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Bayesian Checking of The Second Levels
of Hierarchical Models
M. J. Bayarri and M. E. Castellanos

Abstract. Hierarchical models are increasingly used in many applications.
Along with this increased use comes a desire to investigate whether the model
is compatible with the observed data. Bayesian methods are well suited to
eliminate the many (nuisance) parameters in these complicated models; in
this paper we investigate Bayesian methods for model checking. Since we
contemplate model checking as a preliminary, exploratory analysis, we con-
centrate on objective Bayesian methods in which careful specification of an
informative prior distribution is avoided. Numerous examples are given and
different proposals are investigated and critically compared.

Key words and phrases: Model checking, model criticism, objective
Bayesian methods, p-values, conflict, empirical-Bayes, posterior predictive,
partial posterior predictive.

1. INTRODUCTION

With the availability of powerful numerical compu-
tations, use of hierarchical (or multilevel, or random
effects) models has become very common in applica-
tions. They nicely generalize and extend standard one-
level models to complicated situations, where these
simple models would not apply. With their widespread
use comes along an increased need to check the ad-
equacy of such models to the observed data. Recent
Bayesian methods (Bayarri and Berger, 1999, 2000)
have shown considerable promise in checking one-
level models, especially in nonstandard situations in
which parameter-free testing statistics are not known.
In this paper we show how these methods can be ex-
tended to checking hierarchical models. We also re-
view state-of-the-art Bayesian proposals for checking
hierarchical models and critically compare them.

We approach model checking as a preliminary analy-
sis in that if the data are compatible with the assumed
model, then the full (and difficult) Bayesian process of
model elaboration and model selection (or averaging)
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can be avoided. The role of Bayesian model checking
versus model selection has been discussed, for exam-
ple, in Bayarri and Berger (1999, 2000) and O’Hagan
(2003) and we will not repeat it here.

In general, in a parametric model checking scenario,
we relate observables X with parameters θ through a
parametric model X | θ ∼ f (x | θ). We then observe
data xobs and wish to assess whether xobs are compati-
ble with the assumed (null) model f (x | θ). Most of the
existing methods for model checking (both Bayesian
and frequentist) can be seen to correspond to particular
choices of:

1. A diagnostic statistic T , to quantify incompatibility
of the model with the observed data through tobs =
T (xobs).

2. A completely specified distribution for the statistic,
h(t), under the null model, in which to locate the
observed tobs.

3. A way to measure conflict between the observed
statistic, and the null distribution, h(t), for T . The
most popular measures are tail areas (p-values) and
relative height of the density h(t) at tobs.

In this paper, we concentrate on the optimal choice
in item 2, which basically reduces to choice of meth-
ods to eliminate the nuisance parameters θ from the
null model. Our recommendations then apply to any
choices in 1 and 3. [We abuse notation and use the
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same h(·) to indicate both the completely specified dis-
tribution for X, after elimination of θ , and the corre-
sponding distribution for T .] Of course, choice of 1 is
very important; as a matter of fact, in some scenarios a
“good” T can be chosen which is ancillary or nearly so,
thus making choice of 2 nearly irrelevant. So our work
will be most relevant for complicated scenarios when
such optimal T ’s are not known, or extremely difficult
to implement (for an example of these, see Robins,
van der Vaart and Ventura, 2000). In these situations,
T is often chosen casually, based on intuitive consid-
erations, and hence we concentrate on these choices
(with no implications whatsoever that these are our rec-
ommended choices for T ; we simply do not address
choice of T in this paper). Also, without loss of gener-
ality, we can assume that T has been defined such that
the larger T is, the more incompatible data are with
the assumed model. As measures of conflict in item 3
above, we explore the two best known measures of sur-
prise, namely the p-value and the relative predictive
surprise, RPS (see Berger, 1985, Section 4.7.2) used
(with variants) by many authors. These two measures
are defined as

p = Prh(·)(t (X) ≥ t (xobs)
)
,(1.1)

RPS = h(t (xobs))

supt h(t)
.(1.2)

Note that small values of (1.1) and (1.2) denote incom-
patibility.

Frequentist and Bayesian choices for h(·) are dis-
cussed at length in Bayarri and Berger (2000), and we
limit ourselves here to an extremely brief (and incom-
plete) mention of some of them. The natural Bayesian
choice for h(·) is the prior predictive distribution,
in which the parameters get naturally integrated out
with respect to the prior distribution. (Box, 1980 pio-
neered use of p-values computed in the prior predictive
for Bayesian model criticism.) However, this requires
a fairly informative prior distribution (see O’Hagan,
2003 for a discussion) which might not be desirable
for model checking for two reasons: (i) we might wish
to avoid the careful (and difficult) prior quantification
in these earlier stages of the analysis, since the model
might well not be appropriate and hence the effort is
wasted; (ii) most importantly, model checking with
informative priors cannot separate inadequacy of the
prior from inadequacy of the model.

In the sequel we will concentrate on objective
Bayesian methods for model checking. We use the term
objective to refer to Bayesian methods in which the

priors are chosen by some default, agreed upon rules
(objective priors) rather than reflecting genuine (sub-
jective) prior information. This term is frequent among
Bayesians (see, e.g., Berger, 2003, 2006) but its use is
not without controversy. Objective priors are usually
improper. Note that this impropriety makes the prior
predictive distribution undefined and hence not avail-
able for (objective) model checking.

Guttman’s (1967) and Rubin’s (1984) choice for h(·)
is the posterior predictive distribution, resulting from
integrating θ out with respect to the posterior distribu-
tion instead of the prior. This allows use of improper
priors, and hence of objective model checking. This
proposal is very easy to implement by Markov chain
Monte Carlo (MCMC) methods, and hence has become
fairly popular in Bayesian model checking. However,
its double use of the data can result in an extreme con-
servatism of the resulting p-values, unless the check-
ing statistic is fairly ancillary (in which case the way
to deal with the parameters is basically irrelevant).
This conservatism is shown to hold asymptotically in
Robins, van der Vaart and Ventura (2000), and for finite
n and several scenarios in, for example, Bayarri and
Berger (1999, 2000), Bayarri and Castellanos (2001)
and Bayarri and Morales (2003). Miscalibration of pos-
terior predictive measures is also documented in Dahl
(2006), Draper and Krnjajić (2006) and Hjort, Dahl and
Steinbakk (2006); the double use of the data was noted
in the discussion of Gelman, Meng and Stern (2003)
(see, in particular, Draper, 1996). This is not meant in
any way to imply that posterior predictive measures are
without merit [see Gelman (2003) for a recent exposi-
tion of their advantages and interpretation], only that
they have to be interpreted in a different way: a poste-
rior p-value equal to, say, 0.4 can not naively be inter-
preted as compatibility with the null model in all prob-
lems. A small posterior predictive measure can safely
be interpreted as incompatibility with the null model.

Alternative choices of h(·) for objective model
checking are proposed in Bayarri and Berger (1997,
1999, 2000). Their asymptotic optimality is shown in
Robins, van der Vaart and Ventura (2000). In this pa-
per we derive these marginals for hierarchical model
checking. We also compare the results with those
obtained with posterior predictive distributions and
several “plug-in” choices for h(·). Note that “plug-
in” p-values would be natural choices for frequentist
checking when interpreting the second level of a hierar-
chical model as a “random effect,” so in particular, we
compare some popular choices of Bayesian p-values
with MLE “plug-in” p-values.
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There are not many proposals for checking the dis-
tributional assumption of “random effects.” Along
with the mentioned methods, we also carefully re-
view state-of-the-art Bayesian proposals, namely (i)
the simulation-based checking of Dey, Gelfand, Swartz
and Vlachos (1998), a computationally intensive
method based on Monte Carlo tests, (ii) the O’Hagan
method (O’Hagan, 2003) for checking graphical mod-
els, and (iii) the conflict p-values of Marshall and
Spiegelhalter (2003), close in spirit to cross-validation
methods. We critically compare these methods in sev-
eral examples. In this paper most attention is devoted
to the checking of a fairly simple normal-normal hier-
archical model so as to best illustrate the different pro-
posals and critically judge their behavior. Of course,
the main ideas also apply to the checking of many other
hierarchical models. In Section 2 we briefly review the
different measures of surprise (MS) that we will derive
and compare. In Section 3 we derive these measures for
the hierarchical normal-normal model. We also study
the sampling distribution of the different p-values,
both when the null model is true, and when the data
come from alternative models. In Section 4 we apply
these measures to a particular simple test which allows
easy and intuitive comparisons of the different propos-
als. In Section 5 we briefly summarize other methods
for Bayesian checking of hierarchical models, namely
those proposed by Dey, Gelfand, Swartz and Vlachos
(1998), O’Hagan (2003) and Marshall and Spiegelhal-
ter (2003), comparing them with the previous propos-
als in an example. Finally, in Section 6 we check the
adequacy of a binomial/beta hierarchical model in a
well-known example using all of the methods reviewed
in the paper.

2. MEASURES OF SURPRISE IN THE CHECKING
OF HIERARCHICAL MODELS

In this paper we will be dealing with the MS de-
fined in (1.1) and (1.2). Their relative merits and draw-
backs are discussed at length in Bayarri and Berger
(1997, 1999) and will not be repeated here. In this sec-
tion we derive these measures in the context of hier-
archical models, and for some specific choices of the
completely specified distribution h(·). We consider the
general two-level model:

Xij | θi
ind.∼ f (xij | θi), i = 1, . . . , I ; j = 1, . . . , ni,

θ | η ind.∼ π(θ | η) =
I∏

i=1

π(θi | η),

η ∼ π(η),

where θ = (θ1, . . . , θI ) and η = (η1, . . . , ηp)

To get a completely specified distribution h(·) for X,
we need to integrate θ out from f (x | θ) with respect to
some completely specified distribution for θ . We next
consider three possibilities that have been proposed in
the literature for such a distribution: empirical Bayes
types (plug-in), posterior distribution, and partial pos-
terior distribution, as they apply in the hierarchical sce-
nario. Notice that, since we will be dealing with im-
proper priors for η, the natural (marginal) prior π(θ) is
also improper and cannot be used for this purpose [it
would produce an improper h(·)].
2.1 Empirical Bayes (Plug-In) Measures

This is the simplest proposal, very intuitive and fre-
quently used in empirical Bayes analysis (see, e.g.,
Carlin and Louis, 2000, Chapter 3). It simply consists
in replacing the unknown η in π(θ | η) by an estimate
(we use the MLE, but moment estimates are often used
as well). In this proposal, θ is integrated out with re-
spect to

πEB(θ) = π(θ | η̂) = π(θ | η = η̂),(2.1)

where η̂ maximizes the integrated likelihood:

f (x | η) =
∫

f (x | θ)π(θ | η) dθ .

The corresponding proposal for a completely specified
h(·) in which to define the MS is

mEB
prior(t) =

∫
f (t | θ)πEB(θ) dθ .(2.2)

The MS pEB
prior and RPSEB

prior are now given by (1.1)
and (1.2), respectively, in which h(·) = mEB

prior(·).
Strictly for comparison purposes, we will later use

another distribution which is also of the empirical
Bayes type; in this new distribution, the empirical
Bayes prior (2.1) gets needlessly (and inappropriately)
updated using again the same data. In this (wrong) pro-
posal, θ gets integrated out with respect to

πEB(θ | xobs) ∝ f (xobs | θ)πEB(θ),(2.3)

resulting in

mEB
post(t) =

∫
f (t | θ)πEB(θ | xobs) dθ .(2.4)

The corresponding MS pEB
post and RPSEB

post are again
computed using (1.1) and (1.2), respectively, with
h(·) = mEB

post(t).
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2.2 Posterior Predictive Measures

This proposal is also intuitive and seems to have a
more Bayesian “flavour” than the plug-in solution pre-
sented in the previous section. This along with its ease
of implementation has made the method a popular one
for objective Bayesian model checking. This popular-
ity makes investigation of its properties all the more
important. The idea is simple: use the posterior to in-
tegrate θ out. Assuming that the posterior is proper
(as usual), this allows model checking when π(η) [and
hence π(θ)] is improper. Thus, the proposal for h(·) is
the posterior predictive distribution

mpost(t | xobs) =
∫

f (t | θ)π(θ | xobs) dθ,(2.5)

where π(θ | xobs) is the marginal from the joint poste-
rior

π(θ ,η | xobs) ∝ f (xobs | θ)π(θ ,η)

= f (xobs | θ)π(η)

I∏
i=1

π(θi | η).

The posterior p-value and the posterior RPS are de-
noted by ppost and RPSpost, and computed from (1.1)
and (1.2), respectively, with h(·) = mpost(·).

It is important to remark that, under regularity condi-
tions, the empirical Bayes posterior πEB(θ | xobs) given
in (2.3) approximates the true posterior π(θ | xobs).
Both are, in fact, asymptotically equivalent. Hence
whatever inadequacy of mEB

post(t) in (2.4) for model
checking is likely to apply as well to the posterior pre-
dictive mpost(t | xobs) in (2.5). We will see demonstra-
tion of the similar behavior of both predictive distrib-
utions in all the examples in this paper. Use of poste-
rior predictive measures was introduced by Guttman
(1967) and Rubin (1984) and extended and formal-
ized in Gelman, Meng and Stern (2003). They are very
easy to compute and they are perhaps the most widely
used checking procedure. We refer to Meng (1994),
Gelman, Meng and Stern (2003) and Gelman (2003)
for extended discussion and motivation.

2.3 Partial Posterior Predictive Measures

Both the empirical Bayes and posterior proposals
presented in Sections 2.1 and 2.2 use the same data
to (i) “train” the improper π(θ) into a proper distribu-
tion to compute a predictive distribution and (ii) com-
pute the observed tobs to be located in this same pre-
dictive through the MS. This can result in a severe
conservatism incapable of detecting clearly inappropri-
ate models. A natural way to avoid this double use of

the data is to use part of the data for “training” and the
rest to compute the MS, as in cross-validation meth-
ods. The proposal in Bayarri and Berger (1999, 2000)
is similar in spirit: since tobs is used to compute the
surprise measures, it uses the information in the data
not in tobs to “train” the improper prior into a proper
one. A natural way to “remove” the information in
tobs = T (X = xobs) from xobs is by conditioning in
the observed value of the statistic T (X); that is, using
the conditional distribution f (xobs | tobs, θ) instead of
f (xobs | θ) to define the likelihood. The resulting pos-
terior distribution for θ (assumed proper) is called a
partial posterior distribution and given by

πppp(θ | xobs \ tobs) ∝ f (xobs | tobs, θ)π(θ)

∝ f (xobs | θ)π(θ)

f (tobs | θ)
.

The corresponding proposal for the completely speci-
fied h(·) is then the partial posterior predictive distri-
bution computed as

mppp(t | xobs \ tobs) =
∫

f (t | θ)π(θ | xobs \ tobs) dθ .

The partial posterior predictive measures of surprise
will be denoted by pppp and RPSppp and, as before,
computed using (1.1) and (1.2), respectively, with
h(·) = mppp(·).

Extensive discussions of the advantages and disad-
vantages of this proposal as compared with the previ-
ous ones can be found in Bayarri and Berger (2000)
and Robins, van der Vaart and Ventura (2000). In this
paper we demonstrate their performance in hierarchi-
cal models.

2.4 Computation of ph(·) and RPSh(·)
Often, for a proposed h(·), the measures ph(·) and

RPSh(·) cannot be computed in closed form. In fact,
h(·) is often not of closed form itself. In these cases
we use Monte Carlo (MC), or Markov Chain Monte
Carlo (MCMC) methods, to (approximately) compute
them. If x1, . . . ,xM is a sample of size M generated
from h(x), then ti = t (xi ) is a sample from h(t), and
we approximate the MS as:

1. p-value

Prh(·)(T ≥ tobs) = # of ti ≥ tobs

M
,

2. relative predictive surprise

RPSh(·) = ĥ(tobs)

supt ĥ(t)
,
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where ĥ(t) is an estimate (for instance a kernel esti-
mate) of the density h at t . When the distribution
of the test statistic T , fT (t | θ), has closed form
expression, one can avoid kernel estimation by us-
ing a “Rao–Blackwellized” Monte Carlo estimate
of h, that is, ĥ(t) = (1/m)

∑m
k=1 fT (t | θk), where

the θk’s are draws from the appropriate distribution
for θ (proper prior, posterior, partial posterior, . . . ).
This is the method used in the examples of this pa-
per and was pointed to us by a referee.

3. CHECKING HIERARCHICAL NORMAL MODELS

Consider the usual normal-normal two-level hierar-
chical (or random effects) model with I groups and ni

observations per group. The I means are assumed to
be exchangeable. For simplicity, we begin by assuming
the variances σ 2

i at the observation level to be known.
The model is

Xij | θi
i∼ N(θi, σ

2
i ),

i = 1, . . . , I, j = 1, . . . , ni,
(3.1)

π(θ | µ,τ) =
I∏

i=1

N(θi | µ,τ 2),

π(µ, τ 2) = π(µ)π(τ 2) ∝ 1

τ
.

In this paper we concentrate on checking the ade-
quacy of the second-level assumptions on the means
θi . Of course, checking the normality of the observa-
tions is also important, but it will not be considered
here. The techniques considered in this paper as ap-
plied to the checking of simple models have been ex-
plored in Bayarri and Castellanos (2001), Castellanos
(1999) and Bayarri and Morales (2003).

Assume that choice of the departure statistic T is
done in a rather casual manner, and that we are espe-
cially concerned about the upper tail of the distribution
of the means. In this situation, a natural choice for T

is

T = max{�X1·, . . . , �XI ·},(3.2)

where �Xi· denotes the usual sample mean for group i.
This T is rather natural, but the analysis would be vir-
tually identical with any other choice. Recall that if the
statistic is fairly ancillary, then the answers from all
methods are going to be rather similar, no matter how
we integrate θ out.

The density of the statistic (3.2) under the (null)
model specified in (3.1) can be computed to be

fT (t | θ) =
I∑

k=1

N

(
t | θk,

σ 2
k

nk

)
(3.3)

·
I∏

l=1
l �=k

F

(
t | θl,

σ 2
l

nl

)
,

where N(t | a, b) and F(t | a, b) denote the density and
distribution function, respectively, of a normal distrib-
ution with mean a and variance b evaluated at t .

We next integrate the unknown θ from (3.3) using
the techniques outlined in Section 2.

3.1 Empirical Bayes Distributions

It is easy to see that the likelihood for µ and τ 2 is
simply

f (x | µ,τ 2) =
I∏

i=1

N

(
x̄i

∣∣∣µ,
σ 2

i

ni

+ τ 2
)
,(3.4)

from which µ̂ and τ̂ 2 can be computed. Then (2.1) is
given by

πEB(θ) = π(θ | µ̂, τ̂ 2) =
I∏

i=1

N(θi | µ̂, τ̂ 2),

which we use to integrate θ out from (3.3). The result-
ing mEB

prior(x) does not have a closed form expression,
but simulations can be obtained by simple MC meth-
ods. For comparison purposes, we will also consider
integrating θ w.r.t. the (inappropriate) empirical Bayes
posterior distribution. The resulting mEB

post(x) is also
trivial to simulate from by using a similar MC scheme.
Details are given in Appendix A.

3.2 Posterior Predictive Distribution

This proposal integrates θ out from (3.3) w.r.t. its
posterior distribution. For the noninformative prior
π(µ, τ 2) ∝ 1/τ , the joint posterior is

πpost(θ,µ, τ 2|xobs)

∝ f (x | θ,µ, τ 2)π(θ | µ,τ 2)π(µ, τ 2)(3.5)

= 1

τ

I∏
i=1

N

(
�xi·

∣∣∣ θi,
σ 2

i

ni

) I∏
i=1

N(θi | µ,τ 2).

To simulate from the resulting posterior predic-
tive distribution mpost(x | xobs), we first simulate from
πpost(θ ,µ, τ 2|xobs) and for each simulated θ , we sim-
ulate x from f (x | θ). To simulate from the joint poste-
rior (3.5) we use an easy Gibbs sampler defined by full
conditionals given in Appendix B.
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3.3 Partial Posterior Distribution

To simulate from the partial posterior predictive dis-
tribution, mppp, we proceed similarly to Section 3.2,
except that simulations for the parameters are gener-
ated from the partial posterior distribution:

πppp(θ ,µ, τ 2 | xobs \ tobs) ∝ πpost(θ ,µ, τ 2 | xobs)

f (tobs | θ)
,

where πpost(θ ,µ, τ 2 | xobs) is given in (3.5). Details are
given in Appendix C.

3.4 Examples

For illustration, we now compute the MS, that is, the
p-values and the relative predictive surprise indexes for
the different proposals. We use a couple of data sets
with five groups and eight observations in each group.
In both of them the null model is not the model gener-
ating the data; in Example 1 one of the means comes
from a different normal with a larger mean, whereas
in Example 2 the means come from a Gamma distri-
bution. Recall that the null model (3.1) had the group
means i.i.d. normal.

EXAMPLE 1. The group means are 1.56, 0.64,
1.98, 0.01, 6.96, simulated from

Xij ∼ N(θi,4), i = 1, . . . ,5, j = 1, . . . ,8,

θi ∼ N(1,1), j = 1, . . . ,4,

θ5 ∼ N(5,1).

EXAMPLE 2. The group means are: 0.75, 0.77,
5.77, 1.86, 0.75, simulated from

Xij ∼ N(θi,4), i = 1, . . . ,5, j = 1, . . . ,8,

θi ∼ Ga(0.6,0.2), i = 1, . . . ,5.

In Table 1 we show all MS for the two examples. The
partial posterior measures clearly detect the inadequate
models, with very small p-values and RPS. On the
other hand, none of the other predictive distributions
work well for this purpose, no matter how we choose
to locate the observed tobs in them (with p-values or

RPS). The prior empirical Bayes are conservative, with
p and RPS an order of magnitude larger than the ones
produced by the partial posterior predictive distribu-
tion. Both the posterior empirical Bayes and predictive
posterior measures are extremely conservative, indicat-
ing almost perfect agreement of the observed data with
the quite obviously wrong null models. Besides, it can
be seen that EB posterior and posterior predictive mea-
sures are very similar to each other. This is not a spe-
cific feature of these examples, but occurs very often.
We further explore it in a rather simple null model in
Section 4.

We next study the behavior of the different p-values,
when considered as a function of X, under the null and
under some alternatives.

3.5 Null Sampling Distribution of the p-Values

In Section 2, we have reviewed four different ways
to define (Bayesian) p-values for model checking. To
compare their performance, we should address the
question of what do we want in a p-value.

For frequentists, one appealing property of p-values
is that, when considered as random variables, p(X)

have U(0,1) distributions under the null models. This
endorses p-values with a very desirable property,
namely having the same interpretation across prob-
lems. Statistical measures that lack a common inter-
pretation across problems are simply not very use-
ful. (For more extensive discussion of this point, see
Robins, van der Vaart and Ventura, 2000.) In fact, the
uniformity of p-values has often been taken as their
“defining” characteristic (Meng, 1994; Rubin, 1996;
De la Horra and Rodriguez-Bernal, 1997; Thompson,
1997; Robins, 1999; Robins, van der Vaart and Ven-
tura, 2000). For most problems, exact uniformity under
the null for all θ cannot be attained for any p-value.
Thus one must weaken the requirement to some ex-
tent. A natural weaker requirement is that a p-value
be U(0,1) under the null in an asymptotic sense (see
Robins, van der Vaart and Ventura, 2000). As an aside,
it should be remarked that uniformity of p-values is

TABLE 1
p-values and RPS for Examples 1 and 2

pEB
prior RPSEB

prior pEB
post RPSEB

post ppost RPSpost pppp RPSppp

Ex. 1 0.13 0.28 0.35 0.93 0.41 0.97 0.01 0.01

Ex. 2 0.12 0.29 0.30 0.88 0.38 0.95 0.01 0.01
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an essential assumption for some analyses based on
p-values, as some popular algorithms for handling
multiplicities (see Cabras, 2004).

It is not obvious that Bayesians should be concerned
with establishing that a p-value is uniform under the
null for all θ . For instance, when the prior is proper, the
prior predictive p-value is U(0,1) under m(x), which
means it is U(0,1) in an average sense over θ . If the
prior distribution is chosen subjectively, a Bayesian
could well argue that this is sufficient. Indeed Meng
(1994) suggested that uniformity under m(x) is a useful
criterion for the evaluation of any proposed (Bayesian)
p-value.

If the prior is improper, however (as it is often the
case in objective Bayes model checking, the subject of
this paper), then this prior predictive uniformity crite-
rion cannot be used. Of course, if a p-value is uniform
under the null in the frequentist sense, then it has the
strong Bayesian property of being marginally U(0,1)

under any proper prior distribution. This explains why
Bayesians should, at least, be highly satisfied if the
frequentist requirement obtains. Perhaps more to the
point, if a proposed p-value is always either conser-
vative or anticonservative in a frequentist sense (see
Robins, van der Vaart and Ventura, 2000, for defini-
tions), then it is likewise guaranteed to be conserva-
tive or anti-conservative in a Bayesian sense, no matter
what the prior. Interesting related discussion concern-
ing the posterior predictive p-value can be found in
Meng (1994), Gelman, Meng and Stern (2003), Rubin
(1996), Gelman (2003), Dahl (2006) and Hjort, Dahl
and Steinbakk (2006). There is a vast literature on other
methods of evaluating p-values. Further discussion and
references can be found in Bayarri and Berger (2000).

Here, we focus on studying the degree to which
the various p-values deviate from uniformity in finite
sample scenarios. For this purpose, we simulate the
null sampling distribution of pEB

prior(X), ppost(X) and
pppp(X), when X comes from a hierarchical normal-
normal model as defined in (3.1). [We do not show the
behavior of pEB

post(X) because it is basically identical to
that of ppost(X).]

In particular, we have simulated 1000 samples from
the following model:

Xij ∼ N(θi,4), i = 1, . . . , I, j = 1, . . . ,8,

θi ∼ N(0,1), i = 1, . . . , I.

We have considered three different “group sizes”: I =
5, 15 and 25. (Since here we are checking the distribu-
tion of the means, the adequate “asymptotics” is in the
number of groups.)

We compute the different p-values for 1000 simu-
lated samples. Figure 1 shows the resulting histograms.
As we can see, pppp(X) has already a (nearly) uni-
form distribution even for I (number of groups) as
small as 5. On the other hand, the distributions of both
pEB

prior(X) and ppost(X) are quite far from uniformity,
the distribution of ppost(X) being the farthest. More-
over, the deviation from the U(0,1) is in the direction
of more conservatism (given little probability to small
p-values, and concentrating around 0.5), as it is the
case in simpler models. Notice that conservatism usu-
ally results in lack of power (and thus in not being able
to detect data coming from wrong models). Particularly
worrisome is the behavior of ppost(X) for small num-
ber of groups. We have also performed similar simu-
lations for larger I ’s (number of groups) to investigate
whether the distribution of these p-values approaches
uniformity as I grows. In Figure 2 we show the his-
tograms for I = 100 and I = 200 of p-values ppost(X)

and pEB
prior(X) [we do not show pppp(X) as it is virtu-

ally uniform]. The distributions of these p-values do
not seem to change much as I is doubled from I = 100
to I = 200, and they are still quite far from uniformity,
still showing a tendency to concentrate around middle
values for p. We do not know whether these p-values
are asymptotically U(0,1).

3.6 Distribution of p-Values Under Some
Alternatives

In this section we study the behavior of pEB
prior(X),

ppost(X) and pppp(X), when the “null” normal-normal
model is wrong. In particular, we focus on violations
of normality at the second level.

Specifically, we simulate data sets from three differ-
ent models. In all the three, we take the distribution at
the first level to be the same and in agreement with the
first level in the null model (3.1):

Xij ∼ N(θi, σ
2 = 4), i = 1, . . . , I, j = 1, . . . ,8.

We use three different distributions for the group
means (remember, under the null model, the θi’s were
normal):

1. Exponential distribution: θi ∼ Exp(1), i = 1,

. . . , I.

2. Gumbel distribution: θi ∼ Gumbel(0,2), i = 1,

. . . , I, where the Gumbel(α, β) density is

f (x | α,β) = 1

β
exp

(
−x − α

β

)

· exp
(
− exp

(
−x − α

β

))
,
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FIG. 1. Null distribution of pEB
prior(X) (first column), ppost(X) (second column) and pppp(X) (third column) for I = 5 (first row), 15 (second

row) and 25 (third row).

for −∞ < x < ∞. Gumbel distribution is also
known as Extreme Value Type I distribution. It is
skew, with a long tail to the right (left) when derived
as the limiting distribution of a maximum (mini-
mum).

3. Log-Normal distribution: θi ∼ LogNormal(0,1),
i = 1, . . . , I .

We have considered I = 5 and I = 10, simulated
1000 samples from each model and computed the dif-

ferent p-values for each sample. In Table 2 we show
Pr(p ≤ α) for the three p-values and some values
of α. pppp seems to show decent power given the small
sample sizes and number of groups (power is lower
for the exponential alternative, and largest for the log-
normal); both pEB

prior and ppost show considerable lack
of power in comparison. In particular, notice the ex-
treme low power of ppost in all instances, producing
basically no p-values smaller than 0.2.
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FIG. 2. Null distribution of pEB
prior(X) and ppost(X) when I = 100 (first row) and I = 200 (second row).

4. TESTING µ = µ0

As we have seen in Section 3, the specified predic-
tive distributions for T (empirical Bayes, posterior and
partial posterior) used to locate the observed tobs had
to be dealt with by MC and MCMC methods. To gain
understanding in the behavior of the different propos-
als to “get rid” of the unknown parameters, we address
here a simpler “null model” which results in simpler
expressions and allows for easier comparisons.

Suppose that we have the normal-normal hierarchi-
cal model (3.1) (with σ 2

i known) but that we are inter-
ested in testing

H0 :µ = µ0.

A natural T to consider to investigate this H0 is the
grand mean:

T =
∑I

i=1 ni
�Xi·∑I

i=1 ni

,
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TABLE 2
Pr(p ≤ α) for pppp, ppost and pEB

prior , for different values of I and
the three alternative models

α 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

Normal-Exponential
I = 5 I = 10

pppp 0.04 0.08 0.15 0.24 0.12 0.20 0.29 0.42
ppost 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05
pEB

prior 0.00 0.00 0.00 0.23 0.00 0.06 0.18 0.37

Normal-Gumbel
I = 5 I = 10

pppp 0.12 0.22 0.32 0.46 0.21 0.31 0.42 0.55
ppost 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pEB

prior 0.00 0.00 0.00 0.23 0.00 0.07 0.19 0.38

Normal-Lognormal
I = 5 I = 10

pppp 0.16 0.22 0.31 0.41 0.32 0.42 0.50 0.61
ppost 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
pEB

prior 0.00 0.00 0.00 0.23 0.01 0.06 0.13 0.23

where �Xi·, i = 1, . . . , I , are the sample means for the
I groups. The (null) sampling distribution of T is:

T | θ ∼ N(µT ,VT )
(4.1)

with µT =
∑I

i=1 niθi∑I
i=1 ni

,VT =
∑I

i=1 niσ
2
i

(
∑I

i=1 ni)2
.

Again we will integrate θ out from (4.1) with the
previous proposals and compare the resulting predic-
tive distributions for T , h(t), and the corresponding
MS (which we take relative to µ0):

p = Prh(·)(|t (X) − µ0| ≥ |t (xobs) − µ0|),(4.2)

RPS = h(t (xobs))/h(µ0)

supt h(t)/h(µ0)
.(4.3)

4.1 Empirical Bayes Distributions

In this case the integrated likelihood for τ 2 is simply
given by (3.4) with µ replaced by µ0, from which τ̂ 2

the m.l.e. of τ 2 can be computed. For this null model,
it is possible to derive closed form expressions for the
prior and posterior empirical Bayes distributions given
in (2.2) and (2.4), respectively.

Indeed, the joint empirical Bayes prior predictive for
�X = (�X1·, . . . , �XI ·) is

mEB
prior(x̄) =

I∏
i=1

N

(
x̄i·

∣∣∣µ0,
σ 2

i

ni

+ τ̂ 2
)
,

so that the corresponding distribution for T , mEB
prior(t),

is normal with mean and variance given by

EEB
prior = µ0,

(4.4)

V EB
prior = 1

(
∑I

i=1 ni)2

I∑
i=1

n2
i

(
σ 2

i

ni

+ τ̂ 2
)
.

The empirical Bayes posterior predictive distribution
mEB

post(x̄) can be derived in a similar manner resulting
also in a normal mEB

post(t) with mean and variance

EEB
post =

∑I
i=1 niẼi∑I

i=1 ni

,

(4.5)

V EB
post = 1

(
∑I

i=1 ni)2

I∑
i=1

n2
i

(
σ 2

i

ni

+ Ṽi

)
,

where

Ẽi = ni�xi·/σ 2
i + µ0/τ̂

2

ni/σ
2
i + 1/τ̂ 2

and

Ṽi = 1

ni/σ
2
i + 1/τ̂ 2

.

The MS (4.2) and (4.3) can also be computed in
closed form. The (prior) empirical Bayes measures are

pEB
prior = 2 ·

(
1 − �

( |tobs − µ0|√
V EB

prior

))
,

RPSEB
prior = exp

{
−(tobs − µ0)

2

2V EB
prior

}
,

where � denotes the standard normal distribution func-
tion. The posterior empirical Bayes measures can sim-
ilarly be derived in closed form, but they are of much
less interest and we do not produce them here (see
Castellanos, 2002).

The inadequacies of mEB
post for testing the null model

can already be seen in the above formulas, but they are
more evident in the particular homoscedastic, balanced
case: σ 2

i = σ 2 and ni = n ∀i, i = 1, . . . , I . In this case
the distribution of T simplifies to

T ∼ N

(∑I
i=1 θi

I
,
σ 2

In

)
.

Also, there is a closed form expression for the m.l.e.
of τ 2:

τ̂ 2 = max
{

0,

∑I
i=1(�xi· − µ0)

2

I
− σ 2

n

}
.
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Then, the mean and variance of mEB
prior, as given

in (4.4), are

EEB
prior = µ0, V EB

prior =
σ 2

n
+ τ̂ 2

I
.

Similarly, the mean and variance of mEB
post, given

in (4.5), reduce to

EEB
post = ntobs/σ

2 + µ0/τ̂
2

n/σ 2 + 1/τ̂ 2 ,

V EB
post = 2nσ 2τ̂ 2 + σ 4

nI (nτ̂ 2 + σ 2)
.

For a given µ0 (and fixed τ ), it is now easy to inves-
tigate the behavior of mEB

prior and mEB
post as tobs → ∞,

indicating flagrant incompatibility between the data
and H0. The comparison in this simple case is en-
lightening. First, note that mEB

prior centers at µ0, which
in principle allows for declaring incompatible a very
large value tobs; however, the variance also grows to ∞
as tobs grows, thus alleviating the incompatibility, and
maybe “missing” some surprisingly large tobs. Thus,
the behavior of mEB

prior is reasonable, but might be con-
servative. On the other hand, the behavior of mEB

post is
completely inadequate. Indeed, for very large tobs, it
centers precisely at tobs, thus precluding detecting as
unusual any value tobs, no matter how large! Moreover,
the variance goes to (2σ 2)/(nI), a finite constant. It
is immediate to see that mEB

post should not be used to
check this particular (and admittedly simple) model; as
a matter of fact, for tobs → ∞ (extremely inadequate
models) we expect p-values of around 0.5. We remark
that the previous argument does not belong to any par-
ticular MS; rather it reflects the inadequacy of mEB

post
for model checking, whatever MS we use. Note that
we expect similar inadequacies to occur with the pos-
terior predictive distribution, which is rather often used
in objective Bayes model checking.

4.2 Posterior Distribution

No major simplifications occur for this specific H0.
The posterior distribution is not of closed form (not
even for the homoscedastic, balanced case), and hence
neither is the posterior predictive distribution. We can,
however, easily generate from it with virtually the same
Gibbs sampler used in Section 3.2: it suffices to (ob-
viously) ignore the full conditional for µ and replace
µ with the value µ0 in the other two full conditionals
(B.2) and (B.3), which were standard distributions.

4.3 Partial Posterior Distribution

There is no closed form expression for the partial
posterior distribution either, but considerable simplifi-
cation occurs since the Metropolis-within-Gibbs step is
no longer needed and a straight Gibbs sampler suffices.
The full conditional for τ 2 is as given in (C.2) with µ

replaced by µ0; the full conditional of each θi is here
also normal:

π(θi | τ 2, θ−i ,xobs \ tobs) = N(θi | E0
i , V

0
i ),

where

E0
i = 1

V 0
i

[
ni

σ 2
i

(
�xi· − σ 2

i∑
j njσ

2
j

·
(∑

j

nj tobs − ∑
l �=i

nlθl

))
(4.6)

+ 1

τ 2 µ0

]
,

1

V 0
i

= ni

σ 2
i

(
1 − niσ

2
i∑I

j=1 njσ
2
j

)
+ 1

τ 2 .(4.7)

Details of the derivations appear in Appendix D.

4.4 Some Examples

We next consider four examples in which we carry
out the testing H0 : µ = 0. We consider I = 8 groups,
with n = 12 observations per group, and σ 2 = 4. In one
of the examples (Example 1) H0 is true and the means
θi are generated from a N(0,1). In the remaining three
examples the null H0 is wrong, with θi ∼ N(1.5,1)

in Example 2, θi ∼ N(2.5,1) in Example 3, and θi ∼
N(2.5,3) in Example 4. The simulated sample means
are:

EXAMPLE 3.

�x = (−2.18,−1.47,−0.87,−0.38,

0.05,0.29,0.96,2.74).

EXAMPLE 4.

�x = (−0.05,0.66,1.37,1.70,1.72,2.14,2.73,3.68).

EXAMPLE 5.

�x = (1.53,1.65,1.71,1.75,1.87,2.16,2.47,3.68).

EXAMPLE 6.

�x = (0.50,1.52,1.59,2.73,2.88,3.54,4.21,5.86).
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In Figure 3 we show the predictive distributions for
all proposals in the four examples. A quite remarkable
feature is that in every occasion, mEB

post basically coin-
cides with mpost, so much that they can hardly be told
apart. We were expecting them to be close, but not so
close. Also, when the null is true (Example 1), all dis-
tributions rightly concentrate around the null and, as
expected, the most concentrated is mEB

post (and mpost),
and the least is mppp (mEB

prior ignores the uncertainty in

the estimation of τ 2). When the null model is wrong,
however, even though both mppp and mEB

prior have the
right location, mppp is more concentrated than mEB

prior,
thus indicating more promise in detecting extreme tobs.

Notice the hopeless (and identical) behavior of mEB
post

and mpost: both concentrate around tobs, no matter how
extreme; that is, there is no hope that it can detect in-
compatibility of a very large tobs with the hypothetical
value of 0.

In Table 3 we show the different MS for the four
examples. All behave well when the null is true, but
only the ppp and the prior empirical Bayes measures
detect the wrong models (ppp more clearly). On the
other hand, mEB

post and mpost produce very similar mea-
sures and both are incapable of detecting clearly in-
appropriate null models. Notice that the conservatism

FIG. 3. Different predictive distribution for T in each example. The vertical solid line locates tobs. The curves corresponding to mpost and
mEB

post were almost indistinguishable and for clarity are represented as identical.
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TABLE 3
p-values and RPS for testing µ = 0 in the four examples

Example 1 Example 2 Example 3 Example 4

p RPS p RPS p RPS p RPS

ppp 0.86 0.98 0.01 0.01 0.00 0.00 0.00 0.01
EB prior 0.83 0.98 0.02 0.06 0.01 0.03 0.01 0.05
EB post 0.71 1.00 0.31 0.89 0.30 0.88 0.38 1.00
post 0.71 1.00 0.33 0.92 0.32 0.95 0.39 1.00

of the posterior predictive measures (and the posterior
empirical Bayes ones) is extreme.

5. A COMPARISON WITH OTHER BAYESIAN
METHODS

In this section we retake the main goal of check-
ing the adequacy of the second level in the hierarchical
model:

Xij | θi
i∼ N(θi, σ

2),

i = 1, . . . , I, j = 1, . . . , ni,

π(θ | µ,τ) =
I∏

i=1

N(θi | µ,τ 2),

with σ 2 unknown, as well as µ,τ 2. We first provide
some details needed to derive the MS used so far when
σ 2 is unknown; we then briefly review three recent
methods for Bayesian checking of hierarchical mod-
els, proposed in Dey, Gelfand, Swartz and Vlachos
(1998), O’Hagan (2003) and Marshall and Spiegelhal-
ter (2003). We do not specifically address here (be-
cause the philosophy is somewhat different) the much
earlier, likelihood/empirical Bayes proposal of Lange
and Ryan (1989), which basically consists in check-
ing the normality of some standardized version of esti-
mated residuals. We apply the four methods considered
so far and the three new methods to a data set proposed
in O’Hagan (2003).

O’HAGAN (2003) EXAMPLE. In the general sce-
nario of checking the normal-normal hierarchical
model, O’Hagan (2003) uses the following data set:

Group 1 2.73, 0.56, 0.87, 0.90, 2.27, 0.82. �x1·= 1.36.
Group 2 1.60, 2.17, 1.78, 1.84, 1.83, 0.80. �x2·= 1.67.
Group 3 1.62, 0.19, 4.10, 0.65, 1.98, 0.86. �x3·= 1.57.
Group 4 0.96, 1.92, 0.96, 1.83, 0.94, 1.42. �x4·= 1.34.
Group 5 6.32, 3.66, 4.51, 3.29, 5.61, 3.27. �x5·= 4.44.

Note that �x5· is considerably far from the other four
sample means.

5.1 Methods Used So Far

The empirical Bayes methods (both the prior and the
posterior) have an easy generalization to the unknown
σ 2 case. It suffices to substitute σ 2 by its usual MLE
estimate and apply the procedures in Section 3 for σ 2

known.
For both the posterior predictive and the partial pos-

terior predictive measures, we need to specify a new
(noninformative) joint prior. Since we can use the stan-
dard noninformative prior for σ 2, we take

π(µ,σ 2, τ 2) ∝ 1

σ 2

1

τ
.(5.1)

To simulate from the posterior distribution, we again
use Gibbs sampling. The full conditionals for θ , µ and
τ 2 are the same as for the known σ 2 and they are given
in (B.3), (B.1) and (B.2), respectively. The full condi-
tional for the new parameter, σ 2, is

σ 2 | θ ,µ, τ 2,xobs ∼ χ−2(m, σ̃ 2),

where m = ∑I
i=1 ni and σ̃ 2 = ∑I

i=1
∑ni

j=1(xij −
θi)

2/n.
The (joint) partial posterior distribution is

πppp(θ , σ 2,µ, τ 2 | xobs \ tobs) ∝ π(θ , σ 2,µ, τ 2|xobs)

f (tobs | θ , σ 2)
,

and again we use the same general procedure as for the
σ 2 known scenario (see Section 3). We only need to
specify how to simulate from the full conditional of σ 2:

πppp(σ
2 | θ ,µ, τ 2,xobs \ tobs) ∝ χ−2(m, σ̃ 2)

f (tobs | θ , σ 2)
.

We use Metropolis–Hastings with χ−2(m, σ̃ 2) as pro-
posal distribution. The acceptance probability (at sta-
ge k) of candidate σ 2∗, given the simulated values
(θ (k), σ 2(k),µ(k), τ 2(k)), is

α = min
{

1,
f (tobs|θ (k), σ 2(k))

f (tobs|θ (k), σ 2∗)

}
.

We next derive the different MS for O’Hagan data.

O’HAGAN (2003) EXAMPLE (CONTINUED). The
empirical Bayes, posterior predictive and partial pos-
terior predictive MS applied to this data set, using
T = maxi{�Xi}, are shown in Table 4.

We again observe the same behavior as the one re-
peatedly observed in previous examples: in spite of
such an “obvious” data set, only the partial poste-
rior measures detect the incompatibility between data
and model. The empirical Bayes prior measures are
too conservative, and the posterior predictive measures
(and their very much alike empirical Bayes posterior
ones) are completely hopeless.
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TABLE 4
MS (σ 2 unknown) for O’Hagan data set

pEB
prior RPSEB

prior pEB
post RPSEB

post ppost RPSpost pppp RPSppp

0.19 0.4 0.37 0.95 0.40 0.99 0.01 0.02

5.2 Simulation-Based Model Checking

This method is proposed in Dey, Gelfand, Swartz
and Vlachos (1998), as a computationally intense
method for model checking. This method works not
only with checking statistics T , but more generally,
with discrepancy measures d , that is, with functions of
the parameters and the data. This feature also applies
to the posterior predictive checks that we have been
considering all along. In essence, the method consists
in comparing the posterior distribution d | xobs with R

posterior distributions of d given R data sets xr , for
r = 1, . . . ,R, generated from the (null) prior predic-
tive model. Note that this method requires proper pri-
ors. Comparison is carried out via Monte Carlo Tests
(Besag and Clifford, 1989).

Letting xr , for r = 0, denote the observed data xobs,
their algorithm is as follows:

• For each posterior distribution of d given xr , r =
0, . . . ,R, compute the vector of quantiles q(r) =
(q

(r)
0.05, q

(r)
0.25, q

(r)
0.5, q

(r)
0.75, q

(r)
0.95), where q

(r)
α is the α-

quantile of the posterior distribution given data xr ,
r = 0, . . . ,R.

• Compute the vector �q of averages, over r , of these
quantiles: �q = (�q0.05,�q0.25,�q0.5,�q0.75,�q0.95).

• Compute the r +1 Euclidean distances between q(r),
r = 0,1, . . . ,R and �q.

• Perform a 0.05 one-sided, upper tail Monte Carlo
test, that is, check whether or not the distance cor-
responding to the original data is smaller than the
95th percentile of the r + 1 distances.

In reality, this method is not a competitor of the ones
we have been considering previously, since it requires
proper priors, and hence is not available for objec-
tive model checking. We, however, apply it also to
O’Hagan data.

O’HAGAN (2003) EXAMPLE (CONTINUED). In
order to perform the simulation-based model checking,
we need proper priors. We use the ones proposed in
O’Hagan (2003):

µ ∼ N(2,10), σ 2 ∼ 22W, τ 2 ∼ 6W
(5.2)

where W ∼ χ−2
20 .

Along with the statistic used so far, we have also con-
sidered a measure of discrepancy which in this case is
just a function of the parameters:

T1 = max �Xi·, T2 = max |θi − µ|.
With 1000 simulated data sets from the null, the re-
sults are shown in Table 5. It can be seen that, with
the given prior, incompatibility is detected with T2, but
not with T1. We do not know whether T2 would detect
incompatibility with other priors (see related results in
Section 5.3).

5.3 O’Hagan Method

O’Hagan (2003) proposes a general method to in-
vestigate adequacy of graphical models at each node.
We will not describe his method in full generality, but
only how it applies to checking the second level of our
normal-normal hierarchical model.

To investigate conflict between the data and the nor-
mal assumption for each of the group means, this
proposal investigates conflict between the likelihood
for θi ,

∏ni

j=1 f (xij | θi, σ
2), and the (null) density for

θi , π(θi | µ,τ 2).

To check conflict between two known univariate
densities/likelihoods, O’Hagan proposes a “measure of
conflict” based on their relative heights at an “interme-
diate” value. Specifically, the likelihoods/densities are
first normalized so that their maximum height is 1 (no-
tice that this is equivalent to dividing by their respec-
tive maximum, as in RPS before). Then the (common)
density height, z, at the value of θi between the two
modes where the two densities are equal, is computed.
The proposed measure of conflict is c = −2 ln z. For

TABLE 5
Euclidean distance between q(0) and �q
and the 0.95 quantile of all distances

‖q(0) −�q‖ 0.95 quantile

T1 2.31 13.46
T2 1.82 0.81



BAYESIAN CHECKING OF THE SECOND LEVELS OF HIERARCHICAL MODELS

STS stspdf v.2007/01/19 Prn:30/10/2007; 16:23 F:sts235.tex; (Lina) p. 15

15

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

the particular case of comparing two normal distribu-
tions, N(ωi, γ

2
i ), for i = 1,2, this measure is

c =
(

ω1 − ω2√
γ1 + √

γ2

)2

.(5.3)

O’Hagan indicates that a conflict measure smaller than
1 should be taken as indicative of no conflict, whereas
values of 4 or larger would indicate clear conflict. No
indication is given for values lying between 1 and 4.

When, as usual, the distributions involved depend on
unknown parameters, the measures of conflict [in par-
ticular (5.3)], cannot be computed. O’Hagan’s proposal
is then to use the median of their posterior distribution.
Notice that this is closely related to computing a rela-
tive height on the posterior predictive distribution and,
hence, the concern exists that it can be too conservative
for useful model checking. In fact this conservatism
was highlighted in the discussions by Bayarri (2003)
and Gelfand (2003).

Interestingly enough, O’Hagan defends use of pro-
per priors for the unknown parameters, so neither pos-
terior predictive nor posterior distributions are needed
for implementation of his proposal (since the prior pre-
dictives and priors are proper). Alternatively, if one
wishes to insist on using posterior distributions (instead
of the, more natural, prior distributions), then proper
priors are no longer needed, and the method can thus be
generalized. Accordingly, we also apply his proposal
with the noninformative prior (5.1).

O’HAGAN (2003) EXAMPLE (CONTINUED). We
compute the measure (5.3) for the data set proposed by
O’Hagan (2003). To derive the posterior distributions,
we use both the proper priors proposed by O’Hagan
for this example, given in (5.2), and the noninforma-
tive prior (5.1). The posterior medians for c are shown
in Table 6. It can be seen that the results are very de-
pendent on the prior used: the spurious group 5 is de-
tected with the specific proper prior used, but not with
the noninformative priors (thus suffering from the ex-
pected conservatism). We recall that data were clearly
indicating an anomalous group 5.

TABLE 6
Posterior medians of ci , i = 1, . . . ,5, for O’Hagan data set

θ1 θ2 θ3 θ4 θ5

O’Hagan priors 0.43 0.14 0.22 0.46 4.81
Noninformative priors 0.16 0.09 0.11 0.16 1.36

5.4 “Conflict” p-Value

Marshall and Spiegelhalter (2003) proposed this ap-
proach based on, and generalizing, cross-validation
methods (see Gelfand, Dey and Chang, 1992; Bernardo
and Smith, 1994, Chapter 6).

In cross-validation, to check adequacy of group i,
data in group i, Xi , are used to compute the “surprise”
statistic (or diagnostic measure), whereas the rest of the
data, X−i , are used to train the improper prior. A mixed
p-value is accordingly computed as

pi,mix = Prmcross(·|X−i )(Ti ≥ T obs
i ),(5.4)

where the completely specified distribution used to
compute the ith p-value is

mcross(ti | X−i)

=
∫

f (ti | θi, σ
2)π(θi | µ,τ 2)π(µ, τ 2, σ 2 | X−i) dθ,

and thus there is no double use of the data.
Marshall and Spiegelhalter (2003) aim to preserve

the cross-validation spirit while avoiding choice of a
particular statistic or discrepancy measure Ti = T (Xi).
Specifically, they propose use of conflict p-values for
each group i, computed as follows:

• Simulate θ
rep
i from the posterior θi | X−i .

• Simulate θ
fix
i from the posterior θi | Xi .

• Compute θ
diff
i = θ

rep
i − θ

fix
i .

• Compute the “conflict” p-value for group i, i =
1, . . . , I , as

pi,con = Pr(θ
diff
i ≤ 0 | x).(5.5)

Marshall and Spiegelhalter (2003) show that for lo-
cation parameters θi , the conflict p-value (5.5) is equal
to the cross-validation p-value (5.4) based on statistics
θ̂i with symmetric likelihoods and using uniform priors
in the derivation of θ

fix
i .

A clear disadvantage of this approach (as well as
with the cross-validation mixed p-values) is that we
have as many p-values as groups, and multiplicity
might be an issue. (O’Hagan’s measures might suf-
fer from it too.) Since we are dealing with p-values,
adjustment is most likely done by classical methods
[controlling either the family-wise error rate, as the
Bonferroni method, or the false discovery rate and re-
lated methods, as the Benjamini and Hochberg (1995)
method]. None of these methods is foolproof and the
danger exists that they also result in a lack of power.
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TABLE 7
Conflict p-values for the O’Hagan data set using noninformative

priors and O’Hagan priors

Group 1 Group 2 Group 3 Group 4 Group 5

O’Hagan priors 0.84 0.74 0.73 0.88 0.00
Noninformative 0.66 0.59 0.61 0.68 0.00

O’HAGAN (2003) EXAMPLE (CONTINUED). We
compute the conflict p-values for the O’Hagan data set.
We again use both, O’Hagan priors and noninformative
priors. The results are shown in Table 7. Taken at face
value, these p-values behave nicely and detect the out-
lying group.

6. A BINOMIAL-BETA EXAMPLE: BRISTOL ROYAL
INFIRMARY INQUIRY DATA

We finish the paper with a real example and a dif-
ferent hierarchical model. Specifically, we exemplify
the different checking procedures in a hierarchical
Binomial-Beta model on a data set analyzed at length
in Spiegelhalter et al. (2002). Data consist in the num-
ber ni of open-heart operations and the corresponding

number Yi of deaths for children under one year of age
carried out in 12 hospitals in England. Data are shown
in Figure 4.

We consider the following model:

Yi | θi
i∼ Bin(θi, ni), i = 1, . . . , I,

π(θ | α,β) =
I∏

i=1

Beta(θi | α,β),

π(α,β) ∝ [(
ψ1(α) − ψ1(α + β)

)
(6.1)

· (
ψ1(β) − ψ1(α + β)

)
− ψ1(α + β)2]1/2

,

where π(α,β) is the Jeffreys prior (Yang and Berger,
1997), and ψ1(x) = ∑∞

i=1(x + i)−2 denotes the tri-
gamma function. We use both the maximum and the
minimum of the frequencies of deaths, yi/ni , as check-
ing statistics. Also, when simulating from the par-
tial distributions we have used the normal approxi-
mation to the binomial, yi/ni ≈ N(θi, θi(1 − θi)/ni),
so that the conditional distribution of the maximum
and the minimum has an easy closed form expres-
sion.

FIG. 4. Number of open-heart operations and deaths for children under one year of age carried out in 12 hospitals in England between
1991 and 1995.
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TABLE 8
p-values for the mortality in pediatric cardiac surgery

pEB
prior pEB

post ppost pppp

Maximum 0.03 0.16 0.23 0.00
Minimum 0.67 0.56 0.62 0.64

We compute the overall partial and posterior predic-
tive p-values, and also the individual (one for each hos-
pital) O’Hagan’s conflict measures and Marshall and
Spiegelhalter’s conflict p-values. All require MCMC.
We use 30,000 simulations after a warm-up period of
10,000. Algorithms in R are available in http://bayes.
escet.urjc.es/~mecastellanos/FunctionsBristol.zip.

The overall p-values (EB prior, EB posterior, poste-
rior and partial posterior) appear in Table 8. Also, in
Figures 5 and 6 we show the corresponding predictive
distributions for, respectively, the maximum and the
minimum. Both the figures and the table show that the
observed minimum is well supported by the assumed
models with any of the p-values used. However, with
the maximum, the EB prior and partial posterior show
incompatibility (with the ppp showing more incom-
patibility than the EB prior), while the EB posterior
and posterior p-values fail to do so.

The multiple conflict measures are in Table 9, and
the multiple conflict p-values in Table 10. In these ta-
bles, “1” refers to the hospital with the lowest mortality
rate, and “10” to the one with the largest. According to
O’Hagan’s prescriptions, no hospitals show clear indi-
cation of incompatibility; all but Bristol are compati-
ble. On the other hand, the multiple conflict p-values
isolates Bristol as the only one incompatible. No cor-
rection for multiplicity has been used.

7. CONCLUSIONS

In this paper we have investigated the checking of hi-
erarchical models from an objective Bayesian point of
view (i.e., introducing only the information in the data
and model). We have explored several ways of elim-
inating the unknown parameters to derive “reference”

TABLE 9
Posterior medians of ci , i = 1, . . . ,12, for Bristol data set

1 2 3 4 5 6 7 8 9 10 11 12

0.51 0.09 0.07 0.06 0.06 0.05 0.05 0.05 0.10 0.19 0.64 3.11

Hospitals are ordered from lowest to largest mortality rate.

TABLE 10
Conflict p-values for each hospital

1 2 3 4 5 6 7 8 9 10 11 12

0.89 0.72 0.70 0.71 0.70 0.66 0.46 0.47 0.42 0.35 0.17 0.00

Hospitals are ordered from lowest to largest mortality rate.

distributions. We have also explored different ways of
characterizing “incompatibility.” We propose use of the
partial posterior predictive measures (MSppp), which
we compare with many other proposals. Some of our
findings are:

• MSppp behave considerably better than the alterna-
tive MSEB

prior, MSEB
post and MSpost. The behavior of

MSpost can be particularly bad with casually cho-
sen T ’s, failing to reject clearly wrong models (but
notice that the specific T we use is the one pro-
posed in Gelman, Carlin, Stern and Rubin, 2003,
Section 6.8). As a matter of fact, the measures
MSpost are very similar to the clearly inappropri-
ate MSEB

post.• In our (limited) simulation study, the null sampling
distribution of pppp is found to be approximately
uniform, while those of pEB

prior and ppost are far from
uniformity. Also, pppp is the most powerful for the
considered alternatives.

• The simulation-based model checking seems to
work well in detecting the incompatibility between
the model and the data, but it requires proper pri-
ors.

• The O’Hagan method is highly sensitive to the prior
chosen, and in fact it seems to be conservative with
noninformative priors.

• The conflict p-values pi,con seem to work well, but
they produce as many p-values as number of groups
and multiplicity might be an issue. Also, the result-
ing p-values will typically be highly dependent (any
two p-values are based in the same data except for
two observations).

Partial posterior p-values are not as easy to compute as
posterior p-values, but they are still relatively easy, and
indeed nothing more sophisticated than R was needed
for the computations in this paper. This, along with
their good properties (as demonstrated along the pa-
per), makes them the clearly recommended procedure
for objective model checking when the testing statistic
T is not (nearly) ancillary. But if computation is per-
ceived as an overwhelming reason in favor of posterior
p-values, we recommend instead use of the EB-prior

http://bayes.escet.urjc.es/~mecastellanos/FunctionsBristol.zip
http://bayes.escet.urjc.es/~mecastellanos/FunctionsBristol.zip
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FIG. 5. Predictive distribution for T = max{yi/ni} in the Bristol Royal Infirmary data.

p-values: they have better properties and are easier to
compute.

APPENDIX A: MC COMPUTATIONS FOR
SECTION 3.1

To simulate from the empirical Bayes prior predic-
tive distribution mEB

prior(x) simply proceed as follows:
For l = 1, . . . ,M simulate

θ (l) = (
θ1(l), . . . , θI (l)

) ∼ πEB(θ) =
I∏

i=1

π(θi | µ̂, τ̂ 2),

and for each θ (l), l = 1, . . . ,M , simulate

x̄(l) = (�x1·(l), . . . ,�xI ·(l)
)

∼ f
(
x̄ | θ (l)

) =
I∏

i=1

f
(�xi· | θi(l)

)
.

Simulations for the empirical Bayes posterior predic-

tive mEB
post(x) proceed along the same lines except that
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FIG. 6. Predictive distribution for T = min{yi/ni} in the Bristol Royal Infirmary data.

θ is now simulated from

θ(l) = (
θ1(l), . . . , θI (l)

) ∼ πEB(θ | xobs) =
I∏

i=1

N(Êi,V̂i),

where

Êi = ni�xi·/σ 2
i + µ̂/τ̂ 2

ni/σ
2
i + 1/τ̂ 2

and

V̂i = 1

ni/σ
2
i + 1/τ̂ 2

.

APPENDIX B: FULL CONDITIONAL FOR THE
GIBBS SAMPLER IN SECTION 3.2

To simulate from the joint posterior (3.5) we use
an easy Gibbs sampler defined by the full condition-
als

µ | θ , τ 2,xobs ∼ N(Eµ,Vµ)

(B.1)

with Eµ =
∑I

i=1 θi

I
and Vµ = τ 2

I
,
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τ 2 | θ,µ,xobs ∼ χ−2(I − 1, τ̃ 2)
(B.2)

where τ̃ 2 =
∑I

i=1(θi − µ)2

I − 1
,

θi | µ,τ 2,xobs ∼ N(Ei,Vi),where
(B.3)

Ei = ni�xi·/σ 2
i + µ/τ 2

ni/σ
2
i + 1/τ 2

and Vi = 1

ni/σ
2
i + 1/τ 2

.

All the full conditionals are standard distributions,
trivial to simulate from. χ−2(ν, a) refers to a scaled
inverse chi-square distribution: it is the distribution of
(νa)/Y where Y ∼ χ2(ν).

APPENDIX C: DETAILS FOR MCMC
COMPUTATIONS IN SECTION 3.3

The full conditionals for the Gibbs sampler are

µ | θ, τ 2,xobs \ tobs ∝ π(µ | θ , τ 2,xobs)

f (tobs | θ)

(C.1) ∝ π(µ | θ , τ 2,xobs),

τ 2 | θ,µ,xobs \ tobs ∝ π(τ 2 | θ ,µ,xobs)

f (tobs | θ)

(C.2) ∝ π(τ 2 | θ ,µ,xobs),

θ | µ,τ 2,xobs \ tobs ∝ π(θ | µ,τ 2,xobs)

f (tobs | θ)
.(C.3)

The full conditionals (C.1) and (C.2) are identical to
(B.1) and (B.2), respectively, and hence they are easy
to simulate from. Equation (C.3) is not of closed form,
and we use Metropolis–Hastings within Gibbs for the
full conditional of each θi :

πppp(θi | µ,τ, θ−i ,xobs \ tobs)

∝ πpost(θi | µ,τ 2,xobs)

f (tobs | θ)
(C.4)

∝ N(θi | Ei,Vi)

f (tobs | θ)
,

where Ei,Vi are given in (B.3). Next we need to
find a good proposal to simulate from (C.4). An ob-
vious proposal would simply be the posterior πpost(θi |
µ,τ 2,xobs), but this can be a very bad proposal when
the data are indeed “surprising” for the entertained
model. In particular, the posterior distribution centers
around the MLE θ̂ while the partial posterior centers
around the conditional MLE, θ̂cMLE, that is,

θ̂cMLE = arg maxf (xobs | tobs, θ)

= arg max
f (xobs | θ)

f (tobs | θ)
.

It is intuitively obvious that, when the data are not
“surprising,” that is, when tobs comes from the “null”
model, then f (xobs | tobs, θ) would be similar to
f (xobs | θ) and the partial and posterior distributions
would also be similar. However, when the data are
“surprising” and tobs is not a “typical” value, then the
“null” model and the conditional model can be consid-
erably different, as well as the corresponding MLEs.
For Metropolis proposals, Bayarri and Berger (2000)
then suggest generating from the posterior distribution
but then “moving” the generated values closer to the
mode of the target distribution (the partial posterior)
by adding

θ̂cMLE,i − θ̂MLE,i ,

multiplied (when this results in improved mixing) by a
Uniform(0,1) random generation. This and other algo-
rithms for computing conditional distributions are pre-
sented in Bayarri, Castellanos and Morales (2006).

To avoid computation of θ̂cMLE, which can be rather
time consuming, we use instead an estimate θ̃c which
we expect to be close enough (for our purposes) to
θ̂cMLE for this model and this T (see Bayarri and
Morales, 2003). In particular, we take all components
to be equal and given by

θ̃c =
∑I−1

l=1
�X(l·)

I − 1
,

where (�X(1·), . . . , �X(I ·)) denote the group means sorted
in ascendent order. That is, we simply remove the
largest sample mean and then average (we could have
also used a weighted average if the sample sizes were
very different).

Then, the resulting algorithm to simulate from (C.4)
at stage k, given the (simulated) values (θk−i , θ

k
i ,µk,

τ 2(k)), is:

1. Simulate θ∗
i ∼ N(θi | Ei,Vi).

2. Move the simulation θ∗
i to

θ̃∗
i = θ∗

i + U · (θ̃c − θ̃MLE,i),

where U is random number in (0,1).
3. Accept candidate θ̃∗

i with probability

α = min
{

1,
N(θ̃∗

i | Ei,Vi)N(θk
i | Ei,Vi)f (tobs | θk−i , θ̃

k
i )

N(θ̃k
i | Ei,Vi)N(θ∗

i | Ei,Vi)f (tobs | θk−i , θ̃
∗
i )

}
.
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APPENDIX D: DERIVATION OF THE FULL
CONDITIONAL OF θ ’S IN SECTION 4.3

The full conditional partial posterior density for θi is

π(θi | τ 2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs \ tobs)

∝ πpost(θi | τ 2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs)

f (tobs | θ1, . . . , θi, . . . , θI )

∝ exp
{
−1

2

(
ni

σ 2
i

+ 1

τ 2

)(
θi − ni�xi·/σ 2

i + µ0/τ
2

ni/σ
2
i + 1/τ 2

)2}

· exp
{

1

2

(
∑

j nj )
2∑

j njσ
2
j

(
tobs −

∑I
j=1 njθj∑

j nj

)2}

∝ exp
{
−1

2

(
θ2
i

(
ni

σ 2
i

+ 1

τ 2

)

− 2θi

(
ni

σ 2
i

�xi· + 1

τ 2 µ0

))}

· exp

{
1

2
∑

j njσ
2
j

(∑
j

nj tobs − niθi − ∑
l �=i

nlθl

)2}

∝ exp

{
−1

2
θ2
i

((
ni

σ 2
i

+ 1

τ 2

)
− n2

i∑
j njσ

2
j

)

− 2θi

(
ni

σ 2
i

�xi· + µ0

τ 2

− ni∑
j njσ

2
j

·
(∑

j

nj tobs − ∑
l �=i

nlθl

))}
,

which, after some algebra, reduces to

π(θi | τ 2, θ1, . . . , θi−1, θi+1, . . . , θI ,xobs \ tobs)

∝ exp
{
− 1

2V 0
i

(θi − E0
i )

2
}
,

with E0
i and V 0

i given in (4.6) and (4.7), respectively.
The result then follows if V 0

i can be shown to be

greater than 0, which is true because 1− niσ
2
i∑I

j=1 nj σ 2
j

> 0.
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