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Abstract. In the framework of the AdS/CFT correspondence, we define and compute the
spherical analogue of the shear viscosity for QFTs dual to five-dimensional charged AdS black
holes in general relativity (GR) and Gauss-Bonnet (GB) gravity. We show that the ratio between
this quantity and the entropy density, η̃/s, exhibits a temperature-dependent hysteresis.

1. Introduction
Nowadays, holography plays a central role in theoretical gravitational physics and has produced
several successful applications as, for example, the AdS/CFT correspondence. Moreover it gives
insights on quantum gravity and it is a powerful tool for the description of phase transitions and
the computation of transport coefficients in strongly coupled QFTs [1–5] in the hydrodynamic
limit. In particular, it has been proposed that the shear viscosity to entropy density ratio
η/s satisfies a fundamental bound η/s � 1/4π, known as the KSS bound [1], which found
support both from string theory [2] and quark-gluon plasma experimental data [6]. By now,
it is well-known that the KSS bound is violated by higher curvature terms in the Einstein-
Hilbert action [7] or by breaking of translational or rotational symmetry of the black brane
background [8–12]. Typically, when the KSS bound is violated, η/s exhibits a non-trivial
dependence on the temperature [13].
Until now, these investigations have been restricted to planar topologies in the bulk (black

branes) and have not concerned spherical topologies (black holes). The main obstruction to
this generalisation is the absence of the usual hydrodynamic limit for QFTs dual to spherical
black holes (BHs). Indeed, differently from the black brane case, the spherical geometry of the
horizon breaks the translational symmetry in the dual QFT preventing the existence of conserved
charges. However, it is still possible to define a relativistic hydrodynamics in curved spacetimes
without translational symmetry as an expansion in the derivatives of the hydrodynamic fields
of the stress-energy tensor [14] and a related Kubo formula for the shear viscosity.
In this work we discuss whether it is possible to use transport coefficients of the dual QFT

to learn about the complicated thermodynamical phase portrait of BHs, in particular five-
dimensional AdS BHs coupled to an electromagnetic field in GR [15] and GB gravity [16].

2. Hydrodynamics in curved spacetimes
The hydrodynamic limit of a QFT living on a curved spacetime can be defined in the same
way as for a QFT in the plane. We just consider the system at large relaxation times (small
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frequencies) and large scales compared to the microscopic scale of the system. When the latter
is unknown, we can still give a thermal description of the system and associate this microscopic
scale with the inverse of the temperature T . Thus, the hydrodynamic limit corresponds to
consider excitations of the system with wavelength λ � 1/T . In this limit, the macroscopic
behaviour of the QFT living in a curved background is described by a stress-energy tensor,
which can be written as [14,17]

T ab = (ε+ P )uaub + Pgab +Πab , (1)

where ε and P are the energy density and the thermodynamical pressure and ua is the fluid
velocity, usually considered in the frame in which the fluid is at rest. The tensor Πab contains all
the dissipative contributions to the stress-energy tensor. At first order in the velocity expansion,
it depends on three transport coefficients κ, τΠ and η, the latter known as the shear viscosity.
The previous considerations hold for a QFT in a generic curved space. Working in the

AdS/CFT framework, we can apply Eq. (1) to a four dimensional CFT dual to a five-dimensional
AdS bulk spherical BH [18–20]. To derive a Kubo formula for CFTs living on the boundary of
AdS5, whose spatial section is the three-sphere, we consider small perturbations around the
boundary background metric, i.e. gab = ḡab + hab. In general we can consider three different
types of perturbations: shear, sound and transverse (scalar) modes. The behaviour of these
modes will be encoded in three different correlators G1,2,3(ω, k), where k is the momentum. In
the translationally invariant case (and also when translation invariance is broken by external
matter fields) at k = 0 these three functions are equal, owing to rotational symmetry [7]. By
contrast, in the spherical case under consideration, the momentum cannot be taken to zero by
construction (see later for details) and the correlators will be different. Thus, in general, any
definition of the shear viscosity in a spherical background based on linear response to small
disturbances will be channel-dependent [21]. In this work we will focus on the transverse (and
traceless) perturbations. The computations for the sound and shear channel is left for future
investigations. Under these assumptions and in linear approximation, Eq. (1) becomes

T ij = −Phij − ηḣij + ητΠḧij − κ

2

(
ḧij + L2ΔLhij

)
, (2)

where ΔL is the Lichnerowicz operator and L is the AdS5 length. We choose a harmonic time
dependence for the perturbation and we expand it in hyperspherical harmonics. We now extract
the retarded Green function for the spatial components of the stress-energy tensor T ij in the
tensor channel and, from Eq. (2), we read

GR
T ijT ij (ω, 	) = −P − iωη − ω2ητΠ − κ

2

(
ω2 + L2γ

)
, (3)

where γ ≡ 	(	 + 2) − 2 is the eigenvalue of the Lichnerowicz operator and 	 = 1, 2, 3, . . . is the
first number associated with the hyperspherical harmonic expansion. Equation (3) allows us
to derive a Kubo formula for the analogue of the shear viscosity η̃ for a relativistic QFT on a
spatial spherical background as

η̃ = − lim
ω→0

1
ω
ImGR

T ijT ij (ω, 	 → 	0) , (4)

where 	0 is the smallest eigenvalue of the Lichnerowicz operator and ω is the frequency of the
perturbation. Notice that the only difference of Eq. (4) with the planar case is the evaluation
of the retarded Green function in 	 → 	0 instead of wavenumber k → 0.
It is important to stress that, with respect to the planar case, we have an additional

contribution to the stress-energy tensor (2) ruled by the transport coefficient κ. This is
rather expected in view of the breaking of translational invariance. However, these additional
contributions do not contribute to the shear viscosity.
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3. Black hole solutions in five dimensions
We consider static and spherically symmetric five-dimensional BHs,

ds2 = g
(0)
ab dxadxb = −f(r) dt2 +

dr2

f(r)
+ r2 dΩ̄23 , (5)

where dΩ̄23 is the line element of the 3-sphere. For the AdS-RN BHs the metric function is

fRN(r) = 1 +
r2

L2
− 8G5M
3πr2

+
4πG5Q2

3r4
, (6)

while, in the branch that allows for BH solutions, the metric function for GB gravity is [22–24]

fGB(r) = 1 +
r2

2λL2

⎡
⎣1−

√
1− 4λL2

( 1
L2

− 8G5M
3πr4

+
4πG5Q2

3r6

)⎤
⎦ . (7)

In Eqs. (6) and (7), L is the AdS length,M and Q are, respectively, the BH mass and charge. To
have asymptotically AdS-GB BH solutions, the dimensionless GB coupling constant λ must be
smaller than 1/4. Its value is also constrained by the unitarity bounds for the dual QFT [7,25,26],
so that in this work we consider the range 0 < λ � 9/100.
The temperature of these BHs can be expressed in terms of the horizon radius r+

T (r+) =
(

r+
πL2

+
1

2πr+
− 2G5Q

2

3r5+

) (
1 +

2λL2

r2+

)−1
. (8)

For RN BHs, as the charge of the BH decreases to the critical charge Qc = L2/6
√
5π, the

BH undergoes a second-order phase transition. Below Qc the system is characterised by the
presence of two stable states (small and large BHs) connected through a meta-stable region of
intermediate BHs. The phase transition small/large BHs is a first-order one [27]. The picture
is analogous for GB BHs [28, 29]. This is very similar to a Van der Waals-like fluid behaviour
with second-order phase transition controlled by a critical parameter (λ and/or Q for GB BHs,
Q for RN BHs) [27, 30], first-order one (controlled by T ) and metastabilities (small/large BH
region separated by metastable region of intermediate BHs).

4. Linear perturbations
Following the rules of the AdS/CFT correspondence, to compute the spherical analogue viscosity
to entropy density ratio η̃/s for the QFT dual to a five-dimensional spherically symmetric charged
AdS BH, we consider transverse and traceless perturbations about the background metric (5),
gab = g

(0)
ab + hab. In particular, hab = 0 unless (a, b) = (i, j) and hij(r, t, x) = r2 φ(r, t) h̄ij(x)

being h̄ij the eigentensor of the Lichnerowicz operator built on the background 3-sphere, whose
eigenvalues are 	(	 + 2) − 2 with 	 = 1, . . . . Such perturbations are gauge-invariant and by
linearising the Einstein field equations, the angular part decouples [31, 32]. By assuming a
harmonic time dependence for the perturbation, φ(r, t) = ψ(r) e−iωt, one finds the linear second-
order differential equation for ψ(r)

1
r3

d

dr

[
r3f(r)F (r)

dψ(r)
dr

]
+

[
F (r)
f(r)

ω2 − m2(r)
]

ψ(r) = 0 , (9)

where f(r) is given by Eq. (6) for AdS-RN BHs or Eq. (7) for GB BHs, F (r) ≡ 1− λL2f ′(r)/r.
The mass term for the perturbation is m2(r) = (4− 	(	+ 2))

(
1− λL2f ′′(r)

)
/r2 and 	 are the
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eigenvalues of the Lichnerowicz operator on the 3-sphere. The presence of a non-vanishing mass
term in Eq. (9) is a consequence of the breaking of translational symmetry due to the spherical
geometry of the horizon. The general solution of Eq. (9) does not exist in analytical form, but in
the r → ∞ limit, Eq. (9) with ω = 0 admits as solutions a non-normalisable and a normalisable
mode that behave asymptotically as

ψ0(r) = 1− λL2

2
(
1− √

1− 4λ
)

r2
+O

(
log r/r4

)
, ψ1(r) =

1
r4
+O

(
1/r6

)
. (10)

The near-horizon behaviour of the non-normalisable mode is different for non-extremal and
extremal BHs. For the former case, it is given by a power-series expansion, i.e. ψ0(r) =
ψ0(r+) +O(r − r+), while in the latter ψ0(r) = (r − r+)ν being ν an appropriate index.

5. The shear viscosity to entropy density ratio
The retarded Green function in Eq. (4) can be found using a modified version of the method
proposed in Refs. [9,33] to include higher-order curvature corrections. The method gives a very
simple and elegant way for computing correlators in a QFT dual to a gravitational bulk theory.
The analogue shear viscosity to density entropy ratio is determined by the non-normalisable
mode ψ0(r) evaluated at the horizon times a function of λ

η̃

s
=
1
4π

ψ0(r+)2
[
1− 4λ

(
1− 2πG5Q2L2

3r6+

)] (
1 +

6λL2

r2+

)−1
. (11)

In the large temperature regime, by inverting Eq. (8) and using Eq. (10), Eq. (11) becomes

η̃

s
=
1− 4λ
4π

⎡
⎣1−

λL2
(
7− 6√1− 4λ

)
π2

(
1− √

1− 4λ
)

L4T 2
+O

(
1/T 4

)⎤
⎦ . (12)

In the T → ∞ limit, the value of η̃/s tends to (1 − 4λ)/4π which reduces to the KSS bound
for λ = 0. These bounds are in general violated as Eq. (12) is a decreasing function of the
temperature. In the extremal case, the metric function and its first derivative vanish when
evaluated on the horizon as well as the non-normalisable mode ψ0(r+). This means that η̃/s
goes to zero in the T = 0 extremal limit as η̃/s ∼ T 2ν .
The global behaviour of η̃/s as a function of T is obtained as follows. For each value of the

charge and the GB parameter, there exists a minimum mass— and hence a minimum radius.
Then we numerically integrate Eq. (9) with ω = 0 outwards from the horizon to infinity supplied
with a power-series boundary condition for ψ0(r). Next, we use a shooting method to determine
ψ0(r+) by requiring that ψ0(∞) = 1. Finally, the temperature and η̃/s for each solution are
computed with Eqs. (8) and (11). Units G5 = L = 1 are adopted.
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Figure 1. Behaviour of η̃/s as a function of the
temperature for dual QFTs of AdS-RN BHs. We plot
η̃/s for selected values of the BH charge above, at and
below the critical value. The dots and squares mark the
critical temperatures relative to the small/large BH first-
order phase transition. We have considered the smallest
eigenvalue of the Lichnerowicz operator, i.e. 	 = 	0 = 1.
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In Fig. 1 we plot our results for η̃/s as a function of the temperature for QFTs dual
to AdS-RN BHs for selected values of the charge Q and we observe that, for Q < Qc, it
exhibits a temperature-dependent hysteresis, after that the second-order Van der Waals-like
phase transition occurs. In Fig. 2 we plot our numerical results for η̃/s as a function of T for
QFTs dual to AdS-GB BHs. We show three different cases: neutral BHs; fixed λ; fixed charge Q.
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Figure 2. Behaviour of η̃/s as a function of the temperature for GB BHs with (a) Q = 0 for
selected values of the GB coupling constant above, at and below the critical value; (b) λ = 1/100,
and selected values of charge above, at and below the critical value; (c) Q = 1/100, and selected
values of GB constant above, at and below the critical value. Dots (squares) mark the maximum
(minimum) of the temperature as a function of the BH horizon.

In the hydrodynamic, holographic context, a hysteretic behaviour in the shear viscosity has
been already observed for AdS black branes with broken rotational symmetry and with a p-wave
holographic superfluid dual [8]. Moreover, it is known that real fluids may exhibit hysteresis in
the η-T plane, this is, for instance, the case of nanofluids [34].
The mechanism that generates hysteresis in η̃/s is the same that is responsible for the phase

transition and can be traced back to non-equilibrium thermodynamics. An unstable (meta-
stable) region of intermediate BHs connects two stable regions of large and small BHs. A
potential barrier prevents the evolution of the system from occurring as an equilibrium path
between the two stable states [35, 36]. Equilibrium will be reached passing through a meta-
stable region and a path-dependence of η̃/s is generated.
Notice that when the breaking of translational symmetry is generated by external fields,

the symmetry may be restored or not when the system flows to the IR (as in the black brane
case) [9]. In the BH case instead, because the breaking has a geometric and topological origin,
translational symmetry cannot be restored in the IR.

6. Conclusion
We have used the AdS/CFT correspondence to obtain information about the behaviour of bulk
BHs by studying the hydrodynamic properties of the dual QFTs. In particular, we have focussed
on the scalar channel and defined and computed the shear viscosity to entropy ratio for QFTs
holographically dual to five-dimensional AdS BH solutions of GR and GB gravity.
Our most important result is the behavior of η̃/s at intermediate temperatures: for AdS-RN

BHs a second-order Van der Waals phase transition occurs as the system goes from large values
of Q to the critical one; below the critical charge the BH undergoes a temperature-dependent
first-order phase transition and η̃/s develops hysteresis. A similar behaviour occurs for GB
gravity when we fix the charge and let the GB coupling constant λ to vary and viceversa.
Our definition of η̃/s is channel dependent. In general we have three different determinations

of η̃ for shear, sound and transverse (scalar) perturbations. In this work we have focused on
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the transverse ones. However our results suggest that, for QFTs dual to bulk spherical BHs, the
hydrodynamical, long wavelength modes can be described by the 	 → 	0 modes that probe large
angles on the sphere (cfr. k → 0 on the plane). Due to the spherical topology, the hydrodynamic
interpretation in terms of conserved quantities fails. However, we can still define the shear
viscosity through a Kubo formula where the stress-energy tensor is only covariantly conserved
and interpret it as the rate of entropy production due to a strain.
In holographic models, the shear viscosity to entropy ratio of the QFT is closely related

and keeps detailed information about the thermodynamical phase structure of the dual BH
background.
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