
Università degli Studi di Cagliari

DOTTORATO DI RICERCA
in

Ingegneria Elettronica e dell’Informazione
Ciclo XXXI

TITOLO TESI
Power and Energy Management

in Coarse-Grained Reconfigurable Systems:
methodologies, automation and assessments

Settore scientifico disciplinari di afferenza
SSD 09 / ING-INF/01

Presentata da:
Coordinatore Dottorato:
Tutor:
Co-Tutor:

Tiziana Fanni
Prof. Fabio Roli

Prof. Luigi Raffo
Dott.ssa Francesca Palumbo

Esame finale anno accademico 2017-2018
Tesi discussa nella sessione d’esame Febbraio 2019

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Power and Energy Management in
Coarse-Grained Reconfigurable

Systems: methodologies,
automation and assessments

Tiziana Fanni

Advisor: Prof. Luigi Raffo
Co-Advisor: Dr. Francesca Palumbo
Ph.D. Coordinator: Prof. Fabio Roli

Curriculum: ING-INF/01

XXXI Cycle
A.A. 2017-2018

4th February 2019

Abstract

In the era of Cyber-Physical Systems (CPS), designers need to cope with several constraints
that have to be met at the same time. CPS are complex systems composed of different inter-
active and deeply intertwined components that have to change their behavioural modalities
according to several factors as the environment status, requests from user and even their
internal status, thus requiring high flexibility and performance, possibly with a low power
consumption. The spectrum of existing computing systems ranges from general purpose to
application specific systems. General purpose systems as CPUs, GPUs, DSPs offer high flex-
ibility but are not able to provide high performance, due to their poor specialization. On the
other side, Application Specific Integrated Circuits (ASICs) offer high performance but they
do not provide flexibility at all, being designed for computing a single, specific application.
In the middle between general purpose systems and ASICs lie the reconfigurable systems
that provide a valuable solution to challenge simultaneously different requirements. Recon-
figurable systems offer a certain level of flexibility, while guaranteeing high performance.
However, two major issues still limit their wide applicability: high design complexity, imply-
ing huge engineering effort, as well as power inefficiencies.

The activities behind my thesis address both these issues, with the primary focus on
power consumption. The starting assumption is the definition of a set of strategies that,
depending on the considered scenario and the chosen target device (ASIC or FPGA), may
enable power/energy awareness and consumption optimization. In parallel, these strate-
gies have been automated within different extensions of a dataflow to hardware design suite
for coarse-grained reconfigurable systems.

iii

Contents

List of Figures viii

List of Tables xi

1 Introduction 1
1.1 Objectives of the Thesis . 2
1.2 Thesis Structure . 2

2 Literature 5
2.1 Reconfigurable Computing . 7

2.1.1 Fine-Grain Reconfiguration . 8
2.1.2 Coarse-Grain Reconfiguration . 9
2.1.3 Composition . 10

2.2 System Level Modelling: The Dataflow Paradigm 11
2.2.1 Dataflow Models of Computation . 13
2.2.2 DSP-oriented Dataflow-based Tools . 15

2.3 Power Issue in Digital Circuits . 16

3 MDC: Multi-Dataflow Composer Tool 19
3.1 Baseline MDC Core . 20
3.2 Structural Profiler . 23

3.2.1 Step-by-Step Example . 25
3.3 Dynamic Power Management . 25

3.3.1 Clock Gating Implementation . 27
3.3.2 Step-by-Step Example . 28

3.4 Coprocessor Generator . 30
3.4.1 Template Interface Layer . 30
3.4.2 Driver Specification . 33
3.4.3 coprocessor Deployment . 34

4 CGR on ASIC - Automating PG 37
4.1 State of the Art: Power Management in ASIC systems 37
4.2 Methodology . 39

4.2.1 Automatic Power Gating Implementation 40
4.2.2 Step-by-step example . 42

4.3 Integration in MDC . 44

v

vi CONTENTS

4.4 Assessment . 48
4.4.1 Assessment Setup . 49
4.4.2 90 nm CMOS Technology: complete power gating support 51
4.4.3 90 nm CMOS Technology: application-specific power gating support . 54
4.4.4 Preliminary Results Over a 45 nm Technology 55

4.5 Chapter Remarks . 56

5 CGR on ASIC - Power Modelling 59
5.1 State of the Art: Modelling Power Consumption in Coarse-Grain Reconfig-

urable ASIC architectures . 59
5.2 Methodology . 61

5.2.1 Power Gating - Power Consumption Models 61
5.2.2 Clock Gating - Power Consumption Models 63
5.2.3 Parameters Discussion . 64
5.2.4 Power Analysis Algorithm . 66

5.3 Integration in MDC . 66
5.3.1 Step-by-step example . 67

5.4 Assessment . 72
5.4.1 Evaluation Phase - Fast Fourier Transform Algorithm 72
5.4.2 Validation Phase - Zoom Application . 80
5.4.3 Power switch overhead . 84
5.4.4 Advantages of the proposed approach . 85

5.5 Chapter Remarks . 86

6 CGR on FPGA - the LWDF Methodology 89
6.1 SOA on Power Management in Dataflow-based designs 89

6.1.1 LWDF . 91
6.2 Methodology - LWDF . 92

6.2.1 Actor Invoke Module . 92
6.2.2 Actor Enable Module . 93
6.2.3 Actor Scheduling Module . 95
6.2.4 Dataflow Edge Module . 96

6.3 Lightweight Dataflow Environment for LWDF-V methodology - LIDE-V 98
6.3.1 Asynchronous LIDE-V Design . 98
6.3.2 Clock Gating . 100
6.3.3 FIFOs comparison . 101

6.4 Experimental Results . 102
6.4.1 LWDF-V Implementation of Deep Learning Neural Network Application103
6.4.2 Hardware Profiling . 105
6.4.3 The Application of Low Power Techniques 106

6.5 Chapter Remarks . 109

7 Multi-Grain Adaptivity on FPGA 111
7.1 SOA on Multi-Grain Reconfiguration . 113
7.2 Methodology - Multi-Grain Adaptivity . 115

7.2.1 The ARTICo3 Framework . 115
7.2.2 New Coprocessor Generator for MDC . 118

CONTENTS vii

7.2.3 Kernel Adapter . 124
7.2.4 Step-by-Step Example . 125

7.3 Assessment . 125
7.3.1 Test Case: Edge Detection - Sobel and Roberts algorithms 125
7.3.2 Designs Under Tests . 127
7.3.3 Experimental Results . 129

7.4 Chapter Remarks . 134

8 Concluding remarks 137
8.1 Future Works . 139

Bibliography 141

A Logic Regions Algorithms 155

B Logic Regions Identification Algorithm Extension 157

C Power Analysis Algorithms 159

D Multi-Grain Adaptivity - Kernel Adaptation Script 161

List of Figures

2.1 Flexibility versus performance graph. 6
2.2 Dataflow Process Network design example. 12

3.1 Multi-Dataflow Composer Tool - Development Timeline. 20
3.2 Multi-Dataflow Composer tool: an overview. 21
3.3 Baseline MDC Core: a step-by-step example. 22
3.4 Topology Definer: an overview. 23
3.5 Topology Definer: a step-by-step example. 26
3.6 Logic Set Definer: a step-by-step example of Logic Regions identification and

clock gating physical implementation . 29
3.7 Coprocessor generator design flow overview. 31
3.8 Architecture of the memory-mapped Template Interface Layer (mm-TIL). 32
3.9 Architecture of the stream-based Template Interface Layer (s-TIL). 33

4.1 Logic Set Definer: a step-by-step example of the Logic Regions set extension with
the SBoxes. 43

4.2 MDC design suite: baseline flow (on top) and corresponding power extension (on
bottom). 44

4.3 Finite state machine that controls the power logic belonging to a switchable PD. . 47
4.4 Logic Set Definer: power gating physical implementation. 48
4.5 UC2: Static power consumption at 90 nm with state retention cells. 53
4.6 UC2: Dynamic power consumption at 90 nm with state retention cells. 54

5.1 Enhanced MDC design suite: integration of the automated hybrid, clock and
power gated, support. 67

5.2 Step-by-step example of the enhanced MDC power extension implementing Al-
gorithm 4. Table on the top of the figure reports, for each logic region (LR), the
power consumption of the region when no powere saving techniques are applied
(Base), the power consumption of the LR estimated for a perspective power gating
application (PG), and the power consumption of the LR estimated for a perspec-
tive clock gating application (CG). Data in brackets (var%) report the percentage
variation in the power consumption, with respect to the Base consumption, when
PG or CG are applied. 71

5.3 Enhanced MDC design suite: Hardware platform with hybrid application of clock
gating and power gating methodologies. 72

viii

LIST OF FIGURES ix

5.4 FFT use case: Original design with 12 radix-2 butterflies for an FFT of size 8. Twid-
dle factors w k

n are calculated according to Eq. 5.10 73
5.5 FFT use case: Latency versus power consumption tradeoff for the 4 different 8-

size FFT configurations. 74
5.6 FFT use case: Area percentage per LR. 75
5.7 FFT use case: Comparison between the estimated and real power variation due

to the clock gating integration. 76
5.8 FFT use case: Comparison between the estimated and real power variation due

to the power gating integration. 76
5.9 FFT use case: Comparison between the base design and the four gated designs.

Legend shows, in brackets, the power management area overhead for each design
wrt to the Base one. 78

5.10 FFT use case: Latency versus power consumption tradeoff for the 4 different 8-
size FFT configurations, when gated designs are adopted. 79

5.11 Zoom Co-Processor at 90 nm CMOS technology: Comparison between the base
design and the four gated designs. Legend shows, in brackets, the power manage-
ment area overhead for each design wrt to the Base one. 81

5.12 Zoom Co-Processor at 45 nm CMOS technology: Comparison between the base
design and the five gated designs. Legend shows, in brackets, the power manage-
ment area overhead for each design wrt to the Base one. 84

6.1 Illustration of an LWDF-V-based actor. 92
6.2 Example of an AIM FSM for a CFDF actor with three modes. 94
6.3 Illustration of LWDF-V-based actors communication. 95
6.4 Example of a AEM with three different firing condition for three possible modes. . 95
6.5 An example of an FSM that controls an ASM. 96
6.6 Examples of signal waveforms during execution of an LWDF-V actor. 97
6.7 Synchronous FIFO design . 97
6.8 Illustration of an LWDF-V-based implementation of a CFDF graph that consists

of three actors. 99
6.9 Asynchronous FIFO design in LIDE-V. 99
6.10 Clock gating in a LIDE-V actor. 100
6.11 Signal waveforms in the clock gating module. 101
6.12 Pseudo-CDC FIFO design in LIDE-V. 102
6.13 LIDE-V design for the accelerated DNN subgraph. 104
6.14 The AIM implementation for the convolution actor. 104
6.15 Clock Regions in DNN subgraph. 106

7.1 Multi-Grain Reconfiguration - The best of DPR and CGR 112
7.2 Integrated Hardware Design Flow . 116
7.3 Schematic view of the ARTICo3 Architecture, with a zoom on the ARTICo3 Wrap-

per (as presented in Rodríguez et al. [93]). 117
7.4 ARTICo3 toolchain. 118
7.5 Design flow overview. 119
7.6 Architecture of the memory-mapped Template Interface Layer (mm-TIL). 119
7.7 Architecture of the stream-based Template Interface Layer (s-TIL). 120
7.8 Adaptation Flow from an MDC- to a ARTICo3-compliant CGR IP. 124

x LIST OF FIGURES

7.9 Integrated Design Flow - Step-by-step Example . 126
7.10 Simplified dataflow graphs implementing the Sobel and the Roberts edge detec-

tion computational kernels. 128
7.11 . 131

8.1 Multi-Dataflow Composer Tool - Development Timeline at 2018 138

List of Tables

4.1 Computational kernels of the adopted use cases. 49
4.2 Area occupancy of the kernels within the adopted use cases targeting a 90 nm

ASIC technology. [* Percentages wrt to the UC total area (baseline row of Ta-
ble 4.4); ** Percentages wrt the kernel total area.] . 50

4.3 Use Case composition in terms of LRs . 51
4.4 90 nm ASIC synthesis results. [* Percentages wrt to the baseline design with-

out power-management; ** Percentages wrt to the baseline design implementing
fine-grain clock gating with SoC Encounter] . 52

4.5 90 nm ASIC synthesis results: focus on static and dynamic power consumption. [*
Percentages wrt to the baseline design without power-management; ** Percent-
ages wrt to the baseline design implementing fine-grain clock gating with SoC
Encounter] . 53

4.6 90 nm power gating (without state retention cells) ASIC synthesis results. [* Per-
centages wrt to the baseline design without power-management; ** Percentages
wrt to the baseline design implementing fine-grain clock gating with SoC En-
counter] . 55

4.7 45 nm ASIC synthesis results. [* Percentages wrt to the baseline design with-
out power-management; ** Percentages wrt to the baseline design implementing
fine-grain clock gating with SoC Encounter] . 56

4.8 45 nm ASIC synthesis results: focus on static and dynamic power consumption. [*
Percentages wrt to the baseline design without power-management; ** Percent-
ages wrt to the baseline design implementing fine-grain clock gating with SoC
Encounter] . 57

5.1 Parameters classification. Table depicts for each parameters the typologies it be-
long (architectural, functional and technological), its description and and how it
is exacted. 65

5.2 Parameter and power consumption of each LR, extracted by the synthesis reports
of the baseline CGR platform. 68

5.3 Contributions of static and internal power consumption extracted by the refer-
ence technology library or characterized by synthesis trials. 68

5.4 Resulting power consumption of the different LRs when the proposed models are
applied . 69

5.5 FFT use case: Features of the different configurations integrated on the CGR de-
sign. Data refer to a 90 nm CMOS target technology. 74

xi

xii LIST OF TABLES

5.6 FFT use case: Logic regions architectural and functional characteristics. 75
5.7 FFT use case: Detailed static and dynamic power variation due to clock gating

(CG Variation %) and power gating (PG Variation %). 77
5.8 FFT use case: Clock gating variation estimation step accuracy. 79
5.9 FFT use case: Power gating variation estimation step accuracy. 79
5.10 Zoom Co-processor use case: Computational kernels distinctive features. 80
5.11 Zoom Co-Processor at 90 nm CMOS technology: Characterization of the hybrid,

clock and power gated designs, achieved with the proposed automated flow.DAT_5%:
area threshold 5%. DAT_10%: area threshold 10%. NA stands for not assigned and
includes those LRs that placed in the always-ON domain. 81

5.12 Zoom Co-Processor at 90 nm CMOS technology: clock gating variation estimation
step and power gating variation estimation step accuracy. 82

5.13 Zoom Co-Processor at 45 nm CMOS technology: Characterization of the hybrid,
clock and power gated designs, achieved with the proposed automated flow.DAT_5%:
DAT_1%: area threshold 1%. area threshold 5%. DAT_10%: area threshold 10%.
NA stands for not assigned and includes those LRs that placed in the always-ON
domain. 83

5.14 Zoom Co-Processor at 45 nm CMOS technology: Power gating variation estima-
tion step and clock gating variation estimation step accuracy. 85

5.15 FFT use case at 90 nm CMOS technology: Power gating variation estimation step
accuracy, using reports generated without the real switching activity. 86

6.1 Resource utilization. The numbers in parentheses give the differences in utiliza-
tion of the corresponding resource compared to the synchronous FIFO. 102

6.2 Resource utilization of the implemented FIFOs. 102
6.3 DNN hyperparameters. 103
6.4 The computational complexity and amount of data transfer for each DNN layer. . 103
6.5 Execution time in clock cycles of each actor. ttotal: total time required to generate

DNN_1fm. Zic: invoke to firing completion time. Zei: enable to invoke time. Zec:
enable to firing completion time. # f i r i ng s: number of firings during generation
of DNN_1fm. T A_Tic = (Zic)× (# f i r i ng s). T A_Tic% = (T A_Tic/ttotal)×100. 105

6.6 Waiting time in clock cycles for each actor. Zic: invoke to firing completion time.
Zci: firing completion to next invoke. Zii = Zic +Zci. 106

6.7 Composition of the four designs. 107
6.8 Resource utilization. The numbers in parentheses give the percentage of utiliza-

tion with respect to the resources available on the board. 107
6.9 Dynamic power consumption. ∆% gives the difference in power consumption

compared to the baseline DNN design. 108
6.10 Execution time, power, and energy. ∆%s give the difference in total graph exe-

cution time and energy consumption compared to the baseline DNN design, re-
spectively. 109

7.1 Experimental timing results, in frames per second, for all the configurations of
the considered designs. Data in brackets show the percentage variation of the
configurations with respect to the case where only one slot is exploited. 130

LIST OF TABLES xiii

7.2 Experimental energy results in [mJ] for all the configurations of the considered
designs. *Coming from real on-board power measurements. Data in brackets
show the percentage variation of the configurations with respect to the case with
only one slot. 132

7.3 Reconfiguration overhead. *N is the number of parallel accelerators (slots). **Real
on-board power measurements. 132

7.4 Coarse-grain reconfiguration overhead (affecting coarse-grain and multi-grain de-
signs in Section 7.3.1). In brackets percentages of variation of each metric wrt
CGR design. 133

Chapter 1

Introduction

We are in the Cyber-Physical Systems (CPS) era and designers need to offer support for ad-
vanced adaptivity. CPS are complex systems composed of different interactive components,
which need to meet several requirements imposed by the environment, the user and even
their internal status. In particular adaptivity triggers are classified as:

• functional-oriented: adaptation needed to offer different functionalities over the same
substrate or to maintain correct functionality, e.g., because the CPS mission changes,
several functions running on the same HW interchangeably, or the data being pro-
cessed changed and adaptation is required. It may be parametric (e.g., a weights or
parameters changes) or fully functional (e.g., the algorithm changes). For example,
it might be necessary to change the type of filtering according to the type of noise in
order to provide the required functionality.

• non-functional-oriented: functionality is fixed, but system requires adaptation caused
by non-functional requirements, such as performance or available energy. For exam-
ple, filtering precision could be reduced in case of low battery.

• repair-oriented: for safety and reliability purposes, adaptation may be used in case
of faults. Adaptation may add self-healing or self-repair features. For example, HW
task migration for permanent faults, or scrubbing (continuous fault verification) and
repair.

Reconfigurable systems provide a valuable solution to offer support for adaptivity: ly-
ing in the middle between general purpose computing platforms and application-specific
circuits, they offer tradeoffs between flexibility, performance and power efficiency. In this
thesis, coarse grained reconfigurable (CGR) systems have been addressed. In CGR systems,
all the resources belonging to all the possible configurations are always instantiated in the
substrate, and reconfiguration is achieved by multiplexing the resources in time, switching
among configurations. The outcome is high-performance and fast reconfiguration, while
the main drawbacks are related to: (1) maximum operating frequency, which is less than or
equal to the one of the isolated configurations; (2) area utilization, due to the presence of
resources that are not involved in the configuration that is active; (3) flexibility, being able to
compute only the functionalities the system has been designed for. This makes coarse-grain

1

2 CHAPTER 1. INTRODUCTION

reconfiguration suitable for application specific real-time contexts, where only few differ-
ent behaviours are required. CGR solutions can be adopted either in Application Specific
Integrated Circuits (ASIC), incrementing the intrinsic flexibility of this high performance cir-
cuitry, or in Field Programmable Gate Array (FPGA) architectures, to provide a further level
of flexibility besides the native fine-grain one. In particular, in the FPGA case the CGR can
be combined with the dynamic partial reconfiguration (DPR) to achieve very high flexible
and adaptable chips capable of switching, at runtime, among different sets of functionalities
and working points. The main issue of CGR devices is the complexity of their design under
several aspects: resources mapping, optimisation, hardware design, runtime management.
Moreover, reconfigurability alone is still unable to solve the power issue.

In the last decade, the adoption of model-based design by electronic systems designers
has increased. System-level modelling enables early stage analysis and optimisation, help-
ing in meeting and verifying the design constraints. In particular dataflow models of com-
putation present an intrinsic modularity that is natively suitable to manage execution con-
currency typical of multi-processor environments. Furthermore, they can be exploited to
facilitate system development, being possible to map dataflow entities to hardware blocks.
For these distinctive features, dataflow models of computation together with coarse-grain
reconfiguration, constitute the pillar of the approach adopted in this thesis.

1.1 Objectives of the Thesis

The main objective of this thesis work is the development of automated methodologies for
the design and management of low power CGR systems. The methodologies, leveraging on
the dataflow models of computation, will be able to provide power/energy awareness and
consumption optimization depending for different application scenarios and technology
target (ASIC or FPGA). These methodologies have been automated within different exten-
sions of the Multi-Dataflow Composer Tool, a dataflow to hardware design suite for CGR
systems. In particular this main objective, can be divided in the following ones:

• different approaches for power/energy saving strategies will be explored, to provide
power awareness and optimization for different target devices (ASIC and FPGA).

• system-level modelling is crucial in the design of CGR systems. A dataflow-driven
methodology able to help designers to experiment with new optimization techniques
for dataflow-based implementations will be studied.

• the methodologies have to be automated, exploiting already existent dataflow oriented
tools, so that all the steps of the reconfigurable systems design flow (resource mapping,
optimisation, hardware design and runtime management) will be supported.

1.2 Thesis Structure

The thesis structure firstly provides in Chapter 2 a brief state of the art of the concepts at
the basis of the proposed approach: reconfigurable computing, dataflow models of com-
putation and power issue. Chapter 3 present an overview of the Multi-Dataflow Composer

1.2. THESIS STRUCTURE 3

tool, which is the main tool exploited in the work of this thesis, to automate the implemen-
tation of the different power management techniques in dataflow-based CGR systems that
are explored in this thesis, and presented in the following Chapters:

• Chapter 4 will discuss power management in ASIC systems, and will present a method-
ology for the automatic implementation of a power gating strategy to CGR systems;

• Chapter 5 will extend the implementation of power saving strategies for CGR systems,
dealing with a power modelling methodology capable of determining, prior to any
physical system implementation, the cost of the saving strategy and its best imple-
mentation;

• Chapter 6 will propose a dataflow-driven methodology capable of helping the design-
ers to rapidly incorporate and efficiently experiment with new optimization techniques
for dataflow-based implementations;

• Chapter 7 will describe and automated framework for the development and runtime
management of multi-grain reconfigurable hardware systems, able to to provide dif-
ferent tradeoffs between performance, flexibility and energy consumption, reaching
the advanced runtime adaptivity support necessary for CPS.

Lastly, Chapter 8 will report some considerations about the thesis work, going down in the
detail for all the presented methodologies and giving some directives for future improve-
ments.

Chapter 2

The Context of Low Energy
Reconfigurable Digital Circuit
Design for Streaming applications

In literature there is a wide variety of processing systems that provide different degrees of
performance and flexibility. Figure 2.1 depicts a graphical overview of how the existing pro-
cessing systems are spread between the axes representing these two metrics. Closed to
the flexibility axis there are general purpose systems, such as the Central Processing Units
(CPUs) commonly adopted in personal computers. These devices are able to execute a
huge quantity of functionalities, since they support different programming languages that,
through proper compilers, are translated in machine code. The machine code is the se-
quence of instruction calls of the CPU that leads to the execution of a specific functionality.
The instructions supported by CPUs are generic operations, like the transfer of a data from
the main memory to one of the processor registers or a simple addition between the values
contained onto two registers. They are not conceived for a particular application. Actually,
by means of programming languages the user can model its custom applications with a de-
gree of flexibility that is the maximum achievable for an electronic device.

Leaving the flexibility axis, there are some devices that can be seen as general purpose
ones, but that are more suitable for a specific kind of applications. Examples of this category
of devices are Graphical Processing Units (GPUs) and Digital Signal Processors (DSPs). The
GPUs are processing systems dedicated to the execution of tasks related to the image and
video processing. Their architecture is designed for the exploitation of the data parallelism
that typically characterises this kind of applications. Despite GPUs are conceived for a spe-
cific class of operations, they are able to provide a huge variety of functionalities due to their
support for several programming languages. However, the best performance is achievable
only with the image and video processing applications and/or if the application is written in
order to optimally exploit the GPU architecture. At this purpose several API and frameworks
aiming at the usage of GPUs for general purposes (GPGPUs) by modifying, automatically or
not, the generic code of a given application have been proposed in literature (e.g the CUDA
architecture from NVIDIA [77] or the OpenCL library [2]).

DSPs are another kind of almost general purpose devices that provide specific machine
instructions for signal processing operations. The most common additional instructions

5

6 CHAPTER 2. LITERATURE

fl
e
x
ib
il
it
y

perf/J

ASIC

RECONF

DSP

GPU

CPU GP

Figure 2.1: Flexibility versus performance graph of the main architectural alternatives for
processing systems.

provided by DSPs are multiply and accumulate, typically useful in matrix operations, fil-
tering and transforms. Very often DSPs natively support fixed and floating point arithmetic
through dedicated logic units, thus speeding-up the operations involving these number for-
mats. Furthermore, the DSP architectures can also be able to exploit data parallelism that
may be present in the signal processing applications. Like for GPUs, DSPs have dedicated
compilers to support programming languages and, theoretically, to run any kind of program,
but they achieve the best performance only if the executed code contains common signal
processing operations and/or if it is written in order to fully exploit the system potentials
(DSP primitives may be necessary).

All the mentioned devices, CPUs, GPUs and DSPs, can be grouped within the general
purpose systems since, by means of programming languages, they can execute any kind of
application. However, for the same reason, they are not uniquely designed to perform a spe-
cific task. The execution of a single instruction in general purpose systems is composed of
different stages: instruction fetch, instruction decode, execution, memory and write back.
Each stage can last one or more clock cycles and an application can be composed of sev-
eral thousands of instructions. Even though the standard execution stages can be pipelined
or replicated, it is straightforward that this is not the most efficient way to execute a given
functionality. To push the performance, the design approach has to be reversed: if for the
general purpose systems the wanted functionalities are adapted to a prefixed architecture,
in maximum performance systems the architecture has to be adapted to the wanted func-
tionality. This is what occurs for the Application Specific Integrated Circuits (ASICs) on the
opposite side of the flexibility versus performance graph of Figure 2.1. ASICs, as the same
acronym reveals, are systems that are designed exclusively for the execution of a given func-
tionality. All and only the involved resources are needed to perform the functionality and the
architecture is forged accordingly to the native execution flow of the application. Obviously,
the design can be affected by other constraints, such as the minimisation of the consumed
power, besides the performance maximisation. This may lead to different versions of ASICs
for a given application. ASICs are not flexible at all because no other operations can be per-
formed, apart the one around which the system has been built.

2.1. RECONFIGURABLE COMPUTING 7

A huge difference between the adoption of general purpose systems or ASICs for the ex-
ecution of applications stands on the designer effort, costs and required skills. Dealing with
general purpose systems the designer has firstly to choose the target architecture among a
wide variety of available devices (also cheap solutions are possible), and then to shape its
code accordingly. He has not to worry about the system architecture design, so hardware de-
signing skills are not necessary. Dealing with ASICs is different, since the architecture itself
has to be characterized, thus requiring very specific hardware designing expertise. The de-
velopment of ASICs is generally a longer, more expensive and more complex process than
adopting general purpose systems. Additional choices are possible between the two de-
scribed extreme points, general purpose systems and ASICs, of the flexibility versus perfor-
mance graph in Figure 2.1. An appealing option, constituting a trade-off among the previous
systems, is given by reconfigurable computing, that offer tradeoff between performance and
flexibility.

However, dealing with modern embedded devices, one crucial aspect to be taken into
consideration is the system consumption. As a matter of fact, the portable era has raised
the problem of power dissipation to the first positions of the design constraints. Battery life
limits force devices to exploit each single energy particle in the maximum efficient way, so
that a dedicated power management strategy usually needs to be defined within the project
of modern embedded systems.

In order to overcome the problems of low-power reconfigurable systems development
and evolution, the present work exploits the dataflow paradigm. Dataflows own distinctive
features, like modularity and parallelism highlighting, that may help designers targeting a
particular class of reconfigurable systems. A detailed description of dataflow paradigm and
of the DPS-oriented dataflow Models of Computation is provided by Section 2.2.

The rest of the chapter is organised as follow: Section 2.1 will describe the main aspects
of reconfigurable computing and will show a survey of the main reconfigurable architectures
proposed in literature. Section 2.2 will present the dataflow paradigm and the particular for-
malism that has been adopted in this thesis work. Section 2.3 involves an overview on the ac-
tual power issue in digital systems. Because of the heterogeneity of this thesis, that explores
different power management methodologies for the efficient implementation of low-power
dataflow-based reconfigurable designs, the literature about the power management tech-
niques will be deeply analysed in the technical chapters. In particular Chapter 4 and Chap-
ter 5 analyse the automated methodologies for the implementation of power saving strate-
gies in ASIC systems, Chapter 6 focuses on the power management techniques in dataflow
field, while Chapter 7 illustrates the effort made in the FPGA field, to develop mixed-grain ar-
chitectures as a way to offer different tradeoffs between performance and power consump-
tion.

2.1 Reconfigurable Computing

Reconfigurable computing refers to a class of digital electronic system architectures that
combine the flexibility typical of software programmed systems to the high performance
of the hardware implementations. They are usually conceived as collections of processing
elements (PEs) whose functionality and connections can be configured at run time, to adapt
them to different applications or operating modes [25], a reconfigurable interconnect and a
flexible interface to connect the fabric with the external world. Reconfigurable systems are

8 CHAPTER 2. LITERATURE

often called adaptive, meaning that the logic units and interconnects of the system can be
modelled to fit a specific functionality by programming it at hardware level [116]. However,
the more these components are able to fit the applications requirements, the slower they are
with respect to less flexible component, that can easily turn out to be also smaller in area
and less power consuming [117]. The most common example of reconfigurable platforms
are Field Programmable Gate Arrays (FPGAs), which typically provide a very high degree of
flexibility through a large density logic substrate.

Such systems can be classified according to the granularity of the PEs and interconnects.
The granularity determines the level of detail that each PE can manage and it is typically clas-
sified onto fine-grain and coarse-grain. Granularity heavily affects the system configuration
process and flexibility. Fine-grain reconfigurable (FGR) approaches involve bit-level FUs, re-
sulting in a high flexibility but requiring long configuration time (due to the amount of logic
to be configured within the substrate). Coarse-grain reconfigurable (CGR) systems provides
word-level PEs, thus providing less flexibility, fitting better around the wanted functionality,
while guaranteeing faster configuration phases.

2.1.1 Fine-Grain Reconfiguration

FGR systems involve PEs that perform simple functions on a single or a small number of
bits. Similarly, their interconnects can differentiate the data routing at the same bit level
than the PEs one. The most common PEs in FGR systems are the small Look-Up Tables
(LUTs) adopted to implement combinatorial logic on commercial FPGAs. These circuits are
able to perform any logic function for the supported number of inputs, once configured with
a proper bitstream. FGR systems involve a huge amount of PEs in order to implement com-
plex functionalities. In turn, the amount of data necessary to configure these PEs can easily
become very big and the configuration phase, that is the downloading of the configuration
data, gets slow. For this reason the runtime reconfiguration of the FGR devices is hardly
achieved.

The most common FGR devices are FPGAs. The latest top range commercial FPGAs,
such as the Xilinx Ultrascale+ Family [124]can embed more than one million LUTs with up to
eight input each. LUTs in FPGAs are commonly packed in groups along with some bit-wise
memory elements (Flip-Flops (FFs)). The blocks involving LUTs and FFs are the effective
PEs of FPGAs, by the point of view of the reconfigurable architecture. Thanks to their strong
flexibility, FPGAs can be adopted on the practice in different ways [113]: as reconfigurable
glue logic for high performance interfacing layers form data sources to processors [19], as
hardware accelerators for a single functionality supporting high speed data exchange [38] or
as flexible accelerators able to speed-up several software applications within a wider server
structure. The strong efficiency, both in terms of performance and power, of these kind of
devices is very close to the one typical of application specific integrated circuits (ASICs),
especially if compared to general purpose systems like CPUs and GPUs [5].

However FPGAs configuration requires a huge amount of information and time. For this
reason the reconfigurability mainly provided by this kind of devices is at design-time. Since
the last ten years, FPGAs are able to support also a sort of runtime reconfiguration through
the so called partial reconfiguration [122] [6], also known as dynamic partial reconfigura-
tion. Partial reconfiguration is based on the configuration of a portion of the design during
the execution by exploiting a set of previously generated configurations stored on a dedi-
cated memory that is accessed from a configuration module. Kohn [55] exploited the par-

2.1. RECONFIGURABLE COMPUTING 9

tial reconfigurability in order to develop a hardware accelerator for Sobel and Sepia filtering
within a full high definition video pipeline. In this case partial reconfiguration allowed the
reduction of the configuration bitstream size from more than 4 MB to less than 135 kB, lead-
ing to a saving time over 95% with respect to a full system reconfiguration.

Besides FPGAs, other kinds of FGR systems have been proposed in literature. Chiu et
al. [51] developed a FGR architecture whose PEs involve two four-ports LUTs and one FF,
similarly to the common FPGA ones. The architecture, called FMRPU, is organised as an ar-
ray of 4096 overall PEs with a hierarchical interconnect layer that guarantees short combina-
torial paths. FMRPU has been conceived for high throughput and data parallel applications.
It has been validated and compared with some similar devices on motion estimation and
digital signal processing operations. Other solutions, like the one proposed by Agarwal et
al. [4], differentiated the PEs by packing inside only combinatorial logic: four 3-input LUTs
and three 4-bit ripple-carry adders. The PEs can be configured (43 configuration bits are re-
quired for each PE) in order to implement generic logic functions with up to five inputs, one
4-bit adder in parallel with an 8-bit one, one 4-input 4-bit adder or a 4-bit multiplier. The FFs
needed to store operands and intermediate results are integrated in the interconnect layer
as a register bank with 64 entries 32-bit each. A unique register bank is provided to serve
six different PEs. The architecture, prototyped on a 32 nm CMOS technology, is intended to
provide scalable and high efficiency computing power on microprocessor platforms for the
digital signal and media processing.

2.1.2 Coarse-Grain Reconfiguration

In order to overcome the problem of slow configuration phases on FGR systems, CGR archi-
tectures waive some flexibility by adopting bigger PEs. CGR PEs are typically constituted by
arithmetic and logic units (ALUs) along with a significant amount of storage. They can still be
reconfigurable and their interconnect is typically at the same coarse granularity. CGR archi-
tectures can also achieve higher area efficiency and simpler placement and routing phases
than FGR ones [41]. In literature several different CGR systems have been proposed. Harten-
stein [41] introduced a classification for CGR architectures based on the layout and intercon-
nections of the involved PEs: linear arrays, mesh-based and crossbar-based.

CGR architectures organised as single or multiple linear arrays are very suitable for the
mapping of execution pipelines. Within linear arrays, natural interconnects are the ones
connecting each PE with the two nearest neighbour ones, the predecessor and the successor
in the pipeline. However, in presence of forks, additional links spanning among the whole
array and proper routing resources are required. An example of a linear array is given by
Smaragdos et al. [108]. Authors proposed a fault tolerant multi-core architecture, where
pipeline stages (the CGR architecture PEs) of the cores are interleaved by switching elements.
A faulty stage within a core can be replaced by the same stage belonging to a different core. In
some cases, linear arrays are used to implement CGR platforms similar to VLIW processors,
such as for the Montium processing tile [45]. This reconfigurable processing unit involves
five processing parts composed by one ALU, two overlying memories and related registers
bank and interconnect.

The most common class of CGR architectures is the mesh-based one. It is basically a rect-
angular two dimensional array of PEs, where the most common interconnects are 4 (North,
South, East, West) or 8 (including also the diagonal directions) nearest neighbour short links.
Examples of these kind of architectures are the works of Niedermeier et al. [76] and Paul et

10 CHAPTER 2. LITERATURE

al. [83]. Niedermeier et al. [76] propose an eight by eight two dimensional mesh of PEs, per-
forming arithmetic and logical operations on integer or fixed point numbers, with an addi-
tional first column of memory elements. Paul et al. [83] proposed reMORPH, a target specific
platform (built upon a Xilinx FPGA) that exploits DSP48 and BRAM coarse-grain blocks of the
FPGA as cores of the array PEs.

The last type of CGR architectures introduced by Hartenstein [41] is the crossbar-based,
that relies on a crossbar switch, the most powerful communication network. Despite its
adoption in FGR systems is very common, a full crossbar is only rarely employed in CGR ar-
chitectures. The crossbar is rather used in different reduced configurations. One of the first
works on crossbar-based CGR architectures is PADDI-2 [127]. It adopts a two level commu-
nication structure composed by a local network, connecting four PEs (16-bit ALUs) within
a unique cluster, and a global crossbar network, connecting the various clusters. Inoue et
al. [50] explored the trade-off of having different crossbar configurations within a system in-
volving the same VGLC as [1]. The authors showed that, by reducing the routing tracks of a
full crossbar solution, the area and the same routing performance can be improved. The cost
that has to be paid for this improvement is a decreasing of the processing speed in terms of
maximum operating frequency.

Modern trends of embedded devices that have to deal with several and strong constraints
are pushing the CGR systems to non conventional architectures. In particular, the above
mentioned approach inversion that occurs going from general purpose systems to ASICs
may affect also the CGR systems design. The applications that have to be mapped within
the CGR platform are not longer fitted within the prefixed architecture, eventually exploiting
the provided configurability. Rather, the CGR system is shaped exactly around the wanted
set of functionalities, maximising the efficiency in terms of power, resources usage and per-
formance. Obviously, the flexibility versus efficiency trade-off still applies and the price paid
with this strong specialisation is an equally strong decrease of flexibility. At any rate, ex-
tremely application specific CGR systems lead to non conventional architectures that are
not classifiable to any of the categories proposed by Hartenstein [41]. As it will be clearer in
the following chapters, this thesis work focuses on such extremely application specific CGR
systems.

Other works explored the possibility of taking advantage by adopting different kinds of
granularity on the same substrate, in order to achieve both high flexibility guaranteed by FGR
architectures and strong performance obtained by CGR ones. Modern FPGAs themselves are
actually multi-grain systems. Indeed, even though they are substantially FGR architectures,
provide some CGR functional blocks and memories. Indeed, when adopted to implement
arithmetic functions, fine-grain structures require more area, latency and consume more
power than the corresponding coarse-grain blocks [117]. A deeper overview of multi-grain
systems is given in Chapter 7

2.1.3 Composition

Depending on the kind of the involved PEs, reconfigurable architectures can have different
compositions. In particular it is easy to distinguish two main kinds of systems: homoge-
neous architectures, that involve a unique kind of PEs, and heterogeneous architectures, that
exploit several kinds of PEs. Homogeneity is very common in reconfigurable architectures,
since it eases the process of mapping the applications within the PEs. Among the archi-
tecture examples previously presented there is plenty of homogeneous architectures either

2.2. SYSTEM LEVEL MODELLING: THE DATAFLOW PARADIGM 11

for FGR ([4] [51] and CGR ([45] [76] [83]) systems. Homogeneity is also somehow related to
the flexibility versus efficiency trade-off. On the one hand, the availability of identical and
replicated PEs limits the degree of specialisation, and in turn efficiency, that the architecture
configurations can achieve if compared with dedicated heterogeneous blocks. On the other
hand, homogeneous PEs are more generic than heterogeneous ones and can implement a
wide number of functionalities.

The most common homogeneous PEs are ALUs. They generally perform arithmetic (sum,
subtract) and logical operations (shift, compare) on two or more integer and in some cases
fixed point numbers. Sometimes also the multiplication is supported, but it is also often per-
formed by dedicated nodes in heterogeneous architectures. Depending on the kind of ad-
dressed applications, the ALUs can also support floating point arithmetic. PEs often embed
some memory resources, in terms of input/output registers bank or as a small local memory.

As the requirements of efficiency for applications execution has become stronger, the dif-
fusion of heterogeneous architectures increased. FPGAs started integrating dedicated mem-
ory and multiplier blocks on their texture in order to avoid the waste of resources needed to
implement these functionalities on generic logic. The introduction of these additional ele-
ments within the array boosted the performance for some applications, such as digital signal
processing ones. Newest FPGA devices integrate also more complex blocks, like digital signal
processors, able to perform a variety of multiply and accumulate functions.

The border between the two composition classes, homogeneity and heterogeneity, is
very thin and strongly depends on the point of view of the observer. The architecture pro-
posed by Niedermeier et al. [76] involves a two dimensional array of identical computational
PEs, plus an additional first column of memory resources. Thus this architecture can be
seen as an heterogeneous system. The Montium processor tile [45] introduced before and
so far considered as homogeneous architecture is, actually, an heterogeneous structure if the
memory blocks are considered as PEs.

2.2 System Level Modelling: The Dataflow Paradigm

Model-based design has been widely studied and applied over the years in many domains of
embedded processing. Dataflow is well-known as a paradigm for model-based design that
is effective for embedded digital signal processing (DSP) systems [12]. A dataflow can be de-
scribed as a direct graph DFG〈V ,E〉, where V is the set of vertices of the graph (the actors)
and E is the set of edges representing loss-less, order-preserving point-to-point connection
channels. The dataflow paradigm has been firstly proposed in the early 1970s with the works
of Dennis [31] and Kahn [40]. In particular, Kahn [40] introduced a distributed model of com-
putation called Kahn Process Network (KPN). In KPN processes communicate by means of
unbounded unidirectional First-In-First-Out (FIFO) channels. Each process is executed se-
quentially, while the overall computing at the processes level is parallel. A special case of
KPNs are the Dataflow Process Networks (DPNs), firstly proposed by Lee et al. [59]. DPNs
describe programs through the interaction of logical entities, the actors, analogue to the KPN
processes but providing conditions on which an actor is ready to execute (firing rules). Fig-
ure 2.2 illustrates an example of DPN. The actors are abstract representations of PEs that
encapsulate their own internal state and generate output tokens from the respective inputs,
asynchronously concurring to the whole computation. The communication between actors
is based on the exchange of sequences of atomic data packets called tokens. This commu-

12 CHAPTER 2. LITERATURE

State

Actor
guarded atomic

Action

encapsulated State

point to point, buffered

token passing Connection

Action

Figure 2.2: Dataflow Process Network design example.

nication is asynchronous, since it is driven by the production and consumption of tokens.
Once triggered for processing (fired), actors execute a sequence of steps called actions that
can result in:

• the consumption of one or more input tokens;

• the production of one or more output tokens;

• the change of the actor internal state.

Actors are implemented by any host language able to specify the actions firing rules.
Modularity lets it possible to combine and make communicate actors described through dif-
ferent specification languages such as Intellectual Properties (IPs) coded in HDL, low-level
software actors written in C and high level software actors written in Java. Actors may be
atomic actors or sub-graphs encapsulating in turn a dataflow network in a hierarchical fash-
ion. Such a kind of model is very suitable to manage the concurrency due to parallelism that
one application may intrinsically have. Indeed, thanks to the token mediated communica-
tion policy, race conditions among actors are avoided. Furthermore, dataflows are highly
modular specifications naturally amenable to block diagrams, therefore perfectly fitting to
signal processing applications. Modularity strongly favours the code reuse, speeding-up the
time to market needed for modelling updated versions of existent applications or new func-
tionalities by scratch. For these distinctive features, the dataflow paradigm constitutes a
valid alternative to the standard imperative programming model when concurrency occurs
(e.g. in multi-core platforms). The imperative paradigm implements concurrent programs
through threads, but leaves the onerous task of managing the concurrency among them to
the programmer. In a dataflow program, concurrency depends on the token availability and
each actor may fire independently without taking care of the other actors execution state. In
this way, the program can be distributed over different PEs and the application parallelism is
easily exploited. All these distinctive features make dataflows very suitable for programming
highly parallel, also heterogeneous systems, like multi-processor SoCs or CG reconfigurable
arrays.

2.2. SYSTEM LEVEL MODELLING: THE DATAFLOW PARADIGM 13

2.2.1 Dataflow Models of Computation

In literature, several dataflow models, also referred as dataflow Models of Computation (MoCs),
have been proposed. The differences between dataflow MoCs are related to the actors inter-
nal communication and actions scheduling. In particular the number of exchanged tokens
can be fixed, variable, not specified or it can depend on parameters. Furthermore actors can
have an external control flow.

The Synchronous DataFlow networks (SDF) [58] is a special case of DPNs where actors
have static firing rules: the number of tokens produced and consumed by each action is
fixed. SDF MoC makes it possible to determine if the program can be scheduled at compile-
time by means of a static code analysis. The static (compile-time) analysis is based on the
checking of consistency and schedulability, that is the ability to come back to the initial FIFO
states. The former is checked through the extraction and resolution of the topology equation,
by the rank of the related topology matrix. The latter is checked by verifying that enough
initial tokens have been set. The static firing analysis produces, if the SDF is consistent and
schedulable, a static schedule (a predefined sequence of actor firings) with a bounded mem-
ory usage and without deadlocks.

For many signal processing applications, it is not possible to represent all of the func-
tionality in terms of purely decidable dataflow representations. For example, functionality
that involves conditional execution of dataflow subsystems or actors with dynamically vary-
ing production and consumption rates generally cannot be expressed in decidable dataflow
models [12]. Dynamic dataflow models are dataflow modelling techniques, most suitable
for DPS systems, in which the production and consumption rates of actors can vary in ways
that are not entirely predictable at compile time [12]. Most existing DSP-oriented dynamic
dataflow modelling techniques do not provide decidable dataflow modelling capabilities.
The increased modelling flexibility (expressive power) provided by such techniques is ob-
tained by giving up guarantees on compile-time buffer underflow (deadlock) and overflow
validation. Analysis techniques may succeed in guaranteeing avoidance of buffer under-
flow and overflow for a significant subset of specifications, but specifications may arise that
"break" these analysis techniques. Several dynamic dataflow techniques involve different
kinds of modelling abstraction, suitable for DPS systems.

The Boolean dataflow (BDF) model of computation extends SDF with a class of dynamic
dataflow actors in which production and consumption rates on actor ports can vary as two-
valued functions of control tokens, which are consumed from or produced onto designated
control ports of dynamic dataflow actors. An actor input port is referred to as a conditional
input port if its consumption rate can vary in such a way, and similarly an output port with
a dynamically varying production rate under this model is referred to as a conditional out-
put port. It has been proven that BDF is Turing complete, and also that if a given model of
computation can express all SDF actors as well as the functionality associated with the BDF
switch and select actors, then such a model can be shown to be Turing complete [14].

The MPEG RVC standards ISO/IEC 23001-4 and 23002-4 adopt a DPN MoC (more pre-
cisely on a DPN variant that allows token peek) for modelling the applications. DPN has
been adopted in video coding, as well as in other different multimedia areas, due to its high
expressiveness and to the availability of a formal programming language, the Caltrop Ac-
tor Language (CAL) [35], supporting all its features. CAL is a C-like textual programming
language developed in order to be easy to use through the adoption of a minimal seman-
tic core, and directly captures the description of DPN actors. Connections are implemented

14 CHAPTER 2. LITERATURE

as FIFO channels, which are used to transmit tokens.Specific token configurations or se-
quences can fire actions inside the actors, according to predetermined guard expressions.
Guards are boolean expressions on the current state and/or on input sequences that need
to be satisfied for enabling the execution of an action. The actions execution may lead to
state variations or to specific output tokens emission. For the specification of the intercon-
nections among the DPN actors, RVC adopted an XML dialect called XML Dataflow Format
(XDF), that is part of the related standards too.

The CAPH programming language incarnates the dataflow model by formalizing the be-
haviour of each dataflow actor and the description of the kind of values exchanged between
actors and of the computations that can be performed on these values. Similarly to CAL,
CAPH is suitable for stream-based applications. However, CAL provides constructs for ex-
pressive guards, priorities and scheduling, while scheduling in CAPH is much simpler, being
specified by a pattern-matching rule-based mechanism. Also CAL uses a dedicated network
language (XML) while CAPH exploit functional expression and higher-order constructs.

Parameterized Synchronous DataFlow (PSDF) is a meta-modelling framework for inte-
grating dynamic parameters into the class of dataflow models of computations that that
present graph iterations like SDF [11]. This allows actor tokens production/consumption
rates to be parameteric, and in turn dynamically reconfigurable. In the class of PSDF,πSDF [32]
introduces also interface based hierarchy [86] and dependences among different parameters
in order to reconfigure the production and consumption token rates of actors at runtime.

Enable-invoke dataflow (EIDF) is a general dataflow model of computation that supports
the dynamic behaviour of the dataflow actors [88]. In EIDF, each actor is divided into a set of
modes, where each mode, when executes, consumes and produces a fixed number of tokens,
i.e., has a fixed consumption rate and production rate associated with each input and output
port, respectively. The dynamic behaviour can be achieved by switching among these modes
at runtime. Each mode is specified by an enable method, which checks whether there is
sufficient data available on the actor’s input ports to fire the actor in its current mode, and
an invoke method, which executes the current mode, consumes and produces data with the
fixed rates of current mode, and returns a set of admissible next modes. Any mode in the set
of next mode could be further checked for readiness by the enable method and then invoked,
thus the non-deterministic applications could be modelled by EIDF.

Core functional dataflow (CFDF), which the LWDF programming approach is based on,
is a special case of the EIDF model. Instead of returning a set of valid next modes for the next
actor invocation, the invoke method should only return one valid mode of execution, which
means the actor execution could only proceed down one deterministic path. Thus, CFDF is
a restricted version of EIDF so that the returned set of the next modes only contains a single
element. This characteristic ensures a deterministic application.

The most important feature of EIDF and CFDF is a clean separation of enable and in-
voke capabilities. Once an invoke function is executed, it assumes that sufficient data is
presented, since the firing condition has already been checked by its enable function. This
feature improves the predictability of an actor firing and facilitates efficient scheduling tech-
niques. Such design imposes restrictions only on the structure and interface of the dataflow
actors instead of the actor functionality, which enables the retargetability of this dataflow
modelling approach.

2.2. SYSTEM LEVEL MODELLING: THE DATAFLOW PARADIGM 15

2.2.2 DSP-oriented Dataflow-based Tools

Due to their distinctive features, dataflow MoCs are adopted in a wide variety of tools for
both software and hardware design. In [70], methodologies for modelling, implementing
and optimizing pipelined hardware component networks from a high level dataflow graph
description are developed. They offer the possibility of optimizing the design in terms of
throughput or resource consumption. Stefanov et al. [110] present a system design flow,
centred around exploiting the Kahn Process Network model, in which an application writ-
ten in a subset of Matlab is mapped onto a target platform composed of a CPU and an FPGA
in a systematic and automated way. In realizing the flow, they developed and used the COM-
PAAN and LAURA tools, that allow us to go from an application specification in Matlab to
an implementation of the application running on the target platform. PREESM is an open-
source Eclipse-based framework that provides dataflow-based methods to study a multicore
DSP system [85]. PREESM provides the designer with information on algorithm parallelism
and latency, as well as on system memory requirements. It automatically maps and sched-
ules the application, specified as πSDF MoC, over the available PEs, and provides a code
generation to transform the dataflow representation into a compilable code.

Around the MPEG RVC and the adopted CAL programming language, a wide variety of
design tools have been developed in literature. Most of them leverage on the Open RVC-CAL
Compiler (ORCC) [24], a compilation infrastructure in charge of generating descriptions in
several languages (software, hardware or mixed for co-design [107]) starting from RVC-CAL
actors and XDF networks. At the moment ORCC is provided as an Eclipse plugin written in
Java and relies on an Intermediate Representation (IR) of the DPNs that is still specified in
Java. The IR can be exploited to feed several other tools such as Turnus [21], which offers
simulation, profiling and design space exploration capabilities, and Xronos [10], in charge
of providing HLS for Xilinx FPGAs. The ORCC compilation infrastructure, as well as the
MPEG-RVC framework itself, is continuously evolving in order to support more and more
advanced features and to produce more and more dynamic systems. The Multi-Dataflow
Composer (MDC) tool is a framework for the automatic creation of multi-functional re-
configurable platforms, that performs a complete design space exploration, evaluating the
trade-off among resource usage, power consumption and operating frequency [82]. In [75],
Nezan et al. presented the integration of ORCC with the MDC tool, that automatically opti-
mize dataflow specifications to generate coarse-grain reconfigurable HDL designs.

Synflow Studio [96] provides a unified HLS framework leveraging on a C-based high level
proprietary dataflow language named Cx. Cx can be compiled using Synflow Studio into
Verilog or VHDL code that is compliant with a variety of design tools, including simulation,
timing analysis, test analysis, and synthesis tools. The CAPH language and framework rep-
resent another recent effort to generate HDL from a dataflow language [99, 100]. More pre-
cisely CAPH is a toolchain built around the domain-specific language for the specification
of stream-processing applications based on a dynamic dataflow MoC. This latter is speci-
fied through a functional language named Functional Graph Notation (FGN) [98], allowing a
complete description of a dataflow network by means of purely functional expressions, and
resulting in improved abstraction capabilities, easier wiring description and more efficient
errors check. The Lightweight dataflow (LWDF) is a programming methodology that allows
designers to systematically integrate and experiment with dataflow modelling approaches
in the context of existing design processes [103]. LWDF is “lightweight” in the sense that the
programming model is designed to be minimally intrusive on existing design methodologies

16 CHAPTER 2. LITERATURE

and processes. It provides providing a compact set of APIs that can be used to incorporate
advanced dataflow techniques and requires minimal dependence on specialized tools or li-
braries.

2.3 Power Issue in Digital Circuits

Nowadays small portable devices are required to efficiently execute multiple fancy functions.
The huge diffusion of portability in embedded devices has strongly raised the importance of
the energy consumption (given as Aver ag ePowerConsumpti on×E xecuti onT i me) and,
in turn, the power consumption constraints for the designers due to the battery life limits.
The power issue has become so critical that it has been defined the "new timing constraint",
since timing has historically been the most important constraint for the embedded system
development. However the raising of power constraint, especially within specific applica-
tion fields (e.g. biomedical image processing), does not relax the other main design require-
ments related to area and performance (that is tightly coupled with timing). In general, area
minimisation leads also to power minimisation, so that meeting area and power constraints
together may not be very hard. On the contrary, the performance maximisation is typically in
contrast with the requirement of limiting power consumption and the realisation of a power
aware execution efficient system could turn out in a real nightmare.

In digital systems, power consumption can be divided onto two main contributions:
static and dynamic (see Equation 2.1). The former is always present since it is due to leakage
currents (Pl kg). The latter is dissipated only when logic transitions occur, so that it is related
to the switching activity during the system execution.

Ptot = Pst ati c +Pd ynami c (2.1)

Dynamic power has always been several order of magnitude larger than the static one,
so that designers focussed their power saving effort mainly on the dynamic contribution.
However, in the last decade the transistor size is getting smaller, causing the static power
to increase its weight in the power equation due to its own growth and to the contextual
decrease of the dynamic power. With technologies below 90 nm, designers are required to
minimize both static (Pst ati c) and dynamic (Pd ynami c) terms.

The static contribution of the power consumption has only recently started to being
strongly taken into consideration by the designers. This dissipated power is only due to the
fact that the system is powered on. As previously said, the dissipation occurs since, within a
CMOS device, transistors present non ideal leakage currents between different areas of the
CMOS transistors. The static power can be quantified as the product between the overall
leakage current of the device, Ileakag e , and the supply voltage, Vsuppl y .

Pst ati c = Ileakag e ∗Vsuppl y (2.2)

The overall leakage currents involves following main contributes:

• sub-threshold leakage: sub-threshold currents flowing from the drain to the source of
a transistor operating in the weak inversion region.

2.3. POWER ISSUE IN DIGITAL CIRCUITS 17

• gate leakage: tunnelling current which flows directly throughout the gate insulator (es-
pecially for very thick channels).

• reverse-bias junction leakage: current between diffusion regions, wells and substrate,
caused by minority carrier drift and generation of electron/hole pairs in the depletion
regions.

The main approaches that aim at reducing static power consumption act mainly on the
supply voltage Vsuppl y and on the transistors threshold voltage Vth . The reduction of the
supply voltage clearly leads to a reduction of the whole static dissipation. In particular the
main approaches acting on Vsuppl y are the multi-supply voltage, that partitions the device
in different areas driven by different supply-voltages, and the power-shut off or power gat-
ing, that avoid unnecessary static consumption by shutting off the logic when unused. Note
that, despite being beneficial under the power aspect, reducing the supply voltage makes
transitions slower: at this purpose multi-supply voltage approaches typically keep higher
the voltage of the logic involved on the system critical path.

While the impact of the Vsuppl y in reducing static power is straightforward, since it is di-
rectly involved in Equation 2.2, the effects of acting on Vth are not so immediate. Generally
speaking the reduction of Vth can be beneficial to the system performance, since transistors
earn speed during their active state. However, static power has an inverse proportionality
with respect to the threshold voltage: in terms of consumption, higher Vth are generally ben-
eficial. As for the supply voltage, a common solution is to have different threshold voltages
for different logic areas, basing on their criticality in terms of timing. The implementation of
power awareness systems that involve static consumption limiting techniques is usually not
trivial. As a matter of fact, static saving approaches require strong resources overhead and
dedicated support from the target technology library. For instance power gating employs
three different kinds of dedicated cells (sleep transistors, isolation and state retention cells)
that can be instantiated several times, depending on the design.

The dynamic contribution of the power dissipation exclusively occurs when system nodes
switch their state. It can be divided also as:

Pd ynami c = Ptr ans +Pcap (2.3)

where Ptr ans is the transient power consumption, due to the short cut currents between
power supply and ground when the gate is changing its state. Pcap is the dissipation caused
by the charging and discharging of the parasitic capacitances during logic transitions. Both
Ptr ans and Pcap are directly proportional to the switching activity (total number of output
switching per gate), to the clock frequency and to the square of the voltage supply Vsuppl y .
All the techniques acting on this latter quantity, previously presented as beneficial for static
power, can bring a positive impact also on the dynamic contribution. Anyway, the most ap-
proaches aiming at reducing the dynamic power act on the system clock. In particular the
main trends are related to shutting off the clock signal (clock gating) at all or to provide multi-
frequency environment. The multi-frequency approaches push at the maximum frequency
only the most critical resources (the resources with the longest execution latency) within the
system, while they slow down the not critical ones. This strategy may lead to a solution with
the same performance of the design where all the logic is driven by the same maximum fre-
quency, but with limited consumption. Further techniques and tools for power management

18 CHAPTER 2. LITERATURE

and minimization of average power consumption in digital systems will be deeply analysed
in the literature of the technical chapters.

Chapter 3

MDC: Multi-Dataflow Composer Tool

This chapter describes the Multi-Dataflow Composer (MDC), an automated framework for
the generation and management of coarse-grain reconfigurable (CGR) multi-functional ar-
chitectures. First version of MDC was developed at the University of Cagliari, and has been
exploited in the work presented in this thesis as primary tool for the exploration and de-
ployment of power management techniques in dataflow-based CGR systems. Indeed, MDC
is meant to address the difficulty of mapping a set of different applications onto a CGR ar-
chitecture [20, 57], combining together a set of input dataflow specifications that describe
desired system behaviours. It shares dataflow actors through a datapath-merging problem-
solving algorithm and generates a CGR hardware substrate [80]. MDC is composed of four
main components:

• Baseline MDC Core: performing dataflow-to-hardware composition, by means of dat-
apath merging techniques.

• Structural Profiler: performing the design space exploration of the implementable
multi-functional systems, which can be derived from the input dataflow specifications
set, to determine the optimal CGR substrate according to the given input constraints.

• Dynamic Power Manager: performing, at the dataflow level, the logic partitioning of
the substrate to implement at the hardware level a clock gating strategy, reducing the
dynamic power consumption.

• Coprocessor Generator: performing the complete dataflow-to-hardware customization
of a Xilinx compliant multi-functional accelerator. Starting from the input dataflow
specifications set, such an accelerator can be either loosely coupled or tightly coupled,
according to the design needs, and also its drivers are derived.

Figure 3.1 illustrates the development timeline of MDC tool and its components, until
the end of 2015, period in which this research thesis started. Every extension of MDC, related
to the work here presented, is described in the technical chapters of this thesis. Following
section are meant to provide a deep explanation of the MDC Tool components as they were
at the end of 2015.

19

20 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

2010 2011 2012 2013 2014 2015

Baseline tool specification:

Multi-Dataflow Composer Tool

Structural

Profiler

Power Manager

Coprocessor

Generator

Figure 3.1: Multi-Dataflow Composer Tool - Development Timeline.

3.1 Baseline MDC Core

The core functionality of MDC tool is in charge of mapping a set of dataflow specification
onto a CGR substrate, automating the mapping process while minimizing hardware resources
[80]. This issue is known in literature as the datapath merging problem. MDC solves it by ex-
ploiting two different solutions: (1) a heuristic algorithm [80], or (2) the application of the
moreano algorithm [71].

The tool is designed to be connected to higher-level utilities by means of an adequate
front-end, in charge of parsing the high-level descriptions of the datapaths to be combined.
In this way, relying on the chosen front-end, MDC is able to process any type of DFGMDC
has been couples with different dataflow-based tools, such as ORCC [24], CAPH [99] and
Synflow [96] (see Section 2.2.2). In this Chapter, the coupling between ORCC and MDC, and
the DPNs (expressed as XDF files) are used to illustrate MDC features.

Figure 3.2 shows an overview of the coupled ORCC-MDC design flow. Three major steps
are required to generate the HDL description of a multi-functional reconfigurable architec-
ture, starting from the DPN models of the functionalities to be implemented:

• Input DPNs parsing.

• Multi-dataflow generation.

• CGR hardware architecture generation.

ORCC parses the input DPNs, along with their actors, and translates each of them into a
DFG Intermediate Representation (IR). During the parsing ORCC explodes non-atomic ac-
tors (composed of a sub-network of actors), flattening the input DPNs. Then the MDC front-
end leverages on such IRs to assemble a single multi-functional specification (multi-flow IR
in Figure 3.2). MDC front-end also keeps trace of the system programmability through the
Configuration Table (C_TAB in Figure 3.2). Reconfiguration is implemented by multiplexing
resources in time. Ad-hoc low overhead switching modules (Switching Boxes - SBoxes) are

3.1. BASELINE MDC CORE 21

O
R

C
C

Front End

Back End

IRs

DPNs

Front End

Back End

C_TAB
Multi- ow

IR

HDL components

Library

M
D

C

protocol

CGR

HDL

(Merging Process)

(Platform Composer)

Figure 3.2: Multi-Dataflow Composer tool: an overview.

placed at the crossroads between the different paths of data and driven by dedicated Look-
Up Tables (LUTs), whose content is defined according to the Configuration Table. Once the
input DPNs have been merged, the MDC back-end creates the HDL CGR hardware (CGR
HDL in Figure 3.2), mapping each actor onto a different FU. Even though MDC is coupled
with ORCC, the generated CGR hardware is not restricted to the RVC-CAL communication
protocol. Indeed, MDC takes as input an XML file that describes communication protocol
between FUs. Thus, MDC is actually able of considering a dataflow network as generic graph,
where communication among FUs can be managed with or without First-In First-Out (FIFO)
connections, and where the FUs can even be purely combinatorial. The HDL description
of the FUs are passed as input to MDC, together with any other necessary module (FIFOs,
Fanouts, Memories) within the HDL components library that can be manually written or au-
tomatically created by HLS tools. In the tool flow shown in Figure 3.2, the HDL component
library is created by an ORCC backend.

In the current HDL implementation, SBoxes are combinatorial multiplexers; therefore,
no dedicated FIFO buffers are inserted for the SBox units. Nevertheless, the FIFOs of the
upstream/downstream actors have to be managed. Sbox_1x2 units, inserted to split a path
of data, require one FIFO for each outgoing connection. In the case of Sbox_2x1 units, in-
serted to access a common shared actor, the FIFO buffers are placed before the SBox along
the incoming connections. Since the SBoxes are fully combinatorial and the FIFO buffers
always belong to the other actors, the well known dataflow problem of the FIFO buffers op-
timal sizing does not affect the MDC merging process. Input DPNs have only to be properly
sized before the MDC execution.

Figure 3.3 shows in detail how the reconfigurable multi-functional architecture is de-
rived. It consider an example with three different DPN specifications (α, β and γ), and the
generated output is the HDL description of the CGR. architecture. In this example the MDC

22 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

in1

in2

in1

in3

out1

out1

out1

sub-net H

sub-net J

in2

in1

in3

out1

out1

in1 out1

O
R

C
C

F
r
o

n
t

E
n

d

3 input DPNs 3 Output IRs

in1

in3

out1

in1 out1

M
D

C

F
r
o

n
t

E
n

d

in3

out1in1

in2 out1

M
D

C

F
r
o

n
t

E
n

d

in1

in3

out1in1

C_TAB

SB_1 0 1

SB_0 0 1

single iteration: 2 input IRs 1 Output IR

in3

in1

in2

out1

C_TAB

SB_1 0 1X

SB_0 0 1X

SB_2 0 11

of iterations: 3 input IRs 2 iterations

in3

in1

in2

out1

M
D

C

B
a
c
k
 E

n
d

in3

A
in1

in2

out1

SB_0 SB_1

SB_2

LUT

1 Input IR 1 Output HDL

A B

H C

D

J

E C

G H

A

F

E C

G C

A B C

D

A

F

A B C

G C
A

F

A

F

B

G

CSB_0 SB_1

A
B

C

SB_0 SB_1

F

G

D E

SB_2

A
B

C

SB_0 SB_1

F

G

D E

SB_2

B

CG

D E

F

A

F

B

G

CSB_0 SB_1

D E C

C_TAB

SB_1 0 1X

SB_0 0 1X

SB_2 0 11

Figure 3.3: Baseline MDC Core: a step-by-step example.

heuristic merging algorithm is considered. At first ORCC parses the input DPNs, flattens the
hierarchical actors and builds the corresponding IRs. In the considered example β is already
flattened, being composed of atomic actors, while the actor H of α and the actor J of γ en-
close a sub-network each. Thus, these latter are exploded in the flattened network.

After parsing the input DPNs, MDC starts the iterative merging process. MDC front-end
analyses the IRs in pairs to determine which actors can be shared by the two considered
networks. Identical actors are shared in the output IR by introducing dedicated switching
elements, used to fork (Sbox_1x2) or re-join (Sbox_2x1) the path of data. It is important to
notice that for N input IRs, N-1 iterations are required to complete the merging process and,
in the worst case scenario the process can end up with N-1 cascaded SBoxes to access a FU
shared by all the N input DPNs. In the considered case with only three input networks, two
iterations are required. In the first run, the merging algorithm identifies actors A and C as

3.2. STRUCTURAL PROFILER 23

identical among α and γ, so it inserts two SBoxes. Then, in the second run, the algorithms
identifies actor C as identical among the previous generated multi-flow IR and β; thus, only
another SBox is inserted. During each iteration MDC assigns an identification value to each
network and, for each of them, keeps trace of the right selector values to be assigned to each
SBox updating the C _T AB .

At last the MDC back-end generates the CGR HDL, mapping the different actors of the
multi-flow IR over the FUs provided within the HDL components library. The control sig-
nals of the physical SBoxes are generated by the LUTs, whose content depends on the final
C _T AB produced by the MDC front-end, that guarantees the computing correctness of each
input functionality.

3.2 Structural Profiler

In the adopted iterative merging algorithm, two networks at a time are processed by MDC.
Since SBoxes are combinatorial elements, a long chain of SBoxes could implies a change into
the critical path, that may negatively affect the operating frequency. Furthermore, an exces-
sive number of switching elements may overcome the benefits of sharing an actor, causing
both area and static power loss. Therefore, in some cases it would be more efficient to merge
only a subset of the input DPNs. For these reasons, it is fundamental to determine the (sub-
)optimal design specification(s) that have to be merged into the CGR architectures.

S
e
q

u
e
n

c
e
 G

e
n

e
r
a
to

r

M
D

C
 T

o
o
l

M
D

C
 P

r
o

le
r

DPNs DFG Timing

DPNs DFG Power

DPNs DFG Area

P
a
r
e
to

 A
n

a
ly

s
is

DPNs

TOP.p

TOP.fInput Data�ow

Speci�cations

Extracted metrics

Figure 3.4: Topology Definer: an overview.

The MDC Topology Definer is capable of determining the design costs of different im-
plementations, before prototyping, through the back-annotation of low-level information
on the different dataflow graphs (DFGs) [81]. Figure 3.4 depicts the implemented profiling-
aware topology strategy. The Sequence Generator defines all the D possible DPNs sequences
that are given in input to MDC according to Equation 3.1, were:

• D_notMer is the not merged composition of the N input DPNs in parallel;

• D_Mer is the all merged term that, maximizing resource sharing, is given by all the
possible permutations of the DPNs merged into a unique one;

24 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

• D_partMer is the partially-merged term that, not following the resource maximization
principle, provides all the sequences composed of the combinations1 that can be ex-
tracted from subset of k input DPNs placed in parallel with all the permutations of the
other N-k networks merged together.

D = D_not Mer +D_Mer +D_par t Mer =

D = 1+N !+
N−2∑
k=1

CN ,k ∗ (N −k)!

D = 1+N !+
N−2∑
k=1

N !

(N −k)!∗k !
∗ (N −k)!

D = 1+N !+
N−2∑
k=1

N !

k !

(3.1)

For each of the different possible DPNs sequences, the MDC tool extracts multi-dataflow
DFG as described in Section 3.1. Then the MDC Profiler computes the implementation cost
for each multi-functional DFG. Computing the implementation cost requires back-annotating
the HDL components library with one value of estimated area and power consumption of
each DFG. Therefore, given as M the size of the V set, area and power consumption are de-
termined as:

Ar ea(DFG) =
M∑

i=1
ai (3.2)

Power (DFG) =
M∑

i=1
pi (3.3)

Operating frequency can not be estimated simply as a summation as done for area and
power. Since only two networks per time are considered during the merging process, differ-
ent feeding orders may result in different chains of SBoxes that may negatively impact on the
critical path (CP). The MDC Profiler ∀ni ∈ InN (being InN the set of input DPNs) retrieves
the corresponding back-annotated CP, C Pi , and defines C Pst ati c = max(C Pi) as the CP of
the non reconfigurable system configuration (with all the given DPNs in parallel).

Then it estimates the longest cascade of SBoxes (seqSB) within the considered DFG .
Given the number of SBoxes (NS) that compose the cascade seqSB , and given the number
of bits of SBoxes data (b), the CP is given by the empirical Equation 3.4.

C P_seqSB = f (b)∗ ln(NS)+ g (b) (3.4)

Coefficients f(b) and g(b) are technology dependent and have been modelled for the tar-
get technology interpolating a training set of experimental results, obtained by experiments
carried out by means of the RTL Compiler (Cadence SoC Encounter), using ASIC CMOS 90
nm technology as reference, varying the number of SBoxes (from 1 to 100) and the number
of bits of SBoxes data (1, 8, 16, 32, 64). Coefficients f(b) and g(b) change depending on the
type of SBox (Sbox_1x2 or Sbox_2x1).

1A combination is a selection of all or part of a set of objects, regardless to the order in which they are
selected. Given A, B and C, the complete list of possible selections of two items would be: AB, AC, and BC.

3.3. DYNAMIC POWER MANAGEMENT 25

• Sbox1x2: f (b) = 0.268∗b +59.85, g (b) =−0.294∗b +406.3

• Sbox2x1: f (b) = 0.114∗b +87.70, g (b) = 0.185∗b +393.1

The MDC Profiler finally defines C P (DFG) = max(C Pst ati c,C P_seqSB) as the maxi-
mum of C Pst ati c and C P_seqSB . In the last step of the Topology Definer, a Pareto-based
analysis is carried out exhaustively on the entire design space to determine the optimal sys-
tem configuration(s) according to the selected design effort. For power management pur-
poses it is extremely important to determine the least consuming configuration, but mini-
mizing power consumption not necessarily implies having also the best operating frequency.
Therefore, two sub-optimal DFGs are provided as output: the area/power (TOP.p) one and
the frequency (TOP.f) one.

Exhaustive exploration approaches, where all the design points are characterized in terms
of objective functions, may lead quickly to search time explosion. According to Eq. 3.1, the
design space size grows with the number of input DPNs. Therefore, it is clearly application
specific. In [82] it has been demonstrated that the design space dimension grows with 3∗N !,
where N is the number of input DPNs. Nevertheless, as demonstrated in [81], different prop-
erties of the design space can be exploited to define a robust and scalable heuristic algorithm
performing approximated Pareto analysis:

• TOP.p normally is an “all-merged” solution. By construction, the smallest number of
actors would provide the smallest area and power consumption according to Eq. 3.2
and Eq. 3.3.

• TOP.f may be a “partially-merged” solution, in fact the fewer networks you merge, the
smaller is the CP associated to the SBox units chain seqSB . Therefore, if the operating
frequency is determined by CP_seqSB you can improve it by limiting seqSB , placing
in parallel to the rest of the design one of the networks contributing to seqSB .

3.2.1 Step-by-Step Example

To clarify the different logic phases of the proposed methodology Figure 3.5 depicts a step-
by-step example. The starting points of the strategy are five different DPN specifications (α,
β, γ, δ and ε). The generated outputs of the structural level step are the two multi-dataflow
DFGs, TOP.p and TOP.f. By applying Eq. 3.1, 321 points constitute the design space as pos-
sible system specifications. Among these, the Topology Definer is capable of identifying the
power optimal and the frequency optimal ones. The former, TOP.p, is an all-merged solution
(the optimal feeding order is β, γ, α, ε and δ), while the latter, TOP.f, is a partially-merged
one (α and β are kept in parallel while ε, γ and δ are merged).

3.3 Dynamic Power Management

As described in Chapter 2.1, in a CGR system all of the logic necessary to compute the dif-
ferent functionalities are instantiated in the substrate and the configurations are enabled by
multiplexing resources in time. When a functionality is executed the rest of the design, not
involved in the computation, is in an idle state. Thus, CGR systems benefits from the ap-
plication of dynamic power management strategies. The part of unused resources in a CGR
architecture is fixed at design-time. Thus it is possible to divide it into a set of disjointed

26 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

..
.

80 100 120 140 160 180 200
1500

2000

2500

3000

Area occupancy [m�
2
]

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 [
n
W

]

0.5 1 1.5 2

x 10
5

90

100

110

120

130

140

150

160

170

180

190

Frequency [kHz]

A
re

a
 o

c
c
u
p
a
n
c
y
 [

m

�

2
]

0.5 1 1.5 2

x 10
5

1500

2000

2500

3000

Frequency [kHz]

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 [
n
W

]

TOP.p

TOP.f

α β γ δ ε

Area occupancy m[]�
2

A
re

a
 o

c
c
u
p
a
n
c
y

m
[

]

�

2

..
.

α

β

γ

..
.

α

β

..
.

α

ε

α

β

γ

δ

ε

A E D E FA DAC D
A

B

B D

α,β,γ,δ,ε

α,β,γ,ε,δ

α,β,ε,γ,δ

ε,δ,γ,β,α

β,γ,δ,ε

δ,γ,β,α

γ,δ,ε

δ,ε

N=5 --> D = D_notMer + D_mer + D_partMer = 1 + 120 +200 = 321

sequences generator

D_notMer=1 D_Mer=5!=1

C D
A

B

B D

Σ
k=1

N-2

D_partMer = (N!/k!)=5!/1! + 5!/2!+5!/3!=120+60+20=200

Pareto analysis

A SB_0

DSB_1

FE SB_1

α

β

ε,γ,δ

β,γ,α,ε,δ

SB_4

A SB_0

B SB_1

C

SB_2

SB_5

E SB_3

SB_6 D

F

Figure 3.5: Topology Definer: a step-by-step example.

3.3. DYNAMIC POWER MANAGEMENT 27

Logic Regions (LRs), composed of resources that are always active/inactive together, and re-
duce their power consumption by applying power saving techniques.

MDC exploits the intrinsic modularity of the dataflow models, to automatically identify
the minimum set of LRs, by applying the identification Algorithm 1 (see Appendix A) that acts
at the specification level. The given dataflows are analysed to identify and group together the
actors active/inactive at the same time within homogeneous logic sets and on the MDC GUI
users can choose to enable or not the clock gating strategy, to switch off the clock tree of the
LRs and reduce the dynamic power consumption of the design. The MDC Power Manager
acts on the (sub-)optimal specification identified by the Topology Definer (either TOP.p or
TOP.f) to identify all the LRs [82]. It maps each set of actors Vi , belonging the i-th input
network, to a set of actors V ′

i ⊆ V , where DFG〈V ,E〉 corresponds to the multi-functional
dataflow graph.

For each input DPN, MDC extracts its corresponding set V ′
i composed of computational

actors only. Given S the complete set of LRs, MDC minimizes the number of elements, N ,
within S, in order to minimize the additional logic needed to drive the LRs. S contains a par-
tition of the set of actors V ′

i of each input network. This means that, when an input network
is executed, only its actors are triggered. Beside S, Algorithm 1 defines also the association
map (LR_M AP) of correspondences between the input DPNs and the elements of S. At the
beginning this map is empty, so that the first V ′

i constitutes the first LR. For all the other it-
erations, as shown in the pseudo-code, LR_M AP is not empty anymore and the algorithm
extracts, one at a time, all the already identified LRs S = {S1,S2, ...SP } to be compared with V ′

i .
Three different situations may occur:

• the current set is equal to an already identified one (V ′
i = S j): the association map is

updated so that the matching LR points also to the current DPN;

• the current set intersects one of the identified ones (V ′
i ∩S j 6= ;): a new LR, containing

the intersected instances, is issued and the pre-determined set S j and V ′
i are modified

by removing the intersection. A new entry in the LR_M AP is inserted to match the
new set with the current input DPN and all the DPNs already associated to S j ;

• the current set is completely disjointed with respect to the previous ones or there are
some elements within it that are not overlapped with any LR (at the end of the compar-
ison process (V ′

i 6= ;)): a new LR is created and pushed in S, with the corresponding
entry in the association map.

3.3.1 Clock Gating Implementation

MDC exploits the identified LR to implement clock gating. It aims to reduce the dynamic
power consumption leveraging on the following assumption: the clock of the LRs that are
not working can be turned off to limit the switching activity of the design and in turn its
power dissipation. MDC provides clock gating implementations for either ASIC or FPGA
targets. When ASIC target is selected, MDC provides AND gates cells (applied directly on the
clock to disable it). Otherwise, if FPGA is selected, MDC instantiates for each LR to be gated a
BUFG cell (this can be applied only on Xilinx boards). Targeting FPGA, the number of BUFG
cells available on the board is limited. If the number of identified LRs exceeds the amount of
available BUFG, MDC provides Algorithm 2 (see Appendix A) to reduce the number of LRs,
identifying the sub-optimal set of LRs, where switching activity in unused FUs is present.

28 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

This algorithm merges together two LRs at a time, according to one of the following different
cost functions:

• minimizing the number of units per LR - Given ci , as the cardinality of the i-th LR, and
P , as the number of networks activating it, we can define wNi :

wNi = ci ∗P (3.5)

as the weight of considered region.

• minimizing the static power consumption per LR - Given pi , as the estimated power
consumption (given by Eq. 3.3) of the i-th LR, and P , as the number of networks acti-
vating it, we can define wPi :

wPi = pi ∗P (3.6)

as the weight of considered region.

3.3.2 Step-by-Step Example

Figure 3.6 clarifies the process that leads to identify the minimum set of LRs. It considers
three input DPNs: α (composed of actors A, B and C), β (D, E and C) and γ (A, F, G and C).

1. Firstly the algorithm analyses V ′
α, composed with the actors of α.

• The association map is empty.

• V ′
α is issued as S1 and a reference from S1 to α is inserted in the association map.

2. Then V ′
β

is considered.

• The association map is not empty anymore and S = {S1}.

• V ′
β

and S1 are intersected: they share the actor C.

– The shared actor C is issued as S2.

– The actor C is removed from V ′
β

and S1.

– A reference from S2 to both α and β is defined.

• S does not have any other element available for comparison.

• The remaining V ′
β

is issued as S3, referencing in the association map just β.

3. Finally V ′
γ is considered.

• The association map is not empty and S = {S1,S2,S3}.

• S1 shares with V ′
γ the actor A.

– A new logic region, S4, containing the actor A is issued.

– A reference from S4 to α and to γ is pushed in the association map.

– The actor A is removed from S1 and V ′
γ.

• S2 is entirely contained within V ′
γ.

– A reference from S2 to γ is added in the association map.

3.3. DYNAMIC POWER MANAGEMENT 29

– The actor C is removed from V ′
γ.

• S3 and V ′
γ are disjointed.

• S does not have any other element available for comparison.

• The remaining V ′
γ, containing the actors F and G, is issued as S5. It matches just

γ in the association map.

C
lo

c
k
 G

a
te

d

H
D

L

Resulting Output

in3

in1

in2

out1

A
B

C

SB_0 SB_1

F

G

D E

SB_2

LR4 LR1

LR2

LR5

LR3

Enable

Generator

in3

A
in1

in2

out1

SB_0 SB_1

SB_2

B

C

G

D E

F

ID

β

γ

in2

in1

in3

out1

out1

in1 out1

E C

G C

A B C

D

A

F EG

A

B

C

DF

EG

A

B

C

DF

EG

A

B

C

DF

EG

A B

C
D

F

S2

S1

S3

S4

S5

S2

S1 1 00

S3

S4

S5

S2

S1 1 00

S3

S4

S5

S2 1 01

S1 1 00

S3 0 01

S4

S5

E
G

A B

C
D

F

S2 1 11

S1 1 00

S3 0 01

S4

S5

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

EMPTY M
AP

Vi
�= S1

Vi
�

S1

S1
S2

S3

S1

S2

S3

Vi
�

S1

S3

S2

S4

S5

Input DPNs Current DPN = Current DPN =

Current DPN = Current DPN = Current DPN =

Figure 3.6: Logic Set Definer: a step-by-step example of Logic Regions identification and
clock gating physical implementation .

Figure 3.6 shows also the resulting clock gated output of the proposed process. Five dif-
ferent LRs are identified from the three input dataflow specifications. Please note that the

30 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

SBoxes do not belong to any LRs. Indeed they are not synchronous elements and, in a clock
gating perspective, they do not have any clock to switch off. The Enable Generator generates
the enable signals for the clock gating cells on the basis of the requested functionality and it
is automatically created and instantiated in the design.

3.4 Coprocessor Generator

MDC tool is able of automatically composing, synthesizing and deploying a runtime re-
configurable coprocessors compliant with Xilinx ISE Design Suite. Figure 3.7 provides an
overview of the flow; MDC generates the CGR core as described in Section 3.1. Then, start-
ing from the composed multi-dataflow (Multi-flow IR), MDC takes care of the IP generation,
and its instantiation into a processor-coprocessor Xilinx architecture.

MDC uses the information from the high-level specification of the coarse-grain reconfig-
urable computing core to properly configure the coprocessing layer. Indeed, the CGR com-
puting core is treated as a black box with a well-defined I/O interface characterized by: (1)
the number of I/O ports, (2) the depth of the data channel of each I/O port and (3) the token
pattern of each I/O port. In addition, to properly characterize the coprocessor also some
configuration information are retrieved, as: (1) the ID whereby each input kernel is encoded
and (2) which are the I/O ports required by the different input kernels.

Once collected the features of the generated multi-dataflow specification, MDC embeds
the CGR computing core into a configurable template wrapper hereafter called Template
Interface Layer (TIL). The TIL integrates a bank of configuration registers, to store the desired
configuration, one (or more) front-end(s), to load data into the reconfigurable computing
core, and one (or more) back-end(s), to read the computed data from the reconfigurable
computing core. To easy deploy and use the the coprocessor, MDC provides also the Xilinx
Vivado scripts to embed the logic into a processor-coprocessor architecture and the software
drivers to ease its use.

3.4.1 Template Interface Layer

Generally speaking, coprocessing units can have different degrees of coupling with the host
processor. A loosely coupled coprocessor is far from the processor, it is typically accessible
through the system bus and it is affected by medium/high communication latencies for both
control and data transfers. A tightly coupled coprocessor is closed to the processor, it has a
dedicated full-duplex link and it often shares with the processor high-level memories. A
loosely coupled coprocessor can be easily adopted in different contexts, since it is connected
to a generic system bus. On the contrary, it is hard to extend the adoption of a tightly coupled
coprocessor to different systems, since it has dedicated links and memory accesses.

MDC supports two different levels of applicability and coupling. User can choose be-
tween:

• a memory-mapped loosely coupled one, accessible through the system bus as a memory-
mapped IP;

• a stream-based tightly coupled one, accessible through different full duplex links, one
for each I/O port.

3.4. COPROCESSOR GENERATOR 31

COPROCESSOR

DEPLOYMENT

HIGH LEVEL

SPECIFICATION

 COMPOSITION

.xdf

LIBRARY SYNTHESIS

(XRONOS)

COPROCESSOR

CHARACTERIZATION

.v

.txt

CORE

COMPOSITION

(MDC back-end)
DRIVER

SPECIFICATION

.c.c.c
.c.c.vhd

HDL

components

library

multi-application

dataflow

features

1 RVC-CAL multi-dataflow

specification

drivers

.c.c.xdf

N RVC-CAL

dataflow specifications

.vhd

reconfigurable

computing core

top module

RECONFIGURABLE

COMPUTING CORE

DEFINITION

TEMPLATE

CONFIGURATION

RECONFIGURABLE

COMPUTING

CORE

TEMPLATE
XILINX EDK

WRAPPER

DRIVERS
+

template

MULTI-DATAFLOW ASSEMBLING

(MDC front-end)

COPROCESSOR

HW-SW

SPECIFICATION

.mpd .pao
Xilinx EDK

wrapper

Figure 3.7: Coprocessor generator design flow overview.

The memory-mapped TIL (mm-TIL) is the easiest adaptable version of the automatically
generated coprocessing layer. Figure 3.8 shows the architecture of the mm-TIL, main blocks
are: the configuration registers bank and one local memory, one front-end and one back-end
for each I/O port.

The local memory contains all the data to be processed by the coprocessor and the com-
puted results. It has to be fully written by the processor before the coprocessor execution
phase and it has to be fully read once the coprocessor has completed the task. A dedicated
address range of the processor is reserved to the local memory. The configuration registers
bank is the entity in charge of storing the configuration of the coprocessor. The configura-
tion includes, a part the ID of the kernel to be executed, the base address, the data number
for each I/O port and, only for the inputs, the burst size. The base address is the first address

32 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

local

memory

configuration

registers

bank

reconfigurable

computing

core

front-end

back-end

system bus

read data

read address

write address

write

data

...

...

mm-TIL

configuration

Figure 3.8: Architecture of the memory-mapped Template Interface Layer (mm-TIL).

of the local memory where the data have to be read/written. The data number is the amount
of data to read/write from/to the local memory. The burst size is the number of data that
have to be sent together to the reconfigurable computing core. The configuration registers
bank holds an address range separated from the local memory one.

The front-end is responsible for the data transfer from the local memory to the reconfig-
urable computing core. Its execution flow can be divided in three different phases. At the
beginning, an input port to load the data is chosen by means of a round robin priority policy.
Then, the address of the local memory, where the related data is stored, is generated. Fi-
nally, a burst of data from the memory to the reconfigurable computing core is transferred.
The front-end iterates on the described cycle until all the data have been transferred to the
reconfigurable computing core.

The transfer of the processed data from the reconfigurable computing core to the local
memory is performed by the back-end. Basically, the back-end architecture and execution
flow are the same of the front-end ones, managing the output ports and dealing with mem-
ory writes instead of reads.

The stream-based TIL (s-TIL) is adopted to realize tightly coupled co-processing units. It
is based on a Xilinx proprietary point-to-point connection protocol called Fast Simplex Link
(FSL). The FSL is a very fast communication channel provided with FIFO memories, typically
used within the Xilinx environment to connect host processors with hardware coprocessors.
The s-TIL requires a different FSL channel for each I/O port. With respect to the mm-TIL the
s-TIL can boost the coprocessor performance, not only leveraging on a faster communica-
tion channel, but also accessing in parallel different ports of the reconfigurable computing
core. This parallelism can be fully exploited only if the host processor is able to read and
write different FSL channels at the same time or if the co-processing unit is connected to
different host processors.

Figure 3.9 depicts the s-TIL architecture. The main blocks are: the configuration registers

3.4. COPROCESSOR GENERATOR 33

configuration

registers

bank

reconfigurable

computing

core

s-TIL

front-end 1

front-end N

back-end 1

back-end M

configuration

.

..

.

..

.

..

.

..

slave FSL 0

slave FSL N

.

..

master FSL 0

master FSL M

.

..

Figure 3.9: Architecture of the stream-based Template Interface Layer (s-TIL).

bank, one front-end per input port and one back-end per output port. The configuration
registers bank, as in the mm-TIL, saves the coprocessor configuration. It is not mapped in a
specific address range of the host processor, but it is supplied by one of the FSL links. On this
latter, the control data transfers are differentiated from the processing ones by means of the
control bit of the FSL protocol. When the control bit is high the data on the FSL are stored
into the registers bank; whereas, when it is low the data are forwarded to the reconfigurable
computing core. The base address configuration is no longer necessary: data come from
(and have to be written) directly into a FSL channel instead of a local memory.

In the s-TIL the front-end and back-end aims are the same as in the mm-TIL: the front-
end transfers data from an input FSL bus to the reconfigurable computing core and the back-
end transfers data from this latter to an output FSL bus. In the s-TIL each I/O port is served
by a different front-end or back-end, thus managing a point-to-point transfer of data from/to
one of the FSL buses to/from one of the reconfigurable computing core ports (the port selec-
tion phase is no longer needed). No local memory is available; therefore, there is no address
generation phase and the loading/storing phase of the different I/O ports is parallel.

3.4.2 Driver Specification

MDC, beyond providing the HDL gives also the software drivers to ease its use. In particular
the features related to the configuration are used to specify the drivers, offering an interface
that masks the system configuration complexity. MDC provides a C function for each con-
figuration of the CGR coprocessor. For each functionality the user is required to only call the
related function, and specify for each port the number of data to be read/written and their
values.

The driver suite is split in two different levels:

• low level drivers (LLDs): manage the processor/coprocessor communication;

• high level drivers (HLDs): deal with the application issues, masking the system config-
uration complexity.

34 CHAPTER 3. MDC: MULTI-DATAFLOW COMPOSER TOOL

Listing 3.1: Low level coprocessor driver example.

. . .
/ / memory−mapped config writing
define mmCOPR_write_config_<port_name>(int value) \
Xil_Out32 (COPR_REGS_BASE_ADDR
+<port_name>_OFFSET , value) ;

/ / stream config writing
define sCOPR_write_config_<port_name>(int value) \
c p u t f s l (value , FSL_ID_<port_name >) ;
. . .

LLDs encapsulate the system macros for writing/reading memory locations and for putting/get-
ting data to/from the FSL buses into generic I/O functions (see Listing 3.1). The HLDs, start-
ing from these generic I/O functions, manage the coprocessor configuration and data trans-
fer. For each I/O port of the reconfigurable computing core, a configuration word is writ-
ten into the proper coprocessor register. Then, for each input port involved in the current
computation, a specific HLD primitive is used to send the data to be computed from the
host processor to the coprocessor. At last, as the processor receives an interrupt from the
co-processing unit, a specific HLD primitive is adopted to read back the results into the pro-
cessor from the output ports (see Listing 3.2).

Listing 3.2: High level memory-mapped coprocessor driver example

. . .
/ / configuration
int config_ <port_name> =
(size_burst_ <port_name><<(SIZE_ADDR+SIZE_CNT))
| (size_ <port_name><<SIZE_ADDR)
| base_addr_<port_name >;
mmCOPR_write_config_<port_name>(config_ <port_name >) ;

/ / data sending
for (int i =0; i <size_ <port_name >; i ++)
mmCOPR_write_mem(base_addr_<port_name>
+ i *4 , data_<port_name >[i]) ;

/ / data r e c e i v i n g
for (int i =0; i <size_ <port_name >; i ++)
data_<port_name >[i]=
mmCOPR_read_mem(base_addr_<port_name>
+ i * 4) ;
. . .

No changes would be required if a different actors communication scheme is adopted.
Indeed, it does not affect at all the processor/coprocessor communication scheme. There-
fore, no changes at the drivers generation level are necessary to target a different scenario.

3.4.3 coprocessor Deployment

In the final step the peripheral is integrated and deployed as a standard Xilinx IP. The inputs
are the HDL description of reconfigurable computing core, its front-end and its back-end;
whereas, the output is the resulting Xilinx IP comprehensive of software drivers. The co-
processor is encapsulated through a Xilinx EDK wrapper to be included within the Xilinx IP

3.4. COPROCESSOR GENERATOR 35

catalog. The wrapper is mainly composed of two files: the Microprocessor Peripheral Defi-
nition (MPD), used to define the peripheral interface within the system, and the Peripheral
Analyze Order (PAO), needed to associate and properly order all the peripheral source files.

As well as in the driver case, no changes would be required if a different actors com-
munication scheme is adopted. The final system integration phase is not affected by the
internal actors communication scheme within the reconfigurable computing core, since the
TIL template masks it.

Chapter 4

Coarse-Grain Reconfiguration on
ASIC - Automating Power Gating
from a Dataflow Representation

Modern embedded systems are required to accommodate different functionalities over the
same substrate and provide flexibility at the hardware level. Coarse-grain reconfiguration
(CGR) is a suitable solution to this need, being able of offering a certain degree of flexibility
minimizing resource redundancy. However, CGR systems can still be power hungry and ded-
icated design frameworks could help in the efficient implementation of runtime low-power
reconfigurable platforms. The main contribution of this chapter is the automatic implemen-
tation of a power gating strategy to CGR systems. Exploiting the MDC capability of identi-
fying homogeneous logic regions within the system (i.e. set of resources that can be turned
on and off together), this work extends the approach presented in Section 3.3 to achieve dy-
namic power management by means of coarse-grain power gating techniques. The work
presented in this Chapter has been conducted in a collaboration between the Microelec-
tronics and Bioengineering Lab (EOLAB) (University of Cagliari) and the Intelligent system
DEsign and Applications (IDEA) Lab (University of Sassari), into the context of the "RPCT -
Reconfigurable Platform Composer Tool" Project, funded by the Sardinian Regional Govern-
ment under agreement L.R. 7/2007, CRP-18324.

4.1 State of the Art: Power Management in ASIC
systems

CGR platforms offer high performance and flexibility, allowing the execution of a large set of
applications over the same substrate [42] (see Section 2.1). In a CGR system all the logic nec-
essary to implement different functionalities are present on the substrate, and different con-
figurations are enabled by multiplexing the resources in time. This means that in every mo-
ment there are resources, not involved in the active configuration, that consume power. Sev-
eral techniques (clock gating, multi-frequency, operand isolation, multi-threshold, multi-
supply libraries, power gating, etc.) can be applied to reduce power consumption and, in

37

38 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

some cases, they are automatically implemented by commercial synthesis/place-and-route
tools.

Clock gating is a really popular technique, able to reduce the dynamic power consump-
tion due to the clock tree and to sequential logic up to the 40% [132]. It consists on shutting
off the clock of the unused synchronous logic, and it can be applied at different granulari-
ties: fine-grain approaches act on single registers, whereas coarse-grain ones are referred to
a set of resources. Clock gating has been deeply employed in application-specific integrated
circuit (ASIC) designs for more than 20 years [84, 120]. Commercial synthesizer such as Ca-
dence RTL Compiler (or the more recent Genus) [17, 18], or Synopsys Design Compiler [114]
are able of gating groups of flip-flops that are enabled by the same control signal. Some
works focussed on the application of clock gating at a higher level. In [78] authors described
a systematic approach for computing the clock gating logic of synchronous sub-circuits de-
scribed in HDL. In the dataflow field Bezati et al. [9] presented an extension of an High-Level
Synthesis tool, Xronos, to selectively switch off clock signal for parts of the circuit that are idle
due to stalls in the pipeline, to reduce power consumption. However, they target only FPGA.
As described in Chapter 3, the MDC tool has the capability of identifying the minimum set of
independent circuitry regions, applying to all of them clock gating for both FPGA and ASIC
targets [82].

More complex power saving strategies such as, voltage/frequency scaling [44, 37] and
power shut-off schemes [7, 53] can be extremely beneficial. In communication networks de-
sign, SONICS exploited many of traditional techniques for power management (from clock
gating to voltage scaling etc.) to deploy an efficient interconnect [119]. The ARM big.LITTLE
processor features two sets of processors optimized for different purposes that may be al-
ternatively shut-off [53] when not used. And the PULPv2 Cluster [94] is split into two sepa-
rate voltage and frequency domains. In the CGR architectures field Jafri et al. [52] adopted
a dynamically reconfigurable resource array (DRRA), to assemble a CGR energy-aware ar-
chitecture. They integrated a power management infrastructure, power management in-
telligence and architectural support for dynamic parallelism with the DRRA, to implement
energy aware task parallelism. However, the integration of the above described power man-
agement strategies required manual intervention of the designer, and they could result in a
complex, error prone and time consuming process.

Nowadays, some of the EDA companies offer the possibility of automatically integrat-
ing low power techniques such as clock gating, dynamic voltage/frequency scaling or power
gating. A power format file allows designers to specify the power intent early in the design
and without any direct modification of the RTL code. The two most commonly used low
power flows are the Unified Power Format (UPF) [49] from Synopsis and the Common Power
Format (CPF) [105], whose definition is driven mainly by developers using Cadence. The im-
plementation, simulation and verification of low power designs adopting power format files
have been widely studied in the last years. Kulkarni et al. [56] adopted a UPF-based flow
to explore a power aware verification flow. In [72] authors studied the advantage of multi-
VDD power reduction technique on the ISCAS89 S38417 benchmark circuit, adopting a CPF
based ASIC design flow. Lopes et al. [66] presented the design and implementation of a
CGR array for low-power biological signal processing. Authors adopted the UPF to integrate
power gating in the presented CGR architecture. However, in these works the power format
is manually defined. Manual definition of a power format file can be error prone and time
consuming, and also not easily applicable to automatically generated CGR systems, such as
the ones considered in this thesis.

4.2. METHODOLOGY 39

Recently some works focused on the application of power saving methodologies, auto-
matically generating a power format file. In [39] authors present a SCPower extension that al-
lows to inject power specification into synthesizable hardware designs in SystemC language,
providing the automatic generation of the UPF file. However, it is focused more on enabling
power-aware verification of SystemC designs. Qamar et al. [91] present a methodology that
consider the application of clock and power gating techniques to the register transfer level
(RTL) generated automatically by high-level synthesis (HLS), using SystemC code. The de-
signer can define the power intent directly at system level and add power management con-
trol logic to implement the low power methodology. At high level of abstraction they specify
the power intent, to generate the CPF to implement the power gating. However, this work
still requires hand-work. Indeed it mainly move the definition of the power intent from RTL
level to higher level, specifying it through the insertion of #pragmas into the SystemC code.
Furthermore the logic to be switched off through power saving techniques is not automati-
cally identified. Macko [67] proposed a method for automation of power-management spec-
ification. The input of the method is a system functional model in SystemC and ESL simu-
lation results in VCD. The output is an enriched system model, which includes the power-
management specification using SystemC/PMS. However, this method is limited to SystemC
high level description, and is not applicable to CGR systems.

Most of the above described strategies still require high hand-work, requiring the de-
signer to identify the logic to be switched-off and in some cases also to specify the power
intent. The work presented in this Chapter describe a methodology for the automatic ap-
plication of the power gating technique to CGR systems, and its application into the Multi-
Dataflow Composer (MDC) tool. Working at dataflow-level, the methodology identify the
logic to switch-off, and generates accordingly a CPF file with the specification of the re-
quired power intent and the HDL files, containing the controller to properly enable/disable
the power gating logic.

4.2 Methodology

The goal of power gating is to minimize the consumption of static power. The main idea be-
hind it is: if a specific portion of the design is not used in a given computation mode, then it
can be completely powered-down by means of a sleep transistor. This technique, as the clock
gating one, is applicable at different granularities: fine-grain approaches require to drive a
different sleep transistor for every cell in the system, while coarse-grain ones, again, operate
on a set of resources instantiating one sleep transistor to drive different cells connected to a
shared power network. However, clock gating can be handled almost easily during the design
and implementation process; power gating is more invasive technique, since it requires the
insertion of several extra logic to handle the inter-block communication and the powering
down/up transitions.

Firstly, it is required the insertion of the sleep transistors (or power switches) between the
gated region (or power domain) and the main power supply to switch on/off the derived
power supply. However, this is not enough to handle the correct power-down/up sequence,
which includes also the isolation on signals from the shut-down domain. The power do-
mains to be powered-down have to be isolated before power is switched off, and have to re-
main isolated until the power is again totally on. The isolation logic is typically used between
the powered-down region and the powered on ones, to avoid the transmission of spurious

40 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

signals in input to ON-cells. In certain cases, the state of control flops need to be maintained
to guarantee the proper operation of the system, when the regions are powered-on. For this
purpose, the state retention logic is adopted. Retention cells typically have a low power con-
sumption shadow register, connected to the main power supply, where to save the state of
the main register when the domain is powered-down.

This additional logic can be manually inserted by the designers in the RTL architecture
or through a power format file. Manual definition is highly error prone: it requires modelling
the impact of low-power during simulation and providing multiple definitions for synthesis,
placement, verification and equivalence checking [90]. In this work, the CPF is adopted. The
CPF can be divided into two main parts: technology and power intent.

• The technology part sets the timing libraries and specifies the low-power cells to be
used within the technology specific physical libraries.

• The power intent part depends on the design and manages the power domains, the
power modes and the respective transitions. Here the power cells, specified on the
technology part, are instantiated and associated to the logic in the design, accordingly
with the power domains to which they belong.

4.2.1 Automatic Power Gating Implementation

The first step for the automatic implementation of a power gating strategy requires the iden-
tification of the logic blocks to be switched off (power domains - PDs). The assumption is
that, once identified the minimum set of Logic Regions (LRs) composed of actors always ac-
tive/inactive together, these LRs can be powered-down. Thus the Algorithm 1 (see Appendix
A) used by MDC to identify the LRs can be exploited also to identify the switchable PDs.

However, MDC’LRs for clock gating applications do not include all of the logic that can
be switched off through power gating. Since power gating technique acts on both the static
and dynamic power consumption, all of the FUs, included the combinatorial ones, have to
be considered. Thus, in the perspective of applying power gating to the to CGR systems gen-
erated by MDC, also the SBoxes have to be included within the LRs. 1 Thus, the identification
process described in Section 3.3 is here extended to include also the SBoxes.

Considering DFG〈V ,E〉 as the directed graph of the multi-functional specification, when
power gating strategies are implemented, the V set includes both the set of computational
actors, V ′, and the set of SBoxes, V ′′, as V =V ′∪V ′′. The first step for the identification of the
power domains applies the Algorithm 1 presented in Section 3.3 to identify the basic set of
LRs. Then, the SBoxes identification Algorithm 3 (see Appendix B) is applied. This Algorithm
exploits the information within the configuration table (C _T AB) to add the SBoxes V ′′ to the
partition S. The algorithm consists of two main steps:

• for each SBox, the algorithm creates a set DP NS B i analysing all the input DPNs. If a
DPN activates the considered SBox (the corresponding value within the C _T AB is not
a X) then it has to be active when that functionality is requested. Therefore, the input
DPN is added to DP NS B i . When all input DPNs have been cross-checked, the DP NS B i

set is added to the SB_M AP . This latter is a map used to keep trace for each SBox, SBi ,
of the set of DPNs that need its activation during the execution.

1In a purely clock gating based methodology, this was not necessary since they do not have (in the current
MDC implementation) any clock to be switched-off.

4.2. METHODOLOGY 41

• For each SBi in the SB_M AP , the algorithm compares the value DP NS B i with all the
N LRs in the LR_M AP . The following situations may occur:

– the considered SBox set is activated by the same DPNs triggering the considered
LR (DP NS B i =DP N s j): SBi does not represent a new region and it is simply added
to S j ;

– the considered SBox set is activated by different DPN(s) with respect to all the
considered LRs (SBi is still unassigned, !assi g nedSB = 1): SBi represents a new
region; therefore, a new set (SN = SBi), is added to LR_M AP .

At the end of the process, each LR can be mapped into a different PD. This implies creat-
ing, for each LR, a power domain into the CPF file, defining for each switchable PD also the
shut-off condition. Instances belonging to each PD are related to the actors that belong to
the corresponding LR.

Considering an example with two input DPNs (DPN1 and DPN2), were three LRs are
identified (LR1 shared by the two DPNs, LR2 used only by DPN1 and LR3 used only by DPN2),
three PDs can be created in the CPF. The following CPF line depict the creation of the three
PDs. PD_AO is the default always on domain, corresponding to LR1. While PD1 and PD2 are
the switchable PDs corresponding to LR2 and LR3.

create always on power domain corresponding to LR1
create_power_domain −name PD_AO −default { . . . }

create switchable power domain corresponding to LR2
create_power_domain −name PD1 −instances { . . . } \
−shutoff_condition { switch_en1 } −base_domains {PD_AO}

create switchable power domain corresponding to LR3
create_power_domain −name PD2 −instances { . . . } \
−shutoff_condition { switch_en2 } −base_domains {PD_AO}

Then, for each considered DPN a different Power Mode (PM) can be created. Each PM rep-
resents a steady state of the design in which some PDs are active, while others are disabled,
according to the LRs to be activated by the requested functionality. Following the example
with two input DPNs and three LRs, three PMs can be defined in the CPF: one default PM,
where all of the PDs are powered-on (PMdef), one corresponding to DPN1 (PM1), and one
corresponding to DPN2 (PM2).

create default power mode with a l l PDs act ive
create_power_mode −name PMdef\
−domain_conditions {PD_AO@on PD1@on PD2@on} −default

create default power mode corresponding to DPN1
create_power_mode −name PM1\
−domain_conditions {PD_AO@on PD1@on PD2@off }

create default power mode corresponding to DPN12
create_power_mode −name PM2\
−domain_conditions {PD_AO@on PD1@off PD2@on}

Finally, for each switchable PD isolation and state retention logic can be defined.

create rules for i s o l a t i o n l o g i c insert ion
c r e a t e _ i s o l a t i o n _ r u l e −name iso1 −from PD1\

42 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

− isolation_condition { iso_en1 } −isolation_output low
c r e a t e _ i s o l a t i o n _ r u l e −name iso2 −from PD2\
− isolation_condition { iso_en2 } −isolation_output low

create rules for s t a t e retention insert ion
create_state_retention_rule −name st1 −domain PD1\
−restore_edge { rstr_en1 } −save_edge { save_en1 }
create_state_retention_rule −name st2 −domain PD2\
−restore_edge { rstr_en2 } −save_edge { save_en2 }

4.2.2 Step-by-step example

Starting from the output of the step-by-step example in Figure 3.6, Figure 4.1 illustrates an
example where Algorithm 3 is applied. The SBoxes involved are: SB0, SB1 and SB2. At first
the algorithm processes C _T AB to create SB_M AP :

1. SB0 is considered.

• Create a new empty set DP NS B 0

• Analyse all DP N s of SB0 in C _T AB

– SB0(DP Nα) = 0: add α to DP NS B 0.

– SB0(DP Nβ) = X : do not add β to DP NS B 0.

– SB0(DP Nγ) = 1: add γ to DP NS B 0.

• DP NS B 0 is added as value to key SB0 in SB_M AP .

2. SB1 is considered.

• Create a new empty set DP NS B 1

• Analyse all DP N s of SB1 in C _T AB

– SB1(DP Nα) = 0: add α to DP NS B 1.

– SB1(DP Nβ) = X : do not add β to DP NS B 1.

– SB1(DP Nγ) = 1: add γ to DP NS B 1.

• DP NS B 1 is added as value to key SB1 in SB_M AP .

3. Finally SB2 is considered.

• Create a new empty set DP NS B 2

• Analyse all DP N s of SB2 in C _T AB

– SB2(DP Nα) = 0: add α to DP NS B 2.

– SB2(DP Nβ) = 1: add β to DP NS B 2.

– SB2(DP Nγ) = 0: add γ to DP NS B 2.

• DP NS B 2 is added as value to key SB2 in SB_M AP .

Once the SB_M AP is determined, Algorithm 3 compares each DP NS B i in SB_M AP with
all the S_j in LR_M AP .

1. SB0 is considered.

4.2. METHODOLOGY 43

in3

in1

in2

out1

A
B

C

SB_0 SB_1

F

G

D E

SB_2

LR4 LR1

LR2

LR5

LR3

SB_MAP

SB_1

SB_0 1 10

SB_2

C_TAB

SB_1 0 1X

SB_0 0 1X

SB_2 0 11

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2

C_TAB

SB_1 0 1X

SB_0 0 1X

SB_2 0 11

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

C_TAB

SB_1 0 1X

SB_0 0 1X

SB_2 0 11

LR_MAP

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

Current SBox = SB_0

EG
A

B
C

DF

S1

S3

S2

S4
S5

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

LR_MAP

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

Current SBox = SB_0

EG
A

B
C

DF

S1

S3

S2

S4
S5

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

LR_MAP

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

SB_0

R
e
s
u

lt
in

g
 O

u
tp

u
t

Current SBox = SB_1

EG
A

B
C

DF

S1

S3

S2

S4
S5

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

LR_MAP

S2 1 01

S1 1 00

S3 0 01

S4 1 10

S5 1 10

SB_0

Current SBox = SB_1

EG

A

B C

DF

S1

S3

S2

S4

S5

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

LR_MAP

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

SB_0

SB_1

in3

in1

in2

out1

A
B

C

SB_0 SB_1

F

G

D E

SB_2

LR4 LR1

LR2

LR5

LR3

LR4

Current SBox = SB_2

E

G

A

B

C

D

F

S1

S3

S2S4

S5

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

LR_MAP

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

SB_0

SB_1

Current SBox = SB_2

E

G

A

B

C

D

F

S1

S3

S2

S4

S5

SB_MAP

SB_1 1 10

SB_0 1 10

SB_2 1 11

LR_MAP

S2 1 11

S1 1 00

S3 0 01

S4 1 10

S5 1 10

SB_0

SB_1
SB_2

Figure 4.1: Logic Set Definer: a step-by-step example of the Logic Regions set extension with
the SBoxes.

• Compare DP NS B 0 with all sets S j in LR_M AP

– DP NS B 0 = DP NS 4

– SB0 is added to LR S4 in LR_M AP

2. Then SB1 is considered.

• Compare DP NS B 1 with all sets S j in LR_M AP

44 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

– DP NS B 1 = DP NS 4

– SB1 is added to LR S4 in LR_M AP

3. Finally SB2 is considered.

• Compare DP NS B 2 with all sets S j in LR_M AP

– DP NS B 2 = DP NS 2

– SB2 is added to LR S2 in LR_M AP

4.3 Integration in MDC

The MDC Power Manager has been extended to provide, in addition to the clock gating tech-
nique, also the the power gating technique. The Algorithm 1 for the identification of the LRs
has been extended with Algorithm 3, to identify the best set of LRs according to the saving
technique selected but the user. Figure 4.2 shows the MDC design flow that includes the
power management extension.

protocol

M
e
r
g

in
g

 P
r
o

c
e
s
s

IRs

L
o

g
ic

 R
e
g

io
n

s

I
d

e
n

ti
fi

c
a
ti

o
n

Datapath Merging

MDC Baseline flow

HDL

IR

C_TAB

protocol

H
D

L

G
e
n

e
r
a
ti

o
n

HDL components

Library

HDL Generation

IR

C_TAB
CG

HDL

H
D

L

G
e
n

e
r
a
ti

o
n

HDL components

Library

c
lo

c
k

g
a
ti

n
g

p
o

w
e
r

g
a
ti

n
g

Logic Regions

Identification

Power Saving

Application

MDC power management extention

HDL +

Controller +

CPF

Figure 4.2: MDC design suite: baseline flow (on top) and corresponding power extension (on
bottom).

In order to give to the synthesizer the information about the power intent, MDC pro-
vides also a CPF file. The CPF generated by MDC is divided in two parts, following division
described in Section 4.2.

4.3. INTEGRATION IN MDC 45

• technology part: is dependent on the adopted technology. Here the timing libraries
(define_library_set) and low-power cells (define_xxx cell commands) are spec-
ified;

• power intent part: depends on the design and manages the PDs, PMs and low power
rules. The PDs are created through the create_power_domain command, and for
each switchable PD the associated FUs from the design are specified. All the logic be-
longing to the always-on domain is automatically associated to the default PD (PDdef),
which has no associated switching-off logic. Then, for each switchable domain also the
isolation (create_isolation_rule) and retention rules (create_state_retention_rule)
are specified.

An excerpt of the power intent CPF file corresponding to the five LRs identified in Figure 4.1
is provided hereinafter.

##
CPF f i l e automatically generated by:
Multi−Dataflow Composer tool
##
set_cpf_version 2 . 0
set_hierarchy_separator /

##
Technology part of the CPF
##

define the l i b r a r y s e t s
d e f i n e _ l i b r a r y _ s e t −name set1_wc\
− l i b r a r i e s { lib1_wc lib2_wc }
d e f i n e _ l i b r a r y _ s e t −name set1_bc \
− l i b r a r i e s { lib1_bc lib2_bc }

define the i s o l a t i o n c e l l s
d e f i n e _ i s o l a t i o n _ c e l l −cel ls { ISOL* } −enable ISO\
−power VDD −ground VSS −valid_location on

define the always on c e l l
define_always_on_cell −cel ls "AO_BUF1 AO_BUF2 AO_INV1 AO_INV2 . . . " \
−power_switchable VDD −power TVDD −ground VSS

define the s t a t e retention c e l l
d e f i n e _ s t a t e _ r e t e n t i o n _ c e l l −cel ls RTN_FF* \
−power_switchable VDD −power TVDD −ground VSS\
−save_function SAVE −restore_function !NRESTORE

define the power switch c e l l s
define the power switch c e l l s
define_power_switch_cell −cel ls "HD_SW1*" \
−stage_1_enable NSLEEPIN1 −stage_1_output NSLEEPOUT1\
−stage_2_enable NSLEEPIN2 −stage_2_output NSLEEPOUT2\
−type header −power_switchable VDD −power TVDD

##
Design part of the CPF (Power Intent part)
##

46 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

i d e n t i f y the design for which the CPF i s created
set_design top_module

create power domains
create_power_domain −name PDdef −default # (inst_C sbox_2)
create_power_domain −name PD1 −instances { inst_B } \
−shutoff_condition { ! powerController_0 /pw_switch_en1 } \
−base_domains { PDdef }
#repeat for a l l switchable domains

create nominal conditions
create_nominal_condition −name o f f −voltage 0
create_nominal_condition −name on −voltage 1 . 1

create power modes
create_power_mode −name PMdef\
−domain_conditions {PDdef@on PD1@on PD3@on PD4@on PD5@on} \
−default
create_power_mode −name PM1\
−domain_conditions {PDdef@on PD1@on PD3@off PD4@on PD5@off }
#repeat for a l l power modes

associate l i b r a r y s e t s with nominal conditions
update_nominal_condition −name on − l ibrary_set set1_wc

create rules for i s o l a t i o n l o g i c insert ion
c r e a t e _ i s o l a t i o n _ r u l e −name iso1 −from PD1\
− isolation_condition { powerController_0 / iso_en1 } \
−isolation_output low
#repeat for a l l necessary i s o l a t i o n rules

create rules for s t a t e retention insert ion
create_state_retention_rule −name st1 −domain PD1\
−restore_edge { ! powerController_0 / rstr_en1 } \
−save_edge { powerController_0 /save_en1 } \
−target_type both −secondary_domain PDdef
#repeat for a l l necessary retention rules

. . .

indicate when the power intent for the design ends
end_design

To properly drive the low power logic, MDC adds to the reconfigurable HDL an automat-
ically generated Power Controller, which is composed of a different finite state machine for
each PD. The Power Controller properly drives: a) the enable of the Power Switches and of
the Isolation cells, b) the save command of the State Retention cells (to store registers values
before their shutting off), and c) the restore command of the State Retention cells (to retrieve
registers values once switched on).

Figure 4.3 depicts an example of the finite state machine (FSM) that controls the low
power logic. At the beginning the PD is active, and the FSM stays in the IDLE ON (S1) state
until the PD is enables (en). When the PD is disables (!en) the FSM starts the proper power-
down sequence by isolating the PD (S2), switching off the clock to guarantee the proper sav-
ing of the retention registers (S3), saving the content of the retention registers (S4) and finally

4.3. INTEGRATION IN MDC 47

switching off the power (S5). Then the FSM goes to an IDLE OFF state (S6) where it remains
until the PD is disabled (!en). Once the PD is activated again, the FSM starts the power-up
sequence switching on the power (S7), restoring the state from the state retentions (S8), en-
abling the clock (S9) and removing the isolation (S10), returning finally to the initial IDLE ON
state (S1).

S1: IDLE ON

S2: ISO ON

S3: CLK OFF

S4: SAVE

S5: PWR OFF

S6: IDLE OFF

S7: PWR ON

S8: RESTORE

S9: CLK ON

S10: ISO OFF

S1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S1

en

S2 S3 S4 S5

S10 S9 S8 S7 S6

!en

!en

en

...

...

...

...

...

...

clk

iso

en

clkLR

save

pwr

restore

Figure 4.3: Finite state machine that controls the power logic belonging to a switchable PD.

Figure 4.4 shows the implementation of the power gating management in the resulting
platform:

• LR2 is shared by all of the DPNs and does not require any power management support.
Thus, is is placed by default into the always-on domain PDdef (not indicated in figure);

• PD1, PD3, PD4 and PD5, corresponding to LR1, LR3, LR4 and LR5, are power gated by
means of three different types of cells, Power Switch, Isolation and State Retention cells
(SBoxes do not need these latter since they are state-less);

• the Power Controller to properly generate the enable/restore signals for the power gat-
ing cells. For the proper operation of the state retention cells these PDs are also clock
gated.

48 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

Power

Controller

in3

A
in1

in2

out1S
B

_
0

S
B

_
1

S
B

_
2

B

C

G

D E

F

ID

RTN RTN

RTN RTN

RTN

RTN

SW

VDD

SW

VDD

SW

VDD

SW

VDD

PD3

PD5

PD4

PD1

PD4

SW

VDD

Power Switch

RTN Retention Cell

Isolation Cell

Clock Gating Cell

Figure 4.4: Logic Set Definer: power gating physical implementation.

4.4 Assessment

This section validates the proposed dataflow-based power management strategy in three
different application scenarios for image processing:

• Spatial Anti-Aliasing (UC1), to correct the distortion effects of an image downsampled
violating the Nyquist constraint;

• Zoom (UC2), to scale an image by a given zooming factor interlacing pixels of the orig-
inal image with other pixels coming from adaptive interpolations of the neighbouring
ones;

• Deblocking Filter (UC3), to remove image distortions, like blocking and ringing, com-
ing from compression processes.

The applications have been profiled to identify the most computationally intensive code
segments, called in the follow computational kernels or simply kernels, that require to be
accelerated. For UC1, UC2 and UC3, six, seven and eight kernels respectively have been
identified and modelled as DPNs according to the RVC-CAL dataflow model. The final intent
is accelerating in hardware these applications by mapping their respective kernels over a
different reconfigurable multi-functional architecture, assembled with MDC.

Table 4.1 depicts an overview of the kernels composition, functionalities and occurrences
within the three applications. The number of actors is a raw index of the kernel size, which
is important to understand the kernel power consumption results. A more precise insight
of the size of each kernel is provided in Table 4.2 that reports both the overall kernel area -
column area [µm2] - (along with its percentage with respect to the corresponding use case)

4.4. ASSESSMENT 49

Table 4.1: Computational kernels of the adopted use cases.

app kernel # actors # occ data size functionality

UC1

sorter 2 18659 25 vector sorting
min_max 1 14864 2 maximum/minimum finding

rgb2ycc 19 256 3x4x4 RGB to YCrCb colour conversion
ycc2rgb 18 256 3x4x4 YCrCb to RGB colour conversion

abs 1 124366 1 absolute value calculation
corr 10 2321 25 vector correlation

UC2

min_max 1 15142 2 maximum/minimum finding
abs 1 70045 1 absolute value calculation

sbwlabel 17 966 16 edge block checking
chgb 7 3072 4 bilevel/grayscale block checking

cubic_conv 6 341 16 cubic filter convolution
median 9 1253 4 median calculation

cubic 10 1496 4 linear combination calculation

UC3

min_max 1 32806 2 maximum/minimum finding
filter 13 2235 10 vector filtering
clip 2 346 2 vector comparison

inner 9 1108 4 vector weighting and sum
mdiv 7 346 4 vector biasing
sign 1 346 1 sign calculation

rgb2yuv 19 256 3x4x4 RGB to YUV colour conversion
yuv2rgb 18 256 3x4x4 YUV to RGB colour conversion

and the area they share with other kernels - column shared area - (along with its percentage
with respect to the overall kernel area). Last column reports, for each kernel, the percentage
of its shared area in the considered use-case.For instance, in UC1, the 32.86% of sorter kernel
is shared with other kernels belonging to UC1, while in the case of min_max the whole kernel
(100% of the kernel) is shared with other kernels belonging to UC1.

Back to Table 4.1, the data size is referred to the number of tokens that the kernel is able
to process for every execution. This metric gives an idea of the kernel complexity and of
its execution latency. The occurrences of a given kernel (#occ in Table 4.1) are intended as
the number of times the kernel is executed while running its corresponding application. If
a kernel is executed several times, its activation frequency is high and, in turn, its switching
activity largely impacts on the dynamic power consumption.

4.4.1 Assessment Setup

In terms of validation the proposed methodology is assessed over different coprocessor ar-
chitectures, accelerating in hardware the applications presented in the previous section.
Each coprocessor has been practically assembled with MDC, enabling/disabling the pre-
sented power-management extensions. For each of the presented UC, four different design
are assembled:

• UC - assembled with the baseline version of MDC, without the adoption of any partic-

50 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

Table 4.2: Area occupancy of the kernels within the adopted use cases targeting a 90 nm ASIC
technology. [* Percentages wrt to the UC total area (baseline row of Table 4.4); ** Percentages
wrt the kernel total area.]

app kernel area [µm2] % * shared area [µm2] % * % **

UC1

sorter 12010 12.90 3946 4.24 32.86
min_max 3946 4.24 3946 4.24 100.00

rgb2ycc 37084 39.82 13955 14.98 37.63
ycc2rgb 39862 42.80 13955 14.98 35.01

abs 2089 2.24 2089 2.24 100.00
corr 31956 34.31 10820 11.62 33.86

UC2

min_max 3919 3.33 3919 3.33 100.00
abs 2089 1.78 2089 1.78 100.00

sbwlabel 52943 45.01 10831 9.21 20.46
chgb 19077 16.22 12579 10.69 65.94

cubic_conv 20613 17.52 12444 10.58 60.37
median 23782 20.22 16160 13.74 67.95

cubic 21728 18.47 15478 13.16 71.24

UC3

min_max 3943 2.72 3943 2.72 100.00
filter 55921 38.60 15083 10.41 26.97
clip 6988 4.82 3943 2.72 56.43

inner 23302 16.09 15911 10.98 68.28
mdiv 19346 13.35 11279 7.79 58.30
sign 842 0.58 0 0.00 0.00

rgb2yuv 51195 35.34 20816 14.37 40.66
yuv2rgb 51696 35.69 33815 23.34 65.41

ular power saving methodology.

• UC_auto - assembled with the baseline version of MDC and implementing fine-grain
(register level) clock gating with the automatic support offered by the adopted com-
mercial synthesizer.

• UC_cg - assembled with the clock gating extension of MDC.

• UC_pg - assembled with the power gating extension of MDC.

In all of the cases, the ASIC synthesis explorations have been performed using Cadence
RTL Compiler. With respect to power consumption, all the power estimations have been
extracted with RTL Compiler taking into account the real switching activity, collected dur-
ing post-synthesis hardware simulations (performed with Cadence SimVision Debug) within
VCD files. Therefore, dynamic power consumption numbers are accurate and representa-
tive of the on-off system conditions. The presented designs have been synthesized all at the
same frequency, 200 MHz, targeting two different ASIC technology nodes: a 90 nm CMOS
one (Section 4.4.2 and Section 4.4.3) and a 45 nm one (Section 4.4.4). The frequency choice
has been determined by the kernels maximum achievable frequency (202.1 M H z for UC1
and UC3).

4.4. ASSESSMENT 51

Table 4.3 shows the composition of the different use cases in terms of LRs. The UC_cg
designs, in all the considered use cases, present a smaller number of LRs to be managed.
When power gating is required, the Logic Set Definer adds also asynchronous sets of SBoxes,
resulting then in a larger LRs number to be supported and managed.

Table 4.3: Use Case composition in terms of LRs

LRs
Use Case UC_cg UC_pg

UC1 9 14
UC2 13 19
UC3 15 22

4.4.2 90 nm CMOS Technology: complete power gating sup-
port

This section discusses the synthesis results achieved with a 90 nm CMOS technology. Ta-
ble 4.4 summarizes, for each design, area occupancy and power consumption. The reported
data are comprehensive of the overhead due to the specific power saving technique, such as
the AND gates for the MDC-based clock gating implementations and the power controller,
the isolation and the retention cells for the MDC-based power gating ones. All the power
results are calculated as the sum of single kernels contribution multiplied by the number
of their occurrences (reported in Table 4.1 for each application), divided by the sum of the
occurrences of all the kernels2. This weighed average is representative of the designs power
consumption during each use case typical execution.

As expected, both clock gating and power gating methodologies provide higher perfor-
mance with respect to the baseline designs. For all the use cases the former are always above
the 90% of saving, while the latter reach more than the 88%. MDC power saving method-
ologies, acting at the LRs level rather than at the register one, can achieve better results with
respect to those achievable with fine-grain clock gating automatically applied by SoC En-
counter. For all the use cases, with respect to UC_auto, the UC_cg designs are always above
the 88% of saving, while UC_pg ones reach more than the 86%. In particular, for UC2 (Zoom)
coarse-grain clock gating allows the saving of 91.27% of the total power consumption with
respect to the automatic fine-grain clock gating design.

With respect to the area, the summary proposed in Table 4.4 confirms that power gating
is an invasive technique, involving a severe area overhead. This latter is between 77.41%
and 88.38% with respect to the baseline designs and more than the 94% with respect to the
automatic fine-grain clock gating ones. This is due to the fact that, on the one hand, more
LRs have to be handled with respect to a clock gating based methodology (as reported in
Table 4.3) while, on the other, power gating implies adding and managing more components
than simple clock gating strategies).

Table 4.5 better focuses on power results analysing separately, for all the considered use
cases and designs, the static power consumption and the dynamic one. As expected, power
gating demonstrates higher performance in terms of static power consumption. It allows

2Kernel contribution means the power consumption of the design when the considered kernel is enabled.

52 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

Table 4.4: 90 nm ASIC synthesis results. [* Percentages wrt to the baseline design with-
out power-management; ** Percentages wrt to the baseline design implementing fine-grain
clock gating with SoC Encounter]

Design Area Power
[µm2] %∗ %∗∗ [µW] %∗ %∗∗

UC1 93136 — — 5030.54 — —
UC1_auto 84925 -8.82 — 3553.15 -29.37 —

UC1_cg 93435 +0.32 +8.82 376.08 -92.52 -89.42
UC1_pg 165229 +77.41 +94.56 490.57 -90.25 -86.19

UC2 117627 — — 6181.85 — —
UC2_auto 105972 -9.91 — 4995.84 -19.19 —

UC2_cg 118007 +0.32 +11.35 436.05 -92.95 -91.27
UC2_pg 221589 +88.38 +109.09 619.69 -89.98 -87.60

UC3 144863 — — 7784.02 — —
UC3_auto 131052 -9.53 — 6343.41 -18.51 —

UC3_cg 145373 -0.35 +10.93 703.58 -90.96 -88.91
UC3_pg 257495 +77.75 +96.48 871.32 -88.81 -86.26

achieving 70-80% of saving with respect to both the baseline design and the automatic fine-
grain clock gating one. Such a benefit cannot be appreciated in the total power consumption
since the static power amount is about the 1-10% of dynamic one. In fact, 90 nm technolo-
gies are far from the physical limit where the static power contribution exceeds the dynamic
one. A deeper insight on this aspect is provided in Section 4.4.4. In terms of dynamic power
consumption MDC power extensions, the clock gating and the power gating ones, allow good
saving percentages (more than the 80% with respect to both the baseline and the auto clock
gated designs). In comparison with the automatic fine-grain clock gating implemented by
SoC Encounter, the coarse-grain approach proposed in this work is capable of getting rid of
the clock tree power consumption; therefore, reaches considerably higher saving percent-
ages.

Clock gating does not act on the static power consumption by definition: UC_cg designs,
due to the added clock gating modules, present a small overhead in terms of static power
consumption. UC_auto seems to present a very small saving. This latter is due to the area
optimizations, visible on Table 4.4, that SoC Encounter performs replacing the standard reg-
isters with dedicated clock gating cells.

Focussing on UC2, Figure 4.5 and Figure 4.6 respectively report the static and the dy-
namic contributes of the kernels involved in the considered UC. In particular, these figures
show how the static and the dynamic power consumption of the designs change depend-
ing on the enabled kernel. The weighted mean of these data, calculated as described at the
beginning of this section, gave the total UC2 numbers reported in Table 4.4 and Table 4.5.

Focusing on the static consumption (reported in Figure 4.5), as expected, power gating
is extremely beneficial in reducing the static dissipation for all the kernels. The same does
not apply for clock gating as previously discussed. In Figure 4.5 it is possible to notice that
one kernel, namely sbwlabel, is less positively affected by power gating than the others in
terms of static consumption. This is the largest kernel (see Table 4.2) and, when it is active,
a considerably high portion of the design is on. Therefore, by construction, it consumes

4.4. ASSESSMENT 53

Table 4.5: 90 nm ASIC synthesis results: focus on static and dynamic power consumption.
[* Percentages wrt to the baseline design without power-management; ** Percentages wrt to
the baseline design implementing fine-grain clock gating with SoC Encounter]

Design Static Dynamic
[µW] %∗ %∗∗ [µW] %∗ %∗∗

UC1 47.96 — — 4982.58 — —
UC1_auto 47.51 -0.93 — 3505.64 -29.64 —

UC1_cg 49.07 +2.32 +3.28 327.02 -93.44 -90.67
UC1_pg 8.73 -81.80 -81.63 481.84 -90.33 -86.26

UC2 57.54 — — 6124.31 — —
UC2_auto 56.62 -1.61 — 4939.22 -19.35 —

UC2_cg 58.88 +2.33 +3.99 377.17 -93.84 -92.36
UC2_pg 13.24 -76.99 -76.62 606.45 -90.10 -87.72

UC3 73.92 — — 7710.10 — —
UC3_auto 72.39 -2.08 — 6271.03 -18.66 —

UC3_cg 75.27 +1.83 +3.99 628.31 -91.85 -89.98
UC3_pg 15.16 -79.50 -79.06 856.17 -88.90 -86.35

Figure 4.5: UC2: Static power consumption at 90 nm with state retention cells.

more static power than the others. Moreover, the area overhead to manage power gating
increases with the state retention cells number, which are potentially more for large kernels.
Therefore, according to all these considerations, sbwlabel benefits necessarily less than the
other kernels from the power gating.

With respect to the dynamic power consumption (reported in Figure 4.6) it is clearly
visible that, within the MDC coarse-grain designs, clock gating achieves higher dynamic
power savings than power gating, due to the high resource overhead of the latter technique
that causes also additional switching activity on the design. The MDC-based designs where
power optimization is enabled are capable of reaching higher performance than the register-

54 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

Figure 4.6: UC2: Dynamic power consumption at 90 nm with state retention cells.

level clock gated ones. With respect to the automatic clock gating, whose saving percentages
are always within 10%-14%, the MDC-based designs perform better. The best savings are
reached for the smaller kernels (see Table 4.2), abs and min_max, where, by shutting down
large portions of the design, coarse-grain clock gating and power gating allow saving more
than 91% and 89% respectively. The less positive effect is registered again with sbwlabel due
to its size (it activates almost the 45% of the entire design).

Summarizing, the coarse-grain clock and power gating approaches, based on the auto-
matic model-based identification of homogeneous logic regions, are capable of achieving
better performance than the classical fine-grain clock gating ones (normally implemented
in commercial synthesizers), targeting a 90 nm CMOS technology. Strictly focusing on the
MDC power extensions, according to the technology adopted in the discussed analysis, clock
gating demonstrated to be more efficient than the proposed coarse-grain power gating im-
plementation; despite this, power gating showed very promising results in terms of static
power consumption reduction.

4.4.3 90 nm CMOS Technology: application-specific power gat-
ing support

In this section, still targeting a 90 nm CMOS technology and the same use-cases, a different
set of designs has been assessed. Given multi-functional scenarios such the targeted ones,
it is not necessary to maintain the state of the registers when a certain LR is switched-off.
Results are stored back to the main memory before a new computation is issued on the co-
processor, so that all the registers are simply overwritten. According to these considerations,
it is not necessary to save the status of the registers prior to switch them off and, in turn, it is
possible to get rid of the overhead due to the retention registers in the power gated designs.
Results are in line with those discussed on the previous section: MDC-based clock gating and
power gating methodologies provide higher performance and all the general considerations
still hold.

4.4. ASSESSMENT 55

Focusing on power gating, Table 4.6 summarizes, for each design, the synthesis results
in terms of area occupancy and power consumption. The reported data, with respect to
Table 4.4, do not include the contribution of the state retention cells. Getting rid of the state
retention cells implies a considerably smaller area overhead (7-9% in this second scenario
versus 70-90% of the previous one with respect to the baseline designs). Nevertheless, as it
can be noticed, the overall power consumption does not change a lot, since with a 90 nm
CMOS technology the static power consumption is still far smaller than the dynamic one,
which has the largest impact on the power results.

Table 4.6: 90 nm power gating (without state retention cells) ASIC synthesis results. [* Per-
centages wrt to the baseline design without power-management; ** Percentages wrt to the
baseline design implementing fine-grain clock gating with SoC Encounter]

Design Area Power
[µm2] %∗ %∗∗ [µW] %∗ %∗∗

UC1_pg 99707 +7.06 +17.40 431.57 -91.42 -87.85
UC2_pg 128383 +9.14 +21.14 549.35 -91.11 -89.00
UC3_pg 156230 +7.85 +19.21 769.71 -90.11 -87.87

This section demonstrated that, in those applications where the state preservation is not
mandatory, it is possible to potentially benefit from the removal of the state retention cells.
Nevertheless, despite the huge area saving, targeting a 90 nm CMOS technology this poten-
tial benefit does not turn into a real power saving, since the dynamic power consumption is
still orders of magnitude larger than the static one.

4.4.4 Preliminary Results Over a 45 nm Technology

The chosen technology influences the results achievable with the proposed strategies. The
90 nm technology is far from the physical point where the two contributes of the power,
static and dynamic, are comparable. With the 90 nm technology the dynamic power is about
two orders of magnitude larger than the static one. In such a situation clock gating results
always beneficial with respect to power gating. It guarantees large dynamic savings with a
negligible area overhead.

This section presents some preliminary results over a smaller technology, targeting 45
nm channel length cells, where the dynamic consumption is approximately just one or-
der of magnitude larger than the static one. All the results reported hereafter refer to the
application-specific power gating scenario discussed in Section 4.4.3, without the insertion
of the state retention cells. Table 4.7 reports area occupancy and power consumption of the
considered designs. The area overhead of the MDC-based coarse-grain solutions is in line
to what we have seen in the previous paragraphs for the 90 nm technology: clock gating has
a very low overhead (about 0.3% with respect to the baseline design), while power gating
is slightly more invasive (it reaches 10% of area overhead for UC3). More interesting num-
bers are related to the power consumption: coarse-grain power gating designs achieve larger
power saving percentages than the corresponding clock gating ones (86-87% of the baseline
design power consumption with respect to the 82%). Automatic clock gating behaviour does
not change significantly between the two adopted technologies.

56 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

Table 4.7: 45 nm ASIC synthesis results. [* Percentages wrt to the baseline design with-
out power-management; ** Percentages wrt to the baseline design implementing fine-grain
clock gating with SoC Encounter]

Design Area Power
[µm2] %∗ %∗∗ [µW] %∗ %∗∗

UC1 25384 — — 1144.67 — —
UC1_auto 23360 -7.97 — 804.82 -29.69 —

UC1_cg 25467 +0.33 +9.01 174.07 -84.79 -78.37
UC1_pg 27315 +7.61 +16.93 108.57 -90.52 -86.51

UC2 31564 — — 1427.69 — —
UC2_auto 28998 -8.13 — 1163.21 -18.53 —

UC2_cg 31674 +0.35 +9.23 209.39 -85.33 -82.00
UC2_pg 34737 +10.05 +19.79 142.98 -89.99 -87.71

UC3 39040 — — 1789.00 — —
UC3_auto 35844 -8.19 — 1456.28 -18.60 —

UC3_cg 39184 -0.37 +9.32 300.08 -83.23 -79.39
UC3_pg 42405 +8.62 +18.30 194.60 -89.12 -86.64

Power gating is more effective than clock gating on a 45 nm technology, despite the two
contributes of the overall power consumption still differ for one order of magnitude. As de-
tailed in Table 4.8: power gating presents again better performance in the static power re-
duction, while clock gating is again more efficient in dynamic power saving. Note that the
savings achievable in terms of dynamic power consumption are extremely closed (91-93%
for clock gating and 87-88% for power gating). Given this similarity and the fact that only
power gating is capable of providing benefits in term of static power consumption (up to 77-
82%), the overall power consumption favours power gating solutions (as demonstrated in
Table 4.7) for the targeted technology node.

Summarizing, this section confirms that the targeted technology may influence the de-
signer in choosing the more appropriate power saving technique. Considering a technology
where the dynamic consumption is the main term of the whole power, clock gating should
be the better solution. By adopting a smaller technology, where static and dynamic power
are comparable, power gating could guarantee better results.

4.5 Chapter Remarks

This Chapter addressed the problem of power management in CGR systems. Such systems
are as suitable to accelerate multi-functional applications as, potentially, energy inefficient.
In fact, on a CGR substrate, while a particular task is executed, the resources not involved
in the computation may potentially waste precious power if not properly managed. There-
fore, a power management methodology that extends the already present in MDC has been
presented. In particular, the proposed methodology extends the capability of MDC of iden-
tifying disjointed homogeneous logic regions to include also the combinational logic. These
regions have been successfully adopted to implement a coarse grained power gating based
power saving technique. Together with the HDL multi-functional design, MDC provides a

4.5. CHAPTER REMARKS 57

Table 4.8: 45 nm ASIC synthesis results: focus on static and dynamic power consumption.
[* Percentages wrt to the baseline design without power-management; ** Percentages wrt to
the baseline design implementing fine-grain clock gating with SoC Encounter]

Design Static Dynamic
[µW] %∗ %∗∗ [µW] %∗ %∗∗

UC1 102.86 — — 1041.81 — —
UC1_auto 102.05 -0.79 — 702.77 -32.54 —

UC1_cg 105.59 +2.65 +3.47 68.48 -93.43 -90.26
UC1_pg 18.35 -82.16 -82.02 90.22 -91.34 -87.16

UC2 126.54 — — 1301.15 — —
UC2_auto 121.41 -4.05 — 1041.79 -19.93 —

UC2_cg 129.85 +2.61 +6.95 79.54 -93.83 -92.36
UC2_pg 28.18 -77.73 -78.30 114.80 -91.18 -88.98

UC3 158.99 — — 1630.02 — —
UC3_auto 154.08 -3.09 — 1302.21 -20.11 —

UC3_cg 163.10 +2.59 +5.86 136.97 -91.60 -89.48
UC3_pg 30.47 -80.83 -81.32 164.13 -89.93 -87.40

common power format file (CPF) to give to the synthesizer the information about the power
intent.

The potential of the power manager extension have been proven on different image pro-
cessing application scenarios. MDC power extensions are capable of providing both coarse-
grain clock gating and power gating support. For multi-functional reconfigurable system, it
has been demonstrated that: 1) the automatic fine-grain clock gating techniques (as those
available on commercial synthesizers) are not sufficient for power saving purposes; 2) ac-
cording to the adopted technology, the applications characteristics and the constraints to be
met (area/power/frequency), it is possible to opt for one of the two supported techniques to
achieve optimal performances.

Results assessment, on ASIC, demonstrated that the dynamic power manager can lead
to the 90% of power saving, in highly variable multi-functional scenarios. However, depend-
ing on the technology power gating is not always the best strategy. Thus, a smarter power
saving strategy that combines the coarse-grain power gating and clock gating strategies, to
selectively decide which one between clock and power gating better suites to the considered
logic region is going to be discussed in Chapter 5.

List of Publications Related to the Chapter

Journal papers

• Francesca Palumbo, Tiziana FANNI, Carlo Sau, and Paolo Meloni. 2017. Power-Awarness in
Coarse-Grained Reconfigurable Multi-Functional Architectures: a Dataflow Based Strategy. J.
Signal Process. Syst. 87, 1 (April 2017), 81-106. DOI: https://doi.org/10.1007/s11265-016-1106-
9

58 CHAPTER 4. CGR ON ASIC - AUTOMATING PG

Conference papers

• Tiziana FANNI, Carlo Sau, Luigi Raffo, and Francesca Palumbo. Automated power gating method-
ology for dataflow-based reconfigurable systems. In Proceedings of the 12th ACM International
Conference on Computing Frontiers (CF ’15), 2015. ACM, New York, Article 61 , 6 pages. DOI:
http://dx.doi.org/10.1145/2742854.2747285

• Subhadeep Banik, Andrey Bogdanov, Tiziana FANNI, Carlo Sau, Luigi Raffo, Francesca Palumbo,
and Francesco Regazzoni. 2016. Adaptable AES implementation with power-gating support. In
Proceedings of the ACM International Conference on Computing Frontiers (CF ’16). ACM, New
York, NY, USA, 331-334. DOI: https://doi.org/10.1145/2903150.2903488

Other scientific papers

• Francesca Palumbo, Carlo Sau, Tiziana FANNI and Luigi Raffo, Reconfigurable Platform Com-
poser Tool Project, at the 2016 Riunione Annuale del Gruppo Elettronica (GE), Brescia (Italy)
June 2016.

Chapter 5

Coarse-Grain Reconfiguration on
ASIC - A Power Model and
Optimization Procedure for Mixed
Clock-Gating and Power-Gating

Coarse-grain reconfigurable (CGR) systems are suitable to accelerate multi-functional applications.
In the research of this thesis a dataflow-based approach has been exploited to manage the compo-
sition of CGR systems with the automated implementation of power gated platforms, where the idle
logic can be powered down. However, the power gating is a power saving technique that requires
several additional logic, and the resource overhead may easily overcome the power saved by switch-
ing off the unused logic. The main contribution of this chapter is a power modelling methodology
capable of determining, prior to any physical system implementation, which is the optimal power
saving strategy for a CGR system. This methodology is integrated in the automated flow of MDC
power management extension. The work presented in this Chapter has been conducted in a collab-
oration between the Microelectronics and Bioengineering Lab (EOLAB) (University of Cagliari) and
the Intelligent system DEsign and Applications (IDEA) Lab (University of Sassari), into the context
of the "RPCT - Reconfigurable Platform Composer Tool" Project, funded by the Sardinian Regional
Government under agreement L.R. 7/2007, CRP-18324.

5.1 State of the Art: Modelling Power Consumption
in Coarse-Grain Reconfigurable ASIC architec-
tures

The power gating is a power saving technique that can be extremely beneficial in saving both static
and dynamic power. However, as seen in Chapter 4, power gating is a quite invasive technique that
requires several additional logic, and blindly shutting-off the idle logic is not always the best strategy.
In some cases the power consumption due to the power saving logic might exceed the amount of
power saved by switching-off the idle logic — this can happen for small idle regions. In other cases,
the power gating is not as efficient as the much simpler clock gating — for instance in regions that
have mainly sequential logic. For these reason it could be useful analysing the design to identify

59

60 CHAPTER 5. CGR ON ASIC - POWER MODELLING

which portions of the design can benefits of power saving techniques.
When the architecture is manually designed and implemented and only few idle areas are in-

volved, such an analysis is affordable. However, talking about CGR systems, there could be tens of
regions that are idle during the execution of one or more configurations. In such a case, identifying
the best power saving strategy could be highly time consuming. Several works dealt with the issue
of modelling power consumption in digital circuits, with the goal of designing low-power circuits.
Helms et al. [43] presented an efficient and accurate analytical per gate leakage model that takes
all relevant leakage effects into account. It can predict leakage currents without needing any SPICE
simulations for model application. Paim et al. [79] presented a power-predictive environment for
power-aware FIR filter design based on Remez algorithm. The used technique searches for the opti-
mal combination of number of taps and bit-width for the power-aware ASIC based FIR filter design.
The proposed power-predictive environment enabled a fast and power-aware decision even in math-
ematical design level, reducing the power dissipation and the time-to-market of the chip. Nasser et
al. [74] propose a power estimation methodology to allow the designer to explore various hardware
architectures in terms of power consumption and performances. These power models are based on
neural networks that predict the power consumed by digital operators or IPs like the arithmetic op-
erators (adders, multipliers and memories), implemented on FPGA. However none of them consider
any power saving strategy.

Other approaches perform an estimation that considers different components. Li et al. [60] pro-
posed an architecture-level integrated power, area, and timing modelling framework for multicore
systems, that evaluates system building blocks (i.e., CPU, buses, etc.) for different technology nodes,
providing also power gating support. The CASPER simulator for shared memory many-core proces-
sors [29] includes pre-characterized libraries containing power dissipation models of different hard-
ware components, enabling accurate power estimation at a high-level exploration stage. In particu-
lar the authors implemented Chipwide Dynamic Voltage, Frequency Scaling, and Performance Aware
Core-Specific Frequency Scaling. The FALPEM framework [23] provides power estimations at pre-
register transfer level (RTL) stage, specifically targeting the power consumed by clock network and
interconnect, but power and clock gating costs were not defined. Stokke at al. [111] proposed a power
modelling method for the Tegra K1 CPU, that taking into account measured rail voltages and fine-
grained hardware activity predictors, expose components such as rail and core leakage currents. Fi-
nally, the works in [134, 73] focused on networks-on-chip. Zoni et al. [134] proposed a cycle-accurate
simulation framework to support exploration and optimization of the power and performance met-
rics during network-on-chip design. It provides accurate models for both DVFS and power gating
actuators, encompassing their power and performance overheads. Such overheads are integrated
and added into the timing and power consumption figures of the architecturally simulated compo-
nents. Nasirian et al. [73] presented and approach for power gating management in network-on-chip
designs. They modelled the behaviour of router buffers using queuing theory to evaluate the effect of
power gating on the overall power saving and power penalty. To evaluate the proposed algorithm on
network-on-chip system, they adopted a cycle accurate simulator.

However, no works were found to address both clock gating and power gating estimation in CGR
systems. Some approaches only partially address the issue. For example, Xu et al. [125] derived two
energy models for estimating the leakage reduction for power gating and reverse body bias. These
models could accurately estimate the circuit energy saving at any time, even when the circuit is in
state transition. Shafique et al. [101] focussed on low-power techniques and power modelling for FP-
GAs. They presented a runtime adaptive energy management system able of dynamically determin-
ing a set of energy-minimizing custom instructions implementation versions under the given perfor-
mance and area constraints. Then it power gates the idle subset of the custom instructions, switching
off the data path containers of the fabric. In [128], only clock gating is taken into account: authors
proposed a high-level power model based on clock gating enable signals whose different power states
were defined by the combination of the values of clock gating enable signals. Their consumption

5.2. METHODOLOGY 61

was characterized by low-level power analysis results. Shyu et al. [104] proposes a methodology to
construct a hybrid routing structure to connect power switches that alleviates rush current without
violating the wake-up sequence time constraint. To determine depth of a daisy chain, they propose
a simplified model for power gating design, to estimate voltage and transient current. However the
model is not used to determine whether it is convenient to switch off the idle logic.

With respect to above considered works, this Chapter present power modelling methodology and
an improvement of the MDC power manager by integrating such methodology within its automated
flow. This Chapter introduces an algorithm that analyses the identified logic regions and, on the basis
of one single synthesis and a minimal set of simulations (one for each scenario of the multi-functional
problem), is capable of optimally characterizing the power management support. This flow, in a
separate manner for each logic region of the CGR design, is capable of assessing both clock and power
gating management costs and of determining which is the optimal power saving strategy (if any) prior
to any physical system implementation. The algorithm is based on detailed static and dynamic power
consumption models that take into account functional, architectural and technological parameters
to define the potential overhead and benefits of the considered solutions.

5.2 Methodology

To overcome the limits of a blindly applied unique power management strategy, this section presents
a power estimation flow capable of characterising, at a high-level of abstraction, the LRs identified by
the MDC power extension, and to estimate power and clock gating overhead before any physical im-
plementation. The estimation is based on two sets of models that determine the static and dynamic
consumptions of each LR when clock gating or power gating are applied. The proposed models are
derived after a single logic synthesis of the baseline CGR system generated by MDC, carried out with
commercial synthesis tools from the analysis of the power reports obtained after netlist simulation.

Given any hardware Functional Unit (FU) its average power can be obtained by summing up the
single contributions of the adopted cells, provided by the targeted ASIC library. In particular, the
average power consumption of an FU (Equation 5.1), can be divided into the power consumed by its
combinatorial logic (P (cmb)) and the power consumed by its sequential logic (P (r eg)).

P (FU) = P (cmb)+P (r eg) (5.1)

And the power consumption of an LR can be obtained by summing up the contributions of its FUs,
uniquely corresponding to the actor of the reconfigurable IR (Equation 5.2). Equation 5.2 is valid
for both static and dynamic power. However, the static power consumption is tightly related to the
LR area: the more cells are included in the considered region, the more is its corresponding static
dissipation. The dynamic power consumption strongly depends on the nodes switching activity.

P (LRi) = ∑
actor s∈LRi

[Pi (cmb)+Pi (r eg)] (5.2)

Given these considerations, the power consumption of an LR when the clock gating or power gat-
ing are applied is given by (1) the baseline power consumption of the LR (from Equation 5.2) weighted
by the activation factor of the LR (TiON) plus (2) the power consumption of the logic inserted into the
LR to apply the power saving technique. Following sections present the power estimation models for a
given LR when power gating is applied (Section 5.2.1) and when clock gating is applied (Section 5.2.2).

5.2.1 Power Gating - Power Consumption Models

Equation 5.3 models the static power consumption (due to leakage currents, so in this chapter also
called leakage power or simply Pl kg) of a LR with a prospective power gating implementation. It

62 CHAPTER 5. CGR ON ASIC - POWER MODELLING

involves two terms: PlkgON (LRi) corresponds to the static consumption within the considered LR
and E xt_Overlkg (LRi) refers to the power overhead due to the power gating logic inserted outside
the LR. This second term does not consider the Power Switch overhead, since it is not included in
the pre-layout netlist. Power gating prevents, by definition, any static dissipation on the LR when
disabled; therefore, Equation 5.3 does not present any PlkgOF F (LRi) related to the LR.

Plkg (LRi) = PlkgON (LRi)+E xt_Overlkg (LRi) =
= ∑

actor s∈LRi

[Plkg (cmb)+Plkg (r eg)∗ (#r eg −#r tn)/#r eg +Pl kg (RC)∗#r tn]∗TiON +

+[Pl kg (I SOON)∗TiON +Pl kg (I SOOF F)∗TiOF F]∗#i so+
+[Pl kg (ContrON)∗TiON +Plkg (ContrOF F)∗TiOF F]+
+[Pl kg (CGON)∗TiON +Pl kg (CGOF F)∗TiOF F]

(5.3)

PlkgON (LRi) is obtained as the multiplication of the LR activation factor TiON and the sum of static
power of the involved actors, considering separately combinatorial and sequential logic. The former,
Plkg (cmb), is equal to the static of the combinatorial cells within the considered LR. The sequential
logic part is related to the number of registers (#reg) within the LR, and involves two terms: (1) the
first term refers to the registers whose state can be lost and it is estimated on the basis of the static
consumption of the sequential cells (Pl kg (r eg)), as an average on the number of registers that are not
retained; (2) the second one refers to the retention cells and it is estimated starting from the number
of registers whose state has to be maintained (#r tn) multiplied by the static power of a single State
Retention cell (Pl kg (RC)), which value is retrieved from the target ASIC library.

E xt_Overlkg (LRi) is composed of three terms: the first one is related to the Isolation cells (#i so),
the second one to the Power Controller and the third one to the clock gating cell1. Note that, unlike
PlkgON , for the three above-mentioned terms E xt_Overlkg characterizes the LR static consumption
in both its on and off states. In the on state, the model accounts for the static consumption in the on
state (e.g. Plkg (I SOON)) multiplied by the activation factor TiON and by the overall number of cells
within the LR (e.g. #i so). In the off state, the model accounts for the static consumption in the off
state (e.g. Plkg (I SOOF F)) multiplied by the inactivation factor TiOF F (given by 1−TiON) and by the
overall number of cells within the LR (e.g. #i so). Please note that there is just one Power Controller
for all the LRs and one clock gating cell per LR, but an a-priori characterisation phase is required to
the designer, since their consumption values cannot be retrieved directly from any ASIC library.

Frequently, commercial tools (e.g. Cadence Encounter Digital Implementation System) consider
dynamic power as composed of two main terms, as depicted by Equation 5.4: a net contribution due
to the power dissipated throughout the wires linking the cells, and an internal contribution due to the
dissipation occurring inside the cells [16]. The operating frequency, f , influences both terms. Pnet

accounts for the load capacitance of each net j (bearing a specific capacitance Cload j) and the related
switching activity (SW j). Whereas, Pi nt depends on the power per MHz dissipated by each cell (Pi)
and the related switching activity (SWi).

Pd yn =Pnet +Pi nt

=1

2
f V 2

DD

∑
net j

Cload j SW j + f
∑

cel li

Pi SWi
(5.4)

Estimation model for dynamic power consumption described by Equation 5.5 reflects the model
for the static power consumption (Equation 5.3). The main difference among the static power model

1The power gating switch off protocol requires to apply clock gating at the region level, before retaining the
registers value.

5.2. METHODOLOGY 63

and the dynamic one is that this latter requires accurate data in terms of nodes switching activity. For
this reason, the netlist of the baseline CGR system is not sufficient to retrieve accurate values from
the power reports and one different simulation of the netlist for every implemented functionality is
required. Thus, dynamic power model takes into consideration the real system switching activity
provided by the hardware simulations.

Pi nt (LRi) = Pi ntON (LRi)+E xt_Overi nt (LRi) =
= ∑

actor s∈LRi

[Pi nt (cmb)+Pi nt (r eg)∗ (#r eg −#r tn)/#r eg +Pi nt (RC)∗#r tn]∗TiON +

+[Pi nt (I SOON)∗TiON +Pi nt (I SOOF F)∗TiOF F]∗#i so+
+[Pi nt (ContrON)∗TiON +Pi nt (ContrOF F)∗TiOF F]+
+[Pi nt (CGON)∗TiON +Pi nt (CGOF F)∗TiOF F)]

(5.5)

The current model for dynamic power consumption considers only the Pi nt contribution that
can be expressed for each single LR, the Pnet term of Equation 5.4 is not currently addressed in the
model. Nevertheless, as will be demonstrated in Section 5.4 (please see Tables 5.9,5.8, 5.12 and 5.14)
neglecting this term seems not to affect the optimal identification of the region to be gated.

5.2.2 Clock Gating - Power Consumption Models

Clock gating static and dynamic models are less complicated than the power gating ones, since clock
gating requires a very low logic overhead and it positively acts only on the dynamic dissipation. Equa-
tion 5.6 and Equation 5.7 report the models adopted respectively for the static power estimation and
for the dynamic power one, referring to a clock gated design.

Plkg (LRi) = Pl kg (LRi)+E xt_Overlkg (LRi) =
= ∑

actor s∈LRi

[Pl kg (cmb)+Pl kg (r eg)]+

+[Pl kg (EnabON)∗TiON +Pl kg (EnabOF F)∗TiOF F]+
+[Pl kg (CGON)∗TiON +Pl kg (CGOF F)∗TiOF F]

(5.6)

Pi nt (LRi) = Pi nt (LRi)+E xt_Overi nt (LRi) =
=Pi nt (combLRi)+Pi ntON (seqLRi)+E xt_Overi nt (LRi) =
= ∑

actor s∈LRi

[Pi nt (cmb)+Pi nt (r eg)∗TiON]+

+[Pi nt (EnabON)∗TiON +Pi nt (EnabOF F)∗TiOF F]+
+[Pi nt (CGON)∗TiON +Pi nt (CGOF F)∗TiOF F)]

(5.7)

At the logic region level, Equation 5.6 considers always the combinatorial and sequential contri-
butions for both the ON or OFF states clock gating does not affect the system static power. Whereas,
Equation 5.7 considers always the combinatorial part for both the ON or OFF states (combinatorial
logic cannot benefit from clock gating) and the sequential contribution only during the LR active
time. The overhead, E xt_Overi nt (LRi), is given by the clock gating cell and the Enable Generator.
Please remember that, implementing clock gating management at a coarse-grain level, just one clock
gating cell per LR has to be inserted within the system. Equation 5.7 is pretty much the same as
Equation 5.6, but dealing with the dynamic model, clock gating effects are estimated by omitting the
contribute of sequential logic when the LR is OFF.

64 CHAPTER 5. CGR ON ASIC - POWER MODELLING

5.2.3 Parameters Discussion

The proposed models are determined by the intrinsic features of the LRs. In particular, they consider:

• architectural parameters: LRs composition determines the amount of involved combinatorial
and sequential cells;

• functional parameters: LRs behaviour defines the region activation factor and if its status has
to be preserved or not;

• technological parameters: target technology has an impact on the ratio between dynamic and
static power and on the different cells characterisation.

Table 5.1 reports, for each parameter considered in equations 5.3, 5.5, 5.6 and 5.7, their clas-
sification. A deeper explanation about Plkg /i nt (cmb) and Pl kg /i nt (r eg) is necessary. They are not
associated with any specific parameters class, indeed they depend on type and number of involved
cells composing the considered LR and also on the system switching activity (especially for the Inter-
nal contribute). These values are gathered by the reports of the baseline (without any application of
power saving techniques) CGR system netlist, assuming that the amount and type of cells composing
the FUs do not change as power saving strategies are applied (except for the retained registers). Since
technology parameters are the result of power reports, the power estimation equations are valid and
accurate for different technology without any adaptation in the formulas (as it will be demonstrated
in Section 5.4).

5.2.
M

E
T

H
O

D
O

LO
G

Y
65

Table 5.1: Parameters classification. Table depicts for each parameters the typologies it belong (architectural, functional and technologi-
cal), its description and and how it is exacted.

Parameter arch. funct. tech. Description Extraction
#r eg x Number of sequential cells

in the considered LR
Provided by the synthesis reports

#i so x Number of estimated isola-
tion cells in the design

Obtained by counting the number
of wires that connect the differ-
ent LR among each other in the
dataflow model.

TiON x Activation Factor Found by means of a
high-level (directly on the
dataflow) profiling of the
targeted scenario

TiOF F x OFF Time

#r tn x Number of retention cells in
the design

It is strictly related to the LR func-
tionality and is chosen by the de-
signer.

Plkg /i nt (RC) x
Power Estimation of
retention and isolation cells.

Determined by the selected
synthesis process and can be
obtained without any
implementation run.

Plkg /i nt (I SOON) x
Plkg /i nt (I SOOF F) x

Plkg /i nt (ContrON) x
Power Estimation of PG and
CG controller when the LR is
ON or OFF.

It requires to be characterised,
according to the target
technology, with dedicated
synthesis trials.

Plkg /i nt (ContrOF F) x
Plkg /i nt (EnabON) x
Plkg /i nt (EnabOF F) x

Plkg /i nt (cmb) x x x
Power consumed by
combinatorial and
sequential cells within the
considered LR.

Gathered by the reports of the
baseline CGR system netlist.Plkg /i nt (r eg) x x x

66 CHAPTER 5. CGR ON ASIC - POWER MODELLING

5.2.4 Power Analysis Algorithm

The presented power estimation models are exploited into Algorithm 4 (see Appendix C) that guides
the designers towards the optimal solution for each LR (if apply clock gating, power gating or not
apply any power saving technique at all), rather than choosing a one-fit-to-all switching-OFF tech-
nique for all of them. For each LR, Algorithm 4 executes the following steps, embodied by different
functions:

1. area thresholding (see evaluate_area function in Algorithm 4): power gating is a quite invasive
technique, requiring several additional logic in the non-switchable always-ON domain. Thus,
it is possible to assume that power gating cannot bring any benefit for for small LRs. Then LRs
under a certain area threshold, defined by the user, are not considered for implementation.
However, clock gating may still be beneficial, due to its very small additional logic amount.

2. power gating evaluation (see evaluate_PG function in Algorithm 4): power gating cost is esti-
mated in order to find out if it can lead to power saving or not. The prospective power and clock
gating implementations are compared on the basis of their overall consumption. Equation 5.3
is applied and summed to Equation 5.5, if there is not total power saving the algorithm goes
to the clock gating variation estimation. On the contrary, if there is saving it has to be com-
pared with the sum of Equation 5.6 and Equation 5.7 to determine whether the current LR may
benefit from power gating (despite its larger overhead) or from clock gating.

3. clock gating evaluation (see evaluate_CG function in Algorithm 4): clock gating cost is es-
timated to investigate the possibility of achieving power saving with this technique. If the
achievable saving does not counterbalance clock gating implementation costs, the LR is dis-
carded. This means that the LR logic is included in the always-ON domain. On the contrary, if
the clock gating leads to an overall saving in terms of total power, the LR can be candidate for
clock gated implementation.

5.3 Integration in MDC

The discussed estimation models (described in Equation 5.3, Equation 5.5, Equation 5.6 and Equa-
tion 5.7), together with the Algorithm 4, have been integrated in the MDC design flow, to implement
a fully automated power management strategy. Figure 5.1 provides an overview of the modified
MDC design flow, MDC tool and its power management extension are directly interfaced with the
logic synthesizer and the Algorithm 4 is implemented within the Power Analysis block. MDC base-
line tool provides the HDL description of the plain CGR system and all the scripts to perform the
synthesis of the CGR design and all the different hardware simulations (one for each input DPN),
as required by the proposed power estimation models. The power reports are then fed back to the
MDC power management extension and parsed within the Power Analysis to execute Algorithm 4. In
particular, to identify the best power saving strategy for the current LR, under evaluation in the Al-
gorithm 4, its power consumption for clock or power gating application is automatically estimated
using the data from Table 5.1 that are (1) gathered by provided power reports (as #r eg , Plkg /i nt (cmb),
Plkg /i nt (r eg)...) and (2) provided by MDC (as the LRs themselves and the #i so) (3) result of character-
isation (as Plkg /i nt (ContrON) and the rest of the control logic). The LRs classification (see LRcl ass in
Figure 5.1), generated by the Power Analysis block, is used by the CG/PG HDL Generation block to au-
tomatically define and implement the hybrid, clock and power gating, power management support
for the given CGR design.

This flow does not require designers to opt for a specific power management technique. On the
basis of the presented power estimation models and by linking MDC with a logic synthesis tool, it

5.3. INTEGRATION IN MDC 67

protocol

L
o

g
ic

 R
e
g

io
n

s

I
d

e
n

ti
fi

c
a
ti

o
n

Datapath Merging

MDC Baseline flow

protocol

H
D

L

G
e
n

e
r
a
ti

o
n

HDL components

Library

HDL Generation

IR

C_TAB

HDL components

Library

Logic Regions

Identification

Power Saving

Application

Hybrid Clock and Power Gating Extention

M
e
r
g

in
g

 P
r
o

c
e
s
s

IRs

IR

C_TAB
Scripts

HDL

ReportsSynthesizer

P
o

w
e
r
 A

n
a
ly

s
is

C
G

/
P

G
 H

D
L

G
e
n

e
r
a
ti

o
n

Optimal

HDL +

CPF

Figure 5.1: Enhanced MDC design suite: integration of the automated hybrid, clock and
power gated, support.

is capable to overcome the limit of providing a one-fit-to-all solution. Each LR, in a CGR design, is
supported (where necessary) with the optimal power management technique.

5.3.1 Step-by-step example

To better explain the presented methodology, this Section considers the example proposed in Fig-
ure 4.1, where three input DPNs are merged in a CGR system and five LRs have been identified. Since
LR2 is activated by all of the DPNs, this region is always on and it is automatically discarded by the
power analysis.

Table 5.2 depicts the composition of each LRs in terms of actors and low power logic. It depicts
also, for each LRs which kernels activate it, and which is the related activation factor TON . The power
consumption values of each actor, have been extracted by the synthesis reports of the baseline (with
no power saving applied) CGR platform and required three hardware simulations (one for each input
kernel). These simulations are necessary to correctly estimate the internal power consumption of the
different LRs, taking into account the real switching activity of the design. In practice, power values
are determined as an average of those obtained according to the different switching activity profiles.

68 CHAPTER 5. CGR ON ASIC - POWER MODELLING

Table 5.2: Parameter and power consumption of each LR, extracted by the synthesis reports
of the baseline CGR platform.

Logic Region kernel TON actors #i so #r eg #r tn
LR1 α 0.1 B 32 514 24
LR3 β 0.6 D, E 32 8 8
LR4 α,γ 0.4 A, SB_0, SB1 96 256 64
LR5 γ 0.3 F, G 32 265 192

Actor Power [nW]
lkg seq. int seq lkg comb. int comb. #r eg #r tn

B 801 104987 121411 3916599 512 24
D 48 1104 51 319 4 4
E 56 1437 53 198 4 4
A 3264 89238 0 0 256 64
SB_0 0 0 307 409 – –
SB_1 0 0 225 350 – –
F 1232 22489 213 537 128 128
G 1385 44068 273 363 128 64

Table 5.3 depicts the static and internal power consumption of the additional low power logic. As
defined in Section 5.2.3, the parameters reported in Table 5.3 are extracted by the reference technol-
ogy library or characterized by synthesis trials (see the definition provided in Table 5.1).

Table 5.3: Contributions of static and internal power consumption extracted by the reference
technology library or characterized by synthesis trials.

Parameters lkg power [nW] int power [nW]
EnabON 84.51 1351
EnabOF F 76.54 1320
ContrON 95.44 1449
ContrOF F 88.63 1488
CGON 5.77 169
CGOF F 4.71 292
I soON 4.27 2.7
I soOF F 1.39 0
P (RC) 17.15 383.25

Starting from the data in Table 5.2 and Table 5.3, here follows the detailed equations character-
ization for LR5, which includes actors F and G. When power gating is applied the static power con-
sumption of LR5 is derived according Equation 5.3, as follows:

Plkg (LR5) =
= [(Pl kg (combF)+Plkg (RC)∗#r tnF +Pl kg (r egF)∗ (#r eg F −#r tnF)/#r eg F)+
+(Pl kg (combG)+Plkg (RC)∗#r tnG +Plkg (r egG)∗ (#r egG −#r tnG)/#r egG)]∗T 5ON+
+[Plkg (I SOON)∗T 5ON +Plkg (I SOOF F)∗T 5OF F]∗#i so5+
+[Plkg (ContrON)∗T 5ON +Plkg (ContrOF F)∗T 5OF F]+
+[Plkg (CGON)∗T 5ON +Plkg (CGOF F)∗T 5OF F] =
= [(213+17.15∗128)+
+(273+17.15∗64+1385∗0.5)]∗0.3+

5.3. INTEGRATION IN MDC 69

+[4.27∗0.3+1.39∗0.7]∗32+
+[95.44∗0.3+88.63∗0.7]+
+[5.77∗0.3+4.71∗0.7] = 1509.219

The internal power consumption is given by Equation 5.5:
Pi nt (LR5) =
= [(Pi nt (combF)+Pi nt (RC)∗#r tnF +Pi nt (r egF)∗ (#r eg F −#r tnF)/#r eg F)+
+(Pi nt (combG)+Pi nt (RC)∗#r tnG +Pi nt (r egG)∗ (#r egG −#r tnG)/#r egG)]∗T 5ON+
+[Pi nt (I SOON)∗T 5ON +Pi nt (I SOOF F)∗T 5OF F]∗#i so5+
+[Pi nt (ContrON)∗T 5ON +Pi nt (ContrOF F)∗T 5OF F]+
+[Pi nt (CGON)∗T 5ON +Pi nt (CGOF F)∗T 5OF F)] =
= [(537+383.25∗128)+
+(363+383.25∗64+44068∗0.5)]∗0.3+
+[2.7∗0.3+0∗0.7]∗32+
+[1449∗0.3+1488∗0.7]+
+[169∗0.3+292∗0.7] = 30217.72

When clock gating is considered Equation 5.6 and Equation 5.7 are computed as follows:
Plkg (LR5) =
= [(Pl kg (combF)+Plkg (r egF))+ (Plkg (combG)+Plkg (r egG))]+
+[Pl kg (EnabON)∗T 5ON +Plkg (EnabOF F)∗T 5OF F]+
+[Pl kg (CGON)∗T 5ON +Plkg (CGOF F)∗T 5OF F] =
= [(213+1232)+ (273+1385)]+
+[84.51∗0.3+76.54∗0.7]+
+[5.77∗0.3+4.71∗0.7] = 3186.96

Pi nt (LR5) =
= [(Pi nt (combF)+Pi nt (r egF)∗T 5ON)+ (Pi nt (combG)+Pi nt (r egG)∗T 5ON)]+
+[Pi nt (EnabON)∗T 5ON +Pi nt (EnabOF F)∗T 5OF F]+
+[Pi nt (CGON)∗T 5ON +Pi nt (CGOF F)∗T 5OF F)] =
= [(537+22489∗0.3)+ (363+44068∗0.3)]+
+[1351∗0.3+1320∗0.7]+
+[169∗0.3+292∗0.7] = 22451.8

Table 5.4: Resulting power consumption of the different LRs when the proposed models are
applied

Logic Region lkg PG [nW] int PG [nW] lkg CG [nW] int CG [nW]
LR1 1240.69 404358.71 122294.15 3928700.60
LR3 342.67 3884.44 294.67 3599
LR4 2062.11 38705.08 3880.86 5598.6
LR5 1509.58 30712.72 3186.96 22451.8

Table 5.4 summarizes all the values achieved applying the proposed static and dynamic models
to all the different logic regions. These values, compared with consumption of baseline (not-gated)
LRs, are used into Algorithm 4 to calculate the power variation of each LR due to clock gating and
power gating strategies. Figure 5.2 explicates the application of the Algorithm 4 when threshold on
the area (ar eath) is set to 5%.

70 CHAPTER 5. CGR ON ASIC - POWER MODELLING

• LR1 is processed by invoking evaluate_area(LR1,5).

– Its area is calculated: ar eaLR1 =52% of total area.

– ar eaLR1 > ar eath , so that a prospective power gating implementation on LR1 is taken
into consideration by invoking evaluate_PG(LR1).

* The static and the dynamic variations are estimated, respectively applying Equa-
tion 5.3 and Equation 5.5. The power gating variation on the overall consumption is
calculated by subtracting the power consumption of the LR when PG is applied, to
the power consumption of the LR in the baseline design, the result is then divided
by the total power consumption of the baseline design in order to estimate the total
percentage power variation. The power variation when PG is applied to region LR1

is -86.45%. Since this value is negative, power gating may be convenient if its total
saving is larger than the clock gating one.

* Equation 5.6 is calculated and summed up to Equation 5.7 to determine clock gating
variation on the overall consumption, which is -2.15%.

* Power gating is more beneficial than clock gating determining, overall, a larger power
saving. Thus LR1 is added to PG_set.

• LR3 is processed by invoking evaluate_area(LR3,5).

– Its area is calculated: ar eaLR3 =0.4% of total area.

– ar eaLR3 < ar eath , so that a prospective clock gating implementation on LR3 is consid-
ered straight away by invoking evaluate_CG(LR3).

* Equation 5.6 and Equation 5.7 are evaluated to determine clock gating variation on
the overall consumption: CGover =+0.01%

* Clock gating is not beneficial since its variation is positive. Thus LR3 is discarded
and no power management policy will be applied to it.

• LR4 is processed by invoking evaluate_area(LR4,5).

– Its area is calculated: ar eaLR4 =7% of total area.

– ar eaLR4 > ar eath , so that a prospective power gating implementation on LR4 is taken
into consideration by invoking evaluate_PG(LR4).

* The static and the dynamic variations are estimated, respectively applying Equa-
tion 5.3 and Equation 5.5. The power gating variation on the overall consumption is
-1.2%. Since this value is negative, power gating may be convenient if its total saving
is larger than the clock gating one.

* Equation 5.6 is calculated and summed up to Equation 5.7 to determine clock gating
variation on the overall consumption, which is -2.0%.

* Clock gating is more beneficial than power gating determining, overall, a larger power
saving. Thus LR4 is added to CG_set.

• Finally, LR5 is processed by invoking evaluate_area(LR5,5).

– Its area is calculated: ar eaLR5 =15% of total area.

– ar eaLR5 > ar eath , so that a prospective power gating implementation on LR5 is taken
into consideration by invoking evaluate_PG(LR5).

5.3. INTEGRATION IN MDC 71

* The static and the dynamic variations are estimated, respectively applying Equa-
tion 5.3 and Equation 5.5. The power gating variation on the overall consumption
is -0.89%. Since this value is negative, power gating may be convenient if its total
saving is larger than the clock gating one.

* Equation 5.6 and Equation 5.7 are evaluated to determine clock gating variation on
the overall consumption, which is -1.04%

* Clock gating is more beneficial than power gating determining, overall, a larger power
saving. Thus LR5 is added to CG_set.

LR1 52%

LRs Area%

LR3 0.4%

LR4 7%

LR5 15%

4143798

Base [nW]

3266

93793

70560

416765 (-86.45%)

PG [nW] (var%)

4227 (+0.02%)

40767 (-1.2%)

32222 (-0.89%)

4050955 (-2.15%)

CG [nW] (var%)

3894 (+0.01%)

9479 (-2%)

25639 (-1.04%)

LR1 LR3

LR4 LR5

PG_set

CG_set EMPTY Base design consumption: 4311417 nW

Threshold Area_th = 5%

Evaluate_area (LR1,5)

LR_area > Area_th => Evaluate_PG(LR1)

PG Total Variation < 0 => Evaluate_CG(LR1)

PG Total Variation < CG Total Variation => Add LR1 to PG_set

LR1

PG_set LR1

CG_set LR4 LR5

Evaluate_area (LR3,5)

LR_area > Area_th => Evaluate_PG(LR3)

CG Total Variation < 0 => Don't Apply Power Saving

LR3

PG_set LR1

CG_set

Evaluate_area (LR4,5)

LR_area > Area_th => Evaluate_PG(LR4)

PG Total Variation < 0 => Evaluate_CG(LR4)

PG Total Variation > CG Total Variation => Add LR4 to CG_set

LR4

PG_set LR1

CG_set LR4

Evaluate_area (LR5,5)

LR_area > Area_th => Evaluate_PG(LR5)

PG Total Variation < 0 => Evaluate_CG(LR5)

PG Total Variation > CG Total Variation => Add LR5 to CG_set

LR5

PG_set LR1

CG_set LR4 LR5

Figure 5.2: Step-by-step example of the enhanced MDC power extension implementing Al-
gorithm 4. Table on the top of the figure reports, for each logic region (LR), the power con-
sumption of the region when no powere saving techniques are applied (Base), the power
consumption of the LR estimated for a perspective power gating application (PG), and the
power consumption of the LR estimated for a perspective clock gating application (CG). Data
in brackets (var%) report the percentage variation in the power consumption, with respect
to the Base consumption, when PG or CG are applied.

72 CHAPTER 5. CGR ON ASIC - POWER MODELLING

The resulting hardware design with the hybrid application of clock gating and power gating is
shown in Figure 5.3. The power gating is applied only to region LR1 (called PD1 in the figure), while
the clock gating is applied to regions LR4 and LR5 (called CD4 and CD5 in the figure); the SBoxes SB_0
and SB_1 included in region LR4 are purely combinatorial, so they are not affected by the application
of the clock gating. All the remaining logic, which includes region LR3, is always on.

Power

Controller

in3

A
in1

in2

out1S
B
_
0

S
B
_
1

S
B
_
2

B

C

G

D E

F

ID

RTN

SW

VDD

CD5

CD4

PD1

CD4

Figure 5.3: Enhanced MDC design suite: Hardware platform with hybrid application of clock
gating and power gating methodologies.

5.4 Assessment

This Section discusses two different use cases (in terms of behaviour and resulting power consump-
tion contributions) adopted to assess the presented power estimation flow and the effectiveness of
the hybrid clock and power gating management. The first one deals with a simple FFT algorithm
implemented on a 90 nm CMOS technology and it has been mainly adopted to evaluate in details
the proposed flow. The second one presents a more complex scenario. An image co-processing unit,
accelerating a zoom application, has been implemented both on a 90 nm and on a 45 nm CMOS tech-
nology in order to assess the robustness of the proposed flow with different technology parameters.

5.4.1 Evaluation Phase - Fast Fourier Transform Algorithm

This section deeply discusses the results obtained considering the Fast Fourier Transform (FFT) use
case targeting a 90 nm CMOS technology. FFT is an optimised algorithm for the Discrete Fourier
Transform (DFT) calculation (see Equation 5.8). It is widely adopted in several applications, ranging
from the solving of differential equations to the digital signal processing.

Xk =
N∑

n=0
xne−i 2πk n

N ,k = 0,1, ..., N −1 (5.8)

5.4. ASSESSMENT 73

The FFT algorithm adopted for this use case has been proposed by Cooley and Turkey [26]. It
aims at speeding up the calculation of a given size N DFT by considering smaller DFTs of size r ,
called radix. To obtain the whole original DFT, M stages of size r DFTs are required, where N = r M .
Small DFTs have to be multiplied by the so called twiddle factors, according to the decimation in time
variant of the algorithm. The simplest DFT with two input and two outputs (radix r = 2) takes the
name of butterfly, by their block scheme. The equations describing a butterfly are:

X0 = x0 +x1wk
n

X1 = x0 −x1wk
n

(5.9)

where X0 and X1 are the outputs, while x0 and x1 are the corresponding inputs. wk
n are the twiddle

factors, defined as:
wk

n = e−i 2πk k
N (5.10)

where k and n are integers depending on the butterfly position in the FFT.
The adopted use case involve a radix-2 FFT of size 8, as depicted in Figure 5.4, obtained by means

of three stages involving four butterflies each, meaning 12 butterflies overall (r = 2, M = 3, N = r M =
23 = 8). Stages have been pipelined to keep the system critical path short. The baseline 12 butterflies
design then requires three clock periods for the outputs elaboration.

W0
2

-1

W0
4

-1

W0
2

-1

W0
2

-1

x(k=0)

x(k=4)

x(k=2)

x(k=6)

x(k=1)

x(k=5)

x(k=3)

x(k=7) W0
2

-1

W0
4

-1

W0
4

-1

W0
4

-1

W0
8

-1

W0
8

-1

W0
8

-1

W0
8

-1

X(n=0)

X(n=1)

X(n=2)

X(n=3)

X(n=4)

X(n=5)

X(n=6)

X(n=7)

Figure 5.4: FFT use case: Original design with 12 radix-2 butterflies for an FFT of size 8.
Twiddle factors w k

n are calculated according to Eq. 5.10

From the baseline 12 butterfly design, three additional variants have been derived through the
decrease of the involved butterflies number. In such a way, the available resources of the design must
be multiplexed in time and reused. Therefore, the overall computation latency increases and the
throughput becomes lower. The considered 8 FFT configurations are:

• 12b is the baseline 12 butterflies FFT design, taking 3 clock periods to finalize the transform;

• 4b involves 4 butterflies for an overall execution latency of 6 cycles;

74 CHAPTER 5. CGR ON ASIC - POWER MODELLING

• 2b involves 2 butterflies for an overall execution latency of 12 cycles;

• 1b involves 1 single butterfly for an overall execution latency of 24 cycles.

FFT Coarse-Grain Reconfigurable System Implementation

The above mentioned configurations have been modelled as DPNs graphs 2 and the corresponding
CGR system has been assembled with MDC. In this reconfigurable design 8 different LRs are identi-
fied. Table 5.5 depicts the activation percentage, resource utilization (in terms of activated LRs and
percentage area) and power consumption of each FFT variant. In general, the higher is the number
of butterflies, the more is the corresponding active logic and dissipation.

Table 5.5: FFT use case: Features of the different configurations integrated on the CGR de-
sign. Data refer to a 90 nm CMOS target technology.

FFT configuration TON LRs Area% Static [nW] Internal [nW]
1b 0.42 (2, 6, 8) 12.86 1750407 1307259
2b 0.21 (2, 5, 7, 8) 20.81 1752106 1539855
4b 0.04 (2, 3, 4, 7) 35.28 1757485 2020953

12b 0.33 (1, 3, 7, 8) 98.03 1776056 2411257

The main purpose of the resulting CGR system is to enable several tradeoff levels between power
dissipation and throughput, as illustrated in Figure 5.5. Such a system is capable of dynamically
switching among the different configurations, fitting to external environment requests. For instance,
in a battery operated environment, when the battery level becomes lower than a given threshold,
some throughput can be waived to consume less power.

Figure 5.5: FFT use case: Latency versus power consumption tradeoff for the 4 different 8-
size FFT configurations.

2As explained in Section 3.1 MDC is able to consider a DPNs a generic graph, implementing any kind of
communication among actors. In the considered use case, the FFT DPNs are indeed considered as generic
graphs, and actors communicate through a handshake communication protocol

5.4. ASSESSMENT 75

Characteristics of each LRs are reported in Table 5.6. In this table, given any LR, its activation fac-
tor (TON) has been obtained summing up the activation factors of the FFT configurations activating
the same region (provided in Table 5.5). For example, LR2 is activated by 1b, 2b and 4b. Its TON is
0.67, which is the sum of TON (1b) = 0.42, TON (2b) = 0.21 and TON (4b) = 0.04.

Table 5.6: FFT use case: Logic regions architectural and functional characteristics.

LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8

TON 0.33 0.67 0.37 0.04 0.21 0.42 0.58 0.96
#i so(e) 1024 1112 512 2324 1948 1756 256 5259
#r tn 1024 518 256 0 0 0 128 512
#r eg 1024 518 256 0 0 0 128 512
#i so(r) 1024 1032 512 2306 1926 1740 256 4934

Power Modelling and Hybrid Power Management Assessment

As explained in Section 5.2, the proposed flow requires a preliminary synthesis of the baseline (with-
out any implemented power saving strategy) CGR system, to retrieve parameters for each LR. Fig-
ure 5.6 depicts occupancy and logic composition (combinatorial and sequential contributes) of the
8 LRs. The area is given in terms of percentage with respect to the overall system area. The biggest
(LR1) occupies more than 60% of the whole system area and it is has the main impact on power con-
sumption. Furthermore, it is quite entirely combinatorial (99.18%), which means that less than 1%
of the region is composed by sequential logic, so that power gating should be a very suitable strategy
for this LR. By Figure 5.6 it is possible to notice that the other LRs are much smaller than LR1. For
all these regions, the proposed power modelling strategy can be extremely beneficial to investigate if
power saving techniques may lead or not to an effective power saving. Figure 5.6 also suggests that
LR4, LR5 and LR6 cannot benefit from clock gating, since they are fully combinatorial.

Figure 5.6: FFT use case: Area percentage per LR.

Figure 5.7 and Figure 5.8 compare the estimated and measured (retrieved from the post-synthesis
reports) power variation, respectively, due to clock gating and power gating. In both cases the re-
ported power refers static and internal contributions, as taken into consideration by the power model.

76 CHAPTER 5. CGR ON ASIC - POWER MODELLING

The remaining term, the net one, is neglected. The error of neglecting the net contribution is dis-
cussed in Section 5.4.1. The proposed power models are generally able to accurately approximate
the power saving strategy overhead. As expected, LR1 is the region with the highest power saving, re-
gardless the considered strategy (please note that a negative variation implies a saving in power). It is
interesting to notice that LR8, despite being one of the smallest regions, does not provide any saving
if power gated, but it can achieve a little power reduction when clock gated.

Figure 5.7: FFT use case: Comparison between the estimated and real power variation due
to the clock gating integration.

Figure 5.8: FFT use case: Comparison between the estimated and real power variation due
to the power gating integration.

The static and internal power variation obtained by applying Equation 5.6 and Equation 5.7,
considering a possible clock gating implementation (column CG Variation %) and Equation 5.3 and
Equation 5.5 for a prospective power gating implementation (column PG Variation %), are shown in

5.4. ASSESSMENT 77

Table 5.7. Please notice that clock gating static power variation is not appreciable, since one single
clock gating cell is required per LR.

Table 5.7: FFT use case: Detailed static and dynamic power variation due to clock gating (CG
Variation %) and power gating (PG Variation %).

LR CG Variation % PG Variation %
Static Internal Static Internal

LR1 0.00 -11.33 -40.87 -9.47
LR2 0.00 -2.85 +0.23 -1.32
LR3 0.00 -2.59 -10.44 -2.11
LR4 — — -0.08 0.10
LR5 — — 0.08 0.13
LR6 — — 0.11 0.17
LR7 0.00 -0.79 -3.44 -0.39
LR8 0.00 -0.25 1.42 2.35

Algorithm 4 of the presented methodology implies a preliminary area thresholding step. Two
different thresholds have been considered for the algorithm evaluation:

• DAT_5%: Threshold set to 5%. Regions with area above the 5% are LR1, LR3 and LR7, so that
the power gating variation estimation step is performed for each of them. All the considered re-
gions lead to an overall saving (negative variation) larger than those achievable with a prospec-
tive clock gating implementation; therefore, they are selected as eligible regions for power gat-
ing. Clock gating variation estimation is performed on all the remaining sub-threshold regions.
The regions capable of providing saving, when clock gated, are LR2 and LR8, since LR4, LR5 and
LR6 are fully combinatorial. Thus, clock gating will be implemented only on LR2 and LR8.

• DAT_10%: Threshold set to 10%. Only LR1 and LR3 are above the area threshold and, as oc-
curred also for DAT_5%, they both achieve power saving if implemented with power gating
strategies. In this second case, the clock gating variation estimation step is performed also on
LR7, which results in a negative variation. Then, the regions to be clock gated are LR2, LR7 and
LR8, while LR4, LR5 and LR6 are again discarded.

To assess the proposed flow five designs have been assembled.

• Base: the baseline CGR design without any power saving.

• CG_full: the CGR design, where clock gating is applied blindly to all the regions.

• PG_full: the CGR design, where power gating is applied blindly to all the regions.

• DAT_5%: derived with the proposed automated flow capable of hybrid power and clock gating
support, setting the Area Threshold to 5% in Algorithm 4.

• DAT_10%: derived with the proposed automated flow capable of hybrid power and clock gating
support, setting the Area Threshold to 10% in Algorithm 4.

These designs have been synthesized with Cadence RTL Compiler, targeting the same 90 nm
CMOS technology adopted to synthesise and simulate the baseline CGR design, which results have
fed the Power Analysis block of the proposed enhanced power management flow to assemble DAT_5%
and DAT_10%. Figure 5.9 depicts power consumption (internal, static and total) of these designs. The

78 CHAPTER 5. CGR ON ASIC - POWER MODELLING

power consumption data are reported by Cadence RTL Compiler, considering the synthesised designs
and their switching activity from post-synthesis simulations. Since LR1 occupies more than the 60%
of the design area and it is mainly combinatorial, little differences among the entirely power gated
design (PG_full) and the hybrid clock and power gated ones (DAT_5% and DAT_10%) are visible. Nev-
ertheless, DAT_5% achieves the largest power saving (-45.12%) among all the designs, validating the
proposed hybrid and selective management with respect to a one-fit-to-all solution. CG_full, capa-
ble of diminishing only the dynamic power consumption, is the worst design among those applying
power management.

The area overhead of the implemented power management strategies, reported in the legend of
Figure 5.9, proves that the proposed hybrid management leads to less area hungry designs than the
entirely power gated one. In fact, DAT_5% and DAT_10% present half of the area overhead of PG_full.
CG_full data confirms that clock gating has a very little impact on the baseline design, presenting a
negligible area overhead (two orders of magnitude smaller than DAT_5% and DAT_10%).

Figure 5.9: FFT use case: Comparison between the base design and the four gated designs.
Legend shows, in brackets, the power management area overhead for each design wrt to the
Base one.

For the sake of completeness, in Figure 5.10 the tradeoff levels between power and latency (and,
in turn, throughput) are illustrated for all the considered designs. The tradeoff curves demonstrate
that power management strategies are generally extremely beneficial within a CGR scenario.

Accuracy and Errors

Table 5.8 and Table 5.9, respectively considering the clock gating variation estimation step and the
power gating variation estimation step of Algorithm 4, assess the accuracy of the presented power
modelling approach. These tables, in each row, report the estimation errors with respect to the real
consumption of the baseline CGR system, where the given power saving strategy (i.e. clock gating
in Table 5.8 and power gating in Table 5.9) is applied only to the LR specified in the first column.
Table 5.8 depicts an overview of the estimations accuracy for the clock gating variation. Estimations
are really accurate, being the error on the clock gating variation always below the 0.3%. The error due
to the clock gating cells overhead is very limited too, being always under the 1.1%.

5.4. ASSESSMENT 79

Figure 5.10: FFT use case: Latency versus power consumption tradeoff for the 4 different
8-size FFT configurations, when gated designs are adopted.

Table 5.8: FFT use case: Clock gating variation estimation step accuracy.

LR CG variation % Overhead Net
Est. Real Err.% CGcel l Err.% Err.%

LR1 -5.73 -5.77 0.06 0.83 0.18
LR2 -1.42 -1.42 0.12 1.03 0.40
LR3 -1.34 -1.38 0.05 0.84 0.21
LR7 -0.39 -0.39 0.05 0.96 0.22
LR8 -0.12 -0.12 0.29 1.08 0.47

Table 5.9: FFT use case: Power gating variation estimation step accuracy.

LR PG variation % Overhead Error % Net
Est. Real Err.% Iso Rtn Contr. Err.%

LR1 -25.22 -25.37 0.59 5.18 4.64 0.75 10.3
LR3 -6.28 -6.22 1.07 16.34 2.97 0.76 12.6
LR7 -1.92 -1.92 0.24 9.24 1.08 0.83 13.6

Also power estimations per LR, reported in Table 5.9, demonstrate to be very accurate, leading to
errors that are always below 1.1%. Also errors related to the estimation of state retention and power
controller overhead are quite low (respectively below 5% and 1%). The isolation cells overhead es-
timation is less precise, resulting in an error of 16.36% for PD3, due to the fact that the static and
internal values of P (I SOON) and P (I SOOF F) are characterized as average values, the same for each
LR. Nevertheless, this error has no visible impact on the total estimation one that is 1.07%.

Table 5.8 and Table 5.9 report also the errors caused by omitting the power net term (column
Net %(Err.)) in Equation 5.7 and Equation 5.5. This error is obtained by comparing the estimated
variation (not comprehensive of the net contribute) with the real measured variation comprehensive
of the net term, as extracted by the synthesis reports. The net error is higher in the power gating
variation estimation (13.6% for LR7) with respect to the clock gating one (at maximum 0.47% for LR8),

80 CHAPTER 5. CGR ON ASIC - POWER MODELLING

Table 5.10: Zoom Co-processor use case: Computational kernels distinctive features.

kernel # actors TON functionality LRs
abs 1 0.03 absolute value calculation (4)

chgb 7 0.33 bilevel/grayscale block checking (5 6 7 12 13)
cubic 10 0.06 linear combination calculation (1 5 9 10 13)

cubic_conv 6 0.09 cubic filter convolution (5 7 8 9)
median 9 0.06 median calculation (1 3 5 11 13)

min_max 1 0.01 maximum/minimum finding (11)
sbwlabel 17 0.42 edge block checking (2 4 5 6 13)

since power gating requires to add in the design several extra logic than a clock gating, less invasive,
implementation.

5.4.2 Validation Phase - Zoom Application

This Section presents validation of the presented approach on a second use case, targeting the same
90 nm technology used for the FFT use case and a smaller 45 nm library. The reconfigurable com-
puting core of an image co-processing unit, accelerating a zoom application, has been assembled.
The zoom application is meant to scale an image according to the given zooming factor. Missing pix-
els of the zoomed image are calculated by adaptively interpolating the neighbouring values. Seven
computational kernels have been identified and modelled as DPNs. These kernels have been com-
bined by MDC to obtain a multi-dataflow specification, constituting the computing core of the CGR
accelerator in charge of accelerating the zoom application. Thirteen LRs are identified on the CGR
zoom co-processor. Table 5.10 summarizes the kernels composition (in terms of number of dataflow
actors and activated LRs), activation factor and main functionality. The main difference between this
scenario and the FFT one is that in the zoom co-processor it is not necessary to retain the status of
any kernel when switching among them. This means that, applying power gating, no retention cells
are needed in the identified regions.

Zoom Co-processor Validation Results at 90 nm CMOS Technology

This section provides the discussion of the achieved results in the zoom co-processor scenario using
the same 90 nm CMOS technology adopted for the FFT CGR designs assessment. From the imple-
mentation point of view the same designs considered for the FFT use case are discussed:

• Base: the baseline CGR design without any power saving.

• CG_full: the CGR design, where all the 13 LRs are clock gated.

• PG_full: the CGR design, where all the 13 LRs are power gated.

• DAT_5%: the CGR design, where hybrid power and clock gating support is implemented by
means of the proposed flow, setting the Area Threshold to 5% in Algorithm 4. Composition of
DAT_5% is depicted in Table 5.11.

• DAT_10%: the CGR design, where hybrid power and clock gating support is implemented by
means of the proposed flow, setting the Area Threshold to 10% in Algorithm 4. Composition of
DAT_10% is depicted in Table 5.11.

5.4. ASSESSMENT 81

Table 5.11: Zoom Co-Processor at 90 nm CMOS technology: Characterization of the hybrid,
clock and power gated designs, achieved with the proposed automated flow.DAT_5%: area
threshold 5%. DAT_10%: area threshold 10%. NA stands for not assigned and includes those
LRs that placed in the always-ON domain.

design >Th PG_set CG_set NA

DAT_5%

LR1 LR2 LR3 LR1 LR2 LR3 LR4 LR6 LR7 LR5

LR6 LR8 LR10 LR8 LR10 LR12 LR9 LR11 LR13

LR12 LR13

DAT_10%

LR1 LR8 LR1 LR8 LR2 LR3 LR4 LR5

LR6 LR7 LR9

LR10 LR11

LR12 LR13

Figure 5.11 depicts static, internal and total power consumption for each considered design. In
this case, the differences among CG_full, PG_full, DAT_5% and DAT_10% are not so evident. The
reason is that, in this scenario, the dynamic power consumption (due to the internal power) is con-
siderably higher than the static one. As visible in the reported histograms, on average there are ap-
proximately more than two orders of magnitude of difference between the two contributions.

Clock gating and power gating demonstrate to be equally capable of cutting down the internal
power consumption. LR5 is the only region that Algorithm 4 completely discards by any form of
power management, both in the DAT_5% design and in the DAT_10% one. It is fully combinatorial;
therefore, clock gating does not provide any positive effect on it. Nevertheless, it is so small (0.65%
of the whole system area) that, if power gated, it cannot provide any substantial benefit. A closer
observation of the histograms confirms what we already got for the FFT: despite the similar trend for
all the designs, which lead to more than the 62% of power saving, DAT_5% consumes less than any
other (62.61% of saving), while the CG_full design is the less beneficial (62.29% of saving).

Figure 5.11: Zoom Co-Processor at 90 nm CMOS technology: Comparison between the base
design and the four gated designs. Legend shows, in brackets, the power management area
overhead for each design wrt to the Base one.

82 CHAPTER 5. CGR ON ASIC - POWER MODELLING

Focusing on the static histograms, the CG_full design introduces a small overhead with respect to
Base. That is due to the 12 (one for each region but LR5) clock gating cells introduced in the always-
ON domain of this design, which never contribute to save any static power consumption. When
power gating is applied there is always a benefit in terms of static power consumption: DAT_5% sav-
ing is slightly higher than the PG_full one, being both over 51%; DAT_10% is still beneficial, but its
saving is limited to the 15%. Please note that the difference between DAT_5% and DAT_10% (in terms
of static consumption) demonstrates that, in the Area Threshold step of the proposed Algorithm 4,
it is better to opt for small area threshold values to achieve higher saving results. In terms of area
occupancy, reported in the legend of Figure 5.11, the PG_full design is the one with the largest over-
head, +6.4%. DAT_5%, which is the most beneficial in terms of power, shows a slightly smaller overall
overhead, +4.55% of the whole system area. The CG_full is again the less invasive one, leading just to
+1.73% of area overhead.

Summarizing, DAT_5% constitutes the optimal solution for the Zoom co-processor scenario, con-
sidering a 90 nm technology. DAT_10%, which is less beneficial than DAT_5% in saving static power
consumption, is a better solution than a fully power gated design, presenting basically the same
power saving (-62.38% for DAT_10% vs. -62.29% for PG_full) but a smaller area overhead (+3.19%
for DAT_10% vs. +6.4% for PG_full).

Table 5.12: Zoom Co-Processor at 90 nm CMOS technology: clock gating variation estima-
tion step and power gating variation estimation step accuracy.

LR CG saving % Net PG saving % Net
Est. Real Err.% Err.% Est. Real Err.% Err.%

LR1 -6.307 -6.313 0.09 0.17 -6.322 -6.331 0.15 0.18
LR2 -23.369 -23.373 0.02 1.67 -23.464 -23.463 0.00 1.26
LR3 -6.507 -6.514 0.10 1.59 -6.537 -6.544 0.10 1.65
LR4 -0.958 -0.964 0.68 1.34 — — — —
LR5 — — — — — — — —
LR6 -0.870 -0.878 0.81 1.22 — — — —
LR7 -1.033 -1.039 0.63 0.15 — — — —
LR8 -6.987 -6.986 0.01 1.83 -7.062 -7.058 0.05 2.02
LR9 -2.436 -2.443 0.27 1.55 — — — —
LR10 -5.474 -5.480 0.11 1.57 -5.498 -5.503 0.10 1.65
LR11 -3.329 -3.285 1.32 3.67 — — — —
LR12 -4.267 -4.273 0.15 1.86 -4.278 -4.288 0.23 1.83
LR13 -0.649 -0.656 1.01 1.13 — — — —

Table 5.12 reports the estimation error of the proposed automated hybrid power management
design flow, when the power saving percentages for the considered domains, respectively considering
clock gating (clock gating variation estimation) and power gating (power gating variation estimation),
are evaluated. CG saving % errors are do not exceed 1.5% and PG saving % errors are always below
0.3%. These data confirm the accuracy of the proposed models, as in the FFT use case. Table 5.12, for
both clock and power gating implementations, depicts also the error of neglecting the net term in the
dynamic power consumption. Again, as in the previously discussed scenario, models are not affected
by this simplification.

5.4. ASSESSMENT 83

Zoom Co-processor Validation Results at 45 nm CMOS Technology

In order to provide a robust validation of the proposed approach, this Section present assessment on
the the same zoom co-processor designs, targeting a 45 nm CMOS technology.

The implemented designs are the same as in Section 5.4.2. However, targeting a smaller technol-
ogy and having already established that the 10% area threshold leads to power results comparable to
those of the fully power gated design, in this second trial an additional design is considered: DAT_1%.
Setting the area threshold to 1% quite all the LRs are considered for a prospective power gating imple-
mentation (Please refer to Table 5.13 for the composition of DAT_1%, DAT_5% and DAT_10%). Here
follows the list of the implemented designs.

• Base: The same as in the 90 nm synthesis trial.

• CG_full: The same as in the 90 nm synthesis trial.

• PG_full: The same as in the 90 nm synthesis trial.

• DAT_1%: the CGR design, where hybrid power and clock gating support is implemented by
means of the proposed flow, setting the Area Threshold to 1% in Algorithm 4.

• DAT_5%: The same as in the 90 nm synthesis trial.

• DAT_10%: The same as in the 90 nm synthesis trial.

Table 5.13: Zoom Co-Processor at 45 nm CMOS technology: Characterization of the hy-
brid, clock and power gated designs, achieved with the proposed automated flow.DAT_5%:
DAT_1%: area threshold 1%. area threshold 5%. DAT_10%: area threshold 10%. NA stands
for not assigned and includes those LRs that placed in the always-ON domain.

design >Th PG_set CG_set NA

DAT_1%

LR1 LR2 LR3 LR1 LR2 LR3 LR6 LR13 LR5

LR4 LR6 LR7 LR4 LR7 LR8

LR8 LR9 LR10 LR9 LR10

LR11 LR12 LR13 LR11 LR12

DAT_5%

LR1 LR2 LR3 LR1 LR2 LR3 LR4 LR6 LR7 LR5

LR6 LR8 LR10 LR8 LR10 LR12 LR9 LR11 LR13

LR12 LR13

DAT_10%

LR1 LR8 LR1 LR8 LR2 LR3 LR4 LR5

LR6 LR7 LR9

LR10 LR11

LR12 LR13

Figure 5.12 illustrates power consumption in terms of static, internal and total contributions. The
dynamic power consumption is still higher than the static one, determining the overall trend of the to-
tal power. However, with the scaling of the channel length, the ratio among internal and static power
on average has decreased from a factor of 100 to approximately 10. In this second trial, the influence
of the static power consumption is partially reflected on the total one. Technology scaling and the
different static versus dynamic power ratio are such that PG_full is capable of providing better over-
all saving results than DAT_5% and DAT_10%. At 45 nm technology, designers are required to select
a very low area threshold in Algorithm 4 to achieve really optimal results. DAT_1%, which basically
excludes from power gating only the 3 LRs, saves up to 61.84% of total Base power and represents the

84 CHAPTER 5. CGR ON ASIC - POWER MODELLING

optimal design solution for the zoom co-processor in this second synthesis trial. Please note also that,
lowering down the area threshold, the area of the optimal design and that of the fully power gated one
are pretty similar. It is possible to conclude that as technology gets smaller the Area Threshold step of
the proposed algorithm is less beneficial still, in the automated flow, its presence makes the overall
process more robust, avoiding useless iterations on not convenient by construction designs when the
technology are not so constrained or the ratio among static and dynamic consumption is larger.

Figure 5.12: Zoom Co-Processor at 45 nm CMOS technology: Comparison between the base
design and the five gated designs. Legend shows, in brackets, the power management area
overhead for each design wrt to the Base one.

The accuracy of the proposed models, targeting the 45 nm CMOS technology, is reported in Ta-
ble 5.14, which contain both clock gating and power gating estimation errors. The models, even
neglecting the net contribution in the discussed equations, are extremely accurate (the error never
exceeds 3.70%).

5.4.3 Power switch overhead

The sleep transistors are inserted in the design during the place and route process and their overhead
is strictly use-case dependent since it is related to the aspect ratio of the macro and to the style of
power routing that is selected in the target design. Since the proposed power estimation model is
based on the synthesis of the design, the contribution of these cells is not considered yet.

The insertion of header/footer switches determines two kinds of power overhead: (1) a static
power-related overhead; (2) the dynamic power dissipated during sleep and wake-up transition. An-
other overhead that have to be taken into consideration is the time necessary to wake-up the power
domain. For the proper operation of the power gating methodology, the gating logic has to be en-
abled/disabled according to a switch on/off protocol [90] that requires a well defined transition se-
quence (see Section 4.3). This overhead can be neglected only if the computation time of the applica-
tion is much higher (at least one order of magnitude) than the switch on/off sequence. However, an
estimation of the length of the power switches chain is necessary to precise determine the wake-up
time.

The static power-related contribution is fixed by the technology library and it is always present
regardless the ON/OFF state of the power domain. It could be inserted in Equation 5.3 as: Plkg (SW)∗

5.4. ASSESSMENT 85

Table 5.14: Zoom Co-Processor at 45 nm CMOS technology: Power gating variation estima-
tion step and clock gating variation estimation step accuracy.

LR CG saving % Net PG saving % Net
Est. Real Err.% Err.% Est. Real Err.% Err.%

LR1 -5.507 -5.501 0.13 0.53 -5.686 -5.699 0.23 0.47
LR2 -22.063 -22.029 0.15 0.81 -22.990 -22.982 0.03 1.02
LR3 -6.273 -6.262 0.18 0.91 -6.569 -6.566 0.04 1.13
LR4 -0.919 -0.917 0.22 1.52 -0.946 -0.944 0.15 1.82
LR5 — — — — — — — —
LR6 -0.853 -0.833 0.26 1.59 -0.747 -0.748 0.25 0.25
LR7 -0.935 -0.933 0.21 1.49 -0.955 -0.957 0.17 1.36
LR8 -6.724 -6.714 0.16 0.66 -7.464 -7.460 0.06 1.36
LR9 -2.350 -2.345 0.18 1.09 -2.475 -2.482 0.25 1.10
LR10 -5.270 -5.261 0.17 0.91 -5.473 -5.470 0.04 1.09
LR11 -3.257 -3.205 1.63 2.04 -3.422 -3.361 1.79 2.58
LR12 -4.176 -4.169 0.17 0.98 -4.327 -4.330 0.08 1.19
LR13 -0.623 -0.621 0.28 1.85 -0.587 -0.580 1.25 3.70

#swi tches where Plkg (SW) is the static power consumption of the considered power switch, as re-
ported in the technology library, and #swi tches is the number of power switches inserted in the
power domain. The dynamic power contribution is only relevant when intervals between successive
kernel switches are in the order of tens of cycles (Hu et al. [47]). When the computation of the kernels
last tens of cycles also the wake-up time is not relevant. Thus, in designs with low switching rates,
these two overhead contributions could be neglected.

The FFT use-case is a really simple design, used only for the development of the power estimation
model and, as reported in Section 5.4.1, its kernels are far from lasting tens of cycles. The Zoom
application adopted for the validation phase of the proposed model is a real use-case but it is a small
size design, where the execution of the fastest kernels lasts 24 clock cycles. Considering a bigger
and more complex real use-case, such as interpolation filtering for motion compensation in High
Efficiency Video Coding [34], it is possible to achieve the condition for neglecting the dynamic power
consumption of the sleep transistors and the wake-up time overhead. This application involves 2-
dimensional filters working on sub-blocks of pictures belonging to the same video sequence. The
smallest block, corresponding to the fastest execution time, has 8 x 8 pixels.

5.4.4 Advantages of the proposed approach

Considering a CGR system implementing N different functionalities and partitioned into k differ-
ent LRs, the proposed selection algorithm, based on the power models embodied in Equation 5.3,
Equation 5.5, Equation 5.6 and Equation 5.7, requires the synthesis of the baseline CGR design (with-
out any power saving strategy applied) and N hardware simulations, each one running a different
functionality (i.e. executing the different DPNs provided as input to the MDC tool). The hardware
simulations are needed since the real switching activity is essential for correct dynamic power es-
timation. Table 5.15, targeting the FFT scenario and the power gating implementation, depicts the
estimated and real power overhead when estimations are performed adopting the default synthesis
reports (without taking into account the real switching activity). The estimation errors are extremely
high when the switching activity is neglected; therefore, the proposed models are not capable of prop-
erly determining which LRs would actually benefit of power gating.

86 CHAPTER 5. CGR ON ASIC - POWER MODELLING

Table 5.15: FFT use case at 90 nm CMOS technology: Power gating variation estimation step
accuracy, using reports generated without the real switching activity.

LR PG variation %
Est. Real Err.%

LR1 -30.54 -26.10 17.07
LR2 -0.19 -1,99 90.22
LR3 -21.83 -6.95 214.30
LR4 -0.12 -0.67 80.97
LR5 -0.06 -0.59 90.11
LR6 -0.07 0.56 86.60
LR7 -15.39 -2.64 482.93
LR8 -0.38 -0.02 1941.81

In order to understand the advantages of the proposed approach, let’s compute the effort needed
to determine the optimal saving strategy for each region if our flow is not adopted. It is required to:

1. synthesize the baseline design without any power management support;

2. synthesize one power gated design and one clock gated design for each LR;

3. perform N different hardware simulations for the baseline design, to retrieve the real switching
activity of the system;

4. perform N different hardware simulations for each power gated and clock gated design, to re-
trieve their real switching activity;

5. compare each power gated design and clock gated design, in the different operating condi-
tions, with respect to the synthesized baseline CGR design.

The presented flow requires only point 1 and point 3. In numbers it corresponds to one single syn-
thesis and N hardware simulations. On the contrary, not using our approach, 2∗k+1 synthesis (k for
power gating evaluation, k for clock gating evaluation plus the baseline one) and N ∗ (2∗k +1) hard-
ware simulations are necessary. The only simplification that may be done, even without adopting the
proposed approach, is when a given region is fully combinatorial. This would save the effort related
to its perspective clock gating evaluation.

Dealing with the presented use cases, for the FFT (Section 5.4.1) there are N = 4 different func-
tionalities and k = 8 LRs. Among these latter 3 are fully combinatorial. The proposed approach re-
quired one synthesis and 4 hardware simulations, rather than 14 synthesis (8 power gated LRs, 5 clock
gated LRs and the baseline design) synthesis and 56 hardware simulations (4 for each synthesized
design). Considering the zoom co-processor (Section 5.4.2), N = 7 and k = 13, with only 1 fully com-
binatorial LR. The proposed approach required one synthesis and 7 hardware simulation, rather than
26 synthesis (13 power gated, 12 clock gated and the baseline designs) and 182 hardware simulations.

5.5 Chapter Remarks

This Chapter presented an automated methodology capable of estimating, prior any physical imple-
mentation, the effectiveness and costs that power gating or clock gating would have when imple-
mented on top of the functional logic regions constituting a CGR system. This methodology is based
on static and dynamic power estimation models that, in a separate manner for each logic region in the

5.5. CHAPTER REMARKS 87

design, are capable of determining the power consumption variation due to clock gating and power
gating on the basis of the functional, technological and architectural parameters of the baseline sys-
tem. These models and the corresponding estimation algorithm are applicable in any CGR scenario
and are integrated in the MDC tool, improving its basic functionality.

By considering two different scenarios and adopting different ASIC technologies, the assessments
proved that the enhanced MDC flow is capable of guiding the designers towards the definition of the
optimal power management support. It is more efficient than the previous, blindly applied, method-
ology and the proposed models turned out to be extremely accurate. Finally, as demonstrated in Sec-
tion 5.4.4, the new flow drastically reduces the number of designs to be synthesized and simulated,
leading to save both designer effort and computational time. However, given that the ratio between
the static and the dynamic power consumption in digital systems drastically changes according to
the considered technology (the smaller the technology is, the bigger the impact of the static power on
total power is), the power gating strategy and, in turn, the presented methodology and power analysis
flow is more beneficial for smaller technologies.

List of Publications Related to the Chapter

Journal papers

• Francesca Palumbo, Tiziana FANNI, Carlo Sau, Paolo Meloni, and Luigi Raffo, Modelling and
Automated Implementation of Optimal Power Saving Strategies in Coarse-Grained Reconfig-
urable Architectures. Journal of Electrical and Computer Engineering, vol. 2016, Article ID
4237350, 27 pages, 2016. https://doi.org/10.1155/2016/4237350.

Conference papers

• Tiziana FANNI, Carlo Sau, Paolo Meloni, Luigi Raffo and Francesca Palumbo, Power modelling
for saving strategies in coarse grained reconfigurable systems. 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), Mexico City, 2015, pp. 1-4. doi: 10.1109/Re-
ConFig.2015.7393337

• Tiziana FANNI, Carlo Sau, Paolo Meloni, Luigi Raffo, and Francesca Palumbo. 2016. Power and
clock gating modelling in coarse grained reconfigurable systems. In Proceedings of the ACM
International Conference on Computing Frontiers (CF ’16). ACM, New York, NY, USA, 384-391.
DOI: https://doi.org/10.1145/2903150.2911713

• Tiziana FANNI and Luigi Raffo, Coarse grain reconfiguration: Power estimation and manage-
ment flow for hybrid gated systems. 2016 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), Cancun, 2016, pp. 1-4. doi: 10.1109/ReConFig.2016.7857160

• Tiziana FANNI, "Optimal Implementation of Power Saving Techniques in CGR Systems", Cyber-
Physical Systems PhD & Postdoc Workshop 2018. Alghero (Italia). CEUR-WS.org/Vol-2208

Other scientific papers

• Francesca Palumbo, Tiziana FANNI, Carlo Sau, Paolo Meloni and Luigi Raffo, Automated Flow
for Hybrid Clock and Power Gating in Coarse-Grained Reconfigurable Architectures, at the 2017
Riunione Annuale dell’Associazione SocietÃ Italiana di Elettronica (ex GE), Como (Italy) June
2017.

Chapter 6

Coarse-Grain Reconfiguration on
FPGA - Desynchronizing Actors and
Clock Gating for Energy
Optimization

The modularity and parallelism of dataflow model of computation make them suitable for key aspects
of design exploration and optimization, such as efficient scheduling, task synchronization, memory
and power management. Several tools for hardware and software design, that exploit dataflow models
of computation exist. However, automatic tools are not always the best solution to explore different
design optimisation and power management techniques when ad-hoc methods are required. The
lightweight dataflow (LWDF) programming methodology provides an abstract programming model
that supports dataflow-based design of signal processing components and systems. The research
presented in this Chapter integrates the LWDF methodology with hardware description languages
(HDLs), and in particular the main contribution of this thesis to LWDF methodology is the application
of the HDL-integrated power management techniques to develop efficient methods for low power
hardware implementation.

This dataflow-driven methodology helps the designers to rapidly incorporate and efficiently ex-
periment with new optimization techniques for dataflow-based implementations. For these reasons,
even if it has not been applied to coarse-grain reconfigurable (CGR) systems yet, LWDF is a promis-
ing methodology for the investigation of optimization techniques applied to these systems too. The
work presented in this Chapter has been conducted into the context of a collaboration among the
Microelectronics and Bioengineering Lab (EOLAB) (University of Cagliari), the Intelligent system DE-
sign and Applications (IDEA) Lab (University of Sassari),the Department of Electrical and Computer
Engineering (University of Maryland at College Park) and the Department of Pervasive Computing
(Tampere University of Technology).

6.1 SOA on Power Management in Dataflow-based
designs

As explained in Chapter 2, dataflow model of computation provides valuable model-based design
properties for signal processing systems, and has been adopted in a wide variety of tools for both soft-

89

90 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

ware and hardware design. Summarizing the ones more related to this thesis, the CAL programming
language [36] has been proved to increase the productivity compared to reference code written in tra-
ditional (hardware and software) languages, and to be a convenient and portable parallel program-
ming model, suitable for automated tools also when targeting hardware. Indeed the ORCC toolset is a
complete development environment, based on the RVC-CAL language accelerates the development
of multimedia applications in both software and hardware [130]. As deeply described in Chapter 3,
MDC tool is a framework for the automatic creation of CGR platforms, that performs a complete
design space exploration, evaluating the trade-off among resource usage, power consumption and
operating frequency [82]. While CAPH is a dataflow language and toolchain for the specification of
stream-processing applications [98].

Recently different works have explored the deployment of power management techniques, in
conjunction with dataflow-based designs. Danelutto et al. [28] propose a methodology for the im-
plementation of power aware dataflow runtime systems. By constantly monitoring the application
and by changing the amount of used resources according to the workload condition, they limit the
power consumption. Holmbacka et al. [46] present an approach to integrate fast parallel software
directly with the power management by injecting performance and parallelism into the software as
meta-data to the power manager. The meta-data is extracted by a dataflow programming frame work,
PREESM [85], and injected into code segments as a parameter in a Non-Linear Programming opti-
mization problem for minimizing total power. An interface between the applications and the hard-
ware resources is provided in combination with a novel power management runtime system called
Bricktop. Madroñal et al. [68] presented the Papify-PREESM code generator, integrating PREESM [85]
with the Performance API (PAPI) [115] within a Y-chart design flow, for the generation of automatic in-
strumented code that integrates performance monitoring counters based on PAPI library into PREESM
code generation, to enable transparent actor timing and hardware resource usage profiling for devel-
opers.

However only few works focussed on power management strategies for digital hardware imple-
mentations. Brunet et al. [13] propose a design and implementation methodology based on the
dataflow model of computation for GALS-based applications. The methodology maps the applica-
tion into multiple clock domains subsequently assigning a clock frequency to each clock domain in
order to reduce the overall power consumption while meeting the design performance requirements.
Bezati et al. [9] presented an extension of Xronos, a High-Level Synthesis tool, to achieve power sav-
ings by selectively switching the clock signal off to the circuits when they are temporarily inactive.
The MDC tool has the capability of partitioning the design into a minimum set of logic regions, com-
posed of actors always active together, and applying to them clock gating strategy for both FPGA and
ASIC [82].

Generally speaking, these methodologies and tools are limited by the language used to describe
the adopted dataflow description or by the generated HDL, which can be target dependent (such as a
Xilinx FPGA) but not usable for an application specific integrated circuit (ASIC) flow (e.g., see [13, 9]).
Furthermore, these tools support the user-friendly application of existing design optimization tech-
niques, rather than the rapid prototyping of new techniques. Automatic methods and tools require
significant effort in development and maintenance of graph analysis and code generation function-
ality, and may be too costly for models and design approaches that are not mature. System designers
must therefore resort to ad-hoc methods to explore design alternatives that span multiple implemen-
tation scales, platform types, or dataflow modelling techniques.

The lightweight dataflow (LWDF) programming [103] helps to address this gap by providing a
compact set of APIs that can be used to incorporate advanced dataflow techniques in a manner that
does not require development and maintenance of automation tools. Rather than being focused on
automation, LWDF is designed to help the designer architect an efficient dataflow-based implemen-
tation and iteratively experiment with it. This capability allows the designer to rapidly incorporate
and experiment with advanced power optimization techniques in the framework of a systematic

6.1. SOA ON POWER MANAGEMENT IN DATAFLOW-BASED DESIGNS 91

dataflow-based design methodology. At the same time, because the LWDF APIs are based on for-
mal dataflow principles, LWDF-based implementations can be well-suited as a target for automated
synthesis and code generation tools. For example, previous work on LWDF techniques has empha-
sized their application to DSP software implementation (e.g., through integration with C and CUDA,
as presented in [112, 62]). LWDF APIs for CUDA and C have been targeted in the DIF-GPU tool for
automated synthesis of hybrid CPU/GPU implementations [63].

This Chapter presents a study that deeply integrates LWDF techniques with hardware descrip-
tion language (HDL) programming, and that provides a complex application study involving LWDF-
based digital hardware design and optimization, with emphasis on the rigorous integration of power-
management within the proposed APIs.

6.1.1 LWDF

For software implementation, an LWDF actor is implemented as an abstract data type that has four
interface functions, which are referred to as the construct, enable, invoke, and terminate functions.
The construct and terminate functions can be viewed as an object-oriented constructor and destruc-
tor for instantiation and removal of actors, respectively. The enable and invoke functions in LWDF
provide concrete mechanisms for implementing in software the corresponding functions of the same
name from the abstract CFDF semantics. The LWDF enable function returns a Boolean value; the
returned value is true if (1) there is sufficient data on the actor’s input edges to execute the cur-
rent mode; and (2) the output edges of the actor have sufficient empty space to accommodate the
data that would be produced if the next mode were to be executed. This formulation makes sense in
LWDF because of the restriction in CFDF semantics that the dataflow rate on a given port is constant
for a given mode.

The invoke function of an LWDF actor A carries out a single firing of A according to its current
mode; determines the next mode for a; and changes the current mode of A to be equal to this newly-
determined next mode just before returning. The enable and invoke functions provide interfaces
for implementing schedulers to coordinate execution of dataflow graphs that are implemented using
LWDF. A broad class of schedulers can be implemented using these interfaces, including many types
of static, quasi-static, and dynamic schedulers (e.g., see [89, 87]). Static schedules are generated at
compile time and specify fixed sequences of actor firings, thus, the actors can be directly invoked by
static schedulers without checking the firing conditions using enable functions. Quasi-static sched-
ules are generated at compile-time, but may contain code for performing some data-dependent,
scheduling-related computations at runtime. Dynamic schedulers schedule dynamic dataflow ap-
plications in ways that involve relatively large amounts of runtime decision-making.

A simple example of a dynamic scheduler is a canonical CFDF scheduler [89]. A canonical sched-
uler S calls the enable functions of the actors in some order in a round robin fashion. Each time the
enable function of an actor A is called by S and the function returns “true”, the invoke function of A
is immediately executed. This process of visiting and conditionally invoking actors is repeated until
no actors are enabled or some other termination condition of the application is satisfied.

As with actor design, LWDF provides a compact set of interfaces for implementing the FIFO
buffers that correspond to dataflow graph edges. These interfaces provide standard functions that are
used in LWDF-based actors and schedulers to work with FIFOs. Details of the implementation are un-
specified so that designers have full flexibility in developing and applying different FIFOs in different
applications or in different parts of the same application to achieve desired trade-offs in inter-actor
communication performance (e.g., by mapping dataflow edges into different types of memories).
LWDF is formulated to orthogonalize FIFO, actor, and scheduler implementation so that, for exam-
ple, modifications to or replacement of a FIFO implementation do not require modifications to actors
that communicate with the FIFO or scheduling logic that coordinates execution of the graph. Please

92 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

see [54] for general background on the utility of orthogonalization in system-level design. LWDF
interface functions defined for FIFOs include functions for construction and termination (as with ac-
tors); reading tokens from FIFOs; writing tokens into FIFOs; and checking their token populations
and amounts of available free space.

6.2 Methodology - LWDF

As discussed in Section 6.1, LWDF has primarily been targeted to DSP software implementation. This
section presents the extension of the general LWDF methodology for efficient digital hardware im-
plementation. The design techniques presented in this section are formulated concretely in the con-
text of the Verilog HDL, referring to this integration of LWDF with Verilog as LWDF-V. The design
concepts underlying LWDF-V can be adapted to other HDLs as they do not depend on specialized
aspects within the Verilog language (i.e., aspects that do not have natural counterparts in other com-
mon HDLs).

In LWDF-V, the enable, invoke and scheduling functions for an actor are implemented as three
coupled Verilog modules, which are named in this Chapter as the actor enable module (AEM), actor
invoke module (AIM) and actor scheduling module (ASM), respectively. Dataflow edges are imple-
mented as dataflow edge modules (DEMs) to provide communication channels for connections be-
tween actors. Since DEMs buffer data through a first-in first-out protocol, they are named also simply
as FIFOs. Figure 6.1 illustrates an example of an LWDF-V actor.

AEM_A

AIM_A

ASM_A

Actor A

FIFO I

(DEM)
FIFO O

(DEM)

pop_�foI fs_�foO

mode_A

rd_en_AX wr_en_AY

in_AX out_AY

invoke_A
FC_A

clk_A

clk_A

rst

rst

enable_A

rst rst

next_mode_A

pop_�fo:

fs_�fo:

rd_en:

wr_en:

in:

out:

clk:

rst:

AEM:

AIM:

ASM:

population of FIFO

free space of FIFO

read enable

write enable

input data

output data

clock

reset

Actor Enable Module

Actor Invoke Module

Actor Scheduling Module

Figure 6.1: Illustration of an LWDF-V-based actor.

6.2.1 Actor Invoke Module

Recall that LWDF imposes minimal constraints on component designs. In this connection, the only
requirement for an AIM is that the CFDF-based behaviour prescribed by the standard AIM opera-
tional states and interfaces (described below) is maintained. Beyond that, the AIMs can be decom-
posed into arbitrary hierarchies of sub-modules, and described using any Verilog coding style, includ-
ing behavioural, structural, or mixed behavioural/structural coding. LWDF-V enhances the reusabil-
ity and retargetability of the modules, and also facilitates evolutionary design, where sub-module
designs associated with different subsystems can be progressively refined as more and more details
of the targeted implementation are determined. The high level operation of the AIM is required to
have two states: the actor idle state and actor firing state, which are called the AIM operational states

6.2. METHODOLOGY - LWDF 93

of the associated actor. The interfacing requirements of AIMs are defined in terms of these two states.
The required interface ports for the AIM are divided into the following four groups.

• Dataflow-related input ports: This group of ports contains one input port corresponding to
each input port X of the associated CFDF actor A, and a Boolean input port called invoke to
initiate the next firing of the actor on the next clock cycle if the actor is currently in the idle state.
In Figure 6.1, examples of signals sent to ports within this group include in_AX and invoke_A
.

• Dataflow-related output ports: This group of ports contains one output port corresponding to
each actor output port Y, one Boolean write enable port corresponding to each output port for
submitting write requests to the output edge, and one Boolean read enable port corresponding
to each input port X for submitting read requests to the input edge. Examples in Figure 6.1 of
signals sent from ports in this group include out_AY, wr_en_AY, and rd_en_AX.

• Platform-related input ports: This group of ports contains a clock input port for relevant syn-
chronization with interfacing circuitry, and a synchronous Boolean reset input port to bring
the actor to its idle state on the next clock cycle. Examples in Figure 6.1 of signals sent to ports
in this group are clk_A and rst_A.

• Control-related input ports: For a given actor A, this group contains a port called mode that
provides the current CFDF mode of the actor. In Figure 6.1, examples of signals sent to this
port are mode_A and FC_A .

• Control-related output ports: For a given actor A, this group contains a port called next_mode
that provides the next possible CFDF mode of the actor, and a port called FC, which stands
for firing complete, that sends a Boolean signal to indicate when a firing of A completes dur-
ing the current clock cycle. In Figure 6.1, examples of signals sent from these ports include
next_mode_A and FC_A .

Figure 6.2 provides an example of the FSM control flow for an AIM with three modes. The AIM
stays in the current mode x until the firing related to the mode is completed. When this firing is
completed, the FC signal is driven high, and the next_mode is suggested. In each mode, a sub-FSM
controls the execution; the AIM waits in an IDLE state until invoke is high, then the state is updated
to FIRING,where the AIM consumes input data, executes the actor operation and produces output
data according to the current mode.

6.2.2 Actor Enable Module

To provide a standard interface for the CFDF-based enable function described in Section 6.1.1, the
AEM module for an LWDF-V actor contains the following required interface ports.

• Population and free space ports: for each input port X of the associated CFDF actor A, the
AEM has one input port for accessing information about the buffer state. This port provides
the current buffer population (the number of tokens in the input buffer) for the FIFO I that
is connected to port X. Similarly, for each output FIFO O that is connected to an output port
Y, the AEM has one input port that provides the free space level (the output buffer capacity
minus the population). These input ports are named, in terms of the associated FIFO names,
as pop_fifoI and fs_fifoO, respectively.

Figure 6.3 shows two examples of inter-actor communication. In the first example, two ac-
tors A and B exchange data through two FIFOs. Actor A has three ports to access the buffers’

94 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

mode a mode b

mode c

!FC !FC

!FC

FC

FC
FC

IDLE

!invoke !FC

FIRING

invoke

FC

Figure 6.2: Example of an AIM FSM for a CFDF actor with three modes.

state: pop_fifo1 provides the population of FIFO1 connected to input 1, and fs_fifo2
and fs_fifo3 provide the free space levels of FIFO2 and FIFO3 connected to output ports
output 1 and output 2. In the second example, an actor C sends output data to two actors
D and E through two FIFO channels, FIFO5 and FIFO6. For each output FIFO C has one free
space input signal — these signals are labelled as fs_fifo5 and fs_fifo6.

• Mode port: This input port is used to specify the CFDF mode (for the enclosing actor A) rel-
ative to which the AEM will perform its next fireability testing operation (i.e., its operation to
determine whether or not there is sufficient data and free space available to permit a firing of
the actor). This port is named in terms of the enclosing actor A as mode_A. Figure 6.4 shows an
example with three different firing conditions {Cx } for three different modes mode x. When the
firing condition is true, the enable signal is set high.

• Enable port: This output port is driven with the Boolean result produced by checking the fire-
ability of the enclosing actor in the mode specified by the AEM mode port. This port is named
in terms of the enclosing actor A as enable_A.

The AEM can be implemented using combinational or sequential logic. The latter form may be
preferred, for example, if large numbers of ports are involved and it is desired to share hardware re-
sources across the comparison operations that are involved in the fireability checking process. How-
ever, for many practical actors and implementation scenarios, the number of inputs is relatively small
and combinational AEM realization is a reasonable design choice. In the work only the combinational
AEM implementation is considered.

6.2. METHODOLOGY - LWDF 95

Actor E

Actor A Actor B

pop_�fo1 pop_�fo2fs_�fo2 fs_�fo4

FIFO1

FIFO2

FIFO4

rd_en_A1

wr_en_A1 rd_en_B1

wr_en_B1

in_A1

out_A1 in_B1

out_B1

FIFO3wr_en_A2 rd_en_B2

out_A2 in_B2

fs_�fo3 pop_�fo2

Actor C

pop_�fo5fs_�fo5

FIFO5

rd_en_D1

out_C1

in_D1

FIFO6 rd_en_E1

in_E1

fs_�fo6 pop_�fo6

wr_en_C1

Actor D

Figure 6.3: Illustration of LWDF-V-based actors communication.

Mode Condition

mode a Ca = (pop_ fo1 >= consumption_rate_of_a)&&(fs_ fo2 >= production_rate_of_a)

mode b Cb = (pop_ fo1 >= consumption_rate_of_b)&&(fs_ fo2 >= production_rate_of_b)

mode c Cc = (pop_ fo1 >= consumption_rate_of_c)&&(fs_ fo2 >= production_rate_of_c)

condition

false

enable

1

0

true

Figure 6.4: Example of a AEM with three different firing condition for three possible modes.

6.2.3 Actor Scheduling Module

The ASM is an actor-level subsystem that determines the next mode of the associated actor after the
actor firing is completed, and invokes the actor firing after the actor is enabled again. Compared to
schedulers discussed in Section 6.1.1, which control groups of actors (i.e., related to specific design
subsystems or to the entire digital system that is being developed), the ASM can be used to imple-
ment a fully distributed scheduling approach. In such an approach, an actor is scheduled to begin a
new firing whenever it is idle and its enable condition is satisfied. Use of the ASM can also be mixed
with the kinds of schedulers discussed in Section 6.1.1. Using such hybrid strategies, selected actors
can be scheduled in a distributed fashion (using ASMs), while the execution of other actors is coordi-
nated using centralized mechanisms. The ASM supports one specific scheduling strategy that can be
used to implement LIDE-V systems. Its use is not required; modules that implement other kinds of
scheduling strategies can be used instead or in combination, as described above.

The interface ports of an ASM are listed as follows. For an ASM that is associated with a given
actor A, these ports are described here in relationship to the AIM and AEM of the same actor A.

• Dataflow-related input ports: This group of ports contains a Boolean input port that is con-
nected to the output port FC of the AIM, a Boolean input port that is connected to the output

96 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

port enable of the AEM, and an input port that is connected to the output port next_mode of
the AIM.

• Platform-related input ports: This group of ports is the same as the platform-related input
ports introduced in Section 6.2.1.

• Control-related output ports: This group contains an output port called mode and an output
port that is connected to the input port invoke of the AIM. The ASM makes the decision on
the current actor mode and sends the resulting mode signal to the AEM and AIM through the
output port mode. Thus, the ASM is responsible for carrying out mode transitions of the actor
after firings are completed. Generally, the ASM can either set the actor mode to be the next
mode signal received from the next_mode input port or ignore the next mode signal and set the
mode according to some user-defined logic that is integrated as part of the ASM. The ASM also
launches the next actor firing once the previous firing is completed and the actor is enabled
again.

Figure 6.5 shows an example of an FSM that controls an ASM. The ASM waits in the state WAIT_EN
for the enable signal to become high. When enable= 1, the ASM invokes the AIM (invoke= 1). Then
the ASM waits in the state WAIT_FC for the firing completion (FC= 1), and sets the next actor mode.

WAIT_EN

!enable

WAIT_FC

!FC

enable

FC

state enable invoke

WAIT_EN

WAIT_FC

1

WAIT_EN 0

x

1

0

0

state FC mode

WAIT_EN

WAIT_FC

x

WAIT_FC 0

1

current_mode

current_mode

next_mode

Figure 6.5: An example of an FSM that controls an ASM.

The example in Figure 6.6 illustrates temporal relationships among the enable, invoke and FC
signals. After the enable signal is high, the ASM raises the invoke signal. The AIM then executes its
operation and the ASM waits for the firing completion signal FC. Tei is the elapsed time between the
instant when the actor becomes enabled, and when the corresponding firing is invoked. Similarly, Tic

is the invocation to firing completion time, and Tci is the time between the firing completion for one
invocation and the start of the next invocation. Finally, Tec is the enable to firing completion time, and
Tii is the elapsed time between two successive invocations. Such measurements can provide insight
into the performance of the given actor in the context of the applied scheduling strategy.

6.2.4 Dataflow Edge Module

The DEM is used in LWDF-V to implement a dataflow edge. The required interface ports include the
following.

• Enable ports: These two Boolean input ports provide read enable and write enable signals,
rd_en and wr_en, for accessing the FIFO storage.

6.2. METHODOLOGY - LWDF 97

clk

enable

invoke

FC

Tei Tic

Tec

Tii

Figure 6.6: Examples of signal waveforms during execution of an LWDF-V actor.

• Data input/output ports: These ports, named in and out, are used by the FIFO to read input
data and send output data, respectively, when a read or write operation is initiated.

• Population port: This output signal, named pop, is driven with a non-negative integer value
that gives the number of tokens that is currently stored in the FIFO.

• Free space port: This output signal, fs, provides the current value of (c −p), where c and p are
the capacity and population, respectively, of the buffer.

Figure 6.7 depicts an overview of an LWDF-V-based synchronous FIFO design. Once the FIFO
read or write operation is enabled, the rd_addr or wr_addr module will update the read or write
pointer accordingly. The population pop and free space fs signals will be updated as well.

wr_addr rd_addr

fs

wr_addr_bin

rd_addr_bin

FIFO

memory

wr_en rd_en

data_in data_out

rst rst

pop

clk clk clk

Figure 6.7: Synchronous FIFO design

98 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

6.3 Lightweight Dataflow Environment for LWDF-V
methodology - LIDE-V

The lightweight dataflow environment (LIDE) provides implementations of APIs, graph element (ac-
tor and edge) libraries, and other utilities that support the LWDF programming methodology (see [103,
102]). This section presents an extension of LIDE called LIDE-V that provides concrete support for the
abstract LWDF-V methodology. LIDE-V presents capabilities that help to address challenges brought
about by the need to handle actors with arbitrary variations in complexity, and it also discusses the
relevance of these capabilities to low power signal processing.

In particular, this section presents an asynchronous and GALS-oriented design methodology us-
ing LIDE-V for heterogeneous-complexity and low power implementation. Specifically, the proposed
methodology applies (1) asynchronous communication between actors that utilizes multiple clock
domains, where the bottleneck actors are executed at higher clock frequencies and the others at lower
frequencies; and (2) a clock gating technique that “switches off” idle actors to reduce dynamic power
consumption. As part of LIDE-V, two DEM implementations — one for synchronous FIFO realization
and the other for asynchronous realization — are presented. These alternative implementations pro-
vide important examples of support for orthogonality in LWDF-V, and its use to integrate alternative
actor and edge implementations.

The novelty of this development centres on the systematic integration of asynchronous design,
GALS, and clock gating techniques with lightweight dataflow programming interfaces and their un-
derlying CFDF model of computation. This integration with CFDF is notable in turn due to the utility
of CFDF as a foundation for working with various specialized and heterogeneous forms of dataflow
(e.g., see [89]). Furthermore, the orthogonality among CFDF components lays a valuable founda-
tion for asynchronous design, and the proposed clock gating techniques exploit the enable/invoke
semantics in CFDF.

6.3.1 Asynchronous LIDE-V Design

A dataflow clock domain (or simply “clock domain” when the dataflow context is understood from
context) can be defined as a maximal set of actors that is driven by the same clock signal. In asyn-
chronous LIDE-V designs, different parts of a dataflow graph can be driven by different clock signals,
thus forming multiple clock domains. This in turn allows “slower” actors to be placed in higher fre-
quency clock domains, so that they can be accelerated without having to increase the power con-
sumption of the whole design linearly with the clock frequency, and “faster” actors to be placed in
relatively low frequency clock domains, so that the downtime between “faster” and “slower” actors
can be reduced.

Figure 6.8 depicts an example of a LIDE-V design with two clock domains, where actor A is driven
by clk_1, and actors B and C are driven by clk_2. Communication channels between actors in the
same clock domain are called synchronous FIFOs. These FIFOs outline the “synchronous islands”
within the overall GALS design. The problem of passing data between synchronous islands is ad-
dressed using the asynchronous DEM, named also clock domain crossing (CDC) FIFOs. In Figure 6.8
FIFO3 is a synchronous FIFO while FIFO2 is a CDC-FIFO.

Figure 6.9 illustrates the CDC FIFO design adopted in LIDE-V, which is based on Cummings’s de-
sign presented in [27]. CDC FIFOs are driven by two different clock signals, one for read operations
(rd_clk), and another for write operations (wr_clk). The LIDE-V CDC FIFO presents some adapta-
tions to Cummings’s design so that it is consistent with the LIDE-V framework. For example, Cum-
mings’s design only provides the empty and full signals, calculated inside the wr_addr and rd_addr
modules. In order to generate the required population pop and free space fs signals, the wr_addr and

6.3. LIGHTWEIGHT DATAFLOW ENVIRONMENT FOR LWDF-V METHODOLOGY - LIDE-V 99

Actor A Actor B

pop_fifo1 pop_fifo2fs_fifo2 fs_fifo3

FIFO1 FIFO2 FIFO3

rd_en_A1 wr_en_A1 rd_en_B1 wr_en_B1

in_A1 out_A1 in_B1 out_B1

clk_1

clk_1

clk_1 clk_2 clk_2

clk_2

Clock Domain 1 Clock Domain 2

Figure 6.8: Illustration of an LWDF-V-based implementation of a CFDF graph that consists
of three actors.

rd_addr modules are modified to calculate these signals by computing the offset between the write
pointer and read pointer.

wr_addr

FIFO

memory
wr_addr_bin rd_addr_bin

wr_addr_gray rd_addr_gray

sync_rd_addr_gray sync_wr_addr_gray

sync_r2w sync_w2r

MUX MUX

rst rst

fs pop
rd_enwr_en

data_in data_out

rst rst
en_sync

wr_clk rd_clk

Figure 6.9: Asynchronous FIFO design in LIDE-V.

To support clock gating within FIFOs, the LIDE-V CDC FIFO presents another modification com-
pared to Cummings’s design. The objective here is to allow all of the logic units belonging to the corre-
sponding clock domain to be turned off when rd_clk or wr_clk is off. In Figure 6.9, for example, the
modules in gray are disabled when the rd_clk signal is off. This behaviour is not considered in Cum-
mings’s design and if the synchronization circuits are off, in that design, the read and write pointers
would not be sent to the wr_addr and rd_addr modules. In order to guarantee that the updates of
population pop and free space fs are performed properly, the syn_r2w and sync_w2r modules both
have multiplexers that are responsible for sending read and write pointers, respectively, when one or
both of the two clocks is disabled.

100 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

6.3.2 Clock Gating

In LIDE-V, clock gating is applied at the actor level to switch off idle components in the dataflow
graph. Figure 6.10 depicts an overview of a clock-gated LIDE-V design. Actor-level clock gating is
achieved systematically as a natural by-product of the LIDE-V design technique, which in turn al-
lows designers to apply clock-gating more thoroughly and more reliably. Clock gating is applied to a
LIDE-V actor by adding a clock gating module CGM_A to the original LIDE-V actor design illustrated
in Figure 6.1.

enable_A

AIM_A

rst

rst
en_sync

en_sync

clk_gate

en_sync

rst

AEM_A

rst rst

pop_fifo1 fs_fifo2

rd_en_A1 wr_en_A1

in_A1 out_A1

FC_A

clk

clk

invoke_A

FIFO1 FIFO2

enable_out

CGM_A

ASM_A

Actor A

Figure 6.10: Clock gating in a LIDE-V actor.

The LIDE-V-based clock gating technique exploits the graph execution information provided by
the enable enable_A and the firing complete FC_A signals. Figure 6.11 illustrates how the signals
are related: when enable_A from the AEM_A is high, CGM_A enables the clock (en_clk is high), and
switches the clock off when the actor has finished its computation — i.e., when the FC_A signal from
AIM_A is high.

From a technical point of view, the clock is disabled in two different ways, depending on the
target technology. In ASIC designs, it is possible to modify the clock by exploiting some custom logics
(e.g., a simple AND gate can be used to disable the clock signal), while in FPGAs it is necessary to use
dedicated blocks (BUFGCEs) to switch it off. The CGM_A also delays the enable_A signal by two clock
cycles so that, after an OFF-to-ON transition, the AIM has enough time to be active before it receives
the invoke_A signal from the scheduler.

Clock Gating of Dataflow Edge Modules in Asynchronous Designs

The clock gating technique introduced above can be applied to both synchronous and asynchronous
designs. Moreover, in asynchronous designs, the clock gating technique can be applied not only to

6.3. LIGHTWEIGHT DATAFLOW ENVIRONMENT FOR LWDF-V METHODOLOGY - LIDE-V 101

...

...

...

...

...

...

clk

enable_A

FC_A

enable_out

en_clk

clk_gate

Figure 6.11: Signal waveforms in the clock gating module.

actor modules but also to the CDC FIFO modules, as mentioned in Section 6.3.1. When an actor is
idle, it does not read/write data from/to its input/output FIFOs, so the read clock of its input FIFOs
and the write clock of its output FIFOs can be disabled to save even more power. Then the CDC FIFO
will turn off the corresponding logic units as mentioned in Section 6.3.1.

To ensure correct updates of the output signals pop and fs, one additional signal called en_sync
is sent from the CGM to the CDC FIFO module indicating that either one or both of the rd_clk and
wr_clk is/are disabled .

Clock Gating of Dataflow Edge Modules in Synchronous Designs

In synchronous designs, the clock gating technique cannot be applied to the synchronous FIFO de-
sign introduced in Section 6.2.4 because the modules that update the signals related to read and write
operations are driven by the same clock signal.

One way to enable clock gating of DEMs in synchronous designs is to replace the synchronous
FIFOs with the CDC FIFOs mentioned in Section 6.3.2. However, compared with synchronous FIFOs,
CDC FIFOs require more hardware resources and consume more power. Thus, the power saved by
switching off the unused logic units may be counteracted by the power overhead introduced by the
additional resources. This section presents a new FIFO, where the wr_addr and rd_addr blocks are
synchronized to different clock signals, and a dual-clock FIFO memory is developed. This new FIFO
design, which we call a pseudo-CDC FIFO, is illustrated in Figure 6.12. Compared with the CDC FIFO
design, the pseudo-CDC FIFO design does not contain synchronization or gray coding circuits, since
the wr_clk and rd_clk clock signals are always connected to the main clock. Similar to CDC FIFOs,
the unused logic units in the pseudo-CDC FIFOs can be turned off by clock gating technique to save
more power.

6.3.3 FIFOs comparison

Table 6.2 compares the resource utilization of the synchronous, asynchronous (CDC) and pseudo-
asynchronous (pseudo-CDC) FIFO designs presented in this paper. The data is extracted from the
post-implementation reports of the four FIFOs, all with the capacity being 768 and bit-width being
64.

As it is possible to see from Table 6.2, the CDC FIFO requires the most resources compared to the
other FIFO designs. This is due to the additional synchronization and gray coding circuits in the CDC
FIFO. Additionally, the pseudo-CDC FIFO has the same resource utilization as the synchronous FIFO,
but is adapted to support clock gating in synchronous designs.

102 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

wr_addr

fs

wr_addr_bin

rd_addr_bin

FIFO

memory

wr_en rd_en

data_in data_out

rst rst

pop

clk clk
clk

Figure 6.12: Pseudo-CDC FIFO design in LIDE-V.

Table 6.1: Resource utilization. The numbers in parentheses give the differences in utiliza-
tion of the corresponding resource compared to the synchronous FIFO.

LUTs % REGs % BRAMs
Synch.\FIFO 73 – 22 – 2
CDC FIFO 199 +172.60 88 +300 2
Pseudo-CDC FIFO 73 +0 22 +0 2

Table 6.2: Resource utilization of the implemented FIFOs.

FIFO Type LUTs REGs BRAMs
FIFO Synch. 73 22 2
CDC FIFO Asynch. 199 88 2
Pseudo-CDC FIFO Pseudo-Asynch. 73 22 2

6.4 Experimental Results

This section demonstrates the capabilities of LIDE-V through a deep neural network (DNN) appli-
cation. The DNN system employed in this case study, based on a neural network presented in [48],
is designed to automatically classify vehicles into four types — bus, truck, van and car. Details on
algorithmic aspects of this DNN are reported in [48].

The DNN architecture, which is summarized in Table 6.3, consists of five layers: two convolu-
tional layers, CONV1 and CONV2, followed by two dense layers, DENSE1 and DENSE2, plus an output
layer, OUTPUT. The first convolutional layer maps red, green, and blue (RGB) channels of an input
image of size 96×96 into 32 separate 48×48 feature maps. The second convolutional layer re-maps the
32 feature maps generated by the first layer into 32 24×24 feature maps. The third and fourth layers
are fully connected layers with 100 feature nodes in each layer. The results of the two fully connected
dense layers are fed to the output layer, which returns a vector with four elements, each representing
the probability that the vehicle in the input image belongs to one of the four vehicle types.

The computational complexity and amount of required data transfer for each layer are summa-

6.4. EXPERIMENTAL RESULTS 103

Table 6.3: DNN hyperparameters.

Hyperparameter Selected Value
Number of Convolutional Layers 2
Number of Dense Layers 2
Input Image Size 96×96
Kernel Size in All Convolutional Layers 5×5
Number of Feature Maps 32

rized in Table 6.4. From this table, it is possible to notice that the convolutional layers require much
more computation while requiring significantly less data transfer compared with the other layers.
The first convolutional layer is the one selected for hardware acceleration. The associated dataflow
subgraph takes as input a w ×h RGB image and computes a single (w/2×h/2) feature map as out-
put, taking three a ×b convolution kernels as parameters. The whole layer, which outputs 32 feature
maps, can then be accelerated by firing the graph repeatedly with different kernels.

Table 6.4: The computational complexity and amount of data transfer for each DNN layer.

Data transfer
Layer Multiplication Addition (in double precision format)
CONV1 22,118,400 23,003,136 103,776
CONV2 58,982,400 61,341,696 117,760
DENSE1 1,843,200 1,843,200 1,868,900
DENSE2 10,000 10,000 10,200
OUTPUT 400 400 504

6.4.1 LWDF-V Implementation of Deep Learning Neural Net-
work Application

Figure 6.13 shows an overview of the DNN dataflow subgraph implemented using LIDE-V. The an-
notations next to the actor ports represent the associated production and consumption rates. The
convolution actors, conv_r, conv_b and conv_g, each have three CFDF modes with different data rates
among the modes. The symbol w represents the image width.

In Figure 6.13, the Deinterleave actor (D) separates the RGB values of an input image to generate
three corresponding images. Then the Convolution actors perform matrix convolution on each of
these single-color images to generate a set of convolved images with the same size as the input im-
ages (CR , CG and CB). These convolved images are then added together by the Sum actors (S1 and S2).
Finally, the feature map is downsampled to 48×48 resolution by the Maxpool&rRelu actor (M&R). To
achieve this downsampling, M&R partitions the map into a set of sub-regions; for each sub-region,
the actor selects the maximum element as the representative of the sub-region, and clamps the neg-
ative values among the selected ones to zero to generate the final output feature map.

By applying the modularized decomposition of CFDF semantics in LWDF-V, each actor of the
DNN subgraph has been implemented as three coupled Verilog modules (AEM, AIM and ASM); actors
communicate through the DEMs. The DEM is parameterized with information about its dimension;
by changing the parameter appropriately, it is possible reuse the same module across the subgraph.
Also, the AEM is parameterized with information about actor modes and production/consumption
rates, and it can be reused across all actors. Furthermore, this case study uses a static scheduling

104 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

FIFO1

FIFO2

FIFO3

FIFO4

FIFO5

FIFO6

FIFO7

FIFO8

FIFO9 FIFO10

D

D: Deinterleave

CR: Convolutional Red

CG: Convolutional Green

CB: Convolutional Blue

S1: Sum 1

S2: Sum 2

M&R: Maxpool&Relu

Cb

S1

M&RS2 M&R
CG

CR

CB

3

1

1

1

(3w, w, 0) (w, w, w)

w

w

w

w

w

w 2w w/2

I/O I/O

Figure 6.13: LIDE-V design for the accelerated DNN subgraph.

Parameter,

wr_en, idx,

wr_data

Coe�

Bu�er

data_out

input FIFO Image Bu�er

(96x6)

mode

invoke

FC

rd_en

input FIFO

Control

state machine

0

DP FMA
Output FIFO

data_in

Output FIFO

wr_en

Figure 6.14: The AIM implementation for the convolution actor.

technique, and the ASM design is reused for all actors. In the presented design, it is necessary to
develop develop customized implementations only of the AIM for the different actors in the DNN
accelerator subsystem.

As an example of AIM implementation in the DNN accelerator, Figure 6.14 illustrates the struc-
ture of the AIM for the convolution actor. The DNN accelerator applies three instances of this actor.
The major components of this actor include an image buffer that is large enough to hold six rows of
image data, a kernel coefficient memory, and a floating point fused multiplier-adder (FMA). When
initialized, the actor settles in the first mode, which consumes 3 rows and convolves them with the
kernel to produce a single row of output. Then, it iterates through the image row by row in the second
mode producing and consuming 1 row per firing. Finally, the actor transitions to the third mode and
produces the last row of the output image without consuming any input tokens.

6.4. EXPERIMENTAL RESULTS 105

6.4.2 Hardware Profiling

This section presents the implementation of the DNN application introduced in Section 6.4.1 using
the Xilinx Zynq-7 ZC706 platform and execution time data for each type of actor. This hardware pro-
filing data provides further insight about selection among the different low power techniques men-
tioned in Section 6.3.

Table 6.5 depicts the execution time (in clock cycles) of the DNN subgraph, illustrated in Fig-
ure 6.13, to generate one of the 32 feature maps (DNN_1fm), and the average execution time of each
type of actor. Here, each symbol of the form Zxy represents the averaged value of Txy across the entire
process of generating DNN_1fm (see Section 6.2.3 for definitions of the Txy symbols). For example,
Zei represents the averaged value of Tei.

Additionally, #firings indicates how many times an actor is fired during the generation of DNN_1fm.
TA_T ic is the total execution time of an actor, and is equal to (Zic)×(#firings). TA_T ic% is the ratio (ex-
pressed as a percentage) TA_T ic/ttotal, where ttotal is the total time required to generate DNN_1fm.
Figure 6.6, which has been drawn considering the enable, invoke and FC signals of the Deinterleave
actor, gives insight into how these quantities and their associated signals are related.

According to the TA_T ic% data derived from this experiment, the Convolution actors are active
during 99.04% of the total execution time, thus they do not benefit from clock gating application. On
the other hand, there is potential to save significant amounts of power by applying clock gating to the
Deinterleave, Sum and Maxpool&Relu actors.

Table 6.5: Execution time in clock cycles of each actor. ttotal: total time required to gener-
ate DNN_1fm. Zic: invoke to firing completion time. Zei: enable to invoke time. Zec: en-
able to firing completion time. # f i r i ng s: number of firings during generation of DNN_1fm.
T A_Tic = (Zic)× (# f i r i ng s). T A_Tic% = (T A_Tic/ttotal)×100.

ttotal Zic Zei Zec # f i r i ng s T A_Tic T A_Tic%
DNN_1fm 232,831 — — — — — —
Deinterleave — 3 1 4 9216 27,648 11.87
Convolution — 2402 1 2403 96 230,592 99.04
Sum — 107 1 108 96 10,272 4.41
Maxpool&relu — 195 1 196 48 9360 4.02

Table 6.6 presents more data related to actor waiting times that is derived from hardware profiling.
Again, Zxy values are averaged versions of the corresponding Txy values, as described above. The ratio
between Zii and Zic measures the extent of actor idleness, which helps in gaining more insight into
the multiple clock domain formation and the selection of the clock frequency for each clock domain.
Here, it is possible to see that the Deinterleave and Convolution actors have much smaller levels of
idleness — both wait only two clock cycles between firing completion and the next invocation (Zci).
Thus, D , CR , CG and CB can be grouped in a region that works at a high clock frequency. Sum and
Maxpool&Relu actors have much larger values of Zci, thus S1, S2 and M&R can be placed in a region
that works at a slower clock frequency. In particular, the data in this table on Zii/Zic suggests that the
slower clock could be around 20 times smaller than the faster clock.

Figure 6.15 illustrates the two different clock regions of the DNN subgraph, identified according
to analysis of Table 6.6. Region 1 contains D , CR , CG and CB that can work at a higher clock fre-
quency, while Region 2 contains S1, S2 and M&R that can work at lower clock frequency. In such an
asynchronous design, FIFO5, FIFO6, FIFO7 and FIFO10 are CDC FIFOs as described in Section 6.3.1

106 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

Table 6.6: Waiting time in clock cycles for each actor. Zic: invoke to firing completion time.
Zci: firing completion to next invoke. Zii = Zic +Zci.

Zic Zci Zii Zii/Zic

Deinterleave 3 2 5 1.67
Convolution 2402 2 2404 1.08
Sum 107 2297 2404 22.47
Maxpool_relu 195 4613 4808 24.65

FIFO1

FIFO2

FIFO3

FIFO4

FIFO5

FIFO6

FIFO7

FIFO8

FIFO9 FIFO10

D

Cb

S1

M&RS2 M&R
CG

CR

CBI/O I/O

Region 1 Region 1Region 2

Figure 6.15: Clock Regions in DNN subgraph.

6.4.3 The Application of Low Power Techniques

Based on the hardware profiling data of the DNN application presented in Section 6.4.2, This Sec-
tion presents four alternative implementation for the LWDF-V-based DNN subgraph, where the asyn-
chronous and low power design techniques for LIDE-V described in Section 6.3 are adopted. These
designs can be viewed as different ways of implementing the structure illustrated in Figure 6.15 de-
pending on the specific DEMs that are instantiated as well as whether or not clock gating or multiple
clock domains are applied. The four implementations are described as follows.

• DNN_a: an asynchronous DNN design. According to profiling data in Table 6.6 it is possible to
allocate two clock domains: a fast clock domain cor Clock Domain 1, for the I/O interface, D ,
CR , CG and CB , and a slower clock domain, Clock Domain 2, which has a 20 times slower clock
signal, for the remaining actors. Clock Domain 1 corresponds to Region 1 in Figure 6.15, and
Clock Domain 2 corresponds to Region 2. Actors in different clock domains are connected by
CDC FIFOs.

• DNN_cg: the baseline DNN design with integration of clock gating. According to data depicted
in Table 6.5 all of the actors take advantage of the clock gating application except the convo-
lution actors. From the profiling experiments, it is clear that the convolution actors are active
for 99.04% of the total execution time, while the other actors are active for maximum 11.91%
of total execution time. Since the convolution actors are operating almost continuously, there
would be little power saved by clock gating them in exchange for the extra logic cost that must
be incurred to implement clock gating strategy.

• DNN_acg: the asynchronous DNN design with integration of clock gating. Here, the asyn-
chronous design is like the in DNN_a. However, in this design, clock gating is also applied.
In particular, clock gating is applied to all of the actors except the convolution actors (as in
DNN_cg), and clock gating is also applied to the CDC FIFOs.

• DNN_facg: the DNN design with integration of clock gating, where all the FIFOs are replaced
with pseudo-CDC FIFOs mentioned in Section 6.3.2. Clock gating is applied to all of the actors
except the convolution actors (as in DNN_cg) and to all of the pseudo-CDC FIFOs as well.

6.4. EXPERIMENTAL RESULTS 107

In addition to the above described designs, there is a further design:

• DNN_auto: this is the baseline DNN design, synthesized and implemented by enabling the
automatic power optimization performed by the Xilinx Vivado tool. When this option is en-
abled, during the implementation step Vivado looks at the output logic of sourcing registers
that do not contribute to the result for each clock cycle and then creates fine-grained clock
gating and/or logic gating signals that neutralize unnecessary switching activity.

Table 6.7 summarizes the composition of the baseline DNN design and the four designs described
above, reporting the number of used clocks, clock-gated (CG) actors, the actors belonging to the fast
and slow clock domains, and the number of the synchronous FIFOs, CDC FIFOs and pseudo-CDC
FIFOs.

Table 6.7: Composition of the four designs.

Clocks CG Fast-clk Slow-clk Synch CDC Pseudo-CDC
Actors Actors Actors FIFOs FIFOs FIFOs

DNN 1 0 7 0 10 0 0
DNN_a 2 0 4 3 6 4 0
DNN_cg 1 4 7 0 10 0 0
DNN_acg 2 4 4 3 6 4 0
DNN_facg 1 4 7 0 0 0 10

Table 6.8 presents the resource utilization data gathered by the post place&route reports gen-
erated by the Xilinx Vivado tool using the aforementioned Zynq board. The asynchronous designs
DNN_a and DNN_acg have the highest overhead in terms of LUTs and REGs, due to the overhead in
the CDC FIFOs. The number of BUFGs varies significantly among the five designs, due to two key dif-
ferences: compared with the baseline DNN, DNN_a needs one additional BUFG to control the clock
signal of the second clock domain, and DNN_cg and DNN_facg need four additional BUFGs, one for
each clock-gated actor. DNN_acg needs five additional BUFGs, one for each clock domain, and one
for each clock-gated actor. The DNN_auto design present a negligible overhead.

Table 6.8: Resource utilization. The numbers in parentheses give the percentage of utiliza-
tion with respect to the resources available on the board.

LUTs (%) REGs (%) BUFGs (%) BRAMs (%) DSPs (%)
Available 218600 437200 32 545 900
DNN 9764 (4.47) 6121 (1.40) 1 (3.13) 22 (4.04) 53 (5.89)
DNN_a 9983 (4.56) 6338 (1.45) 2 (6.25) 22 (4.04) 53 (5.89)
DNN_cg 9776 (4.47) 6149 (1.41) 5 (15.63) 22 (4.04) 53 (5.89)
DNN_acg 10086 (4.61) 6357 (1.45) 6 (18.75) 22 (4.04) 53 (5.89)
DNN_facg 9795 (4.48) 6149 (1.41) 5 (15.63) 22 (4.04) 53 (5.89)
DNN_auto 9808 (4.49) 6121 (1.40) 1 (3.13) 22 (4.04) 53 (5.89)

For each of the implemented designs, the switching activity files are generated by post-implementation
simulation, and then back-annotated by Vivado to extract the power consumption data. This ex-
tracted power consumption data is summarized in Table 6.9.

The clock frequencies of the synchronous designs and that of Clock Domain 1 in the asynchronous
designs are uniformly set to 100 MHz, which is the maximum possible frequency. Concerning Clock

108 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

Domain 2 of the asynchronous designs, the frequency is set to be 5 MHz, which is 1/20 of the clock
frequency in the faster clock domains, according to the profiling results. For the sake of completeness
results include also the DNN_acg when the frequencies of both clock domains are set to 100 MHz. The
frequency of Clock Domain 2 is specified in Table 6.9 with the suffix “_num”, where num represents
the frequency value in MHz.

Table 6.9: Dynamic power consumption. ∆% gives the difference in power consumption
compared to the baseline DNN design.

Dynamic Power Consumption [W]
CLOCKs SLICEs BRAMs DSPs Total (∆%)

DNN 0.039 0.081 0.031 0.028 0.271
DNN_a_5 0.027 0.062 0.025 0.024 0.212 (-21.77)
DNN_cg 0.027 0.063 0.025 0.024 0.214 (-21.03)
DNN_acg_100 0.029 0.063 0.024 0.024 0.215 (-20.66)
DNN_acg_5 0.027 0.062 0.025 0.024 0.209 (-22.88)
DNN_facg 0.026 0.063 0.024 0.024 0.212 (-21.77)
DNN_auto 0.036 0.079 0.031 0.028 0.265 (-2.21)

According to Table 6.9, DNN_a_5 and DNN_facg have equal capabilities in saving power, reduc-
ing the total dynamic power consumption by 21.77%, while DNN_cg provides a slightly lower power
savings of 21.03%. DNN_acg_5 is the most power-efficient design, with a power savings of 22.88%,
while DNN_acg_100 is the least advantageous (among the compared designs), with a power savings
of 20.66%.

Through the comparison among DNN_cg, DNN_acg_100 and DNN_facg, which all employ clock
domains with frequency 100MHz, it is possible to conclude that DNN_acg_100 saves less power than
DNN_cg since the former employs one more BUFGs, and also the power saved by switching off the
unused parts of the CDC FIFOs does not counterbalance the power overhead due to the additional
logic. Furthermore, although DNN_facg involves higher resource utilization than DNN_cg, DNN_facg
switches off the idle part of all pseudo-CDC FIFOs, and thus, is actually advantageous compared to
DNN_cg.

Through the comparison between DNN_acg_5 and DNN_a_5, both of which employ two clock
domains with frequencies of 100 MHz (Clock Domain 1) and 5 MHz (Clock Domain 2), it comes out
that the former design with clock gating saves more power compared to the latter. This is because
even though the actors in Clock Domain 2 are active for a relatively large portion of the time, they can
still be switched off by clock gating to save power. Furthermore, according to Table 6.5, the deinter-
leave actor, which belongs to Clock Domain 1, can be switched off for almost 90% of the total execu-
tion time. DNN_auto is the less power saving design, being able to save only 2.21% of total dynamic
power.

Table 6.10 summarizes the execution time, power, and energy consumption of the five designs.
All of the clock gated designs present only a 0.003% increase of the execution time, while the asyn-
chronous designs with slow frequency being 5 MHz have an increase of less than 4%. With reference
to Figure 6.13, the synchronization circuits of FIFO_r_out and FIFO_g_out introduce a delay in en-
abling S1. S1’s Zec and S2’s Zic are affected by the slower clock frequency, introducing a delay in
enabling the S2 and M&R, respectively. After this initial delay, M&R’s firing rate is close to the orig-
inal rate, allowing its computation to complete once every 48000ns compared to the original rate of
one completion every 48080ns. DNN_auto is the only low power implementation that does not in-
crease the execution time, but due to its poor power saving, is not able to save a significant quantity
of energy, only 2.21%.

6.5. CHAPTER REMARKS 109

Table 6.10: Execution time, power, and energy. ∆%s give the difference in total graph execu-
tion time and energy consumption compared to the baseline DNN design, respectively.

Execution Time [ns] (∆%) Power [W] Energy [µJ] (∆%)
DNN 2329165 0.271 631.20
DNN_a_5 2407300 (+3.355) 0.212 510.35 (-19.15)
DNN_cg 2329245 (+0.003) 0.214 498.46 (-21.03)
DNN_acg_100 2329245 (+0.003) 0.215 500.79 (-20.66)
DNN_acg_5 2408100 (+3.389) 0.209 503.29 (-20.26)
DNN_facg 2329245 (+0.003) 0.212 493.80 (-21.76)
DNN_auto 2329165 (+0.000) 0.265 617.23 (-2.21)

Due to the variations in execution time among the different designs, energy consumption is
a better metric than power consumption for assessing the efficiency of the designs. In particular,
DNN_acg_5 still saves more energy than DNN_a_5 (20.26% versus 19.15%), but it is not the most effi-
cient design in terms of energy consumption. Instead, DNN_cg, DNN_facg and DNN_acg_100, whose
execution times are increased of only 0.003%, have lower energy consumption.

These comparisons demonstrate complex relationships among costs and benefits associated with
different low power design techniques. The lightweight and modular orientation of the LIDE-V frame-
work allows designers to experiment efficiently and systematically with these relationships. Starting
from the same LWDF-V model, it is possible to implement different alternative designs by integrating
different DEM implementations or applying the clock gating strategy, without modifying the AIM and
AEM implementations. By carrying out experimentation in this way using the model-based frame-
work of LIDE-V, designers can gain quantitative insight into low power signal processing trade-offs in
the context of their specific applications and target platforms.

6.5 Chapter Remarks

This Chapter presented a compact set of retargetable APIs, characterized by a standard interface,
for lightweight dataflow (LWDF)-based design and implementation using hardware description lan-
guages (HDLs). The presented approach emphasizes the natural integration of power management
within the proposed APIs. Furthermore, this Chapter also presented LIDE-V, which is an extension
of the lightweight dataflow environment (LIDE) that provides support for Verilog-based implemen-
tation of the LWDF APIs, along with associated libraries of dataflow actor and edge implementations.
LIDE-V facilitates design of and experimentation with alternative implementations of a given LWDF-
V model to reveal important insights into system-level trade-offs, and perform multidimensional de-
sign optimization.

Analyzing the execution times of LIDE-V actors and their waiting times between firing completion
and starting of the next firing, it is possible to systematically identify actors that can benefit the most
from clock gating, as well as actors that can operate more efficiently with different clock frequencies.
The design techniques introduced in this paper have been demonstrated through an FPGA-based
accelerator for a deep neural network (DNN) that performs classification among different types of
vehicles. Even if it has been assessed targeting an FPGA, the methodology is target independent and it
could be applied also on ASIC technology. Interesting directions for future work include the extension
of MDC to automate LWDF-V models and methods introduced in this Chapter.

110 CHAPTER 6. CGR ON FPGA - THE LWDF METHODOLOGY

List of Publications Related to the Chapter

Journal papers

• Tiziana Fanni, Lin Li, Timo Viitanen et al., Hardware design methodology using lightweight
dataflow and its integration with low power techniques. Journal of Systems Architecture, Vol-
ume 78, 2017, Pages 15-29, ISSN 1383-7621.
DOI: https://doi.org/10.1016/j.sysarc.2017.06.003.

• Lin Li, Carlo Sau, Tiziana FANNI, Jingui Li, Timo Viitanen, Francois Christophec, Francesca
Palumbo, Luigi Raffo, Heikki Huttunen, Jarmo Takala, Shuvra S. Bhattacharyya, An Integrated
Hardware/Software Design Methodology for Signal Processing Systems. Journal of Systems Ar-
chitecture (2018). DOI: https://doi.org/10.1016/j.sysarc.2018.12.010

Conference papers

• Lin Li, Tiziana FANNI, Timo Viitanen et al., Low power design methodology for signal processing
systems using lightweight dataflow techniques. 2016 Conference on Design and Architectures
for Signal and Image Processing (DASIP), Rennes, 2016, pp. 82-89.
DOI: 10.1109/DASIP.2016.7853801

Chapter 7

Multi-Grain Reconfiguration on
FPGA - A New Level of Flexibility

Cyber-Physical Systems (CPS) operate in increasingly complex and demanding application scenar-
ios, while requiring also high adaptivity levels to satisfy several requirements that usually change over
time. The H2020 CERBERO European Project1 [69] aims at developing a continuous design environ-
ment for CPS, including modelling, deployment and verification (http://www.cerbero-h2020.eu/).
The efficient support for runtime reconfiguration, taking into account an uncertain environment with
changing requirements, is among the CERBERO expected outcomes.

Reconfigurable hardware architectures present high performance and flexibility, being an appeal-
ing solution to provide runtime adaptivity support necessary for CPS. The main two possible recon-
figurable approaches for runtime adaptivity in FPGA systems are the Dynamic Partial Reconfiguration
(DPR) and the Coarse-Grain Reconfiguration (CGR) (see Chapter 2.1). DPR allows to dynamically re-
configure part of an FPGA while the remaining logic (the static part) continues the execution. In the
CGR approach all the resources necessary to compute different functionalities are present at the same
time on the same datapath, and reconfiguration is enabled by multiplexing them in time. These two
approaches present different tradeoff between reconfiguration costs and flexibility. On one hand the
DPR architecture offer high flexibility, being able to completely change functionality, paying a cost
in terms of time and power consumption proportional to the size of reconfigurable partitions[65].
On the other hand, CGR approach offers fast reconfiguration, requiring only to write some config-
uration registers, but with limited flexibility (only the functionalities considered at design time are
available). The combination of these two hardware reconfiguration approaches brings together the
best of both, offering the possibility of achieving different tradeoffs between performance, flexibility
and energy consumption, able to offer energy saving in cases were the clock gating or asynchronous
and GALS-oriented design methodologies presented in Chapter 6 cannot be applied.

In CERBERO, two tools offer support for hardware reconfiguration. The ARTICo3 framework
provides adaptive and scalable hardware acceleration by exploiting a DPR-based multi-accelerators
scheme, based on reconfigurable slots [93]. The MDC design suite, on the other hand, delivers CGR
systems, and has been already proved to be a viable solution to enable adaptivity in CPS [97]. The
integration of ARTICo3 and MDC combines together the benefits from both DPR and CGR, leading
to the implementation of flexible systems that can adapt to the changing requirements of most CPS

1The Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceR-
tain hybRid envirOnments (CERBERO) is funded from the European Commission’s H2020 Programme under
grant agreement No 732105

111

112 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

scenarios. Figure 7.1 illustrates an example with four ARTICo3 slots filled in with MDC CGR acceler-
ators. If the battery availability decreases, it is possible to tune the working points within the slots by
reducing precision of CGR accelerators without the need of changing bitstreams. When the battery
level is not sufficient to keep the same performance, it is possible to turn off one or more ARTICo3, to
save battery by reducing for example the throughput.

Figure 7.1: Multi-Grain Reconfiguration - The best of DPR and CGR

This Chapter presents the integration of MDC and ARTICo3 into an automated framework for
the development and runtime management of multi-grain reconfigurable hardware systems. The
toolchain goes from high-level dataflow specifications to the FPGA implementation of multi-grain
adaptive systems, where different reconfigurable partitions of an FPGA are filled in with heteroge-
neous and irregular application-specific CGR datapaths. The work presented in this Chapter has

7.1. SOA ON MULTI-GRAIN RECONFIGURATION 113

been conducted during a six-month visiting period at the Universidad Politécnica de Madrid in a
collaboration among the Microelectronics and Bioengineering Lab (EOLAB) (University of Cagliari),
the Intelligent system DEsign and Applications (IDEA) Lab (University of Sassari) and the Centro de
Electrónica Industrial (Universidad Politécnica de Madrid), into the context of the CERBERO Project.

7.1 SOA on Multi-Grain Reconfiguration

Adaptivity and reconfiguration have been actively studied at different levels of granularity. Network-
on-Chip (NoC) technology has been widely exploited in multi-cores systems, to adapt the data traf-
fic to optimize computation and the workload. Several works proposed NoC-based architectures
[61, 121, 95, 131]. Li et al. [61] proposed RWiNoC, a reconfigurable wireless-NoC enabled many-
core platform to efficiently handle the dynamic workload of the microbial community simulation.
The RWiNoC deploys a set of network controllers and wireless interfaces to efficiently adapt to the
instantaneous traffic hotspots exhibited by the simulated environment. Xiao et al. [121] exploited
an architecture-independent profiling to represent the application as a dynamic application depen-
dency graph (DADG). They proposed a parallelization framework to optimize the scheduling and
mapping of the application to different cores in an NoC-based multi-core system for parallel execu-
tion, minimizing the inter-core traffic overhead according to the considered DADG. The research of
Salvador et al. [95] leverages on the Software Defined Network on Chip (SDNoC) approach, where the
control network and the data network are physically separated. Salvador et al. introduced a Software
Defined Network Controller (SDNC) capable of reconfiguring the infrastructure at the data forward-
ing and data processing levels of a SDNoC, allowing the execution of different algorithms at runtime.
Zhang et al. [131] proposed a a two-stage variation-aware task mapping scheme for multi-core NoCs
with redundant cores. At design time, the proposed algorithm is able to generate a set of candidate
task mapping solutions, which considers the process variations and covers the timing requirements
for different chips. Then at the runtime, the task scheduler would select a most effective one accord-
ing to the actual situation of the chip. All of the above described works exploit the reconfiguration
offered by NoC technology to optimally distribute data workload among multiple cores, according
to traffic data or cores workload, and none of them include hardware acceleration, which is usually
required when execution efficiency of multicores is not enough (e.g. in terms of time, power or area).
With respect to those works, the multi-grain reconfiguration presented in this chapter is meant to pro-
vide a multi-accelerators architecture, able to offer different tradeoff according to requirements (e.g,
performance versus energy consumption versus fault-tolerance). Reconfiguration is meant not only
inside the accelerator, to reconfigure the functionality (e.g., switching among different algorithms) or
working point of the algorithm (e.g., switching among different power profiles), but also at a coarser
level, to change the number of accelerators offering a flexible scalability for performance or fault-
tolerance purpose.

Different works presented multi-grain reconfigurable architectures with homogeneous structure
(e.g., [1, 109, 3, 33]). Amagasaki et al. [1] focused their studies on the development of a Variable Grain
Logic Cell (VGLC) architecture that adjusts computational granularity according to the application.
The basic logic element (BLE) of a VGLC is a hybrid cell (HC) that can be configured to work as ei-
ther a two input 1-bit full adder or a 2-input LUT according to the computation (the full adder and
the LUT share some common logic). Together with the HC, the BLE includes MUXes and EXORs.
Using a VGLC with four BLEs, the VGLC can implement both nibble bit ALU and 4-input random
logic, having five different operation modes. The HoneyComb architecture [3] is an adaptable dy-
namically reconfigurable cell array. Cells are composed of a routing unit and a functional module.
Routing units, responsible for connecting neighbours, compose the reconfigurable interconnection
network. The specification of every component within the array can be enabled, disabled, or modi-
fied using dynamic partial reconfiguration. Diniz et al. [33] proposed runtime accelerator binding for

114 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

tile-based architectures, adopting multi-grain reconfiguration within the tiles of tile-based processor.
Each tile consists of multiple CGR and FGR elements. The number of reconfigurable elements inside
each tile and in the whole architecture is a design time decision and the overall structure of the tile-
based system is fixed to a mesh-based one. Given an architectural configuration, a communication-
minimizing binding for datapaths of custom instructions is determined at runtime, employing dat-
apath reusing and inter-tile communication cost estimation. All the above-mentioned approaches
involve limited CGR arrays, where the processing elements are in most of the cases identical and not
directly derived from the applications to be accelerated. This lack of specialization may limit perfor-
mance, which is made even worse if fixed interconnection infrastructures are used. The design ap-
proach followed in this Chapter is application-to-hardware, offering a multi-grain architecture were
the CGR accelerators involved are application-based.

Some works focused on multi-grain architectures with heterogeneous structure [118, 109, 129,
64]. Morpheus [118] is a heterogeneous reconfigurable system on chip that integrates application-
oriented reconfigurable cores for implementing applications belonging to different domains on the
same hardware architecture, and a toolchain that eases the applications implementation through
a software oriented approach. MORPHEUS is built around three reconfigurable cores of different
granularity: (1) a data processing architecture based on a hierarchical array of CGR 16-bit comput-
ing elements communicating through a matrix of configurable data channels; (2) a reconfigurable
processor composed by a RISC processor coupled with a mid-grain reconfigurable datapath, that ex-
ploits instruction level parallelism for a wide range of applications; (3) an embedded FPGA, suitable
for FGR algorithm or arbitrary logic implementation. The interconnect system is a combination of
a Network-on-Chip and a conventional bus, able of supporting different interconnect streams de-
pending on each application requirements. The DeSyRe SoC [109] leverages on a multi-grain tex-
ture containing different sub-components surrounded by reconfigurable interconnects. The DeSyRe
framework relies on a flexible and dynamically reconfigurable hardware substrate to isolate, replace
and (when possible) correct design and manufacturing defects as well as other permanent faults due
to aging. It involves either CGR or FGR units that can be replaced when defective of for functional pur-
pose. In the CGR case the substitutable unit can be an entire sub-component (e.g. a microprocessors
pipeline stage), while in the latter case an FPGA logic cell. In particular CGR logic is not very defect
tolerant but its efficiency in terms of resources and power is excellent; on the contrary, FGR logic can
be strongly defect tolerant but it has relevant performance, power and cost overheads. The possibility
of implementing functionalities on both CGR and FGR logic enables the quick adaptation of the sys-
tem to different faulty situations or to better meet design constraints and application requirements,
such as throughput or load balancing. Repair-oriented adaptivity also provided with re-routing, re-
targeting functionalities on unused sub-component. Yuan at al. [129] presented a multi-grain FPGA
aimed for mobile computing and focused on two key steps towards higher efficiency: interconnection
network and CGR digital signal processors. The chip incorporates FGR logic blocks, medium-grain
digital signal processors along with reconfigurable block RAMs, and two CGR kernels. Liu et al. [64]
proposed a hybrid-grained reconfigurable architecture (HReA) to process 13-Dwarfs computation
[8] (a dwarf is an algorithmic method that captures a pattern of computation and communication).
HReA combines a 32-bit CGR datapath with a 1-bit FGR datapath to accommodate co-existence of
multiple computing granularities in 13-Dwarfs. The two datapaths with different granularities can
interact with each other in an arithmetic logic unit. Architectures described above offer higher flexi-
bility than homogeneous architecture but, as for homogeneous architecture, none of them follow an
application-to-hardware design for CGR kernels. Moreover, to the best of our knowledge, they do not
offer instruments to partition functionalities between FGR and CGR substrates.

This Chapter proposes a multi-grain architecture flexible enough to be suitable to support dif-
ferent adaptivity types: functional, non-functional and even repair-oriented ones. Moreover, with
respect to the above-mentioned works in literature, it is not simply meant to present a novel archi-
tecture, rather it aims at building proper hardware abstractions and at designing an infrastructure for

7.2. METHODOLOGY - MULTI-GRAIN ADAPTIVITY 115

the design of the different parts of the system, for their deployment and runtime management.

7.2 Methodology - Multi-Grain Adaptivity

As explained in Chapter 2.1, the FGR approach is highly flexible, offering the possibility of completely
change the system behaviour. This flexibility is not for free, changing the bitstream of the system
requires high time and power consumption. The Dynamic Partial Reconfiguration (DPR) mitigates
those limitations, having the ability of modifying blocks of logic by downloading partial bitstreams
while the remaining logic continues the execution. With DPR architectures the deployed circuit is al-
ways optimized in terms of resource usage and frequency, meaning that only the logic effectively re-
quired for the current computation is instantiated, but reconfiguration still requires a certain amount
of time and an associated power consumption that is proportional to the size of reconfigurable par-
titions[65]. In CGR computing cores the reconfiguration is virtual. They involve a fixed set of func-
tionalities and the resources belonging to all the possible configurations are always instantiated in
the substrate. Reconfiguration is guaranteed by the insertion of multiplexers that allow the core to
switch among functionalities. This brings high-performance and fast reconfiguration, at the cost of a
degradation in terms of maximum operating frequency, area utilization, and flexibility (being able to
compute only the functionalities the system has been designed for). The combination of these two
hardware reconfiguration approaches delivers the best of both and better cope with the challenging
CPS adaptivity needs and face the changing requirements typical of such kind of systems.

The ARTICo3 framework [93] provides adaptive and scalable hardware acceleration, actively al-
tering the computing substrate to change the available functionality using DPR. It can be exploited
to achieve user-driven runtime tradeoffs between performance, energy efficiency and fault tolerance
by means of accelerator replication. However, this flexibility is obtained paying the cost of DPR re-
configuration, that requires long time and high energy consumption. When frequent changes among
functionalities are required, this cost may easily become no longer affordable. On the other hand,
the MDC tool [97] delivers automatic generation and management of CGR computing cores based on
the dataflow model of computation. MDC accelerators offer high-speed low-energy reconfiguration,
enabled by simply writing some configuration registers. However the flexibility is limited to the avail-
able configurations (decided at design time) and the only way to provide parallelism is instantiating
multiple accelerators, thus paying the cost of the extra logic that is always present.

A combination of ARTICo3 and MDC flows delivers the best of both CGR and DPR approaches,
enabling adaptive multi-grain reconfigurable fabrics, which can meet the changing functional and
non-functional requirements of CPS designs. Figure 7.2 shows an overview of the MDC-ARTICo3 in-
tegrated toolchain: The hardware generation flow starts from high-level dataflow descriptions of the
configurations/behaviours to be implemented in the configurable logic, and the integrated toolchain
derives the corresponding CGR HDL computational kernel, properly wrapping it with the glue logic
necessary to serve as an ARTICo3 DPR reconfigurable partition. Both reconfiguration mechanisms are
transparently managed by the user code running in a host processor. With respect to the standalone
MDC and ARTICo3 flows, an adaptation step (Kernel Adapter) is needed to make the MDC-generated
kernels compliant with kernels expected by ARTICo3 Wrapper Automation step. The rest of this Sec-
tion gives a deeper description of ARTICo3 framework (Section 7.2.1); discusses the modifications
necessary in MDC 7.2.2; and present the Kernel Adapter (Section 7.2.3).

7.2.1 The ARTICo3 Framework

The use of SRAM-based FPGAs has merged the best of two worlds (i.e. hardware and software), en-
abling systems with software-like flexibility while keeping high-performance benefits of dedicated

116 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

C/C++/HDL

Kernels

Data�ow

Kernels

MDC

ARTICo3

HDL CGR Kernel

MDC Design Flow

ARTICo3 Design Flow

Kernel Adapter

MDC CGR IP

Adaptation Flow

HDL

Wrapper
Wrapper

Automation

System

Generation

bitstreams

C/C++

Application

SW Project

Generation

SW

Compilation

ARTICo3

Runtime API

Application

Executable

Integrated Design Flow

ARTICo3

Toolchain

Figure 7.2: Integrated Hardware Design Flow

hardware-based processing. The specific technology that supports this feature is the DPR. The ARTICo3

framework is composed of three main components:

1. a hardware architecture that exploits a DPR-enabled multi-accelerator computing scheme, in
which accelerators can occupy one or more slots;

2. a toolchain to automatically generate the DPR-enabled system starting from the user-defined
hardware accelerators and software applications;

3. a Runtime Library to transparently manage application execution and computation offloading
to the hardware accelerators.

The ARTICo3 architecture exploits DPR in high-performance embedded systems that use a processor-
coprocessor approach [93]. However, instead of relying only on one application-specific hardware
accelerator for each task, as it has been traditionally done, the computing fabric supports a multi-
accelerator based computing scheme. Similarly to embedded GPUs supporting general purpose com-
puting, the ARTICo3 computing fabric can operate in SIMD-like fashion (Single Instruction Multiple
Data), where different copies of a given hardware accelerator work on different sets of input data. In
addition, module replication using DPR can be also used in combination with a configurable dat-
apath to increase fault tolerance in the reconfigurable partitions, using two or even three copies of
an accelerator performing the same computation over the same input data where the results are
retrieved through a voting unit to mask possible errors. It is important to highlight that ARTICo3-
based computing requires previous hardware/software partitioning in order to identify computing-
intensive data-parallel tasks to be implemented as hardware accelerators.

ARTICo3-based hardware accelerators are connected to the communication infrastructure in the
system using a custom gateway, called Shuffler, which is able to dynamically alter its internal dat-
apath to meet specific requirements of computing performance or energy consumption and fault
tolerance. The gateway hides custom point-to-point interfaces (reconfigurable partition) behind a

7.2. METHODOLOGY - MULTI-GRAIN ADAPTIVITY 117

Flash

D
a
ta

 B
u

s
 (

D
M

A
-E

n
a

b
le

d
,
A

X
I4

-F
u

ll
)

Shuffler

Fault

Monitor

Performance

Monitor

In
te

rc
o

n
n

e
c

ti
o

n

R
e

d
u

c
ti

o
n

E
n

g
in

e

V
o

te
r

U
n

it

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Host

P
RAM

Control Bus (AXI4-Lite)

DRMRE Sched

SRAM-Based FPGA

Scrubber

Memory Bank #0A0 B0

Memory Bank #1A1 B1

Memory Bank #2n-1 nB2 -1
nA2 -1

Address

Translation

Logic
A

M
e

m
 P

o
rt

s
 P

E
s

General Purpose

Registers

Register #M-1

Register #0

Register #1

Register #2

Kernel

Custom Logic

Accelerator Wrapper

M

R
e

g
 P

o
rt

s
 P

E
s

A
R

T
IC

o
3
 P

2
P

 I
n

te
rc

o
n

n
e
c
ti

o
n

en

we

mode

addr

wdata

rdata

start

ready

Figure 7.3: Schematic view of the ARTICo3 Architecture, with a zoom on the ARTICo3 Wrap-
per (as presented in Rodríguez et al. [93]).

standard AXI4 interface [123] (static partition). Plug-and-play capabilities are enabled in user-defined
custom accelerators by instantiating them in wrapper modules embedding a local memory (divided
in banks) and a register bank (for configuration purposes). Figure 7.3 depicts a schematic view of the
ARTICo3 architecture with a zoom on the ARTICo3 slot wrapper.

The automated toolchain eases the design of ARTICo3-based system, making it accessible to em-
bedded system designer with little knowledge of DPR-based design. Figure 7.4 gives a schematic view
of the toolchain. On the left side it shows the hardware design flow, which encapsulates the user-
defined application specification into the standard wrapper with the glue logic to communicate with
the rest of the system. Generation of hardware accelerators is automatically carried out by ARTICo3

toolchain that builds the fabric starting from either C/C++ code (running automatically Vivado HLS)
or HDL application specifications. Then the toolchain generates the system, embedding the acceler-
ators into the rest of the hardware system and generating the required bitstreams.

On the software design flow, the toolchain generates the required software project starting from
the user-defined software application and combining it with the API to access the underlying ARTICo3

Runtime Library; the result is a customized Makefile to transparently build the application executable.
The Runtime Library manages applications execution and computation offloading to the hardware

118 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

HDL

Wrapper
Wrapper

Automation

System

Generation

bitstreams

C/C++

Application

SW Project

Generation

SW

Compilation

ARTICo3

Runtime API

Application

Executable

C/C++/HDL

Kernels

Figure 7.4: ARTICo3 toolchain.

accelerators. This runtime library, running under Linux and exploiting DMA for data transfers, pro-
vides support to establish runtime tradeoffs between computing performance and energy consump-
tion.

7.2.2 New Coprocessor Generator for MDC

The MDC Coprocessor Generator presented in Chapter 3, able of automatically providing a Xilinx
compliant runtime reconfigurable coprocessor, exploited in its first version the Xilinx ISE Design
Suite. Current version ARTICo3 toolchain works with Xilinx Vivado Design Suite. In order to inte-
grate MDC and ARTICo3 design flows, it has been necessary, as a first step, to completely modify the
MDC Coprocessor Generator to exploit Xilinx Vivado Design Suite to generate runtime reconfigurable
coprocessors.

Alignment to Xilinx Vivado Design Suite

Figure 7.5 illustrates the new MDC Coprocessor Generator flow. MDC generates the multi-dataflow
(Multi-flow IR) merging the input dataflow specifications as described in Section 3.1 (1), then starting
from the generated multi-dataflow MDC generates the corresponding CGR core (2). In parallel, start-
ing from the composed multi-dataflow, MDC generates the files and the necessary logic to embed
the computing core into a configurable Template Interface Layer (TIL) (3). Finally, to easy deploy and
use the coprocessor, MDC provides the Xilinx Vivado scripts to automatically embed the logic into
a processor-coprocessor architecture and the software drivers to ease its use (4). Following Sections
give details on the TILs composition that, as in the Coprocessor Generator presented in Chapter 3, can
be for memory-mapped or stream coupling, on the software drivers generated accordingly, and on
the generated scripts for Xilinx Vivado.

Template Interface Layer: with respect to the TILs described in Chapter 3, the TILs generated by
the new Coprocessor Generator require a totally different interface, since they exploit the AXI com-
munication protocol [123]. Figure 7.6 shows the architecture of the memory-mapped TIL (mm-TIL)
whose main blocks are: the configuration registers bank, and one local memory, one front-end and
one back-end for each I/O port. The local memory and the configuration registers bank work as
described in Chapter 3.4. However, in this new TIL the configuration registers are written through
the AXI4-Lite (AXI_lite in Figure 7.6) interface which is generally used for simple, low-throughput

7.2. METHODOLOGY - MULTI-GRAIN ADAPTIVITY 119

IRs

Multi-flow

IR

HDL components

Library

protocol

CGR

HDL

Front-End
(Merging Process)

Back-End
(Platform Composer)

HDL C

TIL

Generation

Driver

Specification

Coprocessor

Generator

IP

Script

TOP

Script

1

2

4

3

Figure 7.5: Design flow overview.

Configuration registers

local_memory_0A0 B0

local_memory_1A1 B1

local_memory_2n-1 nB2 -1
nA2 -1

Local Memory

S
y

s
te

m
 B

u
s

General Purpose

Registers

reg_slv(M-1)

reg_slv0

reg_slv1

reg_slv2

MDC

CGR accelerator

Front-end

Back-end

address_mem1

address_mem2n-1

configurations

out_mem1

in_mem2n-1

ID

Memory-mapped Template interface Layer

A
X

I_
ip

if

A
X

I_
li
te

reg_slv0

reg_slv1

reg_slv1

read_mem1

wr_mem2n-1

Figure 7.6: Architecture of the memory-mapped Template Interface Layer (mm-TIL).

memory-mapped communication, while memory banks are written through the AXI4-full (AXI_ipif
in Figure 7.6) generally used for high-performance memory-mapped requirements.

Figure 7.7 depicts the stream-based TIL (s-TIL) architecture. With respect to Chapter 3, this TIL
has been modified to leverage on a the AXI4-Stream communication protocol, generally used for
high-speed streaming data. The configuration registers bank, as in the mm-TIL, saves the copro-
cessor configuration. In the s-TIL the front-end and back-end are not present anymore, however it is
necessary a module to generate the last signal.

Driver Specification: the different organization of data, made necessary to modify the generation of
the software drivers. At high level, they offer an interface that masks the system configuration com-
plexity, providing a C function for each configuration of the CGR coprocessor. Listing 7.1 shows the
interface driver for both memory-mapped and stream-based coprocessor drivers, for one configura-

120 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

Configuration registers

S
y

s
te

m
 B

u
s

slv_reg0

slv_reg1

slv_reg2

MDC

CGR accelerator

Counterlast

configuration

read data

write data

ID

Stream-based Template interface Layer

S
la

v
e

A
X

I
s

A
X

I
_

li
te

M
a
s
te

r

A
X

I
s

Figure 7.7: Architecture of the stream-based Template Interface Layer (s-TIL).

tion of a CGR coprocessor.
data_<port_name> and size_<port_name> are respectively input (or output) port and the num-

ber of data related to that port, in the considered example there are three ports: in_size, in_pel and
out_pel.

Listing 7.1: Coprocessor drivers interface.

// ///////////////////////////////
//Memory−Mapped Interface Driver
i n t mm_accelerator_roberts (
// port out_pel
i n t size_out_pel , i n t * data_out_pel ,
// port in_pel
i n t size_in_pel , i n t * data_in_pel ,
// port in_size
i n t s ize_in_size , i n t * data_in_size
)
. . .

// ///////////////////////////////
// Stream−Based Interface Driver
i n t s_accelerator_roberts (
// port out_pel
i n t size_out_pel , i n t * data_out_pel ,
// port in_pel
i n t size_in_pel , i n t * data_in_pel ,
// port in_size
i n t s ize_in_size , i n t * data_in_size
)
. . .

It is clear as the interfaces for the two cases, memory-mapped and stream, are identical. This allows
software designer with little knowledge of hardware design to easily use the generated processor-
coprocessor systems, without considering the underlying processor-coprocessor coupling. Then the
body of the function manages communication between the host processor and the coprocessor (see
Listing 7.2). For each I/O port of the reconfigurable computing core, a configuration word is writ-
ten into the proper configuration register (*(config + 1) = size_<port_name>). Then, the indi-
cated amount of data (size_<port_name>) for each input port involved in the current computation
is sent to the corresponding local memory or to the input FIFO according to the chosen coupling —

7.2. METHODOLOGY - MULTI-GRAIN ADAPTIVITY 121

memory-mapped or stream-based (see lines under //send data port in_size comment). At last,
as the processor can read back the results into the processor from the output ports (see lines under
//receive data port out_pel comment). In the case of memory-mapped coupling, the proces-
sor need to monitor through polling a configuration register where a done data is stored at the end of
the computation. In the case of stream coupling a done signal is not necessary, since the processor
only needs to evaluate the state of the output FIFOs.

Listing 7.2: Coprocessor drivers body.

// ///////////////////////////
// Memory−Mapped Body Driver
. . .
// configure I /O

* (config + 1) = s i z e _ i n _ s i z e ;
. . .
// send data port in_size

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x04 > >2)) = 0x00000002 ; // v e r i f y i d l e

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x18 > >2)) = (i n t) data_in_size ; // src

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x20 > >2)) =
XPAR_MM_ACCELERATOR_0_MEM_BASEADDR + MM_ACCELERATOR_MEM_1_OFFSET; // dst

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x28 > >2)) = s i z e _ i n _ s i z e * 4 ; // s i z e [B]
while ((* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x04 > >2)) & 0x2) != 0x2) ;
. . .

// receive data port out_pel

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x04 > >2)) = 0x00000002 ; // v e r i f y i d l e

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x18 > >2)) =
XPAR_MM_ACCELERATOR_0_MEM_BASEADDR + MM_ACCELERATOR_MEM_3_OFFSET; // src

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x20 > >2)) = (i n t) data_out_pel ; // dst

* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x28 > >2)) = size_out_pel * 4 ; // s i z e [B]
while ((* ((v o l a t i l e i n t *) XPAR_AXI_CDMA_0_BASEADDR + (0 x04 > >2)) & 0x2) != 0x2) ;
. . .

// //////////////////////////
// Stream−Based Body Driver
. . .
// configure I /O

* ((i n t *) (XPAR_S_ACCELERATOR_0_CFG_BASEADDR + 1 * 4)) = size_out_pel ;

// s t a r t execution

* (config) = 0x2000001 ;

// send data port in_size

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x00 > >2)) = 0x00000001 ; // s t a r t

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x04 > >2)) = 0x00000000 ; // r eset i d l e

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x18 > >2)) = (i n t) data_in_size ; // src

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x28 > >2)) = s i z e _ i n _ s i z e * 4 ; // s i z e [B]
while (((* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x04 > >2))) & 0x2) != 0x2) ;
. . .

// receive data port out_pel

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x30 > >2)) = 0x00000001 ; // s t a r t

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x34 > >2)) = 0x00000000 ; // r eset i d l e

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x48 > >2)) = (i n t) data_out_pel ; // dst

* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x58 > >2)) = size_out_pel * 4 ; // s i z e [B]
while (((* ((v o l a t i l e i n t *) XPAR_AXI_DMA_0_BASEADDR + (0 x34 > >2))) & 0x2) != 0x2) ;

122 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

. . .

Coprocessor Deployment: In order to integrate and deploy the peripheral as a standard Xilinx IP,
MDC provides an automatic script for Xilinx Vivado Design Suite. The inputs for the script are the
HDL description of generated TIL, including TIL submodules (config registers, local memories, front
end, ...) and the CGR core modules (add_files $hdl_files_path), any required HDL library (set_property
library caph) and the generated drivers (ipx::add_file_group -type software_driver); whereas,
the output is the resulting Xilinx ready-to-use IP comprehensive of software drivers.

Listing 7.3: IP Generation Script.

###########################
IP Sett ings
###########################

. . .
FPGA device
set partname " xc7z020clg400−1 "
set boardpart " digi lentinc.com:arty−z7−20:part0:1.0 "

Design name
set ip_name "mm_accelerator"
set design $ip_name

###########################
Create IP
###########################

create_project −force $design $ipdir −part $partname
set_property board_part $boardpart [current_project]
set_property target_language Veri log [current_project]

add_f i les $hdl_f i les_path
import_f i les −force

set f i l e s [glob − t a i l s −directory $ipdir / . . . / l i b /caph/ *]
foreach f $ f i l e s {
set name $f
set_property l i b r a r y caph [g e t _ f i l e s $ipdir / . . . / l i b /caph/ $f]
}

set_property top $ip_name [c u r r e n t _ f i l e s e t]

ipx: :package_project −root_dir $ipdir −vendor user.org \
− l ibrary user −taxonomy AXI_Peripheral

ipx::add_address_block s00_axi_reg \
[ipx::get_memory_maps s00_axi −of_objects [ipx : :current_core]]
ipx::add_address_block s01_axi_mem\
[ipx::get_memory_maps s01_axi −of_objects [ipx : :current_core]]
. . .

f i l e copy −force $iproot / dri vers $ipdir
set d r i v e r s _ d i r dr ivers
ipx: :add_f i le_group −type software_driver { } [ipx : :current_core]
. . .

7.2. METHODOLOGY - MULTI-GRAIN ADAPTIVITY 123

set_property core_revision 3 [ipx: :cu rrent_core]
i p x : : c r e a t e _ x g u i _ f i l e s [ipx : :cu rrent_core]
ipx::update_checksums [ipx: :current_core]
ipx: :save_core [ipx: :current_core]
set_property ip_repo_paths $ipdir [current_project]
update_ip_catalog
close_project

MDC provides another script to instantiate the generated IP into a processor-coprocessor system,
within the Vivado environment. According to the user choice, the host processor can be a hard-core
(ARM processor) or a soft-core (Microblaze); in the considered example an ARM processor is instan-
tiated (create_bd_cell -type ip -vlnv ... processing_system7_0). The communication
between processor and coprocessor can be managed either with or without a Direct Memory Access
(DMA) module; in the considered example for a memory-mapped communication through DMA,
the AXI Central Direct Memory Access (CDMA) module is instantiated (create_bd_cell -type ip
-vlnv ... axi_cdma_0).

Listing 7.4: Top Design Generation Script

###########################
Sett ings
###########################

. . .
FPGA device
set partname " xc7z020clg400−1 "
set boardpart " digi lentinc.com:arty−z7−20:part0:1.0 "

Design name
set design system
set bd_design " design_1 "

###########################
Create Project
###########################
create_project −force $design $projdir −part $partname
set_property board_part $boardpart [current_project]
set_property target_language Veri log [current_project]
set_property ip_repo_paths $ipdir [current_project]
update_ip_catalog −rebuild −scan_changes
###########################
create block design
create_bd_design $bd_design

Zynq PS
create_bd_cell −type ip \
−vlnv xi l inx.com:ip:processing_system7:5.5 processing_system7_0
. . .

accelerator IP
create_bd_cell −type ip −vlnv user.org:user:$ip_name:$ip_version $ip_name_0

apply_bd_automation −rule xi l inx.com:bd_rule :axi4 \
−config { . . . } [get_bd_intf_pins $ip_name_0/ s00_axi]

CDMA
create_bd_cell −type ip −vlnv xi l inx.com:ip:axi_cdma:4.1 axi_cdma_0

124 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

set_property −dict [l i s t CONFIG.C_INCLUDE_SG { 0 }] [get_bd_cells axi_cdma_0]

apply_bd_automation −rule xi l inx.com:bd_rule :axi4 \
−config { . . . } [get_bd_intf_pins axi_cdma_0/S_AXI_LITE]
. . .

make_wrapper − f i l e s [g e t _ f i l e s $projdir / . . . / design_1.bd] −top
add_f i les −norecurse $projdir / . . . / hdl / design_1_wrapper.v
. . .

Modification in MDC for ARTICo3 Compliant Operation

Given the new MDC Comprocessor Generator, only little changes in the mm-TIL have been necessary
to make the operation of the generated MDC CGR core compliant to ARTICo3 slots. Indeed the front-
end and back-end modules of the mm-TIL have been modified to consider the same control signal
used in ARTICo3 slots, with the same synchronization. In particular, previous version of the mm-TIL
needed an enable signal active for the duration of the computation, now it considers a start signal
that is high only when the computation has to start.

7.2.3 Kernel Adapter

Comparing the ARTICo3 slot wrapper shown in the bottom part of Figure 7.3 with the MDC mm-
TIL shown in Figure 7.6, it is evident as common elements are present, indeed both of them embed
banks of memories and registers. In the case of the standard ARTICo3 kernel (ARTICo3 slot) the logic is
directly interfaced with banks of configuration registers and local memories. In the case of MDC mm-
TIL, the multi-functional kernel (MDC CGR accelerator) is interfaced with memories and registers
through the front-end and back-end logic. Thus, if the logic generated by MDC is embedded in a
kernel module with a ARTICo3-compliant interface, as expected by ARTICo3 design flow, it is possible
to feed ARTICo3 slots with MDC CGR accelerators. The adaptation kernel script is depicted in Listing
D.1, in Appendix D.

S
y
s
te

m
 B

u
s

local_memory_1

local_memory_2

A0

A1

B0

B1

slv_reg0

slv_reg1

slv_reg2

MDC

CGR accelerator

Front-end

Back-end

address_mem1

address_mem2

out_mem1

in_mem2

ID

A
X

I
 f

u
ll

A
X

i
li

te

rden_mem1

slv_reg1

slv_reg0

slv_reg2

wr_mem2

K
e
r
n

e
l
A

d
a
p

te
r

MDC

CGR accelerator

Front-end

Back-end

address_mem1

address_mem2

out_mem1

in_mem2

ID

rden_mem1

slv_reg1

slv_reg0

slv_reg2

wr_mem2

reg_0

reg_1

reg_2

bram_0_addr

bram_0_en

bram_0_dout

bram_1_addr

bram_1_we

bram_1_din

ARTICo3 Compliant CGR HDL Kernel

Figure 7.8: Adaptation Flow from an MDC- to a ARTICo3-compliant CGR IP.

7.3. ASSESSMENT 125

Figure 7.8 shows an example where the MDC-generated mm-TIL, with one input port and one
output port, requiring three configuration registers and two memory blocks, is modified through the
Adaptation Flow. The Adaptation Flow parses the mm-TIL to remove all interfacing logic (AXI-lite
interface, AXI-full interface, local memories and configuration register bank). The remaining logic is
then instantiated in an HDL wrapper whose external interface is the one required normally in a stan-
dard ARTICo3 kernel specification. During this step, the Adaptation Flow takes also care of properly
connecting the ports of the new HDL wrapper to the internal CGR-kernel logic.

7.2.4 Step-by-Step Example

Figure 7.9 illustrates the whole MDC-ARTICo3 design flow, through a Steb-by-Step example that con-
siders three input dataflow networks. (1) Firstly, MDC merges the user-defined dataflow specifica-
tions and generates the CGR computing core as described in Chapter 3.1, that is embedded in the
mm-TIL described in Section 7.2.2. (2) Then, the generated mm-TIL is modified by the Kernel Adapter
which delivers an HDL ARTICo3-compliant CGR kernel. (3) Finally, the ARTICo3 framework processes
the input HDL CGR kernel to implement the whole reconfigurable processing system (see Section
7.2.1). (4) The bottom part of Figure 7.9 depicts an example of multi-grain reconfiguration. In par-
ticular, in this example the CGR approach offered by MDC is exploited for low-power fast-switching
of functionality, while the DPR supported by ARTICo3 is exploited for changing the number of slots
working in parallel to increase the throughput.

7.3 Assessment

The multi-grain reconfiguration approach has been evaluated through a proof of concept edge de-
tection application involving two different algorithms: Sobel and Roberts. This use-case enables the
possibility of evaluating the advanced adaptivity features regarding functional (changing the edge
detection algorithm) and non-functional (tradeoff in terms of execution time and energy) require-
ments, acting as a demonstrative example of CPS behaviour. Assessment results have been collected
targeting a custom Zynq-7000 board, based on the XC7Z020CLG484-1 device, with integrated power
monitoring circuitry.

7.3.1 Test Case: Edge Detection - Sobel and Roberts algo-
rithms

Edge detection algorithms [30] estimate the magnitude and the orientation of edges on a image and
are widely used in several application fields such as image segmentation, image compression, com-
puter vision and security. In a digital image, the boundary of an object is a difference of its pixels
intensity levels with respect to the surrounding pixels. Popular methods for edge detection are the
search-based methods. Detection in search-based methods consists of two steps: (1) computing a
measure of edge strength, usually involving discrete first-order differentiation operators such as the
gradient magnitude; (2) searching for local directional maxima of the gradient magnitude, usually
adopting the gradient direction. To assess the proposed architecture, Sobel and Roberts detectors
have been used. These operators are applied to evaluate the gradient image G = k ∗ A, given by the
convolution of the kernel k with the source image A (k is 3x3 for Sobel and 2x2 for Roberts). The G
function, corresponding to the magnitude of the edge, is calculated as

G =
√

G2
x +G2

y

126 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

Flash

D
a

ta
 B

u
s

 (
D

M
A

-E
n

a
b

le
d

,
A

X
I4

-F
u

ll
)

Shuffler

Fault

Monitor

Performance

Monitor

In
te

rc
o

n
n

e
c
ti

o
n

R
e
d

u
c
ti

o
n

E
n

g
in

e

V
o

te
r

U
n

it

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Host

�P
RAM

Control Bus (AXI4-Lite)

DRMRE Sched

SRAM-Based FPGA

Scrubber

in1 out1

A B C
in2 out1

E CD

in1

in3

out1

G C
A

F

Kernel Adapter

MDC Coprocessor Generator

MDC-generated Xilinx IP

Configuration registers

local_memory_0A0 B0

local_memory_1A1 B1

local_memory_2n-1 nB2 -1
nA2 -1

Local Memory

S
y
s
te

m
 B

u
s

General Purpose

Registers

reg_slv(M-1)

reg_slv0

reg_slv1

reg_slv2

MDC

CGR accelerator

Front-end

Back-end

address_mem1

address_mem2n-1

configurations

out_mem1

in_mem2n-1

ID

A
X

I
_

ip
if

A
X

I
_

li
te

reg_slv0

reg_slv1

reg_slv1

read_mem1

wr_mem2n-1

in3

A
in1

in2

out1

SB_0 SB_1

SB_2

LUT

B

CG

D E

F

Dataflow

Kernels

MDC

MDC CGR IP

ARTICo3

HDL CGR Kernel

Kernel Adapter

MDC CGR IP

M
e

m
 P

o
rt

s

R
e

g
 P

o
rt

s

MDC

CGR accelerator

Front-end

Back-end

read address

write address

configuration

read data

write data

ID

ARTICo3 Flow

C/C++/HDL

Kernels

ARTICo3

HDL CGR Kernel

bitstreams

Application

Executable

HDL

Wrapper
Wrapper

Automation

System

Generation

SW Project

Generation

SW

Compilation

ARTICo3

Runtime API

ARTICo3

Toolchain

Memory Bank #0A0 B0

Memory Bank #1A1 B1

Memory Bank #2n-1 nB2 -1
nA2 -1

Address

Translation

Logic
A

M
e
m

 P
o

rt
s

 P
E

s

General Purpose

Registers

Register #M-1

Register #0

Register #1

Register #2

Kernel

Custom Logic

Accelerator Wrapper

M

R
e
g

 P
o

rt
s
 P

E
s

A
R

T
IC

o
3
 P

2
P

 I
n

te
rc

o
n

n
e
c
ti

o
n

en

we

mode

addr

wdata

rdata

start

ready M
e
m

 P
o

rt
s

R

e
g

 P
o

rt
s

MDC

CGR accelerator

Front-end

Back-end

read address

write address

configuration

read data

write data

ID

ARTICo3 Compliant

CGR Kernel

MDC-based CGR Accelerator in ARTICo3 slot

in3

A
in1

in2

out1

SB_0 SB_1

SB_2

LUT

B

CG

D E

F

in3

A
in1

in2

out1

SB_0 SB_1

SB_2

LUT

B

CG

D E

F
in3

A
in1

in2

out1

SB_0 SB_1

SB_2

LUT

B

CG

D E

F

CGR - Switching Configuration DPR - Parallelism

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

Registers

Local

Memory

Accelerator

Logic

1

2

3

4

C/C++

Application

Figure 7.9: Integrated Design Flow - Step-by-step Example

7.3. ASSESSMENT 127

where Gx and Gy are obtained as:

Gx =
1 0 −1

2 0 −2
1 0 −1

∗ A , Gy =
 1 2 1

0 0 0
−1 −2 −1

∗ A

for the Sobel case [133], and as:

Gx =
[

1 0
0 −1

]
∗ A , Gy =

[
0 1
−1 0

]
∗ A

for the Roberts case [92]. The magnitude of the edge, G , can be approximated as (|Gx | +
∣∣Gy

∣∣)/2n ,
where n is a scaling factor. As soon as the magnitude is evaluated, a thresholding stage (threshold
value depends on the specific context of application) compares the magnitude with a desired value,
to determine whether the edge is present or not.

Roberts edge detector is the simplest gradient-based edge detector, due to the reduced convo-
lution kernel matrix. It requires a bit less computation, resulting in limited resource footprint when
implemented in hardware, with respect to Sobel [22]. However, this simplicity is paid in terms of de-
tection effectiveness and noise robustness: Roberts is able to detect a smaller set of edges [15], and it
is more sensitive to noise than Sobel [106]. Due to these characteristics, implementing both Sobel and
Roberts edge detectors on the same device can be useful to achieve non-functional adaptivity. Sobel
and Roberts kernels may correspond to different working points, each featuring a different tradeoff in
terms of performance and detection power: Roberts constitutes the fastest, but less accurate detec-
tion; while Sobel pushes detection quality at the price of a slower execution. Such kind of changing
behaviours could be suitable for CPS contexts where the system has to monitor the environment, the
user demand and its internal state to promptly adapt the exhibited behaviour. For example, if the
battery level of the system is lower than a certain threshold, it can switch from a more consuming
detector, Sobel, to a less power-hungry one, Roberts. In the same way, if the incoming images are
not so noisy, a low quality detector, Roberts, can be sufficient and more energy efficient; while, if the
image source is noisy, Sobel, is preferable. Note that, such approach can also be exploited to achieve
functional adaptation when Sobel and Roberts have to be adopted in the same application, such as
for airport runway tracking on infra-red images [126].

7.3.2 Designs Under Tests

In the presented design flow, the applications to be implemented have to be modelled as dataflow
graphs. In the adopted use-case, Sobel and Roberts have been described in CAPH dataflow lan-
guage [99]. Figure 7.10 depicts simplified graphs of the dataflows representing Sobel and Roberts
kernels, according to the algorithm described in Section 7.3.1. To compute convolution between the
mask and the input image, the convolution actors need to receive the proper numbers of data. For
this reason line buffer actors are adopted to store previous rows of the image, while delay actors are in
charge of memorizing one previous pixel within a row. In Figure 7.10 the position within the edge de-
tection kernel matrix related to each pixel coming from the input (in pel), a line buffer or a delay actor
is highlighted (e.g. the pixel coming from line buffer in Roberts, that correspond to line 1 column 0
of the Roberts kernel matrices, will be multiplied by -1 in roberts y convolution actor). As expected
by formula (|Gx |+

∣∣Gy
∣∣)/2n , actor abs sum finalizes the magnitude computation step, by summing up

the absolute values of the horizontal and vertical gradients and by right-shifting the result for a given
scaling factor n (in this case no scaling is performed, n = 0). Lastly, the thresholding actor thr sets
to the maximum pixel value (255) all the magnitudes that are above a certain threshold (it has been
fixed to 80), while setting to 0 the others.

128 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

line
buffer

delay delay

delay delay

delay

sobel x sobel y

line
buffer

delay

in
pel delay

delay

roberts
x

roberts
y

abs
sum

in
pel

line
buffer

2,2 2,1 2,0

1,2

0,2

1,1 1,0

0,1 0,0

1,1 1,0

0,1 0,0

-1 0
-0 -1

-0 1
-1 0

abs
sum

thr

out
pel

thr

out
pel

Sobel

Roberts

1 0 -1
2 0 -2
1 0 -1

-1 2 1
-0 0 0
-1 -2 -1

Figure 7.10: Simplified dataflow graphs implementing the Sobel and the Roberts edge detec-
tion computational kernels.

From these two dataflow models, three different computing cores can be derived: the Sobel ker-
nel, the Roberts kernel and the reconfigurable kernel. The Sobel and Roberts kernels are directly de-
rived from their dataflow models through a 1:1 mapping of the actor to hardware modules. The recon-
figurable kernel is the result of Sobel and Roberts merging. In this reconfigurable kernel the actors in
common between the two Sobel and Roberts functionalities are related to the magnitude computa-
tion step (line buffer, delay and abs sum) and to the thresholding step (thr). The convolutional actors,
that are algorithm-specific, do not show any overlapping, so they are not shareable. Summarizing, the
standalone Sobel and Roberts kernels involve respectively 14 and 7 actors, while reconfigurable kernel
has 14 SBoxes (for detail on the SBoxes, please see Chapter 3) and 18 overall actors, among which 5
are shared between the Sobel and Roberts datapaths, and 13 not. On the bases of the described Sobel,
Roberts and reconfigurable kernels, three different designs are considered:

• fine-grain - a standard DPR-based ARTICo3 architecture where Sobel and Roberts kernels can
be freely instantiated within a number of slots going from 1 to 4.

• coarse-grain - an MDC-compliant reconfigurable accelerator built around the reconfigurable
computational kernel, able to switch between Sobel and Roberts algorithms. Contrarily to
ARTICo3, MDC cannot tune the number of accelerators to be used in parallel at runtime, so
that a worst case configuration with 4 accelerators in parallel is adopted.

• multi-grain - following the approach proposed in this work, this implementation is composed
of heterogeneous MDC-generated reconfigurable kernels instantiated within the slots of the
ARTICo3 architecture. The number of slots ranges from 1 to 4.

7.3. ASSESSMENT 129

Please, note that designs are labelled according to the granularity level of the reconfiguration be-
hind them (e.g. fine is used when single bit connections are changed, that is when DPR is enabled).
Nevertheless, both ARTICo3 and MDC architectures act on coarse areas of the FPGA. ARTICo3 slots,
from a chip occupation perspective, are larger than MDC CGR computing core, but they are reconfig-
ured at bit level using DPR, which is why the standalone ARTICo3 designs are labelled as fine-grain.

7.3.3 Experimental Results

To evaluate the proposed approach, experimental results obtained with the considered designs under
test are hereafter discussed. The target device for all the reported data is the Xilinx XC7Z020CLG484-1
available on the adopted custom Zynq-7000 board, and the operating frequency has been set to 100
MHz. Note that energy numbers come from real on-board power measurements during execution.
For the evaluation of the designs, several metrics will be taken into account:

• LU T , F F - resource occupancy of the design (for all its possible configurations) within the
targeted device;

• f ps - frames per second of the design (for all its possible configurations) while processing
images;

• E - energy consumption of the design (for all its possible configurations) while processing im-
ages;

• Reconfiguration overhead, evaluated in terms of:

– B - memory footprint of the reconfiguration data;

– T - time required for the reconfiguration phase;

– E - energy consumption during the reconfiguration phase;

– F - penalty on the achievable maximum operating frequency when reconfiguration is
provided;

Processing Evaluation

Table 7.1 and Table 7.2 depict hardware processing results for each possible configuration of the dif-
ferent designs: fine-grain, coarse-grain and multi-grain. For each design several configurations, la-
belled as Nkn, are considered, where N is the number of parallel accelerators, k is the kind of of
computational kernel of each accelerator (f for the standalone computing cores (fixed) or r for the
reconfigurable computing core), n refers to the name of the implemented functionality (s for Sobel
and r for Roberts). For instance, 4fs is the fixed, meant as not reconfigurable, computing Sobel with 4
accelerators in parallel, while 2rr is the reconfigurable accelerator, computing Roberts functionality,
with 2 accelerators in parallel.

Table 7.1 depicts processing time, in frames per second (fps), for different image sizes and for dif-
ferent degrees of parallelism. With respect to the parallelism, both fine-grain and multi-grain designs
show the same trend, increasing the processed fps up to 40% going from 1 to 4 parallel computing
cores. It does not seem to be present an appreciable difference between Sobel and Roberts kernel
execution in terms of fps. The size of the input images has also an impact on the results. The fps
decreases as the image size increases, being lower than 1 for high resolution images (2048x2048 size).
However, we can see as, for all of them, the degree of parallelism keeps the same fps increasing trend.
This same trend can be seen when analysing energy consumption results. Figure 7.11 illustrates the
trends considering the coarse-grain reconfigurable Sobel, for different image sizes, when the number
of parallel cores changes.

130 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

Table 7.1: Experimental timing results, in frames per second, for all the configurations of the
considered designs. Data in brackets show the percentage variation of the configurations
with respect to the case where only one slot is exploited.

config
fps (for different image sizes)

256x256 512x512 1024x1024 2048x2048

fine-grain
1fs 26.95 6.61 1.65 0.42
2fs 33.35 (+24%) 8.31 (+26%) 2.11 (+28%) 0.53 (+25%)
3fs 34.57 (+28%) 9.01 (+36%) 2.26 (+37%) 0.57 (+34%)
4fs 36.96 (+37%) 9.50 (+44%) 2.39 (+44%) 0.59 (+40%)
1fr 26.91 6.64 1.70 0.42
2fr 33.48 (+24%) 8.43 (+27%) 2.12 (+25%) 0.53 (+25%)
3fr 34.58 (+29%) 9.00 (+35%) 2.28 (+34%) 0.57 (+35%)
4fr 35.98 (+34%) 9.42 (+42%) 2.37 (+40%) 0.60 (+42%)

coarse-grain
4rs 36.90 9.52 2.39 0.60
4rr 36.96 9.52 2.40 0.60

multi-grain
1rs 26.85 6.74 1.69 0.42
2rs 33.19 (+24%) 8.38 (+24%) 2.12 (+25%) 0.53 (+25%)
3rs 34.45 (+28%) 8.96 (+33%) 2.23 (+32%) 0.57 (+35%)
4rs 36.90 (+37%) 9.52 (+41%) 2.39 (+41%) 0.60 (+42%)
1rr 26.90 6.62 1.70 0.42
2rr 33.06 (+23%) 8.42 (+27%) 2.12 (+24%) 0.53 (+25%)
3rr 34.37 (+28%) 8.10 (+36%) 2.28 (+34%) 0.57 (+34%)
4rr 36.96 (+37%) 9.52 (+44%) 2.40 (+41%) 0.60 (+42%)

It is evident that the performance does not increase linearly, as it would be expected. The main
reason behind this is the communication overhead introduced by the ARTICo3 architecture, and its
predominance with respect to the real computing time (less than 10% of the overall time per block).
To comply with the required data-parallel execution model, the image processing application re-
quires partitioning the total workload in a given set of data-independent sub-workloads that are exe-
cuted in rounds. The size of the local workload has been fixed to process 32x32 image blocks, and the
Runtime Library dispatches processing rounds in as many slots as available. Adopting more complex
computational kernels or over-clocking data transfers could highlight differences between the two
kernels and executions with different number of slots.

Table 7.2 shows the measured energy consumption for all configurations. As occurs for perfor-
mance, the energy efficiency increases when using more accelerators (power consumption increas-
ing is less significant than the saving in terms of execution time), reaching reduction values of up to
27%. Comparing the fine-grain and the multi-grain approaches, it is possible to see that energy con-
sumption is similar. This means that, in an application scenario in which both edge detectors need
to be present, the multi-grain accelerator provides a solution that is more energy efficient, since both
datapaths are already available in the accelerator core logic (otherwise, two fine-grain accelerators
would need to be present in the FPGA, or switched using DPR, which also adds an energy overhead

7.3. ASSESSMENT 131

Figure 7.11

as discussed in the following section). Note that, as for the fps metric, in terms of energy there is not
a real difference between Sobel and Roberts kernel execution, meaning that CGR, in this very simple
case, is not able to provide non-functional (fps/energy driven) adaptivity, but only a functional (algo-
rithm driven) one. The predominance of DMA transfers is then playing a role also in terms of energy,
flattening differences between the two kernels and among the different slot configurations.

Reconfiguration Granularity Analysis

Table 7.3 depicts overhead results of both fine-grain and coarse-grain reconfigurations, in terms of
memory footprint (size [B]), timing (time [ms]) and energy consumption (energy [mJ]). Generally
speaking the reconfiguration overhead of coarse-grain designs is much lower than the overhead of
fine-grain ones. this result is not un-expected, indeed reconfiguration in MDC computing cores is
enabled by simply writing a single configuration register for each accelerator. In ARTICo3 architec-
ture, the DPR-enabled reconfiguration requires downloading a new bitstream for the whole slot. In
the presented scenario, the CGR approach of four parallel accelerators requires around 1000 times
less reconfiguration time (0.09 ms versus 106.14 ms) and around 850 times less reconfiguration en-
ergy consumption (0.11 mJ versus 94.11 mJ) with respect to fine-grain reconfiguration of four slots. If
we take into account an application example in which it is necessary to switch N times among the So-
bel and Roberts edge detection algorithms, the reconfiguration cost for the four coarse-grain parallel
accelerators would be N ×0.09ms and N ×0.11m J , while the cost for reconfiguring the four parallel
slot with the different kernels would be N ×106.14ms and N ×94.11m J .

The price to be paid for this advantage in terms of timing and energy is that coarse-grain designs
are less flexible. Only a limited set of functionalities are implemented in a CGR computing core, and
it is only possible to multiplex them in time. Furthermore, an infrastructure providing only CGR com-
puting cores does not offer the possibility of changing the parallelism degree or re-writing completely
the functionality with a bitstream not originally considered at design time. A multi-grain adaptive de-

132 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

Table 7.2: Experimental energy results in [mJ] for all the configurations of the considered
designs. *Coming from real on-board power measurements. Data in brackets show the per-
centage variation of the configurations with respect to the case with only one slot.

config
energy* [mJ] (for different image sizes)

256x256 512x512 1024x1024 2048x2048

fine-grain
1fs 33.47 130.32 532.13 2132.95
2fs 28.61 (-14%) 107.27 (-17%) 437.37 (-17%) 1756.8 (-17%)
3fs 26.76 (-20%) 102.38 (-21%) 406.44 (-23%) 1628.57 (-23%)
4fs 25.26 (-24%) 99.01 (-24%) 397.11 (-25%) 1562.94 (-26%)
1fr 32.36 131.76 526.17 2106.31
2fr 27.23 (-15%) 106.58 (-19%) 429.57 (-18%) 1729.04 (-17%)
3fr 26.93 (-16%) 100.42 (-23%) 402.62 (-23%) 1603.06 (-23%)
4fr 25.29 (-21%) 96.08 (-27%) 387.19 (-26%) 1537 (-27%)

coarse-grain
4rs 28.44 97.89 397.4 1578.09
4rr 25.42 97.22 399.73 1570.45

multi-grain
1rs 33.04 133.66 529.74 2136.26
2rs 26.98 (-18%) 109.63 (-17%) 440.38 (-16%) 1751.99 (-17%)
3rs 27.82 (-15%) 102.26 (-23%) 412.56 (-22%) 1636.79 (-23%)
4rs 28.44 (-13%) 97.89 (-26%) 397.4 (-24%) 1578.09 (-26%)
1rr 32.11 131.02 527.9 2128.85
2rr 27.01 (-15%) 107.24 (-18%) 435.99 (-17%) 1755.22 (-17%)
3rr 26.36 (-17%) 103.15 (-21%) 406.78 (-22%) 1631.55 (-23%)
4rr 25.42 (-20%) 97.22 (-25%) 399.73 (-24%) 1570.45 (-26%)

Table 7.3: Reconfiguration overhead. *N is the number of parallel accelerators (slots). **Real
on-board power measurements.

design config* size [B] time [ms] energy** [mJ]

fine-grain 1 858k 16.42 15.18
fine-grain 2 1715k 47.62 41.91
fine-grain 3 2573k 75.95 67.1
fine-grain 4 3430k 106.14 94.11

coarse-grain 4 2 0.09 0.11

sign combines the best of both, offering a fast low-power consuming reconfiguration, when changing
among a set of functionalities is needed, and the performance trade-off (throughput versus energy
consumption) given by the flexible parallelism offered by the DPR-based ARTICo3 architecture. Also,
with DPR is possible to replace the CGR computing core with another one, when a different set of
functionalities is necessary. For the considered proof of concept involving Sobel and Roberts algo-

7.3. ASSESSMENT 133

rithms, MDC-based reconfiguration can be exploited to change the functionality of each slot in a
lightweight manner, while the DPR approach behind ARTICo3 takes care of fps/energy by playing
with the adopted number of slots.

Impact of Coarse-Grain Reconfiguration

As already described in Chapter 3, reconfiguration in MDC designs is guaranteed by the insertion
of multiplexers (SBoxes) in the crossroads of common paths of data. All the resources necessary to
the computation of each functionality plus the SBoxes are present on the substrate. This overhead is
clearly visible in Table 7.4, where Sobel and Roberts occupy respectively 10% and 55% less LUT and
FF than the reconfigurable kernel. Comparing the reconfigurable kernel resources utilization with the
two isolated kernels instantiated in parallel (see the Sobel+Roberts row in Table 7.4), it is clear as the
reconfigurable kernel saves more than 20% of resources, meaning that sharing actors is convenient
and that the SBoxes overhead is affordable, according to the considered metric.

Table 7.4: Coarse-grain reconfiguration overhead (affecting coarse-grain and multi-grain de-
signs in Section 7.3.1). In brackets percentages of variation of each metric wrt CGR design.

kernel
resources (@100 MHz)

Fmax [MHz]
LUT FF

reconfigurable 2225 2360 108.39
Sobel 1817 (-18%) 2076 (-12%) 113.92 (+5%)

Roberts 922 (-59%) 1048 (-56%) 170.13 (+57%)
Sobel+Roberts 2739 (+23%) 3124 (+32%) 113.92 (+5%)

However, the insertion of the SBoxes has impact not only on the resource utilization, but it can
also negatively affect the operating frequency. SBoxes are fully combinatorial; therefore, their pres-
ence may lengthen the critical path of the system, thus lowering the highest achievable frequency. In
this case, non-reconfigurable Sobel and Roberts kernels support respectively 5% and 57% higher op-
erating frequency than the reconfigurable one. For the parallel Sobel+Roberts solution, if a worst case
frequency has to be selected (that is also the case of reconfigurable kernel), the maximum frequency
estimated for Sobel need to be considered.

Usage of the Proposed Flow

Previous discussions demonstrated the effectiveness of multi-grain reconfiguration, showing the ad-
vantage, in terms of timing and energy consumption, of mixing ARTICo3 and MDC reconfiguration
approaches. It is important to highlight also the effectiveness of the proposed flow, in terms of design
time and effort. The Integrated MDC-ARTICo3 toolchain automatically maps different input specifi-
cations in one CGR datapath compliant with the DPR-based ARTICo3 slots, speeding-up the design
of multi-grain systems. Users only need to define the applications behaviour through abstract high
level input dataflow specifications.

The effort of designing the dataflow specifications is application specific and cannot be evaluated.
However, it is necessary to highlight as the usage of dataflow specifications allows exploitation of HLS
dataflow-to-hardware tools (such as the adopted CAPH [99]), which not only speed the design process
up by automating HDL generation, but allow developers that are not expert in hardware design to
adopt the proposed design flow.

134 CHAPTER 7. MULTI-GRAIN ADAPTIVITY ON FPGA

Furthermore, the proposed toolchain facilitates the management of the generated multi-grain
system, since the Runtime Library of the ARTICo3 architecture is naturally capable of managing the
application execution and computation offloading to the hardware accelerators also when these are
CGR accelerators.

7.4 Chapter Remarks

The combination of coarse-grain (time-multiplexing of available datapaths) and fine-grain (time-
multiplexing of FPGA resources) approaches can be used to enable advanced functional and non-
functional adaptivity support in CPS. The presented automated toolchain integrates the MDC tool
with the ARTICo3 framework to support the development, from specification down to implemen-
tation, of multi-grain reconfigurable systems, speeding up the design process and facilitating their
deployment and runtime management.

The proposed reconfiguration infrastructure has been evaluated on the use-case involving two
edge detection kernels. Experimental results of this proof-of-concept test case demonstrated the po-
tential of the approach in terms of FPGA resources, timing and energy efficiency. Drawbacks and
strengths of the different reconfiguration granularities have been highlighted, and the advantages of
leveraging on a multi-grain architecture have been revealed. The proposed methodology can be par-
ticularly useful in CPS contexts, where variability is common due to the involvement of user (e.g.,
changing image resolution), environment (e.g., speed of the objects whose edges have to be de-
tected) or system (e.g. remnant battery) requirements. With the edge detection proof of concept,
it has been shown a limited set of the adaptivity potentials for the proposed approach. In the con-
sidered scenario, MDC lightweight adaptation provided functional adaptation but, in cases where
the implemented computational kernels differ substantially, it could be used to provide also non-
functional adaptation with performance/energy tradeoff [97]. Similarly, ARTICo3-based adaptivity
could achieve better results with scalability on more complex applications or could provide fault tol-
erance [93].

Future steps for this research involve a deeper validation of the proposed architecture with the
Planetary Exploration (PE) CERBERO project use-case. The PE use-case aims at assessing a new
technology for computing purposes in Space applications, where robustness to faults has to be guar-
anteed and self-monitoring and self-healing capabilities are meant to be supported to prevent and
overcome failures caused by radiation and harsh environmental conditions. The final demonstrator
is the controller of a robotic arm implemented over a FPGA device. The multi-grain reconfiguration
presented in this Chapter will allow the controller to switch, according to requirements, among sev-
eral algorithm (differing for time convergence and smoothness) for controlling the arm movement.
Parallel scalability will guarantee performance flexibility and fault tolerance. Self-monitoring and
self-adaptive processing capabilities will be given by integrating the MDC-ARTICo3 toolchain with
other tools belonging to CERBERO partnership, to provide the advanced runtime adaptation of the
multi-grain architecture according to data collected by monitoring the performance.

List of Publications Related to the Chapter

Conference papers

• Tiziana FANNI, Alfonso Rodríguez, Carlo Sau, Leonardo Suriano, Francesca Palumbo, Luigi
Raffo and Eduardo de la Torre, Multi-Grain Reconfiguration for Advanced Adaptivity in Cyber-
Physical Systems. 2018 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). December 2018. Proceedings in press.

7.4. CHAPTER REMARKS 135

• Alfonso Rodríguez and Tiziana FANNI, DEMO: Multi-Grain Adaptivity in Cyber-Physical Sys-
tems. Special Session on Energy Efficient Cyber Physical Systems held at the 30th International
Conference on Microelectronics (ICM).December 2018. Proceedings in press.

Other scientific papers

• Carlo Sau, Tiziana FANNI, Luigi Raffo and Francesca Palumbo Self-adaptation of Cyber-Physical
Systems, at the 2018 Riunione Annuale dell’Associazione Società Italiana di Elettronica (SIE –
ex GE), Napoli (Italy) June 2018.

• Tiziana FANNI, Alfonso Rodríguez, Carlo Sau, Francesca Palumbo, Luigi Raffo and Eduardo de
la Torre, Providing Advanced Adaptivity in Cyber-Physical Systems with Multi-Grain Reconfig-
uration, at the 2018 Italian Workshop on Embedded Systems (IWES), Siena (Italy), September
2018.

Chapter 8

Concluding remarks

Reconfigurable computing seems to be a good solution for the challenging world of Cyber-Physical
Systems (CPS). It allows devices to achieve a tradeoff between flexibility, performance and power con-
sumption. In particular, coarse-grain reconfigurability guarantees quick functionality switches even
if flexibility, that is number of supported functionalities, is limited and fixed at design time. For these
characteristics, they result very convenient in real-time application specific contexts. However, in
such a kind of systems, resources that are not involved in the current computation can easily lead to a
waste of energy, so that advanced power management is mandatory. The main drawback common to
low power reconfigurable architectures is related to the typically huge cost required by their efficient
design and management.

The objectives of this thesis work were mainly related to the development of methodologies for
aiding designers in the complex and time consuming process of deploying low power reconfigurable
architectures, exploiting the dataflow models of computation. For achievement of these objectives,
power saving strategies for ASIC and FPGA have been studied and deeply analysed. When possible,
the presented approaches have been integrated in the Multi-Dataflow Composer (MDC), a dataflow
to hardware framework that starting from the specification of the desired functionalities (modelled
as dataflow networks), can derive the RTL description of the corresponding coarse grained reconfig-
urable substrate able to implement all the input functionalities. Figure 8.1 illustrates the development
timeline of MDC, highlighting the extensions and modifications carried out during this thesis work.

Regarding the application of power saving techniques for ASIC design, the MDC Power Manager
has been extended to support techniques for the management and saving of the static power. In par-
ticular, the capability of MDC of applying automatically the clock gating methodology (which acts
only on dynamic power) has been extended to implement also a coarse-grain power gating strat-
egy for ASIC designs (4). To apply the power gating, firstly the MDC Logic Regions Identification1

algorithm (see algorithm 1 in Appendix A) has been modified to include also the switching modules
(SBoxes) of the coarse-grain reconfigurable (CGR) system (see algorithm 3 in Appendix B) that, be-
ing combinational, were not included in power gating related analysis. Then, to give the information
about the power specification to the synthesizer, MDC has been extended to generate also a common
power format (CPF) file. MDC Power Manager has also been further improved to include a power
modelling flow leading the designer to an optimal power saving strategy. This methodology is based
on static and dynamic power estimation models that, considering separately each logic region in the
CGR design, are capable of determining the overhead of clock gating and power gating on the basis
of the functional, technological and architectural parameters of the baseline CGR system.

1A logic region is a set of processing elements always active or inactive together.

137

138 CHAPTER 8. CONCLUDING REMARKS

2010 2011 2012 2013 2014 2015

Baseline tool specification:

Multi-Dataflow Composer Tool

Structural

Profiler

Power Manager

2016 2017 2018

Power Gating

Power Modelling

Coprocessor

Generator
V1 V2

Multi-Grain Reconfiguration
MDC +

ARTICo3

LWDF -V

Figure 8.1: Multi-Dataflow Composer Tool - Development Timeline at 2018

Given that MDC is able to apply clock gating for both ASIC and FPGA, and that in FPGA context
power gating is not applicable (as discussed more in detail in Chapter 4), different ways to deal with
energy consumption have been explored. In particular, the combination of CGR systems with the dy-
namic partial reconfiguration has been proposed, to enable advanced functional and non-functional
adaptivity support in CPS, since different tradeoffs between performance, flexibility and energy con-
sumptioncan be provided. MDC has been integrated with ARTICo3, a DPR-enable framework that
exploits a multi-accelerators scheme, to constitute an automated toolchain for the development and
management of multi-grain reconfigurable systems. This integration required to align the MDC with
the Vivado Design Environment, thus it has been necessary to provide a new version of the Coproces-
sor Generator (Coprocessor Generator V2 in Figure 8.1).

Sometimes, system developers need to deal with models and design approaches that are not ma-
ture yet. In these cases, ad-hoc methods are required to explore different design optimisation and
power management techniques. At this purpose, in the thesis work, a compact set of retargetable API
for lightweight dataflow (LWDF) and implementation using HDL has been studied. During the the-
sis the natural integration of power management techniques within such APIs has been proposed. In
particular it has been presented LIDE-V, an extension of the lightweight dataflow environment (LIDE)
that provides support for Verilog-based implementation of the LWDF APIs, along with associated li-
braries of dataflow actor and edge implementations. LIDE-V facilitates the design of experimentation
with alternative implementations of a given LWDF-V model to reveal important insights into system-
level tradeoffs, and perform multidimensional design optimization. This methodology has not been
automated yet but it promises to be a valuable tool in the design of low power dataflow-based sys-
tems, and it could be extended for the deployment of low power CGR systems. The study of LWDF is
illustrated in the bottom part of Figure 8.1.

8.1. FUTURE WORKS 139

8.1 Future Works

The methodologies and approaches for power management and their integrations into the MDC tool
that have been presented during this thesis work could be enhanced under different aspects. Dealing
with ASIC systems (Chapter 4 and Chapter 5), a follow up of this research includes improving the
power estimation model, considering also the contribution of the interconnection which currently is
not addressed. Furthermore, power switches overhead is not considered yet; these sleep transistors
are inserted only during place and route design steps, and a way to estimate in advance how many
switches are going to be inserted for each logic region has not been explored yet. Indeed the number
of switches has effect on the rush currents during power-up transitions, and on the power-down/up
timing thus also these aspects need to be included in a Power Modelling methodology able to identify
the best power saving strategy .

Regarding the power management in FPGA, involving the multi-grain approach (Chapter 7), next
steps involve the integration of the MDC-ARTICo3 tools into an automate framework able to offer
support at design time and at runtime for self-adaptation in CPS. In particular the multi-grain ar-
chitecture is going to be instrumented with hardware monitors, to give information of the system
performance to a runtime manager that can make decisions on the reconfiguration. The complete
self-adaptation framework is going to be demonstrated on the Planetary Exploration (PE) CERBERO
project use-case. The PE use-case final demonstrator is a controller, implemented over an FPGA, for
a robotic arm, to be used on a rover on the next space missions on Mars. The multi-grain recon-
figuration presented in this thesis will allow to guarantee fast reconfiguration among algorithms for
controlling the arm, and robustness to failures caused by radiation and harsh environmental condi-
tions.

Lastly, considering the exploration of system-level models for the application of power manage-
ment techniques, next steps include the development of a design methodology, based on the ap-
plication of LWDF (see Chapter 6). This design methodology should enable experimentation across
different levels of abstraction throughout the design process, assisting designers of signal processing
systems in exploring complex design alternatives that span multiple implementation scales, platform
types, and dataflow modelling techniques. This would allow designers to experiment productively
and iterate rapidly on complex combinations of design options, enabling effective experimentation
with hardware/software design tradeoffs, as well as tradeoffs involving performance, resource utiliza-
tion, and power consumption.

Bibliography

[1] [cited at p. 10, 113]

[2] OpenCL - the open standard for parallel programming of heterogeneous systems. In
https://www.khronos.org/opencl/. [cited at p. 5]

[3] M. Rückauer A. Thomas and J. Becker. Honeycomb: An application-driven online adaptive
reconfigurable hardware architecture. Int. J. Reconfig. Comp., 2012:17 pages, 2012. [cited at p. 113]

[4] A. Agarwal, S.K. Mathew, S.K. Hsu, M.A. Anders, H. Kaul, F. Sheikh, R. Ramanarayanan, S. Srini-
vasan, R. Krishnamurthy, and S. Borkar. A 320mv-to-1.2v on-die fine-grained reconfigurable
fabric for dsp/media accelerators in 32nm cmos. volume 53, pages 328–329, 2010. cited By 19.
[cited at p. 9, 11]

[5] Altera. FPGA Coprocessing Evolution: Sustained Performance Approaches Peak Performance,
2009. [cited at p. 8]

[6] Altera. Increasing Design Functionality with Partial and Dynamic Reconfiguration in 28-nm
FPGAs, 2010. [cited at p. 8]

[7] M. Arora, S. Manne, Y. Eckert, I. Paul, N. Jayasena, and D. M. Tullsen. A comparison of core
power gating strategies implemented in modern hardware. In ACM SIGMETRICS / International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’14, pages 559–
560, 2014. [cited at p. 38]

[8] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. The landscape of parallel computing research: A view from berkeley.
Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley,
Dec 2006. [cited at p. 114]

[9] E. Bezati, S. Casale-Brunet, M. Mattavelli, and J. W. Janneck. Clock-gating of streaming appli-
cations for energy efficient implementations on fpgas. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(4):699–703, April 2017. [cited at p. 38, 90]

[10] E. Bezati, M. Mattavelli, and J.W. Janneck. High-level synthesis of dataflow programs for signal
processing systems. In Image and Signal Processing and Analysis (ISPA), 2013 8th International
Symposium on, pages 750–754, September 2013. [cited at p. 15]

[11] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for dsp systems.
IEEE Transactions on Signal Processing, 49(10):2408–2421, Oct 2001. [cited at p. 14]

141

142 BIBLIOGRAPHY

[12] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors. Handbook of Signal Pro-
cessing Systems. Springer, second edition, 2013. ISBN: 978-1-4614-6858-5 (Print); 978-1-4614-
6859-2 (Online). [cited at p. 11, 13]

[13] S. C. Brunet, E. Bezati, C. Alberti, M. Mattavelli, E. Amaldi, and J. W. Janneck. Multi-clock
domain optimization for reconfigurable architectures in high-level dataflow applications. In
2013 Asilomar Conference on Signals, Systems and Computers, pages 1796–1800, Nov 2013.
[cited at p. 90]

[14] J.T Buck. Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. PhD thesis, Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, 1993. [cited at p. 13]

[15] J. Burnham, J. Hardy, and K. Meadors. Comparison of the roberts, sobel, robinson, canny, and
hough image detection algorithms. In MS State DSP Conf., 1997. [cited at p. 127]

[16] Cadence®. Low Power in Encounter®RTL Compiler, Product Version 14.1, July 2014.
[cited at p. 62]

[17] Cadence®. Using Encounter®RTL Compiler, Product Version 14.1, July 2014. [cited at p. 38]

[18] Cadence®. Genus synthesis solution, 2018. https://www.cadence.com/content/
cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/
genus-synthesis-solution.html, 2018-08-28. [cited at p. 38]

[19] A. Cappelli, A. Lodi, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis, L. Ciccarelli, R. Gi-
ansante, A. Deledda, F. Campi, M. Toma, and R. Guerrieri. Xisystem: a xirisc-based soc with a
reconfigurable io module. In Solid-State Circuits Conference, 2005. Digest of Technical Papers.
ISSCC. 2005 IEEE International, pages 196–593 Vol. 1, February 2005. [cited at p. 8]

[20] S.M. Carta, D. Pani, and L. Raffo. Reconfigurable coprocessor for multimedia application
domain. Journal of VLSI signal processing systems for signal, image and video technology,
44(1):135–152, 2006. [cited at p. 19]

[21] S. Casale-Brunet, M. Mattavelli, and J.W. Janneck. Turnus: A design exploration framework for
dataflow system design. In Circuits and Systems (ISCAS), 2013 IEEE International Symposium
on, pages 654–654, May 2013. [cited at p. 15]

[22] G. N. Chaple, R. D. Daruwala, and M. S. Gofane. Comparisions of robert, prewitt, sobel operator
based edge detection methods for real time uses on fpga. In Int. Conf. on Technologies for
Sustainable Development (ICTSD), 2015. [cited at p. 127]

[23] A. Chhabra, H. Rawat, M. Jain, P. Tessier, D. Pierredon, L. Bergher, and P. Kumar. FALPEM:
framework for architectural-level power estimation and optimization for large memory sub-
systems. IEEE Trans. on CAD of Integrated Circuits and Systems, 34(7):1138–1142, 2015.
[cited at p. 60]

[24] RVC-CAL Community. Open RVC-CAL compiler (Orcc), 2018. http://orcc.sourceforge.
net/, 2018-08-29. [cited at p. 15, 20]

[25] K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and software. ACM
Comput. Surv., 34(2):171–210, June 2002. [cited at p. 7]

[26] J.W. Cooley and J.W. Tukey. An algorithm for the machine computation of complex fourier
series, vol. 19. Mathematics of Computation, 1965. [cited at p. 73]

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
http://orcc.sourceforge.net/
http://orcc.sourceforge.net/

BIBLIOGRAPHY 143

[27] C. E. Cummings. Simulation and synthesis techniques for asynchronous FIFO design. In Pro-
ceedings of the Synopsys Users Group Conference, 2002. [cited at p. 98]

[28] M. Danelutto, D. De Sensi, and M. Torquati. A power-aware, self-adaptive macro data flow
framework. Parallel Processing Letters, 27(1):1–20, 2017. [cited at p. 90]

[29] K. Datta, A. Mukherjee, G. Cao, R. Tenneti, V. Vijendra Kumar Lakshmi, A. Ravindran, and B. S.
Joshi. Casper: Embedding power estimation and hardware-controlled power management in
a cycle-accurate micro-architecture simulation platform for many-core multi-threading het-
erogeneous processors. Journal of Low Power Electronics and Applications, 2(1):30–68, 2012.
[cited at p. 60]

[30] E.R. Davies. Circularity - a new principle underlying the design of accurate edge orientation
operators. Image and Vision Computing, 2(3):134–142, 1984. [cited at p. 125]

[31] J. B. Dennis. First version of a data flow procedure language. In Programming Symposium,
Proceedings Colloque Sur La Programmation, pages 362–376, London, UK, UK, 1974. Springer-
Verlag. [cited at p. 11]

[32] K. Desnos and J. Heulot. Pisdf: Parameterized & interfaced synchronous dataflow for mpsocs
runtime reconfiguration. In 1st Workshop on MEthods and TOols for Dataflow PrOgramming
(METODO), 2014. [cited at p. 14]

[33] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel. Run-time accelerator binding for tile-based
mixed-grained reconfigurable architectures. In Int. Conf. on Field Programmable Logic and
Applications (FPL), 2014. [cited at p. 113]

[34] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel. A reconfigurable hardware architecture for
fractional pixel interpolation in high efficiency video coding. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(2):238–251, Feb 2015. [cited at p. 85]

[35] J. Eker and J. Janneck. Cal language report. Technical report, Tech. Rep. ERL Technical Memo
UCB/ERL, 2003. [cited at p. 13]

[36] J. Eker and J. W. Janneck. Dataflow programming in CAL — balancing expressiveness, ana-
lyzability, and implementability. In Proceedings of the IEEE Asilomar Conference on Signals,
Systems, and Computers, pages 1120–1124, 2012. [cited at p. 90]

[37] S. Eyerman and L. Eeckhout. Fine-grained DVFS using on-chip regulators. ACM Transactions
on Architecture and Code Optimization (TACO), 8(1):1–24, 2011. [cited at p. 38]

[38] J. Fowers, J.Y. Kim, D. Burger, and S. Hauck. A scalable high-bandwidth architecture for lossless
compression on fpgas. In The 23rd IEEE International Symposium on Field-Programmable Cus-
tom Computing Machines. IEEE - Institute of Electrical and Electronics Engineers, May 2015.
[cited at p. 8]

[39] K. Gagarski, M. Petrov, M. Moiseev, and I. Klotchkov. Power specification, simulation and ver-
ification of systemc designs. In 2016 IEEE East-West Design Test Symposium (EWDTS), pages
1–4, Oct 2016. [cited at p. 39]

[40] K. Gilles. The semantics of a simple language for parallel programming. In Information Pro-
cessing, 74:471–475, 1974. [cited at p. 11]

144 BIBLIOGRAPHY

[41] R.W. Hartenstein. Coarse grain reconfigurable architecture (embedded tutorial). In Proceed-
ings of ASP-DAC 2001, Asia and South Pacific Design Automation Conference 2001, January 30-
February 2, 2001, Yokohama, Japan, pages 564–570, 2001. [cited at p. 9, 10]

[42] R.W. Hartenstein. A decade of reconfigurable computing: a visionary retrospective. In Proc.
Design, Automation and Test in Europe (DATE’01), pages 642–649, 2001. [cited at p. 37]

[43] D. Helms, R. Eilers, M. Metzdorf, and W. Nebel. Leakage models for high-level power es-
timation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
37(8):1627–1639, Aug 2018. [cited at p. 60]

[44] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In Proceedings of the 2007 international symposium on Low power electronics
and design (ISLPED ’07), pages 38–43, Aug 2007. [cited at p. 38]

[45] P. Heysters, G. Smit, and E. Molenkamp. A flexible and energy-efficient coarse-grained recon-
figurable architecture for mobile systems. The Journal of Supercomputing, 26(3):283–308, 2003.
[cited at p. 9, 11]

[46] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, D. Menard, and J. Lilius. Energy-awareness and
performance management with parallel dataflow applications. Journal of Signal Processing
Systems, 87(1):33–48, Apr 2017. [cited at p. 90]

[47] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose. Microarchitec-
tural techniques for power gating of execution units. In Proceedings of the 2004 International
Symposium on Low Power Electronics and Design, ISLPED ’04, pages 32–37, New York, NY, USA,
2004. ACM. [cited at p. 85]

[48] H. Huttunen, F. Yancheshmeh, and K. Chen. Car type recognition with deep neural networks.
ArXiv e-prints, 2016. arXiv:1602.07125v2, To appear in proceedings of IEEE Intelligent Vehicles
Symposium 2016. [cited at p. 102]

[49] IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems.
IEEE Standard 1801-2015, UPF-2.0, Unified Power Format 2.0, 2016. [cited at p. 38]

[50] Q. Inoue, K.and Zhao, Y. Okamoto, H. Yosho, M. Amagasaki, M. Iida, and T. Sueyoshi. A variable-
grain logic cell and routing architecture for a reconfigurable ip core. ACM Trans. Reconfigurable
Technol. Syst., 4(1):5:1–5:24, December 2010. [cited at p. 10]

[51] Chiu J.-C., Chou Y.-L., and Lin R.-B. The multi-context reconfigurable processing unit for fine-
grain computing. Journal of Information Science and Engineering, 24(3):965–979, 2008. cited
By 4. [cited at p. 9, 11]

[52] S. M. A. H. Jafri, M. A. Tajammul, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen. Energy-
aware-task-parallelism for efficient dynamic voltage, and frequency scaling, in cgras. In 2013
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simu-
lation (SAMOS), pages 104–112, July 2013. [cited at p. 38]

[53] B. Jeff. Advances in big. little technology for power and energy savings. ARM White Paper, 2012.
[cited at p. 38]

[54] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System-level design:
orthogonalization of concerns and platform-based design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 19, December 2000. [cited at p. 92]

BIBLIOGRAPHY 145

[55] C. Kohn. Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All Programmable
SoC Devices. Xilinx, January 2013. [cited at p. 8]

[56] R. R. Kulkarni and S. Y. Kulkarni. Energy efficient implementation, power aware simulation
and verification of 16-bit alu using unified power format standards. In 2014 International
Conference on Advances in Electronics Computers and Communications, pages 1–6, Oct 2014.
[cited at p. 38]

[57] V.V. Kumar and J. Lach. Highly flexible multimode digital signal processing systems us-
ing adaptable components and controllers. EURASIP Journal on Applied Signal Processing,
2006:73–73, 2006. [cited at p. 19]

[58] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE, 75(9):1235–
1245, September 1987. [cited at p. 13]

[59] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773–801,
1995. [cited at p. 11]

[60] S. Li, J. Ho Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. The mcpat frame-
work for multicore and manycore architectures: Simultaneously modeling power, area, and
timing. TACO, 10(1):5, 2013. [cited at p. 60]

[61] X. Li, K. Duraisamy, J. Baylon, T. Majumder, G. Wei, P. Bogdan, D. Heo, and P. P. Pande. A recon-
figurable wireless noc for large scale microbiome community analysis. IEEE Transactions on
Computers, 66(10):1653–1666, Oct 2017. [cited at p. 113]

[62] S. Lin et al. Parameterized sets of dataflow modes and their application to implementation of
cognitive radio systems. Journal of Signal Processing Systems, 80(1):3–18, July 2015. [cited at p. 91]

[63] S. Lin, Y. Liu, W. Plishker, and S. S. Bhattacharyya. A design framework for mapping vectorized
synchronous dataflow graphs onto CPU–GPU platforms. In Proceedings of the International
Workshop on Software and Compilers for Embedded Systems, pages 20–29, Sankt Goar, Ger-
many, May 2016. [cited at p. 91]

[64] L. Liu, Z. Li, C. Yang, C. Deng, S. Yin, and S. Wei. Hrea: An energy-efficient embedded dynami-
cally reconfigurable fabric for 13-dwarfs processing. IEEE Transactions on Circuits and Systems
II: Express Briefs, 65(3):381–385, March 2018. [cited at p. 114]

[65] M. Lombardo, J. Camarero, J. Valverde, J. Portilla, E. de la Torre, and T. Riesgo. Power man-
agement techniques in an FPGA-based WSN node for high performance applications. In 7th
International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (Re-
CoSoC), pages 1–8, July 2012. [cited at p. 111, 115]

[66] J. Lopes, D. Sousa, and J. C. Ferreira. Evaluation of cgra architecture for real-time processing
of biological signals on wearable devices. In 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–7, Dec 2017. [cited at p. 38]

[67] D. Macko. Contribution to automated generating of system power-management specification.
In 2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pages 27–32, April 2018. [cited at p. 39]

[68] D. Madroñal, A. Morvan, R. Lazcano, R. Salvador, K. Desnos, E. Juárez, and C. Sanz. Automatic
instrumentation of dataflow applications using papi. In Proceedings of the 15th ACM Interna-
tional Conference on Computing Frontiers, CF ’18, pages 232–235, New York, NY, USA, 2018.
ACM. [cited at p. 90]

146 BIBLIOGRAPHY

[69] M. Masin, F. Palumbo, H. Myrhaug, J. A. de Oliveira Filho, M. Pastena, M. Pelcat, L. Raffo,
F. Regazzoni, A. A. Sanchez, A. Toffetti, E. de la Torre, and K. Zedda. Cross-layer design of recon-
figurable cyber-physical systems. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, pages 740–745, March 2017. [cited at p. 111]

[70] J. McAllister, R. Woods, R. Walke, and D. Reilly. Synthesis and high level optimisation of multi-
dimensional dataflow actor networks on FPGA. In Proceedings of the IEEE Workshop on Signal
Processing Systems, 2004. [cited at p. 15]

[71] N. Moreano, G. Araujo, Zhining Huang, and S. Malik. Datapath merging and interconnection
sharing for reconfigurable architectures. In System Synthesis, 2002. 15th International Sympo-
sium on, pages 38–43, October 2002. [cited at p. 20]

[72] M. Musab and S. Yellampalli. Study and implementation of multi-vdd power reduction tech-
nique. In 2015 International Conference on Computer Communication and Informatics (ICCCI),
pages 1–4, Jan 2015. [cited at p. 38]

[73] N. Nasirian, R. Soosahabi, and M. A. Bayoumi. Probabilistic analysis of power-gating in
network-on-chip routers. IEEE Transactions on Circuits and Systems II: Express Briefs, pages
1–1, 2018. [cited at p. 60]

[74] Y. Nasser, J.C. Prevotet, and M. Hélard. Power Modeling for Fast Power Estimation on FPGA.
working paper or preprint, https://hal.archives-ouvertes.fr/hal-01695867, 2018-08-
28, February 2018. [cited at p. 60]

[75] J. F. Nezan, N. Siret, M. Wipliez, F. Palumbo, and L. Raffo. Multi-purpose systems: A novel
dataflow-based generation and mapping strategy. In IEEE Symposium on Circuits and Systems,
2012. [cited at p. 15]

[76] A. Niedermeier, J. Kuper, and G. Smit. Dataflow-based reconfigurable architecture for stream-
ing applications. In System on Chip (SoC), 2012 International Symposium on, pages 1–4, Octo-
ber 2012. [cited at p. 9, 10, 11]

[77] NVIDIA. Compute Unified Device Architecture (CUDA), 2018. https://www.nvidia.it/
object/cuda-parallel-computing-it.html, 2018-08-29. [cited at p. 5]

[78] Mete Özbaltan and Nicolas Berthier. Exercising symbolic discrete control for designing low-
power hardware circuits: an application to clock-gating. IFAC-PapersOnLine, 51(7):120 – 126,
2018. 14th IFAC Workshop on Discrete Event Systems WODES 2018. [cited at p. 38]

[79] G. Paim, L. M. G. Rocha, T. G. Alves, R. S. Ferreira, E. A. C. da Costa, and S. Bampi. A
power-predictive environment for fast and power-aware asic-based fir filter design. In 2017
30th Symposium on Integrated Circuits and Systems Design (SBCCI), pages 168–173, Aug 2017.
[cited at p. 60]

[80] F. Palumbo, D. Carta, N.and Pani, P. Meloni, and L. Raffo. The multi-dataflow composer
tool: generation of on-the-fly reconfigurable platforms. Journal of real-time image processing,
9(1):233–249, 2014. [cited at p. 19, 20]

[81] F. Palumbo, C. Sau, and L. Raffo. DSE and Profiling of Multi-Context Coarse-Grained Recon-
figurable Systems. In International Symposium on Image and Signal Processing and Analysis,
pages 744–749, 2013. [cited at p. 23, 25]

[82] F. Palumbo, C. Sau, and L. Raffo. Coarse-grained reconfiguration: dataflow-based power man-
agement. volume 9, pages 36–48, 2014. [cited at p. 15, 25, 27, 38, 90]

https://hal.archives-ouvertes.fr/hal-01695867
https://www.nvidia.it/object/cuda-parallel-computing-it.html
https://www.nvidia.it/object/cuda-parallel-computing-it.html

BIBLIOGRAPHY 147

[83] K. Paul, C. Dash, and M.S. Moghaddam. remorph: A runtime reconfigurable architecture. In
Digital System Design (DSD), 2012 15th Euromicro Conference on, pages 26–33, September 2012.
[cited at p. 10, 11]

[84] Massoud Pedram. Power minimization in ic design: principles and applications. ACM Trans.
Design Autom. Electr. Syst., 1:3–56, 1996. [cited at p. 38]

[85] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J. Nezan, and S. Aridhi. Preesm: A dataflow-based
rapid prototyping framework for simplifying multicore dsp programming. In 2014 6th Euro-
pean Embedded Design in Education and Research Conference (EDERC), pages 36–40, Sept 2014.
[cited at p. 15, 90]

[86] J. Piat, S.S. Bhattacharyya, and M. Raulet. Interface-based hierarchy for synchronous data-
flow graphs. In Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop on, pages 145–150,
October 2009. [cited at p. 14]

[87] W. Plishker, N. Sane, and S. S. Bhattacharyya. A generalized scheduling approach for dynamic
dataflow applications. In Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, pages 111–116, 2009. [cited at p. 91]

[88] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Functional DIF for rapid pro-
totyping. In Proceedings of the International Symposium on Rapid System Prototyping, pages
17–23, Monterey, California, June 2008. [cited at p. 14]

[89] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous design in functional
DIF. In Proceedings of the International Workshop on Systems, Architectures, Modeling, and
Simulation, pages 157–166, Samos, Greece, July 2008. [cited at p. 91, 98]

[90] Power Forward Initiative. A Practical Guide to Low Power Design, june 2009. [cited at p. 40, 84]

[91] A. Qamar, F. Bin Muslim, J. Iqbal, and L. Lavagno. Lp-hls: Automatic power-intent generation
for high-level synthesis based hardware implementation flow. Microprocessors and Microsys-
tems, 50:26 – 38, 2017. [cited at p. 39]

[92] L.G. Roberts et al. Machine perception of three dimensional solids, in optical and electro-
optical information processing. MIT press, pages 159–197, 1965. [cited at p. 127]

[93] A. Rodríguez, J. Valverde, J. Portilla, A. Otero, T. Riesgo, and E. de la Torre. Fpga-based high-
performance embedded systems for adaptive edge computing in cyber-physical systems: The
artico3 framework. Sensors, 18(6), 2018. [cited at p. ix, 111, 115, 116, 117, 134]

[94] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. GÃ¼rkaynak, A. Teman, J. Constantin, A. Burg,
I. Miro-Panades, E. BeignÃ¨, F. Clermidy, P. Flatresse, and L. Benini. Energy-efficient near-
threshold parallel computing: The pulpv2 cluster. IEEE Micro, 37(5):20–31, September 2017.
[cited at p. 38]

[95] I. Salvador, S. Remberto, M. Brox, and M. A. Ortiz. Software defined network controller: A neat
solution administration for reconfigurable multi-core noc. In 2017 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–4, Dec 2017. [cited at p. 113]

[96] Synflow SAS. Synflow ide, 2018. http://www.synflow.com/, 2018-08-29. [cited at p. 15, 20]

http://www.synflow.com/

148 BIBLIOGRAPHY

[97] C. Sau, F. Palumbo, M. Pelcat, J. Heulot, E. Nogues, D. Menard, P. Meloni, and L. Raffo. Challeng-
ing the best hevc fractional pixel fpga interpolators with reconfigurable and multifrequency
approximate computing. IEEE Embedded Systems Letters, 9(3):65–68, Sept 2017. [cited at p. 111,

115, 134]

[98] J. Sérot. The semantics of a purely functional graph notation system. In Achten, P., Koopman,
P.W.M., Morazán, M.T. (eds.) Draft Proceedings of the Ninth Symposium on Trends in Functional
Programming, TFP 2008. 2008. [cited at p. 15, 90]

[99] J. Sérot, F. Berry, and S. Ahmed. CAPH: A Language for Implementing Stream-Processing Appli-
cations on FPGAs, pages 201–224. Springer New York, 2013. [cited at p. 15, 20, 127, 133]

[100] J. Sérot, F. Berry, and title= Bourrasset, C. [cited at p. 15]

[101] M. Shafique, L. Bauer, and J. Henkel. Adaptive energy management for dynamically reconfig-
urable processors. IEEE Trans. on CAD of Integrated Circuits and Systems, 33(1):50–63, 2014.
[cited at p. 60]

[102] C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based design and implementation of
image processing applications. In L. Guan, Y. He, and S.-Y. Kung, editors, Multimedia Image
and Video Processing, pages 609–629. CRC Press, second edition, 2012. [cited at p. 98]

[103] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. A lightweight dataflow approach for design
and implementation of SDR systems. In Proceedings of the Wireless Innovation Conference and
Product Exposition, pages 640–645, 2010. [cited at p. 15, 90, 98]

[104] Y. Shyu, J. Lin, C. Lin, C. Huang, and S. Chang. An efficient and effective methodology to control
turn-on sequence of power switches for power gating designs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 35(10):1730–1743, Oct 2016. [cited at p. 61]

[105] Silicon Integration Initiative. Si2 Common Power Format SpecificationTM - Version 2.1, Decem-
ber 2014. [cited at p. 38]

[106] S. Singh and B. Singh. Effects of noise on various edge detection techniques. In Int. Conf. on
Computing for Sustainable Global Development (INDIACom), March 2015. [cited at p. 127]

[107] N. Siret, I. Sabry, J.F. Nezan, and M. Raulet. A codesign synthesis from an mpeg-4 decoder
dataflow description. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International
Symposium on, pages 1995–1998, May 2010. [cited at p. 15]

[108] G. Smaragdos, D.A. Khan, I. Sourdis, C. Strydis, A. Malek, and S. Tzilis. A dependable coarse-
grain reconfigurable multicore array. In Parallel Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pages 141–150, May 2014. [cited at p. 9]

[109] I. Sourdis, C. Strydis, A. Armato, C.S. Bouganis, B. Falsafi, G.N. Gaydadjiev, S. Isaza, A. Malek,
R. Mariani, D.N. Pnevmatikatos, D.K. Pradhan, G.K. Rauwerda, R.M. Seepers, R.A. Shafik,
K. Sunesen, D. Theodoropoulos, S. Tzilis, and M. Vavouras. Desyre: On-demand system re-
liability. Microprocessors and Microsystems - Embedded Hardware Design, 37(8-C):981–1001,
2013. [cited at p. 113, 114]

[110] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. System design using Kahn
process networks: the Compaan/Laura approach. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, February 2004. [cited at p. 15]

BIBLIOGRAPHY 149

[111] K. R. Stokke, H. K. Stensland, P. Halvorsen, and C. Griwodz. High-precision power modelling
of the tegra k1 variable smp processor architecture. In 2016 IEEE 10th International Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pages 193–200, Sept 2016.
[cited at p. 60]

[112] K. Sudusinghe, S. Won, M. van der Schaar, and S. S. Bhattacharyya. A novel framework for
design and implementation of adaptive stream mining systems. In Proceedings of the IEEE
International Conference on Multimedia and Expo, pages 1–6, 2013. [cited at p. 91]

[113] P. Sundararajan. High Performance Computing Using FPGAs. Xilinx, September 2010.
[cited at p. 8]

[114] Synopsys®. Design compiler: Rtl synthesis, 2018. https://www.synopsys.com/
support/training/rtl-synthesis/design-compiler-rtl-synthesis.html, 2018-
08-28. [cited at p. 38]

[115] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance data with papi-c. In
Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel, editors, Tools
for High Performance Computing 2009, pages 157–173, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. [cited at p. 90]

[116] R. Tessier and W. Burleson. Reconfigurable computing for digital signal processing: A survey. J.
VLSI Signal Process. Syst., 28(1-2):7–27, May 2001. [cited at p. 8]

[117] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K. Cheung. Reconfig-
urable computing: architectures and design methods. IEE Proceedings-Computers and Digital
Techniques, 152(2):193–207, 2005. [cited at p. 8, 10]

[118] N.S. Voros, M. Hübner, J. Becker, M. Kühnle, F. Thomaitiv, A. Grasset, P. Brelet, P. Bonnot,
F. Campi, E. Schüler, H. Sahlbach, S. Whitty, R. Ernst, E. Billich, C. Tischendorf, U. Heinkel,
F. Ieromnimon, D. Kritharidis, A. Schneider, J. Knaeblein, and W. Putzke-Röming. Morpheus: A
heterogeneous dynamically reconfigurable platform for designing highly complex embedded
systems. ACM Trans. Embed. Comput. Syst., 12(3):70:1–70:33, April 2013. [cited at p. 114]

[119] D. Wingard. Noc power-management advantages. In Keynote Talks at IP-SoC Conference and
Exibition, 2013. [cited at p. 38]

[120] Q. Wu, M. Pedram, and X. Wu. Clock-gating and its application to low power design of sequen-
tial circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
47(3):415–420, March 2000. [cited at p. 38]

[121] Y. Xiao, Y. Xue, S. Nazarian, and P. Bogdan. A load balancing inspired optimization framework
for exascale multicore systems: A complex networks approach. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 217–224, Nov 2017. [cited at p. 113]

[122] Xilinx. Partial Reconfiguration User Guide, April 2012. [cited at p. 8]

[123] Xilinx. Vivado Design Suite — AXI Reference Guide — UG1037 (v4.0), July 2017. [cited at p. 117, 118]

[124] Xilinx. Ultrascale+ family, 2018. https://www.xilinx.com/about/
generation-ahead-16nm.html, 2018-10-7. [cited at p. 8]

[125] H. Xu, R. Vemuri, and W.B. Jone. Run-time active leakage reduction by power gating and reverse
body biasing: An energy view. In 26th International Conference on Computer Design, ICCD
2008, 12-15 October 2008, Lake Tahoe, CA, USA, Proceedings, pages 618–625, 2008. [cited at p. 60]

https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://www.xilinx.com/about/generation-ahead-16nm.html

150 BIBLIOGRAPHY

[126] W. Yang, Z. Li, and Z. Shen. Recognizing and tracking airport runway target in infrared images.
In Proc. National Aerospace and Electronics Conf. NAECON, 1997. [cited at p. 127]

[127] A.K.W. Yeung and J.M. Rabaey. A reconfigurable data-driven multiprocessor architecture for
rapid prototyping of high throughput dsp algorithms. In System Sciences, 1993, Proceeding of
the Twenty-Sixth Hawaii International Conference on, volume i, pages 169–178 vol.1, January
1993. [cited at p. 10]

[128] J. Yi and J. Kim. Power modeling for digital circuits with clock gating. IEICE Electronics Express,
12(24):20150817–20150817, 2015. [cited at p. 60]

[129] F. L. Yuan et al. A multi-granularity fpga with hierarchical interconnects for efficient and flexible
mobile computing. IEEE Journal of Solid-State Circuits, 50(1):137–149, Jan 2015. [cited at p. 114]

[130] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and M. Raulet. Orcc: multimedia
development made easy. In Proceedings of the ACM International Conference on Multimedia,
pages 863–866, 2013. [cited at p. 90]

[131] L. Zhang, J. Yang, C. Xue, Y. Ma, and S. Cao. A two-stage variation-aware task mapping scheme
for fault-tolerant multi-core network-on-chips. In 2017 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pages 1–4, May 2017. [cited at p. 113]

[132] Y. Zhang, J. Roivainen, and A. Mammela. Clock-gating in fpgas: A novel and comparative eval-
uation. In Digital System Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th EU-
ROMICRO Conference on, pages ‘584–590, 2006. [cited at p. 38]

[133] S. Zhao et al. Sobel-lbp. In 2008 15th IEEE International Conference on Image Processing, pages
2144–2147, Oct 2008. [cited at p. 127]

[134] D. Zoni and W. Fornaciari. Modeling DVFS and power-gating actuators for cycle-accurate noc-
based simulators. JETC, 12(3):27, 2015. [cited at p. 60]

List of Publications Related to the
Thesis

Published papers

Journal papers

1. Francesca Palumbo, Tiziana FANNI, Carlo Sau, and Paolo Meloni. 2017. Power-Awarness in
Coarse-Grained Reconfigurable Multi-Functional Architectures: a Dataflow Based Strategy. J.
Signal Process. Syst. 87, 1 (April 2017), 81-106.
DOI: https://doi.org/10.1007/s11265-016-1106-9.

2. Francesca Palumbo, Tiziana FANNI, Carlo Sau, Paolo Meloni, and Luigi Raffo, Modelling and
Automated Implementation of Optimal Power Saving Strategies in Coarse-Grained Reconfig-
urable Architectures. Journal of Electrical and Computer Engineering, vol. 2016, Article ID
4237350, 27 pages, 2016.
DOI: https://doi.org/10.1155/2016/4237350.

3. Tiziana FANNI, Lin Li, Timo Viitanen, Carlo Sau, Renjie Xie, Francesca Palumbo, Luigi Raffo,
Heikki Huttunen, Jarmo Takala, Shuvra S. Bhattacharyya, Hardware design methodology using
lightweight dataflow and its integration with low power techniques. Journal of Systems Archi-
tecture, Volume 78, 2017, Pages 15-29, ISSN 1383-7621.
DOI: https://doi.org/10.1016/j.sysarc.2017.06.003.

4. Lin Li, Carlo Sau, Tiziana FANNI, Jingui Li, Timo Viitanen, Francois Christophec, Francesca
Palumbo, Luigi Raffo, Heikki Huttunen, Jarmo Takala, Shuvra S. Bhattacharyya, An Integrated
Hardware/Software Design Methodology for Signal Processing Systems. Journal of Systems Ar-
chitecture (2018). DOI: https://doi.org/10.1016/j.sysarc.2018.12.010

Conference papers

1. Tiziana FANNI, Carlo Sau, Luigi Raffo, and Francesca Palumbo. Automated power gating method-
ology for dataflow-based reconfigurable systems. In Proceedings of the 12th ACM International
Conference on Computing Frontiers (CF ’15), 2015. ACM, New York, Article 61 , 6 pages.
DOI: http://dx.doi.org/10.1145/2742854.2747285

2. Tiziana FANNI, Carlo Sau, Paolo Meloni, Luigi Raffo and Francesca Palumbo, Power modelling
for saving strategies in coarse grained reconfigurable systems. 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), Mexico City, 2015, pp. 1-4.
DOI: 10.1109/ReConFig.2015.7393337

151

152 BIBLIOGRAPHY

3. Subhadeep Banik, Andrey Bogdanov, Tiziana FANNI, Carlo Sau, Luigi Raffo, Francesca Palumbo,
and Francesco Regazzoni. 2016. Adaptable AES implementation with power-gating support. In
Proceedings of the ACM International Conference on Computing Frontiers (CF ’16). ACM, New
York, NY, USA, 331-334.
DOI: https://doi.org/10.1145/2903150.2903488

4. Tiziana FANNI, Carlo Sau, Paolo Meloni, Luigi Raffo, and Francesca Palumbo. 2016. Power and
clock gating modelling in coarse grained reconfigurable systems. In Proceedings of the ACM
International Conference on Computing Frontiers (CF ’16). ACM, New York, NY, USA, 384-391.
DOI: https://doi.org/10.1145/2903150.2911713

5. Tiziana FANNI and Luigi Raffo, Coarse grain reconfiguration: Power estimation and manage-
ment flow for hybrid gated systems. 2016 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), Cancun, 2016, pp. 1-4.
DOI: 10.1109/ReConFig.2016.7857160

6. Francesca Palumbo, Carlo Sau, Tiziana FANNI, Paolo Meloni and Luigi Raffo, Dataflow-Based
Design of Coarse-Grained Reconfigurable Platforms. 2016 IEEE International Workshop on Sig-
nal Processing Systems (SiPS), Dallas, TX, 2016, pp. 127-129.
DOI: 10.1109/SiPS.2016.30

7. Lin Li, Tiziana FANNI, Timo Viitanen, Renjie Xie, Francesca Palumbo, Luigi Raffo, Heikki Hut-
tunen, Jarmo Takala, Shuvra S. Bhattacharyya, Low power design methodology for signal pro-
cessing systems using lightweight dataflow techniques. 2016 Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP), Rennes, 2016, pp. 82-89.
DOI: 10.1109/DASIP.2016.7853801

8. Carlo Sau, Tiziana Fanni, Paolo Meloni, Luigi Raffo, Maxime Pelcat and Francesca Palumbo,
Demo: Reconfigurable Platform Composer Tool. 2016 Conference on Design and Architectures
for Signal and Image Processing (DASIP), Rennes, 2016, pp. 245-246.
DOI: 10.1109/DASIP.2016.7853835

9. Francesca Palumbo, Carlo Sau, Tiziana FANNI, Luigi Raffo. (2019) Challenging CPS Trade-off
Adaptivity with Coarse-Grained Reconfiguration. In: De Gloria A. (eds) Applications in Elec-
tronics Pervading Industry, Environment and Society. ApplePies 2017. Lecture Notes in Elec-
trical Engineering, vol 512. Springer, Cham. ISBN 978-3-319-93082-4.
DOI: https://doi.org/10.1007/978-3-319-93082-4_8

10. Tiziana FANNI, "Optimal Implementation of Power Saving Techniques in CGR Systems", Cyber-
Physical Systems PhD & Postdoc Workshop 2018. Alghero (Italia). CEUR-WS.org/Vol-2208

11. Tiziana FANNI, Alfonso Rodríguez, Carlo Sau, Leonardo Suriano, Francesca Palumbo, Luigi
Raffo and Eduardo de la Torre, Multi-Grain Reconfiguration for Advanced Adaptivity in Cyber-
Physical Systems. 2018 International Conference on ReConFigurable Computing and FPGAs
(ReConFig’18). December 2018. Proceedings in press.

12. Alfonso Rodríguez and Tiziana FANNI, DEMO: Multi-Grain Adaptivity in Cyber-Physical Sys-
tems. Special Session on Energy Efficient Cyber Physical Systems held at the 30th International
Conference on Microelectronics (ICM’18). December 2018. Proceedings in press.

BIBLIOGRAPHY 153

Other scientific papers

1. Francesca Palumbo, Carlo Sau, Tiziana FANNI and Luigi Raffo, Reconfigurable Platform Com-
poser Tool Project, at the 2016 Riunione Annuale del Gruppo Elettronica (GE), Brescia (Italy)
June 2016.

2. Francesca Palumbo, Tiziana FANNI, Carlo Sau, Paolo Meloni and Luigi Raffo, Automated Flow
for Hybrid Clock and Power Gating in Coarse-Grained Reconfigurable Architectures, at the 2017
Riunione Annuale dell’Associazione SocietÃ Italiana di Elettronica (ex GE), Como (Italy) June
2017.

3. Francesca Palumbo, Rubattu Claudio, Carlo Sau, Tiziana FANNI, Paolo Meloni and Luigi Raffo,
Dynamic Trade-Off Management for CPS, at the 2017 Italian Workshop on Embedded Systems
(IWES), Roma (Italy), September 2017.

4. Carlo Sau, Tiziana FANNI, Luigi Raffo and Francesca Palumbo Self-adaptation of Cyber-Physical
Systems, at the 2018 Riunione Annuale dell’Associazione SocietÃ Italiana di Elettronica (ex GE),
Napoli (Italy) June 2018.

5. Tiziana FANNI, Alfonso Rodríguez, Carlo Sau, Francesca Palumbo, Luigi Raffo and Eduardo de
la Torre, Providing Advanced Adaptivity in Cyber-Physical Systems with Multi-Grain Reconfig-
uration, at the 2018 Italian Workshop on Embedded Systems (IWES), Siena (Italy), September
2018.

Appendix A

Logic Regions Algorithms

155

156 APPENDIX A. LOGIC REGIONS ALGORITHMS

ALGORITHM 1: Logic Set Definer: baseline Logic Regions identification. (N =
|LR_M AP |).

foreach DP Ni in input DP N s do
V ′

i =mapping of DP Ni in DP N ;
if isEmpty(LR_M AP) then

//First iteration
S0 =V ′

i ;
put key S0 with value DP Ni in LR_M AP ;

else
foreach S j in LR_M AP keys do

if V ′
i = S j then
//V ′

i is coincident with an already identified LR
add DP Ni to value of key S j in LR_M AP ;
V ′

i = 0
break;

end
if V ′

i ∩S j 6= ; then
//V ′

i partially overlaps with an already identified LR
SN =V ′

i ∩S j ;
put key SN with value DP Ni in LR_M AP ;
S j = S j −SN ;
V ′

i =V ′
i −SN ;

end
end
if !isEmpty(V ′

i) then
//The elements left in V ′

i need to constitute a new LR
SN =V ′

i ;
put key SN with value DP Ni in LR_M AP

end
end

end

ALGORITHM 2: Logic Set Definer: Logic Regions merging. (N = |LR_M AP |).

while N >= T H do
sort LR_M AP basing on C F ;
Slc =lowest cost S j in LR_M AP ;
Ssl c =second lowest cost S j in LR_M AP ;
put key Smr g = Slc ∪Ssl c in LR_M AP ;
add value of key Slc to value of key Smr g in LR_M AP ;
add value of key Ssl c to value of key Smr g in LR_M AP ;
remove keys Slc and Ssl c from LR_M AP ;

end

Appendix B

Logic Regions Identification
Algorithm Extension

ALGORITHM 3: Logic Set Definer: Logic Regions set extension with the SBoxes.
(N = |LR_M AP |).

foreach SBi in C _T AB do
DP NS B i =new empty set;
foreach DP Nk in value of key SBi in C _T AB do

if getSBoxValue(SBi ,DP Nk) != X then
add DP Nk to DP NS B i ;

end
end
add value DP NS B i to key SBi in SB_M AP

end
foreach SBi in SB_M AP keys do

assignedSB=false;
foreach S j in LR_M AP keys do

DP NS B i =value of key SBi in SB_M AP ; DP N s j =value of key S j in LR_M AP ;
if DP NS B i =DP N s j then

add SBi to key S j in LR_M AP ;
assignedSB=true;
break;

end
end
if !assignedSB then

SN = SBi ;
put key SN with value DP Ni in LR_M AP ;

end
end

157

Appendix C

Power Analysis Algorithms

159

160 APPENDIX C. POWER ANALYSIS ALGORITHMS

ALGORITHM 4: Automatic power saving strategy selection for coarse-grain recon-
figurable systems.

PG_set is empty;
CG_set is empty;
foreach LRi in set LRs do

evaluate_area(LRi , ar eath)
end
function: evaluate_area(LRi , ar eath):
calculate_LRi _area;
if ar eaLR > ar eath then

evaluate_PG(LRi);
else

evaluate_CG(LRi);
end
function: evaluate_PG(LRi):
estimate_PG_total_variation;
if PG_tot al _var i ati on < 0 then

estimate_CG_total_variation;
if PG_tot al_var i ati on <CG_tot al_var i ati on then

add LRi to PG_set;
else

add LRi to CG_set;
end

else
evaluate_CG(LRi);

end
evaluate_CG(LRi);
function: evaluate_CG(LRi):
estimate_CG_total_variation;
if CG_tot al_var i ati on < 0 then

add LRi to CG_set;
end

Appendix D

Multi-Grain Adaptivity - Kernel
Adaptation Script

Listing D.1: Kernel Adaptation Script.

package parser ;
import java . u t i l . Scanner ;
import java . io . BufferedReader ;
import java . io . F i l e ;
import java . io . FileReader ;
import java . io . Fi leWriter ;
import java . io . IOException ;
import java . u t i l . ArrayList ;
import java . u t i l .HashMap;
import java . u t i l . L i s t ;
import java . u t i l .Map;

public c l a s s acceleratorParser {
f i n a l s t a t i c Str ing path = " /home/ t i t t i / workspace_java / artico3KernelGen / src / parser " ;
s t a t i c Str ing input = path + " / inputFi le /mm_accelerator . v" ;
s t a t i c Str ing output = path + " / outputFile / cgr_accelerator . v" ;

private s t a t i c i n t num_in ;
private s t a t i c i n t num_out ;
private s t a t i c i n t num_reg ;

private s t a t i c List <String > s i g n a l s = new ArrayList <String > () ;

public s t a t i c void main(Str ing [] args) {
i n t i ;

acquireData () ;
acquireSignals () ;

t r y {
BufferedReader inputFi le = new BufferedReader (new FileReader (input)) ;
Fi leWriter outputFile = new Fi leWriter (new F i l e (output)) ;

// Print i n t e r f a c e

161

162 APPENDIX D. MULTI-GRAIN ADAPTIVITY - KERNEL ADAPTATION SCRIPT

p r i n t I n t e r f a c e (outputFile) ;

// Print s ignal declaration
printSignalsDeclaration (inputFile , outputFile) ;

//Copy necessary l o g i c from input f i l e
copyBody (inputFile , outputFile) ;

// Print assignments
printAssignemnts (outputFile) ;

inputFi le . close () ;
outputFile . close () ;

} catch (Exception e) {
System . out . print ln (" Exception found ! ") ;
e . printStackTrace () ; }

// replace S01 axi clock and rese t s i g n a l s
modifyFile (output , " s01_axi_aclk " , " clk ") ;
modifyFile (output , " s01_axi_aresetn " , " rese t ") ;

// replace S00 axi clock and rese t s i g n a l s
modifyFile (output , " s00_axi_aclk " , " clk ") ;
modifyFile (output , " s00_axi_aresetn " , " rese t ") ;
modifyFile (output , " c l r \ \ (slv_reg0 \ \ [2 \ \] " , " c l r (ready ") ;

cleanSignals (output) ;

// f i x i n g address s i z e and data s i z e
// TODO: This should be managed in MDC
modifyFile (output , "SIZE \\(8 " , "SIZE \ \ (C_ADDR_WIDTH") ;

for (i =0; i < (num_in + num_out) ; i ++){
modifyFile (output , " s lv_reg " + (i +1) + " \\[7 " , " s lv_reg " + (i +1) + " \ \ [C_ADDR_WIDTH−1") ;

}

modifyFile (output , " \ \ [7 : 0 \ \] address_mem_" , " \ \ [C_ADDR_WIDTH−1:0\\] address_mem_") ;
modifyFile (output , " \ \ [7 : 0 \ \] count_" , " \ \ [C_ADDR_WIDTH−1:0\\] count_") ;
modifyFile (output , " \ \ [3 1 : 0 \ \] data_in_mem_" , " \ \ [C_DATA_WIDTH−1:0\\] data_in_mem_") ;
modifyFile (output , " \ \ [3 1 : 0 \ \] data_out_mem_" , " \ \ [C_DATA_WIDTH−1:0\\] data_out_mem_") ;
modifyFile (output , " \\[31 : 0\\] s lv_reg " , " \ \ [C_DATA_WIDTH−1:0\\] s lv_reg ") ;

}

/* *
* Acquire number of input and output ports

*
*/
private s t a t i c void acquireData () {

Scanner keyboard = new Scanner (System . in) ;
System . out . print ln (" Enter number of configuration r e g i s t e r s ") ;
num_reg = keyboard . nextInt () ;

System . out . print ln (" Enter number of inputs ") ;
num_in = keyboard . nextInt () ;
System . out . print ln (" Enter number of outputs ") ;

163

num_out = keyboard . nextInt () ;
keyboard . close () ;

}

private s t a t i c void acquireSignals () {
i n t i ;

// add s i g n a l s not present in modules i n t e r f a c e s
for (i =0; i < (num_in + num_out) ; i ++){

s i g n a l s . add ("address_mem_"+ (i + 1)) ;
s i g n a l s . add ("data_in_mem_"+ (i + 1)) ;
s i g n a l s . add ("data_out_mem_"+ (i + 1)) ;

i f (i < num_in)
s i g n a l s . add ("wren_mem_"+ (i + 1)) ;

e lse
s i g n a l s . add ("rden_mem_"+ (i + 1)) ;

}
s i g n a l s . add ("done") ;
s i g n a l s . add ("done_output") ;
s i g n a l s . add ("done_input") ;

t r y {
Str ing l i n e ;
Str ing tempSignal = " " ;
Str ing signal ;

BufferedReader inputFi le = new BufferedReader (new FileReader (input)) ;

while ((l i n e = inputFi le . readLine ()) != null) {
i f (l i n e . contains (" // Coprocessor Front−End(s) ")) {

break ;
}

}

while ((l i n e = inputFi le . readLine ()) != null) {
i f (l i n e != null && l i n e . contains (" . ") &

l i n e . contains (" (") && l i n e . contains (") ") && ! l i n e . contains (" . SIZE")) {
tempSignal = l i n e . s p l i t (" \ \ (") [1] ;
i f (tempSignal . contains (" ["))

s ignal = tempSignal . s p l i t (" \ \ [") [0] ;
e lse

s ignal = tempSignal . s p l i t (" \ \) ") [0] ;

i f (! s i g n a l s . contains (s ignal))
s i g n a l s . add (signal) ;

}
}
inputFi le . close () ;

} catch (Exception e) {
System . out . print ln (" Exception found ! ") ;
e . printStackTrace () ; }

i f (s i g n a l s . contains (" s t a r t "))
s i g n a l s . remove (" s t a r t ") ;

}

164 APPENDIX D. MULTI-GRAIN ADAPTIVITY - KERNEL ADAPTATION SCRIPT

s t a t i c void p r i n t I n t e r f a c e (Fi leWriter outputFile) {
i n t i ;
// Printing i n t e r f a c e

t r y {
outputFile . write ("//−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
outputFile . write (" // Module i n t e r f a c e \n") ;
outputFile . write ("//−−−−−−−−−−−−−−−−−−−−−−−−\n") ;

outputFile . write ("module cgr_accelerator #(\n"+
"parameter integer C_DATA_WIDTH = 32 , // Data bus width\n" +
"parameter integer C_ADDR_WIDTH = 16 // Address bus width\n\n) \n(" +
" // Global s i g n a l s \n" +
" input clk , \ n" +
" input reset , \ n\n" +
" // Control Signals \n"+
" input wire s t a r t , \ n" +
"output reg ready , \ n\n") ;

outputFile . write (" // Configuration r e g i s t e r s \n") ;
for (i = 0 ; i <num_reg ; i ++){

outputFile . write ("output wire [C_DATA_WIDTH−1 : 0] reg_ " + i + "_o , \ n" +
"output wire reg_ " + i + " _o_vld , \ n" +
" input [C_DATA_WIDTH−1 : 0] reg_ " + i +" _i , \ n\n") ;

}

outputFile . write (" // Data memories \n") ;
for (i =0; i < (num_in + num_out) ; i ++){

outputFile . write (" output bram_"+ i +" _clk , \ n" +
"output bram_"+ i +" _rst , \ n" +
"output wire bram_" + i + "_en , \ n" +
"output wire bram_" + i + "_we , \ n" +
"output wire [C_ADDR_WIDTH−1 : 0] bram_" + i + "_addr , \ n" +
"output wire [C_DATA_WIDTH−1 : 0] bram_" + i + "_din , \ n" +
" input wire [C_DATA_WIDTH−1 : 0] bram_" + i + "_dout , \ n\n") ;

}

outputFile . write (" // Data Counter \n" +
" input [31 : 0] values) ; \ n\n\n") ;
// Ending printing i n t e r f a c e

} catch (IOException e) {
e . printStackTrace () ; }

}

s t a t i c void printSignalsDeclaration (BufferedReader inputFile , Fi leWriter outputFile) {
Str ing l i n e ;
i n t i ;

t r y {
while ((l i n e = inputFi le . readLine ()) != null) {

i f (l i n e . contains (" // Module Signals "))
outputFile . write (" // −−−−−−−−−−−−−−−−−−−−−−−−\n") ;

outputFile . write (l i n e + " \n") ;

165

break ;
}

while ((l i n e = inputFi le . readLine ()) != null) {
i f (! l i n e . contains (" // Body"))

outputFile . write (l i n e + " \n") ;
e lse

break ;
}
outputFile . write (" // End module s i g n a l s declaration \n") ;
} catch (IOException e) {
e . printStackTrace () ; }

}

s t a t i c void copyBody (BufferedReader inputFile , Fi leWriter outputFile) {

//Copy necessary l o g i c from input to output f i l e
Str ing l i n e ;

t r y {
while ((l i n e = inputFi le . readLine ()) != null) {

i f (l i n e . contains (" // Coprocessor Front−End(s) "))
break ;

}

outputFile . write (" // Logic to manage ready signal \n"
+ " // −−−−−−−−−−−−−−−−−−−−−−−−\n"
+ "always@ (posedge clk or negedge re set) \n"
+ " i f (! r eset)\n"
+ " ready <= 1 ; \n"
+ " else \n"
+ " i f (s t a r t) ready <= 0 ; \n"
+ " else i f (done) ready <= 1 ; \n\n"
+ " \n\n// −−−−−−−−−−−−−−−−−−−−−−−−\n"
+ " // Coprocessor Front−End(s)\n") ;

while ((l i n e = inputFi le . readLine ()) != null) {
i f (! l i n e . contains ("endmodule"))

outputFile . write (l i n e + " \n") ;
e lse

break ;
}

} catch (IOException e) {
e . printStackTrace () ; }

}

s t a t i c void printAssignemnts (Fi leWriter outputFile) {
i n t i ;

t r y {
// assignments
for (i =0; i < (num_in + num_out) ; i ++){

i f (i <num_in) {
outputFile . write (" \ nassign bram_" + i + " _ r s t = ! r eset ; \ n" +
" assign bram_" + i + "_en = rden_mem_" + (i +1) + " ; \ n" +
" assign bram_" + i + "_we = wren_mem_" + (i +1) + " ; \ n" +

166 APPENDIX D. MULTI-GRAIN ADAPTIVITY - KERNEL ADAPTATION SCRIPT

" assign bram_" + i + "_addr = address_mem_" + (i +1) + " ; \ n" +
" assign bram_" + i + " _din = data_in_mem_" + (i +1) + " ; \ n" +
" assign data_out_mem_" + (i +1) + " = bram_" + i + "_dout ; \ n") ;

}
e lse {

outputFile . write (" \ nassign bram_" + i + " _ r s t = ! r eset ; \ n" +
" assign bram_" + i + "_en = wren_mem_" + (i +1) + " ; \ n" +
" assign bram_" + i + "_we = wren_mem_" + (i +1) + " ; \ n" +
" assign bram_" + i + "_addr = address_mem_" + (i +1) + " ; \ n" +
" assign bram_" + i + " _din = data_in_mem_" + (i +1) + " ; \ n" +
" assign data_out_mem_" + (i +1) + " = bram_" + i + "_dout ; \ n") ;

}
}

for (i =0; i < (num_reg) ; i ++){
outputFile . write (" \ nassign slv_reg " + i + " = reg_ " + i + " _ i ; \ n" +
" assign reg_ " + i + " _o_vld = 1 ’b0 ; \ n" +
" assign reg_ " + i + "_o = {C_DATA_WIDTH{ 1 ’ b0 } } ; \ n") ;

}

outputFile . write (" \nendmodule\n") ;
} catch (IOException e) {
e . printStackTrace () ; }

}

s t a t i c void modifyFile (Str ing f i lePath , Str ing oldString , Str ing newString) {

F i l e fileToBeModified = new F i l e (f i l e P a t h) ;
Str ing oldContent = " " ;
BufferedReader reader = null ;
Fi leWriter writer = null ;

t r y
{

reader = new BufferedReader (new FileReader (fileToBeModified)) ;

// Reading a l l the l i n e s of input t e x t f i l e into oldContent
Str ing l i n e = reader . readLine () ;
while (l i n e != null) {

oldContent = oldContent + l i n e + System . lineSeparator () ;
l i n e = reader . readLine () ;

}

// Replacing oldString with newString in the oldContent
Str ing newContent = oldContent . replaceAl l (oldString , newString) ;

// Rewriting the input t e x t f i l e with newContent
writer = new Fi leWriter (fileToBeModified) ;
writer . write (newContent) ;

}
catch (IOException e) {
e . printStackTrace () ; }

f i n a l l y {
t r y {

// Closing the resources

167

reader . close () ;
writer . close () ;
}

catch (IOException e) {
e . printStackTrace () ; }

}
}

private s t a t i c Boolean copyLine (Str ing l i n e) {
Boolean copy = true ;
Str ing signal = " " ;

i f (l i n e . contains (" wire ") | | l i n e . contains (" reg ")) {
i f (l i n e . contains (" wire ")) {

s ignal = l i n e . s p l i t (" wire ") [1] ;
s ignal = signal . s p l i t (" ; ") [0] ;
i f (s ignal . contains ("] ")) {

s ignal = signal . s p l i t (" \ \] ") [1] ;
}

}

i f (l i n e . contains (" reg ")) {
s ignal = l i n e . s p l i t (" reg ") [1] ;
s ignal = signal . s p l i t (" ; ") [0] ;
i f (s ignal . contains ("] ")) {

s ignal = signal . s p l i t (" \ \] ") [1] ;
}

}

i f (s ignal . contains (" ")) {
s ignal = signal . s p l i t (" [\ \ s \\xA0]+ ") [1] ;

}

i f (s i g n a l s . contains (s ignal))
copy = true ;

e lse
copy = f a l s e ;

}
return copy ;

}

s t a t i c void cleanSignals (Str ing f i l e P a t h) {

F i l e fileToBeModified = new F i l e (f i l e P a t h) ;
Str ing newContent = " " ;
BufferedReader reader = null ;
Fi leWriter writer = null ;
Str ing l i n e ;

t r y {
reader = new BufferedReader (new FileReader (fileToBeModified)) ;

//Copy a l l the l i n e s of input t e x t f i l e u n t i l s i g n a l s declaration s t a r t s
while ((l i n e = reader . readLine ()) != null) {

i f (l i n e . contains (" // Module Signals "))
break ;

168 APPENDIX D. MULTI-GRAIN ADAPTIVITY - KERNEL ADAPTATION SCRIPT

else
newContent = newContent + l i n e + System . lineSeparator () ;

}

// copy only necessary signals , from s i g n a l s declaration
while ((l i n e = reader . readLine ()) != null) {

i f (l i n e . contains (" // End module s i g n a l s declaration "))
break ;

e lse
i f (copyLine (l i n e))

newContent = newContent + l i n e + System . lineSeparator () ;
}

//Copy a l l the l i n e s of input t e x t f i l e u n t i l the end of the f i l e
while ((l i n e = reader . readLine ()) != null) {

newContent = newContent + l i n e + System . lineSeparator () ;
}

// Rewriting the input t e x t f i l e with newContent
writer = new Fi leWriter (fileToBeModified) ;
writer . write (newContent) ;

reader . close () ;
writer . close () ;

}
catch (IOException e) {
e . printStackTrace () ; }

}
}

	List of Figures
	List of Tables
	Introduction
	Objectives of the Thesis
	Thesis Structure

	Literature
	Reconfigurable Computing
	Fine-Grain Reconfiguration
	Coarse-Grain Reconfiguration
	Composition

	System Level Modelling: The Dataflow Paradigm
	Dataflow Models of Computation
	DSP-oriented Dataflow-based Tools

	Power Issue in Digital Circuits

	MDC: Multi-Dataflow Composer Tool
	Baseline MDC Core
	Structural Profiler
	Step-by-Step Example

	Dynamic Power Management
	Clock Gating Implementation
	Step-by-Step Example

	Coprocessor Generator
	Template Interface Layer
	Driver Specification
	coprocessor Deployment

	CGR on ASIC - Automating PG
	State of the Art: Power Management in ASIC systems
	Methodology
	Automatic Power Gating Implementation
	Step-by-step example

	Integration in MDC
	Assessment
	Assessment Setup
	90 nm CMOS Technology: complete power gating support
	90 nm CMOS Technology: application-specific power gating support
	Preliminary Results Over a 45 nm Technology

	Chapter Remarks

	CGR on ASIC - Power Modelling
	State of the Art: Modelling Power Consumption in Coarse-Grain Reconfigurable ASIC architectures
	Methodology
	Power Gating - Power Consumption Models
	Clock Gating - Power Consumption Models
	Parameters Discussion
	Power Analysis Algorithm

	Integration in MDC
	Step-by-step example

	Assessment
	Evaluation Phase - Fast Fourier Transform Algorithm
	Validation Phase - Zoom Application
	Power switch overhead
	Advantages of the proposed approach

	Chapter Remarks

	CGR on FPGA - the LWDF Methodology
	SOA on Power Management in Dataflow-based designs
	LWDF

	Methodology - LWDF
	Actor Invoke Module
	Actor Enable Module
	Actor Scheduling Module
	Dataflow Edge Module

	Lightweight Dataflow Environment for LWDF-V methodology - LIDE-V
	Asynchronous LIDE-V Design
	Clock Gating
	FIFOs comparison

	Experimental Results
	LWDF-V Implementation of Deep Learning Neural Network Application
	Hardware Profiling
	The Application of Low Power Techniques

	Chapter Remarks

	Multi-Grain Adaptivity on FPGA
	SOA on Multi-Grain Reconfiguration
	Methodology - Multi-Grain Adaptivity
	The ARTICo3 Framework
	New Coprocessor Generator for MDC
	Kernel Adapter
	Step-by-Step Example

	Assessment
	Test Case: Edge Detection - Sobel and Roberts algorithms
	Designs Under Tests
	Experimental Results

	Chapter Remarks

	Concluding remarks
	Future Works

	Bibliography
	Logic Regions Algorithms
	Logic Regions Identification Algorithm Extension
	Power Analysis Algorithms
	Multi-Grain Adaptivity - Kernel Adaptation Script

