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Abstract

The measurement of Bs-meson branching fractions is a fundamental tool to probe
physics beyond the Standard Model. Every measurement of untagged time-integrated
Bs-meson branching fractions is model-dependent due to the time dependence of
the experimental efficiency and the large lifetime difference between the two Bs
mass eigenstates. In recent measurements, this effect is bundled in the systematics.
We reappraise the potential numerical impact of this effect – we find it to be
close to 10% in real-life examples where new physics is a correction to dominantly
Standard-Model dynamics. We therefore suggest that this model dependence be
made explicit, i.e. that Bs branching-fraction measurements be presented in a
two-dimensional plane with the parameter that encodes the model dependence.
We show that ignoring this effect can lead to over-constraining the couplings of
new-physics models. In particular, we note that the effect also applies when setting
upper limits on non-observed Bs decay modes, such as those forbidden within the
Standard Model.

Introduction – The branching fractions of Bs mesons belong to the most sensitive probes
of physics beyond the Standard Model (SM) in low-energy, high-intensity experiments.
Their precise measurement is of prime importance to establish possible new physics or else
to constrain models beyond the SM. However, the comparison between measurements and
theory predictions of Bs-meson branching fractions presents some subtleties due to the
sizeable lifetime difference ∆Γs between the two mass eigenstates of the B0

s−B̄0
s system [1].

First of all, in the absence of flavour tagging the measured branching fraction will be the
average of the B0

s and B̄0
s branching fractions, due to their fast mixing. Secondly, since the

theoretically calculated branching fraction is usually defined as the CP average between
the flavour eigenstates before any oscillation, a ∆Γs-dependent correction is required for
it to be compared to the experimental values [1, 2]. Both effects are proportional to a
model- and channel-dependent factor known as Af∆Γ (f denotes the final state). So, in
general, the comparison between measurements and theoretical predictions involves an
assumption about this factor.

A third model-dependent bias is introduced by the non-perfect time acceptance of
real experiments, again because of the sizeable lifetime difference ∆Γs. This effect is
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discussed in [3], where it is quantified as a 1-3% correction.1 In experimental measurements
this effect was first appreciated in Ref. [6] (see also Ref. [4]), and in recent results this
model-dependent correction is accounted for in the systematic error.

Aim of the present paper is twofold: (i) we reappraise the relevance of this effect with
respect to existing literature, as we find an O(7%) correction in a realistic example. We
accordingly advocate that experiments report explicitly the correlation of the result with
the value of the model-dependent parameter (Af∆Γ, or any other parameter correlated
with it), even when the effect is smaller than the statistical uncertainty; (ii) we emphasise
that this effect has implications when setting bounds on new-physics couplings, especially
in decay modes where new physics is not a correction, but the bulk of the dynamics. In
such cases, not properly tracking this effect may even lead to constraints that qualitatively
depart from the dynamics actually at play, as we discuss in a specific example related to
present-day anomalies in flavour data.

We begin by shortly reviewing the basic observation in Ref. [1]. One starts from the
time-dependent untagged decay rate for a Bs into a final state f , defined as [7]

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B̄0

s (t)→ f) = Rf
He
−ΓH t +Rf

Le
−ΓLt =

= (Rf
H +Rf

L)e−Γst

[
cosh

(
yst

τBs

)
+Af∆Γ sinh

(
yst

τBs

)]
, (1)

where, in standard notation [8], Γs = 1/τBs is the average between the widths, ΓH and ΓL,
of the two mass eigenstates in the Bs system. The parameter ys = ΓL−ΓH

2Γs
= ∆Γs

2Γs
quantifies

the generic size of effects due to the Bs-system width difference, ys = 0.061(4) [9]. Finally

Af∆Γ =
Rf

H−R
f
L

Rf
H+Rf

L

depends on the final state and is related to the underlying dynamics,

hence being model-dependent. The time-integrated branching ratio is then obtained by
integrating eq. (1):

Bave(Bs → f) =
1

2

∫ ∞
0

〈Γ(Bs(t)→ f)〉dt = (Rf
H +Rf

L)
τBs

2

[
1 +Af∆Γ ys

1− y2
s

]
. (2)

As noted in Ref. [1], this is different from the theoretical branching fraction, which is
usually calculated as CP -averaged at time zero:

Bth(Bs → f) ≡ τBs

2
〈Γ(Bs(t)→ f)〉|t=0 , (3)

so that even with a perfect experiment, a model-dependent correction is needed to compare
with the time-integrated branching fraction, Bave:

Bth(Bs → f) =

(
1− y2

s

1 +Af∆Γ ys

)
Bave(Bs → f) . (4)

Time-dependent efficiencies – However, experiments are not perfect. In particular, the
integral of the rate over the meson proper time is sampled according to a time-dependent
efficiency. Hence, the experimentally measured branching fraction is actually

Bexp(Bs → f) =
Nobs

Nεexp

=
1

2εexp

∫ ∞
0

ε(t)〈Γ(Bs(t)→ f)〉dt (5)

1The effect is also mentioned in [1] (see sec. V). In the specific context of the B0
s → µ+µ− measure-

ment [4], this effect was subsequently developed in Ref. [5] and by one of the authors.
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where ε(t) is the time-dependent efficiency of the apparatus, εexp is the time-averaged
efficiency with which the observed yield, Nobs, is corrected, and N is the total number of
mesons produced to which the experiment normalises.

Unless ε(t) is perfectly constant, the apparatus efficiency introduces an extra dependence
on Af∆Γ, and the latter makes the measurement of eq. (5) model dependent. This
dependence cannot be factorised and accounted for as in eq. (4) as it rests on the explicit
functional form of the efficiency. Intuitively, the rates of the two physical eigenstates will
not be sampled uniformly, and this will distort the more the physical decay distribution,
the more the two lifetimes differ. As a consequence, the measured admixture is not as
given by the r.h.s. of eq. (2), and the dependence on Af∆Γ in the relation between the
calculated and the measured branching fraction is not as simple as given in eq. (4).

This bias could be simply corrected for if Af∆Γ could be univocally fixed for each given
decay channel f . However Af∆Γ depends on the short-distance structure of the decay,
hence it is in general different in models of new physics with respect to the SM. For
example, within the SM for the Bs → µ+µ− decay one has Aµµ∆Γ = +1, i.e. that the decay
occurs mostly through the heavier Bs eigenstate (RL = 0) [10]. This assumes negligible
CP violation in mixing and in the interference between decays with and without mixing –
an assumption that turns out to be robust. However, the B0

s → µ+µ− decay could receive
contributions beyond the SM from semileptonic scalar and pseudoscalar couplings, whose
current bounds do not actually exclude any Aµµ∆Γ value in the whole range [−1,+1] [10,11].

One clear way to expose the measurements’ dependence on the value of Af∆Γ, and
the ensuing model dependence would be to present measurements as a function of the
assumed value for Af∆Γ. Of course, such practice is not always necessary. Notably, if
the mixture of the heavy and light eigenstates is known for a given final state, the effect
can be properly accounted for in the experimental efficiency. For example, Af∆Γ = 0
for flavour-specific decays. Furthermore, this effect is diluted or absent in decay rates
where the SM contribution is precisely known and dominant. This effect can instead be
prominent in rare decays, whose branching fractions can receive large contributions from
new physics. We now illustrate such effect with a concrete example (see also [3]).

While the functional form of the time-dependent efficiency can be non-trivial, to estimate
the size of the bias one may assume a simple step function ε(t) = θ(t− t0), i.e. ε = 0 for
t < t0 and ε = 1 elsewhere. With this function one gets

1

2

∫ ∞
0

ε(t)〈Γ(Bs(t)→ f)〉dt =

(Rf
H +Rf

L)
τBs

2

e−Γst0

1− y2
s

[
cosh (Γsys t0) (1 +Af∆Γ ys) + sinh (Γsys t0) (ys +Af∆Γ)

]
, (6)

which clearly reduces to eq. (2) for t0 = 0. One can accordingly define the bias δ with
respect to the branching ratio obtained with constant efficiency as the function

δ(Af∆Γ, ys, εexp) ≡ Bexp(Bs → f)

Bave(Bs → f)
=
e−Γst0

εexp

(
cosh (Γsys t0) + sinh (Γsys t0)

ys +Af∆Γ

1 +Af∆Γ ys

)
,

where the efficiency correction appears explicitly as in eq. (5). This efficiency is estimated
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Figure 1: The bias δ as a function of the assumed value for Af∆Γ, Aa, for a decay with Af∆Γ = 1.
The efficiency function is modelled as a step function θ(t− t0), with two realistic t0 values.

by making a definite assumption about Af∆Γ, namely as

εexp(Aa) =

∫∞
0
ε(t)〈Γa(Bs(t)→ f〉dt∫∞

0
〈Γa(Bs(t)→ f〉dt

(7)

where Γa is the time-dependent width under the assumption Af∆Γ = Aa. Here we posit
that the experimenter can estimate ε(t) with good accuracy from auxiliary measurements,
typically from control channels, or else from Monte Carlo simulations. The bias will be
therefore a function of Aa:

δ(Af∆Γ, ys,Aa) =
cosh (Γsys t0) + sinh (Γsys t0)

ys+Af
∆Γ

1+Af
∆Γ ys

cosh (Γsys t0) + sinh (Γsys t0) ys+Aa

1+Aa ys

(8)

which is by construction equal to 1 when the assumed value Aa for Af∆Γ coincides with
the physical one. Hence in practice εexp has to be calculated for each value of Aa, so that
for the same experimental event yield the branching fraction can be properly estimated
for an assumed model. We illustrate the numerical impact of the bias δ in Fig. 1. Here
δ is shown as a function of Aa, under the hypothesis that the physical Af∆Γ = 1, and
for two realistic values of t0. In this example the bias amounts to overestimating the
measured branching fraction with respect to the real one: as soon as the assumed value of
Af∆Γ, Aa, departs from the physical value, the bias δ is larger than 1. This is as expected.
In fact, with the considered efficiency function, estimating εexp with Aa < +1 means
that one is undersampling the heavy eigenstate, the only one actually contributing if the
physical Af∆Γ = +1. As a consequence, εexp in eq. (5) is smaller than the correct value

that one would obtain for the physical Af∆Γ = +1. As the figure shows, for values as low
as t0 = 0.5τBs the bias can be as large as ∼ 7%.

Conversely, if one assumes that the inefficiency is for high proper-time values,
ε(t) = θ(t0 − t), then the bias will be in the opposite direction. In general, in real
experiments one can expect inefficiencies both at low and at high proper-time values, so
that the convolution with the expected time distribution will be performed by means of
Monte Carlo simulations.
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Figure 2: LHCb measurement of the B0
s → µ+µ− branching fraction vs. Aµµ∆Γ (blue squares) [16].

The respective SM predictions are also reported (red circle). Black ellipses show 1- and 2-σ
contours of a possible future measurement of the two observables simultaneously (see text).

Current status – In the majority of recent Bs branching fraction measurements, the
effect of the possible model dependence generated by a time-dependent efficiency has
been treated as a systematic uncertainty, e.g. see Refs. [12–15]. On the other hand,
only in very few examples is the effect treated as full-fledged dependence – which is
what we advocate. An example of such treatment is the latest LHCb measurement of
B(B0

s → µ+µ−) [16], where the branching fraction is quoted for the SM assumption
(Af∆Γ = 1), and corrections for Af∆Γ = {0,−1} are reported. The size of the variation is
respectively +4.6% (Af∆Γ = 0) and +10.9% (Af∆Γ = −1). This is displayed in Fig. 2 where
the three values are shown in the two-dimensional plane of branching fraction and Af∆Γ,
together with the SM prediction [17]. We also note that Ref. [16] reports a measurement of
the B0

s → µ+µ− effective lifetime (τµµ) [10,18,19], which is in turn directly sensitive to Aµµ∆Γ

itself. Therefore the two observables could already be represented in a two-dimensional
plane, although the current τµµ measurement would translate into Aµµ∆Γ = 8± 11, whose
central value lies in the non-physical region but with large uncertainty. An illustrative
example of such a correlated measurement is again in Fig. 2. In particular, the lines
labelled “future contours” represent 1- and 2-σ contours assuming the current central
value of the branching fraction with Aµµ∆Γ = 1, and a tenfold smaller uncertainties with
respect to the LHCb measurement [16].

Biases on the Wilson coefficients – Neglecting the discussed variation can lead to an
over-constraining of the theory parameter space, notably in models with sizeable scalar
or pseudo-scalar contributions (with arbitrary phases), as illustrated by the following
example. Let us consider a shift to the Wilson coefficients CS,P of the operators

OS =
e2

16π2
(s̄PRb)(¯̀̀ ) , OP =

e2

16π2
(s̄PRb)(¯̀γ5`) , (9)

that can give sizeable contributions to the B0
s → µ+µ− rate. Let us assume they fulfil

the constraint CS = −CP , as generally expected for new physics above the electroweak
symmetry-breaking scale [20]. The B(B0

s → µ+µ−) prediction as a function of CS, and
corrected by the factor (1 + Af∆Γ ys)/(1 − y2

s) (see eq. (4)), is displayed in Fig. 3 for
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Figure 3: Red lines: theory predictions as a function of a scalar Wilson-coefficient shift CS = −CP ,
for Aµµ∆Γ = +1 (dashed) and respectively A∆Γ(CS) (solid). Horizontal bands: experimental
ranges for Aµµ∆Γ = +1 (yellow dashed), and respectively Aµµ∆Γ(C̄S), where C̄S corresponds to the
filled dot in the figure. See text for more details.

two choices of Aµµ∆Γ. The first choice is Aµµ∆Γ = +1, shown as a red dashed curve. The
latest LHCb measurement corresponding to this value of Aµµ∆Γ is shown as a yellow
dashed horizontal band. The upper line of this band and the red dashed curve intersect at
CS ' −0.25 which may be taken as a 1σ bound on CS. However, Aµµ∆Γ = Aµµ∆Γ(CS) [10]: the
theory prediction corrected for this dependence, again through the (1+Af∆Γ(CS) ys)/(1−y2

s)
factor, is displayed as a solid red curve. Concurrently, also the experimental measurement
is a function of Aµµ∆Γ as we have discussed. In the figure we show as a solid green band the
measurement for Aµµ∆Γ = −0.56, which corresponds to CS ' −0.28, the value at which the
theory prediction and the experimental central value +1σ intersect. It is this CS value
that should be taken as the correct 1σ bound on CS. We see that the difference between
the two bounds, obtained respectively for Aµµ∆Γ = +1 and the correct Aµµ∆Γ, is of O(10%).

Of course, the size of the effect just described will depend on the relative importance of
scalar operators in the process being constrained. While intuitively the size . O(10%)
of the experimental bias – concretely, the variation of the branching-ratio measurement
with Af∆Γ – is expected to provide an upper bound on the size of the corresponding bias
on Wilson coefficients, we would like to put forward an example where the latter bias
turns out to be larger. This example is relevant in view of the existing discrepancies
in flavour physics, and underlines the necessity of precisely tracking the theory that is
being constrained (hence assumed), as soon as the measured Af∆Γ in a given decay mode
Bs → f should differ from the assumed one. This in turn highlights the importance of
effective-lifetime measurements, pointed out in [10,18,19], that are a probe of Af∆Γ. Let
us consider the effective-theory description emerging from present-day discrepancies in
b→ sµµ data, in particular by the lepton universality violation (LUV) tests RK and RK∗

measurements [21, 22]. Among the preferred explanations in terms of shifts to the Wilson
coefficients of the b → s effective Hamiltonian, an important one is the scenario with
opposite contributions to the operatorsO9 ∝ (s̄γαLb) (µ̄γαµ) andO10 ∝ (s̄γαLb) (µ̄γαγ

5µ). In
particular a shift δCµ

9 = −δCµ
10 ' −13%|CSM

10 | ≈ −0.5 to the Cµ
9(10),SM Wilson coefficients

is preferred [23, 24]. The structure resulting from such shifts, (s̄γαLb) (µ̄γαLµ), has a
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(V − A) × (V − A) form and as such is very suggestive from the point of view of the
ultraviolet dynamics, e.g. it can be straightforwardly rewritten in terms of SU(2)L-
invariant fields [20, 25]. Since the effective scale of such structure lies typically above
the electroweak scale, the fermion fields involved will in general not be aligned with
the mass basis. Hence, below the electroweak symmetry-breaking scale, such structure,
introduced to account for LUV, will also generate lepton flavour violating dynamics,
whose size is related to the measured amount of LUV [26]. From this argument, the
analogous (V −A)× (V −A) operator (s̄γαLb) (¯̀γαL`

′) would contribute to processes such
as Bs → `−`′+, if a similar structure with the appropriate flavour indices is also favoured
to explain LUV. Such argument does not forbid contributions from scalar operators
of comparable size. Actually, constraints on scalar contributions (for recent analyses
see [27,28]) are substantially weakened to the extent that a shift to C10 is at play, as we
discuss next.2 In any of the Bs → `−`′+ decays, contributions from the Wilson coefficients
of the operators

O``′9 ≡ e2

16π2 (s̄γαLb) (¯̀γα`
′) , O``′10 ≡ e2

16π2 (s̄γαLb) (¯̀γαγ5`
′) ,

O``′S ≡ mb
e2

16π2 (s̄PRb) (¯̀̀ ′) , O``′P ≡ mb
e2

16π2 (s̄PRb) (¯̀γ5`
′) ,

(10)

are of the form (see e.g. [29])

B(Bs → `+
1 `
−
2 ) ∝ (1− m̂2)|FP + M̂C10|2 + (1− M̂2)|FS − m̂C9|2 , (11)

where m̂ ≡ m̂`2 − m̂`1 , M̂ ≡ m̂`1 + m̂`2 , with hats denoting that the given mass is
normalized by MBs , and where FS,P ≈MBsCS,P . A sizeable departure in Af∆Γ from unity
would signal accordingly sizeable contributions from CS,P . In particular, CP could partly
cancel (depending on its phase, which is unconstrained) the contribution from C10 so
that the measured signal would actually be due to CS dominantly, and this is the Wilson
coefficient that the measurement would constrain in reality. In these circumstances, if one
insisted with the assumption Af∆Γ = +1, one would, instead, interpret the branching-ratio
measurement as a constraint to C10, under the hypothesis that scalar contributions are
negligible. So, the combination of Wilson coefficients that is actually constrained by a
Bs → f decay measurement needs be carefully tracked as soon as Af∆Γ is measured and
departs from unity.3

In short, it will be important to present future experimental measurements in a two-
dimensional plane of the branching fraction and either Af∆Γ or another observables
correlated with it, such as the effective lifetime. A quite useful example is Ref. [30], where
the limit is quoted for Af∆Γ = {−1, 1}, thus allowing a handy extrapolation to any scenario
with shifts to the operators in the second line of eq. (10).

Other considerations – It is clear that if time information is available and the statistics
are sufficient to perform a time-dependent analysis, the effect described in this paper is
no longer present as the time-dependent efficiency can be convoluted with the correct
time distribution. Secondly, this effect is even more relevant when combining different

2 Sensitivity of rare decays to scalar operators is warranted by the fact that the fermion mass necessary
to perform the chiral flip may actually be a large mass, at variance with the SM case. Sizeable scalar
contributions are accordingly ubiquitous as soon as the bosonic sector is enlarged with respect to the
sheer SM content.

3We emphasise that our argument holds for LU and lepton-flavour conserving decays alike.
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experimental measurements, as different apparatuses can have a different time-dependent
efficiency and thus a different dependence on Af∆Γ. In third place, since this effect depends
experimentally on the apparatus efficiency and not on the yield, it is also present when
setting limits on branching fractions; for example, it does apply to limits on channels
forbidden in the SM and, as we argued, it may be a large effect there.

Finally, we note that this effect was presented here for the case of Bs mesons but in fact
it is more general. The measurement of a branching fraction of a meson that oscillates is
model dependent if

1. the experiment is realistic, i.e. ε(t) is not constant over the whole proper-time range;

2. the final state f is available to both mass eigenstates;

3. the difference in lifetime between the mass eigenstates is not negligible with respect
to the meson average lifetime.

In practice the last condition is realized only for Bs mesons so far. In fact, while for Bs

mesons ∆Γs is sizeable compared to Γs, this is not true for Bd or D0 mesons. In the other
relevant case of K0 mesons, the difference in lifetimes between KS and KL is so large that
branching fractions are directly reported for the two mass eigenstates rather than for the
flavour ones. If one had to report branching fractions for the K0 and K̄0 the effect here
described would be maximal.

Summary – Every measurement of a Bs untagged time-integrated branching fraction is
model dependent due to the time dependence of the experimental efficiency [1,3]. We show
with two real-life examples that this dependence can be as large as O(10%), and argue
that it needs be properly tracked. We accordingly suggest that Bs branching-fraction
measurements be presented in a two-dimensional plane with the parameter Af∆Γ or another
observable correlated with it, even in the case the latter would not be yet measurable.
We also argue that theoretical predictions within a given model should be compared with
the measured value of the branching fraction corresponding to the Af∆Γ value calculated
assuming the same model. These practices should also be carried out for upper limits
on the branching fraction of non-observed channels, notably those forbidden in the SM,
where new physics is dominant, rather than just a correction. Ignoring this effect may
lead to over-constraining new-physics couplings, or even to constraints that qualitatively
depart from the dynamics actually at play.
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