
Implementing a Microservices System with
Blockchain Smart Contracts

Roberto Tonelli
Department of Mathematics and Computer Science

University of Cagliari
Cagliari, Italy

roberto.tonelli@dsf.unica.it

Maria Ilaria Lunesu, Andrea Pinna
Department of Electrical and Electronic Engineering (DIEE)

University of Cagliari
Cagliari, Italy

ilaria.lunesu@diee.unica.it, a.pinna@diee.unica.it

Davide Taibi
Tampere Software Engineering Group (TaSE)

Tampere University
Tampere, Finland
davide.taibi@tuni.fi

Michele Marchesi
Department of Mathematics and Computer Science

University of Cagliari
Cagliari, Italy

marchesi@unica.it

Abstract—Blockchain technologies and smart contracts are
becoming mainstream research fields in computer science and
researchers are continuously investigating new frontiers for new
applications. Likewise, microservices are getting more and more
popular in the latest years thanks to their properties, that
allow teams to slice existing information systems into small and
independent services that can be developed independently by
different teams.

A symmetric paradigm applies to Smart Contracts as well,
which represent well defined, usually isolated, executable pro-
grams, typically implementing simple and autonomous tasks
with a well defined purpose, which can be assumed as services
provided by the Contract. In this work we analyze a concrete
case study where the microservices architecture environment
is replicated and implemented through an equivalent set of
Smart Contracts, showing for the first time the feasibility of
implementing a microservices-based system with smart contracts
and how the two innovative paradigms match together.

Results show that it is possible to implement a simple
microservices-based system with smart contracts maintaining the
same set of functionalities and results. The result could be highly
beneficial in contexts such as smart voting, where not only the
data integrity is fundamental but also the source code executed
must be trustable.

Index Terms—Microservice, Cloud Native, Blockchain, Smart
contract, Serverless

I. INTRODUCTION

Microservice architecture becomes more an more popular in
the latest years. Microservices are small and autonomous ser-
vices deployed independently, with a single and clearly defined
purpose [23]. Because of their independent deployment, they
have a lot of advantages. They can be developed in different
programming languages, they can scale independently from
other services, and they can be deployed on the hardware
that best suits their needs. Moreover, because of their size,
they are easier to maintain and more fault-tolerant since the
failure of one service will not break the whole system, which
could happen in a monolithic system. Another characteristic of
microservices is, being cloud native applications, the support

of the IDEAL properties: Isolation of state, Distribution,
Elasticity, Automated management and Loose Coupling [23].
Moreover, microservices propose to vertically decompose the
applications into a subset of business-driven services. Every
service can be developed, deployed and tested independently
by different development teams, and by means of different
technology stacks. The responsibility of the development of a
microservice belong only to one team, who is in charge of the
whole development process, including deploying, operating
and upgrading the service when needed, reducing the need of
communication with other teams [27] and reducing the need
of synchronization when identifying the requirements [28].

On the other hand Smart Contracts are computer programs
written in a Turing complete programming language, living
and running on a blockchain backbone, written with the
purpose of enforcing agreements between two parties in a
decentralized, untrusted environment with no control of a
central authority.

Smart Contracts are self contained programs which are
deployed into the blockchain environment where the Ethereum
Virtual Machine (EVM) executes them in a decentralized
scheme. They can execute any kind of computation and have
a storage available where data and state can be saved. As a
general view, Smart Contracts can be thought as self contained
pieces of code providing services to the external world, and
the blockcahin environment can be considered as the gateway
by which Smart Contracts provide such services. Even if the
code is permanently stored as it is, another Smart Contract
enhancing or correcting a previous one can be deployed in
the blockchain in order to implement versioning to correct
bugs, to refactor or to add new features to the software code.
Such possibility renders the plug and play scheme feasible
for Smart Contracts living in the blockchain providing an
architecture which is strongly overlapping to the microservices
one. Furthermore Smart Contracts can easily be implemented
so that their state and internal variables in the blockchain

Pre-proceedings Author Version. Please, cite as:
Roberto Tonelli; Maria Ilaria Lunesu; Andrea Pinna; Davide Taibi; Michele Marchesi. "Implementing a Microservices System with Blockchain Smart Contracts"
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain - Colocated with SANER19, 2019

storage are not necessarily used and the persistence can be
altered by replacing a Smart contract with a new one. This
scheme can be adopted to make Smart Contracts perform as
microservices, which are stateless, use only internal data and
are not persistent. Finally where microservices architecture is
implemented by a API Gateway which allows communications
among services and rest calls manage interface communi-
cations, Smart Contracts architecture can take advantage of
the Web3.js infrastructure for implementing and managing
communications between services provided by contracts [13].

The goal of this paper is to prove that it is possible
to fully implement a system based on microservices with
Smart Contracts. Our objective is to demonstrate that, given
the similarity of the two approaches, the architecture of a
microservice system can be reproduced by a proper set of
Smart Contracts which can provide the same services through
the blockchain, with the main advantage that every change and
operation are permanently and transparently recorded into the
blockchain ledger.

In this paper we deeply dig into such analogy and implement
an existing microservices-based system using a set of Smart
Contracts written in Solidity and tested on the Remix facility
provided by Ethereum. Each Smart Contract provides its own
service so that the microservices architecture is completely
replicated into the Ethereum blockchain. We adopt Solidity
Smart Contracts, where setter public functions and getter
public view functions replace the functionality provided by
the microservices and rest calls are implemented by means
of the calling of specific public functions of smart contracts
deployed in the blockchain.

Our work discusses advantages and disadvantages of the
two approaches and demonstrates how the new emerging
blockchain technology can be quickly adapted to well perform
in substitution of another existing software technology and
architecture.

The result of this case study, where we provide the complete
Solidity working code (tested on Remix) and design the
smart contracts architecture for mapping into the blockchain a
concrete example of service provided through a microservices
architecture, proves that it is possible to implement a basic
microservices-based system with smart contracts. Relative
advantages and disadvantages of the two approaches are yet
to be fully explored and understood.

The remainder of this papers is organized as follows. In
Section II we describe the related works and the ideas behind
smart contracts implementation of a microservice architecture,
in Section III we briefly compare microservices with smart
contracts. In Section IV we describe the microservice-based
system we are aiming at re-implement with smart contracts. In
Section V we describe the implemented set of smart contracts
and how do they work also comparing the source codes of the
microservice and the smart contract solutions. In Section VI
we discuss the outcomes and finally in Section VII we draw
conclusions, providing recommendations on how to implement
a smart-contract-based system and how to generalize the
results of this study in other contexts.

II. BACKGROUND AND RELATED WORK

The Ethereum blockchain and the use of smart contracts
are quite recent topics in the computer science literature.
The Ethereum white and yellow papers [13] [31] issued
in 2013/14 describe purpose and architecture of Ethereum
blockchain, of the Ethereum Virtual Machine (EVM), of the
Abstract Binary Interface (ABI) used to encode programs writ-
ten in a high level programming language into the bytecode
managed by the EVM. Since then, the architecture as well
as the Solidity programming language [32] evolved, many
researchers started to look for applications and to analyze
smart contracts structure and potential.

A. Smart Contracts and Microservices

In this paper we refer to the best known and most used smart
contract paradigm, that of the Ethereum blockchain, where the
programming language is Solidity, a language derived by C,
C++ and Javascript, but our approach can be generalized to
different blockchain and programming languages, such as Hy-
perledger and GO. As already stated, smart contracts are self
contained programs which are deployed into the blockchain
environment where the Ethereum Virtual Machine (EVM)
executes them in a decentralized scheme. They can execute
any kind of computation and have a storage available where
data and state can be saved. smart contracts interaction can be
managed through the Web3.js library, which allows external
users to set contracts variables, to call contract functions and to
get data from a smart contract. smart contracts can also interact
with each other since a smart contract can send messages to
other smart contracts in the blockchain. We recall that smart
contracts can be thought as self contained pieces of code pro-
viding services to the external world, where the “world” can
be another smart contract or an external user, and the Web3.js
library or the blockcahin environment can be considered as the
gateway by which smart contracts provide such services. Even
if the code, once deployeed in the blockchain, is permanently
stored as it is, due to the blockchain features of immutabil-
ity of previous blocks, another smart contract enhancing or
correcting a previous one can be deployed in the blockchain
in order to implement versioning to correct bugs, to refactor
or to add new features to the software code. Currently there
are projects which adopt this strategy in the blockchain, like
0x.project [30]. As claimed in the introduction, such possibility
renders the plug and play scheme feasible for smart contracts
living in the blockchain providing an architecture which is
strongly overlapping to the microservices one and where the
IDEAL properties can be supported as well. Furthermore,
even if smart contracts have a state, hold variables and are
persistent in the blockchain, they can easily be implemented,
for example by the use of “view” and “pure” functions alone,
so that their state and internal variables in the blockchain
storage are not necessarily used and the persistence can be
altered by replacing a smart contract with a new one. This
scheme can be adopted to make smart contracts perform
as microservices, which are stateless, use only internal data
and are not persistent. Finally, pushing the analogy further,

where microservices architecture is implemented by a API
Gateway which allows communications among services and
rest calls manage interface communications, smart contracts
architecture can take advantage of the Web3.js infrastructure
for implementing and managing communications between
services provided by contracts. It is also possible, but is out of
the scope if this paper, to organize interactions among Smart
Contracts written in different programming languages, like
for example in the Hyperledger blockchain, completing the
analogy with microservices where the different services can
be implemented using different programming languages.

B. Related works

To the purpose of this paper we focus our attention on the
following research works.

One of the first applications of this technology is represented
by the electronic voting as argued in [5] by McCorry et al.
that discussed about the first implementation of a decentralized
and self-tallying internet voting protocol with maximum voter
privacy using the blockchain. They choose to implement the
boardroom voting protocol as a smart contract on Ethereum.
These smart contracts have an expressive programming lan-
guage and the code is directly stored on the blockchain.

An other valid context, where smart contract have been
used, is logistic field as argued by Casado et al. in [8],
authors proposed a system that uses smart contracts to remove
intermediaries and speed up logistics activities. The new im-
plemented model combines smart contracts and a multi-agent
system to improve the current logistics system by increasing
organization, security and significantly improving distribution
times.

Smart contracts inherit the availability and other security
assurances of blockchains, however, they are impeded by
blockchains lack of confidentiality and poor performance. In
[9] authors present Ekiden, a system that addresses these
critical gaps by combining blockchains with Trusted Execution
Environments (TEEs). Ekiden leverages a novel architecture
that separates consensus from execution, enabling efficient
TEE-backed confidentiality-preserving smart contracts and
high scalability.

In [10] Zhang et al. propose an IoT E-business model with
the aim to redesign many elements in traditional E-business
models and realize the transaction of smart property and paid
data, on the IoT, with the help of blockchain and smart
contract technologies. In addition a description of holonic
energy systems and the implicit research required towards
sustainability and resilience in the imminent energy landscape
was provided.

In [11] Casado et al. propose a new model of supply chain
via blockchain, as the used used till now model has some
disadvantages, such as the relationships between the members
of the supply chain or the lack of information for the consumer
about the origin of the products. Using blockchain to build
IoT system might facilitate the control and configuration of
IoT devices.

In [12] Huh et al. argue that Ethereum has been chosen
as blockchain platform because using its smart contract, it
is possible to write a Turing-complete code. It also allows
to easily manage configuration of IoT devices and build key
management system and simply use account as a key man-
agement system, which most of blockchain platform supports.
the decision to use Ethereum because it allow to can manage
the system in a more fine-grained way.

Cunningham et al. in [14] present an implemented sys-
tem based on Ethereum platform, a smart contract based,
distributed ledger system for facilitate a secure patiens’access
to their own records with private data. Through Ethereum were
provided the core blockchain capabilities allowing for hosting
within a trustless, secure environment, and a smart contract
implementation and for the programmatic implementation of
the API directly on the platform itself.

Ekblaw et al. in [15] discuss a system that helps patients
for a comprehensive, immutable log and easy access to their
medical information across providers and treatment sites.
Leveraging unique blockchain properties, MedRec manages
authentication, confidentiality, accountability and data sharing-
crucial considerations when handling sensitive information.
Ethereum’s smart contracts were used to create intelligent
representations of existing medical records that are stored
within individual nodes on the network. The contracts were
constructed in order to contain metadata about the record
ownership, permissions and data integrity. The blockchain
transactions in the presented system carry cryptographically
signed instructions to manage these properties.

Two recent events raised the attentions of the computer
science community on Smartcontracts. The DAO project was
initiated in 2016 followed by a great clamor when a improper
use and coding of a multisig smart contract allowed a single
owner to withdraw Ethers from the wallet and causing the
famous Ethereum fork. A year later (Nov. 2017) the Parity wal-
let, a wallet for exchanging and managing cryptoccurrencies as
well as ownership of smart contracts founds was accidentally
corrupted by an “unexperienced” user, deleting the wallet
library by a misuse of the “suicide” function and causing the
frozen of all the Ethers managed by the Parity wallet library
(around 560 million dollars at the time). The exceptional case
was investigated by Destefanis et. al [20] who illustrated the
pitfalls in the specific case and in a general approach to
smart contracts programming. They, also, hightlighted the need
for a discipline such as Clockchain Software Engineering,
addressing the issues posed by smart contract programming
and other applications running on blockchains [3]. A case of
study about a bug discovered in a smart contract library that
caused the freezing of about 500K Ethers (about 150M USD,
in November 2017) was deeply analysed together with the
source code of Parity and the library in order to recognised best
practices for mitigating, in case of need software misconduct.
In 2017 Porru et al. [4] recognized the need for a structured
approach to the design of smart contract applications running
onto a blockchain and coined the term BOSE (“Blockchain
Oriented Software Engineering”). In [35] Pinna et al. de-

veloped a tool based on petri nets for analyse cryptovalues
transactions within the Blockchain with the aim to evaluate
the users behaviour. sono stati sviluppati tool di analisi per
le transazioni di criptovalute all’interno della blockchain allo
scopo di valutare il comportamento degli utenti.

The lack of inspectability of a deployed contract by an-
alyzing contract state using decompilation techniques driven
by the contract structure definition represents a common issue
and guides the study conducted by Bragagnolo et al. [21]
that presents SmartInspect as an innovative solution that uses
a mirror-based architecture to locally represent object respon-
sible for the interpretation of the contract state. SmartInspect
facilitates the work of developers in fact it proposes itself as a
supports to better visualize and understand the contract stored
state without needing to redeploy nor a code customization.

Creating a writing well performing and secure contracts in
Ethereum is an issue todays most prominent and find a valid
solution is a more difficult task. In [19] using Grounded
Theory techniques to extract and identify the patterns For
this purpose, Wohrer et al. present a set of common security
patterns as a support to specific security issues that can be
applied to mitigate typical attack scenarios.

In [22] Fenu et al. analyzed the smart contracts standard
used to manage the tokens of 1388 ICOs they examined. These
ICOs were published on 2017 on icobench.com website and
the analysis was focused on the evaluation of their quality
and software development management and also on discover
the features that can influence the ICO success. In a similar
way Hartmann et al. [34] analyzed a set of ICO evaluation
websites to reveal the state of the practice in terms of ICO
evaluation. Key information about ICOs collected by these
websites are categorised, and key factors that differentiate the
evaluation mechanisms employed by these evaluation websites
are identified. The findings of this study could help a better
understanding of what entails to properly evaluate ICOs. Like-
wise Ibba et al. [33] performed a deep analysis of thousands
ICOs with the aim to understand software engineering activ-
ities related to ICOs, to recognize the ICOs developed using
Agile methods and to make a comparison between ICOs and
Agile ICOs. In addition, the analysis of Agile ICOs concerned
particularly project planning, software development, and code
features.

In 2018 the similarities between the microservices paradigm
and architecture and the symmetric smart contract structure
was first noted by [29], and the authors proposed an ar-
chitecture scheme where the role and the services of each
Micorservice were implemented by corresponding smart con-
tracts written in Solidity and running onto the Ethereum
blockchain.

Grossmann et al. in [16] presented a generic correctness
condition for callbacks, Effective Callback Freedom. They,
also, showed that Ethereum might be used to prevent bugs
without drastically limiting programming style and can be
checked dynamically with low runtime overhead with an
particular focus towards to microservices.

In 2017, Kapitonov et al. in [17] show, how to orga-

nize a communication system between agents in a peer-to-
peer network using the decentralized Ethereum blockchain
technology and smart contracts. Was implemented a protocol
that allows the connection of a different agents variety to a
general network in which each agent can request and offer
different services transfer of data from agent sensors, moving
to a desired point, cargo transportation and any other work
that autonomous agents are able to perform. The proposed
system represents a Blockchain-microservices combination
considering the strengths of both technologies.

In this work [18] authors describe how content sessions can
be dynamically mapped to network service chains through
network “softwarization” and the use of microservices. In
particular they conducted a study on how blockchain-powered
smart contracts and network service chaining can be exploited
to support such novel collaboration schemes. The findings
of their study showed how existing technologies can be
complemented by supporting a wide range of business cases
while at the same time significantly reducing costs.

Symmetrically, the paradigm of microservices architecture
appeared for the first time in 2012 with the purpose of de-
compose a monolithic software architecture into separated and
independent services with the aim of developing independently
deployable services to ease the distributed development and
improve the overall system’ maintenance easiness. Microser-
vices become mainstream in the last years. Big companies
such as Amazon, Netflix, Spotify and many others are using
them, and all other companies are adapting and following the
trend, to benefit of the advantages of microservices [2], in
some cases migrating and re-architecting existing applications
to microservices, in other cases starting the development of
new application from their Minimum Viable Product [7] with
microservices.

III. THE PROPOSED ARCHITECTURE

Before describing the details of the case study we imple-
mented we compare the microservice and the smart-contract
architecture.

In order to map a general microservice architecture into an
architecture where services are provided by smart contracts
we consider as paradigmatic example that of an information
system where doctors can keep track of their patients and of
the diagnosis they made.

Microservices-based systems are usually built with three
layers. The graphical user interface, the API-Gateway and the
microservices (see Figure 1). Any device can be connected to
the system through the API-Gateway. The role of the API-
Gateway is to provide a custom interface for each type of
device, usually exposing a set of REST APIs. As example,
the API-Gateway can implement a set of interfaces for a web
application, other interfaces for a mobile application and other
interfaces to expose data publicly. The API-Gateway then calls
the different microservices and returns the result to the caller.
The direct communication between the graphical user interface
and the single microservice is considered an anti-pattern, even
if technically possible [25] [26]. The API-Gatweay can also

be responsible of the load balancing. Microservices usually
adopt lightweight message queues to communicate, adopting
the publisher-subscriber pattern. A microservice commonly
publishes the message into a channel of the message bus. Other
microservices can subscribe to the same channel and read the
messages received.

Similarly to the common microservice architecture, the
corresponding smart contracts architecture is built on two
layers as depicted in figure 2. The first layer is the interface
between external applications and the blockchain. It provides
the Application Binary Interface (ABI) to interact with the
smart contracts and the User Interface in which ABI are em-
bedded. Specifically, an external App can use ABI exposed by
each smart contract to compose and perform service requests.
The ABIs allow to specify the functions to call and manage
the correct format of data exchanged with the smart contracts.

The second layer is composed by the set of smart contracts
deployed into the blockchain. In this architecture our solutions
is the simplest: each Micoservice is implemented by a single
“atomic” smart contract, which allows to simply convert the
software code usually embedded in a Java class providing
the microservice into the corresponding Solidity code for
each smart contract. Other solutions can be devised, but we
consider this the easiest for mapping one architecture to the
other for our purposes. Layer communications is governed
by remote procedure calls (RPC) by means of the Web3.js
library provided by Ethereum 4, which is designed for im-
plementing Javascript code for executing blockchain trans-
actions, calls to contracts, queries and for generally manage
the interaction among external Apps and blockchain. In this
layer the blockchain features, specific for each blockchain
and each Contract programming language, can then be used
for implementing specific services. In our model each user
is identified by its Ethereum address. An account service is
provided (for example through a mapping construct) by a
smart contract which registers and manages the accounts. For
example, one can deine services for an online shop (which is a
typical example for microservice architectures) and Customers
profiles can be defined so that different permits or privileges
can correspond to different services provided by the layer. Data
are automatically and permanently stored on the blockchain,
so that local resources are not needed for this purpose since
each blockchain node (which can implemented in a private
blockchain) holds its own copy. Login and registration pro-
cedures are implemented each by an atomic microservice in
separated smart contracts. For the online shop example an
inventory service can record information on products on the
blockchain and can expose the information on the Storefront
web page or directly to the Apps. An ad-hoc smart contract
can manage the delivery service recording all the needed data.

IV. THE MICROSERVICES-BASED SYSTEM

In this section we describe the microservices-based system
that we re-implemented with smart contracts. To validate the
feasibility of our approach, and for reason of simplicity, the

system of this case study is composed by only three microser-
vices. The same implementation approach could be extended
to more complex systems by adding more microservices.

In this case study, we adopted a simple microservice-based
application composed by three microservices. The system is
an extension of the tutorial presented by Edureka [24].

The system is composed by three microservices written in
Java: Doctor, Patient and Diagnosis. The goal of the system is
to allow doctors to keep track of diagnosis for the diseases of
their patients. The Edureka tutorial shows how to implement
the system by microservices and how to call them to produce
an output by composing the formatted outputs (in JSON
format) obtained by calling other microservices.

The microservices are accessed from the web user interfaces
through an API-Gateway that routes the requests and forward
the messages. The system is depicted in Figure 1 while the
original source code is available online [24].

Beside its simplicity, the system implemented includes
several characteristics of real and bigger systems. It exposes
APIs to connect to the graphical user interface, it enables
microservices to communicate between each other, and stores
the data in independent non-sql databases.

V. BLOCKCHAIN IMPLEMENTATION OF THE CASE STUDY

In this section we describe how we implemented the
microservices-based system described in Section IV with
smart contracts based on Ethereum blockchain. We started
from the premise that Ethereum allows the creation of de-
centralized applications operating in devices connected to the
peer-to-peer network. That application works in the Ethereum
Virtual Machine and are named smart contracts. To create a
running smart contract, developers have to write its source
code in solidity language, to compile it with the most updated
version of the solidity compiler, and to deploy the smart
contract in the blockchain. Once deployed, the smart contract
becomes a unique and independent resource, characterized by
its address, its logic and its ABI. The smart contract address
represents the resource URL from the blockchain’s point of
view. For that reasons, and to replicate the behaviour of the
case study, we implemented a total of three atomic smart
contracts, one for each microservice we wanted to implement.
Our goal is to create a remotely callable smart contract Doctor
which generates requested data by calling other two remote
contracts knowing only their address and their interface.

To easily manage the dependencies between elements dec-
larations we wrote our three smart contracts in a single
source code compliant with the version 0.5.0 of solidity. We
decided to use one of the experimental additional features
of the solidity compiler. In particular our system uses the
”AbiEncoderV2” to enable functions to returns composite data
type like “structs”.

First of all we reproduced the microservice Patient and
Diagnosis services written in the Java source code that aim
to collect data and to provide simply getter and setter func-
tionalities. To reproduce the concept of data encapsulation, we
implemented these two classes as solidity libraries. In facts,

Doctor

Web user

interface

Patient

Disease
RPC

RPC

RPC

Browser

Application

Web

API-Gatweay Microservices
Interface

Layer

Doctor

Web user

interface

ABI

Patient

Diagnosis
RPC

RPC

RPC

Web

ABI

Fig. 1. Microservices-Based Architecture of the system

Doctor

Web user

interface

ABI

Patient

Diagnosis
RPC

RPC

RPC

Browser

Application

Web

Blockchain Smart Contracts
Layer

ABI

Interface
Layer

Fig. 2. Blockchain-based Architecture of the system

if library functions are called, their code is executed in the
context of the calling contract. In addition, libraries can refer
to its own elements using the keyword self. This behavior
is similar to that of a class calling a class method in object
oriented languages.

Subsequently we reproduced the class Doctor. Variables of
this class includes diagnosis and patient that are respectively
instances of the classes Diagnosis and Patient. In our smart
contracts, class instances are implemented as “struct” vari-
ables managed by the libraries functions. The library Patient
includes variables ID, patient name, patient email and related
getters and setters. The library Diagnosis includes variables
ID, disease name, disease description and related getters and
setters.

After created the libraries, we reproduced the behavior of
classes PatientRest and DiagnosisRest by solidity contracts. In
original, the two Java classes manage an array of instances of
Patient or Diagnosis. Instead of arrays, we used the mapping
data type. This is a key-value data structure that is more
efficient than arrays in the Ethereum blockchain in terms
of resources and gas consumption. Rest calls have been
replaced by specific “public functions”. For this reason we
calls our contract PatientPseudoRest and DiagnosisPseudoR-
est. In solidity the keyword public is a visibility modifier
that allows the function to be callable both by other contracts
and by blockchain users. The public function of the contract
PatientPseudoRest representing the microservice is getPatient.
It takes as input an ID of a patient and returns a Patient
data. The public function of the contract DiagnosisPseudoRest
representing the microservice is getDiagnosis, which takes as
input an ID of a diagnosis and returns the complete set of data
matching with the ID.

Finally we reproduced the behavior of the class DoctorRest.
We ported the behavior of the Java class. It knows the URI
of the microservices Diagnosis and Patient, and provides a
callable REST function that, given the ID of a patient and the
id of a disease, calls and acquires information generated by

the two microservices. Finally it returns a composition of the
data. We implemented a contract DoctorPseudoRest that calls
at run time the contracts. For this reason DoctorPseudoRest
must know the addresses of PatientPseudoRest and of Diagno-
sisPseudoRest. and so the contract constructor requires these
two addresses. The DoctorPseudoRest provides the function
submitOrder replicating the behavior of the equivalent REST
call in the original case study. The calling of remote con-
tracts is performed by means of the definition of a contract
pointer that allows the contract to execute its public functions.
The function submitOrder produces a formatted output that
includes data related to the specific patient and to the specific
disease.

A. Smart Contracts code

Below we report the smart contracts source code.
The first two rows indicate instructions to the compiler.

pragma e x p e r i m e n t a l ABIEncoderV2 ;
pragma s o l i d i t y >=0.4.25 <0 .6 .0 ;

The code continues with the definition of the library Diag-
nosis. This library contains a “struct” in which the diagnosis
data are defined. The functions defined below are the getter
and the setter. These functions can refer to the data stored
inside the library by means of the keyword self.

l i b r a r y D i a g n o s i s {

s t r u c t a D i a g n o s i s {
u i n t i d ;
s t r i n g d i s e a s e n a m e ;
s t r i n g d i s e a s e d e s c r i p t i o n ;

}

f u n c t i o n g e t I d (a D i a g n o s i s s t o r a g e s e l f) view
p u b l i c r e t u r n s (u i n t i d) {

r e t u r n s e l f . i d ;
}

f u n c t i o n getName (a D i a g n o s i s s t o r a g e s e l f) view
p u b l i c r e t u r n s (s t r i n g memory d i s e a s e n a m e) {

r e t u r n s e l f . d i s e a s e n a m e ;
}

f u n c t i o n g e t D e s c r i p t i o n (a D i a g n o s i s s t o r a g e s e l f)
view p u b l i c r e t u r n s (s t r i n g memory

d i s e a s e d e s c r i p t i o n) {
r e t u r n s e l f . d i s e a s e d e s c r i p t i o n ;

}

f u n c t i o n s e t I d (a D i a g n o s i s s t o r a g e s e l f , u i n t
anID) p u b l i c {

s e l f . i d =anID ;
}

f u n c t i o n setName (a D i a g n o s i s s t o r a g e s e l f , s t r i n g
memory d i s e a s e n a m e) p u b l i c {

s e l f . d i s e a s e n a m e = d i s e a s e n a m e ;
}

f u n c t i o n s e t D e s c r i p t i o n (a D i a g n o s i s s t o r a g e s e l f ,
s t r i n g memory d i s e a s e d e s c r i p t i o n) p u b l i c {

s e l f . d i s e a s e d e s c r i p t i o n = d i s e a s e d e s c r i p t i o n
;
}

}

The following code defines the microservice Diagnosis. In
place of the REST call, it has a public function getDiagnosis.
Likewise the original Case study, our SC microservice records
a collection of Diagnosis data. These data are written in the
contract constructor and are stored in the blockchain at the
moment of contract deployment.

c o n t r a c t D i a g n o s i s P e s u d o R e s t {

mapping (u i n t => D i a g n o s i s . a D i a g n o s i s) p r i v a t e
d i a g n o s i s ;
u i n t numberOfDiseases ;

/ / In r e a l c a s e s , c o n s t r u c t o r d a t a s h o u l d be l o a d
from a d a t a b a s e .

c o n s t r u c t o r () p u b l i c {

D i a g n o s i s . s e t I d (d i a g n o s i s [1] , 1) ;
D i a g n o s i s . setName (d i a g n o s i s [1] , ” V i r a l Feve r

”) ;
D i a g n o s i s . s e t D e s c r i p t i o n (d i a g n o s i s [1] , ” Caused by

v i r u s e s a r e among t h e most f r e q u e n t c a u s e s o f
f e v e r i n a d u l t s . Common symptoms can i n c l u d e a
runny nose , s o r e t h r o a t , cough , h o a r s e n e s s , and
muscle a c h e s . ”) ;

D i a g n o s i s . s e t I d (d i a g n o s i s [2] , 2) ;
D i a g n o s i s . setName (d i a g n o s i s [2] , ” Pneumonia ”) ;

D i a g n o s i s . s e t D e s c r i p t i o n (d i a g n o s i s [2] , ” Symptoms
i n c l u d e a cough wi th phlegm or pus , f e v e r ,
c h i l l s and d i f f i c u l t y b r e a t h i n g . ”) ;

D i a g n o s i s . s e t I d (d i a g n o s i s [3] , 3) ;
D i a g n o s i s . setName (d i a g n o s i s [3] , ” M a l a r i a ”) ;

D i a g n o s i s . s e t D e s c r i p t i o n (d i a g n o s i s [3] , ” Symptoms
a r e c h i l l s , f e v e r and swea t i ng , u s u a l l y
o c c u r r i n g a few weeks a f t e r b e i n g b i t t e n . ”) ;

D i a g n o s i s . s e t I d (d i a g n o s i s [4] , 4) ;
D i a g n o s i s . setName (d i a g n o s i s [4] , ” Typhoid ”) ;

D i a g n o s i s . s e t D e s c r i p t i o n (d i a g n o s i s [4] , ” Symptoms
i n c l u d e h igh f e v e r , headache , s tomach pa in ,
weakness , v o m i t i n g and l o o s e s t o o l s . ”) ;

numberOfDiseases =4; / / can be u p d a t e d
d y n a m i c a l l y
}

f u n c t i o n g e t D i a g n o s i s (u i n t i d) view p u b l i c r e t u r n s
(u i n t ID , s t r i n g memory name , s t r i n g memory

d e s c r i p t i o n) {
r e t u r n (D i a g n o s i s . g e t I d (d i a g n o s i s [i d]) ,

D i a g n o s i s . getName (d i a g n o s i s [i d]) , D i a g n o s i s .
g e t D e s c r i p t i o n (d i a g n o s i s [i d])) ;

}

}

In this section we don’t show the implementation of the
library Patient and of the contract PatientPseudoRest which
are very similar to the previous ones.

In the following we show a portion of the library Doctor.
It defines the variables and the methods related to the object
of Doctor type in the original class. Data include a Patient
instance and a Diagnosis instance. The instruction “using”
defines to which library the compiler has to refer for each data
type. In this piece of code we show the getter and the setter
functions for the “diagnosis”. Thanks to the ABIencoderV2,
the getter can return a “struct” variable.

l i b r a r y Doc to r {

u s i n g P a t i e n t f o r P a t i e n t . a P a t i e n t ;
u s i n g D i a g n o s i s f o r D i a g n o s i s . a D i a g n o s i s ;

s t r u c t aDoc to r{
u i n t i d ;
u i n t amount ;
u i n t a p p o i n t e m e n t D a t e ;
P a t i e n t . a P a t i e n t p a t i e n t ;
D i a g n o s i s . a D i a g n o s i s d i s e a s e ;

}

[. . .]
f u n c t i o n g e t D i a g n o s i s (aDoc to r s t o r a g e s e l f) view

p u b l i c r e t u r n s (D i a g n o s i s . a D i a g n o s i s memory
d i s e a s e) {

r e t u r n (s e l f . d i s e a s e) ;
}

f u n c t i o n s e t D i a g n o s i s (aDoc to r s t o r a g e s e l f , u i n t
ID , s t r i n g memory d i sease name , s t r i n g memory

d i s e a s e d e s c r i p t i o n) p u b l i c {
s e l f . d i s e a s e . s e t I d (ID) ;
s e l f . d i s e a s e . setName (d i s e a s e n a m e) ;
s e l f . d i s e a s e . setName (d i s e a s e d e s c r i p t i o n) ;

}
[. . .]

}

The following listing defines the Doctor microservice. The
constructor takes in input the addresses of the two con-

tracts DiagnosisPseudoRest and PatientPseudoRest. The orig-
inal REST function is now implemented with the function
submitOrder. This function, given idPatient, idDiagnosis and
the amount, calls the public functions getDiagnosis and getPa-
tient of the two smart contracts. Then the function combines
acquired data with produced data (the ID and the date) and
produces a Doctor type data. The data is finally sent as output.
The behavior of this function is described in the UML diagram
in Figure 3.
c o n t r a c t D o c t o r P s e u d o R e s t {

u s i n g Doc to r f o r Doc to r . aDoc to r ;
u s i n g P a t i e n t f o r P a t i e n t . a P a t i e n t ;
u s i n g D i a g n o s i s f o r D i a g n o s i s . a D i a g n o s i s ;

a d d r e s s p r i v a t e D i s e a s e R e s t C o n t r a c t ;
a d d r e s s p r i v a t e P a t i e n t s R e s t C o n t r a c t ;

c o n s t r u c t o r (a d d r e s s DRC, a d d r e s s PRC) p u b l i c {
D i s e a s e R e s t C o n t r a c t = DRC;
P a t i e n t s R e s t C o n t r a c t = PRC ;

}

f u n c t i o n s u b m i t O r d e r (u i n t i d P a t i e n t , u i n t
i d D i a g n o s i s , u i n t amount)

p u b l i c view r e t u r n s (
u i n t ID ,
u i n t Amount ,
u i n t Appoin tementDate ,
P a t i e n t . a P a t i e n t memory t h e P a t i e n t ,
D i a g n o s i s . a D i a g n o s i s memory t h e D i s e a s e) {

P a t i e n t . a P a t i e n t memory p a t i e n t ;
D i a g n o s i s . a D i a g n o s i s memory d i s e a s e ;
Doc to r . aDoc to r memory d o c t o r ;

D i a g n o s i s P e s u d o R e s t DR = D i a g n o s i s P e s u d o R e s t
(D i s e a s e R e s t C o n t r a c t) ;

(d i s e a s e . id , d i s e a s e . d i sease name , d i s e a s e .
d i s e a s e d e s c r i p t i o n) = DR. g e t D i a g n o s i s (
i d D i a g n o s i s) ;

P a t i e n t P e s u d o R e s t PR = P a t i e n t P e s u d o R e s t (
P a t i e n t s R e s t C o n t r a c t) ;

(p a t i e n t . id , p a t i e n t . p a t i e n t n a m e , p a t i e n t .
p a t i e n t e m a i l i d) =PR . g e t P a t i e n t (i d P a t i e n t) ;

d o c t o r . i d = u i n t (keccak256 (a b i . encodePacked (
now))) ; / / an a u t o m a t i c g e n e r a t e d ID

d o c t o r . amount=amount ;
d o c t o r . a p p o i n t e m e n t D a t e =now ;
d o c t o r . p a t i e n t = p a t i e n t ;
d o c t o r . d i s e a s e = d i s e a s e ;

r e t u r n (d o c t o r . id ,
d o c t o r . amount ,
d o c t o r . a p p o i n t e m e n t D a t e ,
d o c t o r . p a t i e n t ,
d o c t o r . d i s e a s e) ;

}
}

The gas cost of this function is zero. This is because all
operations in the function submitOrder are “read only” and
involve only “memory” variables that do not change the state
of the blockchain.

For example, to create an “order” we can call the function
submitOrder with the following input:

{
” u i n t 2 5 6 i d P a t i e n t ” : ” 2 ” ,
” u i n t 2 5 6 i d D i a g n o s i s ” : ” 3 ” ,
” u i n t 2 5 6 amount ” : ”550”

}

The smart contract produces the following output:
{

” 0 ” : ” u i n t 2 5 6 : ID 6 6 3 4 8 2 9 3 3 9 7 2 1 8 4 8 3 2 3 9 . . .
” 1 ” : ” u i n t 2 5 6 : Amount 550” ,
” 2 ” : ” u i n t 2 5 6 : Appoin tementDa te 1546442202” ,
” 3 ” : ” t u p l e (u i n t 2 5 6 , s t r i n g , s t r i n g) : t h e P a t i e n t 2 ,

Rachel , p a t i e n t 2 @ e d u r e k a . co ” ,
” 4 ” : ” t u p l e (u i n t 2 5 6 , s t r i n g , s t r i n g) : t h e D i s e a s e 3 ,

Mala r i a , Symptoms a r e c h i l l s , f e v e r and swea t i ng ,
u s u a l l y o c c u r r i n g a few weeks a f t e r b e i n g

b i t t e n . ”
}

B. UML Sequence Diagram

In this section we show the sequence UML Diagram related
to “order creation” according to the principles of BOSE. The
diagram in Fig. 3 represents the following steps:

1 A “client” asks the contract DoctorPseudoRest to create
an appointment by means the function createOrder,
given the disease ID, patient ID and the amount.

2 The contract DoctorPseudoRest, at this point, asks the
PatientPseudoRest and DiagnosisPseudoRest contracts
for all the data related to those specific IDs.

3 The two contracts respond by providing the required
data (a Patient “Object” and a Diagnosis “Object” re-
spectively)

4 Finally the contract DoctorPseudoRest builds the re-
quested data and returns it to the client.

In this sequence, the contract DoctorPseudoRest is at the same
time the server for the actor “client” and the client of the
services PatientPseudoRest and DiagnosisPseudoRest.

VI. DISCUSSION

In this paper we discussed the concrete possibility of repli-
cating a microservice architecture by mean of a set of Smart
Contracts. The topic is tackled with two parallel approaches.

The first one is more general and theoretical and presents
the problem, the similarities and the possible distances among
the two architectures. However we report how in general a
microservice architecture can be mapped into an architecture
where Smart Contracts and blockchain are the backbone of
the software services provided. The concept of supporting
the IDEAL properties is discussed for both cases and the
differences among an approach where the software providing
services resides in a proprietary server, always accessible and
always upgradable and the approach where software is de-
ployed into a blockchain structure where no proprietary servers
can be considered for running the software and software can
be updated less easily are described.

In the second one we focused the attention on a specific case
study where a concrete and paradigmatic example of software

Fig. 3. Sequence diagram of the case ”order creation”

service provided by a microservice architecture with three
Java classes, even if very simple, has been analyzed and fully
reproduced by using three corresponding Smart Contracts.
In this specific case study we used a Software engineering
approach oriented to the blockchain software, presenting also
a sequence diagram which is a guide for both architectures and
helps understanding how the set of Smart Contract can solve
the problem of providing services as well as the microservice
approach. The case study presents a solution showing for the
first time how the microservice paradigm can concretely be
mapped into a Smart Contract corresponding architecture.

The importance of this result with respect to the research in
the field of blockchain-oriented software engineering resides
in the fact that the microservice paradigm is presently widely
used to provide online services or general services where a
monolithic large software system is decomposed into business
oriented independent smaller services. Our case study then
shows that the Blockchain Oriented Software Engineering can
find applications in fields that are presently out of reach
of Smart Contract software, simply applying our proposed
parallelism between the two architectures and opens new
perspective to the practical uses of blockchain.

While the microservice architecture allows to easily update
the software and a larger control of the overall software
system, all the computations must be performed by the servers
where the software resides with all the associated conse-
quences. On the other hand the Smart Contracts approach
presents the advantage of broadcasting the computational part
to the blockchain nodes and allows intrinsically to keep trace
of all changes, update, login, and general transactions per-
formed on the blockchain structure which otherwise require an
ad-hoc structure. Costs and benefits of the two approaches are
not easy to understand and manage because they may strongly
depend upon the specific software service under consideration.
Nevertheless our paper traces a path for mapping an existing

and largely used software paradigm into the blockchain field,
and more specifically into the field of BOSE.

VII. CONCLUSIONS

In this paper we afforded the problem of mapping a
general microservices software architecture into a software
architecture performing the same tasks and providing the same
services organized by mean of a set of corresponding Smart
Contracts running onto a blockchain.

We concretely solved the problem by implementing a
paradigmatic example of microservice pattern with three Smart
Contracts written in Solidity where opportune variables and
functions realize the same tasks of the corresponding set of
Java classes. Our study demonstrates the feasibility of the
approach and shows that it is possible to implement a simple
microservices-based system with smart contracts maintaining
the same set of functionalities and results. We corroborate
the study with a BOSE approach where the general software
architectures and sequence diagrams are described. This opens
up new perspectives for extending the cases where the use of
blockchain and Smart Contracts can find applications provid-
ing a concrete example where an existing and already diffuse
software paradigm can be easily mapped using a blockchain
approach. Future work include the re-development of complex
systems with smart contracts and the investigation of the
similarities between microservices, function as a services and
smart contracts.

REFERENCES

[1] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[2] Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations,
and Issues for Migrating to Microservices Architectures: An Empirical
Investigation. IEEE Cloud Computing, 4(5), 22-32.

[3] M. Marchesi, L. Marchesi, R. Tonelli, An Agile Software Engineering
Method to Design Blockchain Applications, ACM Proceedings of the
14th Central and Eastern European Software Engineering Conference
(2018).

[4] Porru, S., Pinna, A., Marchesi, M., & Tonelli, R. (2017, May).
Blockchain-oriented software engineering: challenges and new direc-
tions. In Proceedings of the 39th International Conference on Software
Engineering Companion (pp. 169-171). IEEE Press.

[5] McCorry, P., Shahandashti, S. F., & Hao, F. (2017, April). A smart con-
tract for boardroom voting with maximum voter privacy. In International
Conference on Financial Cryptography and Data Security (pp. 357-375).
Springer, Cham.

[6] Lenarduzzi, V., Lunesu, I., Marchesi, M., & Tonelli, R. (2018).
Blockchain applications for Agile methodologies. In 19th International
Conference on Agile Processes in Software Engineering and Extreme
Programming. XP (Vol. 2018).

[7] Lenarduzzi, V., & Taibi, D. (2016). MVP explained: A systematic
mapping study on the definitions of minimal viable product. Paper
presented at the Proceedings - 42nd Euromicro Conference on Soft-
ware Engineering and Advanced Applications, SEAA 2016, 112-119.
doi:10.1109/SEAA.2016.56

[8] Casado-Vara, R., Gonzlez-Briones, A., Prieto, J., & Corchado, J. M.
(2018, June). Smart Contract for Monitoring and Control of Logistics
Activities: Pharmaceutical Utilities Case Study. In The 13th International
Conference on Soft Computing Models in Industrial and Environmental
Applications (pp. 509-517). Springer, Cham.

[9] Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., ... &
Song, D. (1804). Ekiden: A Platform for Confidentiality-Preserving,
Trustworthy, and Performant Smart Contracts.

[10] Zhang, Y., & Wen, J. (2017). The IoT electric business model: Using
blockchain technology for the internet of things. Peer-to-Peer Network-
ing and Applications, 10(4), 983-994.

[11] Casado-Vara, R., Prieto, J., De la Prieta, F., & Corchado, J. M. (2018).
How blockchain improves the supply chain: Case study alimentary
supply chain. Procedia computer science, 134, 393-398.

[12] Huh, S., Cho, S., & Kim, S. (2017, February). Managing IoT devices
using blockchain platform. In Advanced Communication Technology
(ICACT), 2017 19th International Conference on (pp. 464-467). IEEE.

[13] Buterin, V. (2014). A next-generation smart contract and decentralized
application platform. white paper.

[14] Cunningham , J., & Ainsworth, J. (2018, January). Enabling patient
control of personal electronic health records through distributed ledger
technology. In MEDINFO 2017: Precision Healthcare Through Infor-
matics: Proceedings of the 16th World Congress on Medical and Health
Informatics (Vol. 245, p. 45). IOS Press.

[15] Ekblaw, A., Azaria, A., Halamka, J. D., & Lippman, A. (2016, August).
A Case Study for Blockchain in Healthcare:“MedRec” prototype for
electronic health records and medical research data. In Proceedings of
IEEE open & big data conference (Vol. 13, p. 13).

[16] Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky,
N., Sagiv, M., & Zohar, Y. (2017). Online detection of effectively
callback free objects with applications to smart contracts. Proceedings
of the ACM on Programming Languages, 2(POPL), 48.

[17] Kapitonov, A., Lonshakov, S., Krupenkin, A., & Berman, I. (2017,
October). Blockchain-based protocol of autonomous business aon
blockchains. A case of study about a bug discovered inctivity for multi-
agent systems consisting of UAVs. In Research, Education and Devel-
opment of Unmanned Aerial Systems (RED-UAS), 2017 Workshop on
(pp. 84-89). IEEE.

[18] Herbaut, N., & Negru, N. (2017). A model for collaborative blockchain-
based video delivery relying on advanced network services chains. IEEE
Communications Magazine, 55(9), 70-76.

[19] Wohrer, M., & Zdun, U. (2018, March). Smart contracts: security
patterns in the ethereum ecosystem and solidity. In Blockchain Oriented
Software Engineering (IWBOSE), 2018 International Workshop on (pp.
2-8). IEEE.

[20] Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., &
Hierons, R. (2018, March). Smart contracts vulnerabilities: a call for
blockchain software engineering?. In Blockchain Oriented Software

[30] Will Warren, Amir Bandeali. 0x: An open protocol
for decentralized exchange on the Ethereum blockchain,
https://0x.org/pdfs/0x white paper.pdf

Engineering (IWBOSE), 2018 International Workshop on (pp. 19-25).
IEEE.

[21] Bragagnolo, S., Rocha, H., Denker, M., & Ducasse, S. (2018, March).
SmartInspect: solidity smart contract inspector. In 2018 International
Workshop on Blockchain Oriented Software Engineering (IWBOSE)
(pp. 9-18). IEEE.

[22] Fenu, G., Marchesi, L., Marchesi, M., & Tonelli, R. (2018, March). The
ICO phenomenon and its relationships with ethereum smart contract
environment. In Blockchain Oriented Software Engineering (IWBOSE),
2018 International Workshop on (pp. 26-32). IEEE.

[23] Newman, S. (2015). Building Microservices: Designing Fine-Grained
Systems. O’Reilly Media. ISBN: 978-1491950357

[24] S. Kappagantula (2018). ”Microservices Tutorial Learn
all about Microservices with Example” Edureka. Online:
https://www.edureka.co/blog/microservices-tutorial-with-example

[25] D. Taibi, V. Lenarduzzi, and C. Pahl (2018) Architectural Patterns
for Microservices: A Systematic Mapping Study, in 8th International
Conference on Cloud Computing and Services Science, CLOSER

[26] D. Taibi, V. Lenarduzzi (2018) On the definition of microservice bad
smells. IEEE Software, 35(3), 56-62. doi:10.1109/MS.2018.2141031

[27] Taibi, D., Lenarduzzi, V., Ahmad, M. O., Liukkunen, K. (2017). Com-
paring communication effort within the scrum, scrum with kanban,
XP, and banana development processes. Paper presented at the ACM
International Conference Proceeding Series, , Part F128635 258-263.
doi:10.1145/3084226.3084270

[28] Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., Ahmad, M. O.
(2017). Comparing requirements decomposition within the scrum, scrum
with kanban, XP, and banana development processes doi:10.1007/978-
3-319-57633-6 5

[29] Tonelli, R., Pinna, A., Baralla, G., & Ibba, S. Ethereum Smart Contracts
as Blockchain-oriented Microservices.

[31] https://ethereum.github.io/yellowpaper/paper.pdf
[32] https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf
[33] S. Ibba, A. Pinna, M. Lunesu, M. Marchesi, R. Tonelli, Initial Coin

Offerings and Agile Practices, Future Internet, Vol. 10, N. 11, Pag. 103
[34] Hartmann, F., Wang, X., & Lunesu, M. I. (2018, March). Evaluation of

initial cryptoasset offerings: the state of the practice. In Blockchain Ori-
ented Software Engineering (IWBOSE), 2018 International Workshop
on (pp. 33-39). IEEE.

[35] Pinna, A., Tonelli, R., Orru, M., Marchesi, M. (2018). A Petri Nets
Model for Blockchain Analysis, The Computer Journal, Volume 61,
Issue 9, 1 September 2018, Pages 13741388, doi:10.1093/comjnl/bxy001

View publication statsView publication stats

