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Abstract

Italy  is  among  the  European  countries  with  the  greatest  plant  diversity  due  to  both  a  great

environmental  heterogeneity  and  a  long  history  of  man-environment  interactions.  Trait-based

approaches to ecological studies have developed greatly over recent decades worldwide, although

several issues concerning the relationships between plant functional traits and the environment still

lack sufficient  empirical evaluation.  In order  to  draw insights on the association between plant

functional traits and direct and indirect human and natural pressures on the environmental drivers,

here  we  summarize  the  existing  knowledge  on  this  topic  by  reviewing  the  results  of  studies

performed in Italy adopting a functional trait approach on vascular plants, bryophytes and lichens.

Although we recorded trait measurements for 1418 taxa, our review highlighted some major gaps in

plant  traits  knowledge:  Mediterranean  ecosystems  are  poorly  represented;  traits  related  to

belowground  organs  are  still  overlooked;  traits  measurements  for  bryophytes  and  lichens  are

lacking.  Finally,  intraspecific  variation  has  been  little  studied  at  community  level  so  far.  We

conclude by highlighting the need for approaches evaluating trait-environment relationship at large

spatial and temporal scales and the need of a more effective contribution to online databases to tie

more firmly Italian researchers to international scientific networks on plant traits.

Keywords:  Climate  change;  CSR  plant  strategy  theory;  Forest  management;  Intraspecific

variability; Land use change; Plant traits, Terrestrial and Freshwater environments.
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1. INTRODUCTION

Processes shaping vegetation patterns have traditionally been approached by analyzing spatial and

temporal  changes  in  plant  species  composition  (McGill  et  al.  2006).  Species  identity  provides

important information for ecological and evolutionary studies, however, this information alone does

not  effectively contribute  to  the  understanding of  ecosystem functioning (Westoby et  al.  2002;

Garnier et al. 2004). Considering the huge number of plant species and their uneven geographical

distribution, models based on species identity cannot be generalized or easily transferred to areas

with a different flora (Keddy 1992).  Even though non-taxonomic classifications of plants have a

very  long  history  (Garnier  et  al.  2016),  the  trait-based  approach  in  ecology  has  substantially

developed over the last three decades, thanks also to the impulse of studies on global environmental

changes (Smith et al. 1997).

Plant Functional Traits are defined as "any morphological, anatomical, biochemical, physiological

or phenological heritable feature measurable at the individual level, from the cell to the whole-

organism  level"  (Garnier  et  al.  2017)  that  impacts  plant  species  fitness  affecting  growth,

reproduction,  resource  use,  establishment,  etc.  (Garnier  and  Navas  2012).  Traits  mediate  the

response  of  plants  to  the  environment  (Lavorel  and  Garnier  2002),  and  influence  ecosystem

functioning (Kattge et al.  2011). Accordingly, they are used in ecological research (Violle et al.

2007) to address fundamental questions including  i) the responses of functional traits to different

environmental gradients at the species and community level, ii) the identification of rules governing

the  assembly  of  communities,  and  iii)  the  relationships  between  plant  functional  traits  and

ecosystem services (Garnier et al. 2016 and references therein). In spite of this, several major issues

in trait-based ecology still lack sufficient empirical evaluation (Shipley et al. 2016).

Italy  is  the  European  country  with  the  highest  number  of  native  vascular  plant  species  and

subspecies (Bartolucci et al. 2018); at the same time it has a long history of human pressures on the

environment that still influences a wide range of ecosystems.  Such a high plant diversity derives

from a wide  latitudinal gradient and from the remarkable heterogeneity in terms of climate and

physiography, along with a complex biogeographic evolution (Smiraglia et al. 2013; Blasi et al.

2014). These conditions allow for a broad variety of natural vegetation types (Blasi et al. 2010) that

is  enriched  by the  occurrence  of  semi-natural  ones,  deriving  from the  long  history  of  human

activities (Capotorti et al. 2012). In parallel, global changes are shaping biodiversity and ecosystem

functioning in Italy with different patterns and rates across the various environments (Chelli et al.

2017). For instance, due to the ongoing climate change, Italy results one of the European countries

most prone to extreme drought (Spinoni et al. 2018) and temperature increase (Rogora et al. 2018).

Its forests were subjected to timber exploitation since the Roman times (Vacchiano et al. 2017), and

it is now undergoing land-use change at very high rate with a consistent process of reforestation and
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a steady decrease of pasture extent (Falcucci et al. 2007; Malavasi et al. 2018). Furthermore, its

sandy shorelines  have  been heavily transformed in  the  last  60 years  with  considerable  loss  or

modification  of  natural  vegetation  (Malavasi  et  al.  2013).  For  these  reasons,  the  analysis  of

environmental  and  human-related  gradients,  as  well  as  the  mechanisms  through  which  these

gradients shape community composition and determine specific ecosystem services is particularly

challenging in Italy. In this view, Italy may serve as a model region to test the effectiveness of trait-

based approaches.

In order to draw general insights on the association between plant functional traits and direct and

indirect natural and human pressures on environmental drivers, here we summarize the existing

knowledge on this topic by reviewing the results of Italian studies that used the functional traits of

vascular plants, bryophytes and lichens.

Especially, we aim to: (1) assess the ‘state of the art’ of the relation between plant traits and both

environmental  or  human drivers  in  Italy,  (2)  identify the  most  frequently investigated  research

fields, above all those dealing with global change drivers, summarizing major results, in order to

contribute  to  their  empirical  evaluation  and (3)  identify knowledge gaps  and suggest  operative

indications for the Italian research community to fill them.

To give more generality to the presented results, they could be compared with a global and more

comprehensive review focusing on few relevant topics; regrettably, this kind of global review is

beyond the scope of this paper.

2. MATERIALS AND METHODS

We collected 164 papers during a workshop of the Italian Botanical Society specifically organized

for  this  purpose (Plant  traits  2.0: State  of the art  and future perspectives for research on plant

functional traits in Italy, February 9-10, 2017, Bologna, Italy). In addition to this event we carried

out a literature search through ISI® Web of Science and Google Scholar as well as through cross-

referencing. The search terms for the query (October 11th, 2017) were "plant functional trait*" AND

"Italy". In the Web of Science, a total of 83 references were found; among them, 40 were already

included, 23 were not relevant for the review,  and the remaining 20 papers were added to our

database. In Google Scholar only the first 300 items (ranked by relevance) were checked, and four

additional studies matching the requested criteria were found.

In  general,  studies  were  included  if  meeting  the  following  criteria:  i)  performed  in  Italy,  ii)

published in peer-reviewed journals, iii) focused on the relationship of response and/or effect traits

(sensu Lavorel  and Garnier  2002) of  vascular  plants,  bryophytes  and lichens  to  environmental

variables/gradients. The review has a broad focus on the plant functional traits approach, it includes

studies based on both field/greenhouse measurements of traits according to standard methods and
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on traits collected from databases aimed at gaining deeper insights into ecological functioning at

species  and  community levels  in  terrestrial  and  freshwater  environments.  We excluded  studies

related  to  marine  environments,  crops,  and  those  based  on  modelling,  pollen  analysis,

bioaccumulation, phytoremediation, and dendroecology.

Altogether, 188 articles were identified and included in the review (Appendix 1). The following

main topics were recognized: (a) impact of climate change on functional traits; (b) response of

functional traits to forest management and eutrophication; (c) secondary grasslands, grazing and

land-use change; (d) CSR plant strategy theory; (e) plant functional traits and ecological processes

in  coastal  ecosystems;  (f)  plant  functional  traits  and  intraspecific  variability;  (g)  aquatic

environments and plant growth: evidence from river and shallow inland ecosystems (Table 1, 2).

3. RESULTS AND DISCUSSION

Similarly to the temporal trend of the international scientific production on plant functional traits

(source: ISI® Web of Science, search terms "plant functional trait*"), the vast majority of Italian

studies using the functional approach were performed during the last decade (Fig. 1a). Studies were

mainly carried out in the Continental biogeographic region (sensu Roekaerts 2002; 42%), while a

lower number of papers referred to the Alpine (32%) and the Mediterranean region (26%), despite

the fact that the latter comprises more than 50% of the Italian territory. Semi-natural grasslands and

forests (24 and 23%, respectively) were the most studied ecosystems, while only few studies have

dealt  with  Mediterranean  shrublands  and  agroforestry  systems  (3%),  and  alpine/sub-alpine

peatlands (5%, Fig. 1b).

For  vascular  plants,  we discuss  traits  belonging  to  the  following  categories:  whole-plant  traits

(Kleyer et al. 2008; Pérez-Harguindeguy et al. 2013), leaf traits (Pérez-Harguindeguy et al. 2013;

Garnier et al. 2017), seed and dispersal traits (or regenerative traits, sensu Pérez-Harguindeguy et al.

2013), phenology and flowering traits (Kühn et al. 2004), clonal traits (Klimešová et al. 2017), root

traits (or belowground traits, sensu Pérez-Harguindeguy et al. 2013; Garnier et al. 2017).  Among

these, leaf (28%) and whole-plant traits (27%) were used with a similar relatively high frequency.

Phenological, seed and clonal traits were also well represented (17%, 12% and 9%, respectively),

while few papers  dealt with root traits (2%). Canopy height, specific leaf area (SLA), flowering

phenology, seed mass, leaf dry matter content (LDMC), leaf nitrogen, and vegetative propagation

were the most frequently used plant functional traits (at least in 20 papers).  These are commonly

recognized  as  key  traits  related  to  fundamental  plant  challenges  (dispersal,  establishment,

persistence; Weiher et al. 1999) and are inherent to major ecological strategy theories, such as (i)

the Leaf-Height-Seed plant ecology strategy scheme (including SLA, canopy height and seed mass;

Westoby et al. 1998), (ii) the CSR strategy scheme (SLA, LDMC; Grime and Pierce 2012; Pierce et
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al. 2013), and (iii) the Leaf Economics Spectrum (Wright et al. 2004).

For bryophytes, we selected the following categories according to Cornelissen et al. (2007): tissue

chemistry  traits,  carbon  gain  related  traits,  traits  related  to  carbon  and  nutrient  losses  (litter

chemistry), other morphological and cytological traits. The most represented were tissue chemistry

traits  and traits  related to carbon and nutrient loss,  but only in  studies conducted in the alpine

biogeographic region.

All functional traits considered were primarily measured from specimens collected in the field. In

detail,  traits  were  measured  for  1080  vascular  plant  and  15  bryophyte  species  (Appendix  2).

Flowering phenology was the functional trait more frequently measured on vascular plant species

(>800 species), followed by canopy height and SLA (>700 species; Fig. 1c). In contrast, functional

traits of lichens were obtained mainly from databases (i.e. Italic 5.0; Nimis and Martellos 2017).

In Italy, plant functional traits have been used to answer many ecological questions (Table 1): many

traits have been used in studies dealing with forest management, grazing and land-use change, but

with discrepancies among biogeographic regions (Table 1). On the contrary, few traits were used in

aquatic  environments.  Additionally,  clonal  and  root  traits  were  never  considered  in  studies  on

climate change.

3.1. Impact of climate change on functional traits

Studies  were  conducted  through  manipulation  experiments  or  observational  approaches.

Experiments  dealing  with  seed  traits  were  performed  by  exposing  parental  alpine  plants  or

dispersed seeds to warming. Seeds produced by plants exposed to moderate warming (+1.5°C) were

more  resistant  to  heat  (Bernareggi  et  al.  2015)  and  showed  changed  germination/dormancy

responses as compared to controls, with deeper and less dormant seeds showing major changes in

response to incubation temperatures and to cold stratification periods, respectively (Bernareggi et al.

2016). Alpine plant seeds directly exposed to warming after dispersal showed a general increase in

germination rate both in spring and autumn, with a subsequent high percentage of seedling survival

in  winter  (Mondoni  et  al.  2012,  2015;  Orsenigo  et  al.  2015).  Exposure  of  seeds  of  two

Mediterranean  annual  species  to  water  stress  led  to  reduced  and  delayed  germination  with

contrasting responses among populations, revealing a possible adaptation to drought stress in the

southernmost population (Orsenigo et al. 2017).

Experiments  focused on flowering  time revealed  a  plastic  response  to  changing micro-climatic

conditions,  both  for  snowbed-specialized  and  alpine  generalist  species  (Petraglia  et  al.  2014b,

Carbognani et al. 2016). Petraglia et al. (2014b) showed that for many species, flowering time was

tuned  by  snowmelt  date  and  temperature.  However,  Carbognani  et  al.  (2016)  highlighted  the

importance of timescale of the observations, with snowmelt time playing a major role at annual
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scale and temperature at  the growing season timescale. Even observational approaches studying

flowering of primary grasslands species in N-Apennines showed a plastic response of different

species. In general, inflorescence production was affected by mean summer temperature, suggesting

a change in reproductive strategies (e.g. changes in the ratio sexual/clonal reproduction, Abeli et al.

2012a). However, snow cover persistence was also a relevant driver of the reproductive effort in

some species,  with a significant decrease of inflorescence production with reduced snow cover

persistence both in primary grasslands (Abeli et al. 2012b) and dwarf-shrub heath (Gerdol et al.

2013a).

The  response  of  leaf  traits  to  experimental  extreme drought  was  studied  in  sub-Mediterranean

secondary  grasslands  (Wellstein  et  al.  2017)  and  resulted  in  differential  patterns  (through

phenotypic  adjustment)  of  functional  groups:  grasses  increased  significantly  their  SLA under

drought, indicating better growth performance of these species, which is most likely related to their

strategy to allocate resources to belowground parts. In contrast, forbs showed a SLA reduction as a

response to water stress.

Analysis of plant trait turnover through long-term observations revealed significant floristic and

functional changes over the last 42 years in alpine and subalpine grasslands of central Apennines,

with an increase in thermophilous, nitrophilous and mesophilous plant species and an increment in

the frequency of hemicryptophytes (Evangelista et al. 2016). These changes are likely attributable

to the combined effect of higher temperatures and the increase in soil nutrients triggered by global

change.  A thermophilization trend has been  also  documented in several European mountains and

have been related mainly to the effects of climate change (e.g.  Britton et al. 2009; Engler et al.

2011; Gottfried et al. 2012; Frate et al. 2018). Accordingly, recent evidence (e.g., Spasojevic et al.

2013) suggests that variations in nutrient availability, soil moisture and temperature led to changes

in  the  functional  composition  of  alpine  plant  communities  with  a  shift  towards  more  resource

acquisitive functional traits (e.g., hemicryptophytes with well-developed leaves).

Among  the  papers  dealing  with  lichens,  photobiont  type,  thallus  growth  forms  and  dispersal

strategy were the most studied functional traits, at national (Marini et al. 2011; Giordani et al. 2012)

or local level, spanning from glacier forelands to Mediterranean systems (Favero-Longo et al. 2014;

Nascimbene and Marini 2015; Nascimbene et al. 2017; Giordani et al. 2014c). Thallus growth form

and  photobiont  type  were  responsive  to  climate  factors  in  several  ecosystems  both  at  national

(Marini  et  al.  2011;  Giordani  et  al.  2012  )  and  local  level  (Nascimbene  and  Marini  2015;

Nascimbene et al. 2017), representing a promising tool for detecting the effects of climate change

on  lichen  species.  For  instance,  thallus  growth  forms  showed  contrasting  patterns  related  to

temperature in forest ecosystems, with crustose species being enhanced by warming, and fruticose

and foliose lichens being negatively impacted by warming (Nascimbene and Marini 2015). Also
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photobiont  type  (i.e.  the  photosynthetic  partner  of  the  lichen  symbiosis)  showed  differential

response to climate variables: despite the general dependence of lichens on water supply, lichens

characterized by Trentepohlia algae were further enhanced by warming, while species richness of

lichens characterized by cyanobacteria was only related to precipitation (Marini et al. 2011). 

3.2. Response of functional traits to forest management and eutrophication

Understory species compositional changes during the regeneration phases after coppicing appeared

to be driven by plant functional traits, in particular leaf, clonal and reproductive traits (Canullo et al.

2011,  2017;  Campetella  et  al.  2011;  Catorci  et  al.  2012a).  In  detail,  changes  in  environmental

conditions  during  the  forest  regeneration  after  copping  filtered  species  with  high  SLA values

(Campetella et al.  2011; Catorci et al.  2012a), short-distance dispersal (Campetella et al.  2011),

early leaf and flower production (Catorci et al. 2012a) and high mobility due to stem-derived clonal

growth organs (i.e. hypogeogenous rhizomes; Canullo et al. 2011, 2017). Additionally, understory

traits composition was influenced by the presence of the alien trees  Prunus serotina and  Robinia

pseudoacacia but with different impact, suggesting the importance of different management and

control strategies (Terwei et al. 2016).

Papers comparing different types of forest management, namely old coppice vs high forest, showed

contrasting results: the understory herbaceous layer did not show significant differences in leaf,

flowering, whole-plant and seed attributes (Scolastri et al. 2017); in contrast, belowground traits

(i.e. fine-root traits) of tree species (Fagus sylvatica) were sensitive to management. In particular,

fine-root standing biomass decreased and Nitrogen concentration increased with the reduction of the

stand density. Furthermore, both fine-root production and turnover rate were lower, and C:N ratio

higher, in dense old coppice than in thinned high forest stands (Montagnoli et al. 2012a; Terzaghi et

al. 2013), suggesting the importance to explore belowground traits in future studies. In absence of

management, local ecological continuity favoured species with low dispersal ability (i.e. large seeds

with low persistence in the soil, and short-distance animal dispersion; Ricotta & Burrascano 2008;

Burrascano  et  al.  2009).  However,  despite  differences  in  terms  of  functional  traits  between

unmanaged and managed forests, the difference in their functional beta diversity values  are only

marginally significant, probably due to the   different spatial scale at which ecological variations

occur in forest stands with different management histories (Ricotta & Burrascano 2008).

For lichens, three functional traits were mainly considered, namely photobiont type, thallus growth

forms and dispersal strategy. Lichens were sensitive to forest management (Nascimbene et al. 2007;

Nascimbene et al. 2008). In particular, the release of deadwood in managed forests was a key factor

for the maintainance of lichens functional diversity. The occurrence of deadwood in different decay

status supported a broad lichen community (Nascimbene et al. 2008). Lichen growth form was the
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most  responsive trait  and was considered a reliable indicator for evaluating and comparing the

responses of epiphytic lichens to atmospheric deposition in forests across diverse regions (Giordani

et al. 2012; Giordani et al. 2014). In particular, Giordani et al. (2014) showed that the percentage of

macrolichens was the most reliable indicator, since 56.7% of its variation could be explained by

nitrogen  deposition.  Moreover,  both  narrowly  lobed  and  broadly  lobed  foliose  lichens  were

negatively  affected  by  acidic  deposition,  while  narrowly  lobed  species  were  also  negatively

influenced by increasing concentrations of SO4
2− (Giordani et al. 2012). Under high eutrophication

levels,  differences in tree-related factors were not  related to significant  differences  in epiphytic

lichen communities composition (Giordani & Malaspina 2016). In fact, different epiphytic lichen

functional groups with different nitrogen tolerances responded to several atmospheric pollutants,

which had both independent and joint effects, whereas they did not show significant differences

depending on bark pH.

3.3. Secondary grasslands, grazing and land-use change

Changes  in  grazing  intensity  produced  significant  changes  in  species  and  functional  traits

composition in montane grasslands (Catorci et al.  2016; Giarrizzo et  al.  2017). The increase in

grazing pressure produced an increase in species showing traits associated with frequent disturbance

(Giarrizzo et  al.  2017),  usually poorly palatable  and characterized by strong grazing avoidance

strategies (Catorci et al.  2016). In lichens,  Giordani et  al.  (2014a) found a similar shift,  with a

significant increase in the similarity of the oligotrophic component of lichen communities due to

nitrogen  accumulation.  Grazing  cessation  leads  to  an  overall  reduction  of  functional  diversity

together  with  an  increase  in  productivity  through  a  shift  from functional  strategies  devoted  to

grazing avoidance and tolerance to those devoted to competition for light and resource acquisition

(Tardella  &  Catorci  2015).  In  fact,  in  abandoned  grasslands  several  studies  assessed  how the

dominance of some grasses (e.g.  Brachypodium genuense,  Tardella et  al.  2017;  Sesleria nitida,

Wellstein et al. 2014) influence community composition by competitive exclusion of subordinate

species.  Such  dominance  proved  to  be  context-dependent  and  related  to  functional  traits.  For

instance,  in  central  Apennines,  Brachypodium genuense populations  showed different  strategies

under  different  conditions  (mesic  vs  xeric),  with  a  fast-growing  strategy and  high  competitive

ability  (high  SLA and  plant  height)  in  productive  environments  (Tardella  et  al.  2017).  Even

subordinate species,  which often are highly palatable for wild herbivores (Corazza et  al.  2016),

showed different context-dependent trait-based strategies to coexist and to cope with the dominant

species.  Here,  flowering,  whole  plant,  seed,  clonal  and  belowground  traits  played  a  key  role

(Halassy et al. 2005; Catorci et al. 2012b; Wellstein et al. 2014; Corazza et al. 2016). However, the

impact of grazing on functional composition of grasslands may vary with climate,  productivity,
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dominant life forms and may not be functionally related to direct herbivore damage (McIntyre et al.

1999, and references therein).

3.4. CSR plant strategy theory

Competitor, stress-tolerator, ruderal (CSR) plant strategy theory was conceived by Grime (1974,

1977, 2001) as a trade-off between three extreme adaptive trait syndromes that have evolved in

response to competition (biotic  limitations  to biomass production),  stress  (abiotic  limitations to

productivity) and disturbance (biomass destruction). In Grime’s most modern definition (Grime &

Pierce 2012) these trait syndromes are supposed to facilitate the survival of genes via: “(C) the

survival of the individual using traits that maximise resource acquisition and resource control in

consistently productive niches, (S) individual survival via maintenance of metabolic performance in

variable  and  unproductive  niches,  or  (R)  rapid  gene  propagation  via  rapid  completion  of  the

lifecycle  and regeneration in  niches  where events  are  frequently lethal  to  the  individual”.  This

formulation  has  the  advantage  of  being  the  only  trait-based  ecological  strategy  theory  with

empirical support across major taxonomic groups (Grime & Pierce 2012). 

In  terms  of  traits,  the  fundamental  characters  that  can  universally  link  CSR  strategies  in  all

organisms are the proportions of essential elements (especially carbon, nitrogen and phosphorus)

“invested  in  traits  involved  in  resource  acquisition,  maintenance  or  regeneration”.  Thus,  the

quantity of biomass produced is related to the amount of carbon acquired by the organism, and

tissue  density to  the  way in  which  essential  elements  are  deployed for  primary metabolism or

reproduction. In a practical sense, plant traits that are measured include size traits such as leaf area

or canopy height, resource-use and tissue density traits such as SLA and LDMC, respectively, or

reproductive traits, particularly those involved in flowering and fruiting phenology (Hodgson et al.

1999; Pierce et al. 2013, 2017). These trait relationships have been confirmed to reflect fundamental

underlying trade-offs throughout vascular plants (Díaz et  al.  2016).  Crucially,  it  is important to

avoid the misconception that each trait  is measured to represent either C, S, or R: CSR values

represent the balance between traits and thus the three-way trade-off. For example, the degree of

‘C-selection’ is never calculated from a single trait, but is weighted by all of the traits measured

(Pierce et al. 2017).

The CSR approach proved to be suitable outside its original area of development (Britain), and to

be consistent with traits variation in a broad sample of Italian species (including acquatic plants,

Pierce et al.  2012) of the continental,  sub-alpine and alpine bioclimatic zones (Cerabolini et al.

2010b),  but  also in  coastal  habitats  (Ciccarelli  2015).  Specifically,  high elevation species  were

predominantly  stress-tolerators  but  included  some  competitive-ruderals  and  ruderals  (Fig.  2a;

Caccianiga et al. 2006; Pierce et al. 2007a,b; Gentili et al. 2013). Here, both abiotic stress resulting
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from  a  scarcity  of  resources  and  physical  disturbance  limited  plant  growth.  Several  studies

conducted along transects in glacier forelands demonstrated a functional shift from broadly ruderal

pioneers towards stress tolerance in late succession (Caccianiga et al. 2006; Gobbi et al. 2010). This

shift was also reflected in phylogenetic changes, indicating that species sorting by environmental

filtering tends to favor the co-occurrence of phylogenetically related species (Ricotta et al. 2015).

Additionally, the progressive substitution of ruderal species by stress tolerators was accompanied by

a  constant  and  significant  decrease  in  community-level  functional  diversity  and  uniqueness,

meaning that  the  increased  uniformity of  vegetation  structure  over  time goes  together  with  an

increase  in  functional  redundancy (Ricotta  et  al.  2016).  Till  deposited  at  the  retreating  glacier

terminus provides a substrate that can support faster growing species (with high foliar N contents),

but is only tenable to those that can avoid physical disturbance via rapid phenological development

(i.e. ruderals), while stress-tolerance (and lower N contents) in late succession suggested selection

for efficient nutrient use (Caccianiga et al. 2006; Gobbi et al. 2010). Interestingly, such functional

shifts  (from  R-strategists  to  S-strategist)  have  been  confirmed  also  in  coastal  dune  primary

successions  (Ciccarelli  2015),  suggesting  that  during  primary successions  there  is  a  shift  from

ruderality to stress-tolerance across ecosystems (Fig. 2b).

In sub-alpine secondary grasslands, the most abundant species were stress-tolerators, ruderals and

competitive-ruderals, demonstrating the existence of contrasting opportunities for survival, based on

nutrient availability and grazing pressure (Fig. 2c; Pierce et al. 2007a; Cerabolini et al. 2010a). In

contrast, in lowland grasslands, species were predominantly competitive-ruderals but included some

stress-tolerators  (Pierce et  al.  2007b).  However,  the number of  strategies strongly depended on

biomass production, with the higher values (also in terms of species richness and trait variance)

occurring at  intermediate  biomass,  while  extremes of  biomass  production were  associated  with

relatively few taxa exhibiting similar trait values and specialised strategies (Cerabolini et al. 2016).

3.5. Plant functional traits and ecological processes in coastal ecosystems

Plant functional traits gave useful insights into the temporal trends and into the conservation status

of sandy coastal systems. Prisco et al. (2016) showed that a general increase in natural vegetation

cover occurred in recent years in coastal protected areas, although this increase was mainly in the

wooded dune habitats. Here, late-successional, tall-growing and large-seeded species showed the

clearest  signs  of  cover  expansion.  However,  this  expansion occurred  in  part  at  the  expense  of

coastal dune grasslands, which thrive under the natural disturbance regimes of healthy coastal dune

systems, and have declined since the 1960s. In fact, the total cover of therophytes and species with

high LDMC values has tended to decrease (Prisco et al. 2016). Then, by analyzing temporal trends

in functional traits, Prisco et al. (2016) were able to determine which type of species were favoured
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and which were not, and why. Similarly, the functional approach was better than focusing solely on

taxonomic  diversity,  for  capturing  the  response  of  plant  communities  to  spatial  and  temporal

landscape patterns in coastal  sand dunes.  In fact,  while  taxonomic diversity seemed to be only

moderately affected by landscape processes, this was not the case for functional diversity (Malavasi

et  al.  2016).  In  addition,  Jucker  et  al.  (2013)  also  found  a  negative  association  of  both  the

taxonomical and the functional diversity of coastal dune communities with the level of invasion by

a highly invasive alien species from South Africa (Carpobrotus spp.). By examining trait patterns,

the authors hypothesized that this is likely the result of the selective exclusion of specific functional

groups from the native community by this highly competitive alien plant, through a combination of

niche- and fitness-related processes. Moreover, Stanisci et al. (2010) using a functional approach

including belowground traits, pinpointed the characteristics of the most successful invaders among

alien taxa in coastal sand dunes: large leaf area, biennial/annual life cycle and thick and long roots.

Plant  functional  traits  have  also  been  useful  to  infer  assembly  rules  in  plant  communities

particularly along natural  stress  gradients,  which have been extensively studied in  coastal  sand

dunes. Specifically, by allowing the quantification of species’ ecological niches, functional traits can

be used to test the predominance of certain ecological filters along gradients, thereby allowing to

make inferences on the processes behind the co-existence of species under different levels of abiotic

stress. For example, coastal habitats closer to the sea (higher levels of environmental stress) were

found  to  have  higher  proportions  of  specialized  species.  On  the  contrary,  sheltered  backdune

habitats, at  the other end of the gradient,  were mostly dominated by generalists  (Carboni et  al.

2016).  Recently,  Conti  et  al.  (2017)  suggested  that  in  order  to  assess  the  assembly  processes

underlying community patterns,  it  is  revealing to  analyze  jointly the  functional  and the  spatial

patterns  of  species  co-occurrences,  as  they can  convey complementary information,  while  also

accounting for the so-far overlooked role of micro-environmental heterogeneity. For example, in

Central Italian coastal dunes, spatial segregation of species within communities was more common

farther  from the  sea,  suggesting  the  dominance  of  competitive  processes  in  the  least  stressed

communities. But in addition, whether the species coexisting within communities shared similar or

highly divergent functional traits (i.e.  plant height,  seed mass, SLA), depended not only on the

average stress  level  along the gradient,  but  also on the environmental  heterogeneity within the

community.  Finally,  functional  patterns  in coastal  plant  communities were also partly linked to

phylogeny. At the overall species pool level, there was evidence of a phylogenetic signal in species

traits (i.e. closely related species shared similar traits). However, while functional diversity among

communities was closely mirrored by their phylogenetic variability, this was not the case for the

communities’ functional composition (Carboni et al. 2013). In conclusion, functional trait patterns

have been shown to be useful to gain insights into the processes of both plant community assembly
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and invasion in coastal dune systems.

3.6. Plant functional traits and intraspecific variability

Most of the studies included species of montane primary and secondary grasslands (Wellstein et al.

2013; Catorci et al. 2014c; Gratani et al. 2012, 2014; Puglielli et al. 2015a), with  Sesleria nitida

(Wellstein et al. 2013; Gratani et al. 2014; Puglielli et al. 2015a), an endemic grass of the montane

belt of the Apennines, being the most represented. Such species showed significant intraspecific

differences  in trait  attributes.  In  detail,  leaf  traits  (mainly SLA or its  inverse LMA, leaf  tissue

density,  LTD,  and  leaf  thickness,  LT)  of  S.  nitida were  highly  responsive  to  light  availability

(Puglielli  et  al.  2015a) and elevation (as proxy of temperature, Gratani et  al.  2014), with mean

plasticity index (PI, sensu Valladares et al. 2000) ranging from 0.05 to 0.32 (for SLA plasticity see

Fig. 3). However, Wellstein et al. (2013) showed a relatively low plasticity of leaf traits and plant

height in two contrasting grasslands (mesic vs xeric), while clonal traits demonstrated to be highly

plastic. The investigated clonal traits were related to space occupancy and multiplication frequency

and were regulated by soil nutrient and moisture availability.

Different  studies  focused  on  species  of  Mediterranean  ecosystems  using  field  observations

(Crescente et al. 2002; Puglielli et al. 2017a; Gratani et al. 2018) and common garden approaches

(Gratani et al. 2003; Catoni and Gratani 2013; Puglielli et al. 2017b). In particular, Crescente et al.

(2002),  Gratani  et  al.  (2003)  and  Peguero-Pina  et  al.  (2017)  revealed  significant  levels  of

phenotypic plasticity for plant and leaf traits in  Quercus ilex ecotypes. For example, PI for plant

height was 0.50 for  Q. ilex individuals growing at a climax area and at the northern distribution

limit of the species in Italy (Crescente et al. 2002). At the leaf level, PI values for SLA and LTD

ranged between 0.15-0.27 and 0.15-0.32, respectively, in Q. ilex plants grown from acorns sampled

along an aridity gradient (Gratani et al. 2003). A remarkable leaf morphological plasticity of SLA

and LT was also found in the widespread Mediterranean shrub Cistus salvifolius in response to a

reduced light environment (Puglielli et al. 2017a). Moreover, SLA changes were also mostly related

to changes in physiological and biochemical leaf traits revealing a long-term acclimation process of

C. salvifolius to a low light environment. Also, within species inter-annual variability in anatomical

components  of  LMA  has  been  demonstrated  to  reduce  net  photosynthesis  (on  area  basis)

responsiveness to air temperature changes (Gratani et al. 2018). However, such relationship held

only for evergreen sclerophyllous species compared to semi-deciduous ones, highlighting that inter-

annual  leaf  plasticity  patterns  in  response  to  temperature  (and  their  relationship  with

photosynthesis) depend on leaf habitus within Mediterranean communities.  At the within individual

level,  Puglielli  et  al.  (2017b)  demonstrated  that  different  leaf  cohorts  of  Cistus spp.  are

characterized  by differences  in  leaf  trait  coordination  patterns.  Such strategy allows  species  to
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modulate  resource-acquisition  and  -use  strategies  with  varying  environmental  conditions,

highlighting  another level of of phenotypic plasticity.  Relevant levels of phenotypic plasticity in

leaf  traits  have  been  found  also  in  Fagus  sylvatica,  Picea  excelsa and  Populus  nigra along

biogeographical gradients in studies conducted at continental scale, including Italy (Bauer et al.

1997; Kang et al. 2011; Guet et al. 2015).

The increased interest payed to the inclusion of intraspecific variability in ecological studies raised

also the question whether different spatial levels could account for different proportion of traits’

variability. As an example, Petruzzellis et al. (2017) compared variability patterns across multiple

spatial  scale  of  one  morphological  (SLA)  and  one  physiological  (leaf  osmotic  potential,  π)

functional trait in a population of Q. ilex. They found that the variability of SLA was mainly spread

within  individuals,  while  the  variability  of  π  was  much  higher  between  rather  than  within

individuals of the same species. This difference opens interesting questions about the patterns of

intraspecific trait variability in different species, encouraging future analyses including more traits

and more species.

3.7.  Aquatic  environments  and  plant  growth:  evidence  from  river  and  shallow  inland

ecosystems

River stretches, wetlands and eutrophic shallow lakes of the continental biogeographic region in

northern Italy were the most studied environments. Several papers were focused on single species.

Studies  related  to  growth  form  and  performance  of  Phragmites  australis found  significant

differences in attributes according to site-specific ecological status. Flooded stands or sites with

permanent submersion were characterized by high rates of clumping habit and dead apical bud, and

lower culm diameters, showing clear signs of plants dieback (Lastrucci et al. 2016, 2017). Other

studies  addressed  the  growth  response  of  a  rare  fern,  Marsilea  quadrifolia,  and  a  widespread

opportunistic  species,  Vallisneria  spiralis,  respectively  to  sediment  trophic  level  and  physico-

chemical water features, demonstrating a certain capacity of both species to grow under varying

levels of nutrients in water and sediment (Bolpagni & Pino 2017; Bolpagni et al. 2015). Finally, two

studies  focusing  on  plant-mediated  gas  exchange  of  Trapa  natans clarified  its  pivotal  role  in

inducing persistent hypoxia and anoxia in the colonized water bodies, and in conditioning CO2 and

CH4 stand fluxes at the water-atmosphere interface (Bolpagni et al. 2007; Pierobon et al. 2010).

At community level, Oglio river wetlands (northern Italy) were studied in order to assess the effect

of wetland origin (natural vs artificial)  and hydrology (lotic vs lentic) in shaping growth forms

composition of riverine wetland vegetation. In general, data revealed the predominance of terrestrial

herbaceous species and the deterioration of the obligate aquatic plant contingent and the helophyte

representativeness  in  such  ecosystems  (Bolpagni  et  al.  2013;  Bolpagni  &  Piotti  2015,  2016).
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Wetlands  origin  and  their  structural  complexity  rather  than  hydrological  features  seemed  to

condition community composition in terms of growth forms (Bolpagni et al.  2013; Bolpagni &

Piotti 2016).

Furthermore, some studies coupled the remote sensing approaches with field sampling in order to

assess macrophyte growth forms distribution at different spatial scales along time or water feature

gradients in lakes (Bolpagni et al. 2014; Villa et al. 2015, 2017). This constitutes a step forward for

macrophyte traits mapping going beyond the local scale, and can be used for supporting regional to

continental  monitoring  of  spatial  and  temporal  dynamics  of  primary  producers  in  freshwater

ecosystems (Villa et al. 2015, 2017).

Only one study was related to lichens (Nascimbene et al. 2009), evaluating the effectiveness and

life-strategies  of  freshwater  lichens  in  colonizing  newly  constructed  stone  structures  in  low-

elevation streams. Size of thalli, morphological and ontogenetic traits of the species were influenced

by the age of restored habitats.

4. CONCLUSIONS AND FUTURE RESEARCH PERSPECTIVES

Our review represents the first comprehensive overview of the main findings in studies linking plant

functional traits to environmental and human drivers in Italy. It can be a stepping stone to develop

functional quantitative analyses of plant communities based on plant traits, especially in ecosystem

services evaluations, and it can be a starting point to extend this comprehensive perspective beyond

the national scale, to tie more firmly Italian researchers to international scientific networks on plant

traits.

We took note of species encountered while working at this review (looking at the considered papers

and related supplementary materials), which traits have been studied at least once on a population

located in Italy; we supply the species list in Appendix 2. We found a surprisingly high number of

traits available for 1080 vascular plants (of which only 3.2% endemics), mainly related to whole-

plant, leaf,  seed, phenology and flowering traits.  On the contrary,  we registered a lack of traits

measurements for bryophytes and lichens. We also observed that functional traits of belowground

organs  (root  and  clonal  traits)  have  been  often  neglected,  despite  the  fact  that  these  traits  are

extremely informative on resource acquisition strategies and other key functions,  such as space

occupancy, recovery after damage (Lambers et al. 2006; Laliberté 2017; Ottaviani et al. 2017) as

well as other fundamental mechanisms such as plant-plant, plant-soil and plant-climate interactions.

Also the availability of wood traits measured in Italy, which include a time factor since they can be

dated within tree-ring series (Baas et al. 2016; Beeckman 2016), could represent a valuable step

forward in plant functional analysis at local scale. In the meantime wood traits are available in TRY

database (Kattge et al. 2011), or could be easily obtained from other sources (see Beeckman 2016).
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We explored the TRY database (a global archive of plant traits, Kattge et a. 2011) found trait values

for  about  900 species  deriving  from Italian  datasets  (i.e.  contributors  with  traits  measurements

carried out in Italy).  They were mainly related to leaf traits (Pierce et  al.  2007a,b,  2012, 2013,

2014b; Cerabolini et al. 2010a,b; Campetella et al. 2011; Ciccarelli 2015; Burrascano et al. 2015;

Giarrizzo et al. 2017). Combining the above mentioned information and the data collected in this

review (Appendix 2), we gathered information on plant traits measured on Italian populations for an

overall  total  of  1418 taxa,  which  represent  almost  the  20% of  the  entire  Italian  vascular  flora

(Bartolucci et al. 2018). Most of this information is shared in TRY database, but not all (Figure 4).

About 500 species whose traits measurements have been published in papers considered in this

review are not available in TRY. Moreover, 113 species among these (8% of the 1418 taxa) are

totally  missing  in  TRY  database.  Additionally,  we  explored  the  correspondence  between  the

functional trait database for Mediterranean Basin plants (BROT 2.0, Tavşanoğlu & Pausas (2018))

and our data related to the Mediterranean biogeographic region (Appendix 2, 126 taxa), assessing

that 32 species (25% of the 126 taxa) are totally missing in BROT 2.0 database.  It is therefore

evident that Italian researchers can easily give a more effective contribution to TRY and BROT 2.0

databases and to global research, by sharing their own already published trait measurements. This

could lead to an improving of the spatial coverage of the global and regional archives of plant traits

and give a crucial contribution regarding plant communities still poorly investigated such as those

of the Mediterranean region.

The plant traits approach holds promises in disentangling several issues still controversial in plant

ecology. For example, the assessment of determinants responsible for the invasion potential of alien

species is crucial in the light of the ongoing climate change. Recently, Petruzzellis et al. (2018)

compared several functional and mechanistic (sensu Brodribb et al. 2017) traits in a native and in an

alien species in sites under different light regimes, and suggested that a trade-off between hydraulic

safety and resource acquisition and use efficiency could promote invasion by alien species. Plant-

animal  interactions  in  pollination  and  dispersal,  which  influence  the  maintenance  of  plant

populations and communities (Fantinato et al. 2018a; Morales & Traveset 2008) have been scarcely

investigated by means of plant traits. Recently floral  traits,  such as flowering phenology, floral

morphology and anther position, have been proved to influence the co-existence of co-flowering

species in species-rich communities (Fantinato et al. 2018b). Further investigations of trait-driven

interactions might open new perspectives on plant-plant co-existence (Pauw 2018).

Intraspecific Trait Variability, which has a strong effect on the sampling size and effort (Petruzzellis

et  al.  2017),  is  still  scarcely considered at  population and community level,  while  intraspecific

variability is  often considered in  ecophysiological  studies.  Moreover,  we underline the need of
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approaches evaluating trait-environment relationships at broad spatial and temporal scales, possibly

resulting from the collaboration of several research groups at national level, as well as analysis of

traits variations along ecological gradients, in order to make predictions about land use and climate

change impacts.

Italy could be a good regional model to explore emerging research fields in plant ecology, like those

related to ecosystem services and functional biogeography. There is a growing evidence that plant

traits  considered  at  community  level  have  strong  effects  on  ecosystem  processes  underlying

important ecosystem services (Suding & Goldstein 2008; Lavorel et al. 2010; Lavorel & Grigulis

2011). Also functional biogeography (i.e. the study of the geographic distribution of trait diversity

across organizational levels; Violle et al. 2014) could find a fertile ground in Italy, given its broad

biogeographical range.
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Table 1. Application fields of the most used plant functional traits in Italy with indications of the

number  of  papers  and  biogeographic  region  (A:  Alpine;  C:  Continental;  M:  Mediterranean;

Roekaerts 2002).
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Table 2. Main topics and related papers for each section.1195
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FIGURES

Figure 1. Italian studies on functional traits in relation to environmental variables/gradients: (a)

temporal  trend in  the number of  papers  published per year;  (b)  distribution of the collected

papers regarding  studied ecosystems; (c)  number of  vascular plant  species accounted for the

most frequently investigated functional traits.
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Figure 2. CSR triangles synthesizing general  mean strategies  and shifts  of vegetation  along

gradients of (a) increasing elevation (based on Caccianiga et  al.  2006; Pierce et al.  2007a,b;

Gentili et al. 2013), (b) primary successions, including glacier forelands and coastal dunes (based

on Caccianiga et al.  2006; Gobbi et al. 2010; Ciccarelli 2015), and (c) grazing abandonment

(based on Pierce et al. 2007a; Cerabolini et al. 2010a).

1211

1212

1213

1214

1215

1216

1217

1218



Figure 3. Maximum values of plasticity index (PI, sensu Valladares et al. 2000) of Specific Leaf

Area  for  the  endemic  Sesleria  nitida in  different  environments  or  along  gradients  (altitude,

Gratani  et  al.  2014;  natural  environment  vs. pot  grown plants,  Puglielli  et  al.  2015b;  Light,

Puglielli et al.  2015a; soil nutrient and moisture, Wellstein et al.  2013; rainfall manipulation,

Wellstein et al. 2017).
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Figure 4. Gathered information on plant traits of Italian populations deriving from our review

(Appendix 2) and the Italian contributors to TRY, for an overall total of 1418 taxa, almost the

20% of the entire Italian vascular flora (Bartolucci et al. 2018). Traits measurements of about

900 species (65% of the 1418 taxa) are already shared in TRY database (i.e. species found both

in the reviewed papers and in the Italian datasets contributing to TRY, or species found only in

the Italian datasets contributing to TRY), while trait values for 502 species (35% of the 1418

taxa) recorded by this review are not available in TRY; among these latter, 113 species (8% of

the 1418 taxa) are totally missing in TRY.
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