
DOTTORATO DI RICERCA

Ingegneria Elettronica ed Informatica

XXX Ciclo

Securing Machine Learning against
Adversarial Attacks

Settore scientifico disciplinare di afferenza
ING-INF/05: Sistemi di elaborazione delle informazioni

Presentata da:
Coordinatore Dottorato:
Tutor:
Co-tutor:

Ambra Demontis
Prof. Fabio Roli
Prof. Fabio Roli
Dott. Ing. Battista Biggio

Esame finale anno accademico 2016/2017
Tesi discussa nella sessione d’esame Febbraio-Marzo 2018

University of Cagliari
Department of Electrical and Electronic Engineering

Ph.D. in Electronic and Computer Engineering

XXX Cycle

Ph.D. Thesis

Securing Machine Learning against
Adversarial Attacks

S.S.D ING-INF/05

Candidate
Ambra Demontis

Advisors Ph.D. Coordinator
Prof. Fabio Roli Prof. Fabio Roli
Dott. Ing. Battista Biggio

Final Examination-Academic year 2016/2017
March 2018

Dedicated to my family

Ringraziamenti

Se dovessi commentare con una sola frase il percorso intrapreso direi: "Le strade
in salita sono le più faticose ma sono sempre le più belle". Fare ricerca credo sia
un mestiere difficile quanto affascinante. Muovere i primi passi in questa strada
non è per niente semplice, non solo per le numerose capacità richieste, ma anche
perchè, dati i numerosi impegni è necessario saper gestire veramente bene il proprio
tempo, senza pensare di poter riuscire a fare tutto subito ma facendo delle scelte
e assegnando delle priorità. La difficoltà e la fatica vengono tuttavia senza dubbio
ripagate da tutto ciò che si impara e si scopre di volta in volta. Durante questi tre
anni credo di aver imparato tanto, non solo riguardo agli argomenti di ricerca e al
fatto che tra i vari impegni bisogna inserire anche un numero di ore sufficienti di
sonno, ma anche su come affrontare la vita e le difficoltà. Questa crescita sono sicura
non sarebbe mai avvenuta senza il supporto e l’esempio delle persone che, giunta al
termine di questo dottorato mi sembra doveroso ringraziare.

Prima di tutto vorrei ringraziare il ricercatore Battista Biggio, che mi ha seguita
da vicino durante questo percorso spendendo gran parte del suo tempo per insegn-
armi tutto il necessario per fare ricerca, dalle soft skills necessarie per presentare il
proprio lavoro in forma orale e scritta alle skill più tecniche come scrivere del codice
ben ingegnerizzato usabile e riutilizzabile. Vorrei ringraziarlo per essere stato sem-
pre presente per consigliarmi, correggermi e discutere idee di ricerca anche durante
le festività e a prescindere dalla parte del mondo nella quale si trovasse. Vorrei
ringraziarlo, inoltre, per avermi spronanta con le sue parole a non arrendermi e con
il suo esempio a cercare sempre di dare il massimo.

Vorrei ringraziare in particolare anche il prof. Fabio Roli, non solo per il suo
prezioso supporto tecnico ma anche perchè, nonostante i suoi numerosissimi im-
pegni, è sempre stato disponibile, ogni qual volta rilevassi una particolare difficotà
in qualcosa, a parlarne. In quelle occasioni mi ha dato sempre illuminanti consigli
su come affrontare e superare i problemi, e anche interessantissime spiegazioni su
qualcuno dei numerossissimi argomenti di suoi interesse (economia, psicologia ecc..).

Ringrazio entrambi perchè è stato decisamente un piacere e onore poter lavorare
con loro e li ringrazio inoltre per aver creduto in me.

Mi sembra doveroso ringraziare anche gli altri membri del PRALab che durante
questo percorso mi hanno fornito il loro supporto. Ringrazio il Prof. Giorgio Fumera
e il Prof. Giorgio Giacinto per il loro supporto tecnico e in particolare Prof. Fumera

per tutte le sue spiegazioni sulle tecniche di insegnamento. I post doc del gruppo
Luca, Igino e in particolare Davide Ariu e Davide Maiorca per i numerosissimi con-
sigli che mi hanno dato durante il corso di questo dottorato. I colleghi Marco e Paolo
con i quali abbiamo lavorato a diversi articoli. Guido per alcuni utili consigli. Il Re-
sponsabile della disseminazione scientifica del gruppo Matteo tutto il suo aiuto nella
preparazione del materiale pubblicitario di diverse attività e nell’organizzazione di
un concorso per gli studenti delle scuole superiori. Il sistemista del gruppo Mauro
per tutto il suo aiuto nella realizzazione del sito della IEEE Student Branch. Elena
per il suo aiuto nell’organizzazione di attività per gli studenti. Gli altri officers della
nostra IEEE Student branch Matteo, Elizavet, Arslan Michele, Graziana e Andrea
Pinna che ha contribuito all’organizzazione di attività della branch. Gli altri stu-
denti di dottorato Mohammad, Mansur, Mariam, Farideh, Bahram. La segretaria
del gruppo Carla. Sono grata inoltre al Prof. Gavin Brown per avermi dato la pos-
sibilità di svolgere una intership presso la sua università e per i suoi insegnamenti.
Vorrei ringraziare inoltre i ragazzi dell’MLO group, in particolare Emily, Sarah,
Kostas Sechidis, Nicos, Henry, Georgiana, Tameem, Dongjiao Ainura e Joe. Oltre a
professori e colleghi che mi hanno fornito il loro suppporto durante il dottorato, vor-
rei ringraziare anche il mio primo insegnante di informatica, Gianfranco Ciaschetti
per avermi fatto appassionare all’informatica e per avermi trasmesso l’amore per
la ricerca. La mia insegnante Giuliana Corrias che mi ha sempre fatto sentire la
sua vicinanza anche nei periodi nei quali non sono riuscita a frequentare la sala di
danza. Gli amici, in particolare le mie migliori amiche Serena e Guendalina perchè
hanno sempre saputo capirmi, supportarmi, consigliarmi e aiutarmi ad analizzare le
cose da angolazioni differenti. Ringrazio i miei familiari. In particolare mio didino
Alessio che fin da piccolissima mi ha fatta avvicinare ai computer. Mia nonna che mi
ha sempre dato preziosissimi consigli. Loredana, Mariano, Luisa, Nadia e la piccola
Tamara per la loro vicinanza. Infine, un ringraziamento speciale va ai miei genitori,
dai quali ho ereditato la curiosità, che fin da piccola mi hanno insegnato a seguire
le mie passioni e ad impegnarmi sempre per raggiungere i miei obbiettivi.

Grazie di cuore

Ambra

Ambra Demontis gratefully acknowledges Sardinia Regional Government for the
financial support of her PhD scholarship (P.O.R. Sardegna F.S.E. Operational Pro-
gram of the Autonomous Region of Sardinia, European Social Fund 2007-2013 -
Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.).

Abstract

Machine learning techniques are nowadays widely used in different application do-
mains, ranging from computer vision to computer security, despite it has been shown
that they are vulnerable to well-crafted attacks performed by skilled attackers. These
include evasion attacks aimed to mislead detection at test time, and poisoning at-
tacks in which malicious samples are injected into the training data to compromise
the learning procedure. Different defenses have been proposed so far. However, the
majority of them is computationally expensive, and it is not clear under which attack
conditions they can be considered optimal. There is moreover a lack of a security
evaluation methodology that allows comparing the security of different classifiers.
This thesis aims to provide a contribution to the study of machine learning system
security. Through this thesis, we firstly provide an adversarial framework that can
help us to perform the security evaluation of different classifiers. We exploit this pro-
vided tool to assess the security of different machine learning systems, focusing our
attention on systems with limited hardware resources. Thanks to this analysis we
discover an interesting relationship between sparsity and security. Then, we propose
a poisoning attack that, respect to the state-of-art ones, can be exploited against a
broad subset of classifiers (neural network included). Finally, we provide theoreti-
cally well-founded and efficient countermeasures, demonstrating their effectiveness
on two case studies involving Android malware detection and robot vision.

Contents

Notation v

1 Introduction 1
1.1 Machine Learning . 1
1.2 Adversarial Machine Learning . 3

1.2.1 Evasion . 4
1.2.2 Poisoning . 4

1.3 Outlook of this Thesis . 4

2 Background 7
2.1 Machine Learning Systems . 7

2.1.1 Support Vector Machines . 7
2.1.2 Neural Networks . 8
2.1.3 Multiclass Classification . 9
2.1.4 Sparse Machine Learning . 9

2.2 Security Measures for Machine Learning 10
2.2.1 Defenses against Evasion Attacks 10
2.2.2 Defenses against Poisoning Attacks 11

2.3 Limitation and Open Issues . 11

3 Contributions of this thesis 15

4 Adversarial Attack Framework 19
4.1 Attacker’s Goal . 19

4.1.1 Security Violation . 20
4.2 Attacker’s Knowledge . 20

4.2.1 Perfect-Knowledge (PK) Attack 21
4.2.2 Limited-Knowledge (LK) Attack 21

4.3 Attacker Capability . 21
4.4 Attack Strategy . 22
4.5 Security Evaluation Methodology . 23

i

CONTENTS

5 Test-time Evasion Attacks against Machine Learning 25
5.1 Evasion Attack Scenario . 26

5.1.1 Error-generic Evasion . 26
5.1.2 Error-specific Evasion . 27

5.2 Gradient-Based Evasion Attack Algorithm 27
5.3 Sparse and Dense Attacks . 28
5.4 Trading sparsity for security: Octagonal Regularization 29

5.4.1 Robustness and Regularization 30
5.4.2 Classifier Security Analysis . 31
5.4.3 Countering Sparse and Dense Attacks 32
5.4.4 Octagonal regularizer . 35

5.5 Securing Multiclass Classifier with Distance-based Rejection 36
5.5.1 Open Set Recognition . 37
5.5.2 Distance-based rejection . 37

6 Training-time Poisoning Attacks against Machine Learning 41
6.1 Poisoning Attack Scenarios . 41

6.1.1 Error-Generic Poisoning Attacks 42
6.1.2 Error-Specific Poisoning Attacks 43

6.2 Gradient-Based Poisoning Attack . 43
6.3 Poisoning Neural Networks with Back-gradient 45
6.4 Securing Kernel-based Classifiers from Poisoning Attacks 49

6.4.1 Dual Infinity-norm Support Vector Machines 50

7 Experimental Evaluation 53
7.1 Evasion . 53

7.1.1 Trading sparsity for security: octagonal regularization 53
7.2 Poisoning . 58

7.2.1 Poisoning Neural Network with Back-gradient 58
7.2.2 Securing Kernel-based Classifier from Poisoning Attacks . . . 64

8 Securing Android Malware Detectors against Evasion Attacks 69
8.1 Android Background . 70
8.2 Drebin . 71
8.3 Drebin Evasion . 73

8.3.1 Malware Data Manipulation 73
8.3.2 Evasion Scenarios . 75
8.3.3 Evasion attack algorithm . 76
8.3.4 DexGuard-based Obfuscation Attacks 76

8.4 Experimental Analysis . 78
8.4.1 Experimental Setup . 78
8.4.2 Experimental Results . 80

8.5 Discussion . 85

ii

CONTENTS

9 Securing CNN-based Robot-vision Systems 87
9.1 The iCub Humanoid . 89
9.2 iCub Evasion . 90
9.3 Experimental Analysis . 90

9.3.1 Experimental Setup . 90
9.3.2 Experimental Results . 91

9.4 Discussion . 95

10 Contributions and Limitations of this Doctoral Dissertation 97

iii

CONTENTS

iv

Notation

d Number of sample features

x Sample, is a vector 1× d

y Sample class

n Number of samples

X Matrix with shape n× d where each row represent a sample

y Sample classes, is a vector with dimension 1× n

D Dataset, D = (X,y)

nc Number of different dataset classes

Dtr Training Dataset

Dval Validation Dataset

Dts Test Dataset

f Classifier Discriminat Function

ε Small positive constant for ensuring algorithm convergence

b Classifier bias

w Classifier Parameters

L Classifier Loss Function

d Distance between two samples in a specified `p space

‖x‖p Norm in `p space

‖x‖∗p Dual Norm in `p space

‖x‖8gon Octagonal norm

v

Notation

U Uncertainty set

u One of possible dataset perturbations. Is a vector 1× d

:= Equal for definition

K Kernel function

α Support Vector coefficient

α Vector containing Support Vector coefficients

C Support Vector Machine Costs

φ Feature extraction/selection function

M Learning Algorithm

Θ Adversary’s Knowledge Space 4.2

θ Adversary’s Knowledge θ = (D, φ,M,L, f,w) 4.2

xlb Vector containing the minimum feature values that each feature can assume

xub Vector containing the maximum feature values that each feature can assume

� Element-wise ≤ operator (where u � v means that each element of u has to be
not greater than the corresponding element in v)

dmax Maximum amount of perturbation between two samples measured with a cho-
sen `p − norm

Π Projection operator. Function that project a given sample x inside the feasible
space defined by the specified constraints

(PK) Attack Perfect Knowledge Attack 4.2.1

(LK) Attack Limited Knowledge Attack 4.2.2

(LK-SD) Attack Limited Knowledge Attack with Surrogate Data 4.2.2

(LK-SL) Attack Limited Knowledge Attack with Surrogate Learner 4.2.2

Da Adversary’s attack samples 4.4

Ψ Feasible transformations 4.3

A Adversary’s loss function 4.4

L Loss function defined from the attacker in order to poison the classifier 4.4

k True class for Error-generic Evasion 5.1.1 or target class for Error-specific Evasion
Attack 5.1.2

vi

Chapter 1

Introduction

While a decade ago Internet and operative systems were used mainly from tech-
nicians, nowadays, because of smart-phones and the so-called Internet of things
devices, each of us has always one or more of them in his pocket. As a consequence,
a great deal of public administrations and companies have started to provide online
services. The number of data produced daily has, therefore, grown exponentially. If
non-sensitive data of a single person may be useless, this huge amount of data can
be analyzed and transformed into valuable information. Machine Learning, an en-
semble of techniques that enables machines to learn from data has gained, therefore,
popularity in different application domains. One of those domains is Information
Security where machine learning is used to detect attacks of different types (like
malware or network intrusion). However, has been shown that Machine Learning
algorithms can be easily misled by a skilled attacker. To solve this problem, the
scientific community started to study the security of Machine Learning system giv-
ing rise to a field of study called Adversarial Machine Learning. As this thesis aims
to give a contribution to this field, in this Chapter we provide a brief introduction
to Machine Learning techniques and to two of the main problems that are being
studied from the Adversarial Machine Learning Community.

1.1 Machine Learning

Machine Learning techniques are extremely useful as allows us, given a bunch of
data, to find an answer to problems for which we are not able to write down an
algorithm. To understand how machine learning works we can consider a simple
problem solvable with those techniques. Suppose that you are asked to tell, given
an object, that can be either, a screw or a hammer to which class it belongs to.
This is a simple classification problem. The first step to create a machine-learning
system that can distinguish between two different classes of objects is to choose some
discriminant characteristics (features) that can be used to distinguish between them.
As hammers are always considerably bigger than screw, two possible discriminant

1

Chapter 1

Figure 1.1: Dataset of screw and hammers in feature space.

features are length and width. You can measure them and represent every single
object with a vector x = (x1, ..xd) where each vector element is the measurement of
one of the features that you decided to take into account. Machine-learning systems
learn to classify objects relying on a set of examples. You will collect therefore this
measurements from many hammers and screw. With this data, you can construct a
training dataset that is made up of a set of couples each one composed of a object
measurements and label. The object label y is dependent on the class in which the
object belongs i.e. hammer or screw. In a two-class classification problem to each
class is usually assigned a number y ∈ {−1, 1}. We can, therefore, label the screw
as -1 and the hammer as 1. Our training dataset can, therefore, be represented as
D = (X,y) where X is a matrix with a number of rows n equal to the number of
objects considered in our dataset and a number of column d equal to the considered
features. y is a vector 1 × n that contains the object labels. We can visualize our
dataset representing it on a plane as in Fig. 1.1 where screws are represented with
green points and hammers with red points.

Your goal is then to infer a discriminant function f that you can use to predict the
object class y = +1 if f(x) ≥ 0, −1 otherwise. You can make different assumptions
on the shape of the function needed to separate the objects that belong to the two
different classes. Let’s assume that they are separable with a hyperplane. To create
your classifier, you need to find the parameters of a linear function:

f(x) = w>x+ b , (1.1)

where w ∈ Rd denotes the vector of feature weights, and b ∈ R is the so-called bias.
Clearly, you will search for a hyperplane that allows you to make few errors

namely, classify few objects in a wrong way. However, you can find many different
hyperplanes that are able to separate your data making almost the same number of
errors. How can you choose a good hyperplane between them? Let’s assume that
you are asked to choose between the two hyperplanes that are shown in Fig. 1.2.
With the hyperplane that is shown on the right, an object should be pretty different
from the known objects to be wrongly classified. With the hyperplane that is shown
on the left, instead, a hammer that is slightly little than the ones that you have

2

Introduction

Figure 1.2: Different classification hyperplanes.

measured will be misclassified. It is said that the hyperplane on the right has a
bigger generalization capability than the one on the left, as it is more probably able
to correctly classify objects that are not between the ones that you used to learn
the classifier parameters (your training dataset). To find a good hyperplane taking
into account both these properties, namely the number of committed error and the
generalization capability, you can define an objective function that is made up of
two different terms e.g.:

min
w,b

L(D, f) = 1
2
w>w︸ ︷︷ ︸
R(f)

+C
∑n

i=1 max(0, 1− yif(xi))︸ ︷︷ ︸
L(f,D)

(1.2)

where L(f,D) denotes a loss function that measure the number of errors committed
by f on the samples in D. R(f) is a regularization term to avoid overfitting (i.e.,
to avoid that the classifier overspecializes its decisions on the training data, losing
generalization capability on unseen data), and C is a trade-off parameter. In par-
ticular, this objective function is the one used to learn a classifier called Support
Vector Machine (SVM). It exploits an `2 regularizer on the feature weights and the
so-called hinge loss as loss function. You can find the hyperplane parameters (w, b
of Eq. (1.1)) optimizing the objective function in Eq. (1.2). This operation is called
training. This learned hyperplane allows you to predict, after the training (test
time) the labels of objects that you have never seen before (test samples).

1.2 Adversarial Machine Learning

Machine-learning algorithms have been increasingly applied in security-related tasks,
in response to the increasing variability and sophistication of attacks [8, 88, 1, 4,
62] as their ability to generalize allows one to detect never-before-seen attacks or
variants of known ones. However, as first pointed out by Barreno et al. [7, 6],
machine-learning algorithms have been designed under the assumption that training
and test data follow the same underlying probability distribution, which makes
them vulnerable to well-crafted attacks violating this assumption. This means that

3

Chapter 1

machine learning itself can be the weakest link in the security chain [3]. The field
of study whose aim is asses machine learning system security is called Adversarial
Machine Learning. Among the different attacks that can threaten a machine learning
system the two that have been mostly considered by the adversarial machine learning
community are named evasion and poisoning. We provide a brief explanation of
them below.

1.2.1 Evasion

Mainly but not exclusively in security-related applications, some users can be in-
terested to have the samples that they submit to the system misclassified. An
application example is malware detection where an attacker would like to have her
malware misclassified by the system as benign application.1 To mislead the sys-
tem she can exploit her knowledge or make guess about the system structure and
carefully modify her malware accordingly. This attack is called evasion and has
been, to date, the most studied one. Different evasion attacks have been devised
against almost all machine learning systems, neural network [12] and Deep Neural
Network [102] included.

1.2.2 Poisoning

Among the different attack scenarios envisaged against machine learning, poison-
ing attacks are considered one of the most relevant and emerging security threats
for data-driven technologies, i.e., technologies relying upon the collection of large
amounts of data in the wild [54]. In a poisoning attack, the attacker is assumed
to control a fraction of the training data used by the learning algorithm, with the
goal of subverting the entire learning process, or facilitate subsequent system eva-
sion [81, 93, 19, 108, 73, 57]. Usually, an attacker can not have access to the training
dataset, however, she can often provide new training data. Honeypots, for exam-
ple, often collect malware training samples, which provides an opportunity for the
adversary to poison the training data. Another example are applications that rely
on user feedback for improving their performance as it can be intentionally wrongly
provided to mislead the system. To date, this attack has been devised only for a
little subset of machine learning systems as we will discuss more in detail later on
in this thesis.

1.3 Outlook of this Thesis
In this Chapter Machine Learning and Adversarial Machine Learning fields have
been introduced.

1We refer to the attacker here as feminine due to the common interpretation as is commonly
named “Eve” or “Carol” in cryptography and security.

4

Introduction

In Chapter 2 Machine Learning Systems that are used in this thesis are briefly
summarized. The state-of-art defenses against some of the attacks that can threaten
them are presented and their limitations are discussed.

The contributions that this thesis provides to the state of the art are discussed
in Chapter 3.

In order to provide a methodology to evaluate and compare the security of dif-
ferent machine learning systems an adversarial attack framework is presented in
Chapter 4.

In Chapter 5 two different defenses aimed to improve the security respectively
of binary linear and multiclass classifiers are presented. Moreover, the relationship
between the number of features on which a machine learning system rely on during
classification and security is analyzed.

A new poisoning strategy devised for a broad subset of machine learning systems
compared to the state of the art is presented in Chapter 6 together with a new
countermeasure for kernel machines against this attack.

Two case studies where the proposed defenses are used to enhance respectively
the security of an Android Malware detector and a Robot-vision system are finally
presented respectively in Chapter 8 and in Chapter 9.

5

Chapter 2

Background

In this Chapter, we provide an overview of the machine learning systems that are
considered through this thesis. Then we briefly review the state-of-art defenses
against evasion and poisoning attacks. Finally, we highlight which are, to date, the
main limitations and open issues concerning Machine Learning Security.

2.1 Machine Learning Systems

There are many problems for which machine learning techniques have been devised
e.g.. Clustering, Regression, Classification. In this thesis, we focus on classification
problems. In this section, we give a brief overview of the classification algorithms
that we consider through this thesis.

2.1.1 Support Vector Machines

Support Vector Machine [29] is one of the most used classifiers as it is less com-
putationally expensive than many other classifiers and allows to obtaining a high
accuracy in a great deal of classification problems. As we have seen in the previous
chapter, its objective function (eq. 1.2)) is made up by an `2 regularizer and the
so-called hinge loss. It learns a hyperplane in feature space, therefore it will have d
parameters (equal to the number of features). This is the so called primal form of
the linear SVM.

7

Chapter 2

Dual SVM

It has been shown that you can equivalently solve the dual problem:

max
α

−1

2

n∑
i,j=1

yiyjxixj +
n∑
i=1

αi (2.1)

s.t. 0 ≤ αi ≤ C , (2.2)
n∑
i=1

yiαi = 0 , (2.3)

The decision function of the dual svm is f(x) =
∑n

i αiyi(xi
′x)+b. This formulation

is useful when the number of features is consistent as it has n parameters, where n
is equal to the number of training samples. A considerable number of α coefficients
are, moreover, usually equal to zero.

Kernel trick

When the sample distributions are highly not linear a linear svm has often poor
performance. A solution is therefore to map the points in a different feature space
where they are easily separable. If this space is composed by many feature this
operation as well as the optimization of the classifier is computationally expensive.
The dual form of the SVM allows the so called kernel trick, namely to learn the
classifier in a high dimensional feature spaces, without having to map those points
in that space. Basically a chosen function called Kernel (K) which carry out the
feature mapping is applied to the scalar product between samples K(x1, x2). One
of the most famous kernel is the Radial Basis Function (RBF) kernel as it allows to
map the samples in an infinite dimensional features space.

K(x1, x2) = exp(
−||x1 − x2||2

2σ2
) (2.4)

2.1.2 Neural Networks

Neural networks [22] are classifiers inspired to the human brain. They are composed
by neurons. Each neuron receives different inputs. Those inputs are weighted and
summed. A function called activation function is applied to the sum result. A set
of neurons compose a layer of the network and a network is often composed by
many layers: an input layer, one or many hidden layers and an output layer. When
neural networks are used to solve binary problems the last layer is composed by a
single neuron and the sample is classified as belonging to the positive class if the
neuron output is bigger than 0.5, to the negative class elsewhere. When the neural
network is instead used to solve multiclass problems the last layer is composed by

8

Background

a number of neurons equal to the number of classes. In this case the predicted
class is the one for which the corresponding neuron output the maximum scores.
The weights of the network are randomly initialized and during the training they
are updated using a gradient based learning algorithm to reduce the classification
error committed by the network. The gradient of the loss respect to each weight is
required by the algorithm. To this end the backpropagation algorithm is exploited.
It basically exploits the chain rule computing the gradient of a neuron as a weighted
composition made up by the derivative of the node in the previous layers.

Convolutional Neural Networks

Convolutional neural networks are deep neural networks (networks with more than
one hidden layer) inspired to the animal visual cortex. The neurons of the visual
cortex were shown to be activated from different stimuli (eg. Horizontal or vertical
bars). This mechanism is imitated from the Convolutional neural network using two
operations called convolution and pooling. Those classifiers have recently shown
groundbreaking performance in computer vision applications.

2.1.3 Multiclass Classification

When the number of classes is higher than two one can use different approaches.
One of them is to use a multiclass classifier as Neural Network. The other is to
combine binary classifiers. One of the possible strategies is called One Versus All.
One-Versus-All (OVA). The one-versus-all scheme combines a set of c binary
classifiers, being c the number of known classes. If we denote the discriminant
functions of the aforementioned binary classifiers as f1(x), . . . , fc(x). The predicted
class of the one-versus-all classifier c? for a sample x is determined as the class whose
discriminant function for that sample is maximum:

c? = arg max
k=1,...,c

fk(x) . (2.5)

2.1.4 Sparse Machine Learning

Sparse Machine learning is referred to a collection of learning techniques that tries
to minimize the amount of data that is used from the machine learning systems
to makes decisions. As we have seen before, if trained using the Dual formulation
SVM learns a sparse solution where sparsity is referred to the number of zero’s α
and therefore to the number of training samples considered. If SVM is learned in
the primal, it can be enforced to learn a sparse solution, where sparsity is referred to
the number of features used to make decisions [117], changing the `2 regularizer with
one that enforces sparsity. Some sparse classifiers that can be obtained substituting
the regularizer are:

9

Chapter 2

1-Norm SVM (1-norm).:

min
w,b

‖w‖1 + C

m∑
i=1

(1− yig(xi))+ . (2.6)

The `1 regularizer induces w sparsity, while retaining convexity and linearity.
Elastic-net SVM (el-net). The elastic-net regularizer [118] allows, combined with
the hinge loss to obtain an SVM formulation with tunable sparsity:

min
w,b

(1− λ)‖w‖1 +
λ

2
‖w‖2

2 + C

m∑
i=1

(1− yig(xi))+ . (2.7)

The sparsity level can be tuned through the trade-off parameter λ ∈ (0, 1).

2.2 Security Measures for Machine Learning
Different defenses aimed to counter evasion and poisoning attacks have been pro-
posed to date. In this section we briefly summarize the main idea on which they are
based.

2.2.1 Defenses against Evasion Attacks

To account for this potential adversarial drift between training and testing distribu-
tions, various adversary-aware learning algorithms have been developed, based on ro-
bust optimization, probabilistic and game-theoretical models (see, e.g., [28, 46, 105]).
The underlying idea of these algorithms is to incorporate knowledge of the potential
adversarial data manipulations into the learning phase. Game-theoretical models
simulate such manipulation at training time. Basically there are two players, an
attacker and a defender (the classifier). The attacker goal is to produce samples
that increase the classifier error. The classifier goal is try to decrease the error on
both, the original training samples and the ones produced by the attacker. Robust
optimization and probabilistic models include, instead, the distribution drift directly
into the model objective function. In practice, both options reflect a similar effect,
i.e., an adversarial shift of the malicious distribution, as witnessed by the aforemen-
tioned probability model. The only difference is the level at which assumptions on
the attacker model are made, i.e., either at the level of each malicious sample, or at
the higher level of their global probability distribution. Clearly, making assumptions
at the sample level allows one to more finely define the potential adversarial data
manipulations, which can be advantageous when application-specific constraints on
data manipulation can be accounted for. Another line of defense [76] is supporting,
instead, the main classifier with another one that is called detector as it is learned
with the purpose to detect attacks. If it recognizes that the sample is malicious it is

10

Background

classified as adversarial, otherwise, it is classified as belonging to the class predicted
from the main classifier. Secure learning techniques based on the aforementioned
approaches tend to exhibit a much higher training complexity compared to the cor-
responding non-secure version, especially in terms of computational time and space.
This is one of the main factors that hinder the adoption of these algorithms in prac-
tice, along with the difficulty of meeting some theoretical requirements, and, in some
cases, the complexity of their implementation.

2.2.2 Defenses against Poisoning Attacks

In order to enhance the security of machine learning systems against poisoning at-
tacks, different defenses have been proposed so far. The main idea on which the
proposed defences are based is that poisoning points are outlier. The main motiva-
tion behind this idea is that adversary aims to "deviate" the classification algorithm
from learning the correct training data distribution, therefore if poisoning points
were not outlier, their effect would be negligible. They counter therefore the poison-
ing problem with outlier removal techniques [34, 64]. Namely, they try to identify
and remove the training points that are far from the average of the point belonging
to each class distribution. Those approaches are therefore vulnerable to stealthy
poisoning point attacks where the attacker inject poisoning point that are not so
different from the original training samples points. Another line of defense tries to
decrease the influence of each single point on the classifier decision. In [13] bagging,
a well-known ensemble construction method where each classifier in the ensemble is
trained on a different bootstrap replicate of the training set is shown to reduce the
outlier influence. In [18], instead, during the learning it is assumed that the label
of each training sample can be independently flipped with the same probability.
Despite having demonstrated empirically to increase the classifier security, being
heuristic method they do not provide guarantee of optimality.

2.3 Limitation and Open Issues

Even though the research in this field has been carried on from almost ten years,
there is still a huge number of open problems due to the variability of the machine
learning system characteristics and of the attacks that can threaten them.

The recent increasing interest about this field with the consequent enlargement
of the machine learning community is producing a significant boost on the number
of countermeasures (mainly devised to counter Neural Network vulnerabilities) that
is published daily. Among those recently published works there is, however, a lack of
methodology to evaluating the efficacy of the proposed countermeasures whose secu-
rity is therefore barely comparable. Apart from the used methodology shortcoming,
the instruments that could aid this evaluation are still missing for some machine
learning systems. The first step to evaluate machine learning system security is

11

Chapter 2

to understand which attacks can threaten the system. A framework that enable
one to envision different attacks scenarios against a machine learning system were
proposed in previous works. However, in the state of the art framework does not
comprise multiple classifiers poisoning. Once the the attack scenarios are clear, the
security of the system under each attack scenario has to be evaluated. The studies
about formal techniques that allow one to quantify the security of machine learning
systems are still ongoing, therefore as we will explain later on in this thesis, the se-
curity evaluation of a machine learning system requires, to date, to simulate strong
attacks against it. Observing the behavior of the system under an attack scenario
help, infact, understanding on which extent it is vulnerable to that specific attack
scenario. Attacks are therefore a prerequisite to the security evaluation. While is
already well-known how to exploit evasion attacks against the majority of the ma-
chine learning systems, only a subset of them can be poisoned using state-of-art
techniques.

Machine learning techniques are nowadays often applied in devices with limited
hardware resources. Such systems exploit often sparsity to be more efficient. To
date, however, has not been investigated if sparsity increases to some extent system
vulnerabilities.

Another limitation to the state of art is related to the countermeasures that have
been proposed so far. The majority of them is computational expensive. Moreover,
a full comprehension of the conditions under which those defenses can be effective
is still missing.

12

Chapter 2

14

Chapter 3

Contributions of this thesis

We give below a brief overview of the contributions that are provided through this
thesis to the Adversarial Machine Learning field.

The first contribution is to provide tools that can aid to evaluate the security of
machine learning systems. The first step to create secure machine learning systems
is understanding how attackers can threaten them. A framework that allow one to
envision the attacks that can be perpetrated against binary classifiers was proposed
in previous works. As the multiclass classifier case open new possible goal for an
attacker, in this thesis, we extend it to consider possible attacks against multiclass
classifier. We then describe a clear methodology that can be used to compare the
security of different machine learning systems. As formal verification techniques are
still far from being applicable to real system, strong attacks are needed to carry
on the system security evaluation. While evasion attacks have been devised against
the majority of machine learning systems, the state of art poisoning strategy is ex-
ploitable only against a subset of binary machine learning systems. It is moreover
really computational expensive. We provide an efficient poisoning attack strategy
applicable to a broader set of machine learning algorithms, including multiclass clas-
sifiers that can be trained with gradient-based procedures, like deep neural networks.
The second main contribution is an analysis of the relationship between sparsity and
security. Sparsity is a desirable property for a machine learning system as it reduces
the computational complexity allowing algorithms to be executed on hardware with
limited capability and while providing more interpretable decisions. However, its
impacts on the security of machine learning systems has been, to the best of our
knowledge, never questioned before.

Finally, exploiting the tools that we provide to evaluate machine learning security
we analyze different systems understanding the causes of their vulnerabilities and
providing well-founded and efficient defenses. Those defenses are shown to be ap-
plicable to improve the security of existent systems with limited hardware resources
on two case studies regarding Android malware detection and robot vision.

This thesis is based on the following publications to which I contributed during
my Ph.D: [41], [40], [37], [94], [80], [74]

15

Chapter 3

Moreover, during my Ph.D, I collaborated to these publications that are however
unrelated to this thesis: [39], [38]

16

Chapter 3

18

Chapter 4

Adversarial Attack Framework

How to evaluate and compare the security of multiclass classifiers is at the state of the
art still an open problem. In this section, how this goal can be reached is explained.
The first step to perform a security evaluation is to understand which are the possible
attacks that could threaten the system. A framework which enables one to envision
different attack scenarios against learning algorithms and to craft the corresponding
attack samples is here proposed. Remarkably, this includes attacks at training and
at test time, usually referred to as poisoning and evasion attacks [52, 17, 12, 19,
108, 73] or, more recently, as adversarial (training and test) examples (when crafted
against deep learning algorithms) [102, 84, 83]. This framework is based on the ones
originally proposed in [7, 6, 52] and subsequently extended in [17]. It characterizes
the attacker according to her goal, knowledge of the targeted system, and capability
of manipulating the input data. Based on these assumptions, it allows one to define
an optimal attack strategy as an optimization problem whose solution amounts to
the construction of the attack samples. This framework, originally developed for
binary classification problems, is here extended to multiclass classification. How to
exploit this framework to perform the system security evaluation if finally explained.

4.1 Attacker’s Goal
If the attacker goal is to induce some error the attack can be classified depending
on Attack Specificity and in multiclass classifier also depending on Error Specificity.
Moreover, the attacker’s goal may cause different security violations. These charac-
teristics are below explained in detail.
Attack Specificity. This characteristic ranges from targeted to indiscriminate,
respectively, if the attack aims to cause misclassification of a specific set of samples
(to target a given system user or protected service), or of any sample (to target any
system user or protected service).
Error Specificity. We introduce here this characteristic to disambiguate the notion
of misclassification in multiclass problems. The error specificity can thus be: specific,

19

Chapter 4

if the attacker aims to have a sample misclassified as a specific class; or generic, if
the attacker aims to have a sample misclassified as any of the classes different from
the true class.1

4.1.1 Security Violation

This characteristic defines the high-level security violation caused by the attacker,
as it is normally done in security.
Privacy Violation. The attacker may be interested in inferring confidential infor-
mation about the system or its resources. Although the given framework encloses
also this kind of attacks they will not be debated through this thesis. The security
analysis of attacks in which the attacker aims to discover sensitive information about
one or a group of training samples is covered by the differential privacy field whose
aim is to understand how to reveal distributional information about a private data
set, without revealing too much about any single individual in the dataset [44].
Integrity Violation. When machine learning is used for security or safety-related
applications the goal of the attacker is often to make the classifier misclassifying
some samples. e.g. The aim of an identity theft is being recognized as her victim.
She may try therefore to modify the system in order to reach her goal, violating its
integrity.
Availability Violation. The attack is configured as an availability violation if the
error induced by an attacker is so consistent that the system is no more able to
provide a sufficient number of correct results to be useful. e.g. A spammer would be
satisfied if it is able to modify the spam recognition system like that it is not able
to recognize any spam email.

4.2 Attacker’s Knowledge
The attacker can have different levels of knowledge of the targeted system, including:
(k.i) the training dataDtr; (k.ii) the feature extraction/selection algorithm φ; (k.iii)
the information related to the classifier namely the learning algorithmM , along with
the objective function Lminimized during training and the decision function f ; and,
possibly, (k.iv) its (trained) parameters w. The attacker’s knowledge can thus be
characterized in terms of a vector in a space Θ that encodes the aforementioned
assumptions (k.i)-(k.iv) as θ = (D, φ,M,L, f,w)}. Depending on the assumptions
made on each of these components, one can envisage different attacker knowledge
scenarios. Typically, two main settings are considered, namely Perfect-knowledge
and Limited-knowledge.

1In [84], the authors defined targeted and indiscriminate attacks (at test time) depending on
whether the attacker aims to cause specific or generic errors. Here we do not follow their naming
convention, as it can cause confusion with the interpretation of targeted and indiscriminate attacks
introduced in previous work [7, 6, 52, 17, 108, 20, 13, 21].

20

Adversarial Attack Framework

4.2.1 Perfect-Knowledge (PK) Attack

In this case, the attacker is assumed to know everything about the targeted system.
Although this setting, that is called also white-box scenario, may be not always
representative of practical cases, it enables the defender to perform a worst-case
evaluation of the security of learning algorithms under attack, highlighting the upper
bounds on the performance degradation that may be incurred by the system under
attack. In this case, the attacker knowledge can be represented by a vector θPK =
(D, φ,M,L, f,w).

4.2.2 Limited-Knowledge (LK) Attack

When some of the information related to the target system is missing the attack
is called Limited-Knowledge Attack. Sometimes it is also referred as black-box or
gray box attack. Although this admits a wide range of possibilities, the attacker is
typically assumed to know the feature representation φ, the learning algorithm M ,
the training loss function L and the decision function f but not the training data
(for which surrogate data from similar sources can be collected). This case is here
named as LK attacks with Surrogate Data (LK-SD), and it is denoted with θLK−SD =

(D̂, φ,M,L, f, ŵ) (where the hat symbol is used to denote limited knowledge of a
given component).Notably, in this case, as the attacker is only given a surrogate
data set D̂, also the learner’s parameters have to be estimated by the attacker, e.g.,
by optimizing L on D̂.

Similarly, the case in which the attacker knows the training data (e.g., if the
learning algorithm is trained on publicly-available data), but not the learning algo-
rithm (for which a surrogate learner can be trained on the available data) is here
named as LK attacks with Surrogate Learners (LK-SL). This scenario can be de-
noted with θLK−SL = (D, φ, M̂ , L̂, f̂ , ŵ), even though the parameter vector ŵ may
belong to a different vector space than that of the targeted learner. Note that LK-SL
attacks also includes the case in which the attacker knows the learning algorithm,
but she is not able to derive an optimal attack strategy against it (e.g., if the corre-
sponding optimization problem is not tractable or difficult to solve), and thus uses a
surrogate learning model to this end. Experiments on the transferability of attacks
among learning algorithms firstly demonstrated in [12] and then in subsequent work
on deep learners [83], fall under this category of attacks.

4.3 Attacker Capability

An attacker may have different capabilities depending on her skills and the structure
of the targeted machine learning system that usually consists of different modules
e.g. feature extractor, classifier and so on. If the system components are accessible
from users, an attacker may potentially threat each of them. However, the majority

21

Chapter 4

of these attack is rarely practically applicable as usually user does not have access
to the machine learning system components. Machine Learning systems get often
data from the users, therefore a malicious ones have the chance to manipulate them
in order to threaten the system. As Data are the most common attack vector,
therefore, in this thesis only this kind of attack will be exploited.

In the next subsections we explain how attacks are subdivided based on attack
capabilities. Moreover, how and why data manipulations might be constrained is
clarified.
Attack Influence. In supervised learning, the attacker may influence both training
and test data. The attack is therefore called causative if the attacker can influence
also the training data, or exploratory if the attacker can only manipulate test data.
These settings are more commonly referred to as poisoning and evasion attacks [7,
52, 17, 12, 19, 108, 73].
Data Manipulation Constraint. The manipulation of the input data might
be subjected to some constraints which are however strongly dependent on the
given practical scenario. For example, if the attacker aims to evade a malware
classification system, she should manipulate the exploitation code embedded in the
malware sample without compromising its intrusive functionality. This may imply
that she can not change some features at all. Moreover, a clever attacker would keep
the input data perturbation under a maximum amount. This may be important
to craft attack samples which are more difficult to detect with data pre-filtering
or outlier detection techniques. Typically, these constraints can be nevertheless
accounted for in the definition of the optimal attack strategy. In particular, we
characterize them by assuming that an initial set of attack samples Da is given,
and that it is modified according to a space of possible modifications Ψ(Da) (e.g.,
constraining the norm of the input perturbation on each poisoning sample).

4.4 Attack Strategy

Once the adversary’s goal, knowledge, and capability are defined, the optimal attack
strategy can be formulated as an objective function. Maximizing this function, the
attacker will be able to exploit the attack threatening the system.

More formally, given the attacker’s knowledge θ ∈ Θ and a set of manipulated
attack samples Da

′ ∈ Ψ(Da), the attacker’s goal can be characterized in terms of an
objective function A(Da

′,θ) ∈ R which evaluates how effective the attacks Da
′ are.

The optimal attack strategy can be thus given as:

Da
∗ ∈ arg max

Da
′∈Ψ(Da)

A(Da
′,θ) (4.1)

Notably, this high-level formulation encompasses both evasion and poisoning at-
tacks. A more detailed discussion about them is presented in the next chapters.

22

Adversarial Attack Framework

In the subsequent notation, the hat symbols denote all the elements that depends
on the attacker knowledge θ to remind that they can be not known and therefore
they are surrogate versions of the originals ones.

4.5 Security Evaluation Methodology
A possible way to provide security guarantees for a machine learning system would
be to apply formal verification techniques. Unfortunately, despite the effort made by
researchers in order to provide those methods [89, 53, 56], they are still not applicable
as they heavily rely on different assumptions (about either the attacker or the learn-
ing algorithm). The security evaluation of a machine learning systems has therefore
to be done testing it under adversarial attacks [2]. However, for being informative
these tests have to be really carefully designed. This aspect seems underestimated
in the recent literature. In order to test the vulnerability of computer-vision system
to evasion attack, adversarial examples based on minimum-distance perturbations
are created [102, 47, 77, 84] and the system is declared as vulnerable if they are not
recognizable from humans. Despite this method seem nowadays standard-de-facto
is not clear how the human recognizability can be measured and moreover it is clas-
sifier dependent. This method might be misleading in some case if used to compare
the security of different classifiers. In order to produce comparable results, classifier
security can be tested instead under attacks performed with increasing attack power.
In the evasion case the attack power can be measured as the amount of perturbation
applied by the attacker on a sample under a chosen norm. In poisoning case it can
instead be measured as the number of poisoning points (eventually created with a
maximum perturbation constraint) inserted by the attacker. Notably, the proposed
framework allows one to exploit this constrained attacks against multiclass classifiers
providing the instrument needed to compare the security of two different classifiers.

23

Chapter 5

Test-time Evasion Attacks against
Machine Learning

Machine learning is nowadays widely used in security-sensitive settings like spam
and malware detection, despite its vulnerability to adversarial attacks, i.e., the de-
liberate manipulation of training or test data, to subvert the system functionalities;
e.g., spam emails can be manipulated (at test time) to evade a trained anti-spam
classifier [36, 66, 67, 59, 82, 7, 15, 12, 17, 16, 52, 113]. To overcome this limita-
tion, adversary-aware learning algorithms have been developed, exploiting robust
optimization and game-theoretical models to incorporate knowledge of potential ad-
versarial data manipulations into the learning algorithm. Despite these techniques
have been shown to be effective in some adversarial learning tasks, their adoption in
practice is hindered by different factors, including the difficulty of meeting specific
theoretical requirements, the complexity of implementation, and scalability issues,
in terms of computational time and space required during training.

In this chapter we show that leveraging theoretical results it is possible to create
computationally efficient countermeasures.

Firstly, the evasion attack scenario derived from the adversarial framework pro-
posed in the previous chapter is formally defined in Section 5.1. A gradient-based
algorithm that can be exploited to compute the attack sample is discussed in Sec-
tion 5.2. Exploiting that algorithm an attacker can be able to create sparse or
dense attack samples (as it is required from the targeted application). The differ-
ence between them is highlighted in Section 5.3. As linear classifiers are still one
of the widely used classifier thanks to their computational efficiency and to the
interpretability of their decisions. Their security under both kind of attacks is an-
alyzed in Section 5.4. The sparsity of the linear classifier solution is often forced
in application with strict efficiency requirements. We show that there is a trade-off
between sparsity and security to sparse attacks. As sparsity is a desirable property
a countermeasure that allows one to obtain a trade-off between these two proper-
ties, is proposed. In Section 5.5 a countermeasure designed for multiclass classifiers

25

Chapter 5

inspired from open set recognition techniques is finally presented.

5.1 Evasion Attack Scenario
As it is said before, an attack is called evasion when the attacker has the abil-
ity to modify only test samples. Below we present the evasion attack scenarios
for multiclass classifiers. The approach presented below is based on extending the
work in [12] for evasion of binary classifiers to the multiclass case. To this end, the
formulation for the two possible evasion settings i.e., ways of creating adversarial ex-
amples, which further differentiate our technique from previous work on the creation
of minimally-perturbed adversarial examples [102, 47, 77, 84], namely error-generic
and error-specific evasion is derived. In the error-generic scenario, the attacker is
interested in misleading the classification process, regardless the output class pre-
dicted by the classifier for the adversarial examples; e.g., for a known terrorist the
goal may be to evade detection by a video surveillance system, regardless of the
identity erroneously associated to his/her face. Conversely, in the error-specific set-
ting, the attacker still aims to mislead classification, but requiring the adversarial
examples to be misclassified as a specific, target class; e.g., imagine an attacker
aiming to impersonate a specific user. The two settings can be formalized in terms
of two distinct optimization problems, though using the same formulation for the
objective function A(x):

A(x) = f̂k(x)−max
l 6=k

f̂ l(x) . (5.1)

This function essentially represents a difference between a preselected discriminant
function (associated to class k) and the competing one, i.e., the one exhibiting the
highest value at x among the remaining nc − 1 classes (i.e., all classes {1, . . . , nc}
except k). Below, we discuss how class k is chosen in the two considered settings.

5.1.1 Error-generic Evasion

In this case, the optimization problem can be formulated as:

min
x′

A(x′) , (5.2)

s.t. d(x,x′) ≤ dmax , (5.3)
xlb � x′ � xub , (5.4)

where fk(x) in the objective function A(x) (Eq. 5.1) denotes the probability es-
timated by the classifier of x belonging to his true class. This objective function
allows the attacker to increase the probability to have her attack sample misclas-
sified as the class at which the classifier assigns the highest score after the true
one, minimizing the score difference between them. d(x,x′) ≤ dmax represents a

26

Test-time Evasion Attacks against Machine Learning

constraint on the maximum input perturbation dmax between x (i.e., the original
adversarial sample) and the optimized ones x′, given in terms of distance in the
input space. In case the samples are images, normally, the `2 distance between pixel
values is used as function d(·, ·), but other metrics can be also adopted. The box
constraint xlb � x′ � xub is optional and can be used to bound the input values x
of the adversarial examples; e.g., each pixel value in images is bounded between 0
and 255. Nevertheless, the box constraint can be also used to manipulate only some
feature values in the attack sample. This is of crucial importance for creating real-
world adversarial examples, as it allows one to avoid manipulating, in the optimal
attack sample computed by the algorithm, features which can not be manipulated
by the attacker. For example, in malware detection some features if manipulated
may compromise the malware functionalities as we will explain in the case of study
presented in Chapter 8. In image recognition application instead, it can be used to
avoid manipulating pixels which do not belong to the object of interest. This may
enable one to create an “unusual” sticker that can be attached to an adversarial
object as we show in the case of study presented in Chapter 9 similarly to the idea
exploited in [98] for the creation of wearable objects used to fool face recognition
systems. In this case, the adversary can set in xlb and xub the values of pixels that
can not be manipulated equal to those of x.

5.1.2 Error-specific Evasion

The problem of error-specific evasion is formulated as:

max
x′

A(x′) , (5.5)

s.t. d(x,x′) ≤ dmax , (5.6)
xlb � x′ � xub , (5.7)

where fk(x) in the objective function A(x) (Eq. 5.1) denotes the probability esti-
mated by the classifier of x belonging to the targeted class, i.e., the class which
the adversarial example should be assigned to. This objective function allows the
attacker to increase the probability to have her sample misclassified as belonging to
the target class, maximizing the difference between the score of the target class and
the one at which the classifier assign a higher score.

5.2 Gradient-Based Evasion Attack Algorithm
The evasion problem can be solved, considering the original classifier or a differ-
entiable surrogate, using a gradient-based approach using the Algorithm 1. The
basic idea is to update the adversarial example by following the steepest descent (or
ascent) direction (depending on whether we are considering error-generic or error-
specific evasion), and use a projection operator Π to keep the updated point within

27

Chapter 5

Algorithm 1 Computation of Adversarial Examples
Input: x0: the initial adversarial sample; η: the step size; r ∈ {−1,+1}: variable

set to −1 (+1) for error-generic (error-specific) evasion; ε > 0: a small number.
Output: x′: the adversarial example.
1: x′ ← x0

2: repeat
3: x← x′, and x′ ← Π (x+ rη∇A(x))
4: until |A(x′)− A(x)| ≤ ε
5: return x′

1 0 1

 1

 0

 1

Targeted evasion

1 0 1

 1

 0

 1

Indiscriminate evasion

Figure 5.1: Error-specific (left) and error-generic (right) evasion of a multiclass SVM
with the Radial Basis Function (RBF) kernel. Decision boundaries among the three
classes (blue, red and green points) are shown as black solid lines. In the error-
specific case, the initial (blue) sample is shifted towards the green class (selected
as the target one). In the error-generic case, instead, it is shifted towards the red
class, as it is the closest class to the initial sample. The `2 distance constraint is
also shown as a gray circle.

the feasible domain (given by the intersection of the box and the `2 constraint). An
example of the different behavior exhibited by the two attacks is given in Fig. 5.1.

5.3 Sparse and Dense Attacks

As we explained in Chapter 4, the attacker can have different data manipulation
capabilities. In security related applications for example, the attacker has typically
a cost depending on the number of modified features. This can be configured as a
sparse attack. In order to find her optimal attack sample, she would constrain the
original sample perturbation with a `1 norm constraint. When the attack sample is
an image, the attacker goal may be instead to avoid that it becomes easily recog-
nizable from either humans or machines. In this case the attacker would probably
constraint the perturbation with an `2 norm perturbation (obtaining a dense at-

28

Test-time Evasion Attacks against Machine Learning

tack sample), as it only produces a slightly-blurred effect on the image, while sparse
attacks create more evident artifacts. The aforementioned attack, computed with
Algorithm 1 is shown on a two dimensional gaussian dataset in Fig. 5.2 and in an
handwritten recognition problem, where the samples are images in Fig. 5.3.

Figure 5.2: Evasion attacks against linear SVM, trained on blue (legitimate) and red
(malicious) samples. The shown attacks are respectively sparse (first plot) and dense
(second plot). The initial malicious point x is found at the center of the distance
constraint, while the evasion sample x? is denoted with a green star. For each
classifier, g(x) values are shown in colors, and the black line denotes the decision
boundary.

5.4 Trading sparsity for security: Octagonal Regu-
larization

Linear classifiers have been increasingly used in embedded systems and mobile de-
vices for their low processing time and memory requirements. Nonetheless they are
also a preferred choice as they provide easier-to-interpret decisions (with respect
to nonlinear classification methods). For instance, the widely-used SpamAssassin
anti-spam filter exploits a linear classifier [15, 82].1 Work in the adversarial machine
learning literature has already investigated the security of linear classifiers to eva-
sion attacks [59, 15], suggesting the use of more evenly-distributed feature weights
as a mean to improve their security. Such a solution is however based on heuristic
criteria, and a clear understanding of the conditions under which it can be effective,
or even optimal, is still lacking. Moreover, in mobile and embedded systems, sparse
weights are more desirable than evenly-distributed ones, in terms of processing time,
memory requirements, and interpretability of decisions.

In this section recent findings on the relationship between regularization and
robustness properties of learning algorithm are firstly summarized as they help us

1See also http://spamassassin.apache.org.

29

http://spamassassin.apache.org

Chapter 5

Figure 5.3: Initial digit “9” (left) and its versions modified to be misclassified as
“8”. sparse(center) and dense(right) evasion attack samples. Note also how the
blurring effect induced by dense attacks is more difficult to spot for humans than
the salt-and-pepper noise induced by sparse attacks.

to shed light on the role of the regularization on the linear classifier security.
We show that the maximum variation that an attacker can induce on classifier’s

discriminant function can be bounded. This result highlight that the security of a
linear classifier can be improved by selecting a proper regularizer, depending on the
kind of evasion attack.

A novel octagonal regularizer that allows one to achieve a proper trade-off be-
tween sparsity of feature weights, which is desirable for reducing processing cost and
the security of linear classifiers is finally proposed.

5.4.1 Robustness and Regularization

The goal of this section is to clarify the connection between regularization and input
data uncertainty, leveraging the recent findings in [110, 100, 65] as it will be exploited
later in this thesis to link regularization and security of linear classifiers, depending
on the type of attack. In particular, Xu et al. [110] have considered the following
robust optimization problem:

min
w,b

max
u1,...,un∈U

n∑
i=1

(
1− yi(w>(xi − ui) + b)

)
+
, (5.8)

where (z)+ is equal to z ∈ R if z > 0 and 0 otherwise, u1, ...,un ∈ U define a set of
bounded perturbations of the training data {xi, yi}ni=1 ∈ Rn × {−1,+1}n, and the
so-called uncertainty set U is defined as U := {(u1, . . . ,un)|

∑n
i=1 ‖ui‖∗ ≤ c}, being

‖ · ‖∗ the dual norm of ‖ · ‖. Typical examples of uncertainty set according to the
above definition include `1 and `2 balls [110, 100].

Problem (5.8) basically corresponds to minimizing the hinge loss for a two-class
classification problem under worst-case, bounded perturbations of the training sam-
ples xi, i.e., a typical setting in robust optimization [110, 100, 65]. Under some mild
assumptions easily verified in practice (including non-separability of the training
data), the authors have shown that the above problem is equivalent to the following

30

Test-time Evasion Attacks against Machine Learning

3 2 1 0 1 2 3
3

2

1

0

1

2

3

SVM

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Infinity-norm SVM

3 2 1 0 1 2 3
3

2

1

0

1

2

3

1-norm SVM

Figure 5.4: Discriminant function f(x) for SVM, Infinity-norm SVM, and 1-norm
SVM (in colors). The decision boundary (g(x) = 0) and margins (g(x) = ±1) are
respectively shown with black solid and dashed lines. Uncertainty sets are drawn
over the support vectors to show how they determine the orientation of the decision
boundary.

non-robust, regularized optimization problem (cf. Th. 3 in [110]):

min
w,b

c‖w‖+
n∑
i=1

(
1− yi(w>xi + b)

)
+
. (5.9)

Where c is the same constant as the previously defined problem. This means that,
if the `2 norm is chosen as the dual norm characterizing the uncertainty set U,
then w is regularized with the `2 norm, and the above problem is equivalent to a
standard Support Vector Machine (SVM) [33]. If input data uncertainty is modeled
with the `1 norm, instead, the optimal regularizer would be the `∞ regularizer, and
vice-versa.2 This notion is clarified in Fig. 5.4, where we consider different norms
to model input data uncertainty against the corresponding SVMs; i.e., the standard
SVM [33], the Infinity-norm SVM [11] and the 1-norm SVM [117] against `2, `1 and
`∞-norm uncertainty models, respectively. Is worth mention that the cited work
focus is on SVM but remarkably the presented equivalence proofs are applicable
also to different loss functions.

These results are relevant for us as the perturbation added from the attacker to
the attack sample can be seen as uncertainty on that sample.

5.4.2 Classifier Security Analysis

Here we show that the maximum variation of a linear classifier’s discriminant func-
tion under an evasion attack can be bounded, highlighting the factors that may
harm classifier security, and discussing how to limit their impact. This will give us a

2Note that the `1 norm is the dual norm of the `∞ norm, and vice-versa, while the `2 norm is
the dual norm of itself.

31

Chapter 5

set of guidelines to help to design more secure learning algorithms against evasion.
It is also worth remarking that, very interestingly, some of the results arising from
our analysis corroborate the findings discussed in the previous section for linear
classifiers.

We start by analyzing the worst-case variation of the discriminant function of
a linear classifier under evasion. The discriminant function of a linear classifier is
simply given as g(x) = w>x + b. In security problems the benign samples are
usually identified as belonging to the negative class (-1) and the malicious one as
belonging to the positive (1) class. The attacker goal is to decrease the discriminant
function value to have her malicious sample misclassified as a benign one. Assuming
that x is an initial malicious sample, and x′ the corresponding manipulated evasion
sample, the score difference between the original and the modified attack sample is:

∆g = g(x)− g(x′) = w>(x− x′) . (5.10)

Note that, from the attacker’s perspective, this variation has to be maximized to
increase chances of successfully evade the targeted classifier..
Sparse Attacks. Under sparse evasion attacks, it is not difficult to see that ∆g
(from Eq. 5.10) is upper bounded by the following quantity:

∆g ≤ ‖w‖∞ × ‖x− x′‖1 , (5.11)

where we remind the reader that ‖w‖∞ = maxj=1,...,d |wj|. In fact, for sparse attacks,
the solution x′ is found by modifying the features that have been assigned the
highest absolute weight values (see, e.g., Fig. 5.2, left plot). In the worst case, the
maximum ∆g is attained by modifying the most relevant feature of a quantity equal
to ‖x− x′‖1.
Dense Attacks. Under dense evasion attacks, instead, the worst-case increase of
∆g corresponds to a linear shift of x towards the decision boundary (along the
opposite direction to the hyperplane normal w), i.e., x′ = x − ‖x − x′‖2

w
‖w‖2 (see

Fig. 5.2, right plot), which implies that:

∆g ≤ w
>w

‖w‖2

× ‖x− x′‖2 = ‖w‖2 × ‖x− x′‖2 . (5.12)

5.4.3 Countering Sparse and Dense Attacks

The analysis of the worst-case ∆g values for linear classifiers highlights two inter-
esting facts. The former is that the feature values should be bounded, to bound
the maximum variation of the relevant features. This is normally not a problem,
if feature normalization is used, as normalization techniques often map the input
samples onto a compact domain. The latter fact is that the security of linear clas-
sifier can be improved choosing the more appropriate regularizer according to the
expected attack type. This novel result in the context of adversarial learning also

32

Test-time Evasion Attacks against Machine Learning

confirms the findings by Xu et al. [110] related to the relationship between robust-
ness and regularization of learning algorithms. We consider the optimal classifier
against respectively dense and sparse attack. Despite below we consider the hinge
loss remarkably, the regularizer choice is still valid for different losses.

Countering Dense Attacks

As the bound of the discriminant function variation in case of sparse attack is depen-
dent from the `2 norm of w, the best regolarizer choice would be an `2 regularizer.
2-norm SVM (SVM). This is the standard SVM learning algorithm [33]. It finds
w and b by solving the following quadratic programming problem:

min
w,b

1

2
‖w‖2

2 + C
m∑
i=1

(1− yig(xi))+ , (5.13)

where g(x) = w>x + b denotes the SVM’s linear discriminant function. Note that
`2 regularization does not induce sparsity on w.

Countering Sparse Attack

As the bound of the discriminant function variation in case of sparse attack is
dependent from the `∞ norm of w, the more secure classifier against this kind of
attack will exploit the `∞ norm regularize in its objective function. We thus consider
the SVM formulation, but changing the regularization term:
Infinity-norm SVM (∞-norm). In this case, the `∞ regularizer bounds the
weights’ maximum absolute value as ‖w‖∞ = maxj=1,...,d |wj| [24]:

min
w,b

‖w‖∞ + C
m∑
i=1

(1− yig(xi))+ . (5.14)

As the standard SVM, this classifier is not sparse on w; however, the above learning
problem can be solved using a simple linear programming approach.
Sec-SVM. In some applications is needed to apply different upper and lower bounds
to different feature sets, depending on how their values can be manipulated. An
application example is malware detection that we will analyze as case study in
Chapter 8 where removing some feature the attacker may compromise the malware
functionalities.

As an alternative to considering an additional term to the learner’s objective
function L, one can still control the `∞-norm of w by adding a box constraint on it.
This is a well-known property of convex optimization [26]. Following this approach
allow to apply different upper and lower bounds to different feature sets. Moreover,
it preserves convexity of the objective function minimized by the learning algorithm.

33

Chapter 5

This gives us the possibility of deriving computationally-efficient training algorithms
with (potentially strong) convergence guarantees.

We define our Secure SVM learning algorithm (Sec-SVM) as:

min
w,b

1
2
w>w + C

∑n
i=1 max (0, 1− yif(xi)) , (5.15)

s.t. wlb
k ≤ wk ≤ wub

k , k = 1, . . . , d . (5.16)

Note that this optimization problem is identical to the standard SVM, except for the
presence of a box constraint on w. The lower and upper bounds on w are defined by
the vectors wlb = (wlb

1 , . . . , w
lb
d) and wub = (wub

1 , . . . , wub
d), which should be selected

with a suitable procedure (see Sect. 8.3.4). For notational convenience, in the sequel
we will also denote the constraint given by Eq. (5.16) compactly as w ∈W ⊆ Rd.

The corresponding learning algorithm is given as Algorithm 2. It is a con-
strained variant of Stochastic Gradient Descent (SGD) that also considers a simple
line-search procedure to tune the gradient step size during the optimization. SGD
is a lightweight gradient-based algorithm for efficient learning on very large-scale
datasets, based on approximating the subgradients of the objective function using
a single sample or a small subset of the training data, randomly chosen at each
iteration [114, 25]. In our case, the subgradients of the objective function (Eq. 5.15)
are given as:

∇wL u w + C
∑

i∈S∇i
` xi , (5.17)

∇bL u C
∑

i∈S∇i
` , (5.18)

where S denotes the subset of the training samples used to compute the approxi-
mation, and ∇i

` is the gradient of the hinge loss with respect to f(xi), which equals
−yi, if yif(xi) < 1, and 0 otherwise.

One crucial issue to ensure quick convergence of SGD is the choice of the initial
gradient step size η(0), and of a proper decaying function s(t), i.e., a function used
to gradually reduce the gradient step size during the optimization process. As
suggested in [114, 25], these parameters should be chosen based on preliminary
experiments on a subset of the training data. Common choices for the function s(t)
include linear and exponential decaying functions.

Is worth mention that Sec-SVM formulation is quite general; one may indeed
select different combinations of loss and regularization functions to train different,
secure variants of other linear classification algorithms. Our Sec-SVM learning al-
gorithm is only an instance that considers the hinge loss and `2 regularization, as
the standard SVM [33, 106].

Exploiting Cost-sensitive Learning

The over-mentioned work by Xu et al. [110] only considers uncertainty sets of the
same size, i.e., the same perturbation is applied on both the legitimate and the

34

Test-time Evasion Attacks against Machine Learning

Algorithm 2 Sec-SVM Learning Algorithm
Input: D = {xi, yi}ni=1, the training data; C, the regularization parameter;
wlb,wub, the lower and upper bounds on w; |S|, the size of the sample subset
used to approximate the subgradients; η(0), the initial gradient step size; s(t), a
decaying function of t; and ε > 0, a small constant.
Output: w, b, the trained classifier’s parameters.
1: Set iteration count t← 0.
2: Randomly initialize v(t) = (w(t), b(t)) ∈W× R.
3: Compute the objective function L(v(t)) using Eq. (5.15).
4: repeat
5: Compute (∇wL,∇bL) using Eqs. (5.17)-(5.18).
6: Increase the iteration count t← t+ 1.
7: Set η(t) ← γ η(0)s(t), performing a line search on γ.
8: Set w(t) ← w(t−1) − η(t)∇wL.
9: Project w(t) onto the feasible (box) domain W.
10: Set b(t) ← b(t−1) − η(t)∇bL.
11: Set v(t) = (w(t), b(t)).
12: Compute the objective function L(v(t)) using Eq. (5.15).
13: until |L(v(t))− L(v(t−1))| < ε
14: return: w = w(t), and b = b(t).

malicious class. However, it is clear that, under evasion, the malicious samples are
potentially affected by a stronger worst-case perturbation than legitimate data as the
attacker will modify it in order to evade the classifier. Interestingly, in their recent
work, Katsumata and Takeda [55] have shown that different uncertainty sets can be
accounted for on each sample (and thus, on each class too), by simply modifying the
cost of each classification error. This means that it suffices to penalize differently
errors in different classes to consider uncertainty sets of different sizes. In the SVM
learning algorithm, this can be simply accounted for by setting a different C value
for legitimate and malicious samples. However, as we have shown in [94] it only
introduces a slight improvement in terms of security.

5.4.4 Octagonal regularizer

As we previously explained in this section, if one considers an `1 (sparse) attacker,
facing a higher cost when modifying more features, it turns out that the optimal reg-
ularizer is given by the `∞ norm of w, which tends to yield more uniform weights. In
particular, the solution provided by `∞ regularization (in the presence of a strongly-
regularized classifier) tends to yield weights which, in absolute value, are all equal to
a (small) maximum value. This also implies that `∞ regularization does not provide
a sparse solution. As it is said before, sparsity is a desirable property in many ap-

35

Chapter 5

(a) `2 (b) `∞ (c) `1 (d) elastic net (e) octagonal

Figure 5.5: Unit balls for different norms.

plications. For this reason we propose a novel octagonal (8gon) regularizer,3 given
as a linear (convex) combination of `1 and `∞ regularization is here proposed:

‖w‖8gon = (1− ρ)‖w‖1 + ρ‖w‖∞ (5.19)

where ρ ∈ (0, 1) can be increased to trade sparsity for security. In Fig. 5.5 the
shape of different regularizers is compared with the presented one. Notably, the
proposed regularizer allow one to obtain the maximum level of sparsity maintaining
the security level required for the specific application.

Considering the hinge as classifier loss we can define the Octagonal-norm SVM
(8gon).
Octagonal-norm SVM (8gon). This novel SVM is based on our octagonal-norm
regularizer, combined with the hinge loss:

min
w,b

(1− ρ)‖w‖1 + ρ‖w‖∞ + C
m∑
i=1

(1− yig(xi))+ . (5.20)

The above optimization problem is linear, and can be solved using state-of-the-art
solvers. The sparsity of w can be increased by decreasing the trade-off parameter
ρ ∈ (0, 1), at the expense of classifier security.

5.5 Securing Multiclass Classifier with Distance-based
Rejection

If the evasion algorithm drives the adversarial examples deeply into regions popu-
lated by known training classes (as shown in Fig. 5.1), there is no much one can do to
correctly identify them from the rest of the data by only re-training or modifying the
classifier, i.e., modifying the shape of the decision boundaries in the feature space.

3Note that octagonal regularization has been previously proposed also in [24]. However, differ-
ently from our work, the authors have used a pairwise version of the infinity norm, for the purpose
of selecting (correlated) groups of features.

36

Test-time Evasion Attacks against Machine Learning

If the feature vector of an adversarial example becomes indistinguishable from those
of the training samples of a different class, it can only be detected by using a dif-
ferent feature representation. This is infact an intrinsic vulnerability of the feature
representation. However, sometimes classifiers may be easily evaded with adversar-
ial sample that belongs to low support region. These samples are called blind-spot
adversarial samples. If a machine learning system can be evaded with such kind of
samples is a classifier vulnerability as the classifier is not able to understand that it
does not have sufficient evidence to decide.

In many applications, as in a robot-vision case study that we report in Chapter 9,
the feature space is given and, due to application constraints, it can not be changed.
In those cases, the only possibility to improve the system security is to reduce the
classifier vulnerability. Here we propose a countermeasure inspired by the general
Open Set Recognition principles that are below briefly summarized.

5.5.1 Open Set Recognition

Open Set Recognition [95, 9] is the field of study that aims to learn a classifier when
not all the classes encountered during testing are known during the training phase.
This is a recurrent problem in object recognition as also the biggest dataset can not
contain examples for each class of existent objects. In order to avoid misclassifying
an unknown object as a known one, the classifier should be able to discriminate the
objects that do not belong to one of the known classes. Scheirer et al. in [95] defined
therefore a new formal model that they called compact abating probability (CAP).
The peculiarity of CAP model is that the probability of a sample belonging to a
class abate as it moves farther from training data.

5.5.2 Distance-based rejection

We show here a countermeasure that allows one to improve multiclass classifier
security against blind spot adversarial examples.

Different approaches have been proposed based on modifying the classifier, rang-
ing from 1.5-class classification (based on the combination of anomaly detectors
and two-class classifiers) [14] to open-set recognition techniques [95, 9]. We pro-
pose here a more direct approach, based on the same idea underlying the notion
of classification with a reject option, and leveraging some concepts from open-set
recognition. In particular, we propose a one-versus-all classifier composed by binary
SVMs with RBF kernels. Then, by applying a simple rejection mechanism on its
discriminant function, we can identify samples which are far enough from the rest of
the training data, i.e., blind-spot adversarial examples. Our idea is thus to modify
the one-versus-all classifier decision rule as:

c? = arg max
k=1,...,c

fk(x) , only if fc?(x) > 0 , (5.21)

37

Chapter 5

1 0 1

1

0

1

SVM-RBF (no reject)

1 0 1

1

0

1

SVM-RBF (reject)

1 0 1

1

0

1

SVM-RBF (higher rejection rate)

Figure 5.6: Conceptual representation of the proposed classifier security to adversar-
ial examples, using multiclass SVMs with RBF kernels (SVM-RBF), without reject
option (no defense, left), with reject option (middle), and with modified thresholds
to increase the rejection rate (right). Rejected samples are highlighted with black
contours. The adversarial example (black star) is misclassified as a red sample by
SVM-RBF (left plot), while SVM-RBF with reject option correctly identifies it as
an adversarial example (middle plot). Rejection thresholds can be modified to in-
crease classifier security (right plot), though at the expense of misclassifying more
legitimate (i.e., non-manipulated) samples.

otherwise classify x as an adversarial example (i.e., a novel class). In practice, this
means that, if no classifier assigns the sample to an existing class (i.e., no value
of f is positive), then we simply categorize it as an adversarial example. In this
case the system may eventually ask for a human feedback depending on the specific
application.

The threshold of each discriminant function (i.e., the biases of the one-versus-all
SVMs) can be adjusted to tune the trade-off between the rejection rate of adversarial
examples and the fraction of incorrectly-rejected samples (which are not adversari-
ally manipulated), as shown in Fig. 5.6.

Notably, this classifier belongs to the CAP model where for us the unknown class
is the adversarial example class.

38

Chapter 5

40

Chapter 6

Training-time Poisoning Attacks
against Machine Learning

A number of online services nowadays rely upon machine learning to extract valuable
information from data collected in the wild. This exposes learning algorithms to the
threat of data poisoning, i.e., a coordinated attack in which a fraction of the training
data is controlled by the attacker and manipulated to subvert the learning process.

The poisoning attack scenario has been already formalized only for two-class
learning algorithms. We overcome this limitation presenting in Section 6.1 a Poi-
soning Attack Scenario, derived from the adversarial framework proposed in Chap-
ter 4, that enables one to envision multiclass classifier poisoning. . A gradient-based
algorithm that the attacker can exploit to compute poisoning point is illustrated in
Section 6.2 along with the state of art technique for the computation of the gradients
required from the algorithm. To date poisoning has been devised only against a lim-
ited class of binary learning algorithms. In Section 6.3 we exploit a recent technique
called back-gradient optimization, originally proposed for hyper-parameter optimiza-
tion [10, 43, 69, 87], to implement a computationally-efficient poisoning attack. It
allows poisoning all the classifiers that can be learned with gradient-based tech-
niques, like neural networks. Despite the increasing use of neural networks, SVM is
still one of the most used classifiers. In Section 6.4 we analyze the vulnerabilities of
SVM against a specific kind of poisoning attack and we provide a countermeasure
to enhance their security. Notably, the proposed approach helps us to shed light
between sparsity in feature space and security against poisoning attacks.

6.1 Poisoning Attack Scenarios

When the attacker is able to manipulate the training data the attack is called poi-
soning. The attacker goal may be to induce an error in some specific class (Error-
Specific Poisoning) e.g. made a system that recognizes traffic signal, misclassify all
stop signal as go signal or made the system not useful at all making it commits

41

Chapter 6

many errors as possible (Error-Generic Poisoning).
Here the formulation of this two poisoning attack scenarios is derived. Notably,

this formulation includes both, target and indiscriminate poisoning attack scenarios
as the only difference between them is the initial attack sample subset Da chosen
from the attacker according to her purpose.

The main technical difficulty in devising a poisoning attack is the computation of
the poisoning samples, also recently referred to as adversarial training examples [58].
This requires solving a bilevel optimization problem in which the outer optimiza-
tion amounts to maximizing the classification error on an untainted validation set,
while the inner optimization corresponds to training the learning algorithm on the
poisoned data [73].

Since solving this problem with black-box optimization is too computationally
demanding, previous works have exploited gradient-based optimization, along with
the idea of implicit differentiation. The latter consists of replacing the inner opti-
mization problem with its stationarity (Karush-Kuhn-Tucker, KKT) conditions to
derive an implicit equation for the gradient [19, 108, 73, 58].

This approach however can only be used against a limited class of learning al-
gorithms, excluding neural networks and deep learning architectures, due to the
inherent complexity of the procedure used to compute the required gradient.

The Gradient-based poisoning attack and the methodology exploited in previous
work to compute the needed gradients are briefly reviewed at the end of this section
along with their limitations.

6.1.1 Error-Generic Poisoning Attacks

The most common scenario considered in previous work [19, 108, 73] considers poi-
soning two-class learning algorithms to maximize the classification error. In the
multiclass case, it is thus natural to extend this scenario assuming that the at-
tacker is not aiming to cause specific errors, but only generic misclassifications. As
in [19, 108, 73], this poisoning attack (as any other poisoning attack) requires solving
a bilevel optimization, where the inner problem is the learning problem. This can
be made explicit by rewriting Eq. (4.1) as:

Da
∗ ∈ arg max

Da
′∈Ψ(Da)

A(Da
′,θ) = L(D̂val, ŵ) , (6.1)

s.t. ŵ ∈ arg min
w′∈W

L(D̂tr ∪Da
′,w′) , (6.2)

where the surrogate data D̂ available to the attacker is divided into two disjoint
sets D̂tr and D̂val. The former, along with the poisoning points Da

′ is used to learn
the surrogate model, while the latter is used to evaluate the impact of the poisoning
samples on untainted data, through the function A(Da

′,θ). In this case, the function

42

Training-time Poisoning Attacks against Machine Learning

A(Da
′,θ) is simply defined in terms of a loss function L(D̂val, ŵ) that evaluates

the performance of the (poisoned) surrogate model on D̂val. The dependency of
A on Da

′ is thus indirectly encoded through the parameters ŵ of the (poisoned)
surrogate model. Note that, since the learning algorithm (even if convex) may not
exhibit a unique solution in the feasible setW, the outer problem has to be evaluated
using the exact solution ŵ found by the inner optimization. Worth remarking, this
formulation encompasses all previously-proposed poisoning attacks against binary
learners [19, 108, 73], provided that the loss function L is selected accordingly (e.g.,
using the hinge loss against SVMs [19]). In the multiclass case, one can use a
multiclass loss function like the log-loss with softmax activation.

6.1.2 Error-Specific Poisoning Attacks

Here, we assume that the attacker’s goal is to cause specific misclassifications (a
plausible scenario only for multiclass problems). The poisoning problem remains
that given by Eqs. (6.1)-(6.2), though the objective is defined as:

A(Da
′,θ) = −L(ˆDval

′, ŵ) , (6.3)

where ˆDval
′ is a set that contains the same data as D̂val, though with different labels,

chosen by the attacker. These labels correspond to the desired misclassifications,
and this is why there is a minus sign in front of L, i.e., the attacker effectively aims
at minimizing the loss on her desired set of labels.

6.2 Gradient-Based Poisoning Attack
In this section, the general gradient-based poisoning algorithm is firstly depicted,
then how the required gradients have been computed in previous work is discussed.

For some classes of loss functions L and learning objective functions L, the poi-
soning problem can be solved through gradient ascent if duly modified to reduce
his complexity. This is created making the same assumptions made in previous
work [19, 108, 73] to reduce the complexity of Problem (6.1)-(6.2): (i) we consider
the optimization of one poisoning point x at a time; and (ii) we assume that its
label y is initially chosen by the attacker, and kept fixed during the optimization.
The poisoning problem can be thus simplified as:

x∗ ∈ arg max
x′∈Ψ({x,y})

A({x′, y},θ) = L(D̂val, ŵ) , (6.4)

s.t. ŵ ∈ arg min
w′∈W

L(x′,w′) . (6.5)

The function Ψ imposes constraints on the manipulation of x, e.g., upper and lower
bounds on its manipulated values. These may also depend on y, e.g., to ensure that

43

Chapter 6

Algorithm 3 Poisoning Attack Algorithm

Input: D̂tr, D̂val, L, L, the initial poisoning point x(0), its label y, the learning
rate η, a small positive constant ε.

1: i← 0 (iteration counter)
2: repeat
3: ŵ ∈ arg minw′ L(x(i),w′) (train learning algorithm 1)
4: x(i+1) ← ΠΨ

(
x(i) + η∇xA({x(i), y})

)
(Π maps x into the feasible domain)

5: i← i+ 1
6: until A({x(i), y})− A({x(i−1), y}) < ε

Output: the final poisoning point x← x(i)

the poisoning sample is labeled as desired when updating the targeted classifier.
Note also that, for notational simplicity, we only report x′ as the first argument of
L instead of D̂tr∪{x′, y}. Thanks to this simplifications, a gradient-based algorithm
can be derived and it is here depicted in Algorithm 3. Fig. 6.1 shows an example
of poisoning using the depicted algorithm in a multiclass setting that highlights
the difference between error-generic and error-specific poisoning attacks scenarios.
Notably Algorithm 3 can be exploited to optimize multiple poisoning points too.
As in [108], the idea is to perform several passes over the set of poisoning samples,
using Algorithm 3 to optimize each poisoning point at a time, while keeping the
other points fixed. Line searches can also be exploited to reduce complexity.
Gradient Computations. Provided that the attacker loss function is differentiable
w.r.t. ŵ and x, we can compute the gradient ∇xA using the chain rule:

∇xA = ∇xL +
∂ŵ

∂x

>
∇wL , (6.6)

where L(D̂val, ŵ) is evaluated on the parameters ŵ learned after training (including
the poisoning point). The main difficulty here is computing ∂ŵ

∂x
, i.e., understanding

how the solution of the learning algorithm varies w.r.t. the poisoning point.
Under some regularity conditions, this can be done by replacing the inner learning

problem with its stationarity (KKT) conditions. For example, this holds if the
learning problem L is convex, which implies that all stationary points are global
minima [87]. In fact, poisoning attacks have been developed so far only against
learning algorithms with convex objectives [19, 108, 73, 58]. The trick here is to

1In the case of error-specific poisoning attacks (Sect. 6.1.2), the outer objective in Problem (6.4)-
(6.5) is −L(ˆDval

′
, ŵ). This can be regarded as a minimization problem, and it thus suffices to

modify line 4 in Algorithm 3 to update the poisoning point along the opposite direction.

44

Training-time Poisoning Attacks against Machine Learning

replace the inner optimization with the implicit function ∇wL(D̂tr∪{x, y}, ŵ) = 0,
corresponding to its KKT conditions. Then, assuming that it is differentiable w.r.t.
x, one yields the linear system ∇x∇wL+ ∂ŵ

∂x

>∇2
wL = 0. If ∇2

wL is not singular, we
can solve this system w.r.t. ∂ŵ

∂x
, and substitute its expression in Eq. (6.6), yielding:

∇xA = ∇xL− (∇x∇wL)(∇2
wL)−1∇wL . (6.7)

This gradient is then iteratively used to update the poisoning point through gradient
ascent, as shown in Algorithm 3.2 Recall that the projection operator ΠΨ is used to
map the current poisoning point onto the feasible set Ψ (cf. Eqs. 6.4-6.5).

This is the state-of-the-art approach used to implement current poisoning at-
tacks [19, 108, 73, 58]. The problem here is that computing and inverting ∇2

wL
scales in time as O(p3) and in memory as O(p2), being p the cardinality of w. More-
over, Eq. (6.7) requires solving one linear system per parameter. These aspects make
it prohibitive to assess the effectiveness of poisoning attacks in a variety of practical
settings.

6.3 Poisoning Neural Networks with Back-gradient

In the previous section the gradient-based algorithm (Algorithm 3) that can be
exploited to compute poisoning points has been illustrated. However, using state
of the art poisoning strategies to compute the gradient required by the algorithm
it can be applied only to a subset of machine learning system namely binary learn-
ing algorithms with the attacker loss function L differentiable and the learning loss
L convex. We propose here a new algorithm to compute the gradient of interest
based on the idea of back-gradient optimization. It computes the gradient through
automatic differentiation, while also reversing the learning procedure to drastically
reduce the complexity. Compared to current poisoning strategies, this approach is
able to target a wider class of learning algorithms, trained with gradient-based pro-
cedures, including neural networks and deep learning architectures.

As we said in the previous section the main difficulty to face in order to apply
Algorithm 3 for computing the poisoning points is the computation of the gradient
∂ŵ
∂x

i.e., to understand how the solution of the learning algorithm varies w.r.t. the
poisoning point.

In previously proposed work it has been done by replacing the inner learning
problem with its stationarity (KKT) conditions [19, 108, 73, 58]. However, this
approach is computationally costly and memory expensive.

2Note that Algorithm 3 can be exploited to optimize multiple poisoning points too. As in [108],
the idea is to perform several passes over the set of poisoning samples, using Algorithm 3 to
optimize each poisoning point at a time, while keeping the other points fixed.Line searches can
also be exploited to reduce complexity.

45

Chapter 6

Figure 6.1: Error-generic (top row) and error-specific (bottom row) poisoning attacks
on a three-class synthetic dataset, against a multiclass logistic classifier. In the
error-specific case, the attacker aims to have red points misclassified as blue, while
preserving the labels of the other points. We report the decision regions on the clean
(first column) and on the poisoned (second column) data, in which we only add a
poisoning point labelled as blue (highlighted with a blue circle). The validation loss
L(D̂val, ŵ) and L(D̂val, ŵ), respectively maximized in error-generic and minimized
in error-specific attacks, is shown in colors, as a function of the attack point x (third
column), along with the corresponding back-gradients (shown as arrows), and the
path followed while optimizing x. To show that the logistic loss used to estimate the
classifier loss on validation data provides a good approximation of the true error, we
also report the validation error measured with the zero-one loss on the same data
(fourth column).

46

Training-time Poisoning Attacks against Machine Learning

Algorithm 4 Gradient Descent

Input: initial parameters w0, learning rate η, D̂tr, L.

1: for t = 0, . . . , T − 1 do
2: gt = ∇wL(D̂tr,wt)
3: wt+1 ← wt − η gt
4: end for

Output: trained parameters wT

To mitigate these issues, as suggested in [42, 43, 69, 58], one can apply con-
jugate gradient descent to solve a simpler linear system, obtained by a trivial re-
organization of the terms in the second part of Eq. (6.7). In particular, one can set
(∇2

wL) v = ∇wL, and compute ∇xA = ∇xL−∇x∇wL v. The computation of the
matrices ∇x∇wL and ∇2

wL can also be avoided using Hessian-vector products [86]:

(∇x∇wL) z = lim
h→0

1

h
(∇xL (x′, ŵ + hz)−∇xL (x′, ŵ)) ,

(∇w∇wL) z = lim
h→0

1

h
(∇wL (x′, ŵ + hz)−∇wL (x′, ŵ)) .

Although this approach allows poisoning learning algorithms more efficiently w.r.t.
to those propose in state of art work [19, 108, 73], it still requires the inner learning
problem to be solved exactly. From a practical perspective, this means that the KKT
conditions have to be met with satisfying numerical accuracy. However, as these
problems are always solved to a finite accuracy, it may happen that the gradient∇xA
is not sufficiently precise, especially if convergence thresholds are too loose [43, 69].

It is thus clear that such an approach can not be used, in practice, to poison
learning algorithms like neural networks and deep learning architectures, as it may
not only be difficult to derive proper stationarity conditions involving all parame-
ters, but also as it may be too computationally demanding to train such learning
algorithms with sufficient precision to correctly compute the gradient ∇xA.
Back-gradient Poisoning. We overcome this limitation by exploiting back-gradient
optimization [43, 69]. This technique has been first exploited in the context of
energy-based models and hyperparameter optimization, to solve bilevel optimiza-
tion problems similar to the poisoning problem discussed before. The underlying
idea of this approach is to replace the inner optimization with a set of iterations
performed by the learning algorithm to update the parameters w, provided that
such updates are smooth, as in the case of gradient-based learning algorithms. Ac-
cording to [43], this technique allows to computing the desired gradients in the outer
problem using the parameters wT obtained from an incomplete optimization of the

47

Chapter 6

Algorithm 5 Back-gradient Descent

Input: trained parameters wT , learning rate η, D̂tr, D̂val, poisoning point x′, y,
attacker loss function L, learner’s objective L.
initialize dx← 0, dw ← ∇wL(D̂val,wT)

1: for t = T, . . . , 1 do
2: dx← dx′ − η dw∇x∇wL(x′,wt)
3: dw ← dw − η dw∇w∇wL(x′,wt)
4: gt−1 = ∇wtL(x′,wt)
5: wt−1 = wt + αgt−1

6: end for

Output: ∇xA = ∇xL + dx

inner problem (after T iterations). This represents a significant computational im-
provement compared to traditional gradient-based approaches, since it only requires
a reduced number of training iterations for the learning algorithm. This is espe-
cially important in large neural networks and deep learning algorithms, where the
computational cost per iteration can be high. Then, assuming that the inner opti-
mization runs for T iterations, the idea is to exploit reverse-mode differentiation, or
back-propagation, to compute the gradient of the outer objective. However, using
back-propagation in a naïve manner would not work for this class of problems, as it
requires storing the whole set of parameter updates w1, . . . ,wT performed during
training, along with the forward derivatives. These are indeed the elements required
to compute the gradient of the outer objective with a backward pass (in [69] more de-
tails about this point are given). This process can be extremely memory-demanding
if the learning algorithm runs for a large number of iterations T , and especially if
the number of parameters w is large (as in deep networks). Therefore, to avoid
storing the whole training trajectory w1, . . . ,wT and the required forward deriva-
tives, [43] and [69] proposed to compute them directly during the backward pass, by
reversing the steps followed by the learning algorithm to update them. Computing
wT , . . . ,w1 in reverse order w.r.t. the forward step is clearly feasible only if the
learning procedure can be exactly traced backwards. Nevertheless, this happens
to be feasible for a large variety of gradient-based procedures, including gradient
descent with fixed step size, and stochastic gradient descent with momentum.

We leverage back-gradient descent to compute ∇xA (Algorithm 5) by reversing
a standard gradient-descent procedure with fixed step size that runs for a truncated
training of the learning algorithm to T iterations (Algorithm 4). Notably, lines 2-3 in
Algorithm 5 can be efficiently computed with Hessian-vector products, as discussed
before. We exploit this algorithm to compute the gradient ∇xA in line 4 of our

48

Training-time Poisoning Attacks against Machine Learning

poisoning attack algorithm (Algorithm 3). In this case, line 3 of Algorithm 3 is
replaced with the incomplete optimization of the learning algorithm, truncated to T
iterations. Note finally that, as in [43, 69], the time complexity of our back-gradient
descent is O(T). This drastically reduces the complexity of the computation of the
outer gradient, making it feasible to evaluate the effectiveness of poisoning attacks
also against large neural networks and deep learning algorithms. Moreover, this
outer gradient can be accurately estimated from a truncated optimization of the
inner problem with a reduced number of iterations. This allows for a tractable
computation of the poisoning points in Algorithm 3, since training the learning
algorithm at each iteration can be prohibitive, especially for deep networks.

6.4 Securing Kernel-based Classifiers from Poison-
ing Attacks

In many applications, after the classification stage, users are asked to supply the
correct label to the system (e.g. in the spam classification). The labels collected
from them are used to retrain the system improving its performance. A malicious
user can therefore, on purpose provide a wrong label in order to poison the classifier
training dataset. This specific poisoning scenario where users can provide only
the label is called label flip when the target classifier is binary or more in general
adversarial label noise. The training dataset of this kind of system contains typically
hundreds of thousands of samples and an attacker can be able to poison only a little
fraction of them. Therefore, label flip can be seen as sparse attacks in terms of the
training points that are manipulated or injected from the attacker. Support Vector
Machines (SVMs) are a well-known and widely-used learning algorithm. They make
their decisions based on a subset of training samples, known as support vectors. In
application where the labels of a subset of the training samples can be manipulated
this behavior poses risks to system security. To the best of our knowledge, the only
specific countermeasure against label-flip attacks for this kind of classifier is the
one proposed in [18]: it is an approach called Label Noise Robust SVM (LN-SVM)
that heuristically try to enforces the classifier to increase the number of support
vector, to enhance the stability of the decision function with respect to changes
of training labels. Another SVM variant that decrease the impact of each single
point compared to the original one is the Least-Square SVM [101] (LS-SVM) that
uses a quadratic loss function instead of hinge loss, considering all the point instead
of just some support vector in its decision function. We propose below a more
theoretically-sound countermeasure rooted in recent finding about the relationship
between regularization and robust optimization.

49

Chapter 6

6.4.1 Dual Infinity-norm Support Vector Machines

In Section 5.4 the connection between regularization and robustness has been clar-
ified. Label-flip attacks can be seen as sparse attacks in terms of the influenced
training points since, typically, only the labels of few training samples can be ma-
nipulated by the attacker. The idea behind the proposed method is thus to exploit
`∞ regularization to enforce more evenly-distributed α weights on the training data,
similarly to the intuition in [18]. The reason is that this would decrease the impact
of every single point during learning of the decision function. This effect is here
obtained by training a (linear) Infinity-norm SVM (that we call Dual Infinity-norm
SVM) directly in the kernel space, i.e., using the kernel matrix as the input training
data, to learn a discriminant function of the form f(x) =

∑n
i=1 αiK(x,xi)+b, where

K(·, ·) is the kernel function, and {xi}ni=1 and {αi}ni=1 are respectively the training
samples and their α weights. Under this setting, the α values and the bias b are
obtained by solving the following linear programming problem:

minα,b ‖α‖∞ + C
∑n

i=1 (1− yif(xi))+ . (6.8)

Notably, this approach can be used also with kernels that are not necessarily positive
semi-definite (i.e., indefinite kernels).

The difference between the presented Dual Infinity-norm SVM, the standard
SVM and the previously proposed classifier is shown in a two-dimensional example
in Fig. 6.2.
The considered dataset is Gaussian with mean [y, 0] (for class y) and diagonal covari-
ance matrix equal to diag([0.5, 0.5]). 60 samples have been included in the training
set and 40 in the testing set. The adversarial label-flip attack has been used to flip 18
training labels. We set C = 1 for SVM and LN-SVM, and C = 0.01 for LS-SVM and
Dual Infinity-Norm SVM. From the figure one can appreciate how the Dual Infinity-
norm SVM is effectively able to spreads in a more uniform manner the (absolute)
weight values α over the training samples. Note indeed that the decision hyperplane
obtained by Dual Infinity-norm SVM under attack, and the corresponding test error
are less affected by the attack.

50

Chapter 6

SVM (0% flip)

test error: 3%

−2 0 2

−1

0

1

2

LN−SVM (0% flip)

test error: 5%

−2 0 2

−1

0

1

2

LS−SVM (0% flip)

test error: 3%

−2 0 2

−1

0

1

2

I−SVM (0% flip)

test error: 3%

−2 0 2

−1

0

1

2

−5 0 5
0

0.1

0.2

0.3

g(x)

−5 0 5
0

0.1

0.2

0.3

g(x)

−5 0 5
0

0.1

0.2

0.3

g(x)

−5 0 5
0

0.1

0.2

0.3

g(x)

SVM (30% flip)

test error: 60%

−2 0 2

−1

0

1

2

LN−SVM (30% flip)

test error: 48%

−2 0 2

−1

0

1

2

LS−SVM (30% flip)

test error: 38%

−2 0 2

−1

0

1

2

I−SVM (30% flip)

test error: 15%

−2 0 2

−1

0

1

2

−5 0 5
0

0.1

0.2

0.3

g(x)

−5 0 5
0

0.1

0.2

0.3

g(x)

−5 0 5
0

0.1

0.2

0.3

g(x)

−5 0 5
0

0.1

0.2

0.3

g(x)

Figure 6.2: Decision boundaries for the SVM, the LN-Robust SVM [18] (with S=0.1),
the LS-SVM [101], and the Dual Infinity-norm SVM, respectively trained on un-
tainted (first row) and tainted (third row) data. Adversarial label flips are highlight
with green circles. For each SVM, we also report the α values assigned to the training
samples against the corresponding g(x) values.

52

Chapter 7

Experimental Evaluation

In this Chapter, we validate some of the methods that are proposed through this
thesis using the methodology explained in Section 4.5.

In Section 7.1 we report the results related to the study of the relationship
between sparsity and security to evasion attacks. The experiments aimed to assess
the effectiveness of the poisoning attack methodology against multiclass classifier
and those aimed to validate a countermeasure for Kernel-based classifier against
label flip that we are proposing are then illustrated in Section 7.2.

7.1 Evasion
In this section the security of the countermeasure against linear classifier evasion
namely octagonal regularizer that we present in Section 5.4 is experimentally as-
sessed.

7.1.1 Trading sparsity for security: octagonal regularization

In Section 5.4 we discuss the trade-off between sparsity of linear classifier weight and
their security. The aforementioned trade-off is here assessed on different security-
related dataset illustrated below to evaluate whether and to what extent the choice
of a proper regularizer may have a significant impact on practice. We further analyze
the weight distribution of SVMs using different regularizers, included the proposed
Octagonal Regularizer to provide a better understanding of how sparsity is related
to classifier security under the considered evasion attacks.

Dataset

Here we describe the security-related dataset that we use in the presented experi-
ments. We propose some experiments also on a Handwritten Recognition dataset as
being composed by images it is useful to get more insights about the created attack
samples that is described below as well.

53

Chapter 7

PDF Malware Detection. Nowadays PDF is the most used document type due
to the fact that it presents documents in an independent manner from the operative
systems. A PDF document can host not only text and images but also JavaScript
and Flash scripts. This makes it one of the most exploited vectors for conveying
malware (i.e., malicious software).

The used Pdf Malware detection dataset is made up of about 5500 legitimate
and 6000 malicious PDF files. We represent every file using the 114 features that
are described in [72]. They consist of the number of occurrences of a predefined
set of keywords, where every keyword represents an action performed by one of the
objects that are contained in the PDF file (e.g., opening another document that is
stored inside the file).

An attacker cannot trivially remove keywords from a PDF file without corrupting
its functionality. Conversely, she can easily add new keywords by inserting new
object’s operations. For this reason, we simulate this attack by only considering
feature increments (decrementing a feature value is not allowed). Accordingly, the
most convenient strategy to mislead a malware detector (classifier) is thus to insert
as many occurrences of a given keyword as possible, which is a sparse attack.

Spam Filtering. This is a well-known application subject to adversarial attacks.
Most spam filters include an automatic text classifier that analyzes the email’s body
text. In the simplest case, Boolean features are used, each representing the presence
or absence of a given term, as in the dataset used in the reported experiments.
Feature addition and removal are both feasible operations and are equally costly for
an attacker. In the presented experiment the TREC 2007 dataset is used. It consists
of about 25000 legitimate and 50000 spam emails [31]. We extract a dictionary of
terms (features) from the first 5000 emails (in chronological order) using the same
parsing mechanism of SpamAssassin, and then select the 200 most discriminant
features according to the information gain criterion [96].

Handwritten Digit Classification. The Handwritten Digit Classification prob-
lem involves 10 classes (each corresponding to a digit, from 0 to 9). We used the
MNIST handwritten digit dataset [61]. In that dataset, each digit image consists of
28 × 28 = 784 pixels, ranging from 0 to 255 (images are in gray-scale). We divide
each pixel value by 255 and use it as a feature.

Classifiers

We consider different versions of the SVM classifier obtained by combining the hinge
loss with the different regularizers shown in Fig. 5.5.

54

Experimental Evaluation

Sparsity and Security Measures

We evaluate the degree of sparsity S of a given linear classifier as the fraction of its
weights that are equal to zero:

S =
1

d
|{wj|wj = 0, j = 1, . . . , d}| , (7.1)

being | · | the cardinality of the set of null weights.
To evaluate security of linear classifiers, we define a measure E of weight evenness,

similarly to [59, 15], based on the ratio of the `1 and `∞ norm:

E =
‖w‖1

d‖w‖∞
, (7.2)

where dividing by the number of features d ensures that E ∈
[

1
d
, 1
]
, with higher val-

ues denoting more evenly-distributed feature weights. In particular, if only a weight
is not zero, then E = 1

d
; conversely, when all weights are equal to the maximum (in

absolute value), E = 1.

Experimental Setup

We randomly select 500 legitimate and 500 malicious samples from each dataset,
and equally subdivide them to create a training and a test set. We optimize the
regularization parameter C of each SVM (along with λ and ρ for the Elastic-net
and Octagonal SVMs, respectively) through 5-fold cross-validation, maximizing the
following objective on the training data:

AUC + αE + βS (7.3)

where AUC is the area under the ROC curve, and α and β are parameters defining
the trade-off between security and sparsity. We set α = β = 0.1 for the PDF
and digit data, and α = 0.2 and β = 0.1 for the spam data, to promote more
secure solutions in the latter case. These parameters allow us to accept a marginal
decrease in classifier security only if it corresponds to much sparser feature weights.
After classifier training, we perform evasion attacks on all malicious test samples
and evaluate the corresponding performance as a function of the number of features
modified by the attacker. We repeat this procedure five times and report the average
results of the original and modified test data.

Experimental Results

We consider first PDF malware and spam detection. In these applications, as men-
tioned before, only sparse evasion attacks make sense, as the attacker aims to min-
imize the number of modified features. In Fig. 7.1, we report the AUC at 10% false

55

Chapter 7

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
PDF Malware Detection

A
U

C
1
0
%

d
 max

SVM (0, 47)

∞−norm (0, 100)

1−norm (91, 2)

el−net (55, 13)

8gon (69, 29)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Spam Filtering

A
U

C
1
0
%

d
 max

SVM (0, 37)

∞−norm (4, 96)

1−norm (86, 4)

el−net (67, 6)

8gon (12, 88)

Figure 7.1: Classifier performance under attack for PDF malware and spam data,
measured in terms of AUC10% against an increasing number dmax of modified fea-
tures. For each classifier, we also report (S,E) percentage values (Eqs. 7.1-7.2) in
the legend.

positive rate for the considered classifiers, against an increasing number of word-
s/keywords changed by the attacker. This experiment shows that the most secure
classifier under sparse evasion attacks is the Infinity-norm SVM, since its perfor-
mance degrades more gracefully under attack. This is an expected result, given
that, in this case, infinity-norm regularization corresponds to the dual norm of the
attacker’s cost/distance function. Notably, the Octagonal SVM yields reasonable
security levels while achieving much sparser solutions, as expected (cf. the sparsity
values S in the legend of Fig. 7.1). This experiment really clarifies how much the
choice of a proper regularizer can be crucial in real-world adversarial applications.

By looking at the values reported in Fig. 7.1, it may seem that the security
measure E does not properly characterize classifier security under attack; e.g., note
how Octagonal SVM exhibits lower values of E despite being more secure than
SVM on the PDF data. The underlying reason is that the attack implemented in
the PDF data only considers feature increments, while E generically considers any
kind of manipulation. Accordingly, one should define alternative security measures
depending on specific kinds of data manipulation. However, the security measure E
allows us to properly tune the trade-off between security and sparsity also in this
case and, thus, this issue may be considered negligible.

Finally, to visually demonstrate the effect of sparse and dense evasion attacks,
we report some results on the MNIST handwritten digits. In Fig. 7.2, we show the
“9” digit image modified by the attacker to have it misclassified by the classifier
as an “8”. These modified digits are obtained by solving Problem (5.1) through a
simple projected gradient-descent algorithm, as in [12]. Note how dense attacks
only produce a slightly-blurred effect on the image, while sparse attacks create more
evident visual artifacts. By comparing the values of g(x) reported in Fig. 7.2,
one may also note that this simple example confirms again that Infinity-norm and
Octagonal SVM are more secure against sparse attacks, while SVM and Elastic-net
SVM are more secure against dense attacks.

56

Experimental Evaluation

Initial digit

5 10 15 20 25

5

10

15

20

25

SVM g(x)= −0.19

5 10 15 20 25

5

10

15

20

25

∞−norm g(x)= 1.1

5 10 15 20 25

5

10

15

20

25

1−norm g(x)= −4.2

5 10 15 20 25

5

10

15

20

25

el−net g(x)= −0.68

5 10 15 20 25

5

10

15

20

25

8gon g(x)= 0.032

5 10 15 20 25

5

10

15

20

25

SVM g(x)= 0.24

5 10 15 20 25

5

10

15

20

25

∞−norm g(x)= −0.84

5 10 15 20 25

5

10

15

20

25

1−norm g(x)= −0.083

5 10 15 20 25

5

10

15

20

25

el−net g(x)= 1.8

5 10 15 20 25

5

10

15

20

25

8gon g(x)= −0.11

5 10 15 20 25

5

10

15

20

25

Figure 7.2: Initial digit “9” (first row) and its versions modified to be misclassified
as “8” (second and third row). Each column corresponds to a different classifier
(from left to right in the second and third row): SVM, Infinity-norm SVM, 1-norm
SVM, Elastic-net SVM, Octagonal SVM. Second row : sparse attacks (`1), with
dmax = 2000. Third row : dense attacks (`2), with dmax = 250. Values of g(x) < 0
denote a successful classifier evasion (i.e., more vulnerable classifiers).

Discussion

We have shown on real-world adversarial applications that the choice of a proper
regularizer is crucial. In fact, in the presence of sparse attacks, Infinity-norm SVMs
can drastically outperform the security of standard SVMs. We believe that this is
an important result, as (standard) SVMs are widely used in security-related tasks
without taking the risk of adversarial attacks too much in consideration. Moreover,
we have shown that the new octagonal regularizer that we propose really enables
trading sparsity for a marginal loss of security under sparse evasion attacks. This is
extremely useful in applications where sparsity and computational efficiency at test
time are crucial. When dense attacks are instead deemed more likely, the standard
SVM may be retained a good compromise. In that case, if sparsity is required, one
may trade some level of security for sparsity using the Elastic-net SVM.

57

Chapter 7

7.2 Poisoning

We open this section evaluating the effectiveness of the poisoning attack that we
propose in Section 6.3 that for the first time allows to poisoning all multiclass clas-
sifiers that can be trained with a gradient-based algorithm. Finally, we assess the
security of the countermeasure to label flip attack against Kernel-based classifiers
that is proposed in Section 6.4.

7.2.1 Poisoning Neural Network with Back-gradient

Using the state of the art techniques only binary classifiers with easily-derivable KKT
conditions are poisonable. In Section 6.3 we propose an approach that allows one to
poison each classifier that can be trained with gradient-based learning techniques.
The datasets and the experimental setup that are used in the presented experiments
are here firstly presented. The effectiveness of the proposed back-gradient poisoning
attack is then evaluated. Whether poisoning samples can be transferred across
different learning algorithms is investigated and the impact of error-generic and
error-specific poisoning attacks is assessed. Finally, we report the first proof-of-
concept adversarial training examples computed by poisoning a convolutional neural
network in an end-to-end manner (i.e., not just using a surrogate model trained on
the deep features, as in [58]).

Dataset

We empirically evaluate the effectiveness of the poisoning attack that we propose in
several applications, including spam filtering, malware detection (that are described
below) and the MNIST datasets that is described in the previous section.
Spam Filtering.

In the presented experiments we used the Spambase dataset [23]. It consists of
a collection of 4, 601 emails, including 1, 813 spam emails. Each email is encoded as
a feature vector consisting of 54 binary features.
Ransomware. Ransomware is a very recent kind of malware which encrypts the
data of infected machine and requires the victim to pay a ransom to obtain the
decryption key. The Ransomware data [97] consists of 530 ransomware samples
and 549 benign applications. This dataset has 400 binary features accounting for
different sets of actions, API invocations, and modifications in the file system and
registry keys during the execution of the software.

Experimental Setup

We consider the following leaning algorithms: (i) Multi-Layer Perceptrons (MLPs)
with one hidden layer consisting of 10 neurons; (ii) Logistic Regression (LR); and

58

Experimental Evaluation

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.1

0.15

0.2

0.25

0.3

0.35

SPAMBASE

MLP

LR

ADA

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.05

0.1

0.15

0.2

0.25

0.3
RANSOMWARE

MLP

LR

ADA

Figure 7.3: Results of PK poisoning attacks.

(iii) Adaline (ADA). For MLPs, we have used hyperbolic tangent activation func-
tions for the neurons in the hidden layer, and softmax activations in the output
layer. Moreover, for MLPs and LR, we use the cross-entropy (or log-loss) as the loss
function, while we use the mean squared error for ADA.

Effectiveness and Transferability of Poisoning Samples

Here the effectiveness and the transferability of the samples created with the pre-
sented poisoning attack is investigated assuming that the attacker aims to cause a
denial of service, and thus runs a poisoning availability attack whose goal is simply
to maximize the classification error.

Accordingly, we exploit the Algorithm 3 to injecting up to 20 poisoning points in
the training data. The poisoning points are initialized by cloning training points and
flipping their labels. We set the number of iterations T for obtaining stable back-
gradients to 200, 100, and 80, respectively for MLPs, LR and ADA. We consider
two distinct settings: PK attacks, in which the attacker is assumed to have full
knowledge of the attacked system (for a worst-case performance assessment); and
LK-SL attacks, in which she knows everything except for the learning algorithm,
and thus she uses a surrogate learner M̂. This scenario, as we discuss in Sect. 4.2, is
useful to assess the transferability property of the attack samples. To the best of our
knowledge, this has been demonstrated in [12, 83] for evasion attacks (i.e., adversarial
test examples) but never for poisoning attacks (i.e., adversarial training examples).
To this end, we optimize the poisoning samples using alternatively MLPs, LR or
ADA as the surrogate learner, and then we evaluate the impact of the corresponding
attacks against the other two algorithms.

The experimental results, that are shown in Figs. 7.3-7.4, are averaged on 10
independent random data splits. In each split, 100 samples are used for training
and 400 for validation, i.e., to respectively construct Dtr and Dval. Recall indeed
that in both PK and LK-SL settings, the attacker has perfect knowledge of the
training set used to learn the true (attacked) model, i.e., D̂tr = Dtr. The remaining
samples are used for testing, i.e., to assess the classification error under poisoning.1

1Note indeed that the validation error only provides a biased estimate of the true classification
error, as it is used by the attacker to optimize the poisoning points [19].

59

Chapter 7

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.1

0.15

0.2

0.25

0.3

0.35
MLP vs All

MLP

LR

ADA

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.1

0.15

0.2

0.25

0.3

0.35
LR vs All

MLP

LR

ADA

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.1

0.15

0.2

0.25

0.3

0.35
Adaline vs All

MLP

LR

ADA

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.05

0.1

0.15

0.2

0.25

MLP vs All

MLP

LR

ADA

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.05

0.1

0.15

0.2

0.25

LR vs All

MLP

LR

ADA

Fraction of Attack Points in Training Data

0 0.05 0.1 0.15

T
e

s
t

E
rr

o
r

0.05

0.1

0.15

0.2

0.25

Adaline vs All

MLP

LR

ADA

Figure 7.4: Results of LK-SL poisoning attacks (transferability of poisoning samples)
on Spambase (top row) and Ransomware (bottom row).

From Fig. 7.3 is observable that PK poisoning attacks can significantly compro-
mise the performance of all the considered classifiers. In particular, on Spambase,
they cause the classification error of ADA and LR to increase up to 30% even if the
attacker only controls 15% of the training data. Although the MLP is more resilient
to poisoning than these linear classifiers, its classification error also increases signif-
icantly, up to 25%, which is not tolerable in several practical settings. The results
of PK attacks on Ransomware are similar, although the MLP seems as vulnerable
as ADA and LR in this case.

Regarding LK-SL poisoning attacks, is visible from Fig. 7.4 that the attack
points generated using a linear classifier (either ADA or LR) as the surrogate model
have a very similar impact on the other linear classifier. In contrast, the poison-
ing points crafted with these linear algorithms have a lower impact on the MLP,
although its performance is still noticeably affected. When the MLP is used as the
surrogate model, instead, the performance degradation of the other algorithms is
similar. However, the impact of these attacks is much lower. To summarize, the
presented results show that the attack points can be effectively transferred across
linear algorithms and also have a noticeable impact on (nonlinear) neural networks.
In contrast, transferring poisoning samples from nonlinear to linear models seems
to be less effective.

Error-generic and Error-specific Attack

Here error-generic and error-specific poisoning strategies are evaluated against a
multiclass LR classifier using softmax activation and the log-loss as loss function.
The MNIST dataset is used to study the error variation on different dataset classes.

In case of Error-generic Attack, the attacker aims to maximize the classification

60

Experimental Evaluation

Fraction of Attack Points in Training Data

0 0.01 0.02 0.03 0.04 0.05 0.06

T
e

s
t

E
rr

o
r

0.12

0.14

0.16

0.18

0.2

0.22

Back-GD

LF

Fraction of Attack Points in Training Data

0 0.01 0.02 0.03 0.04 0.05 0.06

T
e

s
t

E
rr

o
r

p
e

r
C

la
s
s

0

0.1

0.2

0.3

0.4 0

1

2

3

4

5

6

7

8

9

Predicted Class

0 1 2 3 4 5 6 7 8 9

T
ru

e
 C

la
s
s

0

1

2

3

4

5

6

7

8

9 -0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fraction of Attack Points in Training Data

0 0.01 0.02 0.03 0.04

T
e

s
t

E
rr

o
r

(A
tt

a
c
k
e

r'
s
 l
a

b
e

ls
)

0.6

0.7

0.8

0.9

1

Back-GD

Fraction of Attack Points in Training Data

0 0.01 0.02 0.03 0.04

T
e

s
t

E
rr

o
r

p
e

r
C

la
s
s

0

0.1

0.2

0.3

0.4

0.5
0

1

2

3

4

5

6

7

8

9

Predicted Class

0 1 2 3 4 5 6 7 8 9

T
ru

e
 C

la
s
s

0

1

2

3

4

5

6

7

8

9
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 7.5: Error-generic (top row) and error-specific (bottom row) poisoning against
multiclass LR on the MNIST data. In the first column, the test error (which, for
error-specific poisoning attacks is computed using the attacker’s labels instead of the
true labels, and so it decreases while approaching the attacker’s goal is reported).
In the second column, the error per class, i.e., the probability of misclassifying a
digit given that it belongs to the class reported in the legend is shown. In the
third column, the difference between the confusion matrix obtained under poisoning
(after injecting the maximum number of poisoning samples) and that obtained in
the absence of attack, to highlight how the errors affect each class is reported.

error regardless of the resulting kind of errors, as described in Sect. 6.1. This is
thus an availability attack, aimed to cause a denial of service. We generate 10
independent random splits using 1000 samples for training, 1000 for validation, and
8000 for testing. To compute the back-gradients ∇xcA required by our poisoning
attack, we use T = 60 iterations. We initialize the poisoning points by cloning
randomly-chosen training points and changing their label at random. In addition,
the presented poisoning attack strategy is compared against a label-flip attack in
which the attack points are drawn from the validation set and their labels are flipped
at random. In both cases, up to 60 attack points are injected into the training set.
The results are shown in Fig. 7.5 (top row). Note first that the proposed error-
generic poisoning attack almost doubles the classification error in the absence of
poisoning, with less than 6% of poisoning points. It is much more effective than
random label flips and, as expected, it causes a similar increase of the classification
error over all classes (although some classes are easier to poison, like digit 5). This is
even more evident from the difference between the confusion matrix obtained under
6% poisoning and the one obtained in the absence of attacks.

In order to test the Error-specific case we assume that the attacker aims to
misclassify 8s as 3s, while not having any preference regarding the classification of

61

Chapter 7

the other digits. This can be thus regarded as an availability attack, targeted to
cause the misclassification of a specific set of samples. 10 independent random splits
with 1000 training samples are generated with 4000 samples for validation, and 5000
samples for testing. Recall that the goal of the attacker in this scenario is described
by Eq. (6.3). In particular, she aims at minimizing L(D̂′val, ŵ), where the samples
in the validation set D̂′val are re-labeled according to the attacker’s goal. Here, the
validation set thus only consists of digits of class 8 labeled as 3. We set T equal to
60 to compute the back-gradient used in our poisoning attack, and inject up to 40
poisoning points into the training set. The poisoning points are initialized by cloning
randomly-chosen samples from the classes 3 and 8 in the training set, and flipping
their label from 3 to 8, or vice-versa. Only these two classes are here considered as
they are the only two actively involved in the attack.

The results are shown in Fig. 7.5 (bottom row). We can observe that only the
classification error rate for digit 8 is significantly affected, as expected. In particular,
it is clear from the difference of the confusion matrix obtained under poisoning and
the one obtained in the absence of attack that most of the 8s are misclassified as
3s. After adding less than 4% of poisoning points, in fact, the error rate for digit 8
increases approximately from 20% to 50%. Note that, as a side effect, the error rate
of digit 3 also slightly increases, though not to a significant extent.

Poisoning Deep Neural Networks

Finally, a proof-of-concept experiment to show the applicability of our attack al-
gorithm to poison a deep network is reported. Notably, it allows one to poisoning
the network in an end-to-end manner, i.e., accounting for all weight updates in each
layer (instead of using a surrogate model trained on a frozen deep feature representa-
tion [58]). To this end, the convolutional neural network (CNN) that was proposed
in [61] is considered for the classification of the MNIST digit data, which requires
optimizing more than 450, 000 parameters.2 In this proof-of-concept attack, 10 poi-
soning points are injected into the training data, and the experiment is repeated
on 5 independent data splits, considering 1, 000 samples for training, and 2, 000 for
validation and testing. For simplicity, only the classes of digits 1, 5, and 6 are con-
sidered in this case. Algorithm 3 is used to craft each single poisoning point, but,
similarly to [108], they are optimized iteratively, making 2 passes over the whole set
of poisoning samples. The line search exploited in [108] is also used, instead of a
fixed gradient step size, to reduce the attack complexity (i.e., the number of training
updates to the deep network).

Under this setting, however, the generated attack points only slightly increase
the classification error, though not significantly, while random label flips do not
have any substantial effect. For comparison, also multiclass LR classifier is attacked

2the implementation that is used is the one available at https://github.com/tflearn/
tflearn/blob/master/examples/images/convnet_mnist.py.

62

https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py

Experimental Evaluation

Figure 7.6: Poisoning samples targeting
the CNN.

Figure 7.7: Poisoning samples targeting
the LR.

under the same setting, yielding an increase of the error rate from 2% to 4.3% with
poisoning attacks, and to only 2.1% with random label flips. This shows that, at least
in this simple case, deep networks seem to be more resilient against (a very small
fraction of) poisoning attacks (i.e., less than 1%). Some of the poisoning samples
crafted against the CNN and the LR are shown in Figs. 7.6 and 7.7. In the figure
the initial digit (and its true label y), its poisoned version (and its label yc), and the
difference between the two images in absolute value (rescaled to visually appreciate
the modified pixels) are shown. Notably, similarly to adversarial test examples,
also poisoning samples against deep networks are visually indistinguishable from
the initial image (as in [58]), while this is not the case when targeting the LR
classifier. This might be due to the specific shape of the decision function learned
by the deep network in the input space, as explained in the case of adversarial test
examples [102, 47]. This aspect needs to further investigation and it is here left
for future work along with a more systematic security evaluation of deep networks
against poisoning attacks. We finally execute a simple transferability experiment,
in which the poisoning samples crafted against the LR classifier are used to attack
the CNN, and vice-versa. In the former case, the attack is totally ineffective (as the
minimal modifications to the CNN-poisoning digits are clearly irrelevant for the LR
classifier), while in the latter case it has a similar effect to that of random label flips.

Discussion

The empirical evaluation on spam filtering and malware detection shows that neural
networks can be significantly compromised even if the attacker only controls a small
fraction of training points. It also empirically shows that poisoning samples designed
against one learning algorithm can be rather effective also in poisoning another

63

Chapter 7

algorithm, highlighting an interesting transferability property, as that shown for
evasion attacks (a.k.a. adversarial test examples) [12, 107, 83].

The main limitation of the presented experiments is that we do not provide
an extensive evaluation of poisoning attacks against deep networks to thoroughly
assess their security. The preliminary experiments that we report seem to show
that they can be more resilient against this threat than other learning algorithms.
This may be due to their higher capacity and number of parameters, which may
allow the network to memorize the poisoning samples without affecting what has
been correctly learned elsewhere. However, the attack that we tested is designed
to maximize the overall classification error, thus attacks with less ambitious goals
(such as targeted attacks aimed at misclassifying only a small subset of samples, as
in [58]), may still be more effective also against this kind of classifiers. Therefore, a
more complete and systematic analysis remains to be performed.

7.2.2 Securing Kernel-based Classifier from Poisoning Attacks

When some training set labels are acquired from users a malicious one can provide
wrong labels in order to intelligently threat the system obtaining the effect that she
desires. This attack is called label flip in case it is exploited on two class datasets.
In Section 6.4 we propose a countermeasure for SVM against label flip. We here
empirically validate it on a Pdf filtering dataset.

Dataset

In the reported experiment we use the Pdf Filtering dataset called Lux0r [32]. This
dataset contains around 12, 000 malicious PDFs and about 5, 000 benign samples.
Every PDF is represented by 736 features, each representing the number of oc-
currences of a specific Javascript function (API call) into the PDF. Each API call
corresponds to an action performed by one of the objects that belong to the PDF.

Experimental Setup

Firstly, we normalize data in [−1, 1] using min-max normalization. Then we ran-
domly split the data into 5 distinct training and test set pairs, consisting of 60%
and 40% of the data.

Label Flip Attacks

We consider two different kinds of label flip attacks. In both cases we set a constraint
to the fraction of labels that the adversary can change, to reflects a likely limitation
in real-world scenarios.
Random label flip. is a baseline attack, which consists of flipping the labels of a
randomly-chosen fraction of training samples, without exploiting any knowledge of

64

Experimental Evaluation

the targeted classifier.
Adversarial Label-Flip Attack (ALFA-Tilt). is a different attack proposed
in [18, 109]. It assumes a skilled attacker whose aim is to maximize the classifier
error on untainted (testing) data.

Since finding the subset of samples whose label flip maximizes the testing error
is a non-trivial problem, the authors devised a heuristic approach that maximizes
a surrogate measure of the testing error, namely, the angle between the decision
hyperplane found by the untainted classifier and the one under attack. We consider
the worst case namely perfect knowledge, although in real scenarios the attacker is
likely to have only a limited knowledge of the system.

Results

The averaged results on the Spam dataset, for different C values under random and
ALFA-tilt attacks, are respectively reported in Fig. 7.8.

Notably, the LS-SVM and Infinity-norm SVM attain the best performance for low
C values, as the effect of regularization is stronger. These classifiers are nevertheless
the most secure under both the random and the ALFA-tilt attack. The performance
with the best C for each classifier are dataset-dependent, however Infinity-norm
SVM is clearly able to achieve good performance and it has the highest accuracy
under the ALFA-tilt attack.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=1e−05

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=0.01

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=100

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=0.0001

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=0.01

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% flipped labels

te
s
t

a
c
c
u

ra
c
y

PDF data C=100

Figure 7.8: Random (first row) and label tilt attack (second row) against SVM, LN-
Robust SVM (with S=0.05 e S=0.5), Least-Square SVM, Dual Infinity-norm SVM
for different C values on PDF malware detection dataset.

65

Chapter 7

Discussion

With the reported experiment, we have investigated the security of different SVMs
under the label flip attack. We have shown that the sparsity of the SVM α values may
be considered a threat to its security in the presence of training data contamination.
We have moreover shown that forcing the SVM to learn more evenly-distributed
α, as we do with the proposed Dual Infinity-norm SVM, can help to mitigate this
threat.

66

Chapter 7

68

Chapter 8

Securing Android Malware Detectors
against Evasion Attacks

In Chapter 5.4 we show that relying on robustness and regularization theory is pos-
sible design machine learning algorithms that are more robust under evasion attacks.
In this Chapter we show how the proposed countermeasure enable one to leverage
on the specific application peculiarities to further enhance the security of the con-
sidered application with a case study on Android malware detection. The relevance
of this task is witnessed by the fact that Android has become the most popular
mobile operating system, with more than a billion users around the world, while
the number of malicious applications targeting them has also grown simultaneously:
anti-virus vendors detect thousands of new malware samples daily, and there is still
no end in sight [116, 63]. Notably, here we do not consider attacks that can com-
pletely defeat static analysis [79], like those based on packer-based encryption [111]
and advanced code obfuscation [30, 90, 50, 51, 91]. The main reason is that such
techniques may leave detectable traces, suggesting the use of a more appropriate
system for classification; e.g., the presence of system routines that perform dynamic
loading of libraries or classes, potentially hiding embedded malware, demands for
the use of dynamic analysis for a more reliable classification. We aim, instead to
improve the security of a previously proposed Android malware detection called
Drebin against stealthier attacks, i.e., carefully-crafted malware samples that evade
detection without exhibiting significant evidence of manipulation.

To perform a well-crafted security analysis of Drebin and, more generally, of
Android malware detection tools against such attacks, we exploit the adversarial
framework that we propose in Chapter 4. We test the system under different attack
scenarios in which the attacker exhibits an increasing capability of manipulating the
input data, and level of knowledge about the targeted system. To simulate evasion
attacks in which the attacker does not exploit any knowledge of the targeted system,
we consider some obfuscation techniques that are not specifically targeted against
Drebin, by running an analysis similar to that reported in [71]. To this end, we

69

Chapter 8

Classifier Feature
Extraction

x1
x2
...
xd

Android app (apk)!

Class labels (malware, benign)!

malware!

benign!

Decision
(Explanation)

Training
x1

x2
φ(z)

z x
f (x)

Figure 8.1: A schematic representation of the architecture of Drebin. First, ap-
plications are represented as vectors in a d-dimensional feature space. A linear
classifier is then trained on an available set of labeled application, to discriminate
between malware and benign applications. During classification, unseen applica-
tions are evaluated by the classifier. If its output f(x) ≥ 0, they are classified as
malware, and as benign otherwise. Drebin also provides an interpretation of its
decision, by highlighting the most suspicious (or benign) features that contributed
to the decision [4].

make use of the commercial obfuscation tool DexGuard,1 which has been originally
designed to make reverse-engineering of benign applications more difficult. Note
that, even if considering obfuscation attacks is out of our score, DexGuard only
partially obfuscates the content of Android applications. For this reason, the goal of
this analysis is simply to empirically assess whether the static analysis performed by
Drebin remains effective when Android applications are not thoroughly obfuscated,
or when obfuscation is not targeted.

We propose to reduce the vulnerability of Drebin to evasion attack using the Sec-
SVM algorithm that we propose in Section 5.4. With respect to previous techniques
for secure learning [28, 46, 59, 15], Sec-SVM is able to retain computational efficiency
and scalability on large datasets (as it exploits a linear classification function), while
also being well-motivated from a theoretical perspective.

We show that our method outperforms state-of-the-art classification algorithms,
including secure ones, without losing significant accuracy in the absence of well-
crafted attacks, and can even guarantee some degree of robustness against DexGuard-
based obfuscations.

8.1 Android Background

Android is the most used mobile operating system. Android applications are in the
apk format, i.e., a zipped archive containing two files: the Android manifest and
classes.dex. Additional xml and resource files are respectively used to define the
application layout, and to provide additional functionalities or multimedia content.
As Drebin analyzes the Android manifest and classes.dex files, below we provide a

1https://www.guardsquare.com/dexguard

70

https://www.guardsquare.com/dexguard

Securing Android Malware Detectors against Evasion Attacks

brief description of their characteristics.

Android Manifest. The manifest file holds information about the application
structure. Such structure is organized in application components, i.e., parts of code
that perform specific actions; e.g., one component might be associated to a screen
visualized by the user (activity) or to the execution of audio in the background
(services). The actions of each component are further specified through filtered
intents ; e.g., when a component sends data to other applications, or is invoked by
a browser. Special types of components are entry points, i.e., activities, services
and receivers that are loaded when requested by a specific filtered intent (e.g., an
activity is loaded when an application is launched, and a service is activated when
the device is turned on). The manifest also contains the list of hardware components
and permissions requested by the application to work (e.g., Internet access).

Dalvik Bytecode (dexcode). The classes.dex file contains the compiled source
code of an application. It contains all the user-implemented methods and classes.
Classes.dex might contain specific API calls that can access sensitive resources such
as personal contacts (suspicious calls). Moreover, it contains all system-related, re-
stricted API calls whose functionality require permissions (e.g., using the Internet).
Finally, this file can contain references to network addresses that might be contacted
by the application.

8.2 Drebin

Drebin conducts multiple steps and can be executed directly on the mobile device,
as it performs a lightweight static analysis of Android applications. The extracted
features are used to embed applications into a high-dimensional vector space and
train a classifier on a set of labeled data. An overview of the system architecture is
given in Fig. 8.1. In the following, we describe the single steps in more detail.

Feature Extraction. Initially, Drebin performs a static analysis of a set of available
Android applications,2 to construct a suitable feature space. All features extracted
by Drebin are presented as strings and organized in 8 different feature sets, as
listed in Table 8.1. Android applications are then mapped onto the feature space as
follows. Let us assume that an Android application (i.e., an apk file) is represented
as an object z ∈ Z, being Z the abstract space of all apk files. We then denote
with Φ : Z 7→ X a function that maps an apk file z to a d-dimensional feature
vector x = (x1, . . . , xd)> ∈ X = {0, 1}d, where each feature is set to 1 (0) if the
corresponding string is present (absent) in the apk file z. An application encoded

2We use here a modified version of Drebin that performs a static analysis based on the
Androguard tool, available at:
https://github.com/androguard/androguard.

71

https://github.com/androguard/androguard

Chapter 8

Table 8.1: Overview of feature sets.

Feature sets

manifest

S1 Hardware components
S2 Requested permissions
S3 Application components
S4 Filtered intents

dexcode

S5 Restricted API calls
S6 Used permission
S7 Suspicious API calls
S8 Network addresses

in feature space may thus look like the following:

x = Φ(z) 7→

· · ·
0
1
· · ·
1
0
· · ·

· · · }
S2

permission::SEND_SMS
permission::READ_SMS
· · · }

S5
api_call::getDeviceId
api_call::getSubscriberId
· · ·

Limitations and Open Issues.
Although Drebin has shown to be capable of detecting malware with high ac-

curacy, it exhibits intrinsic vulnerabilities that might be exploited by an attacker
to evade detection. Since Drebin is designed to run directly on the mobile de-
vice, its most obvious limitation is the lack of a dynamic analysis. Unfortunately,
static analysis has clear limitations, as it is not possible to analyze malicious code
that is downloaded or decrypted at runtime, or code that is thoroughly obfus-
cated [79, 30, 111, 90, 50, 51, 91]. For this reason, considering such attacks would
be irrelevant as it is not doable to create secure systems based on static analy-
sis against them. Our focus is rather to understand and to improve the security
properties of learning algorithms against specifically-targeted attacks, in which the
amount of manipulations performed by the attacker is limited. The rationale is that
the manipulated malware samples should not only evade detection, but should also
be difficult to detect traces of their adversarial manipulation. Although these limita-
tions have been also discussed in [4], the effect of carefully-targeted attacks against
Drebin has never been studied before. For this reason, in the following, we firstly
discuss the evasion attack scenarios that we consider in our evaluation. Then, we
present a systematic evaluation of these attacks on Drebin and on a novel learning
algorithm (Sec-SVM) that we propose to alleviate their effects.

72

Securing Android Malware Detectors against Evasion Attacks

8.3 Drebin Evasion

In this section the evasion attacks that we considered in our experiment are illus-
trated.

Firstly, as Malware detection is a binary problem we can simplify the evasion ob-
jective function given in Chapter 5 as:

z? = arg min
z′∈Ψ(z)

f̂(Φ(z′)) = arg min
z′∈Ψ(z)

ŵ>x′ , (8.1)

where x′ = Φ(z′) is the feature vector associated to the modified attack sample
z′, and ŵ is the weight vector estimated by the attacker (e.g., from the surrogate
classifier f̂). The above equation essentially tells the attacker which features should
be modified to maximally decrease the value of the classification function, i.e., to
maximize the probability of evading detection [17, 12].

In the following, we explain the application specific data manipulation constraints
and the evasion scenario that we considered in our experiments. We then describe
the evasion attack algorithm that we use in the proposed experiments. Finally, we
give more detail about the obfuscation mechanism that we use in one of the tested
evasion scenario.

8.3.1 Malware Data Manipulation

As we explained before, an attacker may have constraints on data manipulation.
Those constraints are application dependent. We consider two different data ma-
nipulation constraints in our experiment, that are illustrated below.

Feature Addition. Within this setting, the attacker can independently inject (i.e.,
set to 1) every feature.

Feature Addition and Removal. This scenario simulates a more powerful at-
tacker that can inject every feature, and also remove (i.e., set to 0) features from
the dexcode.

These settings are motivated by the fact that malware has to be manipulated
to evade detection, but its semantics and intrusive functionality must be preserved.
In this respect, feature addition is generally a safe operation, in particular, when
injecting manifest features (e.g., adding permissions does not influence any exist-
ing application functionality). With respect to the dexcode, one may also safely
introduce information that is not actively executed, by adding code after return
instructions (dead code) or with methods that are never called by any invoke type
instructions. Listing 8.1 shows an example where a URL feature is introduced by
adding a method that is never invoked in the code.

73

Chapter 8

.method public addUrlFeature()V

.locals 2
const-string v1, "http://www.example.com"
invoke-direct {v0, v1},
Ljava/net/URL;-><init>(Ljava/lang/String;)V
return-void
.end method

Listing 8.1: Smali code to add a URL feature.

However, this only applies when such information is not directly executed by
the application and could be stopped at the parsing level by analyzing only the
methods belonging to the application call graph. In this case, the attacker would
be enforced to change the executed code, and this requires considering additional
and stricter constraints. For example, if she wants to add a suspicious API call to
a dexcode method that is executed by the application, she should adopt virtual
machine registers that have not been used before by the application. Moreover,
the attacker should pay attention to possible artifacts or undesired functionalities
that are brought by the injected calls, which may influence the semantics of the
original program. Accordingly, injecting a large number of features may not always
be feasible.

Feature removal is even a more complicated operation. Removing permissions
from the manifest is not possible, as this would limit the application functionality.
The same holds for intent filters. Some application component names can be changed
but, as we explain more in detail in Sect. 8.3.4, this operation is not easy to be
automatically performed: the attacker must ensure that the application component
names in the dexcode are changed accordingly, and must not modify any of the
entry points. Furthermore, the feasible changes may only slightly affect the whole
manifest structure (as shown in our experiments with automated obfuscation tools).
With respect to the dexcode, multiple ways can be exploited to remove its features;
e.g., it is possible to hide IP addresses (if they are stored as strings) by encrypting
them with the introduction of additional functions, and decrypting them at runtime.
Of course, this should be done by avoiding the addition of features that are already
used by the system (e.g., function calls that are present in the training data).

With respect to suspicious and restricted API calls, the attacker should encrypt
the method or the class invoking them. However, this could introduce other calls
that might increase the suspiciousness of the application. Moreover, one mistake at
removing such API references might completely destroy the application functionality.
The reason is that Android uses a verification system to check the integrity of an
application during execution (e.g., it will close the application, if a register passed
as a parameter to an API call contains a wrong type), and chances of compromising
this behavior increases if features are deleted carelessly.

For the aforementioned reasons, performing a fine-grained evasion attack that

74

Securing Android Malware Detectors against Evasion Attacks

changes a lot of features may be very difficult in practice, without compromising the
malicious application functionality. In addition, another problem for the attacker is
getting to know precisely which features should be added or removed, which makes
the construction of evasion attack samples even more complicated.

8.3.2 Evasion Scenarios

In the following, we consider different evasion scenarios, according to the framework
discussed in Chapter 4 where the attacker owns an increasing knowledge of the
system. In particular, we consider in our experiment five distinct attack scenarios.
Here we depict three scenarios, sorted for increasing attacker knowledge, that does
not require to the attacker knowledge of the system. Note that, when the attacker
knows more details of the targeted system, her estimate of the classification function
becomes more reliable, thus facilitating the evasion task (in the sense of requiring
fewer manipulations to the malware samples).
Zero-effort Attacks. This is the standard scenario in which malware data is nei-
ther obfuscated nor modified at all. From the viewpoint of the attacker’s knowledge,
this scenario is characterized does not require any knowledge.
DexGuard-based Obfuscation Attacks. As another attack scenario in which
the attacker does not exploit any knowledge of the attacked system, we consider a
setting similar to that reported in [71]. In particular, we assume that the attacker
attempts to evade detection by performing invasive code transformations on the
classes.dex file, using the commercial Android obfuscation tool DexGuard. Note
that this tool is designed to ensure protection against disassembling/decompiling
attempts in benign applications, and not to obfuscate the presence of malicious
code; thus, despite the introduction of many changes in the executable code, it is
not clear whether and to what extent the obfuscations implemented by this tool may
be effective against a learning-based malware detector like Drebin, i.e., how they will
affect the corresponding feature values and classification output. The obfuscations
implemented by DexGuard are described more in detail later on in this section.
Mimicry Attacks. Under this scenario, the attacker is assumed to be able to
collect a surrogate dataset including malware and benign samples and to know the
feature space. Accordingly, θ = (D̂,X). In this case, the attack strategy amounts
to manipulating malware samples to make them as close as possible to the benign
data (in terms of conditional probability distributions or, alternatively, distance in
feature space). To this end, in the case of Drebin (which uses binary feature values),
we can assume that the attacker still aims to minimize Eq. (8.1), but estimates each
component of ŵ independently for each feature as ŵk = p(x̂k = 1|y = +1)− p(x̂k =
1|y = −1), k = 1, . . . , d. This will indeed induce the attacker to add (remove)
first features which are more frequently present (absent) in benign files, making the
probability distribution of malware samples closer to that of the benign data. It
is worth finally remarking that this is a more sophisticated mimicry attack than

75

Chapter 8

those commonly used in practice, in which an attacker is usually assumed to merge
a malware application with a benign one [107, 116].

8.3.3 Evasion attack algorithm

We depict here the algorithm used to implement our evasion attacks. For linear
classifiers with binary features, the solution to Problem (8.1) can be found as follows.
First, the estimated weights ŵ have to be sorted in descending order of their absolute
values, along with the feature values x of the initial malicious sample. This means
that, if the sorted weights and features are denoted respectively with ŵ(1), . . . , ŵ(d)

and x(1), . . . , x(d), then |ŵ(1)| ≥ . . . ≥ |ŵ(d)|. Then, for k = 1, . . . , d:

• if x(k) = 1 and ŵ(k) > 0 (and the feature is not in the manifest sets S1-S4),
then x(k) is set to zero;

• if x(k) = 0 and ŵ(k) < 0, then x(k) is set to one;

• else x(k) is left unmodified.

If the maximum number of modified features has been reached, the for loop is clearly
stopped in advance.

8.3.4 DexGuard-based Obfuscation Attacks

Although commercial obfuscators are designed to protect benign applications against
reverse-engineering attempts, it has been recently shown that they can also be used
to evade anti-malware detection systems [71]. We thus use DexGuard, a popular
obfuscator for Android, to simulate attacks in which no specific knowledge of the
targeted system is exploited, as discussed in Sect. 8.3.2. Recall that, although
considering obfuscation attacks is out of the scope of this work, the obfuscation
techniques implemented by DexGuard do not completely obfuscate the code. For
this reason, we aim to understand whether this may make static analysis totally
ineffective, and how it affects our strategy to improve classifier security. A brief
description of the DexGuard-based obfuscation attacks is given below.
Trivial obfuscation. This strategy changes the names of implemented application
packages, classes, methods, and fields, by replacing them with random characters.
Trivial obfuscation also performs negligible modifications to some manifest features
by renaming some application components that are not entry points (see Sect. 8.1).
As the application functionality must be preserved, Trivial obfuscation does not
rename any system API or method imported from native libraries. Given that
Drebin mainly extracts information from system APIs, we expect that its detection
capability will be only barely affected by this obfuscation.
String Encryption. This strategy encrypts strings defined in the dexcode with
the instruction const-string. Such strings can be visualized during the application

76

Securing Android Malware Detectors against Evasion Attacks

execution, or may be used as variables. Thus, even if they are retrieved through
an identifier, their value must be preserved during the program execution. For this
reason, an additional method is added to decrypt them at runtime, when required.
This obfuscation tends to remove URL features (S8) that are stored as strings in
the dexcode. Features corresponding to the decryption routines extracted by Drebin
(S7) are instead not affected, as the decryption routines added by DexGuard do not
belong to the system APIs.
Reflection. This obfuscation technique uses the Java Reflection API to replace
invoke-type instructions with calls that belong to the Java.lang.Reflect class.
The main effect of this action is destroying the application call graph. However, this
technique does not affect the system API names, as they do not get encrypted during
the process. It is thus reasonable to expect that most of the features extracted by
Drebin will remain unaffected.
Class Encryption. This is the most invasive obfuscation strategy, as it encrypts
all the application classes, except entry-point ones (as they are required to load
the application externally). The encrypted classes are decrypted at runtime by
routines that are added during the obfuscation phase. Worth noting, the class
encryption performed by DexGuard does not completely encrypt the application. For
example, classes belonging to the API components contained in the manifest are
not encrypted, as this would most likely compromise the application functionality.
For the same reason, the manifest itself is preserved. Accordingly, it still possible
to extract static features using Drebin, and analyze the application. Although out
of the scope of our study, it is still worth remarking here that using packers (e.g.,
[111]) to perform full dynamic loading of the application classes might completely
evade static analysis.
Combined Obfuscations. The aforementioned strategies can also be combined
to produce additional obfuscation techniques. As in [71], we will consider three
additional techniques in our experiments, by respectively combining (i) trivial and
string encryption, (ii) adding reflection to them, and (iii) adding class encryption
to the former three.
Parameter Selection.

To tune the parameters of our classifiers, as suggested in [17, 113], one should
not only optimize accuracy on a set of collected data, using traditional performance
evaluation techniques like cross validation or bootstrapping. More properly, one
should optimize a trade-off between accuracy and security, by accounting for the
presence of potential, unseen attacks during the validation procedure. Here we
optimize this trade-off, denoted with r(fµ,D), as:

µ? = arg maxµ r(fµ,D) = A(fµ,D) + λS(fµ,D) , (8.2)

where we denote with fµ the classifier learned with parameters µ (e.g., for our Sec-
SVM, µ = {C,wlb,wub}), with A a measure of classification accuracy in the absence

77

Chapter 8

of attack (estimated on D), with S an estimate of the classifier security under attack
(estimated by simulating attacks on D), and with λ a given trade-off parameter.

Classifier security can be evaluated by considering distinct attack settings, or a
different amount of modifications to the attack samples. In our experiments, we will
optimize security in a worst-case scenario, i.e., by simulating a PK evasion attack
with both feature addition and removal. We will then average the performance under
attack over an increasing number of modified features m ∈ [1,M]. More specifically,
we will measure security as:

S = 1
M

∑M
m=1A(fµ,D

′
k) , (8.3)

where D′k is obtained by modifying a maximum of m features in each malicious
sample in the validation set,3 as suggested by the PK evasion attack strategy.

8.4 Experimental Analysis
In this section, we report an experimental evaluation of our proposed secure learning
algorithm (Sec-SVM) by testing it under different evasion scenarios (see Sect. 8.3).

8.4.1 Experimental Setup

We here describe the experimental setup that we have used to produce the reported
experiments.
Classifiers. We compare our Sec-SVM approach with the standard Drebin imple-
mentation (denoted with SVM), and with a previously-proposed technique that
improves the security of linear classifiers by using a Multiple Classifier System
(MCS) architecture to obtain a linear classifier with more evenly-distributed fea-
ture weights [59, 15]. To this end, multiple linear classifiers are learned by sampling
uniformly from the training set (a technique known as bagging [27]) and by randomly
subsampling the feature set, as suggested by the random subspace method [49]. The
classifiers are then combined by averaging their outputs, which is equivalent to using
a linear classifier whose weights and bias are the average of the weights and biases
of the base classifiers, respectively. With this simple trick, the computational com-
plexity at test time remains thus equal to that of a single linear classifier [15]. As
we use linear SVMs as the base classifiers, we denote this approach with MCS-SVM.
We finally consider a version of our Sec-SVM trained using only manifest features
that we call Sec-SVM (M). The reason is to verify whether considering only features,
which can not be removed, limits closely mimicking benign data and thereby yields
a more secure system.

3Note that, as in standard performance evaluation techniques, data is split into distinct training-
validation pairs, and then performance is averaged on the distinct validation sets. As we are
considering evasion attacks, training data is not affected during the attack simulation, and only
malicious samples in the validation set are thus modified.

78

Securing Android Malware Detectors against Evasion Attacks

Datasets. In our experiments, we use two distinct datasets. The first (referred to as
Drebin) includes the data used in [4], and consists of 121, 329 benign applications and
5, 615 malicious samples, labeled using the VirusTotal service. A sample is labeled
as malicious if it is detected by at least five anti-virus scanners, whereas it is labeled
as benign if no scanner flagged it as malware. The second (referred to as Contagio)
includes the data used in [71], and consists of about 1, 500 malware samples, obtained
from the MalGenome4 and the Contagio Mobile Minidump5 datasets. Such samples
have been obfuscated with the seven obfuscation techniques described in Sect. 8.3.4,
yielding a total of about 10, 500 samples.
Training-test splits. We average our results on 10 independent runs. In each
repetition, we randomly select 60,000 applications from the Drebin dataset, and split
them into two equal sets of 30,000 samples each, respectively used as the training
set and the surrogate set (as required by the LK and mimicry attacks discussed in
Sect. 8.3). As for the test set, we use all the remaining samples from Drebin. In
some attack settings (detailed below), we replace the malware data from Drebin in
each test set with the malware samples from Contagio. This enables us to evaluate
the extent to which a classifier (trained on some data) preserves its performance in
detecting malware from different sources.6

Feature selection. When running Drebin on the given datasets, more than one
million features are found. For computational efficiency, we retain the most discrim-
inant d′ features, for which |p(xk = 1|y = +1) − p(xk = 1|y = −1)|, k = 1, . . . , d,
exhibits the highest values (estimated on training data). In our case, using only
d′ = 10, 000 features does not significantly affect the accuracy of Drebin. This is
consistent with the recent findings in [92], as it is shown that only a very small frac-
tion of features is significantly discriminant and usually assigned a non-zero weight
by Drebin (i.e., by the SVM learning algorithm). For the same reason, the sets of
selected features turned out to be the same in each run. Their sizes are reported in
Table 8.2.
Parameter setting. We run some preliminary experiments on a subset of the
training set and noted that changing C did not have a significant impact on classi-
fication accuracy for all the SVM-based classifiers (except for higher values, which
cause overfitting). Thus, also for the sake of a fair comparison among different SVM-
based learners, we set C = 1 for all classifiers and repetitions. For the MCS-SVM
classifier, we train 50 base linear SVMs on random subsets of 80% of the training
samples and 50% of the features, as this ensures a sufficient diversification of the
base classifiers, providing more evenly-distributed feature weights. The bounds of
the Sec-SVM are selected through a 5-fold cross-validation, following the procedure
explained in Sect. 8.3.4. In particular, we set each element of wub (wlb) as wub (wlb),

4http://www.malgenomeproject.org/
5http://contagiominidump.blogspot.com/
6Note however that a number of malware samples in Contagio are also included in the Drebin

dataset.

79

http://www.malgenomeproject.org/
http://contagiominidump.blogspot.com/

Chapter 8

Table 8.2: Number of features in each set for SVM, Sec-SVM, and MCS-SVM.
Feature set sizes for the Sec-SVM (M) using only manifest features are reported in
brackets. For all classifiers, the total number of selected features is d′ = 10, 000.

Feature set sizes

ma
ni

fe
st S1 13 (21)

de
xc

od
e S5 147 (0)

S2 152 (243) S6 37 (0)
S3 2,542 (8,904) S7 3,029 (0)
S4 303 (832) S8 3,777 (0)

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

TR: Drebin, TS: Drebin

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

TR: Drebin, TS: Contagio

Figure 8.2: Mean ROC curves on
Drebin (left) and Contagio (right) data,
for classifiers trained on Drebin data.

10 50 100 500 1000 2500 10000
0.0

0.5

1.0

1.5

2.0

2.5
Absolute weight values (in descending order)

Figure 8.3: Absolute weight values in
descending order (i.e., |w(1)| ≥ . . . ≥
|w(d)|), for each classifier (averaged on
10 runs). Flatter curves correspond
to more evenly-distributed weights, i.e.,
more secure classifiers.

and optimize the two scalar values (wub, wlb) ∈ {0.1, 0.5, 1} × {−1,−0.5,−0.1}. As
for the performance measure A(fµ,D) (Eq. 8.2), we consider the Detection Rate
(DR) at 1% False Positive Rate (FPR), while the security measure S(fµ,D) is sim-
ply given by Eq. (8.3). We set λ = 10−2 in Eq. (8.2) to avoid worsening the detection
of both benign and malware samples in the absence of attack to an unnecessary ex-
tent. Finally, as explained in Sect. 5.4, the parameters of Algorithm 2 are set by
running it on a subset of the training data, to ensure quick convergence, as η(0) = 0.5,
γ ∈ {10, 20, . . . , 70} and s(t) = 2−0.01t/

√
n.

8.4.2 Experimental Results

We present our results by reporting the performance of the given classifiers against
(i) zero-effort attacks, (ii) obfuscation attacks, and (iii) advanced evasion attacks,
including PK, LK and mimicry attacks, with both feature addition, and feature
addition and removal (see Sects. 8.3).
Zero-effort attacks. Results for the given classifiers in the absence of attack are
reported in the ROC curves of Fig. 8.2. They report the Detection Rate (DR, i.e., the
fraction of correctly-classified malware samples) as a function of the False Positive

80

Securing Android Malware Detectors against Evasion Attacks

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

Trivial (T)

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

String Encryption (SE)

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

Reflection (R)

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

Class Encryption (CE)

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

T + SE

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

T + SE + R

0.5 1 2 5 10
False Positive Rate (%)

86

88

90

92

94

96

98

D
e
te

ct
io

n
 R

a
te

 (
%

)

T + SE + R + CE

Figure 8.4: Mean ROC curves for all classifiers against different obfuscation tech-
niques, computed on the Contagio data.

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Contagio (malware)

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Reflection (R)

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Class Encryption (CE)

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
T + SE + R + CE

Figure 8.5: Fraction of features equal to one in each set (averaged on 10 runs), for
non-obfuscated (leftmost plot) and obfuscated malware in Contagio, with different
obfuscation techniques. While obfuscation deletes dexcode features (S5-S8), the
manifest (S1-S4) remains mostly intact.

Rate (FPR, i.e., the fraction of misclassified benign samples) for each classifier. We
consider two different cases: (i) using both training and test samples from Drebin
(left plot); and (ii) training on Drebin and testing on Contagio (right plot), as
previously discussed. Notably, MCS-SVM achieves the highest DR (higher than 96%
at 1% FPR) in both settings, followed by SVM and Sec-SVM, which only slightly
worsen the DR. Sec-SVM (M) performs instead significantly worse. In Fig. 8.3, we
also report the absolute weight values (sorted in descending order) of each classifier,
to show that Sec-SVM classifiers yield more evenly-distributed weights, also with
respect to MCS-SVM.

DexGuard-based obfuscation attacks. The ROC curves reported in Fig. 8.4
show the performance of the given classifiers, trained on Drebin, against the DexGuard-
based obfuscation attacks (see Sect. 8.3.2 and Sect. 8.3.4) on the Contagio malware.
Here, Sec-SVM performs similarly to MCS-SVM, while SVM and Sec-SVM (M) typ-
ically exhibit lower detection rates. Nevertheless, as these obfuscation attacks do not
completely obfuscate the malware code, and the feature changes induced by them

81

Chapter 8

1 5 15 50 100 200
Number of modified features

0

20

40

60

80

PK

1 5 15 50 100 200
Number of modified features

0

20

40

60

80

LK

1 5 15 50 100 200
Number of modified features

0

20

40

60

80

Mimicry

Figure 8.6: Detection Rate (DR) at 1% False Positive Rate (FPR) for each classi-
fier under the Perfect-Knowledge (left), Limited-Knowledge (middle), and Mimicry
(right) attack scenarios, against an increasing number of modified features. Solid
(dashed) lines are obtained by simulating attacks with feature addition (feature
addition and removal).

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Drebin (benign)

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Drebin (malware)

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
PK

S1 S2 S3 S4 S5 S6 S7 S8
Feature Sets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Mimicry

Figure 8.7: Fraction of features equal to one in each set (averaged on 10 runs) for
benign (first plot), non-obfuscated (second plot) and DexGuard-based obfuscated
malware in Drebin, using PK (third plot) and mimicry (fourth plot) attacks. It is
clear that the mimicry attack produces malware samples which are more similar to
the benign data than those obtained with the PK attack.

are not specifically targeted against any of the given classifiers, the classification per-
formances are not significantly affected. In fact, the DR at 1% FPR is never lower
than 90%. As expected (see Sect. 8.3.4), strategies such as Trivial, String Encryp-
tion and Reflection do not affect the system performances significantly, as Drebin
only considers system-based API calls, which are not changed by the aforementioned
obfuscations. Among these attacks, Class Encryption is the most effective strategy,
as it is the only one that more significantly modifies the S5 and S7 feature sets (in
particular, the first one), as it can be seen in Fig. 8.5. Nevertheless, even in this
case, as manifest-related features are not affected by DexGuard-based obfuscations,
Drebin still exhibits good detection performances.

Advanced evasion. We finally report results of the PK, LK, and mimicry attacks
in Fig. 8.6, considering both feature addition, and feature addition and removal.
As we are not removing manifest-related features, Sec-SVM (M) is clearly tested
only against feature-addition attacks. Worth noting, Sec-SVM can drastically im-
prove security compared to the other classifiers, as its performance decreases more
gracefully against an increasing number of modified features, especially in the PK
and LK attack scenarios. In the PK case, while the DR of Drebin (SVM) drops
to 60% after modifying only two features, the DR of the Sec-SVM decreases to the
same amount only when fifteen feature values are changed. This means that our

82

Securing Android Malware Detectors against Evasion Attacks

Table 8.3: Top 5 modified features by the PK evasion attack with feature addition
(A) and removal (R), for SVM, MCS-SVM, and Sec-SVM (highlighted in bold).
In the first column, the feature family is reported. The probability of a feature
being equal to one in malware data is denoted with p. For each classifier and each
feature, we then report two values (averaged on 10 runs): (i) the probability q′ that
the feature is modified by the attack (left), and (ii) its relevance (right), measured
as its absolute weight divided by ‖w‖1. If the feature is not modified within the
first 200 changes, we report that the corresponding values are only lower than the
minimum ones observed. In the last column, we also report whether the feature has
been added (↑) or removed (↓) by the attack.
Set Feature Name p SVM MCS-SVM Sec-SVM A/R

S6 susp_calls::android/telephony/gsm/SmsMessage;→getDisplayMessageBody 2.40% 89.60% 0.25% 3.99% 0.05% <0.03% <0.02% ↑
S1 req_perm::android.permission.USE_CREDENTIALS 0.05% 65.77% 0.18% 67.57% 0.13% <0.03% <0.02% ↑
S1 req_perm::android.permission.WRITE_OWNER_DATA 0.52% 64.76% 0.16% 49.23% 0.11% <0.03% <0.02% ↑
S0 features::android.hardware.touchscreen 0.60% 64.01% 0.14% 41.75% 0.09% <0.03% <0.02% ↑
S6 susp_calls::android/telephony/gsm/SmsMessage;→getMessageBody 3.50% 60.13% 0.13% 17.30% 0.05% <0.03% <0.02% ↑
S3 intent_filters::android.intent.action.SENDTO 0.73% 55.70% 0.13% 60.38% 0.11% <0.03% <0.02% ↑
S6 susp_calls::android/telephony/CellLocation;→requestLocationUpdate 0.05% 50.87% 0.12% 48.37% 0.08% <0.03% <0.02% ↑
S6 susp_calls::android/net/ConnectivityManager;→getBackgroundDataSetting 0.51% 28.86% 0.07% 43.59% 0.09% <0.03% <0.02% ↑
S6 susp_calls::android/telephony/TelephonyManager;→getNetworkOperator 46.41% 36.08% 0.17% 43.12% 0.19% 39.88% 0.04% ↓
S6 susp_calls::android/net/NetworkInfo;→getExtraInfo 24.81% 19.25% 0.17% 13.42% 0.10% 10.25% 0.03% ↓
S6 susp_calls::getSystemService 93.44% <3.53% <0.02% <0.12% <0.05% 11.02% 0.02% ↓
S7 urls::www.searchmobileonline.com 9.42% 4.59% 0.11% 6.91% 0.13% 4.83% 0.03% ↓
S6 services::com.apperhand.device.android.AndroidSDKProvider 10.83% 6.78% 0.13% 4.19% 0.09% 5.14% 0.03% ↓

Sec-SVM approach can improve classifier security of about ten times, in terms of the
number of modifications required to create a malware sample that evades detection.
The underlying reason is that Sec-SVM provides more evenly-distributed feature
weights, as shown in Fig. 8.3. Note that Sec-SVM and Sec-SVM (M) exhibit a max-
imum absolute weight value of 0.5 (on average). This means that, in the worst case,
modifying a single feature yields an average decrease of the classification function
equal to 0.5, while for MCS-SVM and SVM this decrease is approximately 1 and
2.5, respectively. It is thus clear that, to achieve a comparable decrease of the classi-
fication function (i.e., a comparable probability of evading detection), more features
should be modified in the former cases. Finally, it is also worth noting that mimicry
attacks are less effective, as expected, as they exploit an inferior level of knowledge
of the targeted system. Despite this, an interesting insight on the behavior of such
attacks is reported in Fig. 8.7. After modifying a large number of features, the
mimicry attack tends to produce a distribution that is very close to that of the be-
nign data (even without removing any manifest-related feature). This means that,
in terms of their feature vectors, benign and malware samples become very similar.
Under these circumstances, no machine-learning technique can separate benign and
malware data with satisfying accuracy. The vulnerability of the system may be
thus regarded as intrinsic in the choice of the feature representation, rather than in
how the classification function is learned. This clearly confirms the importance of
designing features that are more difficult to manipulate for an attacker.

Feature manipulation. To provide some additional insights, in Table 8.3 we report
the top 5 modified features by the PK attack with feature addition and removal for

83

Chapter 8

SVM, MCS-SVM, and Sec-SVM. For each classifier, we select the top 5 features by
ranking them in descending order of the probability of modification q′. This value
is computed as follows. First, the probability q of modifying the kth feature in a
malware sample, regardless of the maximum number of admissible modifications, is
computed as:

q = Ex∼p(x|y=+1){xk 6= x′k} = pν(1− p)1−ν , (8.4)

where E denotes the expectation operator, p(x|y = +1) the distribution of malware
samples, xk and x′k are the kth feature values before and after manipulation, and p is
the probability of observing xk = 1 in malware. Note that ν = 1 if xk = 1, xk does
not belong to the manifest sets S1-S4, and the associated weight ŵk > 0, while
ν = 0 if ŵk < 0 (otherwise the probability of modification q is zero). This formula
denotes compactly that, if a feature can be modified, then it will be changed with
probability p (in the case of deletion) or 1 − p (in the case of insertion). Then, to
consider that features associated to the highest absolute weight values are modified
more frequently by the attack, with respect to an increasing maximum number m
of modifiable features, we compute q′ = Em{q}. Considering m = 1, . . . , d, with
uniform probability, each feature will be modified with probability q′ = q (d− r)/d,
with r = 0 for the feature x(1) assigned to the highest absolute weight value, r = 1
for the second ranked feature x(2), etc. In general, for the kth-ranked feature x(k),
r = k − 1, for k = 1, . . . , d. Thus, q′ decreases depending on the feature ranking,
which in turn depends on the feature weights and the probability p of the feature
being present in malware. Regarding Table 8.3, note first how the probability of
modifying the top features, along with their relevance (i.e., their absolute weight
value with respect to ‖w‖1), decreases from SVM to MCS-SVM, and from MCS-
SVM to Sec-SVM. These two observations are clearly connected. The fact that the
attack modifies features with a lower probability depends on the fact that weights
are more evenly distributed. To better understand this phenomenon, imagine the
limit case in which all features are assigned the same absolute weight value. It is
clear that, in this case, the attacker could randomly modify any subset of features
and obtain the same effect on the classification output; thus, on average, each feature
will have the same probability of being modified.

The probability of modifying a feature, however, does not only depend on the
weight assigned by the classifier, but also on the probability of being present in
malware data, as mentioned before. For instance, if a (non-manifest) feature is
present in all malware samples, and it has been assigned a very high positive weight,
it will be always removed; conversely, if it only rarely occurs in malware, then it
will be deleted only from few samples. This behavior is clearly exhibited by the
top features modified by Sec-SVM. In fact, since this classifier basically assigns the
same absolute weight value to almost all features, the top modified ones are simply
those appearing more frequently in malware. More precisely, in our experiments
this classifier, as a result of our parameter optimization procedure, assigns a higher
(absolute) weight to features present in malware, and a lower (absolute) weight to

84

Securing Android Malware Detectors against Evasion Attacks

features present in benign data (i.e., |wub
k | > |wlb

k |, k = 1, . . . , d). This is why,
conversely to SVM and MCS-SVM, the attack against Sec-SVM tends to remove
features, rather than injecting them. To conclude, it is nevertheless worth pointing
out that, in general, the most frequently-modified features clearly depend on the data
distribution (i.e., on class imbalance, feature correlations, etc.), and not only on the
probability of being more frequent in malware. In our analysis, this dependency is
intrinsically captured by the dependency of q′ on the feature weights learned by the
classifier.

8.5 Discussion
We have here considered a specific case study involving Drebin, an Android malware
detection tool, and shown that its performances can be significantly downgraded
in presence of skilled attackers that can carefully manipulate malware samples to
evade classifier detection. We have proposed our Sec-SVM to improve the security of
Drebin under evasion attack. Despite the very promising results achieved by our Sec-
SVM, it is clear that such an approach exhibits some intrinsic limitations. First, as
Drebin performs a static code analysis, it is clear that also Sec-SVM can be defeated
by more sophisticated encryption and obfuscation attacks. However, it is also worth
remarking that this is not a vulnerability of the learning algorithm itself, but rather
of the chosen feature representation, and for this reason, we have not considered
these attacks in this study. A similar behavior is observed when a large number of
features is modified by our evasion attacks, and especially in the case of mimicry
attacks (see Sect. 8.4), in which the manipulated malware samples almost exactly
replicate benign data (in terms of their feature vectors). This is again possible due
to an intrinsic vulnerability of the feature representation, and no learning algorithm
can clearly separate such data with satisfying accuracy. Nevertheless, this problem
only occurs when malware samples are significantly modified and, as we pointed
out in Sect. 8.3.1, it might be very difficult for the attacker to do that without
compromising their intrusive functionality, or without leaving significant traces of
adversarial manipulation. For example, the introduction of changes such as reflective
calls requires a careful manipulation of the Dalvik registers (e.g., verifying that old
ones are correctly re-used and those new ones can be safely employed). A single
mistake in the process can lead to verification errors and the application might not
be usable anymore (we refer the reader to [50, 51] for further details). Another
limitation of our approach may be its unsatisfying performance under PK and LK
attacks, but this can be clearly mitigated with simple countermeasures to prevent
that the attacker gains sufficient knowledge of the attacked system, such as frequent
system re-training and diversification of training data collection [16]. To summarize,
although our approach is clearly not bulletproof, we believe that it significantly
improves the security of the baseline Drebin system (and of the standard SVM
algorithm).

85

Chapter 9

Securing CNN-based Robot-vision
Systems

After decades of research spent in exploring different approaches, ranging from search
algorithms, expert and rule-based systems to more modern machine-learning algo-
rithms, several problems involving the use of an artificial intelligence have been
finally tackled through the introduction of a novel paradigm shift based on data-
driven artificial intelligence technologies. In fact, due to the increasing popularity
and use of the modern Internet, along with the powerful computing resources avail-
able nowadays, it has been possible to extract meaningful knowledge from the huge
amount of data collected online, from images to videos, text and speech data [35].
Deep learning algorithms have provided an important resource in this respect. Their
flexibility to deal with different kinds of input data, along with their learning ca-
pacity have made them a powerful instrument to successfully tackle challenging
applications, reporting impressive performance on several tasks in computer vision,
speech recognition and human-robot interactions [48, 85].

Despite their undiscussed success in several real-world applications, several open
problems remain to be addressed. Research work has been investigating how to in-
terpret decisions taken by deep learning algorithms, unveiling the patterns learned
by deep networks at each layer [112, 70]. Although significant progress has been
made in this direction, and it is now clear that such networks gradually learn more
abstract concepts (e.g., from detecting elementary shapes in images to more abstract
notions of objects or animals), a relevant effort is still required to gain deeper in-
sights. This is also important to understand why such algorithms can be vulnerable,
at least in principle, to the presence of adversarial examples, i.e., input data that are
slightly modified to mislead classification by the addition of an almost-imperceptible
adversarial noise [68, 78]. The presence of adversarial examples has been shown on
a variety of tasks, including object recognition in images, handwritten digit recog-
nition, and face recognition [99, 102, 47, 78, 84].

We are the first to show that robot-vision systems based on deep learning al-

87

Chapter 9

gorithms are also vulnerable to such potential threat. A peculiarity of humanoid
robots is that they have to learn in an online fashion, from the stimuli received
during their exploration of the surrounding environment. For this reason, a crucial
requirement for them is to embody completely the acquired knowledge, and a reli-
able and efficient learning paradigm. As discussed in previous work [85], this is a
conflicting goal with the current state of deep learning algorithms, which are too
computationally and power demanding to be fully embodied by a humanoid robot.
For this reason, the authors in [85] have proposed to use a pre-trained deep network
for object recognition to perform feature extraction (essentially considering as the
feature vector for the detected object one of the last convolutional layers in the deep
network), and then train a multiclass classifier on such feature representation.

Here we show the vulnerability of these kinds of robot-vision system to adversar-
ial examples. To this end, we exploit the attack framework proposed in Chapter 4
that conversely to previous work dealing with the generation of adversarial exam-
ples based on minimum-distance perturbations [102, 47, 78, 84], enables creating
such examples under a maximum input perturbation, which in turns allows one to
assess classifier security more thoroughly, by evaluating the probability of evading
detection as a function of the maximum input perturbation. Notably, it also allows
manipulating only a region of interest in the input image, such that creating real-
world adversarial examples becomes easier; e.g., one may only modify some image
pixels corresponding to a sticker that can be subsequently applied to the object of
interest.

Furthermore, we evaluate to which extent the computationally-efficient coun-
termeasure, inspired by works on classification with the reject option and open-set
recognition, that we propose in Section 5.5 allows mitigating the threat posed by
adversarial examples. Its underlying idea is to detect and reject the so-called blind-
spot evasion points, i.e., samples which are sufficiently far from known training
data. This countermeasure is particularly suited to our case study, as it requires
modifying only the learning algorithm applied on top of the deep feature represen-
tation, i.e., only the output layer. In particular, although it does not completely
address the vulnerability of such system to adversarial examples, it requires one to
significantly increase the amount of perturbation on the input images to reach a
comparable probability of misleading a correct object recognition. To better under-
stand the reason behind this phenomenon, we provide a further, simple and intuitive
empirical analysis, showing that the mapping learned by the deep network used for
deep feature extraction essentially violates the smoothness assumption of learning
techniques in the input space. This means that, in practice, for a sufficiently high
amount of perturbation, the proposed algorithm creates adversarial examples that
are mapped onto a region of the deep feature space which is densely populated by
training examples of a different class. Accordingly, only modifying the classification
algorithm on top of the pre-trained deep features (without re-training the underlying
deep network) may not be sufficient in this case.

88

Securing CNN-based Robot-vision Systems

Figure 9.1: Architecture of the iCub robot-vision system [85]. After image acqui-
sition, a region of interest containing the object is cropped and processed by the
ImageNet deep network [60]. The deep features extracted from the penultimate
layer of such network (fc7) are then used as input to the classification algorithm to
perform the recognition task, in which the probabilities that the object belongs to
each (known) class are reported. A human annotator can then validate or correct
decisions, and the classification algorithm can be updated accordingly; for instance,
to learn that an object belongs to a never-before-seen class.

9.1 The iCub Humanoid
Our case study focuses on the iCub humanoid, as it provides a cognitive humanoid
robotic platform well suited to our task [75, 85]. In particular, the visual recognition
system of this humanoid relies on deep learning technologies to interact with the
surrounding environment, enabling it to detect and to recognize known objects, i.e.,
objects that have been verbally annotated in a previous session by a human teacher.
Furthermore, iCub is capable of performing online learning, i.e., after classification,
it asks the human teacher whether the corresponding decision is correct. If the
decision is wrong (e.g., in the case of an object belonging to a never-before-seen
class), the human teacher can provide feedback to the robot, which in turn updates
its classification model through online or incremental learning techniques (e.g., by
expanding the set of known object classes). This a clear example of how a robot can
learn from experience to improve its capabilities, i.e., a key aspect of why embodying
knowledge within robots is of crucial relevance for these tasks [85]. However, given
the limited hardware and power resources of the humanoid, it is clear that retraining
the whole deep learning infrastructure becomes too computationally demanding.
For this reason, the visual system of iCub exploits the pre-trained ImageNet deep
network [60] only for extracting a set of deep features (from one of the highest
convolutional layers) and uses this feature vector to represent the object detected
by iCub in the input image. As described in Fig. 9.1, this deep feature vector is
then classified using a separate classifier, which can be retrained online in an efficient
manner when feedback from the human annotator is received. In particular, in [85]
this classifier is implemented using a one-versus-all scheme to combine a set of c
linear classifiers, being c the number of known classes. The linear classifiers used for

89

Chapter 9

this purpose include Support Vector Machines (SVMs) and Recursive Least Square
(RLS) classifiers, as both can be efficiently updated online [85]. Notably, previous
work has shown that replacing the softmax layer in deep networks with a multiclass
SVM can be effective also in different applications [104].

9.2 iCub Evasion

In order to empirically assess the security of the original iCub system and of the
proposed countermeasure aimed to increase its security to evasion attack we rely
on the adversarial framework that we propose in Chapter 4 and on the evasion
Algorithm that we propose in Chapter 5. We discuss below how the gradient ∇A(x)
needed in Algorithm 1 can be computed in our case study.
Gradient computation. One key issue of the aforementioned algorithm is the
computation of the gradient of A(x), which involves the gradients of the discrimi-
nant function fi(x) for i ∈ 1, . . . , c. It is not difficult to see that this can be computed
using the chain rule to decouple the gradient of the discriminant function of the clas-
sifier trained on the deep feature space and the gradient of the deep network used for
feature extraction, as ∇fi(x) = ∂fi(z)

∂z
∂z
∂x
, being z ∈ Rm the set of deep features. In

our case study, these are the m = 4, 096 values extracted from layer fc7 (see Fig. 9.1).
Notably, the gradient of the deep network ∂z

∂x
is readily available through automatic

differentiation, as also highlighted in previous work [102, 47, 78, 84], whereas the
availability of the gradient ∂fi(z)

∂z
depends on whether the chosen classifier is differ-

entiable or not. Several of the most used classifiers are differentiable, including, e.g.,
SVMs with differentiable kernels (we refer the reader to [12] for further details).
Nevertheless, if the classifier is not differentiable (e.g., like in the case of decision
trees), one may use a surrogate differentiable classifier to approximate it, as also
suggested in [12, 41, 94].

9.3 Experimental Analysis

In this section, we report the results of the security evaluation performed on the
iCub system (see Sect. 9.1) along with few adversarial examples to show how the
proposed evasion algorithm can be exploited to create real-world attack samples.
We then provide a conceptual representation and an empirical analysis to explain
why neural networks are easily fooled and how our defense mechanism can improve
their security in this context.

9.3.1 Experimental Setup

Our analysis has been performed using the iCubWorld28 dataset [85], consisting of
28 different classes which include 7 different objects (cup, plate, etc..) of 4 different

90

Securing CNN-based Robot-vision Systems

Cup Dishwashing
Detergent

Laundry
Detergent Plate Soap Sponge Sprayer

Figure 9.2: Example images (one per class) from the iCubWorld28 dataset, and
subset of classes used in the iCubWorld7 dataset (highlighted in red).

kinds each (e.g., cup1, cup2, etc..), as shown in Fig. 9.2. Each object was shown to
iCub which automatically detected it and cropped the corresponding object image.
Four acquisition sessions were performed on four different days, ending up with
approximately 20, 000 images for training and test sets. As shown in [85], it is very
difficult for iCub to be able to distinguish such slight category distinctions, like
different kinds of cups. For this reason, we also consider here a reduced dataset,
iCubWorld7, consisting only of 7 different objects, each of a different kind. The
selected objects are highlighted in red in Fig. 9.2.

We implement the classification algorithm using three different multiclass SVM
versions, all based on a one-versus-all scheme: a linear SVM (denoted with SVM in
the following); an SVM with the RBF kernel (SVM-RBF); and an SVM with the
RBF kernel implementing our defense mechanism based on rejection of adversarial
examples (SVM-adv, Sect. 5.5). The regularization parameter C ∈ {10−3, . . . , 103}
and the RBF kernel parameter γ ∈ {10−6, . . . , 10−2} have been set equal for all one-
versus-all SVMs in each multiclass classifier, by maximizing recognition accuracy
through 3-fold cross validation.

9.3.2 Experimental Results

We report below the security evaluation results on the original system and

91

Chapter 9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

objects

0.70

0.75

0.80

0.85

0.90

0.95

1.00
a
cc

u
ra

cy
Confidence 70 %

Confidence 80 %

Confidence 90 %

Confidence 95 %

Figure 9.3: Box plots of the recognition accuracies measured for linear SVM predic-
tors trained on random subsets from 2 to 28 objects (whiskers with maximum 1.5
interquartile range). Dotted super-imposed curves represent the minimum accuracy
guaranteed within a fixed confidence level.

Baseline Performance. In Fig. 9.3 we report a box plot showing the empirical
probability distributions of the accuracy achieved by the SVM classifier on increas-
ingly larger object identification tasks, as suggested in [85]. To this end, we randomly
select 300 subsets of increasing size from the iCubWorld28 dataset (day4 acquisi-
tions), and then train and test the classifier on each subset. The achieved accuracy is
considered an observation for estimating the empirical distributions. The minimum
accuracy value for which the fraction of observations in the estimated distribution
was higher than a specific confidence threshold is indicated by a dotted line. No-
tably the reported performances for the linear SVM are almost identical to those
reported in [85], where a different algorithm is used. Similar performances (omitted
for brevity) are obtained using SVM-RBF.

Security Evaluation against Adversarial Examples. We now investigate the
security of iCub in the presence of adversarial examples. In this experiment, we
consider the first 100 examples per class for both the iCubWorld28 and iCubWorld7
datasets, ending up with training and test sets consisting of 2, 800 and 700 samples,
respectively. The recognition accuracy against an increasing maximum admissible
`2 perturbation (i.e., dmax value) is reported in Fig. 9.4 for both error-specific (top
row plots) and error-generic (bottom row plots) attack scenarios. For error-specific
evasion, we average our results not only on different training-test set splits, but also
by considering a different target class in each repetition. While SVM and SVM-
RBF show a comparable decrease in accuracy at increasing dmax, SVM-adv is able

92

Securing CNN-based Robot-vision Systems

0 50 100 150 200 250

dmax

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

-

SVM

SVM-RBF

SVM-adv

0 50 100 150 200 250

dmax

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

-

SVM

SVM-RBF

SVM-adv

0 50 100 150 200 250

dmax

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

-

SVM

SVM-RBF

SVM-adv

Figure 9.4: Recognition accuracy of iCub (using the three different classifiers SVM,
SVM-RBF, and SVM-adv) against an increasing maximum admissible `2 input per-
turbation dmax, for iCubWorld28 (left column) and iCubWorld7 (middle and right
columns), using error-specific (top row), and error-generic (bottom row) adversar-
ial examples. Baseline accuracies (in the absence of perturbation) are reported at
dmax = 0.

to strongly improve the security in most of the cases (as the corresponding curve
decreases more gracefully). Notably, the performance of SVM-adv even increases
for low values of dmax. A plausible reason is that, even if all testing images are only
slightly modified in input space, they immediately become blind-spot adversarial
examples, ending up in a region which is far from the rest of the data. As the input
perturbation increases, such samples are gradually drifted inside a different class,
becoming indistinguishable from the samples of such class.

To further improve the security of iCub to adversarial examples, we set the
rejection threshold of SVM-adv to a more conservative value, increasing the false
negative rate for each base classifier of 5% (estimated on a validation set). This
results in a significant security improvement, as shown in the rightmost plots in
Fig. 9.4. However, as expected, this comes at the expense of misclassifying more
legitimate (i.e. non-manipulated) samples.
Real-world Adversarial Examples. In Fig. 9.5 we report few adversarial ex-
amples generated using an error-specific evasion attack on the iCubWorld28 data.
Notably, the adversarial perturbation required to evade the system can be barely
perceived by human eyes. As an important real-world application of the proposed
attack algorithm, in the bottom right plots of Fig. 9.5, we report an adversarial ex-
ample generated by manipulating only a subset of the image pixels, corresponding to
the label of the detergent. In this case, the perturbation becomes easier to spot for
a human, but localizing the noise in a region of interest allows the attacker to con-
struct a practical, real-world adversarial object, by simply attaching an “adversarial”

93

Chapter 9

0 50 100 150 200

0

50

100

150

200

0.00 - laundry-detergent3

0 50 100 150 200

0

50

100

150

200

100.00 - laundry-detergent3

0 50 100 150 200

0

50

100

150

200

250.00 - cup3

0 50 100 150 200

0

50

100

150

200

500.00 - cup3

0 50 100 150 200

0

50

100

150

200

290.03 - cup3

0 50 100 150 200

0

50

100

150

200

Noise (290.03)

0 50 100 150 200

0

50

100

150

200

2225.88 - cup3

0 50 100 150 200

0

50

100

150

200

Noise (2225.88)

Figure 9.5: Plots in the top row show an adversarial example from class laundry-
detergent3, modified to be misclassified as cup3, using an error-specific evasion at-
tack, for increasing levels of input perturbation (reported in the title of the plots).
Plots in the bottom row show the minimally-perturbed adversarial example that
evades detection (i.e., the sample that evades detection with minimum dmax), along
with the corresponding noise applied to the initial image (amplified to make it clearly
visible), for the case in which all pixels can be manipulated (first and second plot),
and for the case in which modifications are constrained to the label of the detergent
(i.e., simulating a sticker that can be applied to the real-world adversarial object).

sticker to the original object before showing it to the iCub humanoid robot.
Why are Deep Nets Fooled? Our analysis shows that also the iCub vision sys-
tem can be fooled by adversarial examples, even by only adding a slightly-noticeable
noise to the input image. To better understand the root causes of this phenomenon,
we now provide an empirical analysis of the sensitivity of the feature mapping in-
duced by the ImageNet deep network used by iCub, by comparing the `2 distance
corresponding to random and adversarial perturbations in the input space, with the
one measured in the deep feature space. To this end, we randomly perturb each
training image such that the `2 distance between the initial and the perturbed im-
age in the input space equals 10. We then measure the `2 distance between the
deep feature vectors corresponding to the same images. For randomly-perturbed
images, the average distance in deep space (along with its standard deviation) is
0.022± 0.002, while for the adversarially-perturbed images, it is 2.386± 0.386. This
means that random perturbations in the input space only result in a very small shift
in the deep space, while even light alterations of an image along the adversarial
direction cause a large shift in deep space, which in turn highlights a significant
instability of the deep feature space mapping induced by the ImageNet network. In
other words, this means that images in the input space are very close to the decision

94

Securing CNN-based Robot-vision Systems

boundary along the adversarial (gradient) direction, as conceptually represented in
Fig. 9.6. Note that this is a general issue for deep networks, not only specific to
ImageNet [103, 45, 102, 47, 78, 84].

It should be thus clear that even a well-crafted modification of the last layers
of the network, as in our proposed defense mechanism SVM-adv, can only mitigate
this vulnerability. Indeed, it remains intimately related to the stability of the deep
feature space mapping, which can be only addressed by imposing specific constraints
while training the deep neural network; e.g., by imposing that small shifts in the
input space correspond to small changes in the deep space, as recently proposed
in [115]. Another possible countermeasure to improve stability of such mapping
is to enforce classification of samples within a minimum margin, by modifying the
neurons’ activation functions and, potentially, considering a different regularizer for
the objective function optimized by the deep network. In this respect, it would be
interesting to investigate more in detail the intimate connections between robustness
to adversarial input noise and regularization, as highlighted in [110, 94].

9.4 Discussion
Deep learning has shown groundbreaking performance in several real-world appli-
cation domains, encompassing areas like computer vision, speech recognition and
language processing, among others. Despite its impressive performances, recent
work has shown how deep neural networks can be fooled by well-crafted adversarial
examples affected by a barely-perceivable adversarial noise.

We have investigated the security of the robot-vision system of the iCub hu-
manoid. Even if we do not restrict ourselves to the manipulation of pixels belonging
to the object of interest in the image (which could lead one to more easily generate
the corresponding real-world adversarial object, e.g., by mean of the application of
specific stickers to objects), we have shown how our evasion algorithm enables this
additional possibility. We have demonstrated and quantified the vulnerability of
iCub to the presence of adversarial manipulations of input images, and suggested a
simple countermeasure to mitigate the threat posed by such an issue. We have ad-
ditionally shown that, while blind-spot adversarial examples can be detected using
our defense mechanism, to further improve the security of iCub against indistin-
guishable adversarial examples, re-training the classification algorithm on top of a
pre-trained deep neural network is not sufficient. To this end, different strategies
to enforce the deep network to learn a more stable deep feature representation (in
which small perturbations to the input data correspond to small perturbations in
the deep feature space) should also be adopted, like the one proposed in [115].

95

Figure 9.6: Conceptual representation of the vulnerability of the deep feature space
mapping. The left and right plots respectively represent images in input space and
the corresponding deep feature vectors. Randomly-perturbed versions of an input
image are shown as gray points, while the adversarially-perturbed image is shown as
a red point. Despite these points are at the same distance from the input image in
the input space, the adversarial example is much farther in the deep feature space.
This also means that images are very close to the decision boundary in input space,
although in an adversarial direction that is difficult to guess at random due to the
high dimensionality of the input space.

Chapter 10

Contributions and Limitations of this
Doctoral Dissertation

Adversarial machine learning is a research field that was born almost ten years ago
to evaluate the security of machine-learning systems used in security-related appli-
cations as spam and malware detection. This research field, has recently gained
popularity in the computer vision community, since when, trying to interpret neural
network decisions in classification tasks, it has been found that these extremely ac-
curate systems can be fooled by adversarial images. In particular, these adversarial
images are carefully obfuscated with a visually-indistinguishable noise that allows
them to be misclassified as a different class, potentially chosen by the attacker, with
high confidence. It is even possible to have completely noisy images misclassified as
desired by applying the same well-crafted input perturbation.
However, computer-vision problems like object recognition in images are not nec-
essarily adversarial in nature. When machine learning is used in security-related
applications, it is often a natural target for attackers, for instance, cybercriminals
create malware that has to bypass anti-malware technologies based on machine
learning, or fabricate face mask to impersonate a victim user aiming to mislead
face-recognition technologies. The underlying reason is that, in these cases, cyber-
criminals have a clear economical incentive to trick the system. In computer-vision
applications, instead, it is really unlikely nowadays that an attacker has such an
economic incentive. The application that is often considered as case of study by
the computer vision community is the recognition or road signs. Machine learning
algorithms are indeed used in self-driving cars and autonomous vehicles to this end.
However, we are really far from having a mature technology to let cars drive with-
out any human supervision on public streets. Even Tesla, which has state-of-the-art
technology for self-driving cars, specifies that the Autopilot system is not supposed
to replace a human driver, who has thus always to keep his hand on the steering
wheel and his attention on the street; and Waymo, the new autonomous vehicles
by Google is so far isolated in a 100-square-mile area with an employee on board.

97

Chapter 10

From the next 2 of April they will be free to drive outside from this area. Nev-
ertheless, they will be remotely controlled by Google employees. The accuracy of
machine-learning algorithms in this case is in fact still not sufficient to make them
suitable for safety-critical applications and even if it were, they could still commit,
as humans, some errors causing mortal incidents. Substantially, even if machine
learning becomes as accurate as humans, there may always be the need of a human
supervision (e.g. think of the driver of the Tesla’s car, and the Google employees
that control the Waymo remotely). This may be required, for instance, to clearly
assign the responsibility of potential errors committed by the automatic system,
as it would be difficult to imagine that the technology manufacturers will take on
a similar ethical and penal risk. Although there aren’t practical computer vision
applications of adversarial machine learning, studying the security of those systems
is anyway useful. It allows, infact, to gain a further understanding about how they
work highlighting the conditions in which they fail. This further knowledge can, of
course, help the community to construct more accurate systems.
This study has lead therefore to a misconception about the security evaluation of ma-
chine learning systems. To evaluate the security of computer vision systems different
samples are minimally perturbed using fast and approximate algorithms generating
the so called “visually indistinguishable samples” and submitted to a classifier. The
classifier is considered vulnerable if it recognizes those samples as belonging to a class
different from the original ones. This evaluation raises different problems. Firstly,
because so far there is no way to measure how much an image could resemble to one
or another class for the complex human vision system. Secondly, because it is an
optimistic evaluation of classifier security as an attacker would not apply a minimal
perturbation to a samples but it would modify it as much as she can to increase the
probability to fool the system. This claim is substantiated from the fact that there
is a large number of defenses, published in top-tier machine-learning venues, which
were broken immediately after they had been presented to the community [5]. To
overcome these issues, we have provided a methodology that allows one to evaluate
classifier security thoroughly, and not in an optimistic manner. The main drawback
of the proposed methodology is that it may be computationally expensive. More-
over, as it exploits a gradient descent strategy, if the classifier is not differentiable,
it requires the effort to find a differentiable surrogate that provides a good approx-
imation of the original classifier. However, as formal verification techniques and
certifiable defenses are still in their early stages, to the best of our knowledge, our
methodology, is the only one that allows comparing the security of different classi-
fiers under the same threat model (assumptions on the attacker’s goal, knowledge
and capability, and attack scenario). We hope therefore that it will be adopted to
provide a fairer security evaluation of the proposed defenses by the community.
As we explained, the proposed security evaluation needs strong attack algorithms to
be carried on. We have presented a novel poisoning algorithm based on back-gradient
optimization that can be applied to a wider class of learners compared to the state

98

Contributions and Limitations of this Doctoral Dissertation

of art ones. It is applicable to all the learning algorithms trained through gradient-
based procedures, including large neural networks and deep learning architectures.
The empirical evaluation that we performed on spam filtering and malware detec-
tion dataset, shows that shallow neural networks can be significantly compromised
even if the attacker only controls a small fraction of training points. Interestingly,
it shows also that poisoning samples designed against one learning algorithm can be
rather effective also against a different algorithm, highlighting an interesting trans-
ferability property, similar to that exhibited by evasion attacks.
Another relevant problem at the state of the art of adversarial machine learning is
that efficient defenses are lacking, besides effective ones. This is a critical point to
make them applicable in real systems with limited hardware resources. Moreover,
it is not always clear under which conditions such defenses can be retained optimal,
i.e., which attacks are they expected to successfully counter (and which ones are not
going to be detected, instead). Leveraging recent results on the relationship between
robustness and regularization we have analyzed the security of linear classifiers ex-
plaining which is the optimal regularizer choice against different evasion attacks.
Sparse evasion attacks are one of the most exploited attacks against security-related
systems as the attacker has often a constraint on the number of modified features.
As we have shown one can drastically improve the security against those attacks
using a classifier with an infinity-norm regularizer. We have discussed that this is
equivalent to bound the weights updates during training, and we have developed
a learning algorithm based on this strategy. The corresponding classifier allows
applying different upper and lower bounds to different set of features, permitting
to exploit application-specific constraints on the attacker capability and improving
the system security (as shown in our case study on Android malware detection).
We have further proposed a new octagonal regularizer that is a convex combina-
tion between a `1-norm and `∞-norm regularizer. When feature sparsity is crucial,
this regularizer allows improving classifier security while retaining a good level of
sparsity. We have then highlighted that poisoning can be seen as a sparse attack
where sparsity is referred to the number of training samples that an attacker may
have the possibility to inject into the training set. We have shown that this can be
particularly dangerous for classifiers that take decisions based only on few influential
training samples. We have then shown that the infinity-norm regularizer can be used
in kernel space to enhance the security of those classifiers against label-flip attacks.
We think that those result do not only help securing the considered classifiers but
they can provide a useful starting point to increase the security of different systems,
including also deep neural networks.
We have analyzed and quantified the vulnerability of a robot-vision system based
on deep neural network to the presence of adversarial manipulations of input images
and suggested a simple countermeasure inspired by open-set recognition techniques
to mitigate the threat posed by this issue. We have shown that, while this defense
mechanism enables detecting blind-spot adversarial examples, the system is still

99

Chapter 10

vulnerable to indistinguishable adversarial examples (in terms of their deep-feature
representation with respect to samples belonging to different classes). This vulner-
ability shows that employing pretreated neural networks as feature extractors may
be a risk. The reason is that the mapping learned by these networks is unstable, i.e.
there are directions in which a minimal perturbation in input space causes a large
shift in the deep feature space.
An interesting research direction is thus to find proper regularizers that increase the
margin in input space and consequently classifier security against specific types of
evasion attack (e.g. sparse and dense), similarly to what we have shown for linear
classifiers. Even though the most appropriate regularizer can, of course, increase
classifier security, it could not avoid having samples misclassified as belonging to a
totally different class. To reach this goal there is probably the need to inject some
further knowledge into the algorithm. This knowledge could be, for instance, related
to the similarity between objects of different classes or to the object structure itself.
Another interesting direction is related to poisoning against deep neural network
classifiers. We have proposed a poisoning algorithm applicable to deep neural net-
work. However, it is still to be evaluated if it is really effective against them. This
could not be the case for different reasons. The first one is that neural networks are
almost always trained on a huge number of samples. The number of samples that an
attacker needs to change, to modify significantly the decision function of the classi-
fier could be therefore so large to make the attack impracticable. The second one is
that, due to their large capacity, deep neural networks may be able to learn the poi-
soning samples without affecting their decisions on legitimate, non-adversarial data
points. In this case the poisoning points could not be able to sufficiently change the
decision region to make the classifier misclassify different samples. We believe that
this analysis is a very interesting direction for future work.

To sum up, different challenges for the adversarial machine learning community
are still far from being efficiently solved. Throughout this thesis, we have provided
theoretically sound methodologies and tools to increase classifier security. We have
highlighted that, to be informative, the evaluation of machine learning systems
should be carefully designed. To this end, we have provided some tools that help to
performing a comparative, proactive and fairer security evaluation. We have shown
that leveraging theory is possible to get a better understanding of machine-learning
systems security, to create efficient and effective countermeasures, and to highlight
potential trade-offs, such as that between sparsity and security.

100

Chapter 10

102

Bibliography

[1] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-
level features for robust malware detection in android. In Proc. of Interna-
tional Conference on Security and Privacy in Communication Networks (Se-
cureComm), 2013.

[2] Ian Goodfellow an Nicholas Papernot. The challenge of verification and testing
of machine learning, 2017.

[3] I. Arce. The weakest link revisited [information security]. IEEE Security &
Privacy, 1(2):72–76, Mar 2003.

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck. Drebin:
Efficient and explainable detection of android malware in your pocket. In Proc.
21st Annual Network & Distributed System Security Symposium (NDSS). The
Internet Society, 2014.

[5] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
2018.

[6] Marco Barreno, Blaine Nelson, Anthony Joseph, and J. Tygar. The security
of machine learning. Machine Learning, 81:121–148, 2010.

[7] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D.
Tygar. Can machine learning be secure? In Proc. ACM Symp. Information,
Computer and Comm. Sec., ASIACCS ’06, pages 16–25, New York, NY, USA,
2006. ACM.

[8] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji.
A methodology for empirical analysis of permission-based security models and
its application to android. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, 2010.

[9] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1563–1572, 2016.

103

Chapter 10

[10] Y. Bengio. Gradient-based optimization of hyperparameters. Neural Compu-
tation, 12(8):1889–1900, 2000.

[11] Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in svm
classifiers. In Proc. 17th Int’l Conf. Mach. Learn., ICML ’00, pages 57–64,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[12] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli. Evasion attacks against machine learning at test time. In Hendrik
Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Železný, editors, Ma-
chine Learning and Knowledge Discovery in Databases (ECML PKDD), Part
III, volume 8190 of LNCS, pages 387–402. Springer Berlin Heidelberg, 2013.

[13] Battista Biggio, Samuel Rota Bulò, Ignazio Pillai, Michele Mura,
Eyasu Zemene Mequanint, Marcello Pelillo, and Fabio Roli. Poisoning
complete-linkage hierarchical clustering. In P. Franti, G. Brown, M. Loog,
F. Escolano, and M. Pelillo, editors, Joint IAPR Int’l Workshop on Struc-
tural, Syntactic, and Statistical Pattern Recognition, volume 8621 of Lecture
Notes in Computer Science, pages 42–52, Joensuu, Finland, 2014. Springer
Berlin Heidelberg.

[14] Battista Biggio, Igino Corona, Zhi-Min He, Patrick P. K. Chan, Giorgio Giac-
into, Daniel S. Yeung, and Fabio Roli. One-and-a-half-class multiple classifier
systems for secure learning against evasion attacks at test time. In Friedhelm
Schwenker, Fabio Roli, and Josef Kittler, editors, Multiple Classifier Systems,
volume 9132 of Lecture Notes in Computer Science, pages 168–180. Springer
International Publishing, 2015.

[15] Battista Biggio, Giorgio Fumera, and Fabio Roli. Multiple classifier systems
for robust classifier design in adversarial environments. Int’l J. Mach. Learn.
and Cybernetics, 1(1):27–41, 2010.

[16] Battista Biggio, Giorgio Fumera, and Fabio Roli. Pattern recognition systems
under attack: Design issues and research challenges. Int’l J. Patt. Recogn.
Artif. Intell., 28(7):1460002, 2014.

[17] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pat-
tern classifiers under attack. IEEE Transactions on Knowledge and Data En-
gineering, 26(4):984–996, April 2014.

[18] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines
under adversarial label noise. In Journal of Machine Learning Research - Proc.
3rd Asian Conf. Machine Learning, volume 20, pages 97–112, November 2011.

104

BIBLIOGRAPHY

[19] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines. In John Langford and Joelle Pineau, editors, 29th
Int’l Conf. on Machine Learning, pages 1807–1814. Omnipress, 2012.

[20] Battista Biggio, Ignazio Pillai, Samuel Rota Bulò, Davide Ariu, Marcello
Pelillo, and Fabio Roli. Is data clustering in adversarial settings secure? In
Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security,
AISec ’13, pages 87–98, New York, NY, USA, 2013. ACM.

[21] Battista Biggio, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino
Corona, Giorgio Giacinto, and Fabio Roli. Poisoning behavioral malware clus-
tering. In 2014 Workshop on Artificial Intelligent and Security, AISec ’14,
pages 27–36, New York, NY, USA, 2014. ACM.

[22] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., New York, NY, USA, 1995.

[23] C. Blake and C.J. Merz. UCI Repository of machine learning databases.
http://www. ics. uci. edu/˜ mlearn/MLRepository. html, 1998.

[24] Bondell and Reich. Simultaneous regression shrinkage, variable selection, and
supervised clustering of predictors with OSCAR. 2008.

[25] Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In COMPSTAT’2010, pages 177–186. Springer, 2010.

[26] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[27] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[28] Michael Brückner, Christian Kanzow, and Tobias Scheffer. Static prediction
games for adversarial learning problems. J. Mach. Learn. Res., 13:2617–2654,
September 2012.

[29] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Min. Knowl. Discov., 2:121–167, June 1998.

[30] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of
obfuscating transformations. Technical Report 148, Department of Computer
Science, University of Auckland, July 1997.

[31] Gordon V. Cormack. Trec 2007 spam track overview. In Ellen M. Voorhees
and Lori P. Buckland, editors, TREC, volume Special Publication 500-274.
National Institute of Standards and Technology (NIST), 2007.

105

Chapter 10

[32] Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio Giacinto. Lux0r:
Detection of malicious pdf-embedded javascript code through discriminant
analysis of API references. In Proc. 2014 Workshop on Artificial Intelligent
and Security Workshop, AISec ’14, pages 47–57, New York, NY, USA, 2014.
ACM.

[33] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20:273–297, 1995. 10.1007/BF00994018.

[34] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo,
and Angelos D. Keromytis. Casting out demons: Sanitizing training data for
anomaly sensors. In IEEE Symposium on Security and Privacy, pages 81–95.
IEEE Computer Society, 2008.

[35] Nello Cristianini. Intelligence reinvented. New Scientist, 232(3097):37–41,
2016.

[36] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma.
Adversarial classification. In Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 99–108, Seattle,
2004.

[37] Ambra Demontis, Battista Biggio, Giorgio Fumera, Giorgio Giacinto, and
Fabio Roli. Infinity-norm support vector machines against adversarial label
contamination. In Alessandro Armando, Roberto Baldoni, and Riccardo Fo-
cardi, editors, First Italian Conference on Cybersecurity (ITASEC17), number
1816 in CEUR Workshop Proceedings, pages 106–115, Aachen, 2017.

[38] Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli. Super-
sparse regression for fast age estimation from faces at test time. In Image
Analysis and Processing—ICIAP 2015, pages 551–562. Springer, 2015.

[39] Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera, and Fabio
Roli. Super-sparse learning in similarity spaces. IEEE Computational Intelli-
gence Magazine, 11(4):36–45, Nov 2016.

[40] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp,
Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine
learning can be more secure! a case study on android malware detection. IEEE
Trans. Dependable and Secure Computing, In press.

[41] Ambra Demontis, Paolo Russu, Battista Biggio, Giorgio Fumera, and Fabio
Roli. On security and sparsity of linear classifiers for adversarial settings. In
Antonio Robles-Kelly, Marco Loog, Battista Biggio, Francisco Escolano, and
Richard Wilson, editors, Joint IAPR Int’l Workshop on Structural, Syntactic,

106

BIBLIOGRAPHY

and Statistical Pattern Recognition, volume 10029 of LNCS, pages 322–332,
Cham, 2016. Springer International Publishing.

[42] C. Do, C.S. Foo, and A.Y. Ng. Efficient multiple hyperparameter learning
for log-linear models. In Advances in Neural Information Processing Systems,
pages 377–384, 2008.

[43] Justin Domke. Generic methods for optimization-based modeling. In Neil D.
Lawrence and Mark Girolami, editors, 15th Int’l Conf. Artificial Intelligence
and Statistics, volume 22 of Proceedings of Machine Learning Research, pages
318–326, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.

[44] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

[45] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410,
2017.

[46] Amir Globerson and Sam T. Roweis. Nightmare at test time: robust learning
by feature deletion. In William W. Cohen and Andrew Moore, editors, Pro-
ceedings of the 23rd International Conference on Machine Learning, volume
148, pages 353–360. ACM, 2006.

[47] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In International Conference on Learning
Representations, 2015.

[48] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[49] Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–
844, 1998.

[50] Johannes Hoffmann, Teemu Rytilahti, Davide Maiorca, Marcel Winandy,
Giorgio Giacinto, and Thorsten Holz. Evaluating analysis tools for android
apps: Status quo and robustness against obfuscation. In Proceedings of the
Sixth ACM on Conference on Data and Application Security and Privacy,
CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016, pages 139–141,
2016.

107

Chapter 10

[51] Johannes Hoffmann, Teemu Rytilahti, Davide Maiorca, Marcel Winandy,
Giorgio Giacinto, and Thorsten Holz. Evaluating analysis tools for android
apps: Status quo and robustness against obfuscation. In Technical Report
TR-HGI-2016-003, Horst Görtz Institute for IT Security, 2016.

[52] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D. Tygar. Adver-
sarial machine learning. In 4th ACM Workshop on Artificial Intelligence and
Security (AISec 2011), pages 43–57, Chicago, IL, USA, 2011.

[53] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verifi-
cation of deep neural networks. CoRR, abs/1610.06940, 2016.

[54] Anthony D. Joseph, Pavel Laskov, Fabio Roli, J. Doug Tygar, and Blaine Nel-
son. Machine Learning Methods for Computer Security (Dagstuhl Perspectives
Workshop 12371). Dagstuhl Manifestos, 3(1):1–30, 2013.

[55] Shuichi Katsumata and Akiko Takeda. Robust cost sensitive support vector
machine. In G. Lebanon and S.V.N. Vishwanathan, editors, 18th Int’l Conf.
on Artificial Intelligence and Statistics (AISTATS), volume 38 of JMLR Work-
shop and Conference Proceedings, pages 434–443. JMLR.org, 2015.

[56] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochen-
derfer. Reluplex: An efficient SMT solver for verifying deep neural networks.
CoRR, abs/1702.01135, 2017.

[57] Marius Kloft and Pavel Laskov. Security analysis of online centroid anomaly
detection. Journal of Machine Learning Research, 13:3647–3690, 2012.

[58] P. W. Koh and P. Liang. Understanding black-box predictions via influence
functions. In International Conference on Machine Learning (ICML), 2017.

[59] Aleksander Kolcz and Choon Hui Teo. Feature weighting for improved classi-
fier robustness. In Sixth Conference on Email and Anti-Spam (CEAS), Moun-
tain View, CA, USA, 2009.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE,
volume 86, pages 2278–2324, 1998.

[62] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. Mar-
vin: Efficient and Comprehensive Mobile App Classification Through Static

108

BIBLIOGRAPHY

and Dynamic Analysis. In Proceedings of the 39th Annual International Com-
puters, Software & Applications Conference (COMPSAC), 2015.

[63] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. Andrubis - 1,000,000
Apps Later: A View on Current Android Malware Behaviors. In Proceedings of
the the 3rd International Workshop on Building Analysis Datasets and Gath-
ering Experience Returns for Security (BADGERS), 2014.

[64] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust linear
regression against training data poisoning. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas,
TX, USA, November 3, 2017, pages 91–102, 2017.

[65] Roi Livni, Koby Crammer, Amir Globerson, Elsc-icnc Edmond, and Lily Safra.
A simple geometric interpretation of SVM using stochastic adversaries. In
JMLR W&CP - Proc., volume 22 of AISTATS ’12, pages 722–730, 2012.

[66] Daniel Lowd and Christopher Meek. Adversarial learning. In Proc. 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 641–647, Chicago, IL, USA, 2005. ACM Press.

[67] Daniel Lowd and Christopher Meek. Good word attacks on statistical spam
filters. In Second Conference on Email and Anti-Spam (CEAS), Mountain
View, CA, USA, 2005.

[68] Yan Luo, Xavier Boix, Gemma Roig, Tomaso Poggio, and Qi Zhao.
Foveation-based mechanisms alleviate adversarial examples. arXiv preprint
arXiv:1511.06292, 2015.

[69] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based
hyperparameter optimization through reversible learning. In Proceedings of
the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 2113–2122. JMLR.org, 2015.

[70] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image rep-
resentations by inverting them. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5188–5196, 2015.

[71] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giac-
into. Stealth attacks. Comput. Secur., 51(C):16–31, June 2015.

[72] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A pattern recognition
system for malicious pdf files detection. In Petra Perner, editor, Machine
Learning and Data Mining in Pattern Recognition, volume 7376 of Lecture
Notes in Computer Science, pages 510–524. Springer Berlin Heidelberg, 2012.

109

Chapter 10

[73] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal
training-set attacks on machine learners. In 29th AAAI Conf. Artificial Intel-
ligence (AAAI ’15), 2015.

[74] Marco Melis, Ambra Demontis, Battista Biggio, Gavin Brown, Giorgio
Fumera, and Fabio Roli. Is deep learning safe for robot vision? adversar-
ial examples against the icub humanoid. In ICCV 2017 Workshop on Vision
in Practice on Autonomous Robots (ViPAR), In Press.

[75] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The icub humanoid robot: an open platform for research in embodied
cognition. In Proceedings of the 8th workshop on performance metrics for
intelligent systems, pages 50–56. ACM, 2008.

[76] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff.
On detecting adversarial perturbations. In Proceedings of 5th International
Conference on Learning Representations (ICLR), 2017.

[77] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2574–2582, 2016.

[78] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2574–2582, 2016.

[79] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware
detection. In Proc. of Annual Computer Security Applications Conference
(ACSAC), 2007.

[80] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,
Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli. Towards poisoning of
deep learning algorithms with back-gradient optimization. In 10th ACM Work-
shop on Artificial Intelligence and Security, In Press.

[81] B. Nelson, M. Barreno, F.J. Chi, A.D. Joseph, B.I.P. Rubinstein, U. Saini,
C.A. Sutton, J.D. Tygar, and K. Xia. Exploiting Machine Learning to Subvert
your Spam Filter. LEET, 8:1–9, 2008.

[82] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Ben-
jamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, and Kai
Xia. Exploiting machine learning to subvert your spam filter. In LEET’08:
Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, pages 1–9, Berkeley, CA, USA, 2008. USENIX Association.

110

BIBLIOGRAPHY

[83] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’17, pages 506–519, New York, NY,
USA, 2017. ACM.

[84] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In Proc. 1st IEEE European Symposium on Security and Privacy,
pages 372–387. IEEE, 2016.

[85] Giulia Pasquale, Carlo Ciliberto, Francesca Odone, Lorenzo Rosasco, Lorenzo
Natale, and Ingegneria dei Sistemi. Teaching icub to recognize objects using
deep convolutional neural networks. In MLIS@ ICML, pages 21–25, 2015.

[86] B.A. Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Compu-
tation, 6(1):147–160, 1994.

[87] F. Pedregosa. Hyperparameter optimization with approximate gradient. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learn-
ing Research, pages 737–746, New York, New York, USA, 20–22 Jun 2016.
PMLR.

[88] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul
Potharaju, Cristina Nita-Rotaru, and Ian Molloy. Using probabilistic gen-
erative models for ranking risks of android apps. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, 2012.

[89] Luca Pulina and Armando Tacchella. An abstraction-refinement approach to
verification of artificial neural networks. In Proceedings of the 22Nd Interna-
tional Conference on Computer Aided Verification, CAV’10, pages 243–257,
Berlin, Heidelberg, 2010. Springer-Verlag.

[90] Vaibhav Rastogi, Zhengyang Qu, Jedidiah McClurg, Yinzhi Cao, and Yan
Chen. Uranine: Real-time Privacy Leakage Monitoring without System Modi-
fication for Android, pages 256–276. Springer International Publishing, Cham,
2015.

[91] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise,
Rahul Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza
Karachiwala, Nolen Scaife, Byron Wright, Kevin Butler, William Enck, and
Patrick Traynor. *droid: Assessment and evaluation of android applica-
tion analysis tools. ACM Comput. Surv., 49(3):55:1–55:30, oct. 2016.

111

Chapter 10

[92] Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon, Doina Caragea,
Xinming Ou, Venkatesh Prasad Ranganath, Hongmin Li, and Nicolais Gue-
vara. Experimental study with real-world data for android app security anal-
ysis using machine learning. In Proceedings of the 31th Annual Computer
Security Applications Conference, In press.

[93] Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph,
Shing-hon Lau, Satish Rao, Nina Taft, and J. D. Tygar. Antidote: under-
standing and defending against poisoning of anomaly detectors. In Proceed-
ings of the 9th ACM SIGCOMM Internet Measurement Conference, IMC ’09,
pages 1–14, New York, NY, USA, 2009. ACM.

[94] Paolo Russu, Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio
Roli. Secure kernel machines against evasion attacks. In 9th ACM Workshop
on Artificial Intelligence and Security, AISec ’16, pages 59–69, New York, NY,
USA, 2016. ACM.

[95] W.J. Scheirer, L.P. Jain, and T.E. Boult. Probability models for open set
recognition. IEEE Trans. Patt. An. Mach. Intell., 36(11):2317–2324, 2014.

[96] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surv., 34:1–47, March 2002.

[97] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E.C. Lupu. Automated
Dynamic Analysis of Ransomware: Benefits, Limitations and use for Detec-
tion. arXiv preprint arXiv:1609.03020, 2016.

[98] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recog-
nition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1528–1540. ACM, 2016.

[99] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recog-
nition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1528–1540. ACM, 2016.

[100] Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for Ma-
chine Learning. The MIT Press, 2011.

[101] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine
classifiers. Neural Processing Letters, 9(3):293–300, 1999.

[102] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In International Conference on Learning Representations, 2014.

112

BIBLIOGRAPHY

[103] Thomas Tanay and Lewis Griffin. A boundary tilting persepective on the
phenomenon of adversarial examples. arXiv preprint arXiv:1608.07690, 2016.

[104] Yichuan Tang. Deep learning using support vector machines. In ICML Work-
shop on Representational Learning, volume arXiv:1306.0239, Atlanta, USA,
2013.

[105] Choon Hui Teo, Amir Globerson, Sam Roweis, and Alex Smola. Convex
learning with invariances. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 1489–
1496. MIT Press, Cambridge, MA, 2008.

[106] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag
New York, Inc., New York, NY, USA, 1995.

[107] Nedim Šrndic and Pavel Laskov. Practical evasion of a learning-based classifier:
A case study. In Proc. 2014 IEEE Symp. Security and Privacy, SP ’14, pages
197–211, Washington, DC, USA, 2014. IEEE CS.

[108] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert,
and Fabio Roli. Is feature selection secure against training data poisoning? In
Francis Bach and David Blei, editors, JMLR W&CP - Proc. 32nd Int’l Conf.
Mach. Learning (ICML), volume 37, pages 1689–1698, 2015.

[109] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and
Fabio Roli. Support vector machines under adversarial label contamination.
Neurocomputing, Special Issue on Advances in Learning with Label Noise,
160(0):53 – 62, 2015.

[110] Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regu-
larization of support vector machines. Journal of Machine Learning Research,
10:1485–1510, July 2009.

[111] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li, Wenjun
Hu, and Dawu Gu. AppSpear: Bytecode Decrypting and DEX Reassembling for
Packed Android Malware, pages 359–381. Springer International Publishing,
Cham, 2015.

[112] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In European conference on computer vision, pages 818–833.
Springer, 2014.

[113] F. Zhang, P.P.K. Chan, B. Biggio, D.S. Yeung, and F. Roli. Adversarial
feature selection against evasion attacks. IEEE Transactions on Cybernetics,
46(3):766–777, 2016.

113

"Ringraziamenti"

[114] Tong Zhang. Solving large scale linear prediction problems using stochastic
gradient descent algorithms. In 21st Int’l Conf. Machine Learning, ICML ’04,
pages 116–123, New York, NY, USA, 2004. ACM.

[115] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving
the robustness of deep neural networks via stability training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4480–4488, 2016.

[116] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy, 2012.

[117] Ji Zhu, Saharon Rosset, Robert Tibshirani, and Trevor J. Hastie. 1-norm
support vector machines. In S. Thrun, L.K. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16, pages 49–56. MIT
Press, 2004.

[118] Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society, Series B, 67(2):301–320,
2005.

114

	Notation
	Introduction
	Machine Learning
	Adversarial Machine Learning
	Evasion
	Poisoning

	Outlook of this Thesis

	Background
	Machine Learning Systems
	Support Vector Machines
	Neural Networks
	Multiclass Classification
	Sparse Machine Learning

	Security Measures for Machine Learning
	Defenses against Evasion Attacks
	Defenses against Poisoning Attacks

	Limitation and Open Issues

	Contributions of this thesis
	Adversarial Attack Framework
	Attacker's Goal
	Security Violation

	Attacker's Knowledge
	Perfect-Knowledge (PK) Attack
	Limited-Knowledge (LK) Attack

	Attacker Capability
	Attack Strategy
	Security Evaluation Methodology

	Test-time Evasion Attacks against Machine Learning
	Evasion Attack Scenario
	Error-generic Evasion
	Error-specific Evasion

	Gradient-Based Evasion Attack Algorithm
	Sparse and Dense Attacks
	Trading sparsity for security: Octagonal Regularization
	Robustness and Regularization
	Classifier Security Analysis
	Countering Sparse and Dense Attacks
	Octagonal regularizer

	Securing Multiclass Classifier with Distance-based Rejection
	Open Set Recognition
	Distance-based rejection

	Training-time Poisoning Attacks against Machine Learning
	Poisoning Attack Scenarios
	Error-Generic Poisoning Attacks
	Error-Specific Poisoning Attacks

	Gradient-Based Poisoning Attack
	Poisoning Neural Networks with Back-gradient
	Securing Kernel-based Classifiers from Poisoning Attacks
	Dual Infinity-norm Support Vector Machines

	Experimental Evaluation
	Evasion
	Trading sparsity for security: octagonal regularization

	Poisoning
	Poisoning Neural Network with Back-gradient
	Securing Kernel-based Classifier from Poisoning Attacks

	Securing Android Malware Detectors against Evasion Attacks
	Android Background
	Drebin
	Drebin Evasion
	Malware Data Manipulation
	Evasion Scenarios
	Evasion attack algorithm
	DexGuard-based Obfuscation Attacks

	Experimental Analysis
	Experimental Setup
	Experimental Results

	Discussion

	Securing CNN-based Robot-vision Systems
	The iCub Humanoid
	iCub Evasion
	Experimental Analysis
	Experimental Setup
	Experimental Results

	Discussion

	Contributions and Limitations of this Doctoral Dissertation

