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Abstract. We experimentally investigated the impact of rooftop stack position on the pollutant 

entrapment within 2D street canyon configurations. Analyses were performed in a water 

channel loop system by using the image analysis techniques: FTV (Feature Tracking 

Velocimetry) and LIF (Light Induced Fluorescein) respectively for measuring velocity and 

concentration. The set-up consists in an array of 20 identical buildings with aspect ratio equal 

to one (𝐴𝑅𝐵  =  𝐵/𝐻, where 𝐻 is the height of the eaves and 𝐵 is the building width), 

mimicking an idealized 2D urban canopy. They were equally spaced with a unitary canyon 

aspect ratio (defined as 𝐴𝑅𝐶  =  𝑊/𝐻; where 𝑊 is the distance between buildings facades), 

and varied in shape by using flat and gable roofs with pitch 𝛼 =  45°, with different chimney 

positions and heights, for a total number of 9 investigated configurations. Results demonstrate 

that the presence of gable roof significantly varies the flow in the shear layer, which, in 

combination with different chimney position and height, lead to not trivial effects on pollutants 

dispersion. 

 

1.  Introduction  

The urban canopy is characterized by a complex geometry that interacts with the fragile equilibrium 

governing atmosphere, soil and subsoil system. Cities are usually characterized by elevated sources of 

heat and pollutants, and high levels of PM10 and PM2.5, NO2, SO2, carcinogenic hydrocarbons, etc., 

which are potentially dangerous for human health. Ventilation has a crucial role against their retention 

in the urban canopy layer: it promotes the removal of pollutants and heat by means of both the mean 

flow and the turbulence. 

Several studies have been undertaken, both experimentally and numerically, to investigate the 

pollutant dispersion in the urban boundary layer from the street-scale (∼100–200 m) to the district-

scale (∼1–2 km), (Britter and Hanna 2003) and with different specific objectives. Most of these 

analyses were based on simplified building geometries and configurations (e.g. Di Bernardino et al. 

2017) with the aim to understand the single element influence. However, real urban patterns are more 

complex and other parameters, such as the variability of building height and shape (e.g. Nosek et al. 

2017; Garau et al. 2018b), intersections (Carpentieri et al. 2012; Nosek et al. 2016), presence of trees, 

building density, etc., deeply influence the flow and pollutant dispersion. The sensitivity of urban area 

models to geometrical simplifications is a fundamental issue for air flow modelling (Ricci et al. 2017), 
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and the choice of a proper modelling configuration might have even more important implications for 

dispersion simulations. 

Most of published papers in urban context deal with contaminants dispersed at the street level, 

since traffic is generally the most important pollution source. Nonetheless, dispersion from stacks, 

which is typically associated with industrial and open country context, may be important also in cities. 

For instance, Ghermandi et al. (2015) presented a micro-scale simulation of stack dispersion from a 

tri-generation power plant, designed to supply the energy demand of the Modena General Hospital 

(Italy). 

In this perspective, it is important to assess the reliability of adopted simulation models in urban 

context. To pursue this issue, it is fundamental to perform laboratory experiments, in controlled and 

repeatable conditions, for simplified urban set-ups.  

Most current dispersion models assess the pollutant concentration further away from the release, 

while they have severe limitations for near field prediction. Traditionally, dispersion from industrial 

stacks is modelled by means of Gaussian models while ASHRAE geometric stack design method and 

models are often used in order to assess a proper stack height. 

Even in the simpler case of a single building, the situation is far from being simple. Schulman et al. 

(2000) showed the effect of stack proximity to a structure on plume dispersion. Saïd et al. (2005) 

highlighted, in case of a stack placed on the top of an isolated single building, the complex interaction 

between the plume wake and the recirculating region behind the building, and the downwash effect 

due to the cross-flow on the top of the chimney, which depends on approaching wind conditions.  

Saathoff et al. (2009) investigated in a wind tunnel model the roof key role in near field dispersion, 

in case of a rooftop stack located downwind a single building. They varied building heights, rooftop 

structure and wind directions and compared results with ASHRAE models, pointing out their 

weakness in some of the adopted configurations. Hajra et al. (2010) studied dispersion of building 

exhaust pollutants in case of a high-rise building and a low-rise building using both wind tunnel and 

numerical modelling (ADMS, ASHRAE), and highlighting severe limitations of the latter for some of 

the adopted configurations.  

Few studies were performed considering more than a single building. Bagieński (2006) performed 

a laboratory simulation of a single street canyon (considering two flat building, and the three cases of 

symmetric, step-up and step-down canyon) showing how the canyon pollution is affected by building 

configuration and source position. Dispersion from rooftop stacks in presence of an urban canopy, to 

the best of authors knowledge, has not been addressed in literature. Actually, urban building and roof 

geometrical configuration role, in attenuating or worsening canyon pollution, might be of opposite 

sign with respect to cases where the contaminant is released at the street level. 

Actually, the plume behavior is affected by many factors, apart from the surrounding area, the 

plume buoyancy and the atmospheric conditions. For instance, in their pioneering work, Willis and 

Deardorff (1983) showed how a stack emission evolves in case of a Convective Boundary Layer, a 

situation where more complex spatial structures also in case of flat terrain (Badas and Querzoli 2011).  

The present work is aimed at investigating dispersion from a stack in urban canyons, in the 

simplest case of a perpendicular incident wind and negligible buoyancy effects. A series of 

experimental simulations considering variable chimney configuration (height and position above 

roofs) is here presented for flat and gable roof buildings, having a square section and a unitary canyon 

aspect ratio. 

Results show the complex interaction between the plume and the underlying urban canyon, which 

may lead to unexpected results in terms of canyon pollution. 

2.  Experimental Set-Up 

2.1.  Water channel facility 

Flow in urban canyon configurations is investigated by means of a water channel, at the Hydraulics 

Laboratory of the University of Cagliari. The facility, sketched in Fig.1, consists of a 8.0 𝑚 long 
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channel with a rectangular section 0.40 𝑚 wide and 0.50 𝑚 deep. A constant-head reservoir was 

positioned at the inlet section and the mean velocity was regulated by a sharp-crested weir at the end 

of the channel. A turbulent boundary layer of 𝛿 = 0.42 𝑚 depth with the free stream velocity equal to 

𝑈𝑟𝑒𝑓 = 0.36 𝑚 𝑠 ⁄ was obtained via a 0.10 𝑚 thick honeycomb, placed at the inlet section, and a series 

of 3.0 𝑚 panels covered with pebbles, having a mean size of 5 𝑚𝑚. The approaching flow 

characteristics were defined by a series of preliminary measurements and discussed in details in Garau 

et al. (2018a). In order to investigate the idealized 2D canopy, a series of 20 identical buildings was 

located after the pebbles panels, hence the measuring section was positioned 6.15 𝑚 downstream from 

the honeycomb. Buildings were modelled as prismatic obstacles (with a squared section of 

20 𝑥 20 𝑚𝑚 and the same section with an overlying 45° gabled roof), while the span-wise width was 

equal to the channel one. The adopted configuration allows achieving a blockage ratio smaller than 

5% (as prescribed in Barlow et al. 1999). The measuring section corresponded to the 17
th
 canyon, 

ensuring that the roughness layer reached the equilibrium (Brown et al. 2000; Llaguno-Munitxa et al. 

2017) and that results were representative of an infinite series of identical canyons. Buildings, equally 

spaced by street canyons of aspect ratio equal to 1 (where the aspect ratio is defined as the ratio of the 

canyon width 𝑊 to the building height 𝐻, 𝐴𝑅𝐶 = 𝑊 𝐻⁄ ) and schematically reported in Fig.2b, were 

performed with flat roofs and gabled roofs with 45° pitch. Furthermore, chimneys with three different 

heights (h = 5, 10, 15 mm, corresponding to the non-dimensional size h/H = 0.25, 0.5, 0.75) and 

different positions above the roofs (leeward and windward sides for gabled roofs and the central point 

in case of flat roof, as sketched in Fig. 2 a), were simulated. The three different chimney heights 

employed, correspond to the lower, equal and higher height with respect to the top of the building with 

roof. The total number of analysed configurations was 9 as reported in Table 1. 

 

 
 

Figure 1: sketch of the water channel facility. (1) Constant head reservoir; (2) sharp-edged weir; (3) honeycomb; (4) 

array of 20 buildings; (5) 3 m pebbles panels; (6) laser and mirror; (7) high-speed camera. 
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Figure 2: (a) schematic representation of buildings: α=pitch roof angle, h=chimney height, H=building height, 

B=building width, W=canyon width, ARC=canyon aspect ratio, ARB=building aspect ratio. (b) three chimney 

positions respect to wind direction: P.1=leeward side, P.2=central point, P.3=windward side. 

 

The stream Reynolds number was found equal to 𝑅𝑒 =   𝑈𝐻/𝜈 = 151,000, higher than the 

minimum requested by Snyder (1972), thus sufficient to guarantee the independence of the large 

turbulence structures of the flow on the Reynolds number. 

Velocity and concentration measurements were performed using non-intrusive image analysis 

techniques, as described in next paragraphs. 

 

 
Table 1: analysed configurations with different position and height for chimneys on the 

roof with variable pitch angles. 

Chimney position            

on the roof 
Chimney height: h/H 

 

          0.25                     0.5                      0.75 

P.1 = leeward 45° 45° 45° 

P.2 = centre  0° 0° 0° 

P.3 = windward  45° 45° 45° 

 

2.2.  Velocity and turbulent field measurements 

Velocity and turbulent field measurement were performed by means of the FTV (Feature Tracking 

Velocimetry), developed at the University of Cagliari (Besalduch et al. 2013, 2014). This is a non-

intrusive technique, less problematic with respect to the common PIV (Particle Image Velocimetry) 

methods to the occurrence of high velocity gradients and to the appearance and disappearance of 

particles. This technique was already successfully employed for previous similar studies (e.g. Ferrari 

et al. 2016, 2017, where more details are found). 

The fluid was seeded with pine pollen non-buoyant particles (20 µ𝑚 mean diameter), uniformly 

dispersed into the water before the experiments.  

The measuring section corresponding to the mid section of the channel above the 17
th
 street 

canyon, was lighted by means of a diode laser (532 𝑛𝑚 in wavelength and 2𝑊 in power) coupled 

with an optical system consisting of a lens and a mirror. A high-speed camera, 2240𝑥1760 pixels in 

resolution, was adopted to record at 310 𝐻𝑧, the investigation plane. For each of the analysed 

configurations, 40 measurements sessions were performed and a total number of 48,000 frames were 

employed for statistical analysis.  

2.3.  Concentration measurements 

Concentration measurements were performed by means of fluorescence (LIF) technique: at low 

concentrations, fluorescein adsorbs and reemits light proportionally to dye concentration. In order to 

a b 
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minimize light non-homogeneities of the framed area, which could bias the obtained concentration 

fields, a representative number of frames (1500) was recorded prior to the experiment. The resulting 

background pattern was subtracted from each frame. Mean concentration fields were thus calculated 

by means of a total number of 7000 frames for each case with a high-definition camera (1200𝑥900 

pixels in resolution), a frequency of 25 𝐻𝑧 and a time exposure of 1/250 𝑠. The measuring section 

was lighted with a diode laser 473 𝑛𝑚  in wavelength and 1.5𝑊 in power. The fluorescein solution in 

water was stored in a reservoir with constant level and connected with a thin tube to the chimney 

having 1.7 𝑚𝑚 internal diameter width so that the flow rate was calculated as 0.03 𝑚𝑙/𝑠. This rate 

well represents the behaviour of a vertical plume of pollutant with a negligible velocity with respect to 

the main flow. Concentration fields are analysed after being non-dimensional by dividing by the 

concentration at the source.  

 

 

3.  Results and Discussion 

Mean and turbulent velocity fields are first shown and analysed to describe how the presence of a 

gable roof deeply affects the flow field. Afterwards, concentration fields are presented and discussed 

for the 9 sets-up simulated, corresponding to different chimney configurations, to get insight on the 

pollutant entrapment mechanism inside the canyon. 

3.1.  Flow fields 

The mean stream-wise velocity field generated by flat and 45° gabled roof buildings, are compared in 

Fig.3. The adopted set-up and measurement technique was validated on both numerical and 

experimental literature works as reported in a previous work (Garau et al. 2018a). The superimposed 

streamlines highlight the well-known flow pattern for the skimming flow regime (Oke 1988). Indeed, 

a stable single vortex is established inside the canyon for both the configurations. However, the central 

point of the main vortex, positioned near 𝑥/𝐻 =  0.0 in accordance with literature works (e.g. Di 

Bernardino et al. 2015b), moves up along z direction for gabled roof and, in case of 45° slope, it 

appears close to the level of the eaves. As a consequence, stream-wise velocities decrease in the 

overlaying flow near the buildings top as well as inside the canyon, where a counter rotating vortex 

grows up in the windward facade of the building. 

 

  
Figure 3: non-dimensional stream-wise velocity field overlapped by the streamlines of velocity field, for configurations 

with flat roofs (a) and gabled roofs (b). Colour scale is common for all the panels. Values are made non-dimensional 

by the free-stream velocity Uref at z/H = 7. 

 

a b 
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Looking at the vertical velocity fields (Fig.4), the highest velocity values are in the lateral parts of 

the main vortex, near the building facades. In case of gabled roofs, these two well-defined regions are 

wider and shifted up around the eave corners. Thus, at pedestrian levels, vertical velocities are higher 

for flat roof configuration. Together with the turbulent quantities, the vertical velocity component is 

important because of the straight connection with ventilation mechanism, characterized by ventilation 

indexes such as the air-exchange rate ACH (Ho et al. 2015; Badas et al. 2017) or the mean and the 

total outflow ventilation rate (Garau et al. 2017).  

 

  
Figure 4: non-dimensional vertical velocity field overlapped by the streamlines of velocity field, for configurations 

with flat roofs (a) and gable roof. Colour scale is common for all the panels. Values are made non-dimensional by the 

free-stream velocity Uref at z/H = 7. 

An in-depth description of the modification of the turbulent fields going from flat roof to gable roof 

configuration and the implication for canyon ventilation are reported in Garau et al. (2018a). Here, as 

an example, turbulent kinetic energy fields are plotted in Fig.5. It is apparent how the roof presence 

affects the shear layer evolution, causing higher turbulence not only in the region above roofs but also 

in the intermediate region within the roof pitches and the eaves. Moreover, near the windward building 

a high turbulence tongue deeply extends into the canyon, enhancing the mixing between in and out 

canyon regions.  

 

  
Figure 5: non-dimensional turbulent kinematic energy fields overlapped by the streamlines of velocity field, for 

configurations with flat roofs (a) and gable roof 45° sloped (b). Colour scale is common for all the panels. Values are 

made non-dimensional by the free-stream velocity Uref at z/H = 7. 

a b 

a b 
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3.2.  Concentration fields 

 

 

 
 

  
 

 
 
Figure 6: mean concentration transport field made non-dimensional with the maximum concentration registered at 

the source point (white cross and green circle), for flat roof cases (a-c) and 45° gable roof cases (d-i) with three 

different chimney heights (h/H=0.25 for a, d, g,0.5 for b, e, h,0.75 for c, f, i) and three different position above the roof 

(central point for a-c, windward for d-f and leeward position for g-i). 

a b c 

d e f 

g h i 
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Maps of concentration fields, made non-dimensional with respect to the maximum concentration at the 

source point (i.e. the chimney top), are shown in Figure 6 for all the 9 cases. Moreover, mean and 

standard deviation of concentration inside the canyon, defined as the region between the buildings, 

going from to the street to the height of the eaves, are displayed in Table 2.  

 

Analysing results, a general trend with respect to stack height, common for flat and gable roof 

buildings does not emerge from Table 2 mean values. This suggests that the influence of chimney and 

the interaction generated with the roof shape, chimney height and position, have not trivial outcomes. 

Thus, we discuss results distinguishing the two roof shape configurations. 
 

Table 2: Mean concentration and standard deviation values computed inside the canyon for the 9 analysed 

configuration.  

Roof 

Angle 
Chimney position 

Statistics 

into the 

canyon 

Chimney height: h/H 

 

  0.25             0.5             0.75 

 0° P.2 = centre mean 0.0336 0.0065 0.0004 

45° P.3 = windward mean 0.0175 0.0411 0.0184 

45° P.1 = leeward mean 0.0408 0.0550 0.0155 

 

 

In the case of flat roofs, higher chimneys (Fig. 6 b-c) cause less interaction with the canyon 

interface, leading to very low entrainment, while in case of small chimney height (Fig. 6a) the plume 

highly interacts with the canyon below, and a tongue of polluted flow entering the canyon is clearly 

visible in the windward building corner. The plume axis, defined as the locus of maximal 

concentrations, is deflected toward the canyon with respect to the mean flow, particularly for the 

smaller chimney height case. Moreover, the canyon presence and the boundary layer structure lead to 

an asymmetric plume growth, which results in a larger widening with respect to its axis toward 

negative z direction. 

In the case of gable roof, the best conditions are obtained, quite obviously, when the highest 

chimney is considered, irrespective of its position (Fig.6 f, i). These configurations correspond to less 

interaction between the plume and the canopy. However, due to the longer distance from the source as 

well as to the interaction with the upwind building roof, when the chimney is placed on the windward 

pitch (Fig. 6 f), the canyon interaction is more intense compared to the latter case (Fig.6 i), although 

mean concentration inside the canyon are quite comparable (see Table 2). For the other two chimney 

heights the source is released at lower levels with respect to the roof top, hence a stronger interaction 

is foreseen. For these configurations (Fig.6 d, e, g, h) the plume encounters the windward building 

roof and it is partially entrapped. Here, the chimney position plays a more important role: the canyon 

pollution worsens when the source is released in the leeward position (Fig.6 h) compared to the 

windward position (Fig.6 e). Actually, this is quite obvious since, considering the pitch height, the 

condition portrayed in Fig. 6e corresponds to the pollution released inside the canyon where we are 

measuring concentrations. Whilst all the maps display quite regular patterns, where the plume widens 

while being driven by the main flow direction, Fig.6 g shows an apparently awkward feature, since it 

displays a high concentration region upwind the chimney. This is due to the presence of the vortex, 

which extends close to the leeward roof pitch (Fig. 3b-5b), and whose streamlines are directed in the 

opposite way respect to the main flow in chimney region, so differently to the expected behaviour, 

lower mean concentration field in canyon with ℎ/𝐻 = 0.25 (Fig.6 g) with respect to ℎ/𝐻 = 0.50 case 

(Fig. 6h) are been observed. 

Actually, the flow is far from being stationary and the shear layer is dominated by intermittent 

events, namely sweeps and ejections, which allow periodic flux exchanges between canyon and 
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overlaying air. The intermittent behaviour, which has a key role in canyon ventilation, has been 

investigated for flat roof buildings (e.g. Cheng and Liu 2011; Kikumoto and Ooka 2012), whilst gable 

roof configurations have not been properly analysed yet. Although a characterization of the non-

stationary behaviour goes beyond the scope of this work, it is worthwhile pointing out that it should be 

amplified by roof presence. 

Intermittency is apparent when analysing the concentration snapshots (here not reported): the 

plume changes direction, thus the pollution entering the canyon varies in direction and magnitude. 

This behaviour has an effect also on the variance fields. Figure 7 shows, as an example, concentration 

variance field for gable roofs and chimneys in the leeward position: ℎ/𝐻 = 0.25 (a) and 0.5 (b), 

(corresponding to the mean concentration fields in Fig. 6 g, h). 

 

 

      
Figure 7: concentration variance made non dimensional with the maximum concentration registered at the source 

point, for 45° gable roof cases with chimney in the leeward position. (a) chimney height  

h/H = 0.25; (b) chimney height h/H = 0.5. 

 

Differences between the two variance maps are apparent and they partially explain the lower mean 

canyon concentration of the case portrayed in Fig. 7a with respect to the one displayed in Fig. 7b. 

Indeed, Fig. 7a presents two high variance regions: one positioned above the chimney and the other 

behind the chimney. The pattern is the result of the oscillation of the plume axis whose position 

roughly oscillates around the chimney. When the plume reachs the top of the roof, it jumps to higher 

levels where turbulence is higher, while when it deflects the pollutant goes into the canyon vortex and 

remains there for a longer time. When the chimney height increases (Fig. 7b), the variance pattern is 

similar, and the maximum variations are visible around the source point, but the same shape of the 

concentration field is preserved. This is the typical behaviour, also found for the other analysed cases, 

both in case of flat and gable roof. 

4.  Conclusions  

We experimentally investigated concentration fields with pollutants emitted by chimneys in a street 

canyon configuration with 𝐴𝑅𝐶  =  𝐴𝑅𝐵  =  1. A total of 9 cases were set-up by varying the roof shape 

(flat and gable roof, 45° pitch), the chimney height (ℎ/𝐻 =  0.25, 0.50, 0.75) and the chimney 

position on the roof (mid point in case of flat roof, leeward and windward position in case of gabled 

roof). Analyses were carried on in a water flume and the non-intrusive image techniques FTV (Feature 

Tracking Velocimetry) and LIF (Light Induced Fluorescein) were applied. Results demonstrated that 

no trivial mixing mechanism occurs because of the coupled effect of the roof shape and chimney 

configuration. Quite obviously, increasing the chimney height leads to benefits with respect the 

canyon pollution. Among the simulated configurations, the minimum mean concentration value inside 

a b 
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the canyon is achieved for the highest chimney and flat roofs, since the interaction with the underlying 

canopy is minimized in that case. Considering gable roof cases, the windward position is preferable 

with respect to the leeward one. When the chimney is in leeward position, oppositely to what one 

might expect, mean concentration decreases considering the shortest chimney instead of the medium 

one. However, this work represents a first step in analysing this kind of problem and deeper studies 

should be done to better understand the phenomenon. For instance, intermittent flow behaviour, and its 

effect on the concentration field should be investigated. Besides, 3D effects and plume meandering are 

not captured by planar measurements and more complex features and non-trivial effects would arise if 

considering plume buoyant effects. Despite inherent simplifications, results suggest that caution has to 

be exercised when pollutant emissions are released from above the roofs, since the identification of the 

optimal solution, aimed at maximising dispersion at higher levels, while preserving the canyon air 

quality, is far from being obvious. 
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