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Preface

The work is divided into two main topics. In the first part a formulation for

Perfectly Matched Layers is given. Surprisingly, such formulation was absent in

the scientific literature. In the second part a new type of periodic plate is proposed.

In particular, an analytical model of Perfectly Matched Layers (PMLs) for flexural

waves within elongated beam structures is given. The model is based on transfor-

mation optics techniques and it is efficient both in time harmonic and transient

regimes. A comparison between flexural and longitudinal waves is detailed and it

is shown that the bending problem requires special interface conditions. A con-

nection with transformation of eigenfrequencies and eigenmodes is given and the

effect of the additional boundary conditions introduced at the border of the Per-

fectly Matched Layer domain is discussed in detail. Such a model is particularly

useful for Finite Element analyses pertaining propagating flexural waves in infinite

domain.

Then, Perfectly Matched Layers for flexural waves are extended to plate structures.

Again, the analytical model is based on transformation optics techniques applied

on the biharmonic fourth-order partial differential equation describing flexural vi-

brations in Kirchhoff-Love plates. It is shown that perfect boundary conditions

are not an optimal solution, since they depend on the incident waves. The full

analytical form of PMLs and zero reflection conditions at the boundary between

homogeneous and PML domains are given. The implementation in a Finite Ele-

ment (FEM) code is described and an eigenfrequency analysis is given as a possible

methodology to check the implementation. A measure of the performance of the

PMLs is introduced and the effects of element discretization, boundary conditions,
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frequency, dimension of the PML, amount of transformation and dissipation are

detailed. The model gives excellent results also when the applied load approaches

the PML domain.

In the last part of the work we propose a new type of platonic crystal. The

microstructured plate includes snail resonators with low-frequency resonant vi-

brations. The special dynamic effect of the resonators are highlighted by a com-

parative analysis of dispersion properties of homogeneous and perforated plates.

Analytical and numerical estimates of classes of standing waves are given and the

analysis on a macrocell shows the possibility to obtain localization, wave trap-

ping and edge waves. Applications include transmission amplification within two

plates separated by a small ligament. Finally we proposed a design procedure to

suppress low-frequency flexural vibrations in an elongated plate implementing a

by-pass system re-routing waves within the mechanical system.



Chapter 1

Introduction

In engineering applications the necessity to model unbounded domains is often

required. This is particular important in modeling of soil-structure interaction

[30, 63, 112], fluid-solid interaction [51, 100], ground-borne noise and vibration

emitted by transportation systems [110, 114], geophysics [44, 99], non-destructive

evaluation methods [57, 87], fluid-dynamics and traffic flow [68] and general prob-

lems of wave propagation (electromagnetic, elastic, acoustics, seismic). The list

includes also hydro- and aerodynamic problems (external flows, duct flows, re-

acting flows, jets, boundary layers, free surfaces with aerospace, marine/naval,

automotive, meteorological, industrial, and environmental applications), flows in

porous media, filtration (with applications to oil recovery), magneto- hydrody-

namic flows, plasma (e.g., solar wind) just to name a few.

In order to keep the computation feasible there is the necessity to truncate the

models within a finite computational domain. This can be done by the bound-

ary integral methods, infinite elements, non-reflecting boundary conditions and

absorbing layers.

The boundary element method (see, for example, the monographs [2, 7, 13, 43,

120]) can be used directly for exterior problems over a finite region. It is an efficient

numerical technique formulated for both static and dynamic problems, which is

computationally cost effective in view of the fact that it reduces the dimensionality

of the problem and only the boundary of the domain needs to be discretized. On

the contrary, it is more difficult to implement with respect to Finite Element and

Finite Difference algorithms and the coupling with different numerical schemes

requires special attention. Also, some of the advantages of the method are lost

3
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and additional difficulties arise for non-linear problems in plasticity [9, 71, 92, 113]

and finite elasticity [15, 16, 84, 89, 93].

Infinite element schemes [10, 11] represent the domain in its entirety by using ele-

ments of infinite extent where the shape functions include outwardly propagating

wave-like factors. The formulation may rely on a truncated multipole expansion

[21, 64], that incorporates frequency dependent interpolation functions along the

radial (outward) direction [45, 53]. However, infinite elements have problems of

accuracy and unwanted boundary reflections in the case of the propagation of

guided or bulk waves [5, 35, 66]. Also, a region much larger than the region of

interest must be implemented in order to achieve accuracy.

Absorbing boundary conditions (ABCs) and perfectly matched layers (PMLs) per-

mit outward propagating waves and must suppress spurious reflections at least to

an acceptable level. ABCs were first introduced in [69], where it is shown that,

for second order wave equations and linearized shallow water equations, exact

conditions are expressed in terms of integro-differential equations which are then

approximated by a hierarchical system of differential equations [81].

Instead of ad-hoc boundary conditions PML is a region bordering the computa-

tional domain where waves are damped so that propagating waves become evanes-

cent. The key property is always the absence of reflection at the interface between

the physical and the absorbing domains. The problem of reflection at the in-

terface between the physical domain and the absorbing one was solved in [8] for

problems governed by Helmholtz equations. The PMLs have become the most

popular absorbing conditions for finite-difference time-domain and finite element

wave simulations and many examples demonstrate their superior performance as

compared to ‘sponge-layer’ absorbing boundary condition [25, 108], paraxial con-

ditions [50, 97], asymptotic local or non-local operators [46, 47].

PMLs correspond to a coordinate transformation in which the coordinate nor-

mal to the artificial boundary is mapped to complex values leading to decaying

amplitude behavior [28]. Transformation optics has been introduced by [65, 88]

for electromagnetic invisibility cloaks [62, 105]. The key property is the invari-

ance of Maxwell’s equations under coordinate transformations [94]. The same

model has been successively applied to problems governed by equations isomor-

phic to Maxwell’s equations: they include acoustics [27, 82, 102], thermodynamics

[101, 104] and out-of-plane elastic waves [32, 86]. Applications and models can
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also be found in [40, 55]. Invisibility cloaks for flexural waves where first proposed

by [37, 38] and a first experiment was given by [111]. The transformed model was

successively refined in [20, 33, 54] where the transformed equation was interpreted

within the 2nd-order theory applied for the study of buckling elastic structures.

Invariance under coordinate transformation is not satisfied in general. This is

the case of elastodynamics equations and [83] demonstrated that the transformed

equation requires either non-symmetric stress tensor [17] or tensorial density and

dependance of the stress on velocity [75].

PMLs can be also interpreted as a viscous anisotropic material in the boundary

region [98]. It is highly effective in absorbing waves over wide ranges of frequency

and incidence angles, is numerically stable and needs relatively thin layers. PML

was first developed for electromagnetic waves [8, 28], and then extended to the

fields of acoustics [96], seismology [58, 59], dispersive waves [61] as well as to elastic

waves [49, 80, 109, 123]. Surprisingly, applications to flexural waves, governed by

fourth-order differential equations, are limited to a recent result, which is focused

on the numerical implementation [41]. The purpose of the work is to fill this gap.

In [26] the construction of PML for elastic wave propagation was linked to confor-

mal mapping techniques adopted for the design of invisibility cloaks [17, 75, 83],

a technique implemented in the numerical simulation given in [17]. Here we im-

plement a similar approach for the problem of flexural waves [20, 33, 54].

The presented model is studied in the time-harmonic regime. However, the simple

computation given in Figure 1.1 shows that the proposed PML performs well also

in the transient regime. In the Thesis we compare the case of longitudinal and

transverse waves within an elongated beam in order to stress the additional issues

associated to the flexural case. Also, we give particular importance to the physical

interpretation of the PML.

In Section 2.1 of Chapter 2, we present the transformation optics technique for

longitudinal waves in a thin rod, we detail the transformed equation, we discuss

the interface boundary conditions and present a comparison with the analytical

Green’s function in a infinite rod. In Section 2.2, we present the model for flexural

waves in beam structures. We detail the transformed equation and we discuss the
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Figure 1.1: Transient finite element analysis. Transverse displacement at t = 0.5 s in
a beam subjected to a transient force F (t) applied at X = 0m. F (t) is shown in Figure
2.8 in Chapter 2. Dashed black line shows the displacement in a large domain without

PML, continuous gray line shows the displacement in a short domain with PML.

condition on the transformation in order to automatically satisfy interface con-

ditions. We present different numerical examples concerning invariance of eigen-

frequencies, transformation of eigenmodes and we discuss the effect of boundary

conditions and describe the transient example of Figure 1.1.

The propagation of flexural waves in Kirchhoff-Love plates is described in Chap-

ter 3. Adoption of PMLs for flexural waves in plates involves additional issues

which are solved in the present work. The biharmonic equation of motion for

Kirchhoff-Love plates under transformation does not retain its form [20, 33, 54].

The transformation affects also the interface conditions and additional constraints

are set in order to avoid reflection.

In Chapter 3, we give the analytical form of PMLs for flexural waves in plates, we

describe the implementation and we perform a deep quantitative analysis on the

dependance of the perturbation on several parameters.

Also in this case the model is studied in the time-harmonic regime and the com-

parison given in Figure 1.2 between a numerical solution and analytical one, gives

a qualitative indication of the accuracy of the proposed technique.

In Section 3.1, we briefly report the equation of motion and the boundary con-

ditions for Kirchhoff-Love plates. The fields are given in tensorial form. In Sec-

tion 3.2, we analyse perfect boundary conditions and we show the dependance on
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the direction of the wave. In Section 3.3, we detail the transformed equation of

motion, we describe the physical interpretation and we analyse the transformed

boundary conditions and the constraints to avoid reflection. Eigenfrequency anal-

ysis is given in Section 3.4 and several examples are reported highlighting that

standard approaches lead to an erroneous evaluation of egienfrequencies. In Sec-

tion 3.5 we introduce PMLs. After detailing the analytical form of the PMLs we

describe in Section 3.6 the implementation and the comparison with the analyt-

ical time-harmonic Green’s function in free space. Several analysis of optimality

are performed to show the influence of the following aspects: discretization, fre-

quency, type of boundary conditions, relative dimensions of the PMLs, amount of

transformation, dissipation and relative position of the applied load.

Figure 1.2: Transverse displacement amplitude in a plate generated by the interac-
tion of two point loads. (a) FEM analysis on a finite domain implemented in Comsol

Multiphysics R©. (b) Analytical free-space solution.

In Chapter 4 we propose a new type of metamaterial plate.

Metamaterials are microstructured media engineered to have properties that are

not found in nature. The first models were developed in electromagnetism and

optics and then extended to acoustic and elasticity [22, 23, 34, 36]. More recently,

systems such as the Kirchhoff-Love plate equations for flexural waves, labelled as

platonics by McPhedran et al. [72], have been addressed. This flexural systems

may show many of the typical anisotropic effects from photonics such as ultra-

refraction, negative refraction and Dirac-like cones [3, 39, 73, 106, 116]. Structured

plates may also show the capability of cloaking applications [37, 38, 76, 111] as a

result of inhomogeneous and anisotropic constitutive properties and axial prestress

[20, 33, 54].
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One of the main properties of the biharmonic equation of motion governing the

propagation of flexural wave is the decomposition into the Helmholtz and modified

Helmholtz equations, associated respectively to the presence of propagating and

evanescent waves. Such waves can be coupled via the boundary or interface contact

conditions. In most configurations the flexural waves are led by their Helmholtz

component [72] and the homogenized equation can be of parabolic type at special

frequencies [3, 73]. However, short range wave scattering and Bragg resonance can

be strongly influenced by the evanescent waves.

Periodic structures play a major role in this field [14], since they create band gaps.

These are frequency ranges where waves cannot propagate through the periodic

system leading to possible application as acoustic and mechanical wave filters,

vibration isolators, seismic shields. Partial band gap can lead to anisotropic wave

response that can be used to obtain focusing and localization [12, 18, 91] as well

as polarization properties [60, 70].

Two physical mechanisms can open band gaps: Bragg scattering and local reso-

nance [52, 74]. Bragg scattering is associated to the generation of band gaps at

wavelengths of the same order of the unit cell around frequencies governed by the

Bragg condition a = n(λ/2), (n = 1, 2, 3, · · · ), where a is the lattice constant of

the periodic system and λ the wavelength [79]. Local resonances are associated to

internal resonances due to the microstructures, they can be obtained from array

of resonators as suggested in the seminal work [67]. Local resonances open tiny

band gaps that can be at low frequencies [48, 121, 122] and inertial amplification

mechanism that can widen stop band intervals have been proposed in [1, 42].

In the Thesis we propose an alternative approach in which we combine Bragg

scattering and internal resonance inserting snail resonators within a periodically

perforated plate. Internal resonances can be at extremely low frequencies since

the equivalent stiffness of the ligament connecting the inertial elements to the

host plate is arbitrarily low. In addition, the systems present not a single but a

set of different resonance frequencies within the acoustic branch. In Section 4.1,

we introduce the platonic plate with snail resonators, we detail the geometry in

Section 4.1.1 and we determine the dispersion properties in Section 4.2. In Section

4.3 we derive the analytical estimation of the lowest frequencies of the proposed

model. Finally, in Section 4.4, we show some numerical results addressing the

capability of the microstructured platonic crystal to direct the wave propagation

through the media, leading to localization, wave trapping and by-pass systems.



Chapter 2

Perfectly Matched Layers for

Flexural waves in Beam

structures

Here, we give the analytical form of PMLs for flexural waves in Euler-Bernoulli

beams, we describe the implementation and we perform a quantitative analysis on

the perturbation introduced by PML for perfect and classical boundary conditions.

2.1 Longitudinal waves in a rod

We start presenting the transformation of coordinates technique for a problem

governed by a second-order differential equation. We show that for a rod the

transformed equation maintains its form and the interface conditions are auto-

matically satisfied eliminating any problem of reflection at the interface.

2.1.1 Equation of motion

We consider a thin rod having Young’s modulus E, mass-density ̺ and cross-

sectional area A. The rod is shown in Figure 2.1.

9
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Figure 2.1: Beam structure. The displacement at point X and time t is U =
(U,V,W)

The longitudinal component U of the displacement vectorU = (U,V,W), function

of the position X and time t, satisfies the equation of motion [56]

[EAUX(X, t)]X = ̺AUtt(X, t), (2.1)

where subscripts indicate derivative with respect to the indicated variable, i.e.

UX = ∂U/∂X and Utt = ∂2U/∂t2. The axial force is N = EAUX . For a homoge-

neous rod the longitudinal stiffness EA and the linear density ̺A are constant.

In the time-harmonic regime the displacement is U(X, t) = U(X)e−iωt, with ω the

radian frequency, and the longitudinal component of the displacement satisfies the

Helmholtz equation

[EAUX(X)]X + ̺Aω2U(X) = 0. (2.2)

2.1.2 Transformed equation

We introduce a coordinate transformation x = G(X), with G(.) injective function,

and we indicate with g(x) the inverse function G−1. First-order derivative in the

original coordinate X and in the transformed one x are related by

d

dX
=

1

gx

d

dx
. (2.3)

Implementing the coordinate transformation in Eq. (2.2), we obtain the trans-

formed equation of motion introducing a transformed displacement u(x) such that

u(x) = U(X). The transformed equation of motion has the form

[

EAux(x)
]

x
+ ̺Aω2u(x) = 0, (2.4)
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which corresponds to an inhomogeneous rod having longitudinal stiffness EA =

EA/gx and linear density ̺A = gx̺A. In general, the transformed longitudinal

stiffness and linear density are inhomogeneous. However, for affine transformations

where gx(x) = const, they reduce to the homogeneous case.

2.1.3 Interface boundary conditions

Let us apply the coordinate transformation in a domain X > X0, where X0 is a

given point. In such a case the problem is governed by the untransformed equation

of motion (2.2) for X < X0 and by the transformed equation of motion (2.4)for

X > X0.

The untransformed and transformed domains have to share the same interface

point, which means that the transformation has to satisfy the relation X0 =

g(x0) = x0. In addition, at the interface point X0 continuity conditions on the

longitudinal displacement and on the axial force must be satisfied. We note that,

if after transformation displacement u(x) or axial force n(x) change at the point

X0, a reflected wave will be generated. Clearly, zero reflection is required to have

perfect match.

For the rod, in addition to the imposed equality u(x) = U(X), we have

n(x) = EA
d

dx
[u(x)] =

EA

gx
gx

d

dX
[u(x)] = EA

d

dX
[U(X)] = N(X). (2.5)

Therefore, both displacement u and axial force n in the transformed point x are

equal to displacement U and axial force N in the original point X. These two

equalities clearly hold also at the point X0 = x0 assuring the absence of reflection

at the interface.

2.1.4 Eigenfrequency Anlaysis

Here we compute eigenfrequencies and eigenmodes for longitudinal waves in a

domain in which we introduce a transformation, and we compare the results with

the eigenfrequencies and eigenmodes in a homogeneous system in the absence of

the transformation.
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We consider an homogeneous rod of length 2L fixed at its ends. The solution of

the Helmholtz equation (2.1) is

U(X) = A1e
iαX + A2e

−iαX , (2.6)

where α = ω
√

E/̺.

For fixed-fixed boundary conditions U(±L) = 0 the eigenfrequency need to satisfy

the condition sin(2αL) = 0, leading to the well-known results ω =
√

̺/E(nπ)/(2L),

with n positive integer. The corresponding eigenmodes are sin[nπ(X + L)/(2L)].

Now, we introduce a second structure having the same homogeneous properties

for −L ≤ X ≤ 0, while the right half 0 ≤ X ≤ L is transformed into the domain

0 ≤ x ≤ l by generic transformation G(X) with inverse g(x). The transformation

g(x) has to satisfy the conditions g(0) = 0 and g(l) = L. The problem is solved

by
{

U(X) = B1e
iαX +B2e

−iαX , for − L ≤ X ≤ 0,

u(x) = B3e
iαg(x) +B4e

−iαg(x), for 0 ≤ x ≤ l.
(2.7)

The solution is found by satysfying the boundary conditions

U(−L) = u(l) = 0 (2.8)

and the interface conditions

U(0) = u(0), EAU ′(0) = EA(0)u′(0). (2.9)

The system of boundary and interface conditions has the form













e−iαL eiαL 0 0

1 1 −1 −1

iα −iα −iα iα

0 0 eiαg(l) e−iαg(l)

























B1

B2

B3

B4













=













0

0

0

0













. (2.10)

The condition of determinant equal to zero for the matrix in Eq. (2.10) is

− 4α sin(2αL) = 0, (2.11)

which gives exactly the same eigenfrequencies as in the homogeneous case.
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Figure 2.2: Eigenmodes for longitudinal waves in a rod. (a) Homogeneous rod of
length 2L. (b-d) The rods are subjected to a geometric transformation in the domain
0 ≤ X ≤ L. (b) Rod subjected to the linear transformation (2.12) with l/L = 0.2. (c)
Rod subjected to the linear transformation (2.12) with l/L = 2. (d) Rod subjected to

the non linear transformation (2.13) with l/L = 0.2.

The eigenmodes for the homogeneous problem and the problem with transforma-

tion are given in Figure 2.2. We consider different transformation. We start with

two linear transformations given by

ga(x) =
L

l
x, (2.12)

where we consider the two cases l/L = 0.2 and l/L = 2. Then, we show the results

for the nonlinear transformation

gb(x) =
e−100x − 1

e−100l − 1
L, (2.13)

From the comparative analysis in Figure 2.2 it is shown that the eigenmodes

are the same in the homogeneous domain while u(x) = u[G(X)] = U(X) in the
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inhomogeneous ones. The eigenmodes in the transformed domains can be tuned

by changing the transformation g(x), which can be linear or not.

2.1.5 Transformation for Perfectly Matched Layers in a

rod

In addition to the perfect match, the transformation must damp the incoming

waves; this target can be achieved by applying a complex transformation with

g(x) = x + ih(x), where the real function h(x) ≥ 0 and h(x0) = 0. We note

that, employing such a transformation, the generic wave exp[ikX] is transformed

into the wave exp[k(−h(x) + ix)], which decays exponentially fast. Such a model,

based on coordinate transformation, include previously proposed PMLs obtained

introducing artificial dissipation in the form of complex linear stiffness and density,

respectively. In [103] complex material parameters were used to build PMLs for

electromagnetic problems, which are governed by Helmholtz equations, while the

conformal mapping technique was applied in [26] in order to define PML for the

plane elastodynamic problem governed by a system of second-order PDE. Here

we consider the general transformation g(x) = x + iα(x − x0)
n, where α and n

are two parameters that can be varied in order to tune the wave damping. For

the purpose of illustration, we show a comparison between an analytical solution

and a numerical implementation for the infinite body Green’s function. For the

rod problem the time-harmonic Green’s function expressing the displacement in

X due to a unit force applied in Xc vibrating harmonically with frequency ω is

given by

Ug(X,Xc;ω) = − 1

2k
sin k|X −Xc|, (2.14)

where k = ω
√

̺/E (see, for example, [56]).

In Figure 2.3a we compare the analytical solution for the infinite body Green’s

function with a numerical solution with α = 1 and n = 1, implemented in Comsol

Multiphysics R© on a finite domain of total length of 20m and centered at X =

0. Two PML domains have been implemented in the boundary regions 8m ≤
|X| ≤ 10m so that X0 = ±8m, the radian frequency is ω = π/2. We stress the

excellent agreement between the analytical and numerical solutions and the wave

damping within the PML regions. The agreement between the analytical and

numerical solutions demonstrates the matching at the interface points X0 = ±8
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PMLPML

Numerical

Analytical

PML

(a) (b)

Figure 2.3: Time-harmonic infinite body Green’s function in rod structures. Re-

sults are given for k = 1m−1. (a) Comparison between analytical solution (2.14) for an
infinite rod and numerical solution implemented in Comsol Multiphysics R© for a finite
system, with |X| ≤ 10m and radian frequency ω = π/2. The PMLs have been imple-
mented employing a transformation with α = 1 and n = 1. (b) Comparison between
numerical solutions with transformation parameters α = 1, n = 1 and α = 3, n = 4.

Results are given for ω = π and are shown only in the region 0 ≤ X ≤ 10m.

and the absence of reflection. In part (b) we compare two numerical solutions

obtained applying an affine transformation with α = 1, n = 1 and a non-affine

transformation with α = 3, n = 4. The results, given for ω = π and reported only

in the region X ≥ 0, show again excellent agreement in the central region and the

increased damping for the second choice of material parameters.

In conclusion of this Section we note that the transformation is frequency indepen-

dent and, therefore, the PMLs work equally well at different frequencies subjected

to the usual limitations on the mesh size with respect to the wavelength.

2.2 Flexural waves in a beam

In this Section we apply the transformation coordinates technique for flexural

waves in a slender Euler-Bernoulli beam, governed by a fourth-order differential

equation. We give a physical interpretation of the transformed equations as in

[20, 33]. We also show that, under coordinate transformation, the transformed

medium possesses the same eigenfrequencies as the original one, a property that

can be used in order to check to correctness of the transformation in finite domains

with evident advantages on the implementation.
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2.2.1 Equation of motion

We consider time-harmonic transverse displacements V(X, t) = V (X)e−iωt in a

slender Euler-Bernoulli beam structure as in Figure 2.1. The beam has cross-

sectional area A, second-moment of inertia J and density ̺. The equation of

motion for V (x) is

[EJ VXX(X)]XX − ̺Aω2V (X) = −TX(X)− ̺Aω2V (X) = 0. (2.15)

where T (X) = MX(X) = −[EJ VXX(X)]X is the shear force and M(X) the

bending moment. The transverse displacement component W (X) is governed by

an analogous fourth-order differential equation.

2.2.2 Transformed equation

Again, we introduce the transformation x = G(X), with inverse transformation

X = g(x).

Setting this transformation on the equation of motion (2.15) leads to

EJ [
[vxx(x)]xx

g3x
− 6

gxx
g4x

[vxx(x)]x +
15g2xx − 4gxxgx

g5x
[vxx(x)]

+
10gxxxgxxg

5
xx − gxxxxg

6
x − 15g4xg

3
xx

g10x
[vx(x)]] + ̺A(x)ω2v(x) = 0, (2.16)

Then, the transformed equation of motion can be recollected in

[t(x) + n(x)vx(x)]x + ̺A(x)ω2v(x) = 0, (2.17)

where v(x) is the transformed transverse displacement, that we assume equal to

V (X). The transformed shear and axial forces are given by

t(x) = mx(x) = −
[

EJ(x)vxx(x)
]

x
, n(x) =

3g2xx(x)− gxxx(x)gx(x)

g5x(x)
EJ,(2.18)
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respectively, where m(x) is the transformed bending moment. The bending stiff-

ness and linear density transform as follows

EJ(x) =
EJ

g3x
, ̺A(x) = gx̺A. (2.19)

We note that the equation of motion (2.17) represents an inhomogeneous beam in

presence of axial stress (see [20, 33]). As for the Helmhotz equation transformation

changes homogeneous, isotropic material in an inhomogeneous, anisotropic one.

The flexural case has the additional feature that transformed equation of motion

does not retain its form. We interpret the additional terms as axial forces n(x).

2.2.3 Interface conditions

Again interface conditions must satify the continuity of fields between transformed

and untransformed domains. A change in the boundary interface values of the

fields leads to a perturbation of the original field and to consequent wave reflection.

At the interface X0 = x0 between untransformed and transformed domains the

following essential conditions







V (X0) = v(x0),

VX(X0) = vx(x0),
(2.20)

and natural conditions







M(X0) = m(x0),

T (X0) = t(x0) + n(x0)vx(x0),
(2.21)

must be satisfied.

Expressing the interface conditions in the transformed domain as a function of the
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original variable X, of the original displacement V(X) and of the inverse transfor-

mation function g(x), we obtain after simple algebraic manipulations



































































v(x0) = V (X0),

vx(x0) = gx(x0)VX(X0),

m(x0) = −EJ
g2x(x0)VXX(X0) + gxx(x0)VX(X0)

g3x(x0)
,

r(x0) = t(x0) + n(x0)vx(x0) = EJ
3g2xx(x0)− gxxx(x0)gx(x0)

g4x(x0)
V (X0)

−EJ
g3x(x0)VXXX(X0) + 3gx(x0)gxx(x0)VXX(X0) + gxxx(x0)VX(X0)

g3x(x0)
.

(2.22)

Then, the constraints

gx(x0) = 1, gxx(x0) = 0, gxxx(x0) = 0, (2.23)

in Eqs. (2.22) assure that interface conditions (2.20) and (2.21) are satisfied in-

dependently on the general choice of the transformation G(X) or of its inverse

g(x). The three conditions in Eq. (2.23) must be complemented by the additional

condition X0 = g(x0) = x0, which identifies the same interface point between

untransformed and transformed domains.

We note that transformed bending stiffness and linear density, defined in Eq.

(2.19), are homogeneous only for affine transformation. Hovewer, the only ad-

missible affine transformation for the beam case is the identity in view of the

constraints g(x0) = X0 and gx(x0) = 1, which means that an inhomogeneous

material is needed in the transformed domain.

2.2.4 Eigenfrequency Anlaysis

Here we compare eigenfrequencies and eigenmodes for a homogeneous beam de-

fined in the domain −L ≤ X ≤ L and for a second beam structure where we

apply a transformation on the right half of the structure 0 ≤ X ≤ L which

transforms into the domain 0 ≤ x ≤ l, as shown in Figure 2.4a. We consider a

polynomial transformation g(x) subjected to the constraints as in Eq. (2.23) and

x0 = g(x0) = X0 at the interface point x0 = X0 = 0. In addition, we impose



Chapter 2. Perfectly Matched Layers for Flexural waves in Beam structures 19

g(l) = L, which defines the length of the transformed domain and the additional

conditions

gx(l) = 1, gxx(l) = 0, gxxx(l) = 0, (2.24)

assuring the direct identification of the same boundary conditions on rotation,

moment and vertical force at the boundary point x = l, as demonstrated in the

previous Section. The corresponding transformation is the monotonically increas-

ing polynomial

g(x) = x+ 35
L− l

l4
x4 − 84

L− l

l5
x5 + 70

L− l

l6
x6 − 20

L− l

l7
x7. (2.25)

Coordinate transformation (2.25) does not depend on the boundary conditions.

For specific boundary conditions it is not necessary to impose all conditions (2.24);

for example, in the case of a simple support, where V (L) = 0, VXX(L) = 0,

VX(L) 6= 0 and VXXX(L) 6= 0, only the conditions gx(l) = 1, gxx(l) = 0 are needed

to assure that the bending moment m(l) is zero in addition to the displacement

v(l) (see Eq. (2.22)). Nevertheless, we have proposed transformation (2.24) which

includes all possible boundary conditions.

We also note that, apart from satisfaction of conditions at interface and boundary

points, there is complete freedom in the choice of the transformation g(x) within

a properly defined set of functions.

Restricting the attention to a simply supported beam, the homogeneous problem

governed by the Eq. (2.15) has solution

V (X) = A1e
iβX + A2e

−βX + A3e
−iβX + A4e

βX , (2.26)

where β4 = (̺A)/(EJ)ω2; such a solution, supplemented by the boundary con-

ditions V (−L) = V (L) = 0, VXX(−L) = VXX(L) = 0, gives the well known

result that eigenfrequencies are ω = (nπ)2/(4L2)
√

(EJ)/(̺A) (n positive integer

number) and the corresponding eigenmodes are V (X) = sin[nπ(X + L)/(2L)].

For the problem in which the region 0 ≤ X ≤ L has been transformed into the

region 0 ≤ x ≤ l by mean of the transformation (2.25), the solution (2.26) is still

valid within the domain −L ≤ X ≤ 0, while in the domain 0 ≤ x ≤ l the problem

is governed by the transformed equation of motion, given in Eq. (2.17). In such a
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Figure 2.4: Eigenmodes of homogeneous beam of length 2L and inhomogeneous
beam of length L + l. (a) Simply supported beams: the inhomogeneous beam
has been obtained from transformation (2.25), the half-length L = 1 m is trans-
formed into the length l = 0.2 m. (b) First eigenmodes for the two structures at
ω = π2/(4L2)

√

(EJ)/(̺A). (c) Second eigenmodes at ω = 4π2/(4L2)
√

(EJ)/(̺A).

(d) Third eigenmodes at ω = 9π2/(4L2)
√

(EJ)/(̺A).

domain the inhomogeneous bending stiffness and mass density are

EJ =
EJ

(

1 + 140L−l
l4

x3 − 420L−l
l5

x4 + 420L−l
l6

x5 − 140L−l
l7

x6
)3 ,

̺A =

(

1+140
L− l

l4
x3−420

L− l

l5
x4+420

L− l

l6
x5−140

L− l

l7
x6

)

̺A, (2.27)

respectively.

The equation of motion for the transformed domain has the general solution

v(x) = B1e
iβg(x) +B2e

−βg(x) +B3e
−iβg(x) +B4e

βg(x), (2.28)

The system of two equations of motion is supplemented by the four boundary

conditions V (−L) = v(l) = 0, VXX(−L) = vxx(l) = 0 and by the four interface

conditions given in Eqs. (2.20) and (2.21), where X0 = x0 = 0.

Eigenfrequencies and eigenmodes are obtained from the eigenvalues and eigenvec-

tors of the system of equations Ma = 0 given by the 8 boundary and interface

conditions, where a = [A1 A2 A3 A4 B1 B2 B3 B4]
T is the vector of the unknown

amplitudes and the matrix M collects the coefficients of the equations. Then, the

condition

detM = 256(EJ)2β10 sin(2βL) sinh(2βL) = 0, (2.29)

gives exactly the same eigenfrequencies of the homogeneous system, namely ω =

(nπ)2/(4L2)
√

(EJ)/(̺A) (n positive integer) and the trivial one ω = 0. The first 3
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Figure 2.5: Eigenmodes of homogeneous beam of length 2L and inhomogeneous
beam of length L+ l, L = 1 m and l = 0.2 m. (a) Clamped-free boundary conditions:
the first eigenmode is shown, the eigenfrequency is ω = (0.597π)2/(4L2)

√

(EJ)/(̺A).
(b) Clamped-clamped boundary conditions: the first eigenmode is shown, the eigenfre-

quency is ω = (1.505π)2/(4L2)
√

(EJ)/(̺A).

eigenmodes for the homogeneous and inhomogeneous systems are given in Figure

2.4 b-d. In particular, we note that the solution in the transformed domain is

v(x) = V [g(x)] = V (X).

In Figure 2.5 we report the first eigenmode for the two structures for different

boundary conditions and the same transformation given in Eq. (2.25): clamped-

free in part (a) and clamped-clamped in part (b). Again, the eigenfrequencies for

the homogeneous and inhomogeneous systems coincide and the eigenmodes in the

transformed domain are such that v(x) = V (X).

We note that, while the coincidence of eigenfrequencies can be expected, it depends

on the boundary conditions which, in the case of flexural waves, are not preserved

by a general transformation, as shown previously. We also stress that, to the best

of our knowledge, such a comparison has never been considered before to check

the connection between the solutions before and after transformation.

2.2.5 Perfectly Matched Layers in a beam

A main feature of Perfectly Matched Layer is the damping of propagating wave

avoiding any reflection. In order to introduce dissipation we consider a complex

transformation such that g(x) = gR(x) + igI(x), where gR(x) and gI(x) stand for

the real and imaginary parts. The constraints of Eq. (2.23) at the interface point
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X0 = x0 plus the condition g(x0) = x0 imply that



































gR(x0) = x0, gI(x0) = 0,

gRx (x0) = 1, gIx(x0) = 0,

gRxx(x0) = gIxx(x0) = 0,

gRxxx(x0) = gIxxx(x0) = 0.

(2.30)

Therefore, if we consider a polynomial transformation, the real and imaginary

parts gR(x) and gI(x), respectively, must be at least polynomials of degree 4 in

(x− x0) and, for the imaginary part, the lowest non-zero term has at least power

4.

2.2.6 Additional boundary condition

In the implementation of the Perfectly Matched Layer within a Finite Element

code the infinite domain is substituted by a finite domain, which introduces an

additional boundary condition at the boundary x = x1 of the Perfectly Matched

Layer domain. In general, this boundary condition perturbs the infinite domain

solution.

By looking at the solution (2.28) of the transformed problem, we note that the

propagating solution B1e
iβg(x) +B2e

−βg(x) is generated at the interface at x = x0,

while the reflected solution B3e
−iβg(x) + B4e

βg(x) is generated at the fictitious

boundary x = x1. Therefore, a possible approach in order to eliminate the per-

turbation introduced by the additional boundary conditions, is to define ad-hoc

boundary conditions at x = x1 that would eliminate the reflected solution, namely

boundary conditions leading to B3 = B4 = 0. The fields at x = x1 can be written

in the partitioned form

[

A11 A12

A21 A22

](

b1

b2

)

=

(

c1

c2

)

(2.31)
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where

b1 =

(

B1

B2

)

, b2 =

(

B3

B4

)

,

c1 =

(

v(x1)

vx(x1)

)

, c2 =

(

m(x1)

r(x1)

)

, (2.32)

and

A11 =

[

eiβg(x1) e−βg(x1)

iβgx(x1)e
iβg(x1) −βgx(x1)e

−βg(x1)

]

,

A12 =

[

e−iβg(x1) eβg(x1)

−iβgx(x1)e
−iβg(x1) βgx(x1)e

βg(x1)

]

,

A21 = EJ β











eiβg(x1)[βg2x(x1)− igxx(x1)]

g3x(x1)
−e−βg(x1)[βg2x(x1)− gxx(x1)]

g3x(x1)

i eiβg(x1)η1(x)

g4x(x1)

e−βg(x1)η2(x)

g4x(x1)











,

A22 = EJ β











e−iβg(x1)[βg2x(x1) + igxx(x1)]

g3x(x1)
−eβg(x1)[βg2x(x1) + gxx(x1)]

g3x(x1)

− i e−iβg(x1)η1(x)

g4x(x1)
−eβg(x1)η2(x)

g4x(x1)











,

(2.33)

with

η1(x) = β2g4x(x1) + 6gxx(x1)
2 − 2gx(x1)gxxx(x1)],

η2(x) = β2g4x(x1)− 6gxx(x1)
2 + 2gx(x1)gxxx(x1)]. (2.34)

If we substitute the solution b1 = A−1
11 [c1−A12b2] of the first pair of equations in

(2.32), into the second pair of equations, we obtain

(A22 −A21A
−1
11 A12)b2 = c2 −A21A

−1
11 c1. (2.35)

The solution of the system of two equations (2.35) is zero, i.e. B3 = B4 = 0, if

c2 = A21A
−1
11 c1, (2.36)

provided that

det[A22 −A21A
−1
11 A12] 6= 0 and det[A11] 6= 0. (2.37)
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The two conditions in (2.36) express the natural boundary conditions m(x1) and

r(x1) as a function of the essential boundary conditions v(x1) and vx(x1). The

explicit expressions are

m(x1) = EJ
−iβ2g3x(x1)v(x1) + [−gxx(x1) + (1− i)βg2x(x1)]vx(x1)

g4x(x1)
,

r(x1) = EJ
(1 + i)β3g5x(x1)v(x1) + [η1(x1) + (i− 1)β2g4x(x1)]vx(x1)

g5x(x1)
, (2.38)

where η1 is given in Eq. (2.34). We note that the two determinants in Eq. (2.37)

can be always set different from zero for every β by modulating the quantity g(x1).

The Perfectly Matched Layer and the optimal boundary conditions given in Eq.

(2.38) have been implemented in the Finite Element code Comsol Multiphysics R©.

In particular, we consider the infinite body time-harmonic Green’s function, which

has the analytical expression

Vg(X,Xc;ω) =
1

4EJβ3
[e−β|X−Xc| + sin(β|X −Xc|)], (2.39)

as in [19]. The analytical expression is compared with numerical simulations. We

considered the following structural parameters: EJ = 1MPa, ρA = 1kg/m, XC =

0m, X0 = x0 = ±8m and x1 = ±10m. The implemented inverse transformation

is

g(x) = x∓ 35(x1 − 2x0)

(x1 − x0)4
(x∓ x0)

4 +
84(x1 − 2x0)

(x1 − x0)5
(x∓ x0)

5 ∓

70(x1 − 2x0)

(x1 − x0)6
(x∓ x0)

6 +
20(x1 − 2x0)

(x1 − x0)7
(x∓ x0)

7 + i(x∓ x0)
n, (2.40)

where ∓ stands for the PML domains at x ∈ (±x0,±x1) and α = 5. Transforma-

tion (2.40) has been obtained applying conditions (2.30), where x0 stands for ±x0

and conditions

gR(±x1) = ±2x0, gRx (±x1) = 1, gRxx(±x1) = 0, gRxxx(±x1) = 0 (2.41)

on the real part of the transformation. Additional conditions on the imaginary

part of the transformation gI at x = ±x1 have not been applied since they lead to

larger amplitude reflected fields.

The deformed shapes are given in gray lines in Figure 2.6a for different discretiza-

tions, while the dashed black line indicates the analytical solution as in Eq. (2.39).
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The comparative analysis shows that the results converge towards the analytical

solution in the central region increasing the number of elements. In the PML

regions it is evident the damping of the wave.

PML PML
Analytical

1.5 2.0 2.5 3.0

(a) (b)

Figure 2.6: (a) Time-harmonic Green’s function. The analytical displacement of Eq.
(2.39) is given in black dashed line. The numerical results are given in continuous gray
lines. Different curves correspond to different size s of the elements given in meter; the
elements have constant length within the domain (−x1, x1) = (−10m, 10m) (b) Quality

factor Q as a function of the size s of the element. Results are given in logarithmic
scale.

We define the quality factor, the measure

Q =

∫ +X0

−X0

(

V (X)− Vg(X, 0;ω)

Vg(0, 0;ω)

)2

dX, (2.42)

where V (X) is the solution in the untransformed domain X ∈ (−X0, X0). Q
is a quantitative description of the quality of the PML, which tends to 0 for

perfect PML, indicating the absence of perturbation within the central domain

X ∈ (−X0, X0). In Figure 2.6b the quality factor Q is shown as a function of

the size s of the elements in double logarithmic scale. For simplicity, in each

computation we considered elements of the same size s. The results show an

excellent convergence of the numerical results toward the analytical solution. The

linear regression, indicated with a dashed line in Figure 2.6b, indicates that the

quality factor Q goes to zero as 6.78 s8.14.

2.2.7 Perfectly Matched Layers with standard boundary

conditions

In Section 2.2.6 we detailed how to implement perfect PML proposing an optimal

solution for the additional boundary conditions introduced in the finite domain
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implemented numerically. Such a model gives excellent results, but has two lim-

itations: first, it is difficult to implemen in a standard Finite Element code and

second, boundary conditions are frequency dependent. Specifically, relations (2.38)

between different boundary conditions depend on the parameter β ∝

√
ω and the

frequency dependence limits the applicability of the proposed model to transient

problems.

Here, we propose a simpler solution with frequency independent boundary con-

ditions. In particular, we implement classical boundary conditions at x = ±x1,

namely clamped, free and simply supported.

Free

Clamped

Simply Supported

Figure 2.7: Quality factor Q as a function of the normalized frequency m0β. Results
are given for the same mechanical parameters of Figure 2.6. Continuous black line
corresponds to simply supported boundary conditions, continuous gray line to free

boundaries and dashed black line to clamped boundaries.

When these classical boundary conditions are implemented in Comsol Multiphysics R©

the obtained displacement fields, not reported here for brevity, show again an

excellent agreement with the analytical results in the central region. In Figure

2.7 we report the quality factor Q as a function of the normalized frequency

m0β = (x1 − x0)β for n = 4 in Eq. (2.40). The quality factor Q has been com-

puted from the analytical solutions for the infinite medium and the finite medium

with PML in order to check the effect of the boundary conditions independently

on the influence of the discretization. The convergence increases with frequency

and the three boundary conditions give equivalent results with a preference on the

simply supported case at the lowest frequencies. Increasing the exponent n in the

imaginary part of g(x) in Eq. (2.40) gives equivalent results with the difference
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that the frequency oscillations for the quality factor Q curves as a function of β

increases with n.

2.2.8 Dimension of the Layer

In order to estimate the error introduced by the layer of dimension m0 = |x1−x0|,
we consider an incident plane wave wI(X) = eiβX impinging the interface between

the homogeneous domain and the PML at X0 = x0 = 0 and generating the

reflected wave wR(X) = R1e
−iβX + R2e

βX and the transmitted wave wT (x) =

T1e
iβg(x)+T2e

−βg(x)+T3e
−iβg(x)+T4e

βg(x), where the six constants R1, R2, T1, T2, T3,

T4 can be easily found by imposing the four interface conditions at x = x0 = 0 and

two boundary conditions at x = x1 = x0+m0. The solution, for different boundary

conditions has the form T1 = 1, T2 = 0, indicating the perfect match at the

interface, and R1 = T3, R2 = T4, showing that the reflected wave is generated by

the boundary conditions at x = x1. In particular, for perfect boundary conditions

as in Eq. (2.38) there is no reflection, i.e. R1 = T3 = R2 = T4 = 0, and, in

principle, the only boundary conditions (2.38) are sufficient to avoid reflection

without the need to introduce a PML. For clamped, simply supported and free

boundary conditions the reflected amplitudes

|R1| = f1(m0, β)e
−2m4

0β, |R2| = f2(m0, β)e
−m4

0β, (2.43)

where f1(m0, β) and f2(m0, β) are O(1) in m0 and β and α is the exponent of

the imaginary part of the transformation (2.40). For all boundary conditions,

including the perfect ones, the displacement amplitudes decays exponentially as

e−mα

0 , while [81] indicates that for problems governed by Helmhotz equations the

reflection coefficients decay exponentially as e−2m0 .

2.2.9 Transient Load Results

The PMLs with simply supported boundary conditions has been tested for the

transient load as given in Figure 2.8. For the transient regime the following equa-

tions of motion have been solved numerically:

[EJ VXX(X, t)]XX + ̺AVtt(X, t) = 0, (2.44)
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in the untransformed domain D1 and

[

(EJ(x)vxx(x, t))x − n(x)vx(x, t)
]

x
+ ̺A(x) vtt(x, t) = 0, (2.45)

in the transformed one D2, where EJ and ̺A are given in Eq (2.19) and n(x) is

given in Eq. (2.18) and they are the same as in the time-harmonic regime. Zero

initial boundary conditions have been applied, namely

V (X, 0) = v(x, 0) = 0, Vt(X, 0) = vt(x, 0) = 0, X ∈ D1, x ∈ D2, (2.46)

The time dependent point load

F (t) =
6
∑

i=1

[

(−1)i+110i e1000(t−0.08i)2
]

(2.47)

is shown in Figure 2.8 and it has been applied at X = 0. Two geometries have

been implemented in Finite Elements: a larger one with homogeneous properties

EJ = 1Pa, ̺A = 1kg/m and X ∈ [−20m, 20m] and a shorter one with the same

homogeneous properties in X ∈ [−4m, 4m] and PMLs in |X| ∈ [4m, 7m]. The

transformation is given in Eq. (2.40) with α = 5 and it is unchanged with respect

to time-harmonic regime since it involves only a spatial transformation. The two

initial boundary value problems have been solved in Comsol Multiphysics R© using

a backward differentiation formula; a total of 5s has been analyzed and standard

convergence analysis has been considered on the time steps and element size; the

initial step has been set to 10−4 and elements of uniform size s = 5cm have been

implemented.

Figure 2.8: Time distribution of the point load applied at X = 0 in the transient
analysis.
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The transverse displacement is given in Figure 1.1 at t = 0.5 s, when the propagat-

ing wave has reached the fictitious boundary at x1 = ±7m but not the boundaries

X = ±20m for the larger domain. In the Figure only the regionX ∈ [−10m, 10m]

is shown for visualization purposes. The comparison between the two numerical

solutions evidences an excellent agreement in the central region where PML are

not present. Such an example reveals the competitive behavior of the proposed

technique in the transient regime; this is expected since only a spatial transfor-

mation g(x) is implemented. Nevertheless, a complete analysis of the transient

response requires a different type of study which is left for a future work.



Chapter 3

PML for flexural waves in

Kirchhoff-Love plates

Here, we give the analytical form of PMLs for flexural waves in Kirchhoff-Love

plates, we describe the implementation and we perform a deep quantitative anal-

ysis on the dependance of the perturbation on several parameters.

3.1 Equation of motion

We consider flexural vibrations in a thin Kirchhoff-Love plate as in Figure 3.1.

The plate has thickness h, bending stiffness B = Eh3/(12(1 − ν2)), with E the

Young’s modulus and ν the Poisson’s ratio, and density ̺.

Time-harmonic regime is considered and the time dependence e−iωt, with ω the

radian frequency, is neglected in the following for simplicity. Transverse displace-

ment is W (X), where X = (X1, X2). Rotation is the vector Φ(X) = ∇XW (X)

and curvature is the tensor χ(X) = ∇X∇XW (X).

The static quantities are the bending moment symmetric tensor M and the shear

force vector V = ∇X ·M. The constitutive relation between the bending moment

tensor M and the curvature χ(X) is given by

M = −D
(0)χ (3.1)

30
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Figure 3.1: Plate structure. The transverse displacement, in direction X3, is W .
The plate has thickness h, bending stiffness B and density ̺.

where, for isotropic plates, the constitutive tensor D(0) has components

D
(0)
IJKL = B

[

ν δIJδKL +
1− ν

2
(δIKδJL + δILδJK)

]

, (I,J,K,L=1, 2), (3.2)

with δIJ the Kronecker delta.

Explicitly, the moment-curvature relations are:

M11 = −B (W,11 + νW,22) ,

M22 = −B (W,22 + νW,11) ,

M12 = −B(1− ν)W,12, (3.3)

where MIJ (I, J = 1, 2) are the components of the moment tensor.

Then, the equation of motion for the plate in the domain Ω has the form

∇X · [∇X ·M(X)] + ̺hω2W (X) = ∇X ·V(X) + ̺hω2W (X) = 0, (3.4)

which, in the isotropic case, simplifies to the well-known bi-harmonic form

(∇2
X
∇2

X
− β4)W (X) = 0, β4 =

̺h

B
ω2. (3.5)

3.1.1 Boundary conditions

At a point X0 on the boundary ∂Ω, having normal N and tangent T, the essential

boundary conditions are imposed on W (X0) and ΦN(X0) = ∇XW (X0) · N and
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the natural boundary conditions are imposed on MNN(X0) = M(X0)N · N and

RN(X0) = R(X0) ·N, with R = V +∇XM(T⊗T) (see, for example, [115]). 1

3.2 Perfect Boundary Conditions

A common approach implemented to cancel reflection is the definition of non-

reflecting boundary conditions. Here we show that, consistently with problem

governed by Helmholtz equations, non reflecting conditions depend on the incident

wave and, therefore, are not an optimal solution strategy.

We consider a wave reflected by a straight boundary at X1 = a. The general

solution of Eq. (3.5) is W (X) = eik2X2(Q1e
ik1X1 +Q2e

−k1X1 +Q3e
−ik1X1 +Q4e

k1X1)

representing propagating and evanescent waves in direction±X1 and a propagating

wave in direction X2, with the wave vector k = (k1, k2).

The essential and natural boundary conditions at X1 = a are

W (a,X2) = Weik2X2 ,

Φ1(a,X2) = Φ1e
ik2X2 ,

M11(a,X2) = M11e
ik2X2 ,

R1(a,X2) = V1(a,X2) +M12,2(a,X2) = R1e
ik2X2 , (3.6)

where W , Φ1, M11 and R1 are values at X1 = a.

The boundary conditions (3.6) can be written in the partitioned form

[

A11 A12

A21 A22

](

q1

q2

)

=

(

c1

c2

)

(3.7)

where

q1 =

(

Q1

Q2

)

, q2 =

(

Q3

Q4

)

,

c1 =

(

W

Φ1

)

, c2 =

(

M11

R1

)

, (3.8)

1In index notation [∇XM(T⊗T) ·N]N = MNT,T .
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and

A11 =

[

eik1a e−k1a

ik1e
ik1a −k1e

−k1a

]

,

A12 =

[

e−ik1a ek1a

−ik1e
−ik1a k1e

k1a

]

,

A21 = B







eik1a(k2
1 + νk2

2) −e−k1a(k2
1 − νk2

2)

i k1e
ik1a[k2

1 + (2− ν)k2
2] k1e

−k1a[k2
1 − (2− ν)k2

2]






,

A22 = B







e−ik1a(k2
1 + νk2

2) −ek1a(k2
1 − νk2

2)

−ik1 e
−ik1a[k2

1 + (2− ν)k2
2] −k1e

k1a[k2
1 − (2− ν)k2

2]






. (3.9)

The solution q1 = A−1
11 [c1 −A12 q2] of the first pair of equations in (3.7) can be

substitute in the second pair of equations, yielding

(A22 −A21A
−1
11 A12)q2 = c2 −A21A

−1
11 c1. (3.10)

Then, zero reflection corresponds to q2 = 0, i.e. Q3 = Q4 = 0, a condition

resulting from

c2 = A21A
−1
11 c1, (3.11)

provided that

det[A22 −A21A
−1
11 A12] 6= 0 and det[A11] 6= 0. (3.12)

Note that we impose equal to zero not only the reflected propagating wave (Q3 = 0)

as in [90], but also the reflected evanescent wave (Q4 = 0) associated with short

range effects.

The two scalar conditions in (3.11) express the natural boundary conditions M11

and R1 as a function of the essential boundary conditions W and Φ1. The explicit

expressions are

M11 = B
[

(−ik2
1 + νk2

2)W + (1− i)k1Φ1

]

,

R1 = B
[

(1 + i)k3
1W + (ik2

1 + k2
2(2− ν))Φ1

]

. (3.13)

As opposite to flexural waves in one-dimensional beam structures [77], given in
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Chapter 2, perfect boundary conditions (3.13) for plates depend on the direction

of the incident wave, namely on the wave vector components k1 and k2. Therefore,

it is not possible to obtain a set of relations independent on the incident wave,

solution of a specific boundary value problem. In the following, we outline a

different approach based on geometry transformation.

3.3 Transformed Equation of Motion

We introduce a smooth coordinate transformation x = G(X) and we indicate

with g(x) the inverse transformation from x to X. Transformation gradients are

defined as F = ∇XG and f = ∇g = F−1, with Jacobians J = det(F) and

j = det(f) = J−1. Gradient operators are related by

∇ = f ∇X. (3.14)

Applying coordinate transformation, the transformed equation of motion (see [20,

33, 77]) takes the form

∇ · [∇ ·m(x) + p∇w(x)] + ρhω2w(x) = 0. (3.15)

Figure 3.2: Geometric transformation of the domain Ω
(B)
0 into the domain Ω(B).

The domain Ω
(A)
0 is not transformed.

In Eq. (3.15) we assume the transformed transverse displacement w(x) = w(G(X)) =

W (X). The moment-curvature relation is transformed into

m(x) = −D(x)∇∇w(x), (3.16)
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where the inhomogeneous anisotropic constitutive tensor has components

Dijkl =
1

J
FiIFjJFkKFlL D

(0)
IJKL. (3.17)

Shear forces are v(x) = ∇ ·m(x) and the density is transformed as

ρ = ̺/J. (3.18)

Finally, we note that it is possible to give a physical meaning to the transformed

equation (3.15) by defining the longitudinal axial force tensor p(x) having com-

ponents

pkl = D
(0)
IJKL

{

(

1

J
FiIFjJ,iFkKFlL

)

,j

− 1

J
FjJ

[

FlI(FkK,iFiL),j+

FkI(FlK,iFiL),j +
1

2
(FlI,jFkK,iFiL + FkI,jFlK,iFiL)

]

}

. (3.19)

We note that a physical interpretation is not a necessary condition for the PML,

which is a numerical artifice introduced to have a finite domain without reflection.

Nevertheless, we are going to show that such an interpretation is useful during the

implementation in a numerical code; in addition, it can be used as a guide in the

creation of absorbing layers in experimental devices.

3.3.1 Interface conditions

Geometric transformation and the physical interpretation of the transformed equa-

tion of motion introduce a specific definition of the transformed fields, which affect

continuity conditions on the boundary of the domains where transformation is ap-

plied. Here, we detail the constraints on the transformation law that have to be

imposed in order to satisfy automatically the interface and the boundary con-

ditions. We start focussing on the interface between the untransformed domain

Ω
(A)
0 and the transformed domain Ω(B) and we consider the continuity conditions

at a point X0 on the boundary ∂Ω
(A)
0 , with normal N(A)(X0) (see Figure 3.2).

The point X0 coincides with the point x0 on the boundary ∂Ω(B), with normal

N(B) = −N(A) = N. After transformation the normal vector N transforms fol-

lowing Nanson’s formula n = J(X0)F(X0)
−TN = j−1(x0)f

T (x0)N, where we have
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indicated n(B) with n for ease of notation. Since the point X0 before transforma-

tion must coincide with the point x0 after transformation

x0 = g(x0), or G(X0) = X0. (3.20)

Additionally, since N(X0) = n(x0) the condition

trF(X0) = 1 + J, or trf(x0) = 1 + j, (3.21)

must be satisfied. Clearly, conditions (3.20) and (3.21) are satisfied by f(x0) =

F(X0) = I and the absence of any translation in X0 = x0.

Indicating with (A) and (B) the fields in the domains Ω
(A)
0 and Ω(B), respectively,

we have the following essential conditions

{

W (A)(X0) = w(B)(x0),

Φ
(A)
N (X0) = φ

(B)
n (x0) = ∇w(B)(x0) · n,

(3.22)

and natural conditions

{

M
(A)
NN(X0) = m

(B)
nn (x0) = m(B)(x0)n · n,

R
(A)
N (X0) = r

(B)
n (x0),

(3.23)

on the interface ∂Ω(AB) = Ω
(A)
0 ∩ Ω(B). In Eq. (3.23) R

(A)
N = R(A) · N and

r
(B)
n = r(B) · n, with r(B) = v(B) +∇m(B)(t⊗ t) + p(B)∇w(B).

Conditions for transformed fields in Ω(B) can be expressed in term of original

untransformed coordinates X = g(x) in the untransformed domain Ω
(B)
0 . We

impose that in the untransformed domain, interface conditions must be satisfied

automatically since the material in Ω
(A)
0 ∪ Ω

(B)
0 is homogeneous.

Then, in X0

φ(B)
n = J∇XW

(B) · F−1F−TN = j−1∇XW
(B) · f fTN (3.24)

and

φ(B)
n = Φ

(B)
N if f(x0) = F(X0) = I. (3.25)
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Also, M
(B)
NN = m

(B)
nn if

(N2
1 + νN2

2 )f11,1 + (1− ν)N1N2f11,2 + (νN2
1 +N2

2 )f12,2 = 0,

(N2
1 + νN2

2 )f21,1 + (1− ν)N1N2f21,2 + (νN2
1 +N2

2 )f22,2 = 0, (3.26)

which are satisfied by the sufficient condition

∇f(x0) = 0 or ∇XF(X0) = 0. (3.27)

Finally r
(B)
n = R

(B)
N , if the lengthy expression

D
(0)
IJKLFjJFkKFjJ,iFlLfMk,ljfMk,ljNIW,M+

FjJFjND
(0)
MJKLFkKFmOFlLfPk,lmNMTNTOW,P

+
(

D
(0)
IJNMFiIFjJ,ij − D

(0)
MJKLFjJFkK,ilfNkFiL

−D
(0)
NJKLfMlFjJFlK,ijFiL

)

W,MNN = 0. (3.28)

involving first and second gradient of f , or F, is set to zero. Such expression is

satisfied by

∇∇f(x0) = 0 and ∇f(x0) = 0 (3.29)

or

∇X∇XF(X0) = 0 and ∇XF(X0) = 0. (3.30)

To summarize, we stress that the conditions















f(x0) = I,

∇f(x0) = 0,

∇∇f(x0) = 0,

(3.31)

on the geometric transformation, assure that the boundary fields remain un-

changed. Such constraints must be intended as sufficient conditions in order to

avoid any reflection. In principle, less restrictive conditions could be find.

By assuring that the relevant boundary fields remain unchanged, it is also guar-

anteed that the same boundary conditions (simple support, clamped, free, etc.)

are imposed before and after the transformation; a property that will be used in

the next Section to show the invariance of eigenfrequencies after transformation.
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Transformed bending stiffness and linear density, defined in Eqs. (3.17) and (3.18)

respectively, are homogeneous only for affine transformations. However, the only

admissible affine transformation is the identity in view of the constraints f(x0) = I

and g(x0) = x0, which means that a inhomogeneous material is needed in the

transformed domain.

3.4 Eigenfrequency Anlaysis

We show a comparison between eigenfrequency analyses for plates before and after

transformation. Such examples are a useful tool to check the error-free implemen-

tation of the PML in a numerical code and they fully show the correct physical

interpretation of the transformed equations, which involves both the equation of

motion and the boundary conditions.

Here we compare eigenfrequencies and eigenmodes between a homogeneous rectan-

gular plate with edges of length 2A1 and 2A2 and a second inhomogeneous rectan-

gular plate with edges of length 2a1 and 2a2. The inhomogeneous plate is obtained

transforming the domains Ai+2 ≤ |Xi| ≤ Ai into the domains Ai+2 ≤ |xi| ≤ ai,

i = 1, 2, as shown in Figure 3.3. In particular, defining the monotonically increas-

ing function

η±(xi) = xi + (1− ζ)(ai − Ai+2)
(

∓35x̃4
i + 84x̃5

i ∓ 70x̃6
i + 20x̃7

i

)

,

x̃i =
xi ∓ Ai+2

ai − Ai+2

, ζ =
Ai − Ai+2

ai − Ai+2

, i = 1, 2, (3.32)

with ai > Ai+2, we apply the transformations

g1(x) =















η̄−(x1) in Ω(1), Ω(4), Ω(7),

x1 in Ω(2), Ω(5), Ω(8),

η̄+(x1) in Ω(3), Ω(6), Ω(9),

(3.33)

and the transformations

g2(x) =















η̄+(x2) in Ω(1), Ω(2), Ω(3),

x2 in Ω(4), Ω(5), Ω(6),

η̄−(x2) in Ω(7), Ω(8), Ω(9),

(3.34)

with η̄±(xi) = η±(xi).
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Figure 3.3: Geometry of a plate before and after coordinate transforma-

tion. The domains Ω
(1)
0 , · · · ,Ω(4)

0 ,Ω
(6)
0 , · · · ,Ω(9)

0 are trasformed into the domains
Ω(1), · · · ,Ω(4),Ω(6), · · · ,Ω(9), as described in Eqs. (3.33) and (3.34). The lengths A1

and A2 are transformed into a1 and a2, respectively, while A3 and A4 remain unchanged
after transformation.

The transformation ratio ζ in η± indicates the geometrical transformation of the

PML region, so that an initial layer of thickness A1 −A3 is shrunk into a layer of

thickness (a1 − A3) < (A1 − A3) when ζ > 1, while, for ζ = 1, no transformation

is introduced.

The septic polynomial transformation (3.32) is obtained as follows. Restricting

the attention to the domain Ω(6), we note that the transformation g(x) satisfies

conditions (3.31) at x0 = (A3 x2)
T , |x2| ≤ A2, reducing to the 3 scalar conditions

η′+(A3) = 1, η′′+(A3) = η′′′+(A3) = 0 and assuring the absence of reflection at the

interface ∂Ω(5,6) between Ω(5) and Ω(6).

The fourth condition g(x0) = x0, reducing to η+(A3) = A3, imposes that Ω(5) and

Ω(6) share the same boundary ∂Ω(5,6).

Additional conditions are imposed at x0 = (a1 x2)
T , |x2| ≤ A2, in order to assure

that the initial simply supported boundary condition, normal rotation Φ1(g(x0))

and reaction force R1(g(x0)) remain unchanged after transformation. Conditions
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(3.31) at x0 = (a1 x2)
T have the explicit form η′+(a1) = 1, η′′+(a1) = η′′′+(a1) = 0.

The final condition g(x0) = X0, with X0 = (A1 X2)
T , which reduces to η+(a1) =

A1, imposes the transformation ratio ζ.

Figure 3.4: Eigenmodes of homogeneous (left column) and transformed inhomoge-
neous (right column) square plates. Contour plots of the transverse displacement and
displacement distribution along vertical direction for X1 = x1 = 0 are shown. The
structures have been implemented in Comsol Multiphysics R© and the plates have edge
lengths A = 10 m and a = 6 m, respectively. Numerical values of the natural frequen-
cies: (a) ω̄11 = 0.937263 rad/sec — homogeneous plate — and ω̄11 = 0.939462 rad/sec
— inhomogeneous plate —. (b) ω̄12 = 2.34325 rad/sec — homogeneous plate — and

ω̄12 = 2.34501 rad/sec — inhomogeneous plate —.

For the homogeneous simply supported plate, natural frequencies are given by

ωα1α2 = π2(α2
1/A

2
1+α2

2/A
2
2)
√

B/(̺h) and the corresponding eigenmodes areWα1α2(X) =

sin[α1π
2A1

(X1+A1)] sin[
α2π
2A2

(X2+A2)], with α1, α2 positive integer numbers (see, for

example [56]).

The solution eikıXı (ı = 1 or 2) of the untransformed equation of motion (3.5) is

transformed into the solution eikıgı(x) of the transformed equation of motion (3.15).

The solution is obtained studying only one quarter of the plate, i.e. 0 ≤ |xi| ≤ ai,

i = 1, 2, and applying symmetric and antisymmetric conditions at x1, x2 = 0.

The final solution can be found solving before in x2-direction (one solution for
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0 ≤ x2 ≤ A2/2 and another one for A2/2 ≤ x2 ≤ a2, with 4 boundary and 4

interface conditions) and then in x1 direction (one solution for 0 ≤ x1 ≤ A1/2 and

another one for A1/2 ≤ x1 ≤ a1, with 4 boundary and 4 interface conditions) in

order to obtain the characteristic equation giving the natural frequencies.

Then, it is easy to show that exactly the same natural frequencies are obtained

and the eigenmodes are wα1α2(x) = ξα1(x1)ξα2(x2), where

ξα1(x1) =























sin
[

α1π
2A1

(η−(x1) + A1)
]

in Ω(1), Ω(4), Ω(7),

sin
[

α1π
2A1

(x1 + A1)
]

in Ω(2), Ω(5), Ω(8),

sin
[

α1π
2A1

(η+(x1) + A1)
]

in Ω(3), Ω(6), Ω(9),

(3.35)

and

ξα2(x2) =























sin
[

α2π
2A2

(η+(x2) + A2)
]

in Ω(1), Ω(2), Ω(3),

sin
[

α2π
2A2

(x2 + A2)
]

in Ω(4), Ω(5), Ω(6),

sin
[

α2π
2A2

(η−(x2) + A2)
]

in Ω(7), Ω(8), Ω(9),

(3.36)

with α1, α2 positive integer numbers. The analytical expression of the eigen-

modes shows that the transformation introduces a shift in the displacement so

that W (X) = w(x).

The eigenfreqeuncy analysis has also been performed in a Finite Element (FEM)

code and the homogeneous and inhomogeneous plates have been implemented in

Comsol Multiphysics R©. In the implementation A1 = 6 m, A2 = 10 m, a1 = 4

m, a2 = 6 m, while the others material and geometrical parameters are ρ = 1.32

kg/m3, E = 1.3 ∗ 107 Pa, ν = 0.3, h = 0.02 m, corresponding to B = 9.524 Nm.

A maximum size s = 0.02 m was imposed for the three-nodes triangular elements.

Natural frequencies and corresponding eigenmodes were obtained and a maximum

relative difference (ω̄α1α2 − ωα1α2)/ωα1α2 = 0.003% was found between the numer-

ically computed natural frequencies ω̄α1α2 and the analytical values ωα1α2 .

In Figure 3.4 we show the special case of a square plate, where A = A1 = A2 = 10

m, A3 = A4 = A/2 and a = a1 = a2 = 6 m. For a square plate, since eigenfrequen-

cies ωα1α2 = ωα2α1 coincide, the resulting eigenmodes are a linear combinations of

the previously described eigenmodes. The aforementioned correspondence between

natural frequencies and eigenmodes before and after transformation is shown. In
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particular, ω11 = 0.937288 rad/sec and ω12 = 2.34322 rad/sec with a maximum

relative difference of 0.23%.

3.4.1 Additional examples

We consider some additional examples. A homogeneous rectangular plate with

edges of length 2A1 and 2A2 is transformed into a second inhomogeneous rectan-

gular plate with edges of length 2a1 and 2a2. The inhomogeneous plate is obtained

transforming the domains Ai+2 ≤ |Xi| ≤ Ai into the domains Ai+2 ≤ |xi| ≤ ai,

i = 1, 2 (see Figure 3.5).

Figure 3.5: Geometric transformation of the rectangular plate.

The isotropic homogeneous structure has eigenfrequencies ωn1n2 = π2(n2
1/A

2
1 +

n2
2/A

2
2)
√

B/(̺h) and corresponding eigenmodes Wn1n2(X) = sin[n1X1π
A1

] sin[n2πX2

A2
],

with n1, n2 positive integer numbers.

We computed numerically eigenfrequencies and eigenmodes for untransformed and

transformed plates and we show that the two structures have the same eigenfre-

quencies while the eigenmodes for the transform domains satisfy w(x) = w(G(X)) =

W (X).

The eigenfrequencies are reported in Table 3.1.

We also consider a transformation that does not satisfy the above-mentioned con-

straints in order not to perturb the boundary conditions. In particular, the usually
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Figure 3.6: Eigenmodes of homogeneous (left column) and inhomogeneous (right
column) rectangular plate. Contour plots of transverse displacement and displacement
distribution along X1 = x1 = A3 = 6 m are shown. Simply-supported (SS) boundary
conditions are considered. (a) n1 = n2 = 1, ω11 = 7.08173 rad/sec . (b) n1 = 1, n2 = 2,

ω12 = 12.7055 rad/sec. (c) n1 = 3, n2 = 2, ω32 = 54.3627 rad/sec.

Analytical Numerical Numerical
Homogenoeus Homogenoeus Transformed

n1 = 1, n2 = 1 7.08173 7.08178 7.08555
n1 = 1, n2 = 2 12.7055 12.7052 12.7172
n1 = 1, n2 = 3 22.0783 22.0785 22.1099
n1 = 3, n2 = 2 54.3627 54.3627 54.3697

Table 3.1: Comparison between eigenfrequencies for the simply supported plate.

adopted linear transformation law is

gı(xı) =
Aı − Aı+2

aı − Aı+2

xı +
aı − Aı

aı − Aı+2

Aı+2, ı = 1, 2. (3.37)
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Homogenoeus Transformed Relative difference
|ωH − ωT |/ωT

7.0817 6.6319 6.7835%
12.7052 12.9277 1.7211%
22.0785 21.2742 3.7806%

Table 3.2: Comparison between eigenfrequencies for homogeneuos and inhomoge-
neous plates with ‘erroneous’ linear transformation law (3.37).

The numerically computed eigenfrequencies in the homogeneous and inhomoge-

neous plates are reported in Table 3.2. The relative difference |ωH − ωT |/ωT

between the eigenfrequency of the homogeneous structure ωH and the ones of the

transformed one ωT are also reported.

The comparative analysis shows the difference in eigenfrequencies. Such a differ-

ence must be attributed to the change of interface conditions between untrans-

formed and transformed domain and to the change of boundary conditions.

We finally show in Figures 3.7, 3.8, 3.9 a comparison for different boundary condi-

tions, where we apply the ‘right’ transformation law (3.33-3.34). In Table 3.3 we

report the corresponding eigenfrequencies and the relative difference.

Homogenoeus Transformed Relative difference
ωH (rad/s) ωT (rad/s) |ωH − ωT |/ωT

Clamped - Figure 4
13.661 13.664 0.0219 %
19.664 19.680 0.0813 %
30.031 30.081 0.166 %

C-SS-F - Figure 5
7.599 7.591 0.105 %
14.172 14.132 0.283 %
24.479 24.336 0.587 %

SS-F - Figure 6
6.940 6.919 0.303 %
12.538 12.456 0.658 %
21.984 21.792 0.881 %

Table 3.3: Comparison between eigenfrequencies for homogenoeuos and inhomo-
geneous plates for different boundary conditions. SS=simply supported, C=clamped,

F=free. Results correspond to the eigenmodes shown in Figures 3.6, 3.7 and 3.8.
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Figure 3.7: Eigenmodes of homogeneous (left column) and inhomogeneous (right
column) rectangular plate. Contour plots of transverse displacement and displacement
distribution along X1 = x1 = A3 = 6 m are shown. Clamped (C) boundary conditions

are considered.

The results confirm that, independently on the type of boundary conditions, the

applied formalism is correct since eigenfrequencies remain unaltered up to numer-

ical approximations and eigenmodes are simply shifted following w(x) = W (X).

3.5 Perfectly Matched Layers

To introduce numerical dissipation and implement the Perfectly Matched Layers,

we define a complex transformation g(x) = gR(x) + igI(x), where gR and gI

stand for the real and imaginary parts. Consequently, the deformation gradient
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Figure 3.8: Eigenmodes of homogeneous (left column) and inhomogeneous
(right column) rectangular plate. SS = simply supported, C = clamped, F =
free. Contour plots of transverse displacement and displacement distribution

along X1 = x1 = A3 = 6 m are shown.

f(x) = ∇g(x) can be split into the real and imaginary parts fR and f I , respectively.

Then, in addition to gR(x0) = x0, g
I(x0) = 0, the sufficient conditions (3.31) at

the interface point x0 are satisfied by























fR(x0) = I, f I(x0) = 0,

∇fR(x0) = ∇f I(x0) = 0,

∇∇fR(x0) = ∇∇f I(x0) = 0.

(3.38)
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Figure 3.9: Eigenmodes of homogeneous (left column) and inhomogeneous (right
column) rectangular plate. SS = simply supported, F = free. Contour plots of trans-
verse displacement and displacement distribution along X1 = x1 = A3 = 6 m are

shown.

It is also possible to impose conditions (3.38) on a point x1 on the external bound-

ary of the PML to identify the type of boundary conditions (simple support,

clamped, free, etc.) after transformation. The additional condition g(x1) = X1

introduces a stretching of the PML layer if X1 6= x1.

For simplicity, we restrict our attention to a rectangular geometry as the trans-

formed one in Figure 3.3, where the PMLs are the domains Ω(1), · · · ,Ω(4),Ω(6), · · · ,Ω(9),
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while Ω
(5)
0 = Ω(5) is the central domain, which is of interest for a specific compu-

tation. We apply a transformation as in Eqs. (3.33) and (3.34), where

η̄+(xi) = η+(xi) + i(−1)γ+1(xi−Ai+2)
γ,

η̄−(xi) = η−(xi) + i(xi+Ai+2)
γ, i = 1, 2. (3.39)

In Eq. (3.39), η±(xi) is given in Eq. (3.32), while γ ∈ N and γ > 3 to satisfy

conditions (3.38). Restricting again the attention to the domain Ω(6), homoge-

neous conditions (3.38) for f I at x0 = (A3 x2)
T , |x2| ≤ A2, impose [η̄I+(A3)]

′ =

[η̄I+(A3)]
′′ = [η̄I+(A3)]

′′′ = 0, for the imaginary part of the transformation. The ad-

ditional condition g(x0) = x0 gives η̄I+(A3) = 0. Then, a non-zero imaginary part

of the transformation, resulting from the set of the just mentioned 4 homogeneous

conditions, requires γ > 3. We also note that the sign of the imaginary part has

been imposed to assure dissipation.

Even if the identification of the external boundary conditions is not necessary for

the PMLs, we implemented conditions (3.39) in order to give a better physical

interpretation of the PMLs and to facilitate the implementation in a FEM code.

We also note that these additional conditions lead to a higher degree polynomial

η̄±, without the introduction of particular difficulties in the implementation.

3.6 Numerical results

The PMLs have been implemented in Comsol Multiphysics R© and details of the

implementation are given below.

3.6.1 Implementation of PMLs equations.

The deformation gradient of the transformation in the different domains Ω(1), . . . ,Ω(9)

in the transformed geometry in Figure 3.3 is

F =

[

F11 0

0 F22

]

=

[

1
f11

0

0 1
f22

]

, (3.40)
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where

f11 = g1,1 =















f−
11 in Ω(1), Ω(4), Ω(7),

1 in Ω(2), Ω(5), Ω(8),

f+
11 in Ω(3), Ω(6), Ω(9),

(3.41)

and

f22 = g2,2 =















f−
22 in Ω(1), Ω(2), Ω(3),

1 in Ω(4), Ω(5), Ω(6),

f+
22 in Ω(7), Ω(8), Ω(9).

(3.42)

Partial derivatives are intended with respect to xi (i = 1, 2).

In addition,

J = F11F22 =
1

f11f22
. (3.43)

The expressions in Eqs. (3.41) and (3.42) are

f+
Iı = 1 + (1− ζ)η′+(x̃ı) + i(−1)γ+1γ(xı − Aı+2)

γ−1,

f−
Iı = 1 + (1− ζ)η′−(x̃ı) + iγ(xı + Aı+2)

γ−1, (3.44)

where I = ı = 1, 2 (ı not summed), while x̃ı and ζ are defined in Eq. (3.32).

Assuming η±(x̃ı) as in Eq. (3.32)

η′±(x̃ı) = ∓140x̃3
ı + 420x̃4

ı ∓ 420x̃5
ı + 140x̃6

ı . (3.45)

From the deformation gradient it is possible to compute the components of the

inhomogeneous anisotropic constitutive tensor. The non zero components are:

D1111 = B F 3
11/F22, D1122 = D2211 = BνF11F22,

D2222 = B F 3
22/F11, D1212 = D2121 = D1221 = D2112 = B 1−ν

2
F11F22.

(3.46)

From the constitutive tensor D the moment tensor m can be obtained as in Eq.

(3.16). In particular,



























m11 = −B
F11

F22

(

F 2
11w,11 + νF 2

22w,22

)

,

m12 = m21 = −B(1− ν)F11F22 w,12,

m22 = −B
F22

F11

(

νF 2
11w,11 + F 2

22w,22

)

.

(3.47)
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Concerning ∇F, the only non zero components of the first gradient of F are

F11,1 = −f11,1
f 2
11

, F22,2 = −f22,2
f 2
22

, (3.48)

where, similar to Eqs. (3.41) and (3.42)

f11,1 = g1,11 =















f−
11,1 in Ω(1), Ω(4), Ω(7),

0 in Ω(2), Ω(5), Ω(8),

f+
11,1 in Ω(3), Ω(6), Ω(9),

(3.49)

and

f22,2 = g2,22 =















f−
22,2 in Ω(1), Ω(2), Ω(3),

0 in Ω(4), Ω(5), Ω(6),

f+
22,2 in Ω(7), Ω(8), Ω(9).

(3.50)

In particular,

f+
Iı,ı = (1− ζ)η′′+(x̃ı) + i(−1)γ+1γ(γ − 1)(xı − Aı+2)

γ−2,

f−
Iı,ı = (1− ζ)η′′−(x̃ı) + iγ(γ − 1)(xı + Aı+2)

γ−2, (3.51)

where I = ı = 1, 2 (ı not summed), and

η′′±(x̃ı) = ∓420x̃2
ı + 1680x̃3

ı ∓ 2100x̃4
ı + 840x̃5

ı . (3.52)

Concerning ∇∇F, the only non zero components of the second gradient of F are

F11,11 = 2
f 2
11,1

f 3
11

− f11,11
f 2
11

, F22,2 = 2
f 2
22,2

f 3
22

− f22,22
f 2
22

, (3.53)

where

f11,11 = g1,111 =















f−
11,11 in Ω(1), Ω(4), Ω(7),

0 in Ω(2), Ω(5), Ω(8),

f+
11,11 in Ω(3), Ω(6), Ω(9),

(3.54)

and

f22,22 = g2,222 =















f−
22,22 in Ω(1), Ω(2), Ω(3),

0 in Ω(4), Ω(5), Ω(6),

f+
22,22 in Ω(7), Ω(8), Ω(9).

(3.55)
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In particular,

f+
Iı,ıı = (1− ζ)η′′′+(x̃ı) + i(−1)γ+1γ(γ − 1)(γ − 2)(xı − Aı+2)

γ−3,

f−
Iı,ıı = (1− ζ)η′′′−(x̃ı) + iγ(γ − 1)(γ − 2)(xı + Aı+2)

γ−3,
(3.56)

where I = ı = 1, 2 (ı not summed), γ ≥ 3 and

η′′′±(x̃ı) = ∓840x̃ı + 5040x̃2
ı ∓ 8400x̃3

ı + 4200x̃4
ı . (3.57)

The components of the axial force tensor (3.19) are



























p11 = −B
F11

F22

(

F 2
11,1 + F11F11,11 − νF22F22,22

)

,

p12 = p21 = −Bν F11,1F22,2

p22 = −B
F22

F11

(

F 2
22,2 + F22F22,22 − νF11F11,11

)

.

(3.58)

For the implementation in a FEM code it is convenient to define the components

of f and of its first and second gradient and, in a second step, the components

of F and of its first and second gradient as in Eqs. (3.40)c, (3.48) and (3.53),

respectively.

Then, it is possible to implement the constitutive tensor as in Eq. (3.46), or

directly the moment as in Eq. (3.47), and the axial force as in Eq. (3.58).

3.6.2 PMLs performances

The numerical results concerning a finite region with PMLs are compared with

an analytical solution. In particular, we consider the time-harmonic infinite body

Green’s function

wg(x,x0;ω) =
i

8Bβ2
[H

(1)
0 (βr)−H

(1)
0 (iβr)], (3.59)

where r = |x− x0| and H
(1)
0 is the Hankel function of the first type or order zero.

The geometry is square with A = A1 = A2 = 10 m, a = a1 = a2 = 6 m,

A3 = A4 = 5 m and the mechanical properties of the plates are as in Section 3.4.
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In order to give a quantitative measure of the performance of the PMLs, we define

the quality factor

Q =

∫

Ω5
[wNum(x)− wEx(x)]

2dΩ
∫

Ω5
[wEx(x)]2dΩ

, (3.60)

where wEx is the exact infinite body analytical solution (the real part of the Green’s

function wg) and wNum the numerical FEM solution. The integrals on the untrans-

formed domain Ω5 were done numerically in Comsol Multiphysics R© 2

3.6.3 Discretization

Analytical

Figure 3.10: Comparison between numerical results and the exact solution corre-
sponding to the Green’s function (3.59) with x0 = 0. (a) Displacement along the line
x2 = 0 at ω = 30π rad/s. Numerical solutions are given in gray lines for different
discretizations; s [m] is the maximum size of the three-nodes triangular elements. The
exact solution is given in black dashed line. (b) Displacement in x = 0 as a function
of the relative size of the elements s/a (in logarithmic scale). (c) Quality factor Q as a
function of the relative size of the elements. Results are given in logarithmic scales.

In Figure 3.10 we show the comparison between the analytical solution and the

numerical ones for different maximum sizes s of the elements of the discretized

geometry. From the displacement distribution along the lines x2 = 0, shown in

2The precision of the numerical integration was checked by comparing, at different frequencies,
the results of the integral at the denominator in Eq. (3.60) with the exact values.
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Figure 3.10a, and the displacement w at the center of the domain (x = 0), shown

in 3.10b as a function of the relative size of the elements, it is evident that the

numerical solution converges to the exact one as the size of the elements decreases.

The PML regions Ω4 and Ω6 and the damping effect are also visible.

The study of the quality factor Q as a function of the relative size of the elements

in Figure 3.10c shows that the numerical solution converges to the exact one

approximately as Q ∼ (s/a)z, where z = −4.63 for ω = 10π rad/s and z = −5.76

for ω = 30π rad/s, respectively.

3.6.4 Frequency dependance

Free

Simply Supported

Clamped

Figure 3.11: Quality factor Q, in logarithmic scale, as a function of the frequency
parameter β. Results are given for different boundary conditions on the external bound-
ary: simple support (gray line), clamped (continuous black line) and free (dashed black

line).

The quality factor as a function of the frequency parameter β is shown in Fig-

ure 3.11. Classical boundary conditions have been implemented on the external

boundary of our domain, which, in view of the applied transformation, correspond

to the same boundary conditions before transformation, when the plate is homo-

geneous. Consistently with the results obtained for flexural waves in beams [77],

it is shown that the quality factor has a tendency to decrease non monotonically

at increasing frequency.
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The comparative analysis shows that the simple support boundary condition is

the preferable choice.

At low frequencies PMLs loose their performance. These can be attributed to the

fact that reflection resulting from the introduction of the boundary conditions at

x1,2 = ±a prevails on the damping effect of the external layers. In the next figure

we prove that this problem can be easily overcome increasing the thickness of the

PMLs.

3.6.5 Geometrical parameters of the PMLs

Figure 3.12: Quality factor Q, in logarithmic scale, as a function of the relative
dimension of the layer ξ = (a − A3)/A3. Results are given for three different radian

frequencies. The plate is simply supported.

The quality factor as a function of the relative dimension ξ = (a− A3)/A3 of the

PMLs is shown in Figure 3.12. Different frequencies and simple support boundary

conditions are considered. For the example under consideration, a minimum thick-

ness ξ ≃ 0.2 is needed to reduce the quality factor to values for which reflection

becomes negligible. It appears that an optimal relative thickness minimizing Q is

ξ ≃ 0.5, at this value the dependance of the Q on the frequency is weak.

In Figure 3.13 the effect of the transformation ratio ζ on the quality factor is

shown for the same frequencies and boundary conditions of Figure 3.12. The

results show oscillations of Q with respect to ζ, so that it is possible to tune ζ in

order to have the optimal filtering at a certain frequency ω. On average we do not



Chapter 3. PML for flexural waves in K-L plates 55

Figure 3.13: Quality factor Q, in logarithmic scale, as a function of transformation
ratio ζ (see eq. (3.32)). Results are given for three different radian frequencies. The

plate is simply supported.

note a particular improvement of the results with respect to the amplitude of ζ

and, therefore, also the simpler case ζ = 1, for which there is only the introduction

of dissipation, is competitive.

Results, not reported here for brevity, show that changing the load source position

to x0 = (3.5m, 1.5m) change the amplitude of oscillations, but not the position

of the maxima and minima, while changing the dimension a and A3 varies the

position and the numbers of stationary points in the curves. This may suggest

a possible correlation with natural frequencies of the untransformed domain; an

issue that is left for a future analysis.

3.6.6 Dissipation

The effect of the exponent γ of the imaginary part of the transformation (3.39) is

detailed in the contour plots in Figure 3.14. The results, confirmed by the values of

the quality factor , show that for integer values γ ≥ 3 reflection is strongly reduced.

Quality factor reduces at increasing γ, and odd values give better results.

We note that the results of Figure 3.14 for γ = 3 evidence that less restrictive

conditions could be applied on the transformation (3.39). In order to inspect this

issue we consider an incident wave impinging on a vertical interface at x1 = x̄1
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Figure 3.14: Contour plots of transverse displacements w for different values of the
exponent γ in transformation (3.39). Results are given for simply supported plate and

ω = 16π.

and generating reflected and transmitted waves. For x1 < x̄1 the material is

homogeneous and isotropic and for x1 > x̄1 the material is obtained introducing

a transformation g(x) = (η̄(x1), 0). The incident wave has the form wI(x) =

eik2x2(I1e
ik1x1 +I2e

−k1x1) involving both propagating and evanescent parts, with I1

and I2 assigned values; the reflected wave has the form wR(x) = eik2x2(Q1e
−ik1x1 +

Q2e
k1x1) and the transmitted one is wT (x) = eik2x2(T1e

ik1η̄(x1) + T2e
−k1η̄(x1)). By

applying the interface conditions































wI(x̄1, x2) + wR(x̄1, x2) = wT (x̄1, x2),

wI
,1(x̄1, x2) + wR

,1(x̄1, x2) = wT
,1(x̄1, x2),

mI
11(x̄1, x2) +mR

11(x̄1, x2) = mT
11(x̄1, x2),

rI1(x̄1, x2) + rR1 (x̄1, x2) = rT1 (x̄1, x2),

(3.61)

it results that reflected waves vanish, i.e. Q1 = Q2 = 0, if

η̄(x̄1) = x̄1, η̄′(x̄1) = 1, η̄′′(x̄1) = 0. (3.62)

The conditions (3.62) indicate that the constraints on the second gradient of the

transformation f , given in Eq. (3.31), are not necessary to cancel reflection. In

such a case, restricting the attention to polynomial transformations, it is possible
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to reduce the degree of the polynomial, since three conditions instead of four must

be satisfied.

As an additional comment, we note that in the last condition in Eqs. (3.61), the

terms involving shear and axial forces, cancel out the contribution of η̄′′′(x̄1).

3.6.7 Load position

Analytical

Numerical

Analytical

Numerical

Numerical

Analytical

Analytical Numerical

Figure 3.15: Quality factor Q in logarithmic scale as a function of the point source
position x0 = (x01, 0). Results are given for three different radian frequencies. The plate
is simply supported. In the four insets the numerical solution (gray lines) is compared
with the analytical solution (dashed lines) and the contour plots of the transverse

displacement w are given.

Since PMLs can be used for different purposes and often scatterers are placed

close to the external boundary of the numerical domain, we investigate the quality

factor by changing the position of the applied load moving from the center to

the proximity of the PML domains. Such analysis cannot be considered as an

analysis of far field and near field perfomances since the Green’s function (3.59)

involves only the monopole term of the Hankel functions. Nevertheless, the Green’s

function includes both propagating and evanescent effects and the results shown in

Figure 3.15 give an indication of the correctness and applicability of the proposed

model. In Figure 3.15 it is shown that, when the concentrated load approaches

the PML domain, the performances of the PMLs in term of quality factor remain

practically unaltered. Even when the force is applied at a distance of 0.05 m

from the PML boundary, the numerical results are in excellent agreement with

the analytical solution.



Chapter 4

Platonic crystal with

low-frequency locally resonant

snail structures

Here we propose a new type of platonic crystal. The proposed microstructured

plate includes snail resonators with low-frequency resonant vibrations. Lowest

resonance frequencies are predicted analytically and numerically. We indicate the

possibility to attain localization, wave trapping and edge waves. Applications of

transmission amplification and suppression of the low-frequency flexural vibrations

are illustrated.

4.1 The platonic system of snail resonators

We consider flexural vibrations in Kirchhoff-Love plates. In the time-harmonic

regime, the transverse displacement W (x) satisfies the fourth-order biharmonic

equation (3.5).

We consider a steel plate, with ̺ = 7800 kg/m3, E = 2 × 105 MPa, ν = 0.3 and

h = 1 mm. The shear modulus is µ = E/(2(1 + ν)) = 7.6923 × 104 MPa, and

B = 1.831 × 10−1 Nm, is the flexural stiffness. Rotation is the gradient vector

φ(x) = ∇W (x), while the static quantities are the bending moment symmetric

tensor M and the shear force vector V = ∇ ·M.

58
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4.1.1 Geometry of the periodic cell

The unit cell of the square periodic system is shown in Figure 4.1. In the square

unit cell of side length a = 1 m, a central hole of radius R1 = 0.35 m is introduced

with a circular inclusion of radius R0 = 0.175 m. The inclusion is connected to

the external structure by a slender spiral of thickness s = 21.875 mm.

Figure 4.1: (a) Geometry of the unit cell of the platonic crystal. (b) Geometry of
the central axis of the spiral connection. Normal and tangential directions n(θ) and

t(θ) are indicated, n0 = n(−π/4) and t0 = t(−π/4).

The radial position of the central axis of the spiral is indicated in Figure 4.1b and

given by:

y(θ) = |y(θ)| = R0 + (R1 −R0)
θ + π/4

4π
, θ ∈

[

−π

4
, 4π − π

4

]

. (4.1)

The curve can be given in the parametric form

C(θ) := y(θ) = [y1(θ), y2(θ)] = [y(θ) cos(θ), y(θ) sin(θ)], (4.2)

and the normal and tangent vector to the curve are:

n(θ) =
1

|C ′(θ)|

[

y′2(θ)

−y′1(θ)

]

, t(θ) =
1

|C ′(θ)|

[

y′1(θ)

y′2(θ)

]

, (4.3)
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with

|C ′(θ)| =
√

y′(θ)2+y(θ)2 =

√

(

R1−R0

4π

)2

+

[

R0+(R1−R0)
θ + π/4

4π

]2

. (4.4)

The spiral length is

L =

∫ 4π

0

√

y′(θ − π/4)2+y(θ − π/4)2 dθ =

R1

√

(R1 −R0)2 + (4πR1)2 −R0

√

(R1 −R0)2 + (4πR0)2

2(R1 −R0)
+

R1 −R0

8π
log

[

4πR1 +
√

(R1 −R0)2 + (4πR1)2

4πR0 +
√

(R1 −R0)2 + (4πR0)2

]

, (4.5)

which takes the value L = 3.303 m.

4.2 Dispersion diagram of the model

The band structure of the flexural system is presented in Figure 4.2. The disper-

sion diagram has been computed performing an eigenfrequency analysis with the

Finite Element package Comsol Multiphysics R© (version 5.2) applying the following

Floquet-Bloch conditions on the boundary (shown in Figure 4.1a):

W |∂Ω(3) = eik1aW |∂Ω(1) , φ1|∂Ω(3) = eik1aφ1|∂Ω(1) ,

M11|∂Ω(3) = eik1aM11|∂Ω(1) , V1|∂Ω(3) = eik1aV1|∂Ω(1) ,

W |∂Ω(4) = eik2aW |∂Ω(2) , φ2|∂Ω(4) = eik2aφ2|∂Ω(2) ,

M22|∂Ω(4) = eik2aM22|∂Ω(2) , V2|∂Ω(4) = eik2aV2|∂Ω(2) , (4.6)

where k = (k1, k2)
T is the wave vector.

The dispersion diagram is given following the path on the boundary of the irre-

ducible Brillouin zone, sketched in Figure 4.2b.

A comparison with the dispersion diagram of a periodic perforated plate with

only the internal holes of radius R1 = 0.35 m is given in Figure 4.3a, while a

comparison of dispersion diagrams of a perforated and homogeneous plate is given

in part (b) of the same Figure. The band structure of perforated plates with free
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Figure 4.2: Dispersion diagram of the platonic crystal with snail resonators. The
frequency parameter β is given as a function of the wave vector k along the bound-
ary of the irreducible Brillouin zone. First five localized modes are illustrated in the
bottom part. Colors from blue to red correspond to increasing amplitude of transverse
displacement. (b) Sketch of the Brillouin zone in k space, with the irreducible Brillouin
zone shaded. The symmetry points Γ, X and M are shown, corresponding to k = (0, 0),

k = (π/a, 0) and k = (π/a, π/a), respectively.

Figure 4.3: Comparison of dispersion diagrams. (a) Periodic system with snail
resonators as in Figure 4.1 (black continuous lines) vs periodically perforated plate (grey
dashed lines). (b) Periodically perforated plate (grey dashed lines) vs homogeneous

plate (continuous grey lines).

and clamped boundary conditions have been extensively studied by applying the

multipole expansion method in [72, 78, 79, 95, 107].

The comparative analysis in Figure 4.3b shows that the introduction of circular

perforation induces a softening in the dynamic behavior of the plate, as expected

on physical ground. Additionally, it is evident that dispersion curves split up (see,

for examples curves C1, C2 and C3), which leads to the formation of partial band

gaps associated with wave propagation along specific directions. Moreover, the
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band gap opening at intersection points P1 at Γ and P2 and P3 at X is noted,

while intersection points P3 and P4 change their position (and the frequency) in

the Brillouin space.

The presence of internal resonators (Figures 4.2 and 4.3a) gives rise to several

localized modes associated with nearly horizontal dispersion curves, whereas the

dispersion curves of the corresponding perforated plate remain practically unper-

turbed. First, we note that the lower localized modes appear at extremely low

frequencies in correspondence with the acoustic modes of the perforated plate.

Second we stress the possibility to have a large number of such flat curves within,

a large frequency interval. This model generalizes the effect on a single frequency

previously shown in [12]. It can be also considered as an alternative to the challeng-

ing problem of opening large stop bands at low frequencies for vibration isolation

in acoustics and elasticity [6, 24, 29, 42].

4.3 Asympotic estimates for resonance frequen-

cies of a single resonator

The frequencies of the first internal resonance modes are estimated analytically.

We assess a class of standing waves in a periodic system containing inclusions with

the structured spiral coating. We assume that the inclusion at the center is taken as

rigid and the connecting spiral is an elastic massless beam. The vibration modes of

this simplified mechanical model are obtained via the introduction of the transverse

displacement Wm and rotations φn and φt of the rigid inclusions. The rotations

φn and φt are taken around two orthogonal directions, respectively parallel to the

normal n0 and tangent t0 at the intersection point PA between the inclusion and

the spiral connection (see Figure 4.1b). In the asymptotic approximation of the

first three eigenfrequencies, it is feasible to assume the circular contour at y = R1

as rigid, so that the spiral is clamped at PB.

The kinetic energy of this mechanical system is

K(t) =
1

2
ρπ hR2

0 Ẇ
2
m +

1

2
ρπ

hR4
0

4

(

φ̇2
n + φ̇2

t

)

, (4.7)
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while the potential energy of the assumed massless elastic spiral is

P(t) =
1

2
κ1 W

2
m +

1

2
κ2φ

2
n +

1

2
κ3φ

2
t , (4.8)

where κ1, κ2 and κ3 are the elastic stiffnesses guaranteed by the spiral to be

determined in the following.

The Euler-Lagrange equations, imposing the balance of linear and angular mo-

mentum, have the forms

ρπ hR2
0Ẅm + κ1Wm = 0,

ρπ
hR4

0

4
φ̈n + κ2φn = 0,

ρπ
hR4

0

4
φ̈t + κ3φt = 0, (4.9)

which in the time-harmonic regime yield the three resonance radian frequencies

ω1 =

√

κ1

ρπ hR2
0

,

ω2 = 2

√

κ2

ρπ hR4
0

,

ω3 = 2

√

κ3

ρπ hR4
0

. (4.10)

For the determination of the stiffnesses κi (i = 1, 2, 3), we make use of the Virtual

Work Principle by considering the effect of flexural, torsional and shear deforma-

tion of the spiral considered as a curved beam clamped at PB (see Figure 4.1b).

We solve the static problem applying different concentrated loads at PA. For the

determination of κ1 we apply a force P = −Pe3, with P = 1 N. The resulting

moment M(1)(θ) = (y(−π/4) − y(θ)) × F, with y(θ) given in Eq. (4.2), is de-

composed into bending and torsional components, M
(1)
b (θ) = −M(1)(θ) · n(θ) and

M
(1)
t (θ) = −M(1)(θ) · t(θ), respectively. The corresponding transverse displace-

ment W (1) in PA is computed considering as static and kinematically admissible

fields the ones generated by the force F, i.e.

W (1) =

∫ 4π−π/4

−π/4

[

(M
(1)
b (θ))2

EI
+

(M
(1)
t (θ))2

µIp
+

F 2

µA∗

]

√

y′(θ)2+y(θ)2dθ, (4.11)
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where I = sh3/12 = 1.82292 mm4 (second moment of area), Ip = sh3/3 = 7.29167

mm4 (polar moment of area), A∗ = 5/6sh = 18.2292 mm2 (shear area). The

corresponding transverse stiffness is

κ1 =
P

W (1)
= 1.478N/m. (4.12)

For the rotational stiffnesses κ2 and κ3, we apply the momentM(2) = −M (2)n0 and

M(3) = −M (3)t0, respectively, at the point PA and we take the normalized values

M (2) = M (3) = 1 Nm. Again, we derive the bending and torsional components,

namely

M
(2)
b = −M(2) · n = M (2)n0 · n, M

(2)
t = −M(2) · t = M (2)n0 · t,

M
(3)
b = −M(3) · n = M (3)t0 · n, M

(3)
t = −M(3) · t = M (3)t0 · t, (4.13)

while the shear force is zero in these two cases. Then, analogously to Eq. (3.3)

the rotations are

φn,t =

∫ 4π−π/4

−π/4

[

(M
(2,3)
b (θ))2

EI
+

(M
(2,3)
t (θ))2

µIp

]

√

y′(θ)2+y(θ)2dθ, (4.14)

which provide the rotational stiffnesses

κ2 =
M (2)

φn

= 0.1337Nm, κ3 =
M (3)

φt

= 0.1339Nm. (4.15)

The corresponding resonance radian frequencies are given by

ω1 = 1.403 rad/s, ω2 = 4.823 rad/s, ω3 = 4.827 rad/s. (4.16)

We note that while shear deformation is negligible, torsional deformation has a

major contribution of ∼ 80% to the displacement (4.11) and a contribution of

∼ 40% to the rotations (4.14). The capacity of the microstructured system to show

low-frequency resonance modes is strictly related to the torsional deformation of

the ligament, a property that was absent in previously proposed models [3, 31, 48,

121].

In Figure 4.4, we show the radian eigenfrequencies ω1, ω2 and ω3 as functions

of the total angular distribution θ̄ for spirals starting at PA and having different
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Figure 4.4: Radian eigenfrequencies ω1, ω2, ω3 as functions of the total angular

distribution θ̄

lengths, i.e.

y(θ, θ̄) = |y(θ, θ̄)| = R0 + (R1 −R0)
θ + π/4

4π
, θ ∈

[

−π

4
, θ̄ − π

4

]

. (4.17)

Interestingly, ω1 shows some oscillations that can lead to some optimal conditions

for the stiffness, in the sense that a longer spiral does not necessary give an advan-

tage for the achievement of a targeted low-frequency localized mode. Again, this

has to be linked to the influence of torsional deformation that drastically increases

the total compliance of the spiral. The torsion is not uniform and depends on

the applied load and the geometry, leading to the oscillations of ωi (i = 1, 2, 3) in

Figure 4.4. The results also point out the large reduction rate of ω1 for θ̄ < π.

The eigenfrequencies of an isolated continuous elastic resonator made of the spiral

ligament, clamped at y(3.75π) = R1, and of the central inclusion have also been

computed in Comsol Multiphysics R©. The numerical results confirm the analytical

predictions and the out comes of the dispersion analysis with a first translational

mode followed by two rotational modes of the central inclusion. Higher modes are

associated to beam-like vibration eigenmodes of the spiral ligament 1.

Eigenfrequencies βi (i = 1, 2, . . .) estimated analytically are compared in Table

4.1 with the eigenfrequencies of the isolated resonator and the eigenfrequencies

of the localized modes in the dispersion diagram of Figure 4.2a, showing a good

1The interested reader could estimate analytically the eigenfrequencies of the curved beam
by implementing the approximate technique shown in [117, 118, 119].
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Eigenmode (i) FEM IR (ii) Analytical (iii) FEM LM

1.0173 0.9570 1.0073

1.5295 1.7741 1.5199

1.5458 1.7749 1.5399

2.0929 - 2.0825

2.4003 - 2.3829

Table 4.1: Eigenmodes of the isolated resonator and comparison between
eigenfrequencies βi (i = 1, 2, . . .) for (i) FEM solution for the isolated resonator
(IR), (ii) asymptotic analytical estimates and (iii) frequencies of the localized
modes (LM) in the dispersion diagram (Figure 4.1). Colors from blue to red

correspond to increasing amplitude of transverse displacement.

correspondence. In particular, the agreement between two FEM analyses for single

resonator and localized modes in the dispersion diagram is excellent.

4.3.1 Modified resonator

We report a second FEM analysis for a single resonator in which we show that

the difference with the analytical estimated is principally due to the connection

between the inclusion and the ligament.

The modified resonator shown in Figure 4.5 has also been implemented in Com-

sol Multiphysics R©. It has different connections at the ligament ends which better
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mimic the constraints of the monodimensional analytical model. The correspond-

ing eigenfrequncy is β1 = 0.9331 m−1, which is in excellent agreement with the

analytical prediction shown in Table 4.1.

Figure 4.5: Modified geometry of the resonator. Spiral ligament ends have been
modified. The first eigenmode is shown.

4.4 Numerical Results

In the following we show some numerical results, which highlight the capability of

the microstructred platonic crystal to guide waves within the structure.

4.4.1 Trapped modes

We start analysing the macrocell shown in Figure 4.6, which includes 49 unit cells.

The structure is subjected to a time-harmonic transverse force of amplitude F = 1

N applied at the center of the central resonator and to quasi-periodic boundary

conditions.

In Figure 4.6a we show the displacement amplitude field at the frequency βI =

1.0463m−1, corresponding to the first stop band opened by the inertial resonators

(see Figure 4.2a). The strong exponential decay of the displacement amplitude is

verified also for such a tiny stop band. Interestingly, the central inclusion vibrates

with a translational mode whereas the next higher frequency mode, characterized
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(a) (b)

(c)

Figure 4.6: Periodic macrocell composed of 7 × 7 unit cells. Vibration modes at

βI = 1.0463m−1 (a), βII = 1.0619m−1 (b) and βIII = 1.2334m−1 indicated in Figure
4.2. Displacement magnitude |W | is shown.

by a similar exponential decay, is associated with a rotational vibration of the

central inclusion.

In Figure 4.6b the frequency βI is slightly changed to βII = 1.0632m−1, corre-

sponding to the flat band around Γ (Figure 4.2a). In this case, the wave propagates

within the whole elastic system but only resonators vibrate with large amplitudes,

while the plate undergoes a rigid displacement of negligible amplitude. Such an

interesting behavior suggests the possibility to trap waves by properly tuning the

resonance frequencies of particular sets of resonators. Such a passive system is

considered in Figure 4.7, parts (a) and (b), where a number of resonators with in-

clusions having mass m = 9kg are arranged within the macrocell. These different

inclusions are disposed along the letter ‘M’ in part (a) and along one diagonal in

part (b). At the frequencies of β = 0.5646m−1 of β = 0.5698m−1, respectively,

they show a highly localized vibration field.
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In Figure 4.7c we consider a different structure: a finite plate embedding 7 × 7

unit cells is implemented with Neumann-type boundary conditions. Here, the 24

inclusions placed in the vicinity of the external edges have different mechanical

properties (mass m = 9kg). It is evident that exciting the mechanical system

with a unit harmonic force applied at the bottom-left inclusion, the high amplitude

vibration are localized in the vicinity of the edges.

(a) (b)

(c)

Figure 4.7: ‘Trapped’ and ‘edge’ modes in the microstructured plate. Trapped
modes showing high amplitude vibrations concentrated on a path having the shape of
the letter ‘M’ (a) or on a line (b) in a macrocell of the periodic system. The systems (a)
and (b) are excited by a transverse time-harmonic unit force applied to the center of
the central inclusion. (c) Edge mode in a finite size plate composed of 7× 7 unit cells.
The plate is excited by a transverse time-harmonic unit force applied to the center of

the bottom left inclusion.

In Figure 4.6c the frequency is βIII = 1.233m−1 (see Figure 4.2). From the

comparison between the dispersion diagrams of perforated and homogeneous plates

in Figure 4.3, it is evident that at βIII , the dispersion curves show similarities with

the homogeneous case. The eigenmode illustrated in the Figure evidences that a

plane wave propagates within the microstructured medium with low scattering, a

behavior that can be linked to perfect transmission [4, 73, 85].
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Figure 4.8: Geometry of the system. (a) A semi-infinite plate is connected to
a rectangular plate with a small ligament. Seven snail resonators are placed in the
vicinity of the connection. (b) Transverse displacement contours showing the solution
W = WI + WR for a semi-infinite plate alone without resonators and with Neumann

boundary conditions. Results are given for β = 0.5119m−1.

4.4.2 Transmission amplifier

Here we show how the microstructured plate can be employed in order to amplify

low-frequency wave transmission between two plates. In Figure 4.8 we show the

implemented geometry. A semi-infinite plate is connected to a second rectangu-

lar plate of dimensions l1 = 22m, l2 = 14m by means of a small ligament of

dimensions l3 = 2m, l4 = 3m. The mechanical and geometrical parameter of the

plate are such that β = 2.533
√
ωm−1, and Neumann-type boundary conditions

are applied.

The system is excited by an incident plane-wave WI = eiβ(x1 cosα+x2 sinα), with

α = 11/12π, propagating from the semi-infinite plate. In part (b) of Figure 4.8, we

also report the analytical solution for the semi-infinite plate alone, which involves

the superposition of the incident and reflected wave WR = eiβ[x1 cosα+(x̄2−x2) sinα],

where x2 = x̄2 defines the boundary of the plate.

In order for the wave to penetrate in the second finite plate and produce high-

scattering in the semi-infinite one, the wavelength of the incident wave must be

small with respect to the width l3 of the ligament. Numerical computations, not
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Figure 4.9: Vibration of a semi-inifinite plate connected to a finite rectangular plate
by means of a small ligament. The geometry of the system is given in Figure 4.8. The
structure is excited by the plane wave WI = eiβ(x1 cosα+x2 sinα), with α = 11/12π. The
frequency is β = 0.5119m−1 in parts (a) and (b) and β = 1.4547m−1 in parts (c) and
(d). (a), (c) Homogeneous plates. (b), (d) Homogeneous plates with the addition of 7

snail resonators.

reported here for brevity, indicate approximatively (l3β cosα) > 11. Therefore, it

is needed to reach sufficiently high frequencies in order to enhance transmission of

waves into the second plate.

A strongly low-frequency case is shown in Figure 4.9, where β = 0.5119m−1

(ω = 0.0408 rad/s). In part (a) of the figure it is shown that the wave does

not propagate in the rectangular plate and the incident wave WI is almost entirely

reflected intoWR. In part (b) of Figure 4.9, we add a system of 7 snail resonators in

the vicinity of the ligament, as shown in the inset of Figure 4.8a. The geometry of
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the resonators is described by Eq. (4.1), with R0 = 0.35m and R1 = 0.7m. Such a

system of resonators, when activated by the incident wave WI , is capable to excite

vibrations in the finite rectangular plate enhancing the transmission. In parts (c)

and (d) of Figure 4.9 the same experiment is repeated at the higher frequency

β = 1.4547m−1 and a similar result is obtained, namely negligible vibrations in

the finite rectangular plate for the homogeneous case and enhanced vibrations for

the case with the addition of resonators.

We stress the fact that β = 1.4547m−1 is very close to the first eigenfrequency of

the snail resonators, namely β = 1.4469m−1, while β = 0.5119m−1 is different not

only from any eigenfrequency of resonators, but also from the eigenfrequencies of

the mechanical system composed by the rectangular plate plus the tiny ligament

with or without perforations and resonators.

4.4.3 Vibration suppression in a waveguide

Figure 4.10: (a) Vibrations of a homogeneous plate vs plate with microstructured
interface composed of 6× 5 resonators. (b) Transverse displacement |W | along the axis
x2 = x3 = 0. Homogenous plate is given in black dashed line, plate with microstruc-
tured interface in continuous grey line. Displacements in the resonator inclusions are

evident.
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Figure 4.11: (a) Vibrations of a homogeneous plate vs plate with microstructured
by-pass system composed of 5 × 5 resonators. (b) Transverse displacement |W | along
the axis x2 = x3 = 0. Homogenous plate is given in black dashed line, plate with

by-pass system in continuous grey line.

As a final example of possible applications of the microstructured medium, we

propose the design of a lightweight wave bypass structure which is capable to

divert large amplitude vibrations away from load-bearing elements.

We start with a more standard approach in Figure 4.10, which involves the study

of a finite structure with repetitive units as a perfect periodic structure.

The steel plate has dimensions 18m × 5m, thickness h = 1mm and it is simply

supported at x2 = ±2.5m, x1 = 0, 3, 6, 9, 12, 15, 18m and x2 = 0m, x1 =

0, 18m. The structure is subjected to a harmonic transverse edge load at x1 =

18m having magnitude equal to 1N/m. In Figure 4.10 the load is vibrating

with frequency f = 0.25Hz, i.e. β = 0.3507m−1, which corresponds to the first

eigenfrequency of the finite plate or to the frequency of the first stationary mode

within the dispersion diagram of the periodic homogeneous plate composed by

repetitive units of dimensions 3m× 5m. The vibration mode is presented on the

upper part of Figure 4.10a.

In order to reduce vibration on the left part of the plate, we introduce an inter-

face composed of 6 lines of 5 square units having the geometry shown in Figure

4.1a. The microstructured plate is shown in the lower part of Figure 4.10b. The
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geometrical parameters of the resonators are predesigned following the asymp-

totic model reported in Section 4.3 in order to match with the first eigenfrequency

β = 0.3507m−1, associated with a translational vibration of the inclusion. In this

step we consider a single isolated snail resonator.

A more refined tuning of the geometrical parameters leads to full coupling between

the resonators and the plate. This is done analyzing numerically the full structure

with the microstructured interface. In particular, we have chosen to change the

in-plane thickness of the ligament in the resonators in order to obtain the desired

wave filtering. The final geometrical properties are: R0 = 0.175m, R1 = 0.35m,

in plane thickness s = 21.875mm.

Such a system of resonators is capable to open a tiny band gap at β = 0.3507m−1.

The vibration amplitudes shown in Figure 4.10 demonstrate the capability of the

interface to block wave propagation within the plate. The incoming waves are

reflected by the interface and the displacements decay exponentially fast. Such a

system is highly effective and does not require a heavy variation of the original

structure. In the proposed case the final structure is even lighter than the original

one.

The drawback of the proposed approach is that the energy is reflected back by

the interface and still excites the region x1 ≥ 15m ahead of the interface. The

displacements in the inset of part (b) of Figure 4.10 show that the amplitudes of

vibrations in this region are larger than those in the homogeneous case.

In Figure 4.11 we propose an alternative approach, which is capable to re-route

wave propagation within the whole structure. In particular, we consider an initial

steel rectangular plate having dimensions 15m × 5m, thickness h = 25mm and

simple supports at x1 = 0, 15m and x2 = ±2.5m.

The microstructured plate is now connected in ‘parallel’ to the main structure in

the central region 5m ≤ x1 ≤ 10m. The design procedure of the microstructure

plate follows the same scheme detailed above, with a first predesign step on a

single resonator followed by the analysis of the full structure shown in the bottom

part of Figure 4.11a in order to obtain full coupling between the initial plate and

the attached by-pass system.

The comparisons between the deformed shapes shown in part (a) of Figure 4.11

and displacement magnitudes along the axis x2 = x3 = 0 shown in part (b),
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reveal a drastic reduction in the displacement amplitudes. We stress that the

amplitude reduction is extended to the entire initial structure, which has changed

the vibration mode under the excitation of the edge load at x1 = 15m. In the

modified structure the upper plate displays low amplitude vibrations and wave

propagation is forced to be redirected into the system of resonators.

Finally, we stress that the study is within the elastic range and we do not consider

any energy dissipation effect. Clearly, the energy diverted to the resonators could

be stored or dissipated. It is also evident that damping system can be efficiently

placed in correspondence of the resonators.
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Conclusions

An analytical PML model for flexural waves in beam structures is proposed. The

excellent agreement with analytical Green’s function for infinite domain is shown,

the error in the case of non-perfect additional boundary conditions is estimated

and the influence of discretization is also given.

Particular importance has been given to the physical interpretation of the trans-

formed equations in order to show that the method is simple and can be imple-

mented in standard finite element packages; the eigenfrequency analysis may also

be used as a simple check of the correctness of the implementation.

The PMLs for flexural waves can be particularly useful in the analysis of elongated

structures like bridges and pipelines and comparisons with analytical results for

infinitely long structures

The analytical model of PMLs for flexural waves is then extended to Kirchoff-

Love plates. The model is based on geometry transformation techniques and

a physical interpretation of the transformed equation is given. The analysis of

reflection at the interface between homogeneous and transformed PML domain

introduces constraints on the transformation. It also shows the difference with

problems governed by Helmholtz equations, where the boundary conditions are

automatically satisfied.

The amount of reflection induced by the introduction of fictitious boundary con-

ditions is analysed quantitatively by evaluating the quality factor, that measures

the difference between a numerical solution in a finite computational domain and

an analytical solution in free space. Investigation of the effect of different fre-

quencies, geometrical and dissipative parameters show that the proposed PML
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performs well and the comparison with the analytical solution is excellent. We

also demonstrated that simple support is the best boundary condition.

We envisage applications of the proposed model in several numerical codes for the

analysis of vibrations of plate structures and in elastic metamaterials. The physical

interpretation of the PMLs can also be used in experimental setups mimicking

infinite plates.

The natural development of the proposed model is the implementation of PMLs

for flexural waves in the transient regime.

In the second part of the work a platonic crystal is proposed. The microstructured

medium can lead to wave localization, wave trapping and edge waves. It has also

been applied to re-route waves in order to produce low amplitude vibration on the

main structure.

The design of the model is simplified by the possibility to estimate analytically or

numerically resonance frequencies of the inertial resonators. Simple geometrical

parameters may be used to have specific effects at targeted frequencies.

The proposed structured plate is very attractive for technologically applications

since it is a single phase material and it can be produced at low cost by existing

technologies. Standard techniques are additive manufacturing at small scale and

water jet cutting or laser cutting on homogeneous plates at larger scales.
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