum number of breaking groups is in
correspondence with the critical threshold π̂i. Furthermore, for very high
’individual payoffs’ big groups are more robust than small ones (i.e. the op-
posite of the case with low πi). To conclude, we highlight that the proposed
model represents an application of EGT besides its classical domain, provid-
ing results that remarkably corroborate the hypothesis that the emergence
of groups in animal species has evolutionary roots.
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Conclusions

115





Chapter 9

Conclusions

In this thesis, we presented the results of some investigations in Evolu-
tionary Game Theory, i.e. a modern research area in the field of complex
systems, with two major aims: developing a statistical physics description
of EGT, and showing some applications of evolutionary games beyond the
current fences of EGT. The work is composed of four main parts. The first
part of the work is focused on a general introduction to EGT, and on the
main mathematical methods used for developing the models presented in
the following chapters. For instance, we provided a brief introduction to
phase transitions, illustrating the Ising model and the Mean Field approx-
imation, and to some analytical approaches to population dynamics, with
a focus on applications in sociophysics. The second part is composed of
chapters that illustrate statistical physics models for studying some rele-
vant phenomena in EGT. In particular, we proposed a mathematical model
for understanding the relation between the emergence of cooperation in the
Prisoner’s Dilemma and a random motion in continuous spaces, the connec-
tion between the Public Goods Game and the classical Voter Model and,
eventually, the influence of local fields in the Public Goods Game. It is worth
to remind that in all these three chapters, of the second part, the proposed
models have a direct connections with social and biological phenomena, as
for instance the role of rationality and of conformity in the strategy selection.
Notably, we deem important to highlight that EGT aims to understand the
equilibria and the dynamics of social and ecological systems, as well as of
many complex biological processes, therefore the definition of new models is
often inspired from real scenarios belonging to the mentioned areas. Then,
the third part of the work shows three different applications: a heuristic
for solving combinatorial optimization problems, an evolutionary game for
understanding the dynamics and the nature of Poker games and, finally, an
evolutionary game for representing the dynamics of group formation. Like
for the second part, two applications (i.e. Poker and group formation) have
a direct relation with social and biological phenomena. In particular, the
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emergence of groups constitutes an open problem in different scientific com-
munities, and nowadays, is of great interest for anthropologists, ethologists,
and theoretical biologists. Eventually, an appendix presents an investiga-
tion of the role of conformity in a famous model used in social dynamics,
i.e. the q-voter model. Notably, since we presented some results related
to the role of conformism in the Public Goods Game, we deem useful (and
hopefully interesting) to compare the outcomes achieved by the two differ-
ent approaches (i.e. q-voter model and PGG). Let us now briefly discuss
about potential further developments of the presented works. In the first
model, we propose an analytical approach for studying the emergence of co-
operation in the Prisoner’s Dilemma, by considering memory-aware agents,
i.e. agents able to increase their payoff over time. Therefore, a further step
in this direction would be to solve the problem without the adopted con-
straint (i.e. the memory), in order to apply the method to models usually
implemented in EGT. In addition, many aspects related to the geometry
of the agent space might be investigated. In the second model, we studied
the role of rationality in the Public Goods Game, and the relation between
this game and the classical voter model. Here, further investigations might
consider more complex topologies, and different updating rules. Then, the
third model, i.e. the influence of local fields in the Public Goods Game, can
be analyzed in other games, since it constitutes a topic of special interest
in sociophysics. Then, considering the presented applications, we believe
that they constitute a preliminary attempt toward the utilization of EGT
in different fields. In particular, the optimization strategy requires to be
improved for solving more complex problems (e.g TSP with more cities),
the model on Poker needs to find confirmation from analyses performed on
real dataset and, eventually, the model on group formation requires further
studies for a deeper comprehension of its outcomes, and for further exten-
sions to specific cases. Summarizing, in this work we tried to highlight the
link between Evolutionary Game Theory and Statistical Physics, in order to
get more insights on evolutionary dynamics and to envision new applications
in different scientific areas, as combinatorial optimization problems. There-
fore, in the light of the achieved results, we believe important to perform
further investigations, for instance according to the ideas above reported.
To conclude, we deem that a combined approach of EGT and Statistical
Physics may lead to relevant results in different scientific fields.
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Appendix A

Conformism-driven phases in
the Q-Voter Model

In Chapter 5, we presented the results of an investigation focused on the role
of local fields in the dynamics of the spatial PGG. Since the susceptibility
to local fields might correspond to the social behavior known as conformity,
here we show a further investigation on a different model, based on this
behavior. In particular, we study the q-voter model, by considering agents
arranged on complex topologies (e.g. small-world networks) [100]. Notably,
we approach the problem of understanding how conformity affects opinion
dynamics by implementing the q-voter model [64, 189, 190, 191, 192], i.e. a
variant of the classic voter model [141], on heterogeneous networks. In fact,
while it is already known that conformity enhances the reaching of consensus
(i.e. an opinion shared by all agents) [194] the details of this process are still
questioned [191]. Moreover, systems like the voter model and the q-voter
model are often simulated over fully connected networks [190, 193, 195], and
only to a lesser extent on more complex topologies (see for instance [196, 197,
198]). If, on one hand, this allows to analytically model the system under
the mean-field approximation, on the other strongly limits the validity of
results to unrealistic scenarios as it has been proven that social systems show
highly heterogeneous structures [79]. Thus, our analysis aims at exploring
the behavior of the q-voter model by considering more realistic network
topologies with the aim to understand the extent to which 1) varying the
amount of conformist agents and 2) varying the network structure affects
the consensus reaching process. In order to do so, we heavily rest upon
numerical simulations.

Results of our simulations indicate the presence of different opinion-
formation regimes, driven by the density of conformist agents and varying
across different network configurations. Threshold values separating differ-
ent regimes vary as well. Moreover, the system seems to undergo a sponta-
neous symmetry-breaking, by (stochastically) choosing states with the same
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‘net’ opinion but opposite signs. The remainder of the paper is organized as
follows: Section A introduces the proposed model. Section A shows results
of numerical simulations. Finally, Section A ends the paper.

Model

In order to study the role of conformity in the q-voter model, we defined a
simple agent-based model by considering N agents, provided with an opinion
and a social character.

Opinions are mapped to states si = ±1, i = 1 . . . N and are assigned to
each agent of the population stochastically, i.e. according to the probability
coefficients P+ = P− = 1/2; thus, our initial expected number of opinions +1
is 〈N0

+〉 = N/2. Moreover, agents are provided with an individual behavior,
i.e. either conformist or non-conformist. In what follows, we will adopt the
definition according to which a conformist agent adopts the opinion of the
majority of its neighbors, whereas a non-conformist one adopts the opposite.
As for the opinion, the behavior is assigned stochastically too, according to
the coefficients Pc and Pa ≡ 1 − Pc, i.e. the probability to behave as a
conformist or a non-conformist, respectively. As before, the initial expected
number of conformist agents is 〈N0

c 〉 = Pc ·N . The two processes of assigning
opinions and behaviors are independent: so, each agent’s initial probability
of being both conformist and having opinion +1 is p0c,+ ≡ Pc · P+ = Pc

2 .
We will consider agents interacting on different configurations: while the
probabilities P+ and P− will remain fixed, Pc and Pa will vary, in order to
achieve different densities of conformist (and non-conformist) agents in the
population. Naturally, opinions vary as a result of the system dynamics.

The q-voter model extends the classic voter model, letting each agent
adopt the opinion shared by a subset of neighbors of arbitrary dimen-
sion [190]. This model is described by two parameters: q and ε. The former
represents the number of neighbors each agent has to consider to have its
opinion defined, whereas the latter represents the probability for each agent
to change its state anyway, even if not all the q chosen neighbors agree. We
implement the q-voter model setting q = 4 and ε = 0. Therefore, agents
choose q = 4 neighbors at random: if they all share the same opinion, a con-
formist agent adopts it, whereas a non-conformist agent adopts the opposite
one. Otherwise, the agent keeps its precedent opinion: in fact, setting ε = 0
means setting to zero the probability of changing opinion stochastically, in
the event the q neighbors disagree.

It is worth emphasizing that the implemented updating rule has been
chosen to be synchronous; this means that every agent updates its state si-
multaneously, on the basis of neighbors’s opinion at the previous time step.
In fact, we believe asynchronous updating does not adequately capture the
real dynamics of a social experiment. For instance, let us imagine many
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Figure A.1: Evolution of the magnetization for different values of ρ and different
configurations: a scale-free network; b regular lattice; c small-world network (β =
0.1); d small-world network (β = 0.5). Small pictorial representations are shown
for each network.

people forming groups to discuss about politics: it is hard to imagine partici-
pants discussing and changing their opinion ‘sequentially’. Persons interacts
with their neighbors simultaneously, updating their opinion in ‘real time’,
i.e. before being engaged in a new discussion with a different group. Another
example is provided by voting scenarios, where people express their opinion
at the same time. Moreover, even if asynchronous updating were applica-
ble, it would cause the system dynamics to be dependent on the particular
sequence of agents chosen.

Results

Numerical simulations of the proposed model have been carried on by chos-
ing N = 5000 agents, embedded on different network topologies as scale-free
networks, regular lattices, small world networks and completely random
networks. While scale-free networks have been generated via the Barabasi-
Albert model [75], the other kinds of networks have been generated via the
Watts-Strogatz model [81]. The latter allows to obtain different network
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Figure A.2: Phase-diagram plotting M versus ρ for two network configura-
tions (left: scale-free; right: small-world with β = 0.5): different phases are
visible, separated by threshold values of ρ. Insets show the same analysis
for networks with (a) N = 2500, (b) N = 2000, (c) N = 1000 and (d)
N = 500. Error bars represent the standard deviation over the simulations
run. The average R2 of the fits is: scale-free - (main panel) 0.9, (a) 0.88,
(b) 0.88, (c) 0.8, (d) 0.86; Watts-Strogatz - (main panel) 0.92, (a) 0.85, (b)
0.92, (c) 0.9, (d) 0.86.

configurations by varying the value of the rewiring probability β: regu-
lar lattices are achieved by setting β = 0, small-world networks by setting
0 < β < 1 and completely random networks by setting β = 1. In this work,
we have considered the following values: β ∈ [0, 0.01, 0.1, 0.5, 1]. Moreover,
all the considered networks have an average degree equal to

∑N
i=1 ki/N = 8

(i.e. agents have, on average, eight neighbors). Now, it is worth to high-
light that, since these network models are stochastic, we decided to gen-
erate and to use a single network for each configuration and for each size.
Each simulation has been performed with a different amount of conformist
agents ρ ∈ [0, 0.1, 0.25, 0.5, 0.6, 0.65, 0.7, 0.75, 0.9, 1] - notice that the ex-
pected value of ρ coincides with the expected fraction of conformist agents,
i.e. 〈ρ〉 = 〈N0

c /N〉 = Pc - and it has been run for 104 time steps. For the
vast majority of cases this temporal limit was long enough to reach a steady-
state, as only few network configurations required more time. However, in
the latter scenarios (e.g. regular lattices) we performed longer simulations.
We first consider the evolution of the system magnetization over time, i.e.
the absolute value of the difference between the number of agents in the two
states [92], normalized to N :

M =
|N+ −N−|

N
. (A.1)

The magnetization ranges between 0 and 1 (0 ≤M ≤ 1), with M = 0 in-
dicating the equipartition of the two opinions (i.e. the maximally disordered
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Figure A.3: Symmetry-breaking diagram plotting S versus ρ for two network
configurations (left: scale-free; right: small-world with β = 0.5): as ρ crosses
one of the threshold values, the system can be found in one of two states,
a priori equally probable, characterized by opposite values of S. Error bars
represent the standard deviation over the simulations run.

phase), and M = 1 indicating that consensus has been reached. Notice that
both situations N+ = 0, N− = N and, vice-versa, N− = 0, N+ = N are
compatible with consensus, i.e. magnetization is uninformative about the
dominant opinion sign.

Figure A.1 illustrates the evolution of the magnetization, upon varying
the value of ρ for different network configurations. Remarkably, the density
of conformist agents (i.e. ρ) strongly affects the process of consensus reach-
ing; more detailedly, 1) values of ρ ≤ 0.5 seem not to be sufficiently high to
let the system escape the disordered phase where the two opinions coexist;
2) values of 0.5 < ρ < 1 let the system escape the disordered phase but not
to reach consensus: a steady-state is reached where one of the two opinions
prevails on the other; 3) only the density value ρ = 1 allows the system to
reach the consensus.

Remarkably, this is valid for all the considered configurations: what
changes is the number of time steps after which the steady-state, or the
consensus, is reached. In particular, the regular lattice (panel b of Fig-
ure A.1) is the configuration where the process is slowest. As the network is
more and more rewired (panels c and d of Figure A.1), the process becomes
faster. Interestingly, further rewiring the network (β > 0.5) does not lead to
any appreciable change. Qualitatively speaking, the scale-free configuration
(panel a of Figure A.1) does not show significant differences with respect
to the small-world network with β = 0.5; however, the latter reaches the
steady-state later, for all the values of ρ. It is maybe surprising that the
presence of hubs does not speed up the process. However, this apparent
paradox could be explained by considering that we are implementing a q-
voter model, with an update rule involving only four neighbors at a time:
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thus, the (potential) influence those hubs could have on large numbers of
nodes is drastically reduced. Notice also that, for any given configuration,
rising ρ shortens the time for reaching the steady-state. According to Fig-
ure A.1 the value ρ = 0.5 seems to play the role of a threshold, separating
two phases of the system: the disordered one, characterized by M = 0, and
the ordered one, with M gradually rising (as a function of ρ) until full con-
sensus is reached. As we will show in a while, the behavior of the q-voter
model on heterogeneous networks is far richer.

Figure A.2 shows the value of the magnetization at the steady-state (i.e.
after 104 time steps), for two network configurations only (but the same
holds true for all the others), as a function of ρ. Let us focus on the scale-
free configuration (left panel of Figure A.2). At a first sight, two distinct
phases are visible: the disordered one, characterized by M = 0 for all the
values of ρ ≤ 0.5, and the ordered one, characterized by a value M 6= 0
for ρ > 0.5. Thus, the magnetization seems to play the role of the order
parameter of a continuous phase transition, while ρ plays the role of control
parameter, which can be varied to change the system behavior smoothly. Ac-
tually, a closer inspection reveals three different opinion-formation regimes
(indicated by different colors), with two distinct threshold values: ρc1 ' 0.45
separating the flat behavior (in black) from the slowly-rising linear one (in
red) and ρc2 ' 0.59 separating the latter from the rapidly-rising linear one
(in green). The insets (zooming on the second transition) reveal that the
same qualitative behavior can be observed also for networks with a lower
number of agents; what changes is the trend followed by points in the third
phase (linear for N ≥ 2500 and quadratic for N < 2500) with ρc2 shifting
towards lower values (' 0.56 for N = 500 agents). Let us now comment our
findings for the Watts-Strogatz configuration (right panel of Figure A.2).
This time four phases are distinguishable, separated by three threshold val-
ues: ρc1 ' 0.55, ρc2 ' 0.65 and ρc3 ' 0.70. However, as the insets reveal,
the system loses two of the phases as the number of agents is lowered, show-
ing three linear regimes for N ≥ 2500 and only one quadratic regime for
N < 2500. We also emphasize that all the aforementioned critical thresh-
olds ρc represent average values computed over the simulations run for each
kind of network (i.e. scale-free and small world), characterized by a stan-
dard deviation σρc ' 0.02. However, the analysis of M is somehow limiting
because the values of M cannot be negative: this means that the situations
where agents reach consensus by adopting the opinions +1 and −1 are in-
distinguishable. Thus, we need a quantity able to distinguish the sign of the
system final state. To achieve this, we use the summation of states

S =

∑
i si
N

=
N+ −N−

N
(A.2)

providing a complementary information with respect to M . Plotting the
summation S versus the density of conformists ρ, it is possible to achieve
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further information on the system dynamics. As shown in Figure A.3, as the
density of conformists rises the system chooses one of two states, character-
ized by the same absolute value of S, but with opposite sign: remarkably,
the two states revealed by crossing the thresholds are symmetrically dis-
tributed with respect to the horizontal axis. In other words, by rising the
density ρ the system is induced to choose one out of two possible states, a
priori equally probable, thus breaking its symmetry.

Each point of the phase diagram is the result of an average over more sim-
ulations: the obtained values show very small numerical differences, amount-
ing to few percents in the vast majority of cases. When considering the
summation of states, to not wash away the information provided by the sign
of S, the symmetry-breaking diagram has been obtained by averaging the
negative and the positive values separately, maintaining the bi-stable char-
acter of the system.

We have already noticed that the behavior of our system, distinguishing
the disordered state with M = 0 from the ordered state with M > 0, can
be interpreted, in more physical terms, as a phase transition with ρ playing
the role of control parameter and M playing the role of order parameter.
Such an evidence can be better described upon recalling the behavior of a
system of spins as the temperature is varied. In other words, our population
of agents behaves like a spin system [24], which is found to be in a param-
agnetic phase for the values ρ < ρc. The latter plays the role of the critical
temperature in the usual spin case. In order to describe the phase transition

of our system, we move from the well known relation M ∝
(

1− T
Tc

)γ
. A

similar relation can be shown to hold true for our agents.

Let us start by highlighting that the role of temperature T is played, in
our case, by the parameter (1−ρ), therefore the critical temperature Tc can
be mapped to (1−ρc). In order to find the value of the exponent γ describing
the ferromagnetic phase of our system, we have plotted the magnetization
M as a function of (1 − ρ)/(1 − ρc). Fig. A.4 shows it for the scale-free
configuration (N = 5000 nodes). The functional form is very well described

by the analytical relation M ∝
(

1− (1−ρ)
(1−ρc)

)γ
with γ ' 1.45 and ρc = 0.59.

However, while for a classical spin system the analytical relation de-
scribed above separates two distinct phases (the paramagnetic one, for
T
Tc
> 1 and the ferromagnetic one, for T

Tc
< 1), in our case the ferromagnetic

phase M > 0 can be further subdivided into different subphases which have
been called ‘regimes’ by us. Nevertheless, the formalism used in physics
to describe a phase transition does not allow one to take into account the
possibility of observing subphases; for this reason, the value ρc = 0.59 has
been chosen by us to simply distinguish the phase with M = 0 from the
phase with M > 0, completely ignoring the details of the latter.

The same line of reasoning holds true for the small-world configuration.
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Figure A.4: Plot of M as a function of (1 − ρ)/(1 − ρc), for the scale-free
network with N = 5000. The blue curve represents the analytical relation

M ∝
(

1− (1−ρ)
(1−ρc)

)γ
which describes very accurately the functional dependence

of M on the control parameter (1 − ρ)/(1 − ρc). The best fitting procedure gives
γ ' 1.45 once the value ρc = 0.59 has been inserted into the aforementioned for-
mula. The inset shows the same fitting curve in a log-log scale.

Conclusion

The q-voter model shows a very rich behavior, even simply considering
agents with two opinions and two characters only, as conformists and non-
conformists. Notably, the density of conformist agents ρ strongly affects the
consensus reaching process, defining threshold values separating different
phases of opinion formation. For ρ = 0 the two original opinions equally
coexist, i.e. 50% of agents remain in the +1 state and 50% of agents remain
in the −1 state (with small fluctuations). Then, by progressively rising ρ,
the system starts showing a non-zero magnetization, i.e. a larger number
of agents starts sharing the same opinion. Indeed, our control parameter ρ
can be mapped to the control parameter T (i.e. the temperature) of a spin
system; following the same line of reasoning we have been able to identify a
critical exponent γ that characterizes the phase transition occurring in our
agent population, as the density of conformists exceeds the threshold ρc.
More precisely, the system undergoes a sort of continuous phase transition,
which can be further broken down in several regimes, suggesting different
functional forms of M(ρ), separated by different values of ρ.

Apart from the details of the process, the response of the q-voter model to
changes of the conformist agent density is remarkably stable across different
network topologies: Watts-Strogatz networks with β ≥ 0.5 show similar
phase-diagrams and symmetry-breaking processes, in turn very similar to
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the ones observed for the scale-free configuration. The effect of considering
heterogeneous topologies is mainly reflected in the speed of the process,
which depends on the values of the parameter β: in particular, the more
random the network, the faster the process.

In conclusion, what emerges indicates that different regimes of ‘opin-
ion growth’ are identifiable, strongly affected by the density of conformists.
Moreover, even if the percentage of conformists drives the society towards
a ‘prevalent’ opinion (whose diffusion speed grows as more and more con-
formists are considered) in the case of agents with only two opinions (evenly
distributed at t = 0), the prevalent one cannot be predicted a priori.
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