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Abstract

Developing distributed applications typically requires to integrate new code with
legacy third-party services, e.g., e-commerce facilities, maps, etc. These services
cannot always be assumed to smoothly collaborate with each other; rather, they
live in a “wild” environment where they must compete for resources, and possi-
bly diverge from the expected behaviour if they find it convenient. To overcome
these issues, some recent works have proposed to discipline the interaction of
mutually distrusting services through behavioural contracts.

In the first part of this dissertation, we exploit a theory of timed behavioural
contracts to formalise, design and implement a message-oriented middleware in
which distributed services can be dynamically composed, and their interaction
monitored to detect contract violations. We show that the middleware allows to
reduce the complexity of developing distributed applications, by relieving pro-
grammers from the need to explicitly deal with the misbehaviour of external ser-
vices. On the other hand, this middleware introduces a ”single point of trust” in
the distributed application.

We then explore the possibility that contract-oriented applications safely interact
in absence of this trusted entity. To this purpose, the middleware functions are
delegated to a network of nodes, that must globally reach a consensus on the de-
cisions to take about the fulfillment of the contracts. We exploit the peer-to-peer
network of Bitcoin, a decentralized cryptocurrency introduced in 2009. In par-
ticular, we use the Bitcoin blockchain to record tamper-proof execution traces of
behavioural contracts, by exploiting the few bytes of metadata that can be carried
on standard Bitcoin transactions. Such execution traces form a subchain inside
the blockchain. Existing approaches either postulate that subchains are always
consistent, or give weak guarantees about their security (for instance, they are
susceptible to Sybil attacks). However, there may exist inconsistent subchains
which represent incorrect contract executions.

Thus, in the second part of this thesis, we propose a consensus protocol, based
on Proof-of-Stake, that incentivizes nodes to consistently extend the subchain.
Finally, we evaluate the security of our protocol, and we show how to exploit it
as a basis for implementing behavioural contracts on Bitcoin.
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Chapter 1

Introduction

1.1 Motivations

Modern distributed applications are often composed by loosely-coupled services,
which can appear and disappear from the network, and can dynamically dis-
cover and invoke other services in order to adapt to changing needs and condi-
tions. These services may be under the governance of different providers (pos-
sibly competing among each other), and interact through open networks, where

competitors can try to exploit their vulnerabilities.

In the setting outlined above, developing trustworthy services and applications
can be a quite challenging task: the problem fits within the area of computer se-
curity, since we have adversaries (in our setting, third-party services), whose exact
number and nature is unknown (because of openness and dynamicity). Further,
standard analysis techniques from programming languages theory (like e.g., type
systems) cannot be applied, since they usually need to inspect the code of the
whole application, while under the given assumptions one can only reason about

the services under their control.

A possible countermeasure to these issues is to discipline the interaction between
services through contracts. Contracts are usually descriptions of service behaviour,
in terms of, e.g., pre/post-conditions and invariants [57], behavioural types [41],
etc. They can be used at static or dynamic time to discover and bind Web services,

and to guarantee they interact in a protected manner: when a service does not be-
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have as prescribed by its contract, it can be blamed (and punished) for breaching
the contract [80]. Although several models and architectures for contract-oriented
services have been proposed in the last few years [35, 84, 88], further evidence is

needed in order to put this paradigm at work in everyday practice.

These models and architectures usually rely on a contract broker, an entity which
collects the contracts advertised by the services, helps to establish sessions be-
tween compliant services, and monitors the interaction in order to ensure the ful-
fillment of the contract rules by the parties. A contract broker can be implemented
as a middleware, i.e. a framework that offers public primitives to the services that
want to interact through contracts, ensuring interoperability among applications
written in different languages and for different platforms. However, the main
limitation of a contract broker is its centralized nature. Since it essentially plays
the role of a trusted party, an adversary that takes control of the broker (or man-
ages to exclude it from the network) may compromise the whole system. A pos-
sible way to address this issue is to decentralize the role of the broker: this means
its functions are delegated to all (or some of) the nodes of the network, instead
of a single entity. Anyhow, this is not an easy task to achieve, since it requires an
effective and safe consensus mechanism among the nodes of the network.

Recently, cryptocurrencies like Bitcoin [73] have pushed forward the concept of
decentralization, by ensuring reliable interactions among mutually distrusting
nodes in the presence of a large number of colluding adversaries. These cryp-
tocurrencies leverage on a public data structure, called blockchain, where they
permanently store all the transactions exchanged by nodes, grouped into blocks.
Adding new blocks to the blockchain (called mining) requires to solve a moder-
ately difficult cryptographic puzzle. The first miner who solves the puzzle earns
some virtual currency (some fresh coins for the mined block, and a small fee for
each transaction included therein). In Bitcoin, miners must invert a hash function
whose complexity is adjusted dynamically in order to make the average time to
solve the puzzle ~10 minutes. Instead, removing or modifying existing blocks is
computationally unfeasible: roughly, this would require an adversary with more
hashing power than the rest of all the other nodes. According to the folklore, Bit-
coin would resist to attacks unless the adversaries control the majority of total
computing power of the Bitcoin network. Even though some vulnerabilities have

been reported in the literature (see Section 4.4.3), in practice Bitcoin has worked
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1.1. MOTIVATIONS

surprisingly well so far: indeed, the known successful attacks to Bitcoin are stan-
dard hacks or frauds [58], unrelated to the Bitcoin protocol.

The idea of using the Bitcoin blockchain and its consensus protocol as founda-
tions for a decentralized contract-oriented interaction has been explored by sev-
eral recent works. In particular, Bitcoin offers the possibility to specify some sim-
ple contracts in transactions through short programs expressed in a Forth-like
scripting language. These contracts are evaluated by the miners before the respec-
tive transactions are appended to the blockchain, and often contain clauses which
involve the trasfer of some digital currency among nodes: they are commonly re-
ferred in literature as smart contracts [85]. For instance, [6, 14, 30, 34, 64, 65, 66, 47]
propose protocols for secure multiparty computations, fair lotteries, based access
control; [48] implements decentralised authorization systems on Bitcoin, [79, 87]
allow users to log statements on the blockchain; [36] is a key-value database with
get/set operations; [50] extends Bitcoin with advanced financial operations (like
e.g., creation of virtual assets, payment of dividends, efc.), by embedding its own

messages in Bitcoin transactions.

Unfortunately, since the Bitcoin language is not Turing-complete, the possible
contracts that are natively supported the platform are very limited. However, the
Bitcoin protocol allows clients to embed a few extra bytes as metadata in transac-
tions. Many platforms for contracts exploit these metadata to store a persistent,
timestamped and tamper-proof historical record of all their messages [1, 24]. Usu-
ally, metadata are stored in OP_RETURN transactions [25, 2], making them mean-
ingless to the Bitcoin network. With this approach, the sequence of platform-
dependent messages forms a subchain, whose content can only be interpreted by
the nodes that execute the platform, thus potentially extending the decentraliza-

tion power of Bitcoin to systems that use more complex contract models.

As far as we know, none of the existing platforms use a secure protocol to es-
tablish if their subchain is consistent. This is a serious issue, because it either
limits the expressiveness of the contracts supported by these platforms (which
must consider all messages as consistent, so basically losing the notion of state),
or degrades the security of contracts (because adversaries can manage to publish

inconsistent messages, so tampering with the execution of smart contracts).
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1.2 Contributions

Pursuing the ideas described in the previous section, this thesis presents two
main scientific contributions: first, a centralized contract broker in the form of
a contract-oriented middleware, and, second, a protocol for extending the con-
tract models supported by Bitcoin through subchains, providing similar security

properties to those given by the native Bitcoin consensus mechanism.

1.2.1 A contract-oriented middleware

In Chapter 3 we present a design, an implementationl, and a validation of a cen-
tralized middleware which uses behavioural contracts to allow disciplined inter-
actions between mutually distrusting services. In particular, the middleware is
designed to support different notions of contract, which only need to share some
high-level features:

e a compliance relation between contracts, which specifies when services con-
forming to their contracts interact correctly. The middleware guarantees

that only services with compliant contracts can interact.

e an execution monitor, which checks if the actions done by the services con-
form to their contracts, and — otherwise — detects which services are cul-

pable of a contract violation.

Building upon these basic ingredients, the middleware extends standard message-
oriented middleware [15] (MOMs) by allowing services to advertise contracts, es-
tablish sessions between services with compliant contracts, and interact through
these sessions. The execution monitor guarantees that, whenever a contract is
violated, the culprit is sanctioned. Sanctions negatively affect the reputation of a

service, and consequently its chances to establish new sessions.

We also explore several ways to validate our middleware. First, we perform some
scalability tests, to measure the execution time of the core primitives as a func-
tion of the number of advertised contracts. Second, we develop a distributed

application (to solve an RSA factoring challenge [77]), involving a master and

1 Available at co2.unica.it.
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a population of workers, some of which do not always respect their contracts.
In particular, we show that our service selection mechanism allows to automati-
cally marginalize the dishonest services, without requiring the master to explic-
itly handle their misbehaviour. In the last part of this contribution, we introduce
a hands-on approach to contract-oriented computing, showing some program-
ming patterns and code snippets that exploits the features of our middleware to

write a (contract-based) distributed application.

1.2.2 A protocol for contracts on Bitcoin

In Chapter 4, we present a protocol that allows third-party applications to keep
trace of their contract executions on the Bitcoin blockchain, overcoming the limit
of trusting in a single entity (as a centralized middleware). To this purpose, we
tirst formalise the concept of subchain, and then present a notion of subchain
consistency. We show that subchains are suitable to embed state updates of a
general labelled transition system (LTS), as a basis for implementing behavioural
contracts upon the Bitcoin blockchain.

We provide a wide description of the protocol, presenting its basic properties. We
say that the protocol is based on a Proof-of-Stake [33, 63] consensus, similar to the
Proof-of-Work used by Bitcoin, but where nodes votes are weighted by the money
stake they own, instead of their computational power. Moreover, our protocol is
organized in stages: at each stage, a new message to be appended to the subchain
is randomly chosen. Intuitively, a node must endorse (or vote) a message, in order
to candidate it to be appendend on the subchain in the current stage. To vote, it
simply puts a bitcoin deposit on it. Then, if the message is chosen, the rest of
the network can verify its consistency, paying back the associated deposit to its
voter. Since clients pay a fee to the nodes that endorse their messages, and since
the deposit and the fee are scrutinized by the network, the protocol provides
an economic incentive to honest nodes that vote consistent updates only, while

disincentivizing the dishonest ones.

We analytically and experimentally validate the security of our protocol, in pres-
ence of colluding adversaries that try to maximize their revenue generated from

the participation in the protocol, and that try to publish both consistent and in-
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consistent messages, depending on the convenience. In particular, we show that
under conservative assumptions, the protocol places a lower bound to the stake
that adversaries should globally own in order to subvert the system of incentives.

Finally, we provide a description of a concrete implementation of the protocol in
Bitcoin. Notably, our protocol can be implemented by only using the so-called
standard transactions®. A preliminary implementation prototype of our protocol
is public available®.

1.3 Synopsis

This dissertation presents both unpublished material, and some published one.

We briefly describe below its organization.

Chapter 2. Background introduces some of the theory, basic notions and part of
the notations used throughout our subsequent technical development. In par-
ticular, the theory of timed automata and timed session types, used in the subse-
quent Chapter 3, is presented; it also illustrates timed CO,, a calculus for contract-
oriented application. Finally, it provides an overview of Bitcoin and its block-

chain.

Chapter 3. A contract-oriented middleware presents the first main contribution
of this thesis: a centralized Java middleware that allows mutually distrusting
services to safely interact through contracts. In particular, the last sections of
this chapter show the middleware features and the good programming patterns
to develop contract-oriented applications. This chapter borrows some material
from [18, 19, 10].

Chapter4. Decentralizing behavioural contracts on Bitcoin presents the second main
contribution of this work: a protocol that allows third-party platforms to safely

execute behavioural contracts on decentralized contexts, thus overcoming the

2This is important, because non-standard transactions are discarded by nodes running the
official Bitcoin client.
SAthttp://contractvm.github.io/.

6 Ph.D. Thesis of A. S. Podda
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need for a centralized trusted middleware. To do so, the protocol extends the con-
sensus mechanism of Bitcoin with the idea of subchains, to support non-native

advanced models of contracts. This chapter widely extends the material in [22].

Chapter 5. Related work illustrates several state-of-the-art studies related to our
thesis. More precisely, it discusses different models and architectures for contract-
oriented applications, both in the general context and in decentralized environ-
ments like Bitcoin. It also presents an overview of Ethereum, a cryptocurrency

similar to Bitcoin, which natively supports an expressive model of contracts.

Chapter 6. Conclusions finally contains a summarized view of our work, a dis-
cussion of the results of the two main contributions, and some research proposals
for further work.
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Chapter 2
Background

In this chapter, we illustrate some theory and notions that will be used in the pros-
ecution of the thesis. In particular, next Section 2.2 illustrates the theory of timed
automata, that the middleware exploits to monitor, at run-time, the interaction
between compliant services. Then, in Section 2.1 and Section 2.3 we introduce
timed session types, a notable contract model that we use in the presentation of
the middleware, and TCO, a calculus that allow to specify contract-oriented ap-
plications. In Section 2.4, we briefly describe Bitcoin, the blockchain and its con-
sensus mechanism: this concepts will be useful to understand the core features of

our protocol for executing behavioural contracts in decentralized environments.

Except for Section 2.4, this chapter does not provide original contributions from
the author.

2.1 Timed Session Types (TSTs)

Although the middleware described in Chapter 3 is meant to be contract-agnostic,
we use timed session types (ISTs) as the referring contract model used for its pre-
sentation and validation. Therefore, in the following sections we illustrate the
core notions of this model. Let A be a set of actions, ranged over by a,b,.... We
denote with A' theset {!a | a € A} of output actions, with A” the set {7a | a € A} of
input actions, and with L = A" U A” the set of branch labels, ranged over by ¢, (', . . ..
We use 0, 0’, .. . to range over the set R of positive real numbers including zero,
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and d,d', ... to range over the set N of natural numbers. Let C be a set of clocks,
namely variables in R, ranged over by 7,#',.... We use /2,7",... C C to range
over sets of clocks.

Definition 2.1.1 (Guard). We define the set G of guards over clocks C as follows:

g = true | g | gNg ‘ tod ‘ t—t'od whereoe {< < ,=>>}

A TST p models the behaviour of a single participant involved in an interaction
(Definition 2.1.2). To give some intuition, we consider two participants, Alice
(A) and Bob (B), who want to interact. A uses an internal choice in the form
> :'ai{g:, R} . p; when she wants to do one of the outputs !a; in a time window
where ¢, is true; further, the clocks in /7, will be reset after the output is per-
formed. Dually, B uses an external choice in the form &;,?a;{¢;, ?;} . ¢; to declare
that he is available to receive each message a; in any instant within the time win-
dow defined by ¢; (and the clocks in /?; will be reset after the input). In both cases,

the contract execution continues with p;.

Definition 2.1.2 (Timed session type). Timed session types p,q, ... are terms of the

following grammar:
p == 1 | Siertadon Ri}y v | &iertai{gi, Rit.pi | recX.p | X

where (i) the set I is finite and non-empty, (ii) the actions in internal/external
choices are pairwise distinct, (iii) recursion is guarded (e.g., we forbid both rec X'. X
and rec X.recY.p).

Except where stated otherwise, we consider TSTs up-to unfolding of recursion.
A TST is closed when it has no recursion variables. If ¢ = >, 'a;{¢g;. ;} . p; and
0 ¢ I, wewrite lag.po+q for ), 0y a;{g;, I;} . p; (the same for external choices).
True guards, empty resets, and trailing occurrences of the success state 1 can be

omitted.

Example 2.1.1 (Simplified PayPal). Along the lines of PayPal User Agreement [3],

we specify the protection policy for buyers of a simple on-line payment platform,

10 Ph.D. Thesis of A. S. Podda



2.1. TIMED SESSION TYPES (TSTS)

called PayNow for the full version). PayNow helps customers in on-line pur-
chasing, providing protection against seller misbehaviours. In case a buyer has
not received what he has paid for, he can open a dispute within 180 days from the
date the buyer made the payment. After opening of the dispute, the buyer and
the seller may try to come to an agreement. If this is not the case, within 20 days,
the buyer can escalate the dispute to a claim. However, the buyer must wait at
least 7 days from the date of payment to escalate a dispute. Upon not reaching
an agreement, if still the buyer does not escalate the dispute to a claim within 20
days, the dispute is considered aborted. During a claim procedure, PayNow will
ask the buyer to provide documentation to certify the payment, within 3 days
of the date the dispute was escalated to a claim. After that, the payment will be
refunded within 7 days.

PayNow’s agreement is described by the following TST p:

p = ?pay{tpu, } (70k& 7dispute{t,., < 180,¢4}. p') where
p' =7ok{ty <20} &
rclaim{ty <20 At,,, > 7,t.}.7rcpt{t. < 3,1.}.'refund{t. < 7} &

?abort

2.1.1 Semantics of TSTs

To define the behaviour of TSTs we use clock valuations, which associate each clock
with its value. The state of the interaction between two TSTs is described by a con-
figuration (p,v) | (¢,7), where the clock valuations » and 7 record (keeping the
same pace) the time of the clocks in p and ¢, respectively. The dynamics of the
interaction is formalised as a transition relation between configurations (Defini-
tion 2.1.6). This relation describes all and only the correct interactions: e.g., we do
not allow time passing to make unsatisfiable all the guards in an internal choice,

since doing so would prevent a participant from respecting her protocol.

Definition 2.1.3 (Clock valuations). We denote with V = C — R the set of clock
valuations. We use meta-variables 1,7, ... to range over V, and we denote with

Vo, 10 the initial clock valuations, which map each clock to zero. Given a clock

11
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valuation », we define the following valuations:

e 1 + ¢ increases each clock in » by the delay § € R, i.e.:

(v +8)(t) = v(t) + 6 forall € C

e [R] resets all the clocks in the set 7 C C, i.e.:

0 ift e R
v[R](t) = .
v(t) otherwise

Definition 2.1.4 (Semantics of guards). For all guards ¢, we define the set of clock

valuations [¢] inductively as follows, where o € {<, <, =, >, >}

[true] =V [=9] =V \[9] [91 A g2] = [9:] N [g2]
[t od] ={v | v(t)od} [t —t'od] ={v | v(t)—v(t")od}

Before defining the semantics of TSTs, we recall from [32] some basic operations
on sets of clock valuations (ranged over by /C, ’,... C V).

Definition 2.1.5 (Past and inverse reset). For all sets /C of clock valuations, the
set of clock valuations | £ (the past of ) and K[T']7! (the inverse reset of ) are
defined as:

I ={{v|36>0:v+5€K} Kt = {v | v[T ek}

Definition 2.1.6 (Semantics of TSTs). A configuration is a term of the form (p, ) |
(q,m), where p, g are TSTs extended with committed choices ['a{g, R}| p. The se-
mantics of TSTs is a labelled relation — over configurations (Figure 2.1), whose
labels are either silent actions 7, delays 6, or branch labels, and where we define

the set of clock valuations rdy(p) as:

YUlgid ifp =2 adgn Ri} - pi
rdy(p) = qV ifp=&---orp=1

1] otherwise

12 Ph.D. Thesis of A. S. Podda



2.1. TIMED SESSION TYPES (TSTS)

(tafg, RY.p+p', v) = (la{g, RYlp, v)  ifv €[]
(ltafg, RYp, v) = (p, VIR])
(va{g, R}.p+9', v) = (p, V[R]) if v € 9] 7
(p, v) > (p, v +0) f6>0Av+6€ rdy(p) (D)

() = (0, ) () = (p, V) (1) = (2.17)

[S-DEL]

00) [ (@) = (0 )I((m) 0, 0) | (1) = (0,0) | (a,7)

(p,v) == (@', ) (a,n) == (¢, 1)
(0, v) | (q,m) = @) | (d',n)

[s-7]

Figure 2.1: Semantics of timed session types (symmetric rules omitted).

As usual, we write p = p’ as a shorthand for (p, a, p’) €—, witha € LU{7} URx.

Given a relation —, we denote with —* its reflexive and transitive closure.

We now comment the rules in Figure 2.1. The first four rules describe the be-
haviour of a TST in isolation. Rule [+] allows a TST to commit to the branch 'a
of her internal choice, provided that the corresponding guard is satisfied in the
clock valuation ». This results in the term [!a{g, /?}] p, which can only fire 'a
through rule [1], without making time pass. This term represents a state where
the endpoint has committed to branch !a in a specific time instant'. Rule [7] al-
lows an external choice to fire any of its input actions whose guard is satisfied.
Rule [peL] allows time to pass; this is always possible for external choices and suc-
cess term, while for an internal choice we require that at least one of the guards
remains satisfiable; this is obtained through the function rdy. The last three rules
deal with configurations. Rule [s-+] allows a TST to commit in an internal choice.
Rule [s-7] is the standard synchronisation rule a la CCS. Rule [s-DeL] allows time to
pass, equally for both endpoints.

Example 2.1.2. Let p = la+!b{t > 2}, let ¢ = ?b{t > 5}, and consider the

! This is quite similar to the handling of internal choices in [16, 20]. In these works, an internal
choice !a.p+q first commits to one of the branches (say, !a.p) through an internal action, taking
a transition to a singleton internal choice !a.p. In this state, only the action !a is enabled — as in
our ['a{g, R}]p.

13
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computations:

(p,v0) | (g,70) NN ("ot > 2}, v04+7) | (¢,n0+T7) = (Lvo+7) ] (1,70+7)

2.1)
(p,v0) | (g:70) 55 ([*a],vo +0) | (q,70 + 0) (2.2)
() | (@,10) 5 ([1o{t > 2}, w0 +3) | (¢, 70 + 3) (2.3)

The computation in (2.1) reaches success, while the other two computations reach
a deadlock state. In (2.2), p commits to the choice !a after some delay §; at this
point, time cannot pass (because the leftmost endpoint is a committed choice),
and no synchronisation is possible (because the other endpoint is not offering 7a).
In (2.3), p commits to !b after 3 time units; here, the rightmost endpoint would
offer 7b, but not in the time chosen by the leftmost endpoint. Note that, were we
allowing time to pass in committed choices, then we would have obtained e.g.
that (!b{t > 2}, 1) | (¢,70) never reaches deadlock — contradicting our intuition
that these endpoints should not be considered compliant.

Note that, even when p and ¢ have shared clocks, the rules in Figure 2.1 ensure
that there is no interference between them. For instance, if a transition of (p, /)
resets some clock 7, this has no effect on a clock with the same name in ¢, i.e. on
a transition of (p, ) | (¢, 7). Thus, without loss of generality we will assume that
the clocks in p and in ¢ are disjoint.

2.1.2 Compliance between TSTs

We extend to the timed setting the standard progress-based compliance between
(untimed) session types [17, 21, 46, 67]. If p is compliant with ¢, then whenever
an interaction between p and ¢ becomes stuck, it means that both participants
have reached the success state. Intuitively, when two TSTs are compliant, the in-
teraction between services correctly implementing? them will progress (without

communication and time errors), until both services reach a success state.

2The notion of “correct implementation” of a TST is orthogonal to the present work. A possible
instance of this notion can be obtained by extending to the timed setting the honesty property
of [26].
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Definition 2.1.7 (Compliance). We say that (p, ) | (¢,7) is deadlock whenever (i)
it is not the case that both p and ¢ are 1, and (i) there is no § such that (p, 7 + 9) |
(q,1 +6) =. We then write (p, ) = (¢,7) whenever:

(p,v) | (q,n) ="\ ") | (¢yn) implies (p',2") | (¢',n") not deadlock

We say that p and ¢ are compliant whenever (p, ) > (¢, 7)) (in short, p > ¢).

Note that item (ii) of the definition of deadlock can be equivalently phrased as
follows: (p, ) | (¢,7) #~ (i-e., the configuration cannot do a T-move in the current

clock valuation), and there does not exist any ¢ > 0 such that (p, ) | (¢,7) RN

Example 2.1.3. The TSTs p = 7a{t < 5}.!b{t < 3} and ¢ = 'a{t < 2}.7b{t < 3}
are compliant, but p is not compliant with ¢’ = 'a{t < 5}.7b{t < 3}. Indeed,
if ¢’ outputs a at, say, time 4, the configuration will reach a state where no ac-
tions are possible, and time cannot pass. This is a deadlocked state, according
to Definition 2.1.7.

Example 2.1.4. Consider a customer of PayNow (Example 2.1.1) who is willing
to wait 10 days to receive the item she has paid for, but after that she will open
a claim. Further, she will instantly provide PayNow with any documentation
required. The customer contract is described by the following TST, which is com-

pliant with PayNow’s p in Example 2.1.1:

'pay{lpay}-( !ok{tpay < 10} +
'dispute{t,,, = 10}.!claim{t,,, = 10}.'rcpt{t,,, = 10}.?refund)

Compliance between TSTs is more liberal than the untimed notion, as it can relate
terms which, when cleaned from all the time annotations, would not be compliant

in the untimed setting.

Definition 2.1.8 and Lemma 2.1.1 below coinductively characterise compliance
between TSTs, by extending to the timed setting the coinductive compliance for
untimed session types in [16]. Intuitively, an internal choice p is compliant with
¢ when (i) ¢ is an external choice, (ii) for each output 'a that p can fire after ¢
time units, there exists a corresponding input 7a that ¢ can fire after ¢ time units,

and (iii) their continuations are coinductively compliant. The case where p is an
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external choice is symmetric.

Definition 2.1.8. We say R is a coinductive compliance iff (p,) R (¢, 1) implies:

l.p=1 <= ¢g=1

2. p=73ictaidgi, iy .pi = v €xdy(p) N ¢ =& es?2195 R} -q5 N
Vo,i: v+ € o] = 3Fj:a =a;An+d € [g;IN i, v+0[R])R(q;, n+0[R;])

3. p=&;jcs?219), B} -pj = nexrdy(q) N q=7 ic;'algi, Ri}-qi A
Vo, i n+d € o] = Fj:a;=a;Av+d € [g;]A Wy, v+O[R])R(qi, n+6[1i])

Lemma 2.1.1. p =<1 ¢q <= 3R coinductive compliance : (p,vy) R (¢,10)

Theorem 2.1.1. Compliance between TSTs is decidable. [26]

2.1.3 Admissibility of a compliant

In the untimed setting, each session type p admits a compliant, i.e. there exists
some ¢ such that p > ¢. For instance, we can compute ¢ by simply swapping in-
ternal choices with external ones (and inputs with outputs) in p (this ¢ is called
the canonical dual of p in some papers [45, 54]). A naive attempt to extend this
construction to TSTs can be to swap internal with external choices, as in the un-
timed case, and leave guards and resets unchanged. This construction does not
work as expected, as shown by the following example.

Example 2.1.5. Consider the following TSTs:

p = ta{r <2}.1b{r <1} po = taf{r < 2}+10{z < 1}.7a{r <0}
ps=rec X.7a{r <1Ay <1} la{r <1 {z}}. X

The TST p, is not compliant with its naive dual ¢; = 7a{z < 2}.7b{z < 1}: even
though ¢, can do the input 7a in the required time window, p; cannot perform
'b if 'a is performed after 1 time unit. For this very reason, no TST is compliant
with p;. Note instead that ¢; < 1a{z < 1}. 'b{z < 1}, which is not its naive dual.
In p», a similar deadlock situation occurs if the !'b branch is chosen, and so also

P does not admit a compliant. The reason why p; does not admit a compliant is
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r-1:Vv [T-1]
I'Ep G Viel
I'E &icr?ai{gi, T} -pi s Uier 4 ([[!]iﬂ M IC/'[T/'J%)
I'Ep: K Viel
TFYtaden T} vt (Ui PO\ (Ui, HnINKITTD) ™
NxX: LXK [T-VAR]

LLX:KkEp: K
ChrecX.p:U{Ko | I, : T, X : Ko bp: KL AK) C Ky}

[T-&]

[T-REC]

Figure 2.2: Kind system for TSTs.

more subtle: actually, p; can loop until the clock y reaches the value 1; after this

point, the guard y < 1 can no longer be satisfied, and then p; reaches a deadlock.

To establish when a TST admits a compliant, we define a kind system which as-
sociates to each p a set of clock valuations /C (called kind of p). The kind of a
TST is unique, and each closed TST is kindable (Theorem 2.1.2). If p has kind /C,
then there exists some ¢ such that, for all » € /C, the configuration (p,») | (¢, )
never reaches a deadlock (Theorem 2.1.3). Also the converse statement holds: if,
for some ¢, (p,v) | (¢,7) never reaches a deadlock, then » € I (Theorem 2.1.4).
Therefore, p admits a compliant whenever the initial clock valuation v, belongs
to /C. We give a constructive proof of the correctness of the kind system, by show-
ing a TST co(p) which we call the canonical compliant of p.

Definition 2.1.9 (Kind system for TSTs). Kind judgements I' - p : U are defined
in Figure 2.2, where I' is a partial function which associates kinds to recursion

variables.

Rule [T-1] says that the success TST 1 admits a compliant in every »: indeed, 1
is compliant with itself. The kind of an external choice is the union of the kinds
of its branches (rule [1-¢]), where the kind of a branch is the past of those clock
valuations which satisfy both the guard and, after the reset, the kind of their
continuation. Internal choices are dealt with by rule [1-+], which computes the
difference between the union of the past of the guards and a set of error clock
valuations. The error clock valuations are those which can satisfy a guard but not

17
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the kind of its continuation. Rule [T-var] is standard. Rule [T-rRec] looks for a kind

which is preserved by unfolding of recursion (hence a fixed point).

The following theorem states that every closed TST is kindable, as well as unique-
ness of kinding. We stress that being kindable does not imply admitting a com-
pliant: this holds if and only if the initial clock valuation 1, belongs to the kind.
Note that uniqueness of kinding holds at the semantic level, but the same kind

can be represented syntactically in different ways.

Theorem 2.1.2 (Uniqueness of kinding). For all p and I with £v(p) C dom(I"), there
exists unique C such that I' - p : IC.

By exploiting the kind system we define the canonical compliant of kindable TSTs.
Roughly, we turn internal choices into external ones (without changing guards
nor resets), and external into internal, changing the guards so that the kind of

continuations is preserved.

Example 2.1.6 (Canonical compliant). For all kinding environments I' and p kind-

able in I, we define the TST cor(p). We will abbreviate cor(p) as co(p) when T = ().

The following theorem states the soundness of the kind system: is particular, if

the initial clock valuation 1, belongs to the kind of p, then p admits a compliant.

Theorem 2.1.3 (Soundness). If - p: K and v € I, then (p, ) > (co(p) , ).
Example 2.1.7. Recall ¢; = 7a{z < 2}.7b{z < 1} from Example 2.1.5. We have
co(q1) = 'af{r < 1}.1b{r <1}. Sincel ¢, : £ = [+ < 1] and v, € K, by Theo-
rem 2.1.3 we have that ¢; >aco(g;), as anticipated in Example 2.1.5.

The following theorem states the kind system is also complete: in particular, if p

admits a compliant, then the clock valuation v, belongs to the kind of p.

Theorem 2.1.4 (Completeness). If - p : /Cand 3q,1. (p,v) > (q,n), then v € K.

Compliance is not transitive, in general: however, Theorem 2.1.5 below states that

transitivity holds when passing through the canonical compliant.
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Lemma 2.1.2. Forall p,q,v,nand p’, v such thatt p' : JCand ' € [C:

(p,v)pa(p', V") A (co(p'), V) >a(q,n) = (p,v)><(q,n)

Theorem 2.1.5 (Transitivity of compliance). If p >ip" and co(p’) > ¢, then p > q.

2.1.4 Runtime monitoring

We now define the semantics of the runtime monitor of TSTs, which is the one
used in the premises of rules [senp] and [Recv] in Figure 2.7. Note that the seman-
tics in Figure 2.1 cannot be directly exploited to define such a runtime monitor, for
two reasons. First, the synchronisation rule is symmetric and synchronous, while
the middleware assumes an asymmetry between internal and external choices
and an asynchronous semantics. Second, the semantics in Figure 2.1 does not
have transitions (either messages or delays) not allowed by the TSTs, while the

monitoring semantics must also consider illegal moves attempted by participants.

The monitoring semantics is defined on two levels. The first level, specified
by the relation — (which overloads the transition relation used in Section 2.1.1)
deals with the case of honest participants; however, unlike the semantics in Sec-
tion 2.1.1, here we decouple the action of sending from that of receiving. More
precisely, if A has an internal choice and B has an external choice, then we postu-
late that A must move first, by doing one of the outputs in her choice, and then B
must be ready to do the corresponding input. The second level, called monitoring
semantics and specified by the relation —, builds upon the first one to allow for
synchronisation and delay. Additionally, the monitoring semantics defines tran-
sitions for actions not accepted by the first level, e.g. unexpected input/output
actions. In these cases, the monitoring semantics assigns the blame to the culpa-

ble participant, by setting its state to 0.

Definition 2.1.10 (Monitoring semantics of TSTs). Monitoring configurations ', . ..
are terms of the form P | @), P and () are triples (p,c, ), where p is either a
TST or 0, and c is a sequence of output labels (possibly empty). The transi-
tion relations — and — over monitoring configurations, with labels A, X', ... €
({A,B} x L) UR>y, is defined in Figure 2.3.
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(ta{g, RY.p + p',c,v) = (p,c - 'a,v[R]) ifrefg] ™+
(ra{g,R}.p & p',c,v) EEN (p,c, [ R]) ifrefg]

v+4d€rdy(p)
(p,c,v) KN (p,c,v +0)

v+ ¢ ray(p)
(p,c,v) TN (0,¢,v + 5)

(e, ) = (e, 0)  (q,dn) = (¢ d, )

A:la [M-SyNC]
(p,c,v) | (q,d,n) — (p', ¢ Z/)II (¢, d'.n")

(p,c,v) i> (p’,c’,z/) (q,d, r/) (¢",d',n")

[M-DEL]

[M-DELFAIL]

; [M-SYNCDEL]
(e, ) | (a,dyn) 2 (0, 0) |1 (s d )
(p,ta-c,v) || (q,d,n) —>» LAEN (p,c,v) || (g,d,n) [M-READ]
[), C’ ]/ 7£> [M-FAIL]

(py e, ) || (g, dv ) 2225 (0, ¢,0) || (a,d, )

Figure 2.3: Monitoring semantics (symmetric rules omitted).

In the rules in Figure 2.3, we always assume that the leftmost TST is governed
by A, while the rightmost one is governed by B. In rule [M-+], A has an internal
choice, and she can fire one of her outputs !a, provided that the guard g is satis-
fied. When this happens, the message !a is written to the buffer, and the clocks
in /7 are reset. In rule [M-¢], B can enable an input 7a in an external choice; this
is permitted when the guard ¢ of the selected branch is satisfied. Rules [M-Der]
and [M-DecFan] allow time to pass, making A culpable when she definitively dis-
ables all the branches in an internal choice. The last four rules specify the runtime
monitor. Rule M-sync] allows two triples to synchronise; this makes the buffer of
A grow (!a is enqueued, according to rule [M-+]), while B just consumes the input
prefix 7a. Rule [M-syncDeL] lets some time § to pass, provided that the delay is the
same for both triples. Rule [M-Reap] allows B to read a message in the buffer; note
that the state of the recipient is not updated, since the input prefix was already
consumed by rule [M-sync]. Finally, rule (M-Fan] is used when A attempts to do
an action not permitted by —: this makes the monitor evolve to a configuration
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where A is culpable (denoted by the term 0).

Formally, the runtime monitor can be seen as a deterministic automaton, which
reads a timed trace (a sequence of actions and time delays) and it reaches a unique
state 7, which can be inspected to find which of the two participants (if any) is
culpable.

Definition 2.1.11 (Duties & culpability). Let v = (p, ¢, ) || (¢, d, ). We say that A
is culpable in ~y iff p = 0. We say that A is on duty in v if (i) A is not culpable in ~,
and (ii) either p is an internal choice, or d is not empty.

When both participants behave honestly, i.e., they never take [*Far*] moves, the
monitoring semantics preserves compliance. This can be proved similarly to The-
orem 9 in [18].

Example 2.1.8. Let p = 'a{2 < ¢ < 4} be the TST of participant A, and let
g = 72{2 <t < 5} +7b{2 < ¢t < 5} be that of B. We have that p > ¢. Let
v = (p,[],70) I (¢,[], 70). A correct interaction is given by the timed trace n =
(1.2, A:1a, B:7a). Indeed, 7o = (1,[,70) | (1,[], 7). On the contrary, things
may go wrong in the following two cases:

(i) a participant does something not permitted. E.g., if A fires a at 1 t.u., by
IM-EAILAL: 70 = (0, [, 70 + 1) || (¢, [], 70 + 1), where A is culpable.

(ii) a participant avoids to do something she is supposed to do. E.g., assume
that after 6 t.u., A has not yet fired a. By rule [M-syxcDEeL], we obtain RN
(0,[],70 +6) | (g, []; 70 + 6), where A is culpable.

2.1.5 Encoding TSTs into Timed Automata

To devise an effective procedure to decide compliance, it is possible to encode
TSTs into timed automata, a well-known and more expressive formalism for real-
time systems, briefly illustrated in next section.

The mapping from TSTs to TA is omitted in the background of this dissertation,
since not relevant for the presentation. We refer to [18, 32, 89, 4, 13] for more
details about this topic.
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2.2 Timed automata

Timed automata are a classical formalism for modelling real-time systems, intro-
duced by Alur and Dill in the early 90’s [5], and extended in many subsequent
works [89]. Since then, timed automata have become widely used both in the in-
dustry and in the academia, also thanks to successful tools (most notably Uppaal
[31]), which enable the modelling and verification of realistic timed systems.

Roughly, a timed automaton (TA) is a finite automaton, annotated with timing

contraints and reset predicates using real valued clocks.

2.2.1 Basic definitions

Before formalising TA, we introduce some auxiliary notions and notation. Let C
be a set of clocks, ranged over by ¢,7/,... and let d,d’, . .. range over the set N of
natural numbers. We use /7, 7',... C C to range over sets of clocks. Let A be a set

of action names.

We define the set of output action A' = {!a | a € A} and the set of input actions
A" ={7a | a € A}. We denote with L = A' UA" U {7} the set of labels, ranged over
by (.0, ...

Definition 2.2.1 (Guard). We define the set G of guards over clocks C as follows:

g = true | g ! gNg ‘ lod ‘ t—t'od whereoe{<, < =2> >}

The semantics of guards is defined in terms of clock valuations: they are functions
which associate each clock in C with a value in Rx(. These values are not associ-
ated with a particular unit of time (i.e., seconds, hours, . . .); so, we will call clocks

values generically time units (abbreviated t.u.).

Definition 2.2.2 (Clock valuation). We denote with V[C] : C — Ry, the set of
clock valuations over C. We write V as a shortcut for V[C] when C is clear from the
context. We use /,7),... to range over V, and vg, 1o, ... to denote the valuations

mapping each clock to 0. We use /C, [, . .. to range over subsets of V.
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Definition 2.2.3 (Time increment and reset). We write /46 for the clock valuation
which increases by 4, i.e., forall ¢ € C:

(v+8)(t) = v(t)+0

For a set 7 C C, we write v/[?] for the reset of the clocks in 7, i.e., forall ¢ € C:

0 ifte R
v[R](t) = .
v(t) otherwise

When 7 is a singleton, e.g. /7 = {r}, we shall usually write ] instead of v[{z}].

Definition 2.2.4. A set of clock valuations /C is said past closed if and only if:

v+ie = vek

Definition 2.2.5 (Semantics of guards). For all guards ¢, we define the set of clock

valuations [¢] inductively as follows, where o € {<, <, =,> >}:

[true] =V [—9] =V \ 4] [9: A g2] = [9:] N [92]
[rod] = (v | (1) od) [~ od] = {v | (1) — () o d}

A guard ¢ is said past closed when [¢] is past closed.

We are now ready to give the definition of timed automata. They are composed
by a finite set of locations, one of which is the initial location. Every location is
associated with a past closed guard, called invariant, which specifies when the
control can be in that location. A subset of locations, the urgent locations, are
used to model states that “do not let time pass”, i.e. force the next transition to
be a discrete action. Urgent locations do not add expressive power to the model,
since urgency can be specified through invariants [31], and often do not appear

in definitions of TA; however, we prefer to have them explicitly.

Locations are connected by edges. Basically, edges have a similar role to transi-
tion functions of non-deterministic finite states automata, further enriched with

a guard specifing when that transition is enabled, and with a set of clocks which
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are reset (exactly) when the transition is taken.

Definition 2.2.6 (Timed automaton). A TA is a tuple A = (Loc, Loc", |y, E, I)
where: Loc is a finite set of locations; Loc" C Loc is the set of urgent locations;
ly € Loc is the initial location; E C Loc x L x G x p(C) x Loc is a set of edges; and
I: Loc — G is the invariant function. We require that, for all locations | € Loc,
I(1) is past closed.

The semantics of TA is defined in terms of timed LTSs. These are LTSs much alike
those in Section 4.1, except for the fact that, besides actions, labels also include

time delays.

Definition 2.2.7 (Timed LTS). A timed labelled transition system (TLTS) is a triple
(Q,Ls,—), where:

e () is a set (called the set of configurations),
e L; O R>(is aset (called set of labels, and ranged over by «, (3, .. .),
e — C () xLs x (Qis arelation (called transition relation).

An initial TLTS is a tuple (Q,L;, —, qo), where (Q,Ls, —) is a TLTS, and ¢y € @ is
the initial configuration.

We are now ready to define the semantics of TA. For the moment, we will assume

a TA which runs in isolation, i.e. without interacting with other TA.

Definition 2.2.8 (Semantics of timed automata). Let A = (Loc, Loc", [y, E, I) be a
TA over a set of clocks C. We define the initial TLTS [ A] as follows:

[A] = (Loc x V[C], {7} URsq, —, (lo, 1))

where the transition relation — is specified by the following two rules:
1 (L) = (I,0) i, 0, 0. R eEAV € [g] Av = v[R] € [I()]
2. (I,v) S (L,v+6) ifv+6e[I()]Al¢ Loct

A configuration ([, ) is reachable when (ly, vo) —* (I, v).

We now comment the two rules in Definition 2.2.8:

24 Ph.D. Thesis of A. S. Podda



2.2. TIMED AUTOMATA

e rule 1 allows to perform an action. This does not involve any time delay,
but after the action has been performed, all the clocks in /7 are reset to zero.
The action is permitted if the guard ¢ on the edge is satisfied by the current
clock valuation, and the invariant /(") of the target location is satisfied after

the clock reset.

e rule 2 allows time to pass, provided that this does not break the invariant of
the current (not urgent) location. Note that all the clocks progress with the

same pace.

2.2.2 Networks of timed automata

We now introduce networks of TA, i.e. sets of TA which can interact by synchro-

nizing on channels via input/output actions.

Definition 2.2.9 (Networks of TA). A network of TA is a finite set of TA (over a
given set of clocks C). We denote with A, | --- | A, the network composed by
Ap, . A,

We now define the semantics of networks of TA. The configurations of a network
Ay | -+ | A, are tuples of the form (ly,...,l,,), where [4,...,1, represent the
current locations in the automata, and » is an evaluation of all the clocks in the
network. Similarly to the semantics of isolated TA(Definition 2.2.8), the semantics
of a network is a TLTS, whose states are configurations, and labels are internal ac-

tions, delays, and channels (for synchronisations).

Definition 2.2.10 (Semantics of networks of TA). Let A; = (Loc;, Loct [}, E;, I;) be
a TA over a set of clocks C, for ¢ € 1..n. We define the behaviour of the network
N = A |---| A, as the initial TLTS [N] = (@, Ls, —, o), where:

e () = Locy X -+ x Loc, x V[C]

Lz5 :CU{T}URzo
e — is the relation defined in Figure 2.4
® (o = (l017' . '7Z(;n7[/0>-

Rule [Tau] states that one of the TA can take an internal edge, provided that its
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(ks 709, R, U'k) € By, v € [g] v[R] € H/\ie{l..n}\{k} Li(1:)] v[R] € [L(l'4)]
Iyl by ) ——— (L1, oo Uhy oy L, V[R))

iy by ) —— (1, ... Ly, v+ 6)

(In, '@, gn, Bny ') € By [[/\ie{l..n}\{h,k} Ii(15)]
(lg, ?a, gi, Riy ') € By N [L(Un)] N (8]

(Uiy ooyl oy oy ) —— (s Uy o Uy ooy Ly V[ R, U RE))

[DELAY]

v € g ANgr] v[RLURg] €

Figure 2.4: Transition relation of networks of TA.

guard is satisfied, and that the invariants of all the locations in the target con-
figuration are satisfied. Rule [DeLav] allows time to elapse, at the same pace for
all TA in the network, provided that the invariants at the current locations of all
TA are satisfied after the delay. Rule [com] allows two TA to synchronize on a
channel a, provided that the following three conditions hold: (i) at their current
locations, the two TA can fire complementary actions (such as !a and 7a); (ii) the
clock valuation satisfies the guards of those edges; (iii) the invariants of the target

locations are satisfied after the clock reset.

If the current locations of a state have no outgoing edges, then such state is called
success, while a state is called deadlock if it is not success and no action-transitions

are possible (neither in the current clock valuation, nor in the future).

Definition 2.2.11 (Deadlock freedom). A location of a TA is called success when
it has not outgoing edges. Let s be a network state. Then, s is called success when
all its locations are success. We say that s is deadlock whenever: (i) s is not success,
and (ii) A0 >0, a, € AU{7} : s 2, NI y. A network is deadlock-free if none of its
reachable states is deadlock.

Example 2.2.1 (Light switch). Consider a light switch with three modes: off, low
and bright. When the light is off and the button is pressed once, the light switches
on. Then, if the button is pressed again quickly (in less than 3 seconds), the light
becomes brighter. Otherwise, if the delay is greater, the light switches off. Finally,
when pressing the button in bright mode, the light switches off. We model this
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press ?

press !, y =3, {y}

y<0 y <3

Figure 2.5: A network of TAs modelling a light switch (left) and a user (right).
light switch as the TA in Figure 2.5, left, while on the right we model a possible

user. Our user starts by pressing the light switch, and then she repeatedly presses

it every 3 seconds.
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2.3 Timed CO,

In this section we introduce TCO, (for timed CO,), a specification language for
contract-oriented services that we use in our contract-oriented middleware. This
is a timed extension of the process calculus in [27], through which we can specify
services interacting through primitives analogous to those sketched in Section 3.1.

The formalisation of TCO, is independent from the chosen contract language, as
we only pivot on a few abstract operators and relations on contracts, although
the timed session types described in previous Section 2.1 perfectly fit the require-
ments of TCO,. In particular, we assume: (1) a compliance relation <, which relates
two contracts whenever their interaction is “correct” [21]; (2) a predicate which
says if a contract admits a compliant one; (3) a function co(-) that, given a contract
p, gives a contract compliant with p (when this exists); (4) a transition relation —»
between contract configurations v,~', which makes contracts evolve upon actions
and time passing. We denote with I'y(A : p, B : ¢) the initial configuration of an

interaction between A (with contract p) and B (with contract ¢).

The syntax of TCO; is defined as follows.

2.3.1 Syntax

Let V and N be disjoint sets of variables (ranged over by z,y,...) and names

(ranged over by s.t,...). We use «, 7, . . . to range over sequences of variables.

Definition 2.3.1. The syntax of TCO; is defined as follows:

S uw= 0 | A[P] L I A (7 R S|S | {upka

P == 0 | X (@) | w. P ‘ (u)P | ub>{a;. P;}ier

T u= 1 | telll,p | sendya | idle(d) | accept(z) | @y | a(y)
If 4 = wy,...,u, we will use (7)S and (@) P as shorthands for (ug) - - (u,)S and

(ug) - - - (u,) P, respectively. We also assume the following syntactic constraints on
processes and systems:

1. each occurrence of named processes is prefix-guarded;
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2. in (@)(A[P] | B[Q] | - --), it must be A # B;
3. in (@) (s[y] [ t[y'] | ---), it must be s # ¢.

4. each variable used in contract primitives can not be used as input/output

channel (and vice-versa).

commutative monoidal laws for | on processes and systems
Al(v)P] = (W)A[P]  Z|(w)Z' = w)(Z|Z) ifudg tv(Z)JU(Z)
(W)()Z = W)(w)Z (w)Z=7 ifugfv(Z)U(2)

{lspr=0 idle(0).P =P

Figure 2.6: Structural equivalence for CO, (Z, Z' range over systems or processes).

Systems S,S',... are the parallel composition of participants A[P], sessions s[7],
delimited systems (u)S, and latent contracts {|,p}a. A latent contract {].p}a rep-
resents a contract p (advertised by A) which has not been stipulated yet; upon

stipulation, the variable = will be instantiated to a fresh session name.

Processes P, (), . . . are prefix-guarded processes; the branching construct u > {a;. P;},
which waits for input one of the atoms a; and the behave as the corresponding
P;; named processes X () (used e.g. to specify recursive behaviours); delimited
processes (u)F; and the nil process 0.

Prefixes 7 include contract advertisement telll, p, contractual output send, a,
delay idle(d), the accept primitive accept(x), and channel input/output zy and
z(y). In each prefix = # 7, the index u refers to the target session involved in the

execution of 7.

The only binder for names is the delimitation (u), both in systems and processes.
Instead, variables have two binders: delimitations (z) (both in systems and pro-
cesses), and input actions. We stipulate that each process identifier X has a unique
defining equation X (z1,...,z;) = P such that fv(P) C {zy,...,z;} C V. We will
sometimes omit the arguments of X () when they are clear from the context. As

usual, we omit trailing occurrences of 0 in processes.
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2.3.2 Semantics

The semantics of TCO, is summarised in Figure 2.7 as a reduction relation be-
tween systems. The labels are used to separate urgent actions from non-urgent
ones.

Definition 2.3.2. The semantics of TCO, is the least relation closed under the rules

in Figure 2.7.

When an urgent label is enabled, time is not allowed to pass (similarly to the asap
operator in U-LOTOS [76]). This enforces a fairness property: if an urgent action
is enabled, the scheduler can not prevent it by letting time pass. In TCO,, ev-
ery discrete action is urgent, except for fuse; this formalises the intuition that a
session between two compliant contracts can be created at any time by the mid-
dleware, independently from the participants” behaviour.

Rule [Tei] adds to the system a latent contract {/, p}a, if p admits a compliant
contract. Rule [Fuse] searches the system for compliant pairs of latent contracts,
ie. {l. p}a and {], ¢}& such that p > ¢ (and A # B). Then, a fresh session s
containing the initial configuration v = I'y(A:p, B :¢) is established, and the name
s is shared between A and B. Rule [acrr] allows A to accept a latent contract ¢,
which is passed through the channel z; then, the contract of A at s will be co(q).

Rule [sexp] allows A to send a message !a to the other endpoint of session s. This
is only permitted if the contract configuration at s can take a transition on A :
la, whereas messages not conforming to the contract will make A culpable of a
violation. Rule [recv] allows A to receive a message a; from the other endpoint of s,
and to behave like the continuation ;. Rule [Derax-+] allows a session s[7] to idle,
if permitted by the contract configuration 7 at s (note that idling may make one
of the participants culpable). Rule [ibLe] is standard [76], and it allows a process to
idle for a certain time 0.

Rules [Der, [Par-Act] and [DeL] are mostly standard. Rule [pecav-k] allows a latent con-
tract to idle indefinitely. Rules [DeLav-P] model time elapsing for processes without
timed constructs at the top level of the syntax. Roughly, time passes only when
urgent actions are not possible. Rule [Decayv-par] allows parallel composition of sys-

tems to idle if all the components can, and no urgent transitions are possible.
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Elq - p>d [TELL]
Altell Ly p. Pl <= A[P] | {}u p}a

pXyg y=A:p,vo|B:gmn o= {%ay} s fresh

use [FUSE]
(2,9)(S | {ap}a | {yats) == (s)(So | s[))
vy=A:co(p),vo|B:p,vo o= {5/} s fresh e
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Figure 2.7: Reduction semantics of TCO,.
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2.4 Bitcoin and the blockchain

Bitcoin is a cryptocurrency and a digital open-source payment infrastructure that
has recently reached a market capitalization of almost $120 billions®. The Bitcoin
network is peer-to-peer, not controlled by any central authority [73]. Each Bit-
coin user owns one or more personal wallets, which consist of pairs of asymmet-
ric cryptographic keys: the public key uniquely identifies the user address, while
the private key is used to authorize payments. Transactions describe transfers of
bitcoins (B), and the history of all transactions, which recorded on a public, im-
mutable and decentralised data structure called blockchain, determines how many

bitcoins are contained in each address.

To explain how Bitcoin works, we consider two transactions t, and t;, which we

graphically represent as follows:*

to t
in:--- in: to
in-script: - - - in-script: sig,(e)
out-script(t, 0): ver(t, o) out-script(---): - -
value: v value: v,

The transaction t, contains voB, which can be redeemed by putting on the block-
chain a transaction (e.g., t;), whose in field is the cryptographic hash of the whole
to (for simplicity, just displayed as t, in the figure). To redeem t,, the in-script
of t; must contain values making the out-script of t; (a boolean programmable
function) evaluate to true. When this happens, the value of t is transferred to the
new transaction t;, and t, is no longer redeemable. Similarly, a new transaction
can then redeem t, by satisfying its out-script.

In the example displayed above, the out-script of t, evaluates to true when receiv-
ing a digital signature o on the redeeming transaction t, with a given key pair &.

We denote with very(t, o) the signature verification, and with sig,(e) the signa-

3 Source: crypto-currency market capitalizations http://coinmarketcap.com
%in-script and out-script are respectively referred as scriptPubKey and scriptSig in the Bitcoin
documentation.
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t
|n[0] to {Out(ﬂ
in-script[0]: W

out-script[0](ty, wWo): So
value[0]: vg

lockTime: n

Figure 2.8: General form of transactions.

ture of the enclosing transaction (t; in our example), including all the parts of the
transaction except its in-script.

Now, assume that the blockchain contains t(, not yet redeemed, when someone
tries to append t;. To validate this operation, the nodes of the Bitcoin network
check that v; < vy, and then they evaluate the out-script of ty, by instantiating its
formal parameters t and o, to t; and to the signature sig,(e), respectively. The
function ver;, verifies that the signature is correct: therefore, the out-script suc-
ceeds, and t; redeems t.

Bitcoin transactions may be more general than the ones illustrated by the previ-
ous example: their general form is displayed in Figure 2.8. First, there can be
multiple inputs and outputs (denoted with array notation in the figure). Each
output has an associated out-script and value, and can be redeemed indepen-
dently from others. Consequently, in fields must specify which output they are
redeeming (t;|out| in the figure). Similarly, a transaction with multiple inputs
associates an in-script to each of them. To be valid, the sum of the values of all
the inputs must be greater or equal to the sum of the values of all outputs. In its
general form, the out-script is a program in a (not Turing-complete) scripting lan-
guage, featuring a limited set of logic, arithmetic, and cryptographic operators.
Finally, the lockTime field specifies the earliest moment in time (block number or
UNIX timestamp) when the transaction can appear on the blockchain.

The Bitcoin network is populated by a large set nodes, called miners, which collect
transactions from clients, and are in charge of appending the valid ones to the
blockchain. To this purpose, each miner keeps a local copy of the blockchain, and
a set of unconfirmed transactions received by clients, which it groups into blocks.
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The goal of miners is to add these blocks to the blockchain, in order to get a
revenue. Appending a new block B; to the blockchain requires miners to solve a
cryptographic puzzle, which involves the hash h(B;_;) of block B;_;, a sequence
of unconfirmed transactions (7;);, and some salt R. More precisely, miners have
to find a value of R such h(h(B;_1) || (I3): || R) < p, where the value (. is adjusted
dynamically, depending on the current hashing power of the network, to ensure

that the average mining rate is of 1 block every 10 minutes.

The goal of miners is to win the “lottery” for publishing the next block, i.e. to
solve the cryptopuzzle before the others; when this happens, the miner receives a
reward in newly generated bitcoins, and a small fee for each transaction included
in the mined block. If a miner claims the solution of the current cryptopuzzle,
the others discard their attempts, update their local copies of the blockchain with
the new block B;, and start mining a new block on top of B,. In addition, miners
are asked to verify the validity of the transactions in B; by executing the associ-
ated scripts. Although verifying transactions is not mandatory, miners are incen-
tivized to do that, because if in any moment a transaction is found invalid, they

lose the fee earned when the transaction was published in the blockchain.

If two or more miners solve a cryptopuzzle simultaneously, they create a fork in
the blockchain (i.e., two or more parallel valid branches). In the presence of a fork,
miners must choose a branch wherein carrying out the mining process; roughly,
this divergence is resolved once one of the branches becomes longer than the
others. When this happens, the other branches are discarded, and all the orphan
transactions contained therein are nullified.

Overall, this protocol essentially implements a “Proof-of-Work” system [51].
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Chapter 3
A contract-oriented middleware

In what follows, we present our centralized middleware for coordinating mutu-
ally distrusted service through behavioural contracts. In this chapter, the original
contribution of the author are the middleware, with its design and architecture
and its implementation, the validating experiments and the contract-oriented

programming tutorial.

3.1 The middleware at a glance

Figure 3.1 illustrates the main features of this middleware. In (1), the participant
A advertises its contract to the middleware, making it available to other partici-

pants.

In (2), the middleware determines that the contracts of A and B are compliant, and
then it establishes a session through which the two participants can interact. This
interaction consists in sending and receiving messages, similarly to a standard
MOM [15]: for instance, in (3) participant A delivers to the middleware a message
for B, which can then collect it from the middleware.

Unlike standard MOM:s, the interaction happening in each session is monitored
by the middleware, which checks whether contracts are respected or not. In par-
ticular, the execution monitor verifies that actions can only occur when prescribed

by their contracts, and it detects when some expected action is missing. For in-
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Figure 3.1: A schema of the primitive behaviours.

stance, in (4) the execution monitor has detected an attempt of participant B to
do some illegal action. Upon detection of a contract violation, the middleware
punishes the culprit, by suitably decreasing its reputation. This is a measure of
the trustworthiness of a participant in its past interactions: the lower is the rep-
utation, the lower is the probability of being able to establish new sessions with
it. The reputation system exploits some of the techniques in [83] to mitigate self-

promoting attacks [59].

Item (5) shows another mechanism for establishing sessions: here, the partici-
pant C advertises a contract, and D just accepts it. Technically, this requires the
middleware to construct the dual of the contract of C, to associate it with D, and
to establish a session between C and D. The interaction happening in this session
then proceeds as described previously.

We implemented the primitives discussed above as public REST APIs: their func-
tionalities are partitioned over different architectural components (organized by
logical domains), in order to correctly and consistently manage the data flow of
the middleware. These components are discussed in the following Section 3.2.
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3.2 System design

Hereafter, we show how the interaction paradigm sketched in Section 3.1 (and
formalised in Section 2.3) is supported by our middleware, and we illustrate the

main design choices.

3.2.1 Specifying contracts

Although the design of the middleware is mostly contract-agnostic, in this thesis
we describe and evaluate timed session types (TSTs) as a particular instance of
contracts. We now recall some notions about timed session types from Section 2.1,
and refer to that section for a full technical development.

Clocks =, 1, ... are variables over R, which can be reset, and used within guards
g,9',.... Atomic guards are timing constraints of the form = od or » — y o d,
whered € Nand o € {<, <,=,>, >}, and they can be composed with the boolean

connectives A, V, —.

A TST p describes the behaviour of a single participant involved in an interac-
tion. An internal choice ) .'a;{y,;. I;} . p, models the fact that its participant wants
to do one of the outputs with label a; in a time window where the guard ¢; is
true; the clocks in /?; will be reset after the output is performed. An external choice
& 7a;{g:. i} . ¢; models the fact that its participant is available to receive each
message a; at any instant within the time window where the guard g, is true; fur-
thermore, the clocks in /7, will be reset after the input is received. The term 1
denotes success (i.e., a terminated interaction). Infinite behaviour can be specified
through recursion rec X. p.

Timed session types p, g, ... are terms of the following grammar:
p == 1 | Y oicrtailyi, Ri}-pi ‘ &ici?ai{gi, Ri} . pi ‘ recX.p | X

where
1. the set I is finite and non-empty,

2. the labels in internal /external choices are pairwise distinct,
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3. recursion is guarded and considered up-to unfolding.
True guards, empty resets, and trailing occurrences of 1 can be omitted.

Message labels are grouped into contexts, which can be created and made public
through the middleware APIs. Each context defines the labels related to an ap-
plication domain, and it associates each label with a type and a verification link.
The type (e.g., int, string) is that of the messages exchanged with that label. The
verification link is used by the runtime monitor (Section 3.2.4) to delegate the ver-
ification of messages to a trusted third party. For instance, the middleware sup-
ports Paypal as a verification link for online payments. The context also specifies
the duration of a time unit: the shortest time unit supported by the middleware

is that of seconds, which is also the one we use in all the examples in this thesis.

3.2.2 Advertising contracts

Once a contract has been created, a participant can advertise it to the middle-
ware. At that point, the contract stays latent until the middleware finds a compli-
ant one, i.e. another latent contract with whom the interaction is guaranteed not
to get stuck. When this is found, the middleware creates a session between the
two participants: the session consists of a private channel name and a contract
configuration, which keeps track of the state of the contract execution.

The notion of compliance between TSTs (Definition 6 in [18]) is based on a transi-
tion system over contract configurations (Definition 5 in [18]). Contract configu-
rations have the form (p, ) | (¢,7), where p, ¢ are TSTs, and v, 1) are clock evalua-
tions (i.e., functions from clocks to R>); in the initial configuration I'y(A:p, B:¢),
the clock evaluations map each clock to 0. Intuitively, p and ¢ are compliant (in
symbols, p > ¢) if, in all reachable configurations, the “required” behaviour of p
(i.e., the branches in its internal choice) is “offered” by ¢ in an external choice,
while respecting the time constraints.

Example 3.2.1. Let p = 7a{z <2} & 7b{r < 5}, and consider the following TSTs:

¢ =tla{y <1} ¢ = la{y <3} g3 ='la{y <2} + 1c{y <2}

38 Ph.D. Thesis of A. S. Podda



3.2. SYSTEM DESIGN

We have that p < ¢i: indeed, ¢; wants to output a within one time unit, and p
is available to input a for two time units; compliance follows because the time
window for the input includes that for the output. On the contrary, p 4 ¢, since
the time window required by ¢ is larger than the one offered by p. Finally, p t4 ¢;:
although the timing constraints for label a match, ¢; can also choose to send c,
which is not among the labels offered by p in its external choice.

Deciding compliance. Compliance between TSTs is decidable (Th. 1 in [18]).
To check if p < ¢, we use the encoding in [18] to translate p and ¢ into Uppaal
timed automata [31], and then we model-check the resulting network for dead-
lock freedom. This amounts to solve the reachability problem for timed automata,
whose theoretical worst-case complexity is exponential (more precisely, the prob-
lem is PSPACE-complete [5]). In practice, the overall execution time for compli-
ance checking for the TSTs in our test suite is in the order of milliseconds; e.g.,
in the experimental setup described in Section 4.4, it takes approximately 20ms
to check compliance between the largest TSTs on our hand, i.e. those modelling
PayPal Protection for Buyers [3]. Since, however, the execution time of compli-
ance checking is non-negligible, we do not perform an exhaustive search when
searching the contract store for compliant pairs of contracts; rather, we use the

techniques described in the following paragraphs to reduce the search space.

Compliance pre-check. When a TST is advertised, the middleware stores in its
database the associated timed automaton (which is then computed only once for
each TST), and a digest of the TST; this digest comprises its context, and one bit
which tells whether its top-level operation is an internal or an external choice (up-
to unfolding). When looking for a contract compliant with p, the digests are used
to rule out (without invoking the Uppaal model checker) some contracts which
are surely not compliant with p. In particular, we rule out those ¢ belonging to
a context different from that of p, and those with the same top-level operator as
p (as internal choices can only be compliant with external ones, and vice versa).
The remaining contracts are potentially compliant with p, and so we restrict the
search space to them. The search also takes into account the reputation of the
participants who have advertised these contracts, as described in the following
paragraph.
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Reputation. The middleware assigns to each participant a reputation, which
measures its ability to respect contracts. Intuitively, the reputation is increased
when the participant successfully completes a session, while it is decreased when
it is found culpable of a contract violation (more details about the formulation
of the reputation system in Section 3.2.4). Reputation is used to sort latent con-
tracts when searching for compliant pairs: the higher the participant’s reputa-
tion, the higher the probability to establish a session with it. When looking for
a contract compliant with p, we first construct the list of contracts potentially
compliant with it (sorted by descending reputation). Then, we randomly choose
one of them, according to the folded normal probability distribution. This causes
contracts with high reputation to be chosen with high probability, while giving
some chances also to contracts with low reputation. If the chosen contract is not

compliant with p, it is discarded, and the algorithm chooses another one.

Checking the existence of a compliant. Not all TSTs admit a compliant one.
For instance, no contract can be compliant with p = !a{y < 7}.7b{y < 5}, be-
cause if p outputs a at time 6, the counterpart cannot send b in the required time
constraint. A sound and complete decision procedure for the existence of a com-
pliant is developed in [18]. When advertising a contract, we use this procedure

to rule out those contracts which do not admit a compliant one.

3.2.3 Accepting contracts

As discussed in Section 3.1, a participant A can establish a session with B by
accepting one of its contracts, whose identifier has been made public by B. Tech-
nically, when A declares to accept a contract p, the middleware constructs the dual
of p, and assigns it to A. The dual of p is the greatest contract compliant with p,
according to the subcontract preorder [18]: intuitively, it is the one whose offers
match all of p’s requests, and whose requests match all p’s offers.

Unlike in the untimed case, the naive construction of the dual of a TST p (i.e., the
one which simply swaps inputs with outputs and internal choices with external
ones) does not always produce a compliant TST. For instance, the naive dual of
p = 7a{r < 2}.70{z <1} is g = ta{r < 2}.!b{xr <1}, which is not compliant
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with p. Indeed, since ¢ can output !a at any time 1 < § < 2, the interaction
between p and ¢ can become deadlock, and so they are not compliant.

The dual construction used by the middleware is the one defined in [18], which
guarantees to obtain a TST compliant with p, if it exists. Roughly, the construc-
tion turns all the internal choices into external ones (without changing guards),
and it turns external choices into internal ones, updating the guards to preserve
future interactions. For instance, in the example above we obtain the TST 'a{z <
1}. 1b{x < 1}, which is compliant with p.

3.2.4 Service interaction and runtime monitoring

When a session is established, the participants at the two endpoints can interact
by sending and receiving messages. At a more concrete level, sending a message
through a session is implemented by posting the message to the middleware,
through its RESTful API. The middleware logs the whole interaction history, by
recording and timestamping all the messages exchanged in the session. Receiv-
ing a message is also implemented by invoking the middleware API; upon a re-
ceive request, the middleware inspects the session history to retrieve the first
unread message (which is then marked as read). The interaction over the session
is asynchronous, as the middleware (similarly to a standard MOM) interprets the
session history as two unbounded FIFO buffers containing the messages sent by
the two endpoints'. However, differently from standard MOMs, our middleware

monitors the interaction to verify that contracts are respected.

The runtime monitor processes each message exchanged in a session, by query-
ing the verification link associated to it (to detect whether the message is genuine
or not), and by checking that the message is permitted in the current contract con-
tiguration. Then, the monitor computes who is in charge of the next move, and,
in case of contract violations, it detects which of the two participants is culpable.
A participant A can become culpable for different reasons:

1. A sends a message not expected by her contract;

2. A’s contract is an internal choice, but A loses time until all the branches

! Asynchronous communication is possible despite TSTs having a synchronous semantics, as
the middleware is delegated to receive messages on behalf of the recipient.
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Figure 3.2: A diagram of the middleware architecture.

become unfeasible (i.e., the time constraints are no longer satisfiable);

3. A sends some action at a valid time, but the trusted third party (associated
to the action by the verification link) rejects it. For instance, this can happen
if A tries to send a fake payment, but Paypal does not certify it.

The monitor guarantees that, in all possible states of the interaction, only one of
the participants can be in charge of the next action; if no one is in charge nor

culpable, then both participants have reached success (Lemma 3 in [18]).

Once a session terminates (either succesfully or not), the reputation of the in-
volved participants is updated. If the session terminates successfully, then the
reputation of both participants is increased; otherwise, the reputation of the cul-
pable participant is decreased, while the other participant’s reputation is increased.
Further, we make participants consume reputation points each time they enter in
session, and we use the fading memories technique of [83] to calculate the rep-
utation value without recording the whole history of interactions. We weight
recent negative behavior more than old positive behaviour, in order to mitigate
self-promoting attacks, where a malicious participant tries to gain reputation by
running successful sessions with himself or with some accomplices [59].
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3.3 System architecture

The middleware is a Java RESTful Web service; the primitives described in Sec-
tion 3.2 are organised in components, as shown in Figure 3.2. We have adopted
a 3-tier architecture, consisting of a presentation layer, a business logic layer, and
a data storage layer. The Interface Manager, which is the only component in the
presentation layer, offers APIs to query the middleware, through HTTP POST re-
quests. APIs can be accessed through language-specific libraries, which allow for
an object-oriented programming style. The data storage layer comprises a rela-
tional DB and a Database Manager, which takes care of handling queries, manag-
ing the cache, and modelling the data used in the other layers. The business logic
layer manages contracts and sessions. More specifically, the Contract Manager
performs the contract validation, advertisement (as in Section 3.2.2), and accept
requests (Section 3.2.3); the Session Manager establishes sessions, by allowing
clients to send and receive messages, managing the session history, and querying
the Runtime Monitor to detect contract violations.

A client advertises a contract p with the tellContract API of the Interface Man-
ager, encoding the required data in the JSON data exchange format. The Interface
Manager validates p, then it asks the Contract Manager to store it and to find a
compliant contract, as outlined in Section 3.2.2. If no latent contracts are com-
pliant with p, then p is kept latent, otherwise a new session is established. The
Interface Manager also provides the acceptContract API, which requires the Con-
tract Manager to compute the dual of a latent contract ¢, whose identifier has

been made public by another participant.

When a session is established, participants can query the middleware to get the
current time, to send and receive messages, to check culpability, etc. The Inter-
face Manager provides the methods for handling such requests, delegating the
internal operations to the Session Manager. When a participant sends a message,
the Session Manager uses the Runtime Monitor to determine whether the action
is permitted (and in case it is not, to assign the blame). If the action is permitted,
the message is stored by the Database Manager, and then forwarded to the other
participant upon a receive. To verify a message, the Runtime Monitor can invoke
a trusted third party: if the verification fails, the action is rejected (so, our monitor

implements truncation, in the terminology of [68]).
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3.4 Validation of the middleware

In this section we validate our middleware, mainly focusing on the aspects re-
lated to system scalability (Section 3.4.1), and to the effectiveness of the reputation

system to rule out services not respecting contracts (Section 3.4.2).

We carry out our experiments using a public instance of the middleware. The
instance is a Web service running in a dedicated cloud server, equipped with
a quad-core Intel Xeon CPU @ 2.27GHz, 16GB of RAM and a 50GB SSD hard
drive; the server runs Ubuntu 14.04 LTS, with Apache Tomcat and Oracle MySQL.
Clients are tested in standard desktop PCs and laptops, while the multi-threaded
simulations are executed in a high-level desktop configuration, with an octa-core
Intel Core i7 @ 4.00GHz and 16Gb of memory, running Microsoft Windows 7 and
Oracle JRE 1.7.

3.4.1 Scalability

In this section we assess the scalability of our middleware. We start by bench-
marking the tell primitive, which triggers a search for compliant pairs of TSTs
in the contract store. This is the most computationally expensive operation in the
middleware: although the heuristics discussed in Section 3.2.2 allow for limiting
the number of calls to the Uppaal model checker, the execution time of a tell
could be non-negligible for a high number of latent contracts. So, we measure the
execution time of tell p as a function of the number of TSTs in the contract store,

and of the number of latent TSTs compliant with p.

Our second experiment concerns the performance of the runtime monitor. As
described in Section 3.2.4, this component processes all the messages exchanged
in sessions, to check if contracts are respected. Potentially, this could introduce
a relevant computational overhead, so we measure the execution time of send
in case the runtime monitor is turned on, or off. Note that, while the duration
of tell does not affect the interaction between the participants once a session is
established, a slowdown of the send can make an otherwise-honest participant
culpable for not respecting some deadline. So, it is important that the overhead

of the runtime monitor is negligible, w.r.t. the time scale of temporal constraints.

44 Ph.D. Thesis of A. S. Podda



3.4. VALIDATION OF THE MIDDLEWARE

K/NO0.1 K/N0.01 --K/N0.001 Monitored --Unmonitored

T'ELL DURATION
— N N w
o o o o
\
\
\
\
\
\
)
w ~
S o
8 g

5
\
\
\
Du
@
3
A

0 20 40 60 80 100 0 10 20 30 40 50

NUMBER OF CONTRACTS (THOUSANDS) Simultaneous SENDs

(a) Duration of tell p (in seconds). (b) Duration of send (in milliseconds).

Figure 3.3: Results of the scalability tests. In (a), K is the number of contracts compliant
with p, and N is the total number of contracts.

We build our scalability tests upon the discrete-event simulator DESMO-J [55],
and the statistical model-checker MultiVeStA [82]. In particular, we use DESMO-]
to define a single instance of the simulation, and MultiVeStA to run sequences of

simulations until reaching a given confidence interval.

Tell. We test the execution time of tell p as a function of the number N of con-
tracts stored in the middleware. The contract p used in our experiments is a
simplified version of the Paypal Protection for Buyers (Example 1 in [18]). We
assume that, among the N contracts, only K < N are compliant with p, while
the remaining N — K are not, but they still pass the pre-check discussed in Sec-
tion 3.2.2 (so, we are considering a worst-case scenario, because in the average

case we expect that only a fraction of the contracts would pass the pre-check).

We populate the contract store by choosing at each step whether to insert a con-
tract compliant with p or a non-compliant one, according to a random weighted
probability. Then, with DESMO-] we execute tell p, and we measure its execu-
tion time. MultiVeStA makes DESMO-] execute this simulation for several times,
each time collecting the new tell duration and updating the average and the
standard deviation; the simulations stop when the average fits into the confi-
dence interval.

The results of our experiments are shown in Figure 3.3. As we can see, the tell
duration grows linearly with IV, and it increases by a constant when the percent-
age K /N of contracts compliant with p decreases; note that the slope of the curves
does not seem to be significantly affected by K/N.
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Runtime monitor. The goal of this experiment is to quantify how the execution of
a large number of simultaneous send affects the performance of the middleware.
To achieve this goal, we use a multi-threaded simulation, where all the threads
advertise a contract with an internal sum, wait the session to be established, and
then simultaneously perform the send. We repeat the measure of the send du-
ration until its standard deviation fits into the confidence interval. The results
of this experiment are reported in Figure 3.3b, which shows that the execution
of a large number of simultaneous sends penalizes the duration of the request,
compared to the situation where the runtime monitor is switched off. However,
the performance degradation seem to grow sub-linearly in the number of simul-
taneous requests, and in any case it is negligible w.r.t. the time scale of temporal

constraints (1 time unit = 1 second).

3.4.2 A distributed experiment: RSA cracking

Consider a service (hereafter referred to as master, or just M) who wants to solve
a cryptographic problem by exploiting the computational resources of external
nodes (hereafter called workers, or W) distributed over the network. In particular,
M wants to crack a set of public RSA keys, in order to get the corresponding pri-
vate keys. However, the master does not know the network structure (i.e., how
many workers are available, where they are located, and how they are connected),
and it does not have any pre-shared channel for communicating with them. Fur-
thermore, the master does not trust the workers: they are not bound to run any
particular cracking algorithm, they can return wrong/incomplete results, or they
can fail to answer within the expected deadline.

To cope with these issues, the master exploits our middleware to automatically
discover and invoke suitable workers. For each public key in its set, the master
spawns a process which advertises the contract:

pm = !pubkey{;x}. (?confirm{z < 15}.?result{r < 90}. 'paylxbt{zr < 120}
& 7abort{r < 15})

Here, M is promising to send a public key (pubkey); doing so triggers a reset of the
clock z. Then, the worker has 15 seconds to either confirm that he will carry on
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the task, or abort (e.g., if the key is considered too strong). If the worker confirms,
it must return the corresponding result (a private key) within 90 seconds since
the public key was sent (the correctness of the result is checked by a trusted third
party,? specified by the context of py); finally, M rewards the worker with 1 bitcoin
(paylxbt). At runtime, the master behaves as prescribed by its contract; if the
worker accepts the public key and it returns the corresponding private key, then
M removes that public key from the list; otherwise, it advertises another instance
of pyv, and when the session is established it sends the same public key to another

worker.

The advantage offered by the middleware in terms of code succinctness is clear, as
the search of workers, the establishment of sessions, and the runtime monitoring
is completely transparent to programmers. So, we assess below the reputation
system implemented in the middleware (Sections 3.2.2 and 3.2.4). In particular,
we measure the time taken by the master for cracking all the public keys in its
list (Overall Execution Time, OET). We do this in two configurations of the middle-
ware: the one where the reputation system is turned on, and the one where it is
turned off. Our conjecture is that turning the reputation system on will reduce
the OET, because it increases the probability of establishing sessions with honest
workers which produce correct results while respecting deadlines.

In our experiments, we assume that workers are drawn from two different classes:
those using an efficient cracking algorithm, which always return the correct result
within the deadline; and those using an inefficient algorithm, which sometimes
may miss the deadline, because the computation takes too long. We also assume
that the number of public keys is bigger than the number of workers, so each
of them may receive many keys to break. Each worker iteratively advertises its
contract (the dual of py), then waits for a public key, runs the cracking algorithm,

and finally return the private key to the master.

The results of our experiment are shown in Figure 3.4, where we measure the
OET as a function of the number of keys to be broken, and of the ratio between
efficient and inefficient workers. The solid curve is identical in the two figures,
since the reputation system does not affect the selection of workers when there are

ZNote that verifying the correctness of private keys has a polynomial complexity in the number
of bits of the public key, while the problem of cracking RSA keys is considered to be exponentially
hard.
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Figure 3.4: Overall Execution Time as a function of the number of keys to be broken. W
is the number of inefficient workers, and 7' is the total number of workers.

only efficient ones. In the dashed curve and in the dot-dashed one the percentage
of inefficient workers grows (to 20% and 40%, respectively), and we see that the
OET grows accordingly when the reputation system is turned off. This is because
the reputation system penalizes inefficient workers, by reducing the probability
they can establish sessions with the master.
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3.5 Contract-oriented programming

In this section we show how to develop some simple contract-oriented services,
focusing on timed session types only, and using the middleware APIs via their

Java binding®.

Before giving practical examples, we first illustrate an informal version of the TST
syntax shown in Section 2.1, with the help of a small case study, an online store
which receives orders from customers. Note that the use of untimed session types
in contract-oriented applications is anyway discussed in the literature [9, 11, 23].

3.5.1 Specifying contracts in practice

Timed session types extend binary session types [60, 86] with clocks and timing
constraints, similarly to the way timed automata [5] extend (classic) finite state
automata. We informally describe the syntax of TSTs below, and we refer to Sec-

tion 2.1 for the full technical development.

Guards. Guards describe timing constraints, and they are conjunctions of sim-
ple guards of the form t o d, where t is a clock, d € N, and o is a relation in <, <=,
=, >=, >. For instance, the guard t<60,u>10 is true whenever the value of clock t is
less than 60, and the value of clock u is greater than 10. The value of clocks is in

R>y, like for timed automata.

Send and receive. A TST describes the behaviour of a single participant A at

the end-point of a session. Participants can perform two kinds of actions:

e a send action 'a{g;t1,...,tk} stipulates that A will output a message with
label a in a time window where the guard g is true. The clocks t1,...,tk

will be reset after the output is performed.

e areceive action 7a{g;t1, ..., tk} stipulates that A will be available to receive a
message with label a at any instant within the time window where the guard

g is true. The clocks t1, ... ,tk will be reset after the input is received.

3Full code listings are available at co2.unica.it
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When g = true, the guard can be omitted.

For instance, consider the contract storel between the store and a customer, from

the point of view of the store.

storel = "7order{;t} . !price{t<60}"

The store declares that it will receive an order at any time. After it has been
received, the store will send the corresponding price within 60 seconds.

Internal and external choices. TSTs also feature two forms of choice:
e lal{gl;R1} + ... + lan{gn;Rn}

This is an internal choice, stipulating that A will decide at run-time which
one of the output actions !'ai{gi;Ri} (with 1 < i < n) to perform, and at
which time instant. After the action is performed, all clocks in the set Ri =
{t1,...,tk} are reset.

e 7al{gl;R1} & ...& 7an{gn;Rn}

This is an external choice, stipulating that A will be able to receive any of the
inputs 'ai{gi;Ri}, in the declared time windows. The actual choice of the
action, and of the instant when it is performed, will be made by the partic-
ipant at the other endpoint of the session. After the action is performed, all
clocks in the setRi = {t1,...,tk} are reset.

With these ingredients, we can refine the contract of our store as follows:

store2 = "7order{;t} . (!price{t<60} + !unavailable{t<103})"

This version of the contract deals with the case where the store receives an un-
known or invalid product code. In this case, the internal choice allows the store
to inform the buyer that the requested item is unavailable.

Recursion. The contracts shown so far can only handle a bounded (statically
known) number of interactions. We can overcome this limitation by using recur-
sive TSTs. For instance, the contract store3 below models a store which handles
an arbitrary number of orders from a buyer:
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store3 = "REC ’x’ [7addtocart{t<60;t}.’x’
& ?checkout{t<60;t}. (
Iprice{t<20;t}.(
7accept{t<10} & 7reject{t<10})
+ lunavailable{t<20})]"

The contract store3 allows buyers to add some item to the cart, or checkout.
When a buyer chooses addtocart, the store must allow him to add more items:
this is done recursively. After a checkout, the store must send the overall price,
or inform the buyer that the requested items are unavailable. If the store sends a
price, it must expect a response from the buyer, who can either accept or reject

the price.

Context. Action labels are grouped into contexts, which can be created and made
public through the middleware APIs. Each context defines the labels related to an
application domain, and it associates each label with a type and a verification link.
The type (e.g., int, string) is that of the messages exchanged with that label. The
verification link is used by the runtime monitor (described later on in this section)
to delegate the verification of messages to a trusted third party. For instance, the
middleware supports Paypal as a verification link for online payments.

3.5.2 Compliance and duality in practice

Besides being used to specify the interaction protocols between pairs of services,
recall that TSTs feature the following primitives:

e a decidable notion of compliance between two TSTs;
e an algorithm to detect if a TST admits a compliant one;
e a computable canonical compliant construction.

These primitives are exploited by the CO, middleware to establish sessions be-
tween services: more specifically, recall also that the middleware only allows in-
teractions between services with compliant contracts. In fact, compliance guar-

antees that, if all services respect all their contracts, the overall distributed appli-
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cation (obtained by composing the services) will not deadlock.

For instance, recall the simple version of the store contract:

storel = "7order{;t} . !price{t<60}"

and consider the following buyer contracts:

buyerl = "lorder{;u} . ?price{u<70}"
buyer2 = "lorder{;u} . (?price{u<70} & 7unavailable)"
buyer3 = "lorder{;u} . (?price{u<30} & 7unavailable)"
buyer4 = "lorder{u<20} . ?price{u<70}"

We have that:

storel and buyerl are compliant: indeed, the time frame where buyer1 is

available to receive price is larger than the one where the store can send;

storel and buyer2 are compliant: although the action ?unavailable enables

a further interaction, this is never chosen by the store storel.

storel and buyer3 are not compliant, because the store may choose to send
price 60 seconds after he got the order, while buyer2 is only able to receive
within 30 seconds.

storel and buyer4 are not compliant. Here the reason is more subtle: assume
that the buyer sends the order at time 19: at that point, the store receives
the order and resets the clock t; after that, the store has 60 seconds more
to send price. Now, assume that the store chooses to send price after 59
seconds (which fits within the declared time window of 60 seconds). The
total elapsed time is 19+59=78 seconds, but the buyer is only able to receive

before 70 seconds.

We can check if two contracts are compliant through the middleware Java APIs*.

We show how to do this through the Groovy” interactive shell®.

cS1
cS1

= new TST(storel)
.isCompliantWith(new TST(buyerl))

%co2.unica.it/downloads/co2api/

Sgroovy-lang.org/download.html

®0On Unix-like systems, copy the API’s jar in $HOME/.groovy/lib/. Then, add import
co2api.* to $HOME/ . groovy/groovysh.rc, and run groovysh

52

Ph.D. Thesis of A. S. Podda


http://co2.unica.it/downloads/co2api/
http://groovy-lang.org/download.html

3.5. CONTRACT-ORIENTED PROGRAMMING

>>> true
cS1.isCompliantWith(new TST(buyer3))

>>> false

Consider now the second version of the store contract:

store2 = "7order{;t} . (!price{t<60} + !unavailable{t<103})"

The contract store2 is compliant with the buyer contract buyer2 discussed before,

while it is not compliant with:

buyer5 = "lorder{;u} . (?price{u<90})"

buyer6 = "l!order{;u} . (?price{u<90} + 7unavailable{u>5,u<i2})"

The problem with buyer5 is that the buyer is only accepting a message labelled
price, while store2 can also choose to send unavailable. Although this option is
present in buyers, the latter contract is not compliant with store2 as well. In this
case the reason is that the time window for receiving unavailable does not include
that for sending it (recall that the sender can choose any instant satisfying the
guard in its output action). To illustrate some less obvious aspects of compliance,
consider the following buyer contract:

buyer7? = "l!order{u<100} . ?price{u<70}"

This contract stipulates that the buyer can wait up to 100 seconds for sending an
order, and then she can wait until 60 seconds (from the start of the session), to

receive the price from the store.

Now, assume that some store contract is compliant with buyer7. Then, the store
must be able to receive the order at least until time 100. If the buyer chooses to
send the order at time 90 (which is allowed by contract buyer7), then the store
would never be able to send price before time 70. Therefore, no contract can be
compliant with buyer7.

The issue highlighted by the previous example must be dealt with care: if one
publishes a service whose contract does not admit a compliant one, then the mid-
dleware will never connect that service with others. To check whether a contract

admits a compliant one, we can query the middleware APIs:
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cB7 = new TST(buyer7)

>>> lorder{u<100} . “?price{u<70}

cB7.hasCompliant ()

>>> false

Recall from Section 3.1 that the CO, middleware also allows a service to accept
another service’s contract, as per item (5) in Figure 3.1. E.g., assume that the store
has advertised the contract store2 above. When the buyer uses the primitive
accept, the middleware associates the buyer with the canonical compliant of store2,

constructed through the method dual0f, i.e.:

cS2 = new TST(store2)
>>> 7order{;t} . (!price{t<60} + !unavailable{t<10})

cB2 = ¢S82.dual0f ()
>>> lorder{;t} . (?price{t<60} & 7unavailable{t<10})

Intuitively, if a TST admits a compliant one, then its canonical compliant is con-
structed as follows:

output labels !a are translated into input labels ?a, and vice versa;
internal choices are translated into external choices, and vice versa;
prefixes and recursive calls are preserved;

LS.

guards are suitably adjusted in order to ensure compliance.

Consider now the following contract of a store which receives an order and a

coupon, and then sends a discounted price to the buyer:

store4 = "7order{t<60} . 7coupon{t<30;t} . !price{t<60}"

In this case store4 admits a compliant one, but this cannot be obtained by simply

swapping input/output actions and internal /external choices.

cS4 = new TST(store4)
cB4 = new TST("!order{t<60} . !coupon{t<30;t} . 7price{t<60})")
cS4.isCompliantWith(cB4)

>>> false
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Indeed, the canonical compliant construction gives:

cB5 = cS4.dual0f ()

>>> lorder{t<30} . 7?coupon{t<30;t} . “7price{t<60}

3.5.3 Run-time monitoring example

In order to detect (and sanction) contract violations, the CO, middleware mon-
itors all the interactions that happen through sessions. The monitor guarantees
that, in each reachable configuration, only one participant can be “on duty” (i.e.,
she has to perform some actions); and if no one is on duty nor culpable, then both
participants have reached success. Here we illustrate how runtime monitoring

works, by making a store and a buyer interact.

To this purpose, we split the content in two columns: in the left column we show
the store behaviour, while in the right column we show the buyer. We assume that
both participants call the middleware APIs through the Groovy shell, as shown
before. Note that the interaction between the two participants is asynchronous:
when needed, we will highlight the points where one of the participants performs

a time delay.

Both participants start by creating a connection co2 with the middleware:

usr = "testuserl@gmail.com" usr = "testuser20@gmail.com"
pwd = "testuserl" pwd = "testuser2"
co2 = new CO02ServerConnection(usr, co2 = new C02ServerConnection(usr,

pwd) pwd)

Then, the participants create their contracts, and advertise them to the middle-
ware through the primitive tell. The variables ps and pB are the handles to the
published contracts.

cS
pS

new TST(store2) cB
cS.toPrivate(co2).tell() pB

new TST(buyer2)
cB.toPrivate(co2) .tell()

Now the middleware has two compliant contracts in its collection, hence it can

establish a session between the store and the buyer. To obtain a handle to the
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session, both participants use the blocking primitive waitForSession:

sS = pS.waitForSession() sB = pB.waitForSession()

At this point, participants can query the session to see who is “on duty” (namely;,
one is on duty if the contract prescribes her to perform the next action), and to
check if they have violated the contract:

sS.amI0nDuty () sB.amI0OnDuty ()
>>> false >>> true
sS.amICulpable() sB.amICulpable ()
>>> false >>> false

Note that the first action must be performed by the buyer, who must send the
order. This is accomplished by the send primitive. Dually, the store waits for the

receipt of the message, using the waitForReceive primitive:

msg = sS.waitForReceive() // send at an arbitrary time
msg.getStringValue () sB.send("order", "0123")

>>> 0123

sS.amI0nDuty () sB.amI0nDuty ()

>>> true >>> false

Since there are no time constraints on sending order, this action can be success-
fully performed at any time; once this is done, the waitForReceive unlocks the
store. The store is now on duty, and it must send price within 60 seconds, or
unavailable within 10 seconds. Now, assume that the store tries to send unavailable
after the deadline:

msg = sB.waitForReceive()

sS.send("unavailable") >>> ContractViolationException:
>>> ContractException "The other participant is
culpable"

On the store’s side, the send throws a ContractException; on the buyer side, the

waitForReceive throws an exception which reports the violation of the store. At
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this point, if the two participants check the state of the session, they find that none
of them is still on duty, and that the store is culpable:

session.amIOnDuty() session.amIOnDuty ()
>>> false >>> false
session.amICulpable() session.amICulpable ()
>>> true >>> false

At this point, the session is terminated, and the reputation of the store is suitably
decreased.

Now, using the ingredients we have seen before, we are finally ready to show

real-world implementations of contract-oriented services.

3.54 A simple store

We start with a basic store service, which advertises the contract store2:

String store2 ="7order{;t}.(!price{t<60} + !unavailable{t<10})";
TST ¢ = new TST(store2);

C02ServerConnection co2 =
new C02ServerConnection("testuser@co2.unica.it", "pabbwOrd");
Private r = c.toPrivate(co2);

r.tell();

Public p

Session s = p.waitForSession();

String id = s.waitForReceive().getStringValue();
if (isAvailable(id)) { s.send("price", getPrice(id)); }

else { s.send("unavailable"); }

At lines , the store constructs a TST ¢ for contract store2. At lines , the
store connects to the middleware, providing its credentials. At line 6, the Private
object represents the contract in a state where it has not been advertised to the
middleware yet. To advertise the contract, we invoke the tell method at line

This call returns a Public object, modelling a latent contract that can be “fused”
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with a compliant one to establish a new session. At line 9, the store waits for a
session to be established; the returned Session object allows the store to interact
with a buyer. At line 10, the store waits for the receipt of a message, containing
the code of the product requested by the buyer. At lines , the store sends the
message price (with the corresponding value) if the item is available, otherwise

it sends unavailable.

3.5.5 A simple buyer

We now show a buyer that can interact with the store. This buyer just accepts the
already published contract store2. The contract is identified by its hash, which is
obtained from Public.getContractID().

CO02ServerConnection co2 = new C02ServerConnection(...);

String storeCID = "Ox...";

Integer desiredPrice = 10;

Public p Public.accept(co2, storeCID, TST.class);

Session s = p.waitForSession();

s.send("order", "11235811");

try {
Message m = s.waitForReceive();
switch (m.getLabel()) {
case "unavailable": break;
case 'price":

Integer price = Integer.parselnt(m.getStringValue());

if (price > desiredPrice) { }
else { }
}
} catch(ContractViolationException e){ }

At line 6, the buyer accepts the store’s contract, identified by storeCID. The call
to Public.accept returns a Public object. At this point a session with the store is
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already established, and waitForSession just returns the corresponding Session
object (line 7). Now, the buyer sends the item code (line 9), waits for the store
response (line 12), and finally in the try-catch statement it handles the messages

price and unavailable.

Note that the accept primitive allows a participant to establish sessions with a
chosen counterpart; instead, this is not allowed by the tell primitive, which can
establish a session whenever two contracts are compliant.

3.5.6 A dishonest store

Consider now a more complex store, which relies on external distributors to re-
trieve items. As before, the store takes an order from the buyer; however, now it
invokes an external distributor if the requested item is not in stock. If the distribu-
tor can provide the item, then the store confirms the order to the buyer; otherwise,

it informs the buyer that the item is unavailable.

Our first attempt to implement this refined store is the following.

TST cB = new TST(store2);
TST cD = new TST("!req{;t}.(?ok{t<10} & ?no{t<10})");
Public pB = cB.toPrivate(co2).tell();

Session sB = pB.waitForSession();

String id = sB.waitForReceive().getStringValue();
if (isAvailable(id)) {
sB.send("price", getPrice(id));
}
else {
Public pD

Session sD

cD.toPrivate(co2) .tell();

pD.waitForSession();

sD.send("req", id);

Message mD = sD.waitForReceive();

switch (mD.getLabel()) {
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case "no" : sB.send("unavailable"); break;
case "ok" : sB.send("price", getPrice(id)); break;
b
b
At lines we construct two TSTs: ¢B for interacting with buyers, and <D for

interacting with distributors. In cD, the store first sends a request for some item
to the distributor, and then waits for an ok or no answer, according to whether
the distributor is able to provide the requested item or not. At lines 4-6, the store
advertises ¢B, and it waits for a buyer to join the session; then, it receives the
order, and checks if the requested item is in stock (line 8). If so, the store sends
the price of the item to the buyer (line 9).

If the item is not in stock, the store advertises cD to find a distributor (lines ).
When a session sD is established, the store forwards the item identifier to the
distributor (line 15), and then it waits for a reply. If the reply is no, the store sends

unavailable to the buyer, otherwise it sends a price.

Note that this implementation of the store is dishonest, namely it may violate con-
tracts [28]. This happens in the following two cases:

1. Assume that the store has received the buyer’s order, but the requested item
is not in stock. Then, the store advertises the contract cD to find a distributor.
Note that there is no guarantee that the session sD will be established within
a given deadline, nor that it will be established at all. If more than 60 sec-
onds pass on the waitForSession at line 13, the store becomes culpable with
respect to the contract cB. Indeed, such contract requires the store to perform
an action before 60 seconds’ (10 seconds if the action is unavailable).

2. Moreover, if the session sD is established in timely fashion, a slow or un-
responsive distributor could make the store violate the contract ¢B. For in-
stance, assume that the distributor sends message no after nearly 10 seconds.
In this case, the store may not have enough time to send unavailable to the

buyer within 10 seconds, and so it becomes culpable at session sB.

We have simulated the scenario described in Item 1, by making the store inter-

7Recall that any time constraint should be chosen larger enough to: a) satisfy the contract
requirements; and, b) take into account any possible network delay.
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Figure 3.5: Reputation of the dishonest and honest stores as a function of the number of
sessions with malicious distributors.

act with slow or unresponsive distributors (see Figure 3.5). The experimental
results show that, although the store is not culpable in all the sessions, its reputa-
tion decreases over time. Recovering from such situation is not straightforward,
since the reputation system of the CO, middleware features defensive techniques
against self-promoting attacks [83].

3.5.7 An honest store

In order to implement an honest store, we must address the fact that, if the dis-
tributor delays its message to the maximum allowed time, the store may not have
enough time to respond to the buyer. To cope with this scenario, we adjust the
timing constraints in the contract between the store and the distributor, and we

implement a revised version of the store as follows.

1 TST cB
2 TST cD

new TST(store2);
new TST("!req{;t} . (7ok{t<5} & 7no{t<5})");

4+ Public pB = cB.toPrivate(co2).tell();
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Session sB = pB.waitForSession();

String id = sB.waitForReceive().getStringValue() ;
if (isAvailable(id)) {
sB.send("price", getPrice(id));
}
else {
Public pD = cD.toPrivate(co2).tell(3 * 1000);
try {
Session sD = pD.waitForSession();

sD.send("req", id);

try{

Message mD = sD.waitForReceive();

switch (mD.getLabel()) {

case "no": sB.send("unavailable"); break;

case "ok": sB.send("price", getPrice(id)); break;
+

} catch(ContractViolationException e){

sB.send("unavailable");
}
} catch(ContractExpiredException e) {

sB.send("unavailable");

The parameter in the tell at line 12 specifies a deadline of 3 seconds: if the session
sD is not established within the deadline, the contract cD is retracted from the
middleware, and a ContractExpiredException is thrown. The store catches the

exception at line 28, sending unavailable to the buyer.

Instead, if the session sD is established, the store forwards the item identifier to
the distributor (line 15), and then waits for the receipt of a response from it. If the
distributor sends neither ok nor no within the deadline specified in D (5 seconds),
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the middleware assigns the blame to the distributor for a contract breach, and un-
blocks the waitForReceive in the store with a ContractViolationException (line 24).
In the exception handler, the store fulfils the contract ¢B by sending unavailable
to the buyer.

3.5.8 A recursive honest store

We now present another version of the store, which uses the recursive contract
store3 on page 50. As in the previous version, if the buyer requests an item that

is not in stock, the store resorts to an external distributor.

TST cB = new TST(store3);
TST cD = new TST("!'req{;t}.(7ok{t<5} & 7no{t<5})");
Public pB = cB.toPrivate(co2).tell();

Session sB = pB.waitForSession() ;

List<String> orders = new ArrayList<>();

Message mB;

try {
do {
mB = sB.waitForReceive();
if (mB.getLabel().equals("addtocart")){
orders.add(mB.getStringValue());
}
} while(!mB.getLabel () .equals("checkout"));

if (isAvailable(orders)) {
sB.send("price", getPrice(orders));
String res = sB.waitForReceive().getLabel();
switch (res){
case "accept":

case 'reject":

else {
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Public pD = cD.toPrivate(co2).tell(5 * 1000);
try {
Session sD = pD.waitForSession();
sD.send("req", getOutOfStockItems(orders));
try{
switch (sD.waitForReceive().getLabel()) {
case "no": sB.send("unavailable"); break;
case "ok":
sB.send("price", getPrice(orders));
try{
String res =
sB.waitForReceive() .getLabel();
switch (res) {
case "accept":
case 'reject":
}
}

catch (ContractViolationException e) {

}

} catch (ContractViolationException e){

sB.send("unavailable");

}
catch (ContractExpiredException e) {

sB.send("unavailable");

}
} catch(ContractViolationException e){ }

After advertising the contract cB, the store waits for a session sB with the buyer
(lines 4-5). After the session is established, the store can receive addtocart multi-
ple times: for each addtocart, it saves the corresponding item identifier in a list.
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The loop terminates when the buyer selects checkout. If all requested items are
available, the store sends the total price to the buyer (line 18). After that, the
store expects either accept or reject from the buyer. If the buyer does not respect
his deadlines, an exception is thrown, and it is caught at line 57. If the buyer
replies on time, the store advertises the contract cD, and waits for a session sD
with the distributor (lines ). If the session is not established within 5 sec-
onds, an exception is thrown. The store handles the exception at line 52, by send-
ing unavailable to the buyer. If a session with the distributor is established within
the deadline, the store requests the unavailable items, and waits for a response
(line 31). If the distributor sends no, the store answers unavailable to the buyer
(line 32). If the distributor sends ok, then the interaction between store and buyer
proceeds as if the items were in stock. If the distributor does not reply within
the deadline, an exception is thrown. The store handles it at line 47, by sending
unavailable to the buyer. An untimed specification of this store is proved honest
in [11]. We conjecture that also this timed version of the store respects contracts
in all possible contexts.
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Chapter 4

Decentralizing behavioural contracts

on Bitcoin

In Chapter 3, we presented an architecture for contract-oriented computing based
on a centralized middleware. The middleware allows mutually distrusting ser-
vices with compliant contracts to safely interact, monitoring sessions and penal-
izing those who violated their contracts. We also validated our middleware in
Section 3.4, showing that it enhances some security aspects in the development
of distributed services, in particular to help programmers to reduce the effort of

considering possible misbehaviours of their counterparts.

Under this setting, the middleware avoids the need for trusting on unknown
third-party applications. However, implementing the middleware as a central-
ized entity makes the whole system vulnerable to adversaries who take control
of the middleware itself, or manage to exclude it from the network.

The limitations of centralized approaches have been largely investigated in the
research field of computer security, but recently cryptocurrencies and blockchain
technologies like Bitcoin have pushed forward the concept of decentralization.
A description of Bitcoin, its consensus mechanism and its applications is pro-
vided in Section 2.4, while a comparison to similar technologies is provided in
Chapter 5. In particular, these sections illustrate as Bitcoin natively supports a
limited model of contracts (usually called smart contracts), expressed in the form
of scripts, and which can specify payments in their clauses.
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On the other hand, Bitcoin allows external platforms to store metadata in its trans-
actions, and several third-party services exploit this feature to store in the block-
chain tamper-proof records produced by the execution of their advanced con-
tracts. In this context, a sequence of platform-specific messages can be abstracted

as a subchain inside the Bitcoin blockchain.

Except for the trivial case of contracts which admit any trace, in general there
may exist inconsistent subchains which represent incorrect contract executions. A
crucial issue is how to make it difficult, for an adversary, to subvert the execution
of a contract by making its subchain inconsistent. Existing approaches either pos-
tulate that subchains are always consistent, or give weak guarantees about their

security (for instance, they are susceptible to Sybil attacks [12]).

Thus, in this second part of our dissertation, we propose a consensus protocol,
based on Proof-of-Stake, to incentivize platform nodes (called meta-nodes) to ex-
tend consistently the subchain. We also evaluate the security of our protocol, and,
in Chapter 6 we show how to exploit it as the basis for extending the model of

contracts supported by Bitcoin.

4.1 On subchains and consistency

We assume a set A, B, . .. of participants, who want to append messages a, b, ... to
the subchain. A label is a pair containing a participant A and a message a, written
A : a. Subchains are finite sequences of labels, written A; : a; - - - A, : a,,, which are
embedded in the Bitcoin blockchain. The intuition is that A; has embedded the
message a; in some transaction t; of the Bitcoin blockchain, then A, has appended
some transaction t, embedding a,, and so on. For a subchain 7, we write n A : a

for the subchain obtained by appending A : a to 7.

In general, labels can also have side effects on the Bitcoin blockchain: we repre-
sent with A : a(v — B) a label which also transfers v from A to B. When this
message is on the subchain, it also acts as a standard currency transfer on the
Bitcoin blockchain, which makes vB in a transaction of A redeemable by B. When

the value v is zero or immaterial, we simply write a instead of a(v — B).

A crucial insight is that not all possible sequences of labels are valid subchains:

68 Ph.D. Thesis of A. S. Podda



4.1. ON SUBCHAINS AND CONSISTENCY

to define the consistent ones, we interpret subchains as traces of Labelled Transition
Systems (LTS). Formally, an LTS is a tuple (@, L, o, —), where:

e ()is a set of states (ranged over by ¢, ¢/, .. .);

e [ is a set of labels (in our case, of the form A : a);
® (o € @ is the initial state;

e — C (Q x L x (Qis a transition relation.

As usual, we write ¢ AN ¢’ when (¢,A:a,q') € —, and, given a subchain

n=~A::a - -A,:a,, we write ¢ — ¢ whenever there exist ¢, . . ., g, such that:
Ai:ay As:as Anian /
7 ST =

We require that the relation — is deterministic, i.e. if q 22 ¢ and ¢ 22 ¢”, then it
must be ¢ = ¢".

The intuition is that the subchain has a state (initially, ¢;), and each message up-
dates the state according to the transition relation. More precisely, if the subchain
is in state ¢, then a message a sent by A makes the state evolve to ¢’ whenever
q TGN ¢ is a transition in the LTS.

Note that, for some state ¢ and label A : a, it may happen that no state ¢’ exists
such that ¢ A, ¢'. In this case, if ¢ is the current state of the subchain, we want
to make hard for a participant (possibly, an adversary trying to tamper with the
subchain) to append such message. Informally, a subchain A; :a;---A, : a, is
consistent if, starting from the initial state ¢, it is possible to find states ¢, ..., g,

such that from each ¢; there is a transition labelled A; | : a; 4 to ¢; 1.

Definition 4.1.1 (Subchain consistency). We say that a subchain 7 is consistent
whenever there exists ¢ such that ¢, — ¢.

Note that, if a subchain is consistent, then by determinism we have that the
state ¢,, exists and is unique. In other words, a consistent sequence of messages

uniquely identifies the state of the subchain.

Example 4.1.1. To illustrate consistency, consider a smart contract FACTORS,, which
rewards with 1B each participant who extends the subchain with a new prime
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factor of n. The contract accepts two kinds of messages:
e send,, where p is a natural number;
e pay,(1 — A), meaning that A receives a reward for the factor p;

The states of the contract can be represented as sets of triples (A, p,b), where b
is a boolean value indicating whether A has been rewarded for the factor p. The
initial state is (). We define the transition relation of FACTORS,, as follows:

A': sendy,

oS S', iff p is a prime factor of n, (B,p,b) ¢ S for any B and b, and
§'=SU{(Ap,0)};

F: pay,(1—A)
_—

.S S iff (A, p,0) € Sand ' = (S\ {(A,p,0))) U {(A,p,1)}.

Consider now the following subchains for FACTORS330, where F is the participant
who issues the contract, and M is an adversary:

1. m; = A:send;; B:sends F:pay;;(1—>A) F:pays(l — B)
ne = A:send;; F:pay;i(1—=A) M:sendp

N3 = M : Send229 F: pay229(1 — M)

L

ny = A:send;; F:pay;(1— M)

The subchain 7, is consistent, because both A and B send new factors and get
their rewards. The subchains 7, and 73 are inconsistent, because 11 sent by M is
not fresh, and 229 is not a factor of 330. Finally, the subchain 7, is inconsistent,
because M gets the reward that should have gone to A. O

Similarly to Bitcoin, we do not aim at guaranteeing that a subchain is always con-
sistent. Indeed, also in Bitcoin a miner could manage to append a block with
invalid transactions: in this case, as discussed in Section 2.4, the Bitcoin block-
chain forks, and the other miners must choose which branch to follow. However,
honest miners will neglect the branch with invalid transactions, so eventually
(since honest miners detain the majority of computational power), that branch

will be abandoned by all miners.

For subchain consistency we adopt a similar notion: we assume that an adversary
can append a label A : a such that g, 72, 50 making the subchain inconsistent.
However, upon receiving such label, honest nodes will discard it. To formalise
their behaviour, we define below a function I' that, given a subchain 7 (possibly
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inconsistent), filters all the invalid messages. Hence, I'(n) is a consistent subchain.

Definition 4.1.2 (Branch pruning). We inductively define the endofunction I' on
subchains as follows, where € denotes the empty subchain:

. I'(n) A:a
I'm)A:a if3g,qd :q—>q—¢
F(e) = (n A a) = (n) 4,4 qo q—q

C(n) otherwise

In order to model which labels can be appended to the subchain without breaking
its consistency, we introduce below the auxiliary relation |=. Informally, given a
consistent subchain 7, the relation n = A : a holds whenever the subchain n A : a

is still consistent.

Definition 4.1.3 (Consistent update). We say that A : a is a consistent update of a
subchain 7, denoted with 1 = A : a, iff the subchain I'(n) A : a is consistent.

Example 4.1.2. Recall the subchain 7, = A : send;; F : pay;;(1 - A) M : sendy;
from Example 4.1.1. We have that B : send, is a consistent update of 7,, because
['(n2) B : sendy = A :sendy; F:payy(1 — A) B : send, is consistent. O
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4.2 A protocol for consensus on Bitcoin subchains

Assume a network of mutually distrusted nodes N,N’, ..., called meta-nodes to
distinguish them from the nodes of the Bitcoin network. Meta-nodes receive mes-
sages from participants (also mutually distrusting) which want to extend the sub-
chain. The goal is to allow honest participants (i.e., those who follow the protocol)
to perform consistent updates of the subchain, while disincentivizing adversaries
who attempt to make the subchain inconsistent.

To this purpose, this protocol is based on Proof-of-Stake (PoS) with the assump-
tion that the overall stake retained by honest participants is greater than the stake
of dishonest ones'. The stake is needed by meta-nodes, which have to vote for
approving messages sent by participants. These messages are embedded into
Bitcoin transactions, and called update requests. Let UR[A : a] denote the update
request issued by A to append the message a to the subchain. In order to vote an
update request, a meta-node must invest kB on it, where « is a constant specified
by the protocol. An update request needs the vote of a single meta-node. The
protocol requires meta-nodes to vote a request UR[A : a] only if A : a is a consis-
tent update of the current subchain 7, i.e. if n = A : a%. To incentivize meta-nodes
to vote their update requests, participants pay them a constant fee, which can be

redeemed by meta-nodes when the update request is appended to the subchain.

!Note that a similar hypothesis, but related to computational power rather than stake, holds in
Bitcoin, where honest miners are supposed to control more computational power than dishonest
ones.

2We assume that all meta-nodes agree on the Bitcoin blockchain; since 7 is a projection of the
blockchain, they also agree on 7.

1. Upon receiving an update request UR[A : a], a meta-node checks its con-
sistency, n = A : a. If so, it votes the request, and adds it to the request
pool;

2. when A expires, the arbiter signs all the well-formed URs in the request
pool;

3. all requests signed by the arbiter are sent to the Bitcoin miners, to be
published on the blockchain. The first to be mined, indicated with UR;,
is the i-th label of the subchain.

Figure 4.1: Summary of a protocol stage i.
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The protocol is defined in Figure 4.1. It is organised in stages. The protocol en-
sures that exactly one label A : a is appended to the subchain for each stage i.
This is implemented by appending a corresponding transaction UR;[A : a] to the
Bitcoin blockchain. To guarantee its uniqueness, the protocol exploits an arbiter
T, namely a distinguished node of the network which is assumed honest (this
hypothesis is discussed in Section 4.3). The main steps of the protocol are now
described.

At step 1 of the stage i of the protocol, a meta-node (say, N) votes an update
request (as detailed in Section 4.5).

In order to do this, N must confirm some of the past C' updates (where C' > 1 is
the cutoff window, a constant fixed by the protocol and described in Section 4.2.1).
To confirm an update, N uses the B to pay the meta-nodes who respectively
appended each chosen update UR; (with i — C' < j < i) to the subchain. The way
to choose the updates UR; to be confirmed is called refund policy and is deepened
in Section 4.2.1. After voting, N adds URJA : a] to the request pool, i.e. the set of all
voted requests of the current stage (emptied at the beginning of each stage). This
voting step has a fixed duration A, specified by the protocol (the choice of A is
discussed in Chapter 6).

At step 2, which starts when A expires, the arbiter T signs all well-formed request
transactions, i.e., those respecting the format defined in Section 4.5.

At step 3, meta-nodes send the requests signed by T to the Bitcoin network. The
mechanism described in Section 4.5 ensures that, at each stage i, exactly one trans-
action, denoted UR;[A : a], is put on the Bitcoin blockchain. When this happens,
the label A : a is appended to the subchain.

Summarizing, the protocol depends on the parameters II = (C, «, f,r), which
are, respectively, the cutoff window size, the amount required to vote an update
request, the fee payed by the client, and the maximum transferable amount in
special updates in the form A : a(v — B) (where, by definition, v < r).
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4.2.1 Refund policies

A refund policy can be formally defined as a function © that, given a subchain
n and the protocol parameters II = (C,, f,r), outputs a sequence of refunds
p=(p}...pL), where:

e p! represents, at each stage i of the protocol, the amount to pay to the meta-

nodes who voted UR,_;, for every j s.t. 1 < j < C (only updates inside the
current cutoff window can be refunded);

o Ele p’ = K+ f (the policy specifies how to split the vote and the fee among
the voters of the updates inside the cutoff window).

To enforce good behaviour, updates whose voters did not follow the prescribed
policy are considered not refundable. This means honest meta-nodes penalize not

only inconsistent labels, but also illegal refunds.

Definition 4.2.1 (Refundable update). Let nl'* be the subchain after the comple-
tion of the k-th protocol stage, let UR,[A : a] be a published update, and p’ the
refund made by its voter. Then, we say UR; is refundable if and only if it is consis-
tent (n*U=Y) = A : a) and it follows the refund policy (57 = ©(nl* =Yl 1)),

Thus, at each stage 7, we can define the set of indexes of refundable updates in the
current cutoff window. Suppose that the subchain starts with C' predetermined
and consistent updates UR_;,1 < i < C, then:

f={1<j<0} (4.1)
since all initial updates are considered refundable. Then, for ¢ > 0:
¢ ={1<j<C:UR,;isrefundable according to ©} (4.2)

Note that checking if the voter of the j-th update (with j < ) has followed the
refund policy just requires to examine the updates with index k£ < j. Thus, this

check may depend only on ¢" and never on ¢'.
As an example, some possible refund policies are now presented.

newest-first This policy refunds only the newest refundable update in the cutoff
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window (if any), the newest in general otherwise:

K+ f fEADAG=min(E)
pi=k+f f&=0nj=1 (4.3)

0 otherwise

oldest-first This policy refunds the oldest consistent update (if any), the oldest in
general otherwise (note that it coincides with the newest-first if C' = 1):

Kt f i #DA G =max(E)
py=Rk+f fE=0nj=C (4.4)

0 otherwise

4.2.2 Proof-of-Burn

To expand the possibilities for meta-nodes and increase the security of the proto-
col, as will be deepened in Section 4.3, the sequence of refunds p can be extended
to include a special value p,. This value represents the amount that should be
paid to a pre-set fictional address (e.g. an all-zero address). Refunding such an
address effectively corresponds to burning the money sent, making it unspend-
able.

With this enhancement, the policies defined previously can be improved, remov-

ing the case &' = () and adding:

. k+f if&=0
Po = . (4.5)
0 otherwise

which can be interpreted as follows: if no update in the cutoff window is refund-
able, burn vote and fee. The variants of the previous policies, after the inclusion of
the Proof-of-Burn condition, are called newest-first-pburn and oldest-first-pburn.
This change avoids the (forced) confirmation of a non-refundable update, that is
allowed in the previous definitions of the newest-first and oldest-first poli-

cies.
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Now, recall that in Section 4.2 the condition C' > 1 is provided. However, the
choice C' = 1 makes sense only if there is the possibility of burning the vote. Vice
versa, voters would have no other choice besides confirming the previous update
(refundable or not). Introducing the Proof-of-Burn, instead, the following policy
for C' = 1 can be defined and used.

harsh policy This policy refunds the previous update if refundable, burns the
money otherwise:

1- K+ f o ife={1} i K+ ifgi =10
P1= . Po = ) (4.6)
0 otherwise 0 otherwise
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4.3 Basic properties of the protocol

We now establish some basic properties of our protocol. Hereafter, we assume
that honest nodes control the majority of the total stake of the network, denoted
by S. Further, we assume that the overall stake required to vote pending update
requests is greater than the overall stake of honest meta-nodes.

4.3.1 Adversary power

An honest meta-node votes as many requests as is allowed by its stake. Hence,
if its stake is h, it votes h/k requests per stage. Consequently, the rest of the
network — which may include dishonest meta-nodes not following the protocol

— can vote at most (S — h)/k requests®.

Then:

Lemma 4.3.1. The probability that an honest meta-node with stake h updates the sub-
chain is at least h/S at each stage.

Since we assume that honest meta-nodes control the majority of the stake, Lemma

4.3.1 also limits the capabilities of the adversary:

Lemma 4.3.2. If the global stake of honest meta-nodes is Sy, then dishonest ones update
the subchain with probability at most (S — Sy )/S at each stage.

Although inconsistent updates are ignored by honest meta-nodes, their side ef-
fects as standard Bitcoin transactions (i.e. trasfers of vB from A to B in labels

A :a(v — B)) cannot be revoked once they are included in the Bitcoin blockchain.

Even though the goal of the protocol is to let meta-nodes get revenues proportion-
ate to their probability of updating the subchain (as defined in Lemma 4.3.1 and
Lemma 4.3.2), the adversary might exploit these side effects to earn more then she
owes by publishing inconsistent updates. Therefore, we show how the incentive

system in our protocol reduces the feasibility of such inconsistent updates.

*Note that assuming the ability of the adversary to delay some messages, thus reducing the
honest meta-nodes actual voting power (since their voted requests might not reach the request
pool), is equivalent to consider an adversary with a higher stake.
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According to Lemma 4.3.2, if M has stake m, and the other meta-nodes are honest,
then M has probability at most m /S of extending the subchain in a given stage
of the protocol. Since stages can be seen as independent events, we obtain the
following:

Lemma 4.3.3. The probability that an adversary with stake m saturates a cutoff window
with her updates only (consistent or not) is u®, where C'is the cutoff window size, and
p=m/S.

To simplify the terminology, hereafter we consider a consistent update to be also
refundable®.

Now, assume M manages to publish C' consecutive updates (consistent or incon-
sistent) starting from index j, with probability given by Lemma 4.3.3. M can use
each update at index j < k < j + C to recover her vote x and eventually the fee
f for her previous update at index k£ — 1, such that only the last update at index
j + C remains unrefunded.

In particular, if the protocol specifies a refund policy which not admit the Proof-
of-Burn described in Section 4.2.2, at least a honest update at index i > j + C
has to necessarily refund M of (k + f)B, since she saturated the cutoff window
with her updates only. Consequently, following this strategy the attacker does
not lose any deposit and possibly earns an additional extra revenue r for each
inconsistent update she published, if any. This extra revenue r» models the case
where M induces a victim A to publish an inconsistent update in the form A :
a(r — M).

Also note that, if M cannot manage to saturate the cutoff window immediately,
she can delay the completion of the attack by publishing at least one inconsistent
update every C ones on the subchain (to keep refunding herself the vote and the
fee). We call the above behaviour of M (and all its variants) the self-compensation
attack.

Finally, observe that the choice of the protocol parameters and, particularly, the

refund policy is crucial to force the honest strategy to be more profitable than

4Publishing a consistent update that is not refundable does not break the consistency of the
subchain, but it causes the meta-node who voted the update to be (eventually) not refunded for
its effort. Therefore, this behaviour cannot be considered an attack.
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any dishonest one. To support this claim, in what follows we show a dishonest
strategy which exploits a variant of the attack, called the reversed self-compensation
attack, and we prove that it is always more profitable than the honest strategy
whether the chosen refund policy is newest-first.

4.3.2 Reversed self-compensation attack

Assume an adversary M that manages to append two updates on the subchain,
the first with index ¢, and the second with index i + 1 < 57 < i + C. Suppose
that the update at index i is consistent, then the honest meta-node that publishes
the update at index i + 1 (recall, the considered refund policy is newest-first)
refunds (x + f)B to M. Now M can use again these funds to publish a new in-
consistent update at index j, refunding again her update at index ¢ (thus also
violating the refund policy). So M manages to earn the undeserved extra revenue
r without having lost neither « nor f, therefore performing a special case of the

self-compensation attack.

Now, consider a conservative strategy where the attacker M at first tries to publish
consistent updates only. When she manages to do so for a while, she tries to
publish just one inconsistent update until the last consistent update published is
beyond the cutoff window, then reverses again to consistent updates.

Let 1 be the probability M has in successfully publishing an update, and suppose
she published the last update, consistent. We show that the expected payoff ¢ of
M, when she follows the described dishonest strategy, is always greater than the
expected payoff ¢ she can get if she follows the honest strategy. The analysis is
limited to the subsequent C updates, since the two strategies coincide afterwards,
and holds only for C' > 2 (with C' = 1, meta-nodes have no choice from refund-
ing the last update, so an inconsistent update is always more profitable than a
consistent one). From the hypothesis, it follows that:

C-1
6p =pf + > p(l—p) ' (f+r+pf(C—1-1) (4.7)
ou = pfC (4.8)
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In Eq. 4.7, uf describes the payoff of M for the first update she publishes, while
the rest denote the sum of the revenues obtained by publishing one or more up-
date in the subsequent cutoff window, weighted for the respective probabilities
to occur. Then, the gain M obtains by following the dishonest strategy is:

¢p — g =puf(1-C +MZ w) N f4+r+pf(C—1-1i)

—uf( 1+M(C—1—i))—(0—1)>+Wi(1—u)
= /M‘Z(l — ) (4.9)

The result of eq. (4.9) is justified by the following Lemma 4.3.4. Since 0 < u < 1,
Vrs.t.r > 0weget¢p > ¢y. This means that, indipendently from the chosen pro-
tocol parameters I, a protocol that uses the refund policy newest-first admits
at least one dishonest strategy which is always more profitable than the honest
one. Note also that a similar result can be obtained for the oldest-first policy.

Lemma 4.3.4. For C > 2, it holds:

Cc-1

(=Tt A+p(C—1-14) = (C=1)=0 (4.10)

=1
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From the following Lemma 4.3.5, it follows that the coefficients of the polynomial

in Equation (4.11) are all zero, thus proving the above Lemma 4.3.4. O

Lemma 4.3.5. For n > 1, it holds:
~ ((i i—1 _ ,
Z(()—( )(n—i—l—z))—o 1<j<n (4.12)
= \\J Jg—1
Proof. We prove it by induction over n. The base case is n = 1, therefore j = 1.

<@_<i51)<2‘i>>:1—1=0 (4.13)

7

For the inductive step:
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(6 (o)« (1) 567
-(7)-£02)

=Jj

To conclude, the results of the following Lemma 4.3.6 are needed. O

Lemma 4.3.6. For n > 1 it holds:

n " i—1
(k):;(k_l) 1<k<n (4.14)

Proof. The proof is again by induction over n.The base case is n = 1, thus k = 1.

1 L /0
<1> =1= 2 (0) (4.15)
For the inductive step:

n+1 n n
() (,n) reen w0

4.3.3 Trustworthiness of the arbiter

The protocol uses an arbiter T to ensures that only one transaction per stage is
appended to the blockchain, and that its choice is random as well. In order to
simplify the description of the protocol, the arbiter T has been assumed to be-
have honestly. In fact, the arbiter introduces a point of centralization but it can be

observed that it does not play the role of a trusted authority. As an example, im-
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plementing the middleware descripted in Chapter 3 as a centralized entity (e.g.,
a private server) implies that the services in the network cannot ensure the ful-
fillment of the contract rules by their counterparties, as this task is performed by
the middleware, and services must trust on it.

Vice versa, in the decentralized settings of the protocol, the update requests to be
voted are chosen by the meta-nodes, and once they are added to the request pool,
the arbiter is expected to sign all of them, without taking part on the validation
nor in the voting. Recall that transactions are first signed by clients and voters,
thus neither the arbiter nor other nodes can modify their content once sent to the
request pool. This means that the arbiter can only refuse to add its sign to a subset
of them, i.e. prevent their publication (which corresponds to isolate some meta-
nodes in the network). But since everyone can inspect the request pool, any mis-
behaviour of the arbiter can be detected by the meta-nodes, that can proceed to
replace it. Therefore, the presence of the arbiter cannot affect the decentralization
of the approach but, without the assumption of its honesty, it would be necessary
to take in consideration some additional malicious behaviours like, e.g., tempo-
rary Denial-of-Service attacks performed by the arbiter. This is still an open issue:
in particular, in Section 6.1 we discuss our future research directions on algo-
rithms that allows meta-nodes to safely replace the arbiter when a misbehaviour
is detected.

4.4 Evaluation of the protocol

In this section we evaluate the security of the protocol, providing some analytical
results. In particular, we illustrate a realistic attack scenario, and investigate how
the choice of protocol parameters and the refund policy can disincentivize ad-
versaries to behave dishonestly. We also examine how possible attacks to Bitcoin
may affect subchains built on top of its blockchain.

4.4.1 Adversary strategy

To analyse possible attacks, consider an adversary who can craft any update (con-
sistent or not), and controls one meta-node M with stake ratio y = m/S, where
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p € [0; 1], m is the stake controlled by the adversary and S is the total stake of the
network®. Suppose that each meta-node can vote as many update requests as pos-
sible, spending all its stake, and that the network is always saturated with pend-
ing updates, which globally amount to the entire stake of honest meta-nodes®.

To evaluate its security, we model the protocol as a game, in which the attacker M
is a player that adopts a possibly dishonest strategy, thus trying to publish either
consistent or inconsistent updates. Conversely, the other players are the honest
meta-nodes, that follow the protocol and therefore adopt a honest strategy, try-
ing to publish consistent updates only. Suppose also that M follows an optimal
strategy, i.e. according to the current state, the choice of voting a consistent or
inconsistent update — at each protocol stage — is made with the goal of maxi-
mizing her final revenue. In particolar, the current state depends on the content

of the current cutoff window, and not on the full history of the subchain:

Lemma 4.4.1. The revenue of an update published by an adversary M, at the protocol
stage i, depends only on the state of the cutoff window in that stage (i.e., nli=)-(=1l)
on the protocol parameters 11, on the refund policy © and on the adversary ratio ju.

To justify Lemma 4.4.1, observe that, by definition of refund policy ©, no update
with index j < ¢ — C can be refunded, neither of the vote « nor the fee f, in a
protocol stage with index ¢. Thus, no matter what M chooses at the current stage,
there is no additional revenue (but also no loss) for any update outside the cutoff

window.

Now, let G be a function that maps a subchain 7! into a sequence of labels
s = o0y it ... 0, Alabel 0; can assume one of the following values: Inc, which
indicates an inconsistent update published by M; Con, which represents a consis-
tent update published by M, and Ext, that denotes a (consistent) external update
published by the rest of the network, assumed to be honest.

Also, let sk = G(nl(k=©)--(:=1)]) be the sequence that represents the cutoff window

> Assuming a single adversary is not less general than having many non-colluding meta-nodes
which carry on individual attacks. Indeed, in this setting meta-nodes do not join their funds to
increase the stake ratio u.

®Note that saying the update queue is not always saturated is equivalent to model an adver-
sary with a stronger p: this because honest meta-nodes cannot spend all their stake in a single
protocol stage, i.e. reducing their actual power. Thus, studying this particular case will not give
any additional contribution to the analysis.
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state at the stage k& This sequence is used to generate two new sequences st =
s& : Con and s¥. = s& :: Inc that represent the possible continuations of the

chain if the adversary manages to publish the next update.

We also need a function ¢ that, given the protocol parameters II and the refund
policy ©, takes a sequence s as input and computes the a posteriori attacker rev-
enue associated to s. Moreover, let ¢’ be a variant of ¢ that, in addition, takes into
account the possible refunds generated appending C' Ext updates at the end of s

(this models the case of an attack that terminates).

Through ¢ and ¢', and given the attacker ratio , it is possible to define a payoff
function ®; with depth d. Let s = 0y :: ... :: oy be a sequence of length N, and
s’ = oy 1 ... 1t on be the same sequence of s, where the first label is elided. The
payoff function is defined recursively as:

By(s) = B(s) + (1 — p)®y_1(s" = Ext) + pmax(Pyg_1 (s’ :: Con), Py 1(s’ :: Inc)) d > 1
¢'(s) i

With all these ingredients, we can formulate the following;:

Definition 4.4.1 (Optimal choice). Given a sequence sk that represents the state
of the current cutoff window, the optimal choice with depth d for the adversary is
to try to publish a consistent update if ®4(sf,,) > Pa(st ), an inconsistent one

otherwise.

In particular, consider an adversary that plans to meddle with the protocol for a
limited amount of time, say for d stages, starting at stage n. In this scenario, the
optimal strategy for the adversary would require, at each stagen <k <n+d—1,
to take the optimal choice with depth n + d — k.

This guarantees, to M, to get the maximum possible revenue at the end of the
attack: in fact, the optimal choice of depth d (i.e., the initial choice) takes into
account every possible evolution of the protocol for the duration of the attack,
weighted for its probability to occur, and considers the best outcome at every
step. At last, note that the optimal strategy cannot be well defined for an adver-
sary that plans to attack the protocol for an indefinite number of stages; however,
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Simulated revenue for the optimal strategy
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Figure 4.2: We simulated the revenue of an adversary M which participates in subchains
of length 100 and uses the optimal strategy. Each curve represents the revenue of M as
increases, and for a different refund policy. We fixed the protocol parameter as follows:
f=10.01,r =0.03 and v = 0.1, all conventionally expressed in bitcoins.

it can be effectively approximated by considering — at each step — to take the
optimal choice of fixed depth d, provided d great enough.

4.4.2 Analytical results

In what follows, we show the results of the security analysis of the protocol, un-
der the attack scenario in which the adversary adopts an optimal strategy, and
only for the harsh-policy, which provides the best security performance among
the policies shown in Section 4.2.1 (according to some simulated preliminary ex-

periments shown in Figure 4.2). The results are summarized by the following;:

Theorem 4.4.1. If the protocol prescribes to use the harsh-policy, an adversary with
stake ratio 1, that adopts an optimal strategy in pursuing an attack of arbitrary length,
behaves necessarily honest if and only if p < 1 —r/(k + f).

Proof. Note that, if the prescribed policy is the harsh-policy, any update after a
Con must necessarily refund the vote and the fee to the adversary, independently
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from its type. Thus, this additional gain can be included in the revenue, having:
- ¢(—,Con) = f
where the symbol ‘-’ indicates an indifference condition.
On the other side, the revenue for an inconsistent update can be quantified in:
- ¢(Ext,Inc) =r — K
- ¢(Inc,Inc) =r + f (vote and fee are self-refunded)
- ¢(Con, Inc) = r — k (the refund of f and « has already been counted for Con)

Note that, when considering to publish an inconsistent update, a cutoff that con-
tains Con is equivalent to one with Ext. Finally, observe that computing the rev-
enue in this way gives ¢(—,Ext) = 0, and therefore ¢ = ¢'.

Now note that, at the terminal stages of the attack, the adversary is encouraged
to publish consistent updates, since she has to publish at least two consecutive
Inc to outdo the honest behaviour, because ¢'(Ext, Inc) < ¢'(Ext,Con), and the
chances to do so decreases’. On the opposite, at the early stages, a high enough u
ensures that — on average — a sufficient number of consecutive Inc will be pub-
lished to gain an advantage over the honest behaviour. And, in this case, since
¢(Inc,Inc) > ¢(—, Inc), it follows that if publishing an inconsistent update is the
optimal choice at the step k, then it has been the optimal choice at the step £ — 1
too.

Under these assumptions, we can conclude that the optimal strategy can be either
completely honest or starting dishonest (always trying to publish Incs) and then
switching to the honest one as the end of the attack approaches. Thus, for our
analysis, we can only consider the early stages, in which publishing inconsistent
updates can be more profitable than publishing consistent ones. Here, the adver-
sary that publishes Inc gains ¢(Ext, Inc) with probability (1 — i), and ¢(Inc, Inc)
with probability p (recall that p is the probability that the adversary manages to

publish an update in a given stage). Therefore, the adversary chooses the honest

’Only exceptions are the rare cases in which a streak of consecutive Inc occurs in the terminal
stages: here, the adversary is motivated to continue publishing inconsistent updates. But as soon
as an attempt fails (an Ext breaks the sequence), and if the end is near enough, the adversary
switches to the honest behaviour.
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strategy right from the start if and only if:

¢(—,Con) > (1 — p) - p(Ext, Inc) + p - ¢(Inc, Inc)
= fer—r+([+r)u
= fer—r+([+r)u

PR i il
a f+r
(:)M<1_f+/-c (4.17)
[

The value of f is assumed to be strictly smaller than «, in order to incentivize
the participation of meta-nodes to the protocol. In fact, with f very close to (or
even greater than) x, clients have no evident benefit from delegating meta-nodes
to vote their updates (since the required economical effort does not change signif-
icantly). This is similar to provide a protocol with no fees, which is less attractive
for meta-nodes to participate in. However, a large participation to the protocol
reduces the possibility that single or colluding entities control the majority of the
stake.

Under this assumption, the eq. (4.17) shows that the security of the protocol is
essentially proportional to the ratio «/r: the higher this ratio, the more convenient
an honest behaviour becomes. Figure 4.3 finally illustrates how the switch point
(i.e., the min(u) such that ¢r,c > ¢con) varies for different combinations of x and
r, with a small fixed fee (f = 0.01B).

4.4.3 Security of the underlying Bitcoin blockchain

So far we have only considered direct attacks to our protocol, assuming the un-
derlying Bitcoin blockchain to be secure. However, although Bitcoin has been
secure in practice till now, some works have spotted some potential vulnerabil-
ities of its protocol. These vulnerabilities could be exploited to execute Sybil at-
tacks [12] and selfish-mining attacks [52], which might also affect subchains built on
top of the Bitcoin blockchain.

In Sybil attacks on Bitcoin, honest nodes are induced to believe that the network
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Switch point for different x and r
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Figure 4.3: The plot shows how the switch point (the min(u) such that ¢1nc > ¢con) Varies
for different combinations of x and r, when the refund policy is harsh-policy and f is
fixed to 0.01B.

is populated by many distinct participants, which instead are controlled by a
single malicious entity. This attack is usually exploited to quickly propagate ma-
licious information on the network, and to disguise honest participants in a con-
sensus/reputation protocol, e.g. by overwhelming the network with votes of the
adversary. In the selfish-mining attack [52], small groups of colluding miners
manage to obtain a revenue larger than the one of honest miners. More specifi-
cally, when a selfish-mining pool finds a new block, it keeps it hidden to the rest
of the network. In this way, selfish miners gain an advantage over honest ones in
mining the next block. This is equivalent to keep a private fork of the blockchain,
which is only known to the selfish-mining pool. Note that honest miners still
mine on the public branch of the blockchain, and their hash rate is greater than
selfish miners’ one. Since, in the presence of a fork, the Bitcoin protocol requires
to keep mining on the longest chain, selfish miners reveal their private fork to the
network just before being overcome by the honest miners. Eyal and Sirer in [52]
show that, under certain assumptions, this strategy gives better revenues than
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honest mining: in the worst scenario (for the adversary), the attack succeeds if
the selfish-mining pool controls at least 1/3 of the total hashing power. Ratio-
nal miners are thus incentivized to join the selfish-mining pool. Once the pool
manages to control the majority of the hashing power, the system loses its decen-
tralized nature. Garay, Kiayias and Leonardos in [53] essentially confirm these
results: considering a core Bitcoin protocol, they prove that if the hashing power
7 of honest miners exceeds the hashing power 3 of the adversary pool by a factor
A, then the ratio of adversary blocks in the blockchain is bounded by 1/ (which
is strictly greater than (). Thus, as 3 (the adversary pool size) approaches 1/2,
they control the blockchain.

Although these attacks are mainly related to Bitcoin revenues, they can affect the
consistency of any subchain built on top of its blockchain. In particular, suitably
adapted versions of these attacks allow adversaries to cheat meta-nodes about
the current subchain state, forcing them to synchronize their local copy of the
Bitcoin blockchain with invalid forks that will be discarded by the network in the
future. In order to be protected against such attacks, meta-nodes should consider
only [-confirmed transactions. Namely, if the last published blockchain block is B,
they consider only those transactions appearing in blocks B; with j < n — [. This
means that an attacker would have to mine at least [ blocks to force the revocation
of a I-confirmed transaction. Rosenfeld [78] shows that, if an attacker controls 10%
at most of the network hashing power, [ = 6 is sufficient for reducing the risk of
revoking a transaction to less than 0.1%.

4.5 Implementation in Bitcoin

In this section we show how our protocol can be implemented in Bitcoin. A label
A :a(v — B) at position ¢ of the subchain is implemented as the Bitcoin transac-
tion UR;[A : a(v — B)] in Figure 4.4a, with the following outputs:

e the output of index 0 embeds the label A : a. This is implemented through
an unspendable OP_RETURN script [24]°.

e the output of index 1 links the transaction to the previous element of the

8The OP_RETURN instruction allows to save 80 bytes metadata in a transaction; an out-script
containing OP_RETURN always evaluates to false, hence it is unspendable.
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Genesis

in: .-
in-script: - - -

out-script(t, o): vers(t, o)
value: 0.0001

UR;[A : a(v — B)]

in[0]: Fee;

in-script[0]: sig.(e)

in[1]: Stake;

in-script[0]: sigy(e)

in[2]: Confirm;_; (at index 1)
in-script[0]: sig.(e)

out-script[0](): OP_RETURN A : a
value[0]: 0

out-script[1](t, o): ver+(t, o)
value[1]: 0.0001
out-script[2](t, 0): very(t, o)
value[2]: « + fee
out-script[3](t, 0): vers(t, o)
value[3]: v

lockTime: n + k

(a)

exactly one of them can be mined.

providing his signature.

[ W -3

3

Genesis

UR

UR

i+1

UR

i+2

UR

i+3

Figure 4.4: In (a), format of Bitcoin transactions used to implement our protocol. In (b), a
subchain mantained through our protocol. Since UR; 2 contains an inconsistent update,
the meta-node which voted it is not rewarded.

subchain, pointed by in[2]. This link requires the arbiter signature. Note
that, since all the update requests in the same stage redeem the same output,

the output of index 2 implements the incentive mechanism. The script re-
wards the meta-node N’ which has voted a preceding UR; in the subchain.

Meta-node N’ can redeem from this output B plus the participant’s fee, by

the output of index 3 is only relevant for messages a(v — B) where v > 0.

Participant B can redeem vB from this output by providing his signature.

All transactions specify a lockTime n + k, where n is the current Bitcoin block
number, and k is a positive constant. This ensures that a transaction can be mined

only after k blocks. In this way, even if a transaction is signed by the arbiter and
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sent to miners before the others, it has the same probability as the others of being
appended to the blockchain.

To initialise the subchain, the arbiter puts the Genesis transaction on the Bitcoin
blockchain. This transaction secures a small fraction of bitcoin, which can be
redeemed by UR; through the arbiter signature. This value is then transferred to
each subsequent update of the subchain (see Figure 4.4b). At each protocol stage,
participants send incomplete UR transactions to the network. These transactions
contain only in[0] and out[0], specifying the fee and the message for the subchain
(including the value to be transferred).

Finally, to vote, meta-nodes add in[1], in[2] and out[2] to these transactions, to,
respectively, put the required « (from some transaction Stake;), declare they want
extend the last published update Confirm;_;, and specify the previous update to
be rewarded. All the in[1] fields in a stage of the protocol must be different, to
prevent attackers to vote more URs with the same funds.

4.5.1 Protocol performance

As seen in Section 4.2, the protocol runs in periods of duration A. Due to the
mechanism for choosing the message to append to the subchain from the re-
quest pool, the protocol can publish at most one transaction per Bitcoin block.
This means that a lower bound for A is the Bitcoin block interval (~10mins). To
monitor the arbiter behaviour throughout protocol stages, it is expected that all
meta-nodes share a coherent view of the request pool’. Then, A needs to be large
enough to let each node synchronize the request pool with the rest of the network.
A possible approach to cope with this issue is to make meta-nodes broadcast their
voted updates, and to keep a list of other ones (considering only those which sat-
isfy the format of transactions, as in Section 4.5). More efficient approaches could

exploit distributed shared memories [44, 62].

%A naive solution to achieve this goal, similar to that used by Bitcoin, requires meta-nodes to
broadcast their request pool lists at each stage. A clear drawback of this solution is the significant
overhead it adds to the network. Finding a more efficient alternative is still an open issue.
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4.5.2 Overcoming the metadata size limit.

As noted in Section 4.5, we use 0P_RETURN unspendable scripts to embed metadata
in Bitcoin transactions. Since Bitcoin limits the size of such metadata to 80 bytes,
this might not be enough to store the data needed by platforms. To overcome
this issue, one can use distributed hash tables (like, for intance, Kademlia [70])
maintained by meta-nodes. In this way, instead of storing full message data in
the blockchain, OP_RETURN scripts would contain only the corresponding message
digests. The unique identifier of the Bitcoin transaction can be used as the key to
retrieve the full message data from the hash table.
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Chapter 5

Related work

In this chapter, we briefly expose some related work, presenting the state-of-the-
art in the research field of behavioural contracts. In detail, we first present the
research direction on formal models and architectures for contract-oriented com-
puting, and then we examine some studies and implementations concerning the
execution of contracts in decentralized environments, in particular referring to

cryptocurrencies like Bitcoin and Ethereum.

Contract models and architectures. Our middleware builds upon CO, [29, 27],
a core calculus for contract-oriented computing; in particular, the middleware im-
plements all the main primitives of CO, (tell, send, receive), and it introduces

new concepts, like e.g. the accept primitive, time constraints, and reputation.

From the theoretical viewpoint, the idea of constraint-based interactions has been
investigated in other process calculi, e.g. Concurrent Constraint Programming
(CCP [81]), and cc-pi [42], albeit the kind of interactions they induce is quite
different from ours. In CCP, there is a global constraint store through which pro-

cesses can interact by telling /asking constraints.

In cc-pi, interaction is a mix of name communication a la w-calculus [71] and
tell a la CCP (which is used to put constraints on names). E.g., Z(z) and y(w)
can synchronise iff the constraint store entails + = y; when this happens, the
equality z = w is added to the store, unless making it inconsistent. In cc-pi

consistency plays a crucial role: tells restricts the future interactions with other
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processes, since adding constraints can lead to more inconsistencies; by contrast,
in our middleware telling a contract enables interaction with other services, so

consistency is immaterial.

The notion of time in behavioural contracts has been studied in [39], which ad-
dresses a timed extension of multi-party asynchronous session types [61]; how-
ever, the goals of [39] are quite different from ours. The approach pursued in [39]
is top-down: a global type (specifying the overall communication protocol of a set
of services, and satisfying some safety properties, e.g. deadlock-freedom) is pro-
jected into a set of local types; then, a composition of services preserves the prop-
erties of the global type if each service type-checks against the associated local
type. Our middleware fosters a different approach to service composition: a dis-
tributed application is built bottom-up, by advertising contracts to delegate work
to external (unknown and untrusted) services. Both our approach and [39, 75]
use runtime monitoring to detect contract violations and assign the blame; ad-
ditionally, in our middleware these data are exploited as an automatic source of
information for the reputation system. Another formalism for communication
protocols with time constraints is proposed in [56], where live sequence charts
are extended with a global clock. The approaches in [39, 56] cannot be directly
used in our middleware, because they do not provide algorithms to decide com-

pliance, or to construct a contract compliant with a given one.

From the application viewpoint, several works have investigated the problem
of service selection in open dynamic environments [8, 72, 90, 91]. This problem
consists in matching client requests with service offers, in a way that, among
the services respecting the given functional constraints, the one which maximises
some non-functional constraints is selected. These non-functional constraints are
often based on quality of service (QoS) metrics, e.g. cost, reputation, guaranteed
throughput or availability, etc. The selection mechanism featured by our middle-
ware does not search for the “best” contract compliant with a given one (actually,
typical compliance relations in behavioural contracts are qualitative, rather than
quantitative); the only QoS parameter we take into account is the reputation of
services (see Section 3.2.2). In [91, 8] clients can require a sequence of tasks to-
gether with a set of non-functional constraints, and the goal is to find an assign-
ment of tasks to services which optimises all the given constraints. There are two

main differences between these approaches and ours. First, unlike behavioural
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contracts, tasks are considered as atomic activities, not requiring any interaction
between clients and services. Second, unlike ours, these approaches do not con-
sider the possibility that a service may not fulfil the required task.

In the work [72], a service selection mechanism is implemented where functional
constraints can be required in addition to QoS constraints: the first are described
in a web service ontology, while the others are defined as requested and offered
ranges of basic QoS attributes. A runtime monitor and a reputation system are
also implemented, which, similarly to ours, help to marginalise those services
which do not respect the advertised QoS constraints. Some kinds of QoS con-
straints cannot be verified by the service broker, so their verification is delegated
to clients. This can be easily exploited by malicious participants to carry on slan-
dering attacks to the reputation system [59]: an attacker could destroy another par-
ticipant’s reputation by involving it in many sessions, and each time declare that
the required QoS constraints have been violated. In our middleware there is no
need to assume participants trusted, as the verification of contracts is delegated
to the middleware itself and to trusted third parties.

Smart contracts and blockchains. The idea of using Bitcoin and its blockchain
as the basis for decentralized contracts has been explored by several recent works
(see Section VIII in [40] for a brief survey). For instance, [7, 34] design protocols
for secure multiparty computations and fair lotteries, and [53] proposes a pro-
tocol for Byzantine agreement which is secure when the hashing power of the

adversary is strictly less than that of the honest participants.

On a more practical side, Blockstore [36] is a key-value database with get/set
operations; Namecoin [74] is a censorship-resistant domain registration mecha-
nism; CounterParty [50] extends Bitcoin with advanced financial operations (like
e.g., creation of virtual assets, payment of dividends, efc.), by embedding its own
messages in Bitcoin transactions. Typecoin [49] implements a peer-to-peer affine
commitment on Bitcoin, by combining properties of the affine logic and the proof-
carrying authorization, while Catena [87] proposes a protocol to efficiently agree
on a log of application-specific statements managed by an adversarial server; in
particular, Catena was developed concurrently and indipendently of our work

and shares the same underlying insight as ours, although intended for a specific
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domain of use.

Contracts on Ethereum. Ethereum [43] is a new cryptocurrency similar to Bit-
coin, that allows for developing general-purpose contracts, interpreted by a decen-
tralized virtual machine which runs over Ethereum nodes. In what follows we

briefly describe the core feature of this platform.

Ethereum contracts are scripts, as in Bitcoin, but differently from the latter, the
scripting languages of Ethereum is Turing-complete. Ethereum scripts are run
by Ethereum nodes upon payment of a reward from the client. When a node
completes the execution of a contract, it can claim the reward by broadcasting a
transaction with the computed result. Before adding the claimant transaction to
the blockchain, and consequently assigning him the reward, the other miners ex-
ecute a special part of the contract script to verify the correctness of the provided
result. Similarly to Bitcoin, invalid transactions (i.e., where the result of the com-
putation does not pass the verification script) can be ignored. In this way, miners
are incentivized to verify transactions because, in case one of their transactions in
a mined block is invalidated, they would lose the associated fee. Therefore, the
correct result of a computation is the one agreed upon by the majority of miners.

However, implementing contracts over Ethereum has several issues. First, pro-
grammers must write the whole program in one of the Ethereum languages (Ser-
pent or Solidity), without exploiting existing legacy software or external non-
Ethereum services (unless using a trusted oracle, or a compiler from other general
purpose languages / DSLs, which at the time of this writing is far to be released).
This constraint is required because, while computations carried on by a proper
Ethereum virtual machine guarantee to produce correct results, this cannot be
ensured for other kinds of computation. A further practical limitation is that,
after a contract is deployed on the Ethereum network, it cannot be modified any-
more; the only way to update it is to broadcast a new contract with the modified
script, but the old version can still be used!.

Besides these practical issues, contracts running over Ethereum are subject to the
attacks described in [69]. These attacks exploit the fact that Ethereum miners suf-
fer from the so-called verifier’s dilemma, according to which they cannot rationally

'However, there exist some techniques to mark a contract as no longer callable.
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decide whether to verify transactions or not. Whatever choice they make, hon-
est miners are vulnerable of an attack. If a miner honestly follows the protocol
by validating all transactions, then an adversary can impersonate a claimant and
spam nodes with resource-intensive transactions. Since honest nodes will spend
a significant amount of time to verify them, the adversary gains an advantage in
the race for mining the next block and obtaining the associated fee. Otherwise, if
miners choose to disobey the protocol and skip verification of resource-intensive
transactions, then an adversary can claim the reward of a contract by broadcast-
ing a transaction with a meaningless result. Since this transaction will not be ver-
ified, the adversary obtains the reward, and in conclusion the client has wasted

his money for an incorrect answer.
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Chapter 6
Conclusions

In Chapter 3, we have explored a new application domain for behavioural con-
tracts, i.e. their use as interaction protocols in MOMs. In particular, we have
developed a middleware where services can advertise contracts (in the form of
timed session types, TSTs), and interact through sessions, which are created only
between services with compliant contracts. To implement the middleware prim-
itives, we have exploited the theory of TSTs in Section 2.1: in particular, a decid-
able notion of compliance between TSTs, a decidable procedure to detect when a
TST admits a compliant one (and, if so, to construct it), and a decidable runtime

monitoring.

We have validated our middleware through a series of experiments. The scalabil-
ity tests (Section 3.4.1) seem to suggest that the performance of middleware is ac-
ceptable for up to 100K latent contracts. However, we feel that good performance
can be obtained also for larger contract stores, for two reasons. First, in our ex-
periments we have considered the pessimistic scenario where all latent contracts
in the store are potentially compliant with a newly advertised one. Second, the
current prototype of the middleware is sequential and centralised: parallelising
the instances of the compliance checker, or distributing those of the middleware,
would result in a performance boost. The experiments about the reputation sys-
tem (Section 3.4.2) show that the middleware can relieve developers from deal-
ing with misbehaviour of external services, and still obtain efficient distributed
applications, which dynamically reconfigure themselves to foster the interaction

among trustworthy services.
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Although in this thesis we have focused on TSTs, the middleware only makes
mild assumptions about the nature of contracts, e.g., that their observable actions
are send and receive, and that they feature some notion of compliance with a
sound (but not necessarily complete) verification algorithm. Hence, with minor
efforts it would be possible to extend the middleware to support other contract
models. For instance, communicating timed automata [38] (which are timed au-
tomata with unbounded communication channels) would allow for multi-party
sessions, while session types with assertions [37], would allow for an explicit
specification of the constraints among the values exchanged in sessions.

Besides the issues related to the expressiveness of contracts and to the scalability
of their primitives (e.g., service binding and composition, runtime monitoring,
etc.), we believe that also security issues should be taken into account: indeed,
attackers could make a service sanctioned by exploiting discrepancies between
its contracts and its actual behaviour. These mismatches are not always easy to
spot; analysis techniques are therefore needed to ensure that a service will not be
susceptible to this kind of attacks.

To cope with the limits of a centralized middleware, in Chapter 4 we have pre-
sented a protocol to reach consensus on subchains, i.e. chains of platform- depen-
dent messages embedded in the Bitcoin blockchain. Our protocol incentivizes
platform nodes to validate messages before appending them to the subchain,
making economically disadvantageous for an adversary to append inconsistent
messages. To do so, the protocol implements a Proof-of-stake, a mechanism sim-
ilar to the Proof-of-Work of Bitcoin, but where the chances to append a message
to the subchain depend on the money stake of nodes, rather than their computa-
tional power. Summarizing, platform nodes vote the client requests they consider
consistent, by putting a bitcoin deposit on them, and — whenever a message is
published on the Bitcoin blockchain and confirmed by subsequent updates — the
deposit is paid back to the voters along with the fee generated by the client. The
results of the security analysis of our protocol are deepened in Section 4.4.2. In
particular, Theorem 4.4.1 essentially fixes a lower bound — which depends on
protocol parameters — to the stake ratio (i.e., the percentage of stake over the to-
tal of the network) that an adversary should own to get an economical advantage
for voting inconsistent updates.
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Ensuring the reliability and consistency of subchain embedded in the Bitcoin
blockchain makes it possible to extend the model of contracts supported by Bit-
coin itself. In particular, contract-oriented applications and services can exploit
subchains to store tamper-proof records of their contract execution, thus avoid-
ing the need to trust a single entity (e.g., a private server) that assumes the role
of the middleware. Although in Chapter 4 we only show how to encode LTSs
in the blockchain, the idea can be easily extended to more general models of be-

havioural contracts, as briefly discussed in the following section.

6.1 Future work

The work presented in this dissertation paves the way for many possible im-
provements and new research directions. A first goal would be that of imple-
menting a decentralized version of the middleware in Bitcoin, exploiting our pro-
tocol for consensus on subchains. We already developed a preliminary prototype
of it! (with a small set of features), but it needs to be extended and tested in a real-
world scenario. Observe that, in the decentralized settings, some middleware
primitives can be directly specified in the contracts (e.g., the accept, the send,
or the receive), since contract violations are monitored by the whole network of
meta-nodes (strong decentralization). However, the middleware can anyway ex-
ist as a framework to facilitate this process. For example, it can use the blockchain
only as a (public and immutable) storage of the traces generated by the contracts

execution (weak decentralization).

These implementations both require an important re-organization of the archi-
tecture of the middleware, and an in-depth analysis of the new possible critical
issues. In particular, the strong approach might have a heavy disadvantage in
terms of performance, since a large amount of nodes have to execute the same
computations to validate the new contract state (this is, essentially, the behaviour
of Ethereum and of the native limited contract system of Bitcoin). Therefore, a
challenging task could be that of finding suitable technical solutions to overcome
these scalability limits.

A second interesting open problem concerns the role of the arbiter in our Proof-of-

'http://contractvm.github.io/
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Stake protocol. We said in previous Section 4.3.3 that, in the protocol, the arbiter
does not play the role of a trusted authority. This is a crucial fineness: if the arbiter
was intended to be a trusted authority, it would partecipate in the consensus
mechanism (i.e., voting and validating update requests). Conversely, the arbiter
is only required to sign voted updates, but does not participate in the protocol.
Since the request pool is public, nodes can verify that the arbiter actually signs all

and only the voted updates, thus detecting any misbehaviour.

We have assumed the arbiter to be honest, to simplify our presentation. However,
if the arbiter stops behaving honestly, nodes can easily fork the subchain and elect
a new arbiter, but this could cause a significant overhead in the execution of the
protocol, opening the way to potential Denial-of-Service attacks. For this reasons,
we are currently working on an extension of the protocol in which the arbiter can
be safely and quickly replaced in case of misbehaviours. The extension relies on
some properties of the Elliptic-curve Cryptography (ECC), and its intuition consists
essentially of rotating the key used by the arbiter to sign transactions, through
a secret sharing mechanism that involves the nodes of the network. Of course,
since this extension introduces additional points of vulnerability in the protocol,

a wider security analysis needs to be done.

6.1.1 Contracts over subchains

The model of subchains defined in Section 4.1, based on LTSs, can be easily ex-
tended to model the computations of advanced contracts over the Bitcoin block-
chain. A platform for contracts could exploit our model to represent the state of a
contract as the state of the subchain, and model its possible state updates through
the transition relation.

Implementing a platform for behavioural contracts would require a language for
expressing them. To bridge this language with our abstract model, one can pro-
vide the language with an operational semantics, giving rise to an LTS describing
the computations. Note that our assumption to model computations as a single
LTS does not reduce the generality of the system, since a set of LTSs, each one
modelling a contract, can be encoded in one LTS as their parallel composition. If

the language is Turing-complete, an additional problem we would have to face is
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the potential non-termination. This issue has been dealt with in different ways by
different platforms. E.g., the approach followed by Ethereum [43] is to impose a
fee for each instruction executed by its virtual machine. If the fee does not cover

the cost of the whole computation, the execution terminates.

A usable platform must also allow to create new contracts at run-time. Since in
our model the LTS representing possible computations is fixed, we would need a
mechanism to “extend” it. To handle the publication of new contracts, we could
modify the protocol so that UR may contain its code, and the unique identifier
of the transaction also identifies the contract. In this extended model, update
requests would also contain the identifier of the contract to be updated, so that

meta-nodes can execute the corresponding code.
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