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Abstract 

This PhD thesis presents the results of research on Information and Communication 

Technologies (ICTs) in the context of Smart Cities, with particular attention to the study, 

design, and the development of advanced models and control techniques for intermodal 

freight transport terminals and railway transport networks.  

At the moment, the implementation of a Smart City environment is largely recognized as an 

effective manner to improve the quality of life in the urban context. This thesis mainly 

focuses on the improvement of intermodal and railway transport, which are leading 

alternatives to road transport for the reduction of greenhouse gas emissions. In particular, 

the aim is to strongly increase the benefits that such transportation systems can generate by 

contributing to the resolution of the respective main managerial challenges. In particular, 

the intrinsic discrete event dynamics of (1) intermodal freight transport terminals and (2) 

railway transport is here considered to derive advanced models and control techniques to be 

used for the resolution of the main strategic/tactical and operational decision problems 

characterizing such systems.  

First, the viability of discrete event methods for smart transportation systems is here 

discussed. On one hand, it is provided a review of contributions on Petri nets for freight 

transportation systems; on the other hand, an overview on the discrete event MILP models 

for the railway rescheduling problem. On the basis of the developed reviews, contributions 

are here provided on (1) modeling, simulation, analysis, and control via Petri nets of 

Intermodal Freight Transport Terminals (IFTTs) and (2) on discrete event MILP modeling 

of railway traffic and the corresponding smart management when unexpected events occur 

in the network. Regarding topic (1), first a general modelling framework based on timed 

PNs is proposed which allows simulating and evaluating the performance of such key 

elements of the intermodal transportation chain. Then, it is shown how first-order hybrid 

Petri nets can be efficiently used to model and subsequently manage intermodal freight 

transport terminals by optimizing the terminal performance under alternative control 

policies Finally, it is demonstrated how timed Petri nets and the Data Envelopment 

Analysis (DEA) multi-objective optimization technique can be combined for the planning 

of intermodal terminals. The effectiveness of all of these techniques is tested on a real case 

study showing their practical use and ease of application. Regarding topic (2), first, a 

Decision Support System (DSS) for real-time management of railway networks is 

presented, which employs a MILP approach addressing traffic rescheduling under 

unexpected disturbances in a mixed- (single- and double-) tracked network. Then, it is 

proposed a self-learning decision making procedure for robust real-time train rescheduling 

in case of disturbances. The procedure is applicable to aperiodic timetables of mixed-

tracked networks and it consists of three steps. The railway service provider can take 

advantage of this procedure to automate, optimize, and expedite the rescheduling process. 

Moreover, thanks to the self-learning capability of the procedure, the quality of the 

rescheduling is improved at each reapplication of the method. Both the presented 

techniques are applied to a real data set to test its effectiveness. Finally, the last contribution 

presents an innovative bi-level algorithm aiming at finding a feasible timetable for a 

mesoscopic rescheduling problem in case of disruption in a short computation time. It 

consists in the sequential resolution of two optimization MILP problems. It is here 

preliminary demonstrated, by the application of the method to a real case study (i.e., the 

national Dutch railway network), that the bi-level solving algorithm can be suitable for a 

real-time control environment thanks to its short computation time. 
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Chapter 1 

 

1 Introduction 

The implementation of a Smart Transportation System (STS) is one of the main challenges in the 

context of a Smart City environment. This is mostly due to the polyhedral meaning of smartness. In 

fact, it consists in creating a transportation system which can simultaneously guarantee improved safety, 

higher productivity and efficiency, more environmental friendliness and better life quality to citizens. 

The idea of smart transport is not new and the first attempts to define this concept were made in 

the ‘90s. In particular, in 1995 the authors of [1] analyzed various virtuous cities where the 

transportation system was improved using advanced technologies, with the purpose of identifying 

available approaches, developed to evolve traditional transportation systems. Then, the American 

research and innovation technology administration defined an architectural structure for deployment of 

smart technologies in the national transportation system [2]. Moreover, the smart transportation 

guidebook [3] outlined different policies for making STSs for New Jersey and Pennsylvania, while [4] 

suggested a number of ways for improving mobility by introducing smart technologies. Finally, 

Debnath et al. in [5] discussed the smart technology initiatives developed in Singapore. All of these 

contributions had the great credit of creating the basis for the identification and introduction of 

smartness in transportation systems. 

In the context of urban transport systems, various literature contributions (e.g., [6]; [7]) have 

recognized the fundamental role of smart technologies in reaching the features of smartness and 

sustainability. Some authors (e.g., [5]; [8]) have demonstrated how smart technologies can support 

sustainability by achieving greater economic and environmental efficiency. In particular, introducing 

innovative technologies in traditional transport modes can strongly improve the ability of monitoring, 

control, track, and improve the mobility and traffic levels, improving the quality of life, and reducing a 

wide set of social, economic, and environmental impacts. A smart urban transport system is frequently 

regarded as a system that takes advantage of smart technologies for its operational and managerial 

activities. Due to the inclusion of smart technologies, it has to behave in a self -operative and corrective 
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manner, requiring little or no human intervention. Consequently, it should include three fundamental 

elements: sensors, command and control unit, and actuators to provide the basic capabilities of sensing, 

processing and decision making, acting (control), and communicating [9]. In addition, there could be 

some other advanced or higher-order capabilities, e.g., predictability, healing, and preventability. 

Predictability is the advanced level of basic sensing and processing, which refers to how accurately a 

system can predict a potential problem or scenario. Healing is the advanced level of control, that is, how 

well a system can heal potential problems to have complete recovery without any human intervention. 

Preventability, combination of predictability and healing, is the ultimate level of smartness, which 

makes a system capable of preventing potential failures by predicting and taking the appropriate 

preventive measures.  

As already recalled, the above capabilities are fundamental for transportation systems that 

require to evolve the traditional operational and managerial procedures, centered on the experience of 

the respective operators, into a smart approach. As knowledge-based methods, the traditional techniques 

often lead to sub-optimal solutions when facing decision making and control problems both at 

strategic/tactical and operational levels. Automated procedures based on mathematical approaches 

combined with information and communication technologies can overcome such limit giving a great 

contribution to the implementation of a smart transportation system.  

The research activity developed during these three years focused on ICT technologies for urban 

mobility, with particular attention to the modeling, simulation, analysis, and control of intermodal 

freight transport terminals and railway transport in the context of smart cities. 

 

 Objectives and contributions 1.1

The work in this Thesis has been developed within the PhD program in Electronic and Computer 

Engineering at the University of Cagliari (Italy) under the supervision of the tutor Prof. Carla Seatzu 

(University of Cagliari, Italy) and the co-tutor Prof. Mariagrazia Dotoli (Polytecnic of Bari, Italy). 

Furthermore, part of this work has been realized within the PlaceDoc program at the Technical 

University of Delft (the Netherlands) under the supervision of Prof. Bart De Schutter and Prof. Ton van 

den Boom (Technische Universiteit Delft, the Netherlands). 

The thesis mainly focuses on the challenges of implementing advanced modeling and control 

techniques to support the management at strategic/tactical and operational levels in intermodal freight 

transport terminals and railway transport. With this aim, the following works have been done: 
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- A review of contributions on Petri Nets (PNs) for freight transportation systems, with a 

classification of the papers according to the addressed managerial problem, namely 

strategic/tactical or operational decision-making level problem, and the adopted PN formalism 

and an overview on the discrete event Mixed Integer Linear Programming (MILP) models for 

railway systems with particular attention to the railway traffic rescheduling problem. 

- The implementation of a general modular modelling framework for the simulation and 

evaluation of Intermodal Freight Transport Terminals (IFTTs) based on timed Petri nets. This 

advanced model allows decision makers to identify the IFTTs’ bottlenecks, as well as to test 

different solutions to improve the IFTT dynamics and thanks to its modularity is able to 

represent the different types of existing IFTTs.  

- The application of the First-Order Hybrid Petri Nets (FOHPNs) formalism for the efficiently 

modeling and management of IFTTs. It is demonstrated the practical relevance of the formalism 

in enabling the terminal decision maker to choose the speeds associated with continuous 

transitions in order to optimize the terminal performance. 

- The combination of timed Petri nets and Data Envelopment Analysis (DEA) for planning of 

intermodal terminals in critical conditions i.e., dimensioning number, capacity, and frequency of 

resources. In particular, the integration of the two approaches is used to select the most 

appropriate resolving scenario while taking into account conflicting requirements on the 

terminal performance. 

- The implementation of a Decision Support System (DSS) for real-time management of railway 

networks based on a MILP approach for the resolution of the traffic rescheduling problem under 

unexpected disturbances in a mixed- (single- and double-) tracked network. The DSS simulates 

the network behavior with the mathematical programming model based on the railway topology 

and constraints, rescheduling the timetable in real time, detecting and solving conflicts in the 

network; 

- The implementation of a three-steps self-learning decision making procedure for robust real-

time train rescheduling in case of disturbances. The first two steps are executed in real-time and 

provide the rescheduled timetable, while the third one is executed offline and guarantees the 

self-learning part of the method. The railway service provider can take advantage of this 

procedure to automate, optimize, and expedite the rescheduling process. Moreover, thanks to the 

self-learning capability of the procedure, the quality of the rescheduling is improved at each 

reapplication of the method;  

- The implementation of an innovative solving algorithm for real-time rescheduling of railway 

traffic in case of disruption. In the control problem the railway network is represented as a 

discrete event system, whose evolution is guided by the occurrence of train runs and is 

constrained by safety requirements. The rescheduling problem is modelled as a MILP problem 



 

4 

 

whose objective is to minimize the delays and cancellation of trains and shunting actions in the 

network, respecting timetable, running time, continuity, and headway constraints, and including 

cancelation of trains or short-turning, shunting, and ordering actions in a short computation time. 

The problem is solved using a two-level algorithm that consists in the sequential resolution of 

two optimization MILP problems. The first level optimization considers a macroscopic MILP 

model of the disrupted network in which all the constraints are considered but it is ideally 

assumed that the stations involved by the disruption have infinite capacity and no platform 

constraint is necessary. The second level optimization considers a mesoscopic MILP model that 

includes the results of the first level optimization together with capacity constraints (i.e., are 

included shunting-actions, short-turns with platform assignment, and ordering actions on 

platforms). This two-level solving algorithm can provide a feasible solution faster than full 

mesoscopic or microscopic optimization algorithms and can be applied in a real-time control 

environment. 

All of the techniques have been tested and evaluated on real case studies. 

 Thesis Structure 1.2

In Chapter 2, focusing on discrete event methods for smart transportation systems, a review on Petri 

nets for freight transportation systems is presented together with an overview on the discrete event 

MILP models for railway systems. Chapter 3 presents innovative techniques based on Petri nets and 

data envelopment analysis for modeling, analysis, control and management of intermodal freight 

transportation terminals. In Chapter 4 advanced techniques for real-time railway traffic management are 

presented. In particular, a DSS and a decision-making procedure based on MILP modelling and DEA 

for the rescheduling in case of disturbances are proposed and a novel bi-level optimization algorithm is 

described for the resolution of the rescheduling problem in case of disruptions. Finally, conclusions and 

future works are drawn in Chapter 5. 
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Chapter 2

 

2 Discrete Event Systems Approaches for Smart 

Transportation Systems 

This chapter focuses on the development of proper mathematical models that can be used for 

simulation, analysis, optimization, and control of transportation systems. More in detail, considering the 

intrinsic discrete event dynamics of these systems and the state of the art in the related context, two 

main classes of suitable discrete event systems approaches have been identified and developed: Petri 

Net and Mixed Integer Linear Programming models. On the one hand PNs, thanks to a series of 

generally appreciated features, allow to model, simulate, analyze, and control such systems. On the 

other hand MILP models permit to easily implement and solve optimization problems typical of real-

time control.  

Section 2.1 presents a review on contributions about Petri nets for freight logistics and 

transportation systems. The review has been developed during these years of research activity and was 

published in [10]. It aims at offering to the scientific community a global overview on the state of the 

art. Papers are classified according to the addressed problem, namely strategic/tactical or operational 

decision-making level problem, and the adopted PN formalism. Comments are also provided on the 

approaches’ viability, discussing contributions and limitations, and identifying future research 

directions to enhance the successful application of PNs in freight logistics and transportation systems. 

Section 2.2 provides a discussion on the application of the MILP model technique for railway 

traffic management. The section aims at highlighting the practical relevance of the MILP modeling 

approach, which allows the intuitive description of the railway network and traffic as a discrete event 

system and the optimization of the corresponding performance under strict constraints. In particular, the 

focus is on one of the main problems in railway traffic management, i.e. the real-time rescheduling 

problem in case of disturbance or disruptions. 
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 A Survey on Petri nets for freight 2.1

transportation systems 

Freight logistics is fundamental in production chains and regards the management of materials or 

internal logistics and the physical distribution, also called distributive or external logistics. However, 

the physical distribution is one of the major waste sources in production systems and companies, as well 

as customers, are strongly interested in reducing such problem, which lowers profits and generates 

dissatisfaction. Smart Transportation Systems, considered as the integration of Information and 

Communication Technologies (ICTs) with transportation systems, can be used at this aim. In particular 

STSs enable stakeholders to be better informed, and make a safer, more coordinated, and smarter use of 

transport services.  

As already introduced, Petri nets are a well-known formalism that can contribute to the 

development of efficient STSs, thanks to their recognized effectiveness in solving transport decision 

problems like, e.g., resources management, planning and optimization of routes, monitoring and control 

of transportation activities, application of safety rules, reduction of energy consumption as well as 

pollution, and so on [11] [12]. This relies on the intrinsic discrete event dynamic of freight physical 

distribution that allows its representation as a Discrete Event System (DES) and to take advantage of a 

series of largely valued properties of PNs to model, simulate, analyze, and control such systems. In 

particular, PNs are particularly valuable for their graphical and compact representation, modularity, 

possibility of modeling concurrent and parallel events, and definition of state (marking vector) that 

allows to efficiently solve various problems via linear integer programming, without requiring 

exhaustive enumeration.  

In the literature two ways are available to offer specific and efficient methods to improve 

physical distribution activities in the DESs framework, i.e., DES simulation and performance analysis, 

and DESs analytical models [13]. This research work focuses on the PN formalism, i.e., a DES 

analytical model, because with respect to DES simulation models it allows not only simulation analysis, 

but also optimization and control of the modeled systems to solve problems related to strategic/tactical 

and operational decision-making levels of freight transportation systems.  

It has to be noticed that while the related literature abounds with studies and reviews on PNs for 

urban transport and particularly passengers’ transfer [14],[15], only few works discuss the use of PNs 

for freight logistics and transportation systems. In order to encourage and support researchers in 

applying the PN formalism in such a context, for the above reported advantages, in this research work it 

is provided an overview of the contributions using PNs for freight transportation chains and the 

terminals used for freight pick up, delivery, and transshipment. In particular, since any freight logistics 
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and transportation system involves one or more transportation modes - water (sea/river) ways, railways, 

roads, airways and their combination- the research contributions are summarized regarding each 

transportation mode and respective terminals, as well as their integration into multimodal and 

intermodal systems. For each mode, it is considered the decision problems that each company is 

required to solve. Hence, the contributions are classified based on the tackled problem at 

strategic/tactical (i.e., over a middle term horizon) and at operational level (i.e., over a short term 

horizon). The classification of the related works using PNs is developed in accordance to the specific 

PN formalism (logical, with time, or high-level PNs) and addressed decision problem, and it is provided 

a debate on the viability of the approaches, discussing contributions and limitations. Finally, it is 

presented a discussion of the main literature lines of contribution and identify future research directions 

to enhance the application of PNs to freight logistics and transportation systems. 

 Petri nets 2.1.1

A Place/Transition (P/T) net is a bipartite graph, whose vertices can be distinguished into places, 

represented by circles, and transitions, represented by bars. Directed arcs connect places and transitions, 

while tokens, represented by black dots, describe the state of the net. Frequently, parallel arcs 

connecting a place (transition) to a transition (place) are represented by a directed arc labeled with its 

multiplicity, or weight (for more details on the mathematical formulation, see [16]). The dynamical 

behavior of the net is governed by the following rules. 

Enabling Rule: a transition t  is said to be enabled if each input place p of t  contains at least a 

number of tokens equal to the weight of the directed arc connecting p  to t . 

Firing Rule: the firing of an enabled transition t  removes from each input place p  a number of 

tokens equal to the weight of the directed arc connecting p  to t . It also deposits in each output place 

p  a number of tokens equal to the weight of the directed arc connecting t  to p . Consequently, the 

firing of a transition produces a new marking of the net, i.e., a state evolution, which can be computed 

by means of a state equation.  

Several PN formalisms have been proposed to model DESs extending the basic P/T formalism, 

each being best suited for the desired specific purpose or degree of detail. As an example, when the 

issue is analyzing the system performance (e.g., determining the execution time of an activity, 

identifying bottlenecks, and optimizing the use of resources), the P/T net model is not appropriate, since 

it cannot model the duration of activities. Significant contributions have been provided extending PNs 

with time under the assumption that delays associated with transitions may either be deterministic -as in 

Timed PNs (TPNs)- or stochastic -as in Stochastic TPNs (STPNs)- these types of PNs are called PNs 
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with time as difference to logic PN models in P/T nets. Formally a TPN is defined as a bipartite directed 

graph, which can be mathematically symbolized with a five-tuple TPN=(P, T, Pre, Post, F). In 

particular, P represents the set of places with cardinality m, and T denotes the set of transitions, having 

cardinality n [16]. Set T includes two different subsets: TI, representing the subset of immediate 

transitions (symbolized by bars), and TD is the subset of deterministic timed transitions (described by 

black boxes). In case of STPNs the only difference is in set T that contains an additional subset  TS, i.e., 

the subset of stochastic timed transitions (depicted by empty boxes). Stochastic transitions can be 

associated with any type of probability distribution, depending on the stochastic event they represent. In 

the five-tuple TPN, Pre:P×T→ m n×
N  and Post:P×T→ m n×

N  respectively represent the pre-incidence 

matrix and the post-incidence matrix (being ℕ  the set of non-negative integer numbers). Such matrices 

specify the type of connections linking places in P with transitions in T. For each p∈P and t∈T, Pre(p,t) 

and Post(p,t) are two natural numbers that represent the weight of the arc going respectively from p to t 

and from t to p. Only when this value is higher than one, the corresponding arc is labeled with its 

weight. In addition, the fifth element of a TPN is F: T→
0

+
R , namely the function defining the time 

delays of transitions in T (being 
0

+
R  the set of non-negative real numbers). More precisely, for each 

deterministic timed transition tj∈TD, F(tj)=δj specifies its (constant) firing delay δj; for each 

exponentially distributed timed transition tj∈TS, F(tj)=1/λj indicates the average firing delay, where λj is 

the characteristic parameter of the corresponding exponential distribution; finally, for each immediate 

transition tj∈TI, F(tj)=0 designates its corresponding zero firing delay. The state of the net is defined 

through its marking, that is a mapping M: P→ m
N  assigning to each place pi∈P a nonnegative number 

of tokens, and M(pi) denotes the number of tokens in pi. A TPN system TPN, M0 is a TPN with an 

initial marking M0. Discrete events correspond to the firing of transitions. A transition t∈T is enabled at 

a marking M if M(·)≥Pre(·,t) and it may fire provided that it remains enabled for a time interval equal to 

its current firing delay.  

Continuous and hybrid PNs differently from TPNs and STPNs can be used to deal with the well-

known state explosion problem and the consequent increase in computational costs, which typically 

affects PN models of large and complex systems (just as logistics and transportation systems). The 

continuity feature is provided by fluidization of the underlying discrete model, in which the integer 

content of places becomes a real nonnegative number and the time delay of transitions becomes a speed. 

Although not preserving all behavioral properties of their discrete counterpart, continuous PNs allow 

the application of numerous techniques developed for the discrete framework, e.g., supervisory control 

techniques like Generalized Mutual Exclusion Constraints (GMECs) that can impose limitations on the 

weighted sum of markings in a subset of places. When the fluidization of the PN model is partial, a 

hybrid model, called Hybrid PNs (HPNs), is obtained. This allows dealing with different fluid 
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approximations that depend on the discrete state of the system. In this thesis, First-Order hybrid Petri 

nets are used to model, simulate, analyze, and control the behavior and performance of a complex 

transportation system, i.e., an intermodal freight transport terminal. Formally, the structure 

( ), , , , ,N P T= Pre Post D C   represents a FOHPN [17], where 
d c

P P P= ∪  is the union of a set of 

continuous places 
c

P  (represented as double circles) and a set of discrete places 
d

P  (represented as 

circles). Moreover, 
d c

T T T= ∪  is the union of a set of discrete transitions 
d

T  and a set of continuous 

transitions 
c

T  (represented as double boxes). The set 
d I D E

T T T T∪ ∪=  is subdivided into a set of 

immediate transitions 
I

T  (represented as bars), a set of deterministic timed transitions 
D

T  (represented 

as black boxes), and a set of exponentially distributed timed transitions 
E

T  (represented as white boxes). 

The cardinalities of T , 
d

T , and 
c

T  are denoted n , 
d

n , and 
c

n . The pre- and post-incidence functions 

that specify the arcs from places to transitions and from transitions to places are, respectively: 

  

 0  0

   
  

        

d d

c c

P T P T
and

P T P T+ +

× → × → 
= = × → × → 

Pre Post
ℕ ℕ

R R
 

It is assumed the well-formed nets hypothesis is verified, i.e., for all 
i c

t T∈  and for all 
i d

p P∈  it 

holds ( ) ( ), , p t p t=Pre Post . The function 
 \  d IT T += →D R  insists on the timing related to timed 

discrete transitions. A deterministic timed transition 
i D

t T∈  is associated with a (constant) firing delay 

( )i itδ =D . An exponentially distributed timed transition 
i E

t T∈  is associated with its average firing rate 

( )i itλ =D , i.e., the average firing delay is 1/
i

 λ , where  
i

λ   is the parameter of the corresponding 

exponential distribution. The function 
0 cT + +

∞= → ×C R R  specifies the firing speeds associated with 

continuous transitions. For any continuous transition 
i c

t T∈ , it is ( ) ( )'
,i i it V V=C , with '

i iV V≤ . Here '

iV  

represents the minimum firing speed (mfs) and 
i

V  represents the Maximum Firing Speed (MFS). The 

preset (postset) of transition t is represented as t
•

 ( t
•
) and its restriction to discrete or continuous 

places as (d)

dt t P•= ∩  or (c)

ct t P•= ∩ , respectively. Similar notations may be used for presets and 

postsets of places. The incidence matrix of the net is defined as C Post Pre= − . The restriction of C  to 

X
P  and 

Y
T  ( { }, ,X Y c d∈ ) is denoted 

,X YC . Note that by the well-formed hypothesis, 
, 0d cC = . A 

marking 

 

 0

 

   

d

c

P

P
+

→
=  →

ℕ
m

R
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is a function that assigns to each discrete place a nonnegative number of tokens, represented by black 

dots, and to each continuous place a fluid volume; 
pm  denotes the marking of place p . The value of a 

marking at time τ is denoted ( )τm . The restriction of m  to 
c

p  and 
d

p  are symbolized with 
c

m   and 

d
m , respectively. An FOHPN system 0,N  m    is an FOHPN with an initial marking ( )0 0τ=m m . The 

enabling of a discrete transition depends on the marking of all its input places, both discrete and 

continuous. A discrete transition t is enabled at m  if for all p t
•∈ , ( ),p Pre p t≥m . An enabled discrete 

transition firing at m  leads to marking ( ),C t= +′ ⋅m m . A continuous transition is enabled only by the 

marking of its input discrete places. The marking of its input continuous places, however, is used to 

distinguish between strongly and weakly enabling. A continuous transition t is enabled at m  if for all 

(d)
p t∈ , ( ),pm Pre p t≥ . An enabled transition 

c
t T∈   is strongly enabled at m  if for all places (c)

p t∈ ,

0pm > ; while it is weakly enabled at m  if for some (c)
p t∈ , 0pm = . The enabling state of a continuous 

transition defines its admissible instantaneous firing speed (IFS) 
i

v . The set of admissible IFS vectors 

can be characterized in linear algebraic terms by the following set of constraints [18]: 

( )
( )
( )

( ) ( )

'

0

0

  0

, 0
i

i i i

i i i

i i N

i i

t T

V v                t T

v V                t T

v                       t T

C p t v     p P
ε

ε

ε

ε
∈

− ≥ ∀ ∈
− ≥ ∀ ∈
= ∀ ∈

⋅ ≥ ∀ ∈










m

m

m

m

 

where iV  is the MFS, '

iV  is the mfs, ( )Tε m  ( ( )NT m ) is the subset of transitions enabled (not enabled) 

at marking m , and ( )Pε m  is the set of continuous empty places at m .The FOHPN dynamics combines 

both time-driven and event-driven dynamics. Macro-events may be defined as the events that occur 

when: i) a discrete transition fires or the enabling/disabling of a continuous transition takes place; ii) a 

continuous place becomes empty; iii) a continuous place whose marking is increasing, reaches a flow 

level that enables a set of discrete transitions; iv) a continuous place whose marking is decreasing, 

reaches a flow level that disables a set of discrete transitions. Accordingly, the IFS vector during a 

macro-period (i.e., between two consecutive macro-events) keeps constant and the FOHPN dynamics 

can be described in the generic macro-period by a linear discrete-time state variable model where the 

system state collects the marking of all places and the values of all timers. Moreover, a performance 

index can be defined and the IFS vector can be computed solving, at each macro-period, a linear 

programming problem under the above speed constraints.  
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When the system is complex and it is necessary to model a huge amount of information, 

uncertain variables, logical expressions, and semantics, high-level PNs may be taken into account. The 

most popular are colored and fuzzy PNs. Colored PNs (CPNs) and Colored TPNs (CTPNs) allow 

representing different types of entities and the respective characteristics and logical constructs. The 

entities are represented by colored tokens that carry data values and can thus be distinguished from each 

other, in contrast to undistinguishable tokens of classical PNs. Each place may have an associated type 

or color set determining the kind of data that the place may contain. 

Finally, Fuzzy PNs (FPNs) -that combine fuzzy logic with PNs- are a useful tool in dealing with 

uncertain and incomplete information. In FPNs fuzzy information can be enclosed using a possibility 

distribution in transitions, tokens, or places, and a fuzzy inference system can be implemented to model 

the events dynamics of the system. 

 Water transport 2.1.2

Water transport is historically the preferred mode to move goods over long distances. A review 

of the related scientific literature shows that PNs have been mainly used to solve port decision problems 

(Subsection 2.1.3.1), whereas few works consider PNs to solve decision problems on water 

transportation means (Subsection 2.1.3.2). Table 2-1 summarizes the contributions considered in this 

section, showing the reference number, addressed issues (i.e., simulation, analysis, and 

optimization/control), type of PN, and tackled applications. 

A. PNs for Port Container Terminals Decision Problems 

Port container terminals are characterized by highly sophisticated transportation activities, 

whose proper management is strictly related to the effectiveness of strategic/tactical and operational 

decisions. Here, it is classified and discussed the literature using PNs to solve the problems of each 

decision-making level [19], [20], [21], [22].  

At strategic/tactical levels, PN models are used for resource planning and performance 

evaluation. More in detail, both logical PNs and PNs with time are used to efficiently select and 

dimension the resources of port container terminals (e.g., handling system, berth, and yard), eventually 

considering the prevention of blocking situations. In addition, deterministic or stochastic PN models are 

used to evaluate the performance of terminals (e.g., throughput and utilization level of resources), with a 

focus on the uncertainty of parameters in the latter case. A logical PN model is proposed in Liu et al. 

[23] to identify and reduce inefficiencies caused by an inappropriate management of berthing and 

container transfer operations in port container terminals. In particular, the authors use P/T nets for a 

structural analysis of the terminal, focusing on the occurrence of deadlocks that can lead to terminal 
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malfunctioning. Deterministic PNs are used by Di Febbraro and Sacco [24] for optimally planning the 

type and number of resources, and to enhance the handling throughput of the terminal. The authors 

combine the deterministic TPN formalism with (max,+)-algebra, to modularly model the water transport 

system and evaluate the port behavior when considering different configurations. Although the authors 

present a customizable model of one of the fundamental cycle of the terminal (the ship to yard cycle), a 

significant additional contribution could consist in presenting a general model for each of the possible 

cycles, to build up the model of a generic port container terminal. Using stochastic PNs allows 

simplifying the resource planning and performance analysis of port container terminals with respect to 

deterministic models, as demonstrated by Li et al. in [25], Wang et al. in [26], and Zhang and Jang in 

[27]. More in detail, due to the stochastic nature of port services, stochastic PNs demonstrate to be 

effective in statistically evaluating the efficiency of container ports by allowing the measurement of 

their handling capacity [25], the utilization level of critical resources [26], and performing quantitative 

and qualitative analysis [27]. Yaxiong et al. [25] model via STPNs the entering/exiting cargoes as 

stochastic processes, considering the stochastic duration of the discrete events characterizing these 

inbound/outbound operations and then performing statistical evaluations. Wang et al. [26] use STPNs to 

establish a hierarchical model of the container terminal capacity and a dynamical model of subsystems. 

Simulations of the port container terminal by STPN models allow identifying bottlenecks by evaluating 

some performance indices that describe the level of utilization of the critical resources of the terminal 

port container. In the same direction, Zhang and Jang [27] propose a technique to avoid collisions in the 

operations of input and output of containers. The authors consider the employment of extended 

Generalized Stochastic PNs (GSPNs) to model container terminals. To cope with their complexity and 

implement a rule-based dynamic scheduling, the rules are integrated into GSPN models using an object-

oriented approach. The extended GSPN model of the terminal allows both qualitative analyses 

(verification of deadlock-freeness, liveness, boundedness) and quantitative ones (determination of 

model dynamics, performance evaluation, dependability analysis). It would be interesting to consider 

advanced heuristic techniques to efficiently schedule the container transfers sequence. At the 

operational level, PN models are used to monitor performance and control the assignment of resources. 

The main activities at this level are those related to berths, the most critical resources in port terminals. 

These activities have been analyzed by different points of view with a correspondingly suitable type of 

logical PNs, PNs with time, and high-level PNs.  

In particular, logical PNs are used to optimize the berth assignment in Gudelj et al. [19]. They 

propose P/T nets combined with genetic algorithms to model and simulate berthing and inter-terminal 

container transport. More recently, PNs with time are used as an alternative to the mathematical 

formulation of optimization problems.  
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TABLE 2-1 - Simulation, analysis, and control of water transport systems via PN models. 

REF. SIMULATION  ANALYSIS 

OPTIMIZATION/ 

CONTROL 

PN TYPE*1 TACKLED APPLICATION*2 

PORT CONTAINER TERMINALS DECISION PROBLEMS 

[23]  Structural analysis  Place/Transition nets (L) 
Modeling and analysis of port 

terminal workflow (S/T) 

[24] X Sensitivity indices  Deterministic Timed PNs (T) 
Planning the type and number of 

resources for seaport (S/T) 

[23] X 
Handling capacity 

indices 
 Stochastic Timed  PNs (T) 

Handling capability of port 

terminal (S/T) 

[26] X Capacity indices  Stochastic Timed PNs (T) 
Management of port terminal 

capacity (S/T) 

[27] X Structural analysis Decision rules 
Extended Generalized 

Stochastic PNs (T) 

Collision avoidance in port 

terminal (S/T) 

[19] X  Genetic algorithms Place/Transition nets (L) 
Berth and crane assignment 

optimization (O) 

[28] 

[29] 
  Precedence rules Timed PNs (T) 

Quay cranes operations 

optimization (O) 

[30]   
Mathematical 

programming 
Colored PNs (HL) 

Movement minimization in 

container stacking (O) 

WATER TRANSPORT MEANS DECISION PROBLEMS 

[31]   P-invariant method Place/Transition nets (L) 
Automatic traffic control of 

vessels (O) 

[32] X Reachability graph Closed loop model Generalized Stochastic PNs (T) 
Emergency control system for 

shipping (O) 

[33]  Task time  Stochastic Timed PNs (T) 
Optimization of ship 

maintenance (O) 

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL 

LEVEL PROB.. 

 

More in detail, Legato et al. [28] and Trunfio [29] tackle the problem of optimally scheduling the 

operations of a group of quay cranes at a maritime container terminal. 

The goal is to minimize the overall vessel completion time. In this operational problem, TPN models 

are used as graphical optimization tool, where each sequence of tasks of the cranes is represented taking 

into account time and functioning constraints of the system (precedence, collision avoidance, and so 

on). Instead, high-level PNs are taken into account by Kefi et al. [30] for the quay management of 

fluvial ports and focusing on the minimization of the stacking time to quickly load ISO containers 

within a barge. They assimilate the container stacking optimization to the block world problem and 

propose a resolution that uses a method based on distributed artificial intelligence and interacting 
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agents. In particular, the CPN formalism allows representing a negotiation procedure between agents 

while distinguishing the various containers. 

 

B. PNs for Water Transport Means Decision Problems 

In the context of water transport systems an emerging interest is growing towards decision 

problems related to safety and maintenance issues of water transportation means. Since these problems 

may be treated either logically or considering time, accordingly two main type of PN formalisms have 

been used: P/T nets for deadlock prevention and STPNs for emergency and maintenance processes 

management. It has to be noticed that no contribution is available for strategic/tactical decision 

problems. From a logical point of view, Kezic et al. [31] address the automatic traffic control of vessels 

in a marine canal traffic system. They propose a method for calculating the maximal permissive 

deadlock prevention controller, in order to regulate the traffic light system to avoid dangerous situations 

in case of vessels’ irregular movement. The inclusion of time and stochastic data is considered by Zou 

et al. [32], who present an emergency control system for ships. The authors use GSPNs with finite 

capacity and inhibitor arcs to evaluate the performance of the system in terms of time, cost, and average 

utilization of resources. Moreover, the use of inhibitor arcs and synchronization structures allows 

solving deadlock situations. Finally, Li et al. [33] present a stochastic PN model with time focusing on 

the maintenance processes of ships that have an important impact on maintenance quality and schedule. 

For the purpose of controlling and optimizing practical maintenance processes, the paper analyzes the 

main characteristics of maintenance processes using STPNs, which allow evaluating the system 

performance under uncertainty.  

 Rail transport 2.1.3

Trains are one of the oldest means of transport, both for freight and passengers. They can 

provide an economically and ecologically sustainable service. For these reasons, railways are the most 

used transport mode for long-distance inland freight transport and the corresponding scientific 

contribution spans over a wide range of topics. 

This subsection focuses on scientific contributions using PNs to minimize the waste of freight 

railway transport, with particular attention to the reduction of costs deriving from safety issues. More in 

detail, in this regard PNs have been used to define and solve decision problems concerning: collision 

detection, deadlock identification and avoidance, management of emergency situations, scheduling and 

routing of trains, traffic prediction, and evaluation of the impact of structural changes on railway traffic. 

To this aim, apart from some models employing P/T and timed PNs or some extension, authors mainly 
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employ high-level PNs. Table 2-2 provides a concise description of the major contributions in this area, 

which are detailed in the sequel. 

Strategic/tactical decision problems are mainly focused on guaranteeing a safe service, 

minimizing collisions and dangerous situations, by properly planning the allocation of resources, 

possibly at the lowest cost. PNs have proven to be useful when integrated in decision support systems 

for the investigation and verification of railway safety operations. In particular, PNs with time and high-

level PNs are used in offline studies supporting the assessment of long-term decisions, design and test 

of on-board control systems and interlocking structures, prediction of traffic level, scheduling of trains, 

and avoidance of collisions. PNs with time are used by Rama and Andrews [12] to assess long-term 

decisions aiming at reducing costs and ensuring a safe service. The authors propose STPNs to evaluate 

the effects of long-term decisions on the lifecycle costs of a large-scale railway system. The modularity 

of PNs is here largely appreciated, due to the possibility of representing the granularity of the railway 

structure in a top-down approach. Furthermore, the possibility of performing statistical evaluation on 

the behavior of the network leads to the computation of costs and performance predictions over a long 

time horizon. This reveals to be essential for the provision of well-informed asset management 

decisions. Differently, high-level PNs are considered by Bjørk and Hagalisletto [34] and Hagalisletto et 

al. [35] to address trains’ collisions. Authors present methods for the rapid construction of large-scale 

executable railway models, obtaining nets that are safe, permit collision detection, include time, and are 

sensitive to their surroundings. CPNs are used to provide reliable information about the network, and to 

understand the behavior of the system offline. In particular, the authors show that using CPNs one can 

simulate, monitor, and control a railway system so as to detect and avoid collision, forecast the traffic 

amount in the net, and support train scheduling. In addition, Daohua and Schnieder [36] propose CPNs 

for evaluation and test purposes. In particular, they perform a top-down scenario based evaluation of a 

satellite-based train control system. This is possible thanks to the modularity and high-level descriptive 

power of CPNs, which permits the inclusion (by means of labels) of domain specific knowledge 

necessary to implement a consistent and constraint adherent safety critical control system. A significant 

number of contributions consider the design of interlocking (coordination of points and signals at 

junctions) and signalization systems. In particular, to verify the safety of the railway yard, Durmuş et al. 

[37], [38] use automation PNs, which are extended PNs easily interfaceable with sensors and actuators. 

More in detail, automation PNs include inhibitor arcs, enabling arcs, firing conditions associated with 

transitions, and actions that may be assigned to places. The yard model is implemented into a PLC 

(Programmable Logic Controller) to test scenarios. Results show that modeling with automation PNs 

allows verifying the railway net safety. Furthermore, to ensure that the automation PN model of the 

system does not reach forbidden states or undesired situations, Durmuş et al. [37] provide also a PN 

based supervisor. Durmus et al. [38] and Yildirim et al. [39] extend the railway yard PN considering a 
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level crossing and show how the model allows testing several possible failure situations. In the same 

context, Söylemez et al. [40] evaluate the use of automation PNs for the design of safety critical 

software. The authors show that PNs can be automatically generated from interlocking tables, so that 

they can be translated into the corresponding PLC code. Moreover, Durmuş et al. [41] present a PN 

representation of railway interlocking systems, satisfying the recommendations of related functional 

safety standards. The interlocking software is tested and verified by two simulators that convert 

automation PN models into PLC code. Finally, Vanit-Anunchai [41] [42] show that interlocking tables 

may be modeled using CPNs. At operational level, safety issues are regarded under a control and 

monitoring point of view.  

Logical PNs, PNs with time, and high-level PNs are used to prevent deadlocks, provide control 

systems for safe railroad intersections, ensure robustness of track allocation, and manage traffic 

abnormal situation. Logical PNs are useful to simply model and impose control laws preventing 

collisions of trains. Giua and Seatzu [43] propose a local collision avoidance approach based on P/T 

nets and GMECs that enforce limitations on the weighted sum of markings in a subset of places, 

resulting in a PN supervisor that specifies a state feedback control law preventing the net from reaching 

forbidden markings. This contribution highlights the possibility of using logical PNs not only for 

strategic/tactical purposes as discussed for water transport, but also to avoid the occurrence of deadlocks 

at the operational level. Stochastic PNs with time are appreciated for real-time control of rail crossing at 

railroad intersections, thanks to the possibility of properly modeling the system and computing a 

suitable timing of traffic lights. In particular, Weng et al. [44] demonstrate the effectiveness of STPNs 

in implementing a parallel railroad level crossing control system to avoid critical scenarios (traffic jams) 

in the system. High-level PNs apply to real-time deadlock prevention, safety verification of the railway 

signaling system, and management of abnormal situations. Fanti et al. [45] present a CPN model of a 

railway system controlled through colored GMECs, to deal with the real-time traffic control for 

deadlock prevention. The authors use CPNs to model the dynamics of the railway network, while the 

prevention policy is expressed by a set of linear inequality constraints, i.e., the colored GMECs that are 

enforced by adding appropriate monitor places. 

Based on the analysis of digraphs associated to CPNs, deadlock situations are characterized and 

a strategy is established to define offline a set of GMECs that prevent deadlock. CPNs are also used in 

the field of safe communication in the railway signaling system and for bottlenecks resolution. Guo et 

al. [47] use CPNs to model and verify the correctness and safety characteristics of a railway signal 

safety protocol. The authors implement and simulate single-channel and dual-channel communication 

models, based on the railway signal safety protocol, via CPNs. This simulation technique reveals to be 

useful in the detection of switch deadlocks in a dual channel system. 
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Table 2-2 - Simulation, analysis, and control of rail transport systems via PN models. 

REF. SIMULATION  ANALYSIS 
OPTIMIZATION/ 

CONTROL 
PN TYPE*1 TACKLED APPLICATION*2 

[11] X Statistical analysis  Stochastic Timed PNs (T) Lifecycle cost analysis (S/T) 

[34] X Maude simulation Control rules Colored PNs (HL) Collisions of trains (S/T) 

[35]   Control PN submodel Colored PNs (HL) Collisions of trains (S/T) 

[36] X 
State- space analysis and 

model-based testing 
 Colored PNs (HL) 

Satellite-based rail control 

systems (S/T) 

[37] 

[38] 
X  

PN model for control 

systems 
Automation PNs (HL) 

Interlocking and 

signalization systems design 

for railway yard (S/T) 

[39] X Functional block diagram  Automation PNs (HL) 

Failure investigation in 

railway yard with level 

crossing (S/T) 

[40] X   Place/Transition nets (L) Interlocking tables (S/T) 

[41] X   Place/Transition nets (L) 
Interlocking system with 

safety standards (S/T) 

[46] 

[42] 
X State-space analysis 

PN model of 

interlocking tables 
Colored PNs (HL) 

Railway interlocking 

systems (S/T) 

[43]   
Supervisory control 

with GMECs 
Place/Transition nets (L) 

Deadlock avoidance in 

railway systems (O) 

[44] X Reachability graph 
Control conditions and 

events 
Stochastic Timed PNs (T) 

Railway level crossing 

control system (O) 

[45]  Analysis of digraphs 
Supervisory control 

with GMECs 
Colored PNs (HL) 

Deadlock prevention on 

railway systems (O) 

[47] X Simulation analysis Monitoring module Colored PNs (HL) 
Safe communication in 

railway signaling system (O) 

[48] X Simulation analysis  Timed Colored PNs (HL) 
Track allocation robustness 

(O) 

[49] X 
Scenario-based simulation 

analysis 
Decision rules Fuzzy PNs (HL) 

Train dispatching in case of 

abnormal situations (O) 

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL 

LEVEL PROB.. 

 

Wenzheng et al. [48] tackle the track allocation robustness, which is seldom addressed in the literature, 

solving bottlenecks that may occur in track allocation schemes when trains in the net are delayed. The 

model of the track allocation schemes uses timed CPNs. The detection of bottlenecks is performed 

using the model and the indicators of the total trains’ departure delay. In the context of other high-level 

PN formalisms, Cheng et al. [49] use a FPN approach to formulate the decision rules of train 

dispatchers in case of abnormality in the railway system functioning. The authors transform the train 

dispatchers’ expertise into useful knowledge rules, to be used in abnormal situations, such as: 

centralized traffic control system failure, automatic train protection failure, and locomotive failure. 
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 Road transport 2.1.4

Road transport is the most used inland mode for the pick-up and delivery of goods. It is typically 

used for the last mile transport, the most critical and expensive activity of supply chains. However, the 

literature mainly focuses on passenger transport and urban vehicular traffic [50], while only few works 

address freight transport via road means. Nonetheless, the resolution of decision problems connected to 

freight transport is not negligible, especially if it is considered the corresponding impact on company 

costs (fuel, maintenance, employees, and so on) and environment (pollution and energy demand). In 

particular, the main topics of interest of PNs for freight road transportation are: the logistic chain last 

mile, freight transportation via highways, and hazardous freight transportation, as reported in Table 2-3. 

The table also shows that typically high-level PNs are used for road transport decision problems, as 

detailed in the sequel. 

A first subset of contributions is dedicated to using PNs at a strategic/tactical level. The analyzed 

works address problems related to the planning of the last mile freight transport and use both logical and 

high-level PNs for estimating routes, assigning vehicles to cargos, etc. Logical PNs are used by Qu et al. 

[51]to minimize the travel time and consequently the corresponding waste. The authors develop an 

algorithm based on P/T nets to estimate cargo route(s) with the least total travel time, based on finding 

the transition firing sequences that minimize the total travel time. In the same context, Aized and Srai 

prove the effectiveness of high-level PNs by developing in [52] a three-layered hierarchical CPN model 

for planning the last mile delivery region. The implementation of the hierarchical structure via PNs 

allows the reorganization of the system whether any change happens, thanks to the scalability and 

versatility of the PN tool. In addition, Franke and Dangelmaier [53] propose a preliminary work on a 

multi-agent system integrating CPNs with agents to dynamically simulate a road transportation system 

and plan vehicle routes and assignments to clients. 

A second subset of contributions is dedicated to the use PNs at operational level for hazardous 

material (hazmat) transport and for long-distance road transport, typically motorways or freeways. More 

in detail, PNs with time and high-level PNs have been applied also to road transport systems for the 

special cases of hazardous material transport, and accidents of heavy means. Timed PNs are considered 

by Yuanchun et al. [54] to evaluate the response of emergency system in case of accidents involving 

hazmat. The technique uses STPNs and Markov chains to statistically evaluate performance. Instead, 

Centrone et al. [55] consider the modeling of hazmat transport on congested motorways, via timed 

CPNs. The model allows estimating in real time the risk of hazmat transport and supporting rescue 

decisions, taking into account the type of transported hazardous material, the traffic and the density of 

population living close to the motorway. An extension of this work is developed by Fanti et al. [56] who 

propose a decision support system to monitor hazmat vehicles. Furthermore, high-level PNs are used by 
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Kabashkin [57] who proposes the implementation of decision support systems based on evaluation PNs 

for the choice of alternative routes in a large-scale transportation transit system. A heuristic approach 

and a simulation tool are developed that allow the practical realization of the support tool in real 

environment. As regards long-distance road transport, due to the physical extension and complexity of 

the considered systems, high-level PNs have typically been proposed to allow compacting the 

transportation system representation. In particular, Julvez and Boel [58] propose a macroscopic model 

based on continuous PNs as a tool for designing control laws that improve the road transport system 

dynamics. Taking advantage of the network fluidization that leads to a concise continuous PN model, a 

model predictive control strategy is proposed that allows approximating the fundamental traffic diagram 

and considering various traffic conditions. Rather than using continuous PNs, Dotoli et al. [59], Dotoli 

[60] and Fanti et al. [61] consider only a partial fluidization of the system and employ first-order HPNs 

to model and control freeways. The model is modular and takes advantage of HPNs to represent traffic 

flows as continuous fluids and control signals and interruptions as discrete dynamics. Moreover, in [59] 

and [61] such a HPN formalism allows to mimic the fundamental traffic diagram and simulate and 

optimize the road transportation system, either by using an on-line optimal control coordination of 

speed limits [48] or by a ramp-metering control policy, to maximize the traffic flow [59]. Dotoli [61] 

uses a similar HPN model to control in real time freeways by route guidance, i.e., recommendation of 

alternative routes, to maximize the traffic flow. Demongodin [62] proposes the use of another HPN 

formalism, called generalized batched PNs, for modelling freeways and controlling their speed with a 

variable speed limit control policy that makes use of the defined PN formalism. In particular, 

generalized batched PNs extend the HPN class by defining the concept of batch, i.e., of a group of 

entities moving through a transfer zone at a certain speed, and the corresponding notion of batch mode. 

Moreover, batches may be controlled according to a switching dynamics between two behaviors: the so-

called free behavior and the accumulator behavior. These concepts are straightforwardly applied to 

model and control freight logistics and transportation systems. 

 Air transport 2.1.5

Air transport is employed only for very valuable goods, due to high costs. Hence, the 

corresponding contributions are more limited than those on other modes.  

Table 2-4 summarizes the literature and clearly shows that, due to the complexity of the air 

transport system, typically PNs with time are used, eventually with stochastic or colored features. 

Stochastic PNs with time and high-level PNs are mainly used to solve air terminal strategic 

decision problems concerning airplanes delays propagation, cargo processing time, air traffic capability, 

handling capability, air traffic management, and taxiing operations. PNs with time are used both for the 

analysis of air traffic flows and for the management of air terminal resources. More in detail, airport 
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strategic decision problems include the efficient management of the aircraft flows, taking into account 

costs induced by the aircraft arrival delays. In this context, Ding et al. [63] use TPNs, to investigate the 

evolution and the propagation of airplane delays in the airport. Thanks to the temporal features of TPNs, 

two different models allow the investigation of the propagation of airplane delays. Two types of 

airplanes groups are then studied: priority and non-priority airplanes. For both of them, authors 

calculate the average and total delay propagation. Consistent results are obtained in test simulations of 

the technique on some airport hubs. As regards the management of terminal resources, stochastic PNs 

with time find application in the work by Yang et al. [64], who analyze the handling part of the air 

cargo export, examining how strongly it can influence the cargo transport speed. They present a STPN 

model of the air cargo handling system and build the associated homogeneous Markov chains. 

 

TABLE 2-3 - Simulation, analysis, and control of road transport systems via PN models. 

REF. SIMULATION  ANALYSIS 

OPTIMIZATION/ 

CONTROL 

PN TYPE*1 TACKLED APPLICATION*2 

[51] X Simulation analysis 
Mathematical 

programming 

Place/Transition 

nets (L) 

Least cost travel routes estimation 

(S/T) 

[52] X Simulation analysis  Colored PNs (HL) 
Planning of the last mile transport 

(S/T) 

[53] X  PNs control model Colored PNs (HL) 
Planning vehicle routes and assignment 

to clients (S/T) 

[54] X Statistical analysis  
Stochastic Timed 

PNs (T) 

Hazmat road transportation accidents 

(O) 

[55] X Simulation analysis  
Timed Colored PNs 

(HL) 

Hazmat road transport on congested 

motorways (O) 

[56] X Simulation analysis  Colored PNs (HL) Hazmat vehicles monitoring (O) 

[57] X  Heuristics 
Evaluation PNs 

(HL) 

Alternative routes in large-scale 

transportation systems (O) 

[58] X Simulation analysis Model predictive control 
Continuous PNs 

(HL) 

Model based feedback control of road 

networks (O) 

[59] X Simulation analysis 
Closed loop optimal 

control 

First-Order Hybrid 

PNs (HL) 
Freeway ramp metering control (O) 

[60] X Simulation analysis 
Closed loop optimal 

control 

First-Order Hybrid 

PNs (HL) 
Freeway route guidance (O) 

[61] X Simulation analysis 
Mathematical 

programming 

First-Order Hybrid 

PNs (HL) 
Freeway speed limit control (O) 

[62] X 
Performance 

analysis 
Decision algorithms 

Generalized 

Batched PNs (HL) 
Freeway speed limit control (O) 

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL 

LEVEL PROB.. 
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The model allows analyzing the system handling capability based on the probability distribution 

of the Markov chain stable state, revealing the bottlenecks and providing useful insight regarding the 

involved resources dimensioning and use. It is possible to see a strong similarity between this work and 

that by Wang et al. [26] discussed in sub-section 2.1.3.1, both for aim and formalism (STPNs). 

Furthermore, in [65] a real airport is modelled and simulated by means of STPN and its traffic 

capability is evaluated. The work has a twofold aim: on the one hand to test the simulator ability in 

representing a large airport, and on the other hand to evaluate the airport traffic capability, in case it 

should receive traffic from two adjacent airports closed for severe weather conditions. On the other 

hand, high-level PNs give the opportunity to analyze in detail the terminal operations, by distinguishing 

the flows of different type of freights. In this respect, Lee et al. [66] develop a simulation model based 

on high-level PNs to analyze the terminal operations, focusing on the retrieval part of terminal 

operations. Due to the complex cargo processes, stochastic customer requests, and processing times, the 

formulation of an analytical model is impractical. Hence, the authors employ timed CPNs to model and 

simulate the terminal operations. Colors and time stamps are associated with tokens, with the purpose of 

distinguishing cargos that require distinct retrieval processes. The simulation model allows investigating 

the results of airline assignment and the automated storage and retrieval system policy proposed by the 

authors to minimize the cargo processing time index and several performance indices. High-level PNs 

also permit to plan air traffic allowing cooperation between airborne and ground side. In [67] a CPN 

model is implemented to simulate a potential future arrival planning process in air traffic control. It 

establishes a favorable sequence in which aircraft can be led to the runway. CPNs are used to generate 

and evaluate the potential solutions to the sequence planning problem. In the same direction, Werther et 

al. [68] use CPNs as a formal approach for the description of the whole human machine system in 

remote tower operation human machine interface. The authors use CPNs to conduct a formal analysis of 

the system, identifying critical states and inconsistencies. 

Consequently, the represented formal work process model is a support for the communication 

between domain experts and system developers. At ground side, the management of the movement of 

airplanes, also called taxiing, is a critical and complex activity. In [69] Podgórski and Skorupski present 

a hierarchical CPN model to simulate the actual and projected air traffic for determining alternative taxi 

routes in case of congestion in aerodromes traffic, i.e. the so-called conflict points. The model allows 

finding the best alternative route and represents a promising base for the identification of the optimal 

global solution for the management of the ground traffic in the whole aerodrome. This section is 

concluded by recalling the work by Jamal and Zafar [70], who present mobile PNs, i.e., logical PN 

frameworks integrated with agent based modelling, in order to model and verify the main operations of 

an aircraft: takeoff, enroute, and landing. 
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TABLE 2-4 - Simulation, analysis, and control of air transport systems via PN models. 

REF. SIMULATION  ANALYSIS 

OPTIMIZATION/ 

CONTROL 

PN TYPE*1 TACKLED APPLICATION*2 

[63] X Statistical analysis  Timed PNs (T) Delay propagation in airports (S/T) 

[64] X Statistical analysis  Stochastic Timed PNs (T) 
Handling capability of export 

airport terminals (S/T) 

[65] X Simulation analysis  Stochastic Timed PNs (T) 
Air traffic capacity of airports 

(S/T) 

[66] X Simulation analysis  Colored Timed PNs (HL) 
Analysis of import airport terminal 

operations (S/T) 

[67] X State space analysis  Colored PNs (HL) 
Air traffic capacity of airports 

(S/T) 

[68] X State space analysis  Colored PNs (HL) 
Air traffic capacity of airports 

(S/T) 

[69] X Simulation analysis  Colored PNs (HL) 
Aerodrome taxiing management 

(S/T) 

[70] X   Agent Based Mobile PNs (HL) 
Aircraft operations modeling and 

verification (S/T) 

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL 

LEVEL PROB.. 

 

 Pipeline transport 2.1.6

Pipeline transport plays an important role in the oil and gas transportation system for its 

advantages in energy consumption, remote centralized management, and profit. Table 2-5 reports the 

related contributions and shows that logical PNs, PNs with time, and high-level PNs are used to tackle 

some of the related decision problems. 

At strategic/tactical levels, logical PNs are considered to plan operating procedures, while PNs 

with time are used to evaluate the system performance, and high-level PNs find application in the risk 

evaluation context. More in detail, logic PNs are used by Chou and Chang [71] to propose a systematic 

strategy that allows the creation of detailed operating procedures necessary to clean any given pipeline 

network. A P/T net model is proposed to select the cleaning routes of all material-transfer paths. The 

operation steps are identified using the results of the system simulations of the PN model. The technique 

demonstrates to be effective in real systems. Differently, Lai et al. [72] use logic PNs to compute the 

optimal sequence of operating procedures necessary to transfer material in a pipeline network. The 

technique is flexible, allowing the definition of different objective functions that can be customized and 

permit the reduction of different types of waste. PNs with time are used by Xiong et al. [73] to analyze 

the performance of emergency response for oil and gas pipeline accidents by predetermined emergency 

plans. To this aim, STPNs are proposed as a modeling framework and the results obtained by the 

authors show that the average execution time of the STPN model can be used to evaluate the 
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effectiveness of emergency responses. Furthermore, Gursesli and Desrochers [74] use PNs with time to 

analyze the interdependencies of the systems that compose power plants (i.e. power distribution, oil and 

natural gas production, pipeline networks for these products, water, and communication systems) and 

evaluate the effects of power disruption on these components. STPNs are used to represent the complex 

system and conduct an analytical inspection of the interdependencies. This can conduct to the 

identification of recovery strategies whose efficiency can be analyzed by means of structural analysis. 

In [75] Ren et al. compare various formalisms for the performance evaluation of pipeline networks. The 

authors show that STPNs are a typical tool to model nonlinear asynchronous pipelines with choices, 

fundamental in design planning. The modeling methods reduce to linear programming, which can be 

very time-consuming when the design is large. Finally, high-level PNs are proposed by Guo et al. [76] 

for a risk evaluation in long-distance oil and gas transportation pipelines. The method is based on a FPN 

model that admirably describes the unknown likelihood, the relationships of most of the input events for 

the accident, and the dynamic changes of the system.  

The decision problems at operational level are solved using high-level PNs and mainly regard 

the short-term scheduling of operations in refineries and the computation of the shortest path in pipeline 

networks. More in detail, Wu et al. [77] use high-level PNs for the first problem. PNs allow overcoming 

the limits of mathematical programming in finding a feasible solution. In particular, the contribution 

presents a hybrid CTPN for the schedulability analysis and the short-term schedule definition. The PN 

framework allows the modular representation of a refinery distinguishing the multiple types of crude oil 

circulating in the system. The short-term scheduling problem is solved hierarchically: at the upper level 

the schedule is determined and at the lower level it is refined. For the same problem, Wu et al. [78] 

propose a heuristics to test the realizability for a given target refining schedule and in [79] and [80] they 

include in the scheduling problem the constraints regarding the setup cost of high fusion point oil 

transport, the cost of tank charging and discharging, the residency time and charging tank-switch-

overlap. Moreover, Wu et al. [81] use hybrid CPNs also to solve the scheduling problem for refineries 

with two pipelines, each one devoted to the transportation of a different type of oil. Finally, in [82] the 

authors, after obtaining schedulability conditions, decompose the problem by decoupling continuous 

and discrete variables and solve each sub-problem hierarchically. For sub-problems with continuous 

variables linear programming-based techniques are used, while for those with discrete variables 

heuristics is applied. Thus, the problem can be efficiently solved and the approach is applicable to solve 

real-life problems. On the other hand, Kadri and Zouari in [83] and in [84] address the problem of 

determining dynamic shortest path in oil pipeline networks where the reliability condition can vary with 

time and environment. 
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TABLE 2-5 - Simulation, analysis, and control of pipeline transport systems via PN models. 

REF. SIMULATION  ANALYSIS 

OPTIMIZATION/ 

CONTROL 

PN TYPE*1 TACKLED APPLICATION*2 

[71] X Reachability graph  Place/Transition PNs (L) 
Planning of cleaning operations in 

pipelines (S/T) 

[72] X  
Mathematical 

programming 
Place/Transition PNs (L) 

Computation of optimal route for 

transfer of material (S/T) 

[73] X Statistical analysis  Stochastic Timed PNs (T) 
Evaluation of the effectiveness of 

emergency plans (S/T) 

[74] X Invariants analysis  Stochastic Timed PNs (T) 
Interdependency analysis in complex 

systems (S/T) 

[75] X Simulation analysis  Stochastic Timed PNs (T) 
Performance evaluation of asynchronous 

pipelines (S/T) 

[76] X 
Fuzzy reasoning 

algorithm 
 Fuzzy PNs (HL) Risk assessment of pipelines (S/T) 

[77] X Safeness analysis Heuristics Hybrid Colored PNs (HL) 
Short-term scheduling of operations in 

crude oil refineries (O) 

[78] X Safeness analysis Heuristics Hybrid Colored PNs (HL) 
Refining short-term scheduling of 

operations in crude oil refineries (O) 

[79] X Safeness analysis Heuristics Hybrid Colored PNs (HL) Refining short-term scheduling of 

operations in crude oil refineries (O) 

[80] X Safeness analysis Heuristics Hybrid Colored PNs (HL) Refining short-term scheduling of 

operations in crude oil refineries (O) 

[81] X Safeness analysis Heuristics Hybrid Colored PNs (HL) Refining short-term scheduling of 

operations in crude oil refineries (O) 

[82] X Safeness analysis Heuristics Hybrid Colored PNs (HL) Refining short-term scheduling of 

operations in crude oil refineries (O) 

[83] 

[84] 
X Simulation analysis Dijkstra’s algorithm Colored PNs (HL) 

Shortest path search in dynamic 

reliability space (O)  

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL 

LEVEL PROB.. 

 

The contribution determines the value of the parameters necessary to calculate the dynamic reliability 

and then, applying the Dijkstra’s algorithm, determines the most reliable path based on a CPN model. 

 Multimodal and intermodal transport 2.1.7

The evolution of transport has led to the extensive use of combined transport modes, namely, 

multimodal and intermodal transport. This modern transport framework allows to take advantage of the 

best characteristics of each mode, i.e., to combine the speed, security, reliability, and sustainability of 

rail/sea modes for long distance transport, with the space penetration features of road transportation 

[85], [86], [87]. 
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The related literature on PNs focuses mainly on problems concerning multimodal and 

intermodal terminals, while few works address the use of PNs for the whole transportation chain. This is 

due to the complexity of the transportation system and includes decision problems regarding various 

transportation means. On the other hand, the management of terminals is also complex and greatly 

influences the performance of the entire transportation system. As discussed in the following 

subsections, available contributions applying PNs to freight multimodal and intermodal transport 

typically employ PNs with time, i.e., deterministic or stochastic, and high-level PNs (see Table 

2-6Table 2-6 and Table 2-7).  

A. PNs for Multi/Intermodal Terminals Decision Problems 

The management of multimodal or intermodal container terminals should mainly guarantee fast 

transshipment between modes and optimized container stacking, so as to contribute to the minimization 

of the freight shipping time in the whole logistic chain. For this reason, multi/intermodal terminals are 

usually provided with modern handling equipment, advanced transportation systems, and up-to-date 

ICT tools whose planning and control concur to the terminal efficiency [85]. In the literature, great 

attention is given to the minimization of the residence time spent by containers in the terminal and PNs 

contributions have analyzed, both at strategic/tactical and operational level, different aspects of the 

problem. 

The decision problems of strategic/tactical levels include planning of resources allocation, 

analysis of terminal operations, and design of the yard area. The contributions propose the use of PNs 

with time to model and analyze the system, obtaining predictions of the system behavior and evaluating 

alternative policies to solve the above problems. More in detail, PNs with time are mainly considered 

for the representation and evaluation of the evolution of terminals. The obtained information are then 

used to reduce the delays in the transshipment process. Filipova et al. [88] highlight the importance of 

reducing the permanence of the cargo in the intermodal transport terminal. They identify and describe 

by TPNs the events that in a water-road terminal can interrupt the freight flow between customers, with 

the purpose of decreasing the delays caused in the transportation chain by these events. Nevertheless, no 

control policy is suggested to avoid such events. Later on, Di Febbraro et al. [89] cope with the 

management of an automated system called Metrocargo system designed for the handling of containers 

by trains in an intermodal terminal. They model the system by means of TPNs with the purpose of 

creating an effective tool for IFTT performance evaluation. First attempts to take advantage of 

stochastic PNs with time for analysis and design of intermodal freight terminals are in [90] by Fischer 

and Kemper. The authors suggest the use of STPNs as an intermediate language to combine modeling 

of logistic systems with existing analysis methods. In particular, they provide a steady state analysis of 

the terminal, which reveals to be useful for the appropriate dimensioning of a waiting space dedicated to 
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the trucks involved in the intermodal chain. More recently, Maione et al. [91] and Maione et. al. [92] 

provide a contribution to define a complete modular model of container handling processes in container 

terminals, which can be used for simulation, test, monitor, and control purposes. In the first paper, a 

GSPN formalizes the sequence of operations, each involving the synchronization of resources, for the 

freight transshipment process. In the latter one, a GSPN model is used to micro-simulate key human 

operators’ activities. In both cases the authors use GSPNs for the statistical analysis of the behavior of 

the system. It is evident that the framework also appears promising as a helpful tool for real-time 

control purposes. Moreover, Cavone et al. [93], one of the works developed on Petri nets for intermodal 

transportation, STPNs were used to tackle the strategic planning of number, capacity and frequency of 

resources in an intermodal terminal. Finally, Dotoli et al. [13] focus on modeling and performance 

evaluation of an intermodal freight terminal using stochastic PNs with time. The model allows 

estimating the terminal’s performance by suitable performance indices and identify criticalities and 

bottlenecks. Furthermore, it allows evaluating different solutions to the recognized criticalities under 

alternative scenarios (e.g., when inflow traffic increases and congestion may occur).  

The decision problems of the operational level mainly regard the real-time control of the 

activities of the terminal, while optimizing some performance indices. The literature contributions 

highlight that logical PNs, PNs with time, and high-level PNs are particularly suitable to this purpose 

thanks to their time features, the existing evaluation indices, and the control frameworks available. At 

first, operational level problems are discussed by mentioning a preliminary work by Kabashkin [94], 

presenting the structure of a decision support system for regional transit multimodal transport that 

allows choosing alternative multimodal routes using PN based simulation. The proposed formalism is 

that of evaluation PNs, an extension of Place/Transition nets. On the other hand, in the context of 

control of handling resources, Degano and Di Febbraro in [95], [96], [11] and Degano and Pellegrino in 

[97] develop in consecutive steps a PN model of a partially automated material transportation system 

inside an intermodal container terminal. The authors aim at optimizing the resource allocation, while 

synchronizing the handling operations and reducing the time spent for the transport inside of the 

terminal. When an unpredictable event interferes with the nominal scheduled behavior of the intermodal 

terminal, this can cause a delay in its activities. The authors use TPNs to predict the delay occurrence by 

monitoring the firing times of the transitions of the model and communicating any missed firing to a 

regulation module. If a missing firing is detected, various policies are proposed to minimize the 

propagation of the delay. Dotoli et al. [85] use stochastic PNs with time to evaluate the impact of ICT 

tools on the performance of intermodal systems. Using a STPN model, the authors show that the 

communication between strategic parts of the system can improve the transportation process in case of 

congestion.  
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TABLE 2-6 - Simulation, analysis, and control of multi/intermodal transport systems via PN models  

(terminals decision problems). 

REF. SIMULATION ANALYSIS 

OPTIMIZATION/ 

CONTROL 

PN TYPE*1 TACKLED APPLICATION*2 

[88]  
State equation 

resolution 
 Timed PNs (T)  

Delay reduction in water/road 

terminals (S/T) 

[89]    Timed PNs (T) 

Container handling with 

Metrocargo system in rail/road 

terminal (S/T) 

[90] X Steady state analysis  
Stochastic Timed PNs 

(T) 

Dimensioning of trucks waiting 

area (S/T) 

[91] [92] X Statistical analysis  
Generalized Stochastic 

PNs (T)  

Container handling with physical 

and human resources in 

sea/rail/road terminals (S/T) 

[93] X Statistical analysis  
Stochastic Timed PNs 

(T) 

Planning of resources in intermodal 

terminals (S/T) 

[98] X Statistical analysis  
Stochastic Timed PNs 

(T) 

Efficiency evaluation of intermodal 

terminals (S/T) 

[94] X   Evaluation PNs (L) 
Route generation for multimodal 

transport system (O) 

[95] [96] 

[11] [97] 
X  

Agent-based control 

algorithm 
Timed PNs (T) 

Optimization and control of 

containers handling resources in a 

sea/rail/road terminal (O) 

[85] X Statistical analysis Supervisory control with 

GMECs 

Stochastic Timed PNs 

(T) 

Evaluation of ICT impact on 

intermodal terminals (O) 

[99] X Statistical analysis 
Control rules with 

predicates and assertions 

PNs with predicates 

(HL) 

Reliability analysis of intermodal 

terminals (O) 

[100] X Simulation analysis 
Mathematical 

programming 

First-Order Hybrid 

PNs (HL) 

Optimization of intermodal 

terminal activities (O) 

[101] X 
Mathematical 

techniques 
Fuzzy logic 

Hybrid PNs with fuzzy 

logic (HL) 

Modeling of multimodal transport 

system and exchange times 

optimization (O) 

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL LEVEL 

PROB.. 

 

The authors show that GMECs allow the straightforward modeling and simulation of such a 

communication subsystem in the STPN framework, providing an effective control of the system and 

resolution of congestions. Also high-level PNs are used for performance evaluation and control 

purposes, as shown in the research developed by Silva et al.[99]. They use PNs with predicates 

combined with Monte Carlo simulation for the performance evaluation of intermodal terminals at an 

operational level with particular attention to reliability analysis. PNs with predicates allow a clear 

graphical representation for highly complex systems, like intermodal container terminals are. In 

particular, the inclusion of predicates (i.e., expressions) and assumptions (i.e., equations) combined with 
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the duplication of some fundamental places (i.e., repeated places) leads to a reduction in the number of 

connections and then to an increase in the readability of the model. Furthermore, predicates and 

assumptions allow the representation of supervisory control rules when addressing performance 

optimization problems. The authors apply the procedure to a real case study and prove that a low 

computational time is needed also for long prediction windows (e.g., 5 years for the analyzed case-

study). In addition, in [100] me and my colleagues, we have shown how first-order HPNs can be 

efficiently used to model and manage both offline and in real-time intermodal freight transport 

terminals. As discussed in Section IX, the proposed formalism enables the terminal decision maker to 

choose the speeds associated with continuous transitions to optimize the terminal performance by two 

alternative control policies: the maximization of the container flows and the minimization of the stored 

containers. The proposed results are validated on a real terminal in southern Italy. The conclusive part 

of this section regards the contribution of Mahi et al. [101] who apply HPNs with fuzzy logic to model, 

analyze, and control a multimodal transportation system. Although the recalled work is intended mainly 

for passengers’ transfer, it may be straightforwardly applied to freight logistics and transportation 

systems. The authors propose to employ HPNs to model the exchange of flows between different 

transportation modes and evaluate the IFTT performance (connection feasibility, waiting time, etc.) and 

fuzzy logic to control the system evolution while minimizing the connection time for a transfer between 

modes. 

 PNs for Terminal Handling Resources Decision 2.1.8

Problems 

This sub-section discusses papers that use PNs to deal with problems related to automated 

resources, typically Automatic Guided Vehicles (AGVs). These are often used in terminals for the 

efficient handling of containers especially when it is not possible to extend the terminal and the 

allocation of the existing storage space is thus optimized. In particular, it is summarized the literature 

related with operational level decision problems, such as: collision avoidance, deadlock avoidance, 

dynamic vehicle routing, dynamic dispatching, fault detection and identification, and activity 

scheduling (see Table 2-7). The main works are presented where the aim is to avoid collisions, taking 

advantage of the liveness property of PNs and imposing appropriate control rules. The contributions 

consider the application of logical PNs, PNs with time, and high-level PNs, which alone or combined 

with mathematical programming or control algorithms allow to easily represent complex control rules. 

Logical PNs features are considered for the implementation of fault tolerant and deadlock free systems. 

Yan & Li [102] consider the multiple faults’ detection and identification in PNs that have state machine 

structures. In particular, the authors propose the design of the net controller leading to a fault tolerant 

AGV system. Finally, Gudelj et al. [103] focus on the scheduling of AGVs activities, inside a seaport 
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container terminal. They provide a technique to find an optimal conflict and deadlock free schedule in 

container terminal systems, based on the combination of genetic algorithms and a PN structural analysis 

procedure. In particular, for the modeling of the multiclass re-entrant flowline system, PNs are used to 

formulate the problem in algebraic terms, leading to a substantial limitation of the problem formulation 

complexity. PNs with time are considered by Liu and Ioannou [104] for collision avoidance in 

automated container terminals using AGVs. The authors present a modular TPN model of the system. 

They build up small and simple PNs for each part of the automated terminal yard and prove the 

properties of liveness, safeness, and reversibility. Then, they integrate the subnets into a unique model, 

without losing the properties of liveness, safety, and reversibility. The AGVs’ collision avoidance is 

then guaranteed by a first-come, first-pass control rule, which is modelled using inhibitor and actuator 

arcs embedded in the sub-models. PNs with time are also used for the optimization of dynamic 

dispatching and routing in bi-directional AGV systems by Nishi et al. [105] and Nishi and Tanaka 

[106]. They consider a PN decomposition approach and the problem consists in finding an optimal 

transition firing sequence for a TPN model assuring that no blocking situation occurs. 

TABLE 2-7 - Simulation, analysis, and control of multi/intermodal transport systems via PN models  

(handling resources decision problems). 

REF. SIMULATION  ANALYSIS 

OPTIMIZATION/ 

CONTROL 

PN TYPE*1 TACKLED APPLICATION*2 

[102]   PN controllers Place/Transition nets (L) Multiple AGV fault 

detection and identification 

(O) 

[103] X Structural analysis Genetic algorithms Place/Transition nets (L) Scheduling of AGVs (O) 

[104] X Structural analysis  First-come first-pass 

control rule 

Timed PNs (T) AGV collision avoidance 

(O) 

[105] 

[106] 

X Statistical analysis Mathematical 

programming 

Timed PNs (T) AGV dynamic dispatching 

and routing (O) 

[107] X  Control rules Colored Timed PNs (HL) Deadlock and collision 

avoidance in zone 

controlled AGVs (O) 

[108] X  Control policy Colored Resource-Oriented 

PNs (HL) 

AGV collision avoidance 

(O) 

[109] X  Control policy Colored Resource-Oriented 

PNs (HL) 

AGV collision avoidance 

(O) 

[110] X  Supervisory control Colored Resource-Oriented 

PNs (HL) 

AGV routing with 

minimum travel time and 

collision avoidance (O) 

[111] X Structural analysis Control rules Colored PNs with undirected 

arcs and directed tokens (HL) 

Dynamic AGVs routing (O) 

[112]  Structural analysis Logical expressions Colored PNs (HL) Safety of open-path multi 

agent AGV system (O) 

Note: *1 L=LOGIC PNS; T= PNS WITH TIME; HL=HIGH-LEVEL PNS.   *2 S/T=STRATEGIC/TACTICAL LEVEL PROB.; O=OPERATIONAL 

LEVEL PROB.. 
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The authors chose to decompose the TPN model to reduce the optimization problem computational 

complexity. The same approach is used both for single and bi-objective functions’ optimizations. High-

level PNs are also adopted for the resolution of the collision avoidance problem, allowing the 

implementation of more complex control rules. Dotoli and Fanti [107] present a control strategy to 

avoid deadlock and collisions in zone controlled AGVs system. The control scheme manages the 

assignment of new paths and the acquisition of the next zone in a bidirectional network. The AGVs 

system structure is modeled and analyzed via timed CPNs so as to simply implement the control 

strategy, which works on the basis of the knowledge of the system state. A similar approach is proposed 

by Wu and Zhou [108], who tackle the collision avoidance by the zone control policy and implement it 

by resource-oriented CPNs. Furthermore, Wu and Zhou in [109] develop colored resource-oriented PNs 

to model AGV systems and create a control policy to avoid deadlock and conflicts, while in [110] they 

use the same type of PNs to impose a supervisory control that avoids deadlock and blocking with the 

goal of minimizing the AGV traveling time. Roszkowska [111] proposes the modeling of AGVs using a 

CPN with undirected arcs and directed tokens, so as to reduce the number of the net components and 

simplify the insight into the model. Besides the use of zone control for collision avoidance, the author 

focuses on dynamic vehicle routing, taking advantage of marking liveness. In addition, Giglio [112] 

uses CPNs to model an open-path multi AGV system. The CPN model is able to represent the behavior 

of a variable number of AGVs which freely travel on the system layout, and the use of colors, guards, 

and arc expressions allows assuring the safety requirements of the AGV system.  

 Discussion and open issues 2.1.9

The literature review clearly shows that PNs have been employed in the logistics and freight 

transport context as regards fundamentally two research macro-areas directly related to strategic/tactical 

and operational decision problems: (1) resource planning and performance evaluation and (2) 

monitoring and control of resources, especially as regards safety/liveness assurance. Indeed, the use 

of PN models in both research areas is motivated by some properties that all PN formalisms have in 

common, namely: modularity, scalability, graphical aspect, and mathematical formalization. In the 

sequel conclusions are drawn regarding each freight transportation mode and outline new future 

research lines.  

Water transport: For water transport, PNs have been taken into account in both research areas 

(1) and (2). Considering resource planning and performance analysis, Place/Transition nets can be 

effectively used to represent workflows in port container terminals and strategically evaluate the 

efficiency of the system according to appropriate performance indices (obviously not taking time into 

account). Place/Transition nets can be also useful for deadlock analysis and prevention, using structural 

analysis techniques. However, Place/Transition nets do not include events temporization. This may lead 
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to overestimating the number of deadlocks. Moreover, the absence in this formalization of timing 

information makes the framework unsuitable for simulation purposes. Instead, TPNs and STPNs 

overcome this limitation and offer the possibility to perform realistic simulations of the system 

evolution taking into account deterministic or stochastic events. With TPNs and STPNs it is possible to 

define performance indices that take into account time and identify eventual critical resources that may 

generate bottlenecks in port container terminals. On the other hand, TPNs, STPNs, GSPNs, and CPNs 

are appreciated for monitoring and control purposes as an alternative to mathematical programming, 

since they can provide a simpler representation and resolution of complex optimization problems, that 

otherwise may require non trivial mathematical formulations. Concerning resource control, the main 

contributions regard resource allocation and container stacking optimization, collision avoidance and 

emergency management, and consider GSPN models for their descriptive power and simple control 

rules implementation. However, PNs have not yet been taken into account to manage emergency 

situations in real time. 

Railway transport: The complexity of railways has led authors to deploy PNs’ scalability and 

effectiveness to solve safety/liveness assurance problems, both at strategic/tactical and operational 

levels. Almost all works focus on high-level PNs, such as colored and fuzzy PNs. The CPN approach is 

particularly appreciated for its descriptive power: places, arcs, and transitions may be mathematical 

functions of several parameters and allow a simpler representation of the system with respect to 

analytical models. In the railway transport context, CPNs allow offline simulations that may be used for 

bottlenecks detection. Furthermore, CPNs allow solving computationally complex problems in a 

relatively short time. This makes them a valuable tool for real time control purposes. In particular, by 

associating to the system model appropriate GMECs, it is possible to control rail traffic in real time and 

prevent deadlocks. Nevertheless, CPNs are not suitable for knowledge based control systems: in such 

cases FPNs can support modelers in representing knowledge based rules to control rail traffic in case of 

abnormal behavior. 

Road transport: In the context of freight road transport, PNs are considered both for resource 

planning and performance analysis, and for monitoring and control purposes in safety/liveness 

assurance applications. The number of related works using PNs mainly offers contribution for the last 

mile decision problem and for the modeling and control of freeways, with some application to hazmat 

road transport. The high variability of transportation routes and high quantity of unexpected events from 

which the transportation framework can be affected make the employment of logical PNs and discrete 

PNs with time not pursuable. Vice versa, the use of STPNs, CPNs, and HPNs allows the correct 

representation of road transport of goods. The first type of PNs is used for the evaluation of the 

operational performance of emergency systems in case of hazmat road transport accidents. The second 
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instead, thanks to its scalability, allows the route planning process in the last mile region, offering the 

possibility to update the net structure at each change of the system, and to manage or prevent accidents 

and risks. It is worth noting that both PN formalisms have not yet been employed for real time 

applications, like rerouting in case of congested roads or delivery re-planning in case of unexpected 

events. Finally, HPNs allow modelling and controlling both off-line and in real-time road transportation 

systems, but their application has been proposed mainly for freeways only. 

Air transport: Contributions for air transportation systems take advantage of the PNs simplicity 

and modularity to deal with resource planning and particularly safety/liveness assurance problems. 

Indeed, PN models are much easier to learn and use than linear programming, dynamic programming, 

stochastic models or other techniques like genetic algorithms. The use of PNs for safety applications 

assures easy comprehension of the model, easy identification, and elimination of errors, and extension 

of the model to improve its functionalities. TPNs and STPNs are particularly appreciated for 

performance evaluation or structural analysis. It is shown that these formalisms can provide sufficiently 

accurate results for these purposes. The use of high-level PNs like timed CPNs is an alternative to more 

complex formalizations and provide reliable simulations and estimations of the terminal behavior and 

performance. However, PNs have not yet been used in this area to solve monitoring and control 

problems. 

Pipelines transport: Logical PNs, PNs with time, and high-level PNs are all used to solve 

problems of resource planning arising in the pipeline transport. Particularly, logical PN models are 

considered to plan operative procedures necessary to transfer materials in the network. This is possible 

by PNs structural analysis and combining PNs with mathematical programming techniques. On the 

other hand, the inclusion of time in PN frameworks is considered for performance analysis. Particularly, 

STPNs are used to evaluate in advance the effectiveness of emergency plans and analyze the behavior 

of the system in case of critical situations. The risk evaluation is conducted also with high-level PNs 

(FPNs) that properly capture the evolution and dynamics of these systems. For monitoring and control 

problems only high-level PNs have been taken into account. In more detail, CPNs and hybrid CTPNs 

allow the computation of shortest paths in the pipeline transport overcoming the limits of mathematical 

programming in finding solution for these extremely complex systems. 

Multimodal and intermodal transport: The decision-making problems of these types of 

transportation techniques are tackled with PNs especially in the resource planning and performance 

analysis research area, where PNs are widely appreciated for their scalability and modularity. The 

complexity of a multimodal terminal framework and the huge number of sub-activities that compose its 

workflows lead to the definition of sub-models to be composed and controlled to provide an efficient 

and effective freight transport service. The TPN and STPN formalisms, beyond offering the already 
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discussed scalability and modularity, can be used for prediction of faulty behaviors and real time 

monitoring, allowing the implementation of decentralized control by means of a multilayer structure, 

composed by local controllers and a central supervisor. In particular, deterministic TPNs can be 

conveniently employed for dynamic dispatching and routing of AGVs. For example, it is possible to 

minimize a given objective function to find out an optimal firing sequence. In such cases, the 

modularity of PNs is a key factor to simplify the optimization problem and to avoid the typical state-

space explosion, because it allows decomposing the main problem into sub-problems whose resolution 

leads to feasible sub-optimal solutions. Clearly, the use of STPNs enables to consider parameters’ 

uncertainty in the evaluation of the transportation system performance. Conversely, the class of high-

level PNs clearly encompasses a number of frameworks which may be effectively used to model, 

simulate, analyze and control these complex systems. However, their employment has not yet been 

taken into full account, except from some examples in the class of hybrid PNs, which allow a 

continuous and discrete modelling of terminals’ activities, used in combination with mathematical 

programming to optimize the terminal performance off-line or in real time. Finally, CPNs are also used 

for paths assignment avoiding deadlock and conflicts thanks to their high descriptive power. It is of 

crucial importance the development of more efficient simulation software in order to avoid the 

execution of a custom code directly connected to the real system setting. 

Some other general future research indications may be given, irrespective of the transportation 

mode considered in the peculiar transportation system at hand. First of all, extending the performance 

evaluation of the freight transportation system under uncertainty may be considered. Not only stochastic 

models can be adopted, which require the availability of historical collected data, but also the 

application of the numerous available FPN formalisms may be fully investigated, which allow modeling 

parameters’ uncertainty by expert evaluations. Moreover, addressing the scalability of PN models of 

freight transportation systems needs to be better explored. Batch models, decomposable models, and 

continuous or hybrid (discrete and continuous) models need to be fully investigated. Thanks to 

fluidization, these formalisms allow a more concise representation of (some of) the system entities 

compared with that of microscopic discrete models. Moreover, hybrid and continuous PNs can be 

efficiently used for control purposes, aiming at optimizing the performance of freight transport systems. 

Until now, the potentials of continuous and hybrid PNs are mainly considered for traffic systems, where 

the traffic stream is best described by the continuous part and traffic signal control is described by the 

discrete part. The use of continuous and hybrid PNs therefore clearly represents an opportunity to 

investigate new research ways in the areas of transportation systems modeling, simulation, analysis, and 

control. 
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Finally, the integration of PNs with other tools needs to be considered for the effective modeling 

and control of freight logistics and transportation systems. Studying the integration of PNs formalisms 

with extensively employed optimization tools such as genetic algorithms need to be fully explored to 

guide the system optimization towards global optima. Moreover, the integration of PNs with distributed 

agent-based models needs to be better investigated, in order to effectively and concisely model 

cooperation and negotiation mechanisms in freight transportation systems. Finally, the use of PNs for 

fault forecasting, prevention, and identification in freight logistics and transportation systems is an 

emerging issue. 

 Discrete event MILP modeling of railway 2.2

systems 

The introductive section of this chapter presented the concept of smart transportation system and 

highlighted the importance of combining innovative technologies with traditional transportation systems 

to achieve a higher efficiency level, reduce environmental impacts and pollution, and provide a more 

efficient service. In the context of railway transportation, managing railway traffic consists in facing 

problems both at a strategic and at an operational level, where the former are mainly connected to 

offline activities [113], while the latter refer to real-time supervision and control [43]. As discussed in 

Section 2.1.4 Petri nets are largely used to tackle railway safety problems, however there is a lack of 

contributions using PNs for one of the main operational level decision problems, i.e., the real-time 

rescheduling. This section aims at proposing an alternative discrete event systems modeling technique 

which can be suitably used in the context of smart transportation systems for the resolution of the real-

time rescheduling problem. 

 MILP models for railway traffic rescheduling 2.2.1

Basically, train rescheduling consists in retiming the offline scheduled traffic (i.e., the nominal 

timetable) so as to minimize undesired effects on the railway service (e.g., train delays, customer 

discomfort, energy consumption). Typically, unpredictable events that may occur are distinguished into 

disturbances and disruptions and both cause the nominal timetable to become invalid because at least 

one train deviates from its original schedule. Disturbances are relatively small perturbations and their 

effects are limited. Examples are signal malfunctions on a track section that lead to temporarily 

decreasing the maximum allowed train speed, as well as a no-show of staff that causes a delayed train 

departure. On the contrary, disruptions regard large and particularly damaging external accidents 

leading to the cancellation of a number of trips in the scheduled timetable, e.g., in case of trains’ 

breakdowns and tracks’ blockings [114].  
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Train Dispatchers (TDs), despite the problem complexity, still manage railway traffic mostly 

manually, so that their actions often lead to sub-optimal solutions [113], [114], [115],[116]. The two 

main drivers in developing a smart railway traffic control and searching for an appropriate modeling 

formalism are the computational complexity of the rescheduling problem and the need for short 

resolution times, because new schedules should not be outdated by the time they are produced. In 

particular, train rescheduling consists in rewriting trains timetables, actuating retiming, and reordering 

trains, while assuring that each train reaches its final destination without changing its nominal 

predefined path. Unexpected events can cause passengers’ discomfort, which may be reduced by 

applying a rescheduling technique [117].  

Three main classes of computer-based rescheduling approaches can be broadly identified [117], 

[118]: simulation models, heuristic procedures, and mathematical optimization models. Simulation 

models aim at reproducing the flow of real life, that is, a decision making process which takes place 

“here and now” [119], [120], and in which there is no specific objective function. Heuristic procedures 

take decisions that aim at decreasing some performance indicator, such as delays, conflicts, and so on 

(see, e.g., [117], [121], [122], [123], [124], [125], [126],[127]). Usually, on the one hand little 

quantitative information about the solution quality is provided, and on the other hand the computational 

effort in implementing these heuristics is low. Finally, mathematical optimization models have instead a 

well-defined objective function, which frequently refers to average or maximum delays [128], [129], 

total delays (i.e., considering the delay at the final destination of trains) [130] or delays at stations along 

the train trip. Other approaches minimize the weighted travel time for passengers [126], the deviation 

from the nominal schedule [131], [132], the time to recover operations and fall back to the original plan 

[133], [134], running cost, or spent energy [135], [136]. An exhaustive discussion on commonly used 

rescheduling mathematical models can be found in [137], showing that rescheduling techniques based 

on mathematical models can provide optimal solutions. However, their implementation and resolution is 

not trivial, especially when the number of variables and constraints of the considered problem is high 

and the rescheduling time horizon is wide. Nonetheless, effective solvers (e.g., CPLEX, GUROBI, 

SCIP, GLPK) may allow the resolution of such optimization problems in reasonable computation times, 

that is, adequate for real-time rescheduling techniques. Typically, the train rescheduling problem 

statement is based on integer programming, MILP, linear programming, or nonlinear programming 

[37]. The most common framework to reschedule railway traffic is MILP, which has been extensively 

tested for the resolution of optimization problems and for which a large number of effective solvers has 

been developed. In particular, a railway network can be modeled as a discrete event system in which a 

certain number of jobs have to be executed with a limited number of resources. The train runs and dwell 

periods are the jobs of the system while the structural features of the network as well as operators are 

the limited resources. 
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TABLE 2-8. – Summary of the Contributions on Rescheduling based on MILP Models  

REFERENCE OBJECTIVE SOLVING APPROACH 

[126] [130] 1.Minimization of the total final delay  

2.Minimization of the total cost associated with delays 

Heuristic approach 

[138] 1.Minimization of the total delay 

2. Minimization of the total cost 

CPLEX, Tabu search, Simulated annealing.  

[139] [140] 

[141] [114] 

1.Minimization of the total delay 

2.Minimization of the sum of the final delay of all trains 

Greedy Algorithm 

[142] Minimization of the total rescheduling cost Statistical analysis of Propagation of Incidents 

[117] Maximization of the number of transported passengers Heuristic approach 

[143] Minimization of the deviation between nominal and 

rescheduled timetable 

Heuristic approach 

[144] Minimization of the sum of trains’ arrivals  Branch and Bound 

[145] [146] Minimization of the sum of all predicted delays and the 

penalty for all broken connections and switched train 

orders  

Genetic Algorithms Permutation Based 

Algorithm and MILP Solvers 

[147] Minimization of the delay cost and the number of 

seriously impacted trains  

CPLEX 

[148] Minimization of the total unexpected waiting time of all 

passengers within the relevant network and time period  

Heuristic local rule-based dispatching 

strategies 

[149] Minimization of the total accumulated delays CPLEX with branch and bound for linear 

programming; Evolutionary Algorithm 

[134] Minimization of the total delay and deviance Greedy heuristic approach with CPLEX; 

Fixing with CPLEX 

[150] Minimization of the total costs  Decomposition Algorithm 

[151] Minimization of the total deviation Branch and Price 

[152] Minimization of the deviation from the nominal 

timetable 

GLPK solver 

[152] Minimization of the rescheduling cost Right shift, Local Search, Iterative Local 

Search 

[153] Minimization of secondary delays CPLEX 

[154] Minimization of the delays variance Heuristics 

 

The dynamics of the system is determined by synchronization and the departures and arrivals are 

governed by the network constraints. The rescheduling of the railway traffic consists in finding a new 

feasible timetable in a short computation time while respecting the limits and constraints of the system. 

Hence, the rescheduling problem can be modeled as a MILP problem that optimizes a certain objective. 

Table 2-8 summarizes the most significant contributions of the related literature, reporting in the first 

column the referred article, in the second column the considered objective functions and in the third one 

the resolution approaches. Generally, in the MILP modeling approach for rescheduling problems, the 

decision variables are usually binary variables and non-binary integer variables. The rescheduling 
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tactics can be represented by binary decision variables, such as the connection maintenance, the priority 

of two trains, sequences of trains, assignment of resources, etc. The arrival and departure times and 

delays are represented as continuous decision variables. The constraints in railway network 

management are generally expressed by the equality or inequality constraints in the model. From the 

decision variables and constraints of the model, it is possible to understand which kind of rescheduling 

tactics are considered and the scale of the considered problem.  

In the subsequent sections it will be demonstrated how the MILP modeling approach can be 

suitably used in the context of railway traffic rescheduling. In particular, it will be provided innovative 

techniques able to support the management of the railway rescheduling in case of unexpected events in 

a smart transportation system perspective.  
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Chapter 3

 

3 Modeling, analysis, control and management 

of intermodal freight transportation terminals  

The development of Smart Transportation Systems (STSs) is guided by the need of creating 

sustainable, efficient, low impact, and effective transportation systems. At the moment, a fully 

sustainable transportation system has not been conceived yet, but the integration of different transport 

modes is sustained by the European Community as one of the most suitable ways to achieve such a 

purpose [155]. This chapter resumes the results of the research conducted during my PhD program and 

presented in [93], [98], [156], [157]. The aim is of contributing to the advance of intermodal freight 

transport terminals by proposing innovative techniques which can sustain the evolution of such systems 

towards STSs. In particular, the focus is on the modeling, analysis, control and management of 

intermodal freight transportation terminals. It will be demonstrated how the Petri net modeling 

framework can be effective for the modeling, simulation, performance evaluation and improvement, and 

resource planning both in an offline and real-time perspective of such systems. Furthermore, the 

integration Petri nets with the Data Envelopment Analysis (DEA) technique will be presented to offer 

an innovative decision making procedure to be used in a strategic/tactical management perspective in 

intermodal freight transport terminals. 

  Intermodal freight transport 3.1

Intermodal freight transport can be defined as the transfer of goods from an origin to a 

destination, involving at least two transportation modes and services, such that the transshipment 

between two consecutive modes is performed at an intermodal terminal. The main feature of intermodal 

freight transportation is that the loads are moved in one loading unit, i.e., the Intermodal Transport Unit 

(ITU), and are not handled in the transshipment process. Multiple transportation modes allow deploying 

each individual mode to its best advantage, i.e., combining the major speed, security, reliability and 

sustainability advantages provided by rail/sea for long distance transport, as well as their lower costs, 
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with the increased space penetration features of road [158]. The combination of several modes into an 

integrated system provides a more flexible service, as well as more reliable, profitable and sustainable 

transport [85], [159].  

An intermodal transportation system includes several actors that interact with each other, i.e., 

shippers that request for transportation, carriers that provide the transportation service, facility and 

physical infrastructure managers, institutional authorities that fix the rules for the system, and customers 

and citizens that ask for freights. Shippers are responsible for the request of transport as they usually 

are the senders of goods. They manage the planning of the shipment with the aim of satisfying the 

customers and they also contribute to the organization of the shipment process necessary for their 

freights. Hence, they define the logistic strategy which can include intermodal transport. Carriers 

perform the transport for the shippers. Some carriers operate dedicated services, in which an ITU 

contains the freights of a single customer, and others operate on the basis of consolidation, i.e., each 

ITU may contain different customers’ freight with different origins or destinations. Freight Logistic 

Providers (FLPs), third party logistics service providers (3PLs) in particular, undertake various logics 

tasks within an intermodal transport system, providing various major services, such as warehousing, 

distribution, shipping, inventory management, co-packing, labeling, repacking, weighting, and quality 

control. Shipper may usually outsource logistics activities in order to focus on their core businesses and 

benefit from the expertise of the FLPs. On the other hand, 3PLs also interact with carriers to secure 

timely transportation capacity for their customers. Facility and infrastructure managers may be 

public entities or private firms with public stakeholders. They do not plan, organize, or implement 

freight transportation services but instead deal with the management of the physical network and 

infrastructure, including roads and highways, the rail infrastructure in Europe, intermodal port 

terminals, and so on. Thus, they play a central role by providing efficient physical networks and the 

necessary technology and sensors layers to control and optimize the utilization of the infrastructure and 

facilities. Institutional authorities (e.g., governments and public administrations) are the actors who 

tax, give incentives, set up policies, and regulate transport activities. Through the policies they set, these 

actors increasingly frequently aim to guide the transportation and logistics system towards “new”, more 

beneficial to society, and resilient ways of operation (e.g., the usage of specific corridors or vehicle and 

motorization types, mode changes from road-based to water- and rail-based transportation, the reduction 

of externalities, the consideration of environmental impacts, etc.). In this class of actors, can be included 

also transnational institutions and national governments. Finally, customers represent the receivers of 

the goods. They can be the final client, retailer, distributor, or wholesaler. Customers include citizens as 

well, and, hence, they are mindful about emissions, safety, and viability within their local areas, and the 

can influence the institutional authorities through their votes. 
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All of these actors have their own objectives, make their decisions and are linked with each other 

by various interests, interconnections, interactions, and interdependencies. All of them contribute to 

make intermodal transportation a complex system. Moreover, these decisions and interrelations can be 

affected by uncertainties from many sources, often related to demand, travel times, and handling 

operations [160][161].  

Consequently, despite its numerous advantages, intermodal transport has some critical aspects 

[162], among which efficiency and performance evaluation and optimization are the most significant. 

Indeed, the integration of multiple transport modes, decision makers, and types of load units leads to 

much more complex intermodal planning problems than unimodal ones. As a result, operating 

inefficiencies may be experienced if the integration of the complex subsystems in the transportation 

network is not fully effective. In this context, one of the most important and critical elements in the 

freight transportation chain and the evaluation of its competitiveness is the Intermodal Freight Transport 

Terminal (IFTT) that provides the interface between modes and also between shippers and carriers. 

Therefore, the performance of terminals is crucial for the transportation chain effectiveness and needs to 

be closely monitored and optimised [163],[164]. 

 Performance evaluation of Intermodal Freight 3.2

Transport Terminals using Timed Petri Nets 

The combination of intermodal transport with Information and Communication Technologies 

(ICTs) has been identified as one of the main actions to improve the effectiveness and efficiency of 

intermodal transport [164], [165]. This integration clearly shows its advantages when applied to the key 

elements of the transportation chain, namely IFTTs. In this context, the availability of a suitable 

computer based simulation model for testing the operational functioning and management of the IFTT 

allows the analysis, design, and control of the intermodal terminal. This permits to achieve better 

performances of the system and help the decision makers in creating correct strategies to maximize the 

benefits of intermodal transport while constraining its limitations [166], [167], [163]. 

This section presents an innovative DES modular modeling framework based on TPNs that, 

combined with Monte Carlo simulation, allows simulating the dynamics and evaluating the performance 

of a generic IFTT. The idea arises from the lack of contributions using DES formalisms to represent 

intermodal terminals by adopting a general modular approach. More in detail, the intermodal terminals’ 

DES models proposed in the literature are manually tailored to specific case studies and consequently 

are not reusable. Differently, here it is considered the concept of modularity to implement a versatile 

modeling technique. In particular, the modularity of the presented technique is guaranteed by the 

implementation of several elementary modules, which, suitably combined by a systematic technique 
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adapted from [168], can represent any terminal in the TPN framework. It is necessary to remark that, 

although Petri nets are not able to describe in detail all the complex operations of an intermodal system 

like other simulation tools (such as Arena, Witness, ExtendSim, etc.) -which is not, however the final 

goal of the contribution- they offer significant advantages over discrete event simulation tools which 

motivate this choice [85]. In fact, analytical DES models allow the evaluation and analysis of DESs 

taking advantage of discrete event simulation models. In particular, in the developed work it is proposed 

the combination of the TPN modeling of the system with Monte Carlo simulation to obtain statistically 

accurate estimates of the case studies performance indices [168]. 

The two main reasons for using TPNs for IFTT modeling and performance evaluation are in the 

fact that on the one hand PNs allow to model in a modular and systematic way high dimension DESs 

such as IFTTs while keeping the physical meaning of the DES subsystems, and on the other hand that 

TPNs allow the temporization of the activities of the system, so as to quantify their duration and 

evaluate the IFTT dynamics, during short and/or long time periods, without requiring high 

computational efforts, even for large nets. Other significant advantages of the use of TPNs are: 1) the 

graphical aspect, which enables an easily perceived, concise and effective way to design and verify the 

model; 2) the simple mathematical representation, which allows simulation of the system in software 

environments considering different conditions characterized by a different level of information shared 

between terminals and operators and consequently automatically analyze their behavior; 3) the 

capability to reproduce typical features of DESs, as priority, synchronization, parallelism, causal-

consequence connections and shared resources; 4) the ability to define simple performance indices to 

evaluate the system behavior; 5) the opportunity to perform structural analyses on the developed net; 6) 

the possibility, by means of the so-called Generalized Mutual Exclusion Constraints (GMECs) [169], to 

ensure control policies, which can be implemented through simple monitor places (i.e. adding new 

places to the net), so as to represent the exchange of information in IFTTs allowed by modern ICT 

tools, thus allowing to solve some of the recalled intermodal transport criticalities. 

The effectiveness of the proposed modeling framework is shown by two case studies, one from 

the literature [85] and one referring to a real logistics company operator located in Bari (Southern Italy). 

Thanks to the short computational times, the model allows evaluating different alternatives in order to 

improve the performance of the examined terminal. 

 Timed Petri Net Modeling of Intermodal 3.2.1

Freight Transport Terminals 

The IFTTs modelling framework employs a modular bottom-up approach. In particular, the TPN 

representing the terminal is made of subnets, each modelling the sequence of operations on containers 
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in a particular subsystem. Hence, each subnet behaves as a distinct DES interacting with the others by 

interfacing nets. The following subsystems are considered, that constitute an intermodal terminal [88], 

[99]: 

1) highway; 

2) tollbooth; 

3) railway; 

4) maritime/river port or airport; 

6) access road; 

7) parking or yard storage area; 

8) customs; 

9) ITUs maintenance area. 

The above nine subsystems which may be duplicated and/or combined to form a complete IFTT are 

complemented by the following two modules that allow the IFTT control: 

10) opening/closing of an IFTT subsystem; 

11) checkpoint. 

In the proposed TPNs framework, places represent resources and capacities or conditions, transitions 

model inputs, flows and activities into the terminal, and tokens represent ITUs or the vehicles on which 

they are transported. 

Before describing in detail each subsystem, it is worth noting to clarify that the IFTT bottom-up 

modeling framework based on TPNs employs three fundamental structures: the IFTT Subnet (IFTTS), 

the Open IFTT Subnet (OIFTTS), and the Routing Net (RN). In particular, each of the above listed 

IFTT subsystems is modeled by a TPN module, i.e., an IFTTS, which is to be interconnected with 

others by way of its transitions that model the inflow and outflow of vehicles into and out of the 

subsystem and are hence called communication transitions. Moreover, from each IFTTS it is defined an 

Open IFTT Subnet, which is a place-bordered net obtained extending the IFTTS with at least one source 

and/or one sink place, respectively in input and output to the IFTTS communication transitions, 

allowing the vehicles to be routed to other subsystems. The routing is obtained by interconnecting 

different OIFTTSs by a RN, so that the TPN complete model of the terminal is attained. Hence, each 

RN connects with at least one immediate transition the source and sink places of two or more OIFTTS 

modeling the subsystems among which there is a flow of vehicles. In this way, the decision maker may 

easily combine the TPN subsystems to represent the flow of vehicles in the larger system, eventually 

modifying some of their features - i.e.: changing weights of some arcs, modifying the initial marking of 

the subnet, deleting or adding places or transitions, duplicating nets in a single subsystem (in the case of 

multiple resources), changing a deterministic transition into a stochastic one or vice-versa. 

More formally, the IFTTS is the basic element of the framework and is a ( ), , , , FTPN P T= Pre Post  
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modeling the functioning of a specific subsystem of the IFTT, considered disconnected from the others. 

Given a particular IFTTS, an OIFTTS is a place-bordered extension of the IFTTS defined as a 9-tuple 

( ),  , , ,, F, ,  ', 'I OP T P PPre Post Pre Post , where: 

1. ( ), , , ,FP T Pre Post  is an IFTTS; 

2. IP  is the set of added source places, i.e., , , Ip P p P P
•∀ ∈ = ∅ ∩ = ∅  ; 

3. OP is the set of added sink places, i.e., , , ,I O Op P p P P P P
•∀ ∈ = ∅ ∩ = ∅ ∩ = ∅ ; 

4. ' '' : , :m n m n

I O IOP T P T× ×× → ′ × →Pre Postℕ ℕ , are the Pre and Post Incidence sub-matrices for 

source and sink places; 

5. I OP P∪ ≠ ∅
 
 

Moreover, given two OIFTTSs ( )1 1 1 1 1 1, , , ,FTPN P T= Pre Post  with sink place op  and 

( )2 2 2 2 2 2, , , ,FTPN P T= Pre Post  with a source place pi such that T1∩T2=∅, the flow of vehicles from 

TPN1 to TPN2 may be easily modeled by a RN duplicating the border places and connecting them via an 

immediate transitions, i.e., by a net ( )3 3 3 3 3 3, , , ,FTPN P T= Pre Post  that is a place-bordered TPN with: 

1. { }3 , ;o iP p p=   

2. { }3 rT t=  with { } { },r o r it p t p• •= = ; 

3. 3F ( 0)rt = . 

Figure 3-1 represents an example of two OIFTTSs A and B modeling two IFTT subsystems and 

connected by a RN. The OIFTTS labeled A has a border sink place po that is added to the IFTTS 

modeling the terminal subsystem, while the OIFTTS labeled B is obtained adding border place pi to its 

subsystem. The two subnets are connected by the A-B RN, duplicating the border places po and pi and 

including an immediate transition tr. The tokens flowing in the modular TPN of Figure 3-1 represent 

ITUs moving between the two subsystems A and B. 

Generalizing, a RN is a TPN containing immediate transitions each serving as routing interface 

between the border places of two or more OIFTTSs. 

 

 

Figure 3-1.  A-B Modular TPN 
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Figure 3-2.  Highway portion subnet model 

 

 

 

Figure 3-3.  Tollbooth subnet model. 

 

The IFTTSs modeling the terminal subsystems are detailed in the following sections. For each IFTTS, 

the communication transitions are depicted in grey, to which border places may be attached to connect 

the subsystem to others. 

 

a. Highway 

These subnets model the highways through which straight trucks or semi-trailer trucks access/leave 

the terminal. It is important to recall that trucks can be classified as either straight or articulated vehicles 

[99]. A straight truck is one in which all axles are attached to a single frame. An articulated vehicle is 

one that consists of two or more separate frames connected by suitable couplings. A semi-trailer truck is 

an articulated vehicle composed by a towing engine called tractor and one or more semi-trailers 

carrying freight. Figure 3-2 shows the simple model of a highway portion, where place p1 indicates the 

presence of the transportation means, p2 the highway capacity C (i.e., the maximum number of 

transportation means that it can accommodate), and exponential transitions t1 and t2 are the two 

communication transitions (depicted in grey) that respectively represent the incoming and outgoing 

flows and as such allow the combination of the subnet with others. 

 

b. Tollbooth 

These subnets model the arrival of vehicles to the IFTT from a tollbooth. Figure 3-3 represents the 

tollbooth subnet, with its flows differentiated on the basis of working days and holidays, and on the kind 

of transportation means. Place P1 represents arrivals in working days, p2 arrivals in holidays. Moreover, 
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deterministic transition t1 (t2) represents the flow of hours at working (holiday) days. Exponential 

transition t3 (t5) models the arrivals of semi-trailer trucks during working days (holidays), while t4 (t6) 

represents the arrivals of straight trucks during working days (holidays). These four transitions are the 

subsystem communication transitions. Finally, note that, if different traffic conditions are present every 

day, it is sufficient to replicate the set given by p1, t1, t3 and t4 for each day of the week. 

c. Railways 

These subnets model the presence of a dedicated railway system servicing the terminal to deliver or to 

allow the departure of ITUs. Figure 3-4 shows a railway line arriving at the intermodal terminal, with 

trains delivering ITUs and/or straight trucks. Place p1 indicates the presence of a train and p2 its 

absence. 

 

 

Figure 3-4.  Railway subnet model: only incoming ITUs. 

 

 

 

Figure 3-5.  Railway subnet model: incoming and outgoing ITUs. 

 

 

 

Figure 3-6.  Railway subnet model: incoming and outgoing ITUs with separate load/unload. 
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Transition t1 models the activity hours of the train, t2 the hours of absence of the train, t3 

(communication transition) the average time of arrivals, and x is the number of ITUs or straight trucks 

at each arrival. As an alternative, Figure 3-5 illustrates the case of trains carrying ITUs and/or vehicles 

in both incoming and outgoing directions. Given the train load plan, it is necessary to model its 

maximum capacity. Hence, p1 indicates the presence of a train, p2 its absence, p3 the loaded cargo, p4 

the train capacity C (the maximum number of ITUs that it can accommodate). Moreover, t1 models the 

activity hours of the train, t2 the hours of absence of the train, t3 the average time of arrivals, t4 

(communication transition) the average time for loading/unloading a cargo. Similarly to Figure 3-4, it is 

possible to model a railway subnet with only outgoing ITUs. Moreover, in case of multiple rail lines 

with different destinations or in case of different incoming rates during the week, it is sufficient to 

connect multiple subsystems similar to that in Figure 3-5, with different values of the average time of 

the arrivals for the incoming loads. Finally, in Figure 3-6 it is represented the possibility of modeling 

the loading/unloading phase separately. In particular, the loading of ITUs on the train is enabled only 

after the unloading phase is ended. Accordingly, p1 represents the presence of a train in the terminal, p2 

its absence, p3 the capacity y of the train, p4 the unloading of the train, t1 the sojourn time of the train in 

the terminal, t2 the absence time of the train from the terminal, t3 (communication transition) the 

average unloading time for x ITUs, t4 (communication transition) the average time for loading an ITU. 

Transition t5 allows emptying p3 at train departures. 

 

d. Maritime or river ports and airports 

Maritime and river ports, as well as airports, can be represented by the same subsystem, shown in 

Figure 3-7, with different meanings of places and transitions. 

In case of maritime (river) ports, the model represents the transit, docking, sojourn, and load of a ship 

(barge), to be connected to the intermodal platform. Place p1 indicates the absence of the vessel in the 

port, p2 the docking of the vessel, p3 its presence, p4 the loaded cargo, p5 the capacity C of the vessel. 

Further, t1 is the required docking time, t2 the dwell time in port, t3 the sailing time, t4 the enabling for 

load/unload, t5 (communication transition) the loading/unloading time. 

Similarly, for airports, Figure 3-7 represents the landing, length of stay and loading of an aircraft in 

the terminal. In such a case p1 indicates the absence of the aircraft in the airport, p2 the landing of the 

aircraft, p3 its presence, p4 the loaded cargo, p5 the capacity C of the aircraft, t1 is the required time for 

landing, t2 the dwell time in airport, t3 the flight duration,t4 the enabling for loading/unloading, t5 the 

average time for loading/unloading. As in the railway net, even for seaports, fluvial ports and airports, 

in case of multiple lines with different destinations or differences within the week, it is sufficient to 

connect similar subsystems, with different values of the average time of the arrivals for the incoming 

loads. 
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e. Access road 

These subnets model the truck access roads to terminals. In particular, Figure 3-8 models the entrance 

into the terminal of straight trucks: place p1 indicates the entrance of transportation means in the 

terminal, and p2 its capacity C, transition t1 (communication transition) the average arrival time and t2 

(communication transition) the average closing time. 

In case of semi-trailer truck flows, the model is different from that in Figure 3-8, since trucks have to 

be disassembled for their ITUs to be transshipped. The corresponding alternative subnet model is shown 

in Figure 3-9, where place p1 indicates the waiting ITUs, p2 the waiting tractors, p3 a cargo waiting for 

loading, p4 the ITUs to be reassembled with the corresponding truck, p5 (p6) enables (inhibits) the 

freight to leave the terminal on the same arrival day, p7 models the ITUs that will exit from the terminal 

the next day, p8 the capacity C of the waiting area. t1 (communication transition) is the average arrival 

time, t2 the average waiting time, t3 the average time for loading/unloading a cargo (communication 

transition), t4 is the average arrival time both for ITUs and tractors available for reassembly, t5 and t6 

model the delay times for the exit of semi-trailers, t7 is the enabling for the immediate exit, t8 

(communication transition) is the average exit time of ITUs and tractors. When ITUs are left in the 

terminal by the semi-trailer trucks but tractors do not wait in the terminal for the next cargo, it is 

possible to use the simpler subnet in Figure 3-10 instead of the previous nets: place p1 indicates the 

presence of the full semi-trailer truck in the terminal, p2 the ITU left by the truck, p3 the tractor leaving 

the terminal, transition t1 (communication transition) average arrival time for the transportation means, 

t2 the disjunction of the tractor from the ITU, t3 (communication transition) average ITU’s transportation 

time to the next subsystem, t4 exit of the tractor. In a similar way, it is also possible to represent tractors 

that arrive in the terminal and load ITUs to deliver. This case is modelled in Figure 3-11, where p1 

represents incoming tractors without load, p2 ITUs to be delivered, p3 outgoing tractors with ITUs, t1 

(communication transition) the average arrival time of incoming tractors, t2 the tractor connection to the 

ITU, t3 (communication transition) the average arrival time of ITUs available to be delivered, t4 

semitrailers leaving the terminal. 

 

 

Figure 3-7.  Seaport, river port or airport subnet model. 
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Figure 3-8.  Access road subnet model for straight trucks. 

 

 

 

Figure 3-9.  Access road subnet model for semi-trailer trucks with reassembly. 

 

 

 

Figure 3-10.  Access road subnet model for semi-trailer trucks leaving ITUs. 

 
 

 

Figure 3-11.  Access road subnet model for semi-trailer trucks loading ITUs. 

 

f. Parking or yard storage area 

External parking areas (for waiting trucks) and yard parking areas (to store ITUs) are modelled as in 

Figure 3-12, where p1 indicates the entrance in the area, p2 its capacity C, t1 (communication transition) 

is the average arrival time and t2 (communication transition) the average exit time. 

 

g. Customs 

These subnets model the presence of customs in the IFTT and are represented in Figure 3-13. The 

subnet inflows may refer to ITUs, straight trucks, or semi-trailer trucks. Each item is inspected by the 
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customs and sent to the subsequent transport mode, or, in case of customs rejection, it is returned to the 

sender via the same means. Hence, p1 (p2) models the inspection of ITUs (straight trucks), p4 the 

inspection of ITUs carried on semi-trailer trucks, p6 the waiting tractors, p7 the rejected ITUs and 

straight trucks, p8 the capacity C of the custom area. Moreover, transition t1 (t2) is the average arrival 

time of ITUs (straight trucks), t3 the average inspection time, t4 the average exit time of accepted ITUs 

and straight trucks, t5 the average exit time of rejected ITUs and straight trucks, t6 the average arrival 

time of semi-trailer trucks, t7 the average inspection time for semitrailers, t8 the average exit time of 

accepted ITUs carried on semi-trailer trucks, t9 the average exit time of rejected ITUs carried on semi-

trailer trucks, t10 the average exit time of reassembled semi-trailer trucks. Note that t1, t2, t4, t5, t6, t8, t10 

are all communication transitions. 

 

 

 

Figure 3-12.  Parking or yard storage area subnet model. 

 

 

Figure 3-13.  Customs area subnet model. 

 
 

 

Figure 3-14.  ITUs maintenance area. 
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h. ITUs maintenance area 

These subnets model the terminal area dedicated to ITU maintenance. This area can be modelled as in 

Figure 3-14, where it is considered the possibility of executing either only routine maintenance or both 

routine and special maintenance. Hence, place p1 represents ITUs waiting for special maintenance, p2 

ITUs under special maintenance, p3 ITUs waiting for ordinary maintenance, p5 ITUs under ordinary 

maintenance, p4 the number of resources (C) available for the maintenance area. Moreover, transition t1 

models the average arrival time of ITUs in the special maintenance area, t2 the average time for the 

special maintenance, t3 the average waiting time for routine maintenance after the special one, t4 the 

average arrival time of ITUs for routine maintenance, t5 the average exit time of the ITUs from the 

maintenance area. Here t1, t3, t4, t5 are all communication transitions. 

 

 

 

Figure 3-15.  Example of TPN model of IFTT. 

 
 

 

Figure 3-16.  Opening/closing for hours subnet model. 

 
 

 

Figure 3-17.  Opening/closing for days subnet model. 
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i. Example of TPN model of an IFTT 

Figure 3-15 (solid lines only) shows the TPN model of a simple IFTT, including the last miles of a 

highway, an access road and a parking area. These are first modeled by the IFTTS respectively 

represented in Figure 3-2, Figure 3-8, and Figure 3-12. Hence, they are extended to obtain the matching 

OIFTTS, respectively by adding a sink place p3 (highway), a source place p4 and a sink place p7 (access 

road) and a source place p8 (parking area). The combination of the three subnets is allowed by two RNs 

and by the corresponding immediate transitions t3 and t6. 

Finally, it is important to remark that in the access road and parking area subsystems the source 

transitions t4 and t7 are both immediate to allow the average arrival time of vehicles in the subnets being 

equal to the average exit time of the transportation means of the preceding subnets, i.e. t2 and t5. 

j. Opening/closing of an IFTT subsystem 

The cyclical opening/closing of any previously described IFTTS can be managed considering a subnet 

that allows controlling hours or days of activity/inactivity. Figure 3-16 depicts the model of the opening 

and closing of an IFTTS, specifying the hours of activity and inactivity of the terminal or of any 

external parking area. In this case, place p1 (p2) indicates when the subsystem is active (idle), and 

transition t1 (t2) models the activity (idling) time. As an alternative, Figure 3-17 shows the 

opening/closing of a subsystem depending on days, where p1 represents the passing of a working/non-

working day, p2 is the counter of the number of working/non-working days, p3 models the 

presence/absence of the means in the subnet, y (the weight of the arc from p2 to t3) is the number of 

working/non-working days, t1 is the start of activity/inactivity, t2 is the duration of the day, and finally t3 

is the end of activity/inactivity. 

k. Checkpoint 

To impose constraints on the IFTT behavior, checkpoints can be installed and modeled by GMECs 

controlling the TPN dynamics. The GMEC can be regarded as a supervisor specifying a state feedback 

control law. For instance, Figure 3-15 shows the case in which three checkpoints (dashed lines) are 

added to the IFTT example (solid lines) described at point i of the previous list. The number of 

incoming trucks is controlled by the control places pC1 (between the highway and access road), pC2 

(between the access road and parking area), and pC3 (between source and sink transitions of the system). 

The control laws are: 

1 3 4 5 1( ) ( ) ( ) ( ) ( )cM p M p M p M p M p+ + + ≤  ,    (Eq. 3-1) 

7 8 9 2( ) ( ) ( ) ( )cM p M p M p M p+ + ≤ ;      (Eq. 3-2) 

1 3 4 5 7 8 9 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )cM p M p M p M p M p M p M p M p+ + + + + + ≤
   (Eq. 3-3) 
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 Case Studies 3.2.2

To evaluate its effectiveness and ease of application, the proposed model is applied to two 

IFTTs: the first is an example from the literature [85]; the second is a real case study. The TPN models 

are simulated in MATLAB using the HYPENS tool [170], and the performance indices are evaluated by 

multiple replications of simulation runs of 8,760 time units (one year, considering one hour per time 

unit) each. Note that, for sake of simplicity, in this work stochastic transitions are characterized only by 

exponential distributions since they require just one parameter and they are memoryless. This is a 

common choice in the literature, since the inter-arrival times of transportation means for the arrival 

processes are purely random and independent, they can be suitably characterized by means of the single 

parameter of an exponential distribution ([85]; [98]; [155]). Furthermore, in this work it is considered  

the single-server semantics and enabling memory policy [155]. Moreover, if transitions are in conflict, 

then one of them is randomly selected to fire. To evaluate the case studies behavior, two kinds of 

indices are taken into account: the utilization of the critical IFTT areas and the throughput of the IFTT 

subsystems interconnections. 

A. A literature example 

In this subsection the modelling framework is applied to test case-study taken from the literature. 

In particular, it refers to the work of Dotoli, et al. [85], and the case study is an intermodal terminal 

located in Trieste, Italy. The IFTT includes eight subsystems (Figure 3-18). Within the terminal, straight 

and semi-trailer trucks circulate, modelled as tokens of the TPN moving on two separate lines with the 

same capacity. The first module of the IFTT in Figure 3-18 is the tollbooth (Figure 3-3), differentiating 

the entrance frequency based on the vehicle type and day (weekdays/holidays). The highway subsystem 

(Figure 3-2) provides the trucks entrance into/exit from the terminal, while the railway subsystem 

(Figure 3-4) provides the entrance for straight trucks, whose arrival is differentiated between weekdays 

and holydays; hence, this subnet is obtained by joining two different models. The seaport subsystem 

(Figure 3-7) manages the arrival, departure, docking, loading and unloading of a ship that can carry both 

straight trucks and ITUs deposited by semi-trailer trucks. Finally, the terminal includes access roads, 

differentiated according to the type of trucks (Figure 3-8, Figure 3-9), and an opening/closing subnet 

(Figure 3-16). Hence, the TPN model of the IFTT in Figure 3-18 is determined connecting each TPN 

subsystem, obtaining the TPN in Figure 3-19, where each dashed box indicates a subsystem. 
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Figure 3-18.  Scheme of the literature example [85]. 

Moreover, the TPN model includes seven RNs that allow routing the vehicles between the 

different terminal subsystems. Note that in the opening/closing subsystem of Figure 3-19, with respect 

to Figure 3-16 it is added a transition (t61) to create a delay between the terminal opening and the start of 

the embarkation on the vessel. This transition is enabled only at the initial marking of the simulation by 

place p65. In addition, places p17 (modelling the capacity of access road for straight trucks) and p42 

(modelling the capacity of access road for semi-trailer trucks) are respectively assigned a capacity of 

A=40 and B=100 vehicles. Table 3-1 shows the firing times (in hours) and the meaning of the 

deterministic and stochastic transitions that model the flows of means within the TPN in Figure 3-19: 

values are assigned based on the terminal data in [85]. 

Implementing the net in Figure 3-19 in HYPENS [170] with replications of 8,760 time units 

each, the obtained computation time for each replication is of less than 8 minutes on a PC with an Intel 

Core 2 Duo - 2.80 GHz processor and 4 Gb of RAM. Hence, the approach can be applied to even larger 

and more complex IFTTs. The analysis of the terminal behavior is conducted by the evaluation of some 

proper performance indices ([171], [172]). In particular, at first it is evaluated the average free capacity 

of the IFTT, i.e., the average number of straight (semi-trailer) trucks FC1 (FC2) that may still be 

accommodated in the terminal, i.e., the marking of p17 (p42). Second, it is evaluated the average free 

capacity FC3 of the last portion of the entrance highway (the marking of p11), i.e., the average number of 

vehicles that may still enter it. Third, it is estimated the average throughput Tr(ti) of suitable stochastic 

transitions ti∈TE, i.e., the average number of fires per time unit of t13, t14, t21, t31 (chosen since they 

respectively represent the passage of vehicles from the highway to the terminal and from the terminal to 

the seaport). The performance indices are obtained from 1000 independent replications with a 95% 

confidence. At each replication, the delays of the stochastic transitions are randomly generated with 

respect to the associated probability distribution. The resulting half width of the confidence interval is 

about 1.5% in the worst case. 
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Figure 3-19.  TPN model of the literature example in Figure 3-18 [85]. 

This confirms the accuracy of the estimates, although an increased number of replications would 

provide a narrower confidence interval. The choice of a high number of replications is particularly 

useful in case of real time simulation for decision support at the operational level, but it is of course 

determined by a compromise choice depending on the model complexity and the resulting simulation 

time.  
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Table 3-2 shows the simulation results. In particular, the Table collects in each row respectively 

the results corresponding to the as-is situation and four alternatives (Scenarios 1 to 4): the first three 

alternatives provide structural actions by creating new parking areas, while in the last scenario ICT tools 

are considered that can avoid oversaturation, through the exchange of information among the logistic 

actors, thus resulting in lower investments. Moreover, each column of Table 3-2 reports the obtained 

values of the defined IFTT performance indices, while the last column shows the corresponding run 

time. 

Analyzing the as-is scenario (first row of Table 3-2), it is apparent that the access road for 

straight and semi-trailers trucks is oversaturated, which leads to congestion of the IFTT. Indeed, the 

relative free capacities FC1 and FC2 of p17 and p42 in Figure 3-19 have very low average values, just like 

the free capacity of the last portion of the highway FC3 in p11. Obviously, this also affects the average 

number of vehicles passing from the highway to the terminal and then to the port, as evidenced by the 

low throughput values (columns 5 to 8). To overcome the disadvantages of the as-is scenario, four 

different alternative solutions are considered: the increase of the capacity of p17 from A=40 to 190 

(Scenario 1); increasing the capacity of p42 from B=100 to 450 (Scenario 2); increasing both these 

capacities by setting A=190 and B=450 (Scenario 3); the insertion of a supervisor, by means of a 

GMEC (shown in Figure 3-19 with bold lines) keeping the as-is capacities (Scenario 4). 

The evaluated indices reported in Table 3-2 (last four rows) show that, by increasing the access 

roads capacities, the flow of vehicles within the system becomes more regular and congestion is 

avoided. In particular, in Scenario 1, considering the increase only of the straight trucks access road 

capacity (A in Figure 3-19), the performance indices still highlight an oversaturation of the semi-trailer 

access road (FC2 equal to 3.98 in Table 3-2) and consequently of the incoming highway connected to 

the IFTT (FC3 equal to 3.50). This leads to a high value of the average free capacity of the straight 

trucks access road: the area seems free, but this depends only on the slowing down of the highway flow. 

In scenario 2 it is increased the semi-trailer trucks access road capacity (B in Figure 3-19). This 

results in the decongestion of the access roads and of the incoming highway, although the capacity of 

the straight trucks area remains too low. Hence, the best results are obtained in Scenario 3, i.e., by 

increasing the capacities of both p17 and p42 in Figure 3-19 (see second-last line of Table 3-2). Scenario 

4 considers the control by a checkpoint of the entrance during weekdays of semi-trailer trucks into the 

terminal, using a monitor place between the highway tollbooth and the semi-trailer access road. It is 

assumed that ICT tools allow exchanging information among the logistics actors. Hence, it is assumed 

that by a suitable information, provided to the semi-trailer trucks owners, the semi-trailer trucks flow is 

forbidden until the highway of the terminal and the parking area of the terminal are no longer 

oversaturated, limiting pollution, decreasing travel costs and increasing road safety. 
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TABLE 3-1 - Meaning and firing times of transitions in the TPN of Figure 3-19. 

Transition Description 
Firing time 

[h] 

T1 Weekdays 120.000 

T2 Holydays 48.000 

T3,T4 Arrival of semi-trailer (straight) trucks on 

weekdays 

0.590 

(0.210) 

T5,T6 Arrival of semi-trailer (straight) trucks on 

holydays 

0.570 

(0.290) 

T11,T12, T13 T14, T42, T43, 

T44, T45 

Flows of vehicles through the highway 0.170 

T21 Embarkation/disembarkation of straight 

trucks 

0.017 

T31 Average embarkation time for semi-trailer 

trucks 

0.001 

T32 Embarkation/disembarkation of semi-

trailer trucks 

0.220 

T33 Semi-trailer trucks exiting the terminal 0.670 

T34 Tractors waiting in the terminal 23.500 

T35 Reassembling tractors/cargo 0.900 

T37 Departure of semi-trailer trucks 0.210 

T61 Opening terminal delay 1.000 

T59 Opening time of the terminal 5.500 

T60 Closing time of the terminal 18.500 

T23 Presence of vessel in the seaport 0.500 

T24 Shipping time 17.000 

T25 Docking 6.500 

T17 Transition of straight trucks from rail to 

terminal 

0.110 

T18, T19 Straight trucks entering the port 0.100 

T46, T50 Arrival of trains 2.000 

T47 Presence of train in the railway on 

weekdays 

7.000 

T48 Absence of train in the railway on 

weekdays 

17.000 

T51 Presence of train in the railway on 

holydays 

4.000 

T52 Absence of train in the railway on 

holydays 

20.000 

T41 Straight trucks exiting the terminal 0.100 
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TABLE 3-2 - Performance evaluation of the TPN of FIGURE 3-19. 

Scenarios FC1 FC2 FC3 Tr(T13) Tr(T14) Tr(T21) Tr(T31) Run time [s] 

As-is 19 3.21 3 0.03 0.07 6.28 0.06 434 

1 143 3.98 3.50 0.03 0.07 6.28 0.06 648 

2 6.8 382 38.90 1.70 3.80 7.90 3.80 1618 

3 163 384 49 1.70 3.80 3.88 3.82 1605 

4 16.04 13.82 15.26 0.36 0.79 5.66 0.79 748 

 

Accordingly, the ICT control law is realized by preventing the TPN from evolving towards 

forbidden states, i.e., saturated access road and highway for semi-trailer trucks. Since these restrictions 

on the system behavior are logical predicates that do not depend on the time evolution, the control 

problem can be formulated using GMEC, i.e., constraining the weighted sum of markings in a place 

subset, as follows: 

3 5 7 10 13 33 34 36 37 38( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )M p M p M p M p M p M p M p M p M p M p B+ + + + + + + + + ≤    

The constraint is imposed including in the net a control place, which has as initial marking 

M(PC)=B. This enables the semi-trailer trucks to flow in the highway, according to the free space still 

available in the relative access road, avoiding congestion (last row of Table 3-2).  

B. A real case study 

The second case study concerns a real intermodal inland rail-road terminal located in Bari 

(Southern Italy) at the GTS - General Transport Service S.p.A. company, a leader in intermodal freight 

transport in Italy and Europe, owning about 1,800 containers of different types and 280 rail wagons. 

The current management of the logistics system is considered and some possible improvements are 

proposed.  

In Figure 3-20 a scheme of the IFTT is presented. Semi-trailer trucks and trains circulate in the 

IFTT, the former through access roads, the second by a dedicated railway line. Trucks and trains 

transport ITUs that are stored and made available for the next transport mean in a dedicated yard storage 

area. During the week, the terminal can accommodate trucks from 6.30 a.m. to 6.30 p.m., while on 

Sunday the terminal is closed. The company manages semi-trailer trucks traffic as follows: vehicles that 

carry ITUs to the rail destinations of Piacenza and Bologna (Italy); vehicles that load ITUs to deliver in 

the port with destination Patras (Greece); vehicles that pick up ITUs to load from (deliver to) the initial 

(final) customer. 
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Figure 3-20 - Scheme of the real case study. 

 

The rail traffic is classified into: trains from/to Piacenza, with capacity CTP=34 ITUs, and trains 

from/to Bologna, with capacity CBT=20 ITUs. Trains from/to Bologna circulate all week on alternate 

days, arriving in Bari at 7.30 a.m. and staying until 5.30 p.m. (the trains return to the terminal after 38 

hours). Trains from/to Piacenza, instead, arrive every day at 7.30 a.m. and stay till 5.30 p.m., while 

there are no arrivals on Sunday. The ITUs delivered to the IFTT by road or rail are stacked in a yard 

storage with capacity CYS=250 ITUs. 

B.1. The terminal TPN model 

This section presents the TPN model describing the IFTT in Figure 3-20. The TPN system TPN, M0 of 

Figure 3-20 with TPN=(P, T, Pre, Post , F) models the structure and the dynamic evolution of the IFTT 

under the current management that is here called case as is. The TPN system in Figure 3-20 consists of 

the necessary subnet models described in Section 3.2.3, connected in an appropriate manner. The TPN 

digraph elements are specified as follows. The place set is R C FP P P P∪ ∪= : set PR models the system 

resources (i.e., access roads, rail, and GTS terminal); set PC models the available capacities of the 

resources; set PC contains places used to model conditions, to give priority and synchronize the main 

events of the system (time of day or day of the week, opening/availability and closure/unavailability of 

resources, etc.). In the TPN model, a token in a place Pi ∈  PR represents an ITU, semi-trailer or train in 

the system, a token in a place Pi∈PC is an available position in a resource and a token in a place Pi∈PF 

represents a condition that is verified. Moreover, the transition set of the net in Figure 3-21 is T=TS ∪TD

∪TI. Exponential stochastic transitions in TS model the input of vehicles into the IFTT, their flows and 

activities.  
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Figure 3-21.  TPN model of the real case study in Figure 3-20. 

Moreover, set TD of deterministic timed transitions models the occurrence of deterministic events at 

particular times of the day, i.e., the terminal opening (transition t1) and closing events (transition t2), the 

weekly closing of the terminal (t4) the weekly pause of the train arrival/leaving from/to Piacenza (t60), 

the arrival (t51-t56) and the departure (t52-t57) of the trains, set TI collects the TPN immediate transitions, 
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i.e., t3 modelling the start of the closure interval for the terminal, t5 modelling the end of the closure 

interval for the terminal, t11-t17-t23 modelling the exit of trucks from the terminal, t53-t58 reset of the train 

capacity at every departure, t59-t61 start/end of the closure interval for train arrival/departure from/to 

Piacenza. Matrices Pre  and Post  and the initial marking M0 of the TPN system in Figure 3-21can be 

deduced from the edges and the token distribution shown in the figure. In particular, each place pi ∈  PR 

can accommodate vehicles and, assuming that the system is empty at the initial marking, it holds 

M0(pi)=0 for each pi ∈  PR. On the other hand, the initial marking of each pi ∈  PC is set equal to the 

corresponding resource capacity. According to the terminal structure in Figure 3-20, the IFTT model in 

Figure 3-21 is formed by suitably connecting using five RNs eight subsystems among the following 

kinds of IFTTS: 1) access road for semi-trailer trucks unloading ITUs, 2) access road for semi-trailer 

trucks loading ITUs, 3) yard storage area, 4) railway with separate ITUs load/unload an the 

opening/closing management; 5) opening/closing of an IFTT subsystem. For each subnet the meaning 

of places and transitions are those listed in Section 3.4, and the firing times associated with stochastic 

and deterministic transitions are given in Table 3-3. 

B.2. Simulation results 

The IFTT dynamics is simulated and analysed using the data in Table 3-3. The aim is studying 

the system behaviour considering the actual management of the terminal and comparing it with possible 

scenarios and alternative solutions. 

Table 3-3- Meaning and firing times of transitions of the TPN in Figure 3-21. 

Transition Description Firing time [h] 

t1 Hours of activity of the terminal 12.00 

t2 Hours of closure of the terminal 12.00 

t4 Sunday closure 12.00 

t6 Average arrival time of full semi-trailer trucks, unloading ITUs in the terminal 0.34 

t7 Average time for ITU unloading 0.13 

t9 Average arrival time of tractors that load ITUs with destination final customer  0.46 

t10-t13 Average time for semi-trailer assembling 0.13 

t12 Average arrival time of tractors that load ITUs with destination port 1.14 

t15 Stay time in terminal of the train Bari-Bologna  10.00 

t16 Absence time in terminal of the train Bari-Bologna  38.00 

t17 Average time for unloading cargo of Bari-Bologna train 2.00 

t18-t23 Average time for ITU loading on the train 0.13 

t20 Stay time in terminal of the train Bari-Piacenza 10.00 

t21 Absence time in terminal of the train Bari-Piacenza 14.00 

t22 Average time for unloading cargo of Bari-Piacenza train 3.00 

t26 Weekly pause for Bari-Piacenza train 24.00 
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The indices evaluating the IFTT performance are [173], [99]: 

1) the occupation of the yard storage area, evaluating the number of ITUs in the area, its average 

value OYS and its maximum value; 

2) the occupation of access roads, evaluating the number of semi-trailer trucks waiting for 

loading/unloading ITUs, its average value OAR and its maximum value; 

3) the average throughput Tr(ti) or average number of fires per time unit of some stochastic 

transitions Ti∈TS. 

Starting from the actual structure (scenario as-is), the system behavior is evaluated in eight 

additional scenarios, to test the model capability to represent different situations (see Table 3-4): in 

Scenarios 1-2-3 it is assumed, respectively, an increase of 20-30-50% in the number of empty ITUs 

exiting the terminal by semi-trailer trucks for subsequent loading of goods; in Scenario 4 the yard 

storage capacity CYS is increased, from 250 to 375 ITUs; in Scenario 5 the times associated to 

loading/unloading ITUs, i.e. t30, t31, t32, t50, t55, are halved; in Scenario 6 it is considered a reduction of 

25% of the loading/unloading times of the ITUs (t30-t31-t32-t50-t55); in Scenario 7 the traffic of ITUs is 

incremented of 100% and the times for loading/unloading ITUs are halved; finally, in Scenario 8 the 

loading/unloading times are doubled. The performance indices for each scenario are listed in Table 3-5 

and Table 3-6. The average occupations OYS, OAR1, OAR2, and OAR3 are respectively calculated for the 

yard storage area p33, for the access road of semi-trailers leaving ITUs in the terminal p27, for the access 

road of tractors carrying ITUs from terminal to the final customer p29, for the access road of tractors 

carrying ITUs from terminal to port p31. The occupation maximum values (minimum values are zero) 

are also in Table 3-5. 

Throughputs are calculated for the loading/unloading of ITUs in the yard storage (Tr(t30)-Tr(t31)-

Tr(t32)) and the loading on trains (Tr(t50)-Tr(t55)). 

In the first row of Table 3-5 are shown the results for the case as-is. Comparing the average 

value of occupation of the yard storage OYS (28.88 ITUs) with its maximum capacity CYS (250 ITUs), 

and analyzing the average values of occupation of the access roads OAR1- OAR2- OAR3 (which amount to 

around one vehicle), the system appears not congested, highlighting a good management of the 

available resources. 

In Scenarios 1-2-3 it is considered a 20-30-50% increase of the load of goods carried by straight 

trucks. As a consequence, the values associated with some parameters of the net are adapted to 

represent the relative Scenario, as reported in Table 3-4. 
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Table 3-4 - Scenarios for performance evaluation of TPN in Figure 3-21. 

Sc. 
T8 

[h] 

T14 

[h] 

T20 

[h] 

T49 

[h] 

T54 

[h] 

X 

[ITU] 

Y 

[ITU] 

CYS 

[ITU] 

As-is 0.34 1.14 0.46 2.00 3.00 20 34 250 

1 0.30 1.14 0.38 2.40 3.60 24 41 250 

2 0.28 1.14 0.35 2.60 3.80 26 44 250 

3 0.25 1.14 0.30 3.00 4.30 30 51 250 

4 0.25 1.14 0.30 3.00 4.50 30 51 375 

5 0.25 1.14 0.30 1.50 2.25 30 51 250 

6 0.25 1.14 0.30 2.20 3.40 30 51 250 

7 0.20 1.14 0.23 2.00 3.00 40 68 250 

8 0.34 1.14 0.46 3.00 4.50 20 34 250 

 

 

 

 

Table 3-5 - Performance indices of TPN in Figure 3-21 – avg. and max occupation. 

Sc. 
OYS 

[ITUs] 

Max 

M(p33) 

OAR1 

[veh] 

Max 

M(p27) 

OAR2 

[veh] 

Max 

M(p29) 

OAR3 

[veh] 

Max 

M(p31) 

As-is 28.88 115 0.67 9 0.30 9 1.24 24 

1 48.49 174 0.77 113 0.21 6 1.16 23 

2 54.20 200 0.86 9 0.20 9 1.03 34 

3 240.94 250 9.20 72 0.16 4 0.85 12 

4 339.60 370 2.35 30 0.16 4 0.82 10 

5 16.75 125 0.46 8 0.52 11 2.38 45 

6 33.73 180 0.71 12 0.20 7 1.77 47 

7 26.27 170 0.59 8 0.16 6 1.88 47 

8 234.38 250 8.17 68 0.24 5 0.83 11 

 

 

 

Table 3-6 - Performance indices of TPN in Figure 3-21 - Throughput. 

Scenarios 
Tr(t30) 

[veh/h] 

Tr(t31) 

[veh/h] 

Tr(t32) 

[veh/h] 

Tr(t50) 

[ITU/h] 

Tr(t55) 

[ITU/h] 

As-is 2.73 0.78 2.06 1.46 2.56 

1 3.07 0.80 2.43 1.75 3.02 

2 3.30 0.82 2.63 1.89 3.27 

3 3.72 0.81 3.10 0 0 

4 3.63 0.82 3.05 0.38 0.48 

5 3.62 0.82 3.05 2.16 3.72 

6 3.69 0.81 3.08 2.18 3.77 

7 4.61 0.79 4.00 2.90 5.12 

8 2.71 0.80 2.03 0.16 0.15 
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Table 3-7 - Validation indices. 

Performance Index Meaning PI ρ RPI 

Tr(t6) Throughput of unloaded ITUs 2.94 0.04 2.98 

Tr(t9) Throughput of exiting ITUs (to port) 0.88 0.03 0.88 

Tr(t12) Throughput of exiting ITUs (to customer) 2.17 0.04 2.18 

 

In particular, the following IFTT parameters vary: the average number of trucks entering the 

terminal, i.e., the average interarrival time of trucks in the terminal (t8, t14, t20 in Figure 3-21); the 

number of ITUs carried by trains (X, Y in Figure 3-21); the average time needed for their loading (t49, 

t54). Note that the capacity of the yard storage area remains equal to 250 ITUs. As reported in Table 3-5 

and Table 3-6, the system reacts well in the first two situations, i.e. OYS is around one fifth of the 

maximum capacity (CYS) and the access roads are occupied by at most one vehicle during working 

hours. When the number of carried ITUs is increased by 50%, the yard storage (OYS) and the access 

road for semi-trailer trucks with full ITUs (OAR1) become congested, revealing the limitation of the 

system to manage an increase of the volumes of full ITUs. To reduce the congestion some alternatives 

are evaluated. In Scenario 4, the CYS is increased from 250 ITUs to 375 ITUs, but this does not produce 

any considerable improvement; OYS and OAR1 do not show a substantial decrease. In Scenario 5 the 

times needed for loading/unloading ITUs, i.e., the firing times of t30-t31-t32-t50-t55, are halved, assuming 

a value of 0.07 hours, with CYS equal to its original 250 ITUs value. In this way, the number of ITUs 

waiting in yard storage area OYS and the number of semi-trailers waiting for unloading OAR1, drastically 

decrease. Scenario 6 considers a reduction of 25% of the loading/unloading times of the ITUs (t30-t31-

t32-t50-t55 equal to 0.1 hours), without modifying CYS, and the system still does not congest. In Scenario 

7, the traffic of ITUs is doubled (as shown in Table 3-4; with regards to t8, t14, t20 and X, Y) and the 

times for loading/unloading ITUs are halved (t30-t31-t32-t50-t55 equal to 0.07 hours). The obtained 

performance indices values demonstrate that the terminal can manage well a large increase of ITUs 

handling (see the relative OYS, OAR1, OAR2, OAR3), but only if the resources needed for the 

loading/unloading are increased in such a way that the times associated to these activities can be halved. 

In Scenario 8, a doubling of the loading/unloading times is assumed (t30-t31-t32-t50-t55 equal to 0.26 

hours), to represent a situation in which a technical failure or a shortage of staff occurs. The 

performance indices show now a congestion of the yard storage area (OYS) and of the access road for 

full semi-trailer trucks (OAR1), causing difficulties in the management of ITUs carried by trains. The 

throughputs in all scenarios completely reflect the remarks for each case. 

As an example, Figure 3-22 (Figure 3-23) represents the evolution under Scenario 3 of the 

markings of places p27 (p33), i.e., the variation over time of the occupation of the first access road, 

whose average OAR1 and peak values are in Table 3-5. The figures show that under this scenario the 



 

64 

 

access road copes with the incoming flows, while the storage area is always congested, so that its 

occupation is often close to its capacity of 250 vehicles. 

 

Figure 3-22.  M(p27) (occupation of access road) in Scenario 3. 

 

 

 

Figure 3-23.  M(p33) (occupation of yard storage area) in Scenario 3 

 

Finally, it is to remark that an average computation time of 1 minute is obtained for each 

replication on a PC with an Intel Core 2 Duo-2.80 GHz processor and 4 Gb RAM. The performance 

indices are obtained from 1000 independent replications with a 95% confidence. The half width of the 

confidence interval is about 0.9% in the worst case. 

B.3. The model validation 

Validation shows how closely the model represents the real system and it may be achieved by 

applying the single mean test [174]. Specifically, real data are provided by the company and compared 

with some representative performance index of the model. The half width of the relative confidence 

interval is determined. Table 3-7 reports the performance indices obtained by the simulation with the 

relative half width of the confidence interval and the equivalent values computed by historical data 
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provided by the company. Denoting by PI the generic performance index provided by the simulation, by 

RPI the corresponding index obtained by real data and ρ the relative half width of the confidence 

interval, Table 3-7 shows that for each considered performance index it holds: 

   

PI RPI PIρ ρ− ≤ ≤ +      (Eq. 3-4) 

Hence, applying the single mean test [174], the results prove that the simulation closely represents the 

actual system. 

Summing up, both case studies show that using the proposed model for IFTT analysis has a huge 

potential for verifying its efficient operation, allowing to synthetically measure the effective impact of 

new infrastructures, the criticality of failures or of increased traffic flows, etc. 

 Management of intermodal terminals by hybrid 3.3

Petri nets 

The purpose of this section is to use First-Order Hybrid Petri Nets (FOHPNs) to effectively 

manage IFTTs in a closed-loop fashion. In fact, FOHPNs offer the possibility to adapt and optimize the 

management of the terminal, depending on the desired functioning, setting a linear objective function to 

be optimized subject to linear constraints. This kind of control policy is not computable starting from a 

purely discrete Petri net model that is essentially useful to derive supervisory controllers. On the 

contrary, the proposed hybrid model allows combining both time-driven dynamics, proper of 

transportation means flows, and event-driven dynamics, such as: opening/closing of the terminal and 

scheduled arrivals/departures of transportation means. In particular, two optimal control policies are 

suggested for the terminal while coordinating the speeds associated with the continuous transitions of 

the net: one aiming at maximizing the outflows of the terminal, the other at minimizing the residual 

fluid (i.e., the ITUs) in the yard storage area. This allows taking offline decisions on the management of 

transfer speeds and the quantity of resources needed for ITUs transferring, in case of variation of 

commercial flows in the terminal. Moreover, the model can be used for deriving an online control 

approach to solve congestions or malfunctioning caused by unexpected events or abnormal increments 

of transportation means flows. 

The proposed modeling and control technique is applied to the real logistics company in Bari 

(southern Italy) already considered in in the previous section. After validating the terminal model in an 

open-loop setting, the closed-loop dynamics is evaluated under different scenarios, including a situation 

of potential congestion. It is shown that, while the controlled system copes well with this case, when no 

control action is applied, the system enters a congested state. 
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The Hybrid PNs (HPNs) formalisms can be effectively taken into account in the field of 

transportation networks modeling and management, since they allow the efficient modeling of the 

traffic flows as fluids, while still keeping the discrete dynamics description and event-driven dynamics 

[15]. This fluidization allows reducing the computational effort for the system simulation and 

performance evaluation. In the context of HPNs formalisms, FOHPNs [17] are a framework in which 

the system design parameters are continuous, allowing solving integer linear programming problems to 

select in a closed-loop fashion suitable operational parameters that optimize appropriate performance 

indices. FOHPNs have been employed to model, simulate, analyze and control manufacturing systems 

[175], [176], [177]. Subsequently, applications of FOHPNs have appeared in the related literature on 

modeling and controlling freeway systems [59], [61]. 

While the above contributions applying HPNs to transportation systems regard vehicular and 

particularly urban traffic, to the best of the authors’ knowledge, no contribution has been proposed in 

the related literature on the application of hybrid PNs to intermodal transportation and particularly 

IFTTs. 

 Elementary FOHPN Models for IFTTs 3.3.1

As already pointed out in the previous section an IFTT can be considered as a set of 

interconnected subsystems: access road; railway access; yard storage area; opening/closing subsystem. 

Hence, the FOHPN representing the terminal is made of subnets, each modeling the operations on 

containers in a particular subsystem. In the sequel, will be described the discrete/continuous/hybrid 

subnets that are used in the management of the considered case study. It is to remark that in this section 

are employed only continuous, immediate and deterministic timed transitions. 

A. Access Road 

The access road subnet represents the road section from which semitrailers enter/exit from the 

terminal. This subnet is represented in Figure 3-24 (a): it consists of two continuous transitions, T1C and 

T2C, and a continuous place P1C. Transitions represent the flow of transportation means that enter/exit 

the terminal. The continuous place contains the fluid representing semitrailers. 

B. Railway Access 

The railway access subnet represents the arrivals/departures of trains in the terminal on 

dedicated rail lines. Trains arrive and depart from the terminal picking-up or delivering ITUs. In 

particular, when a train arrives in the terminal, ITUs are unloaded and subsequently stored based on 

their final destination, until the train is completely empty. Only at this point the loading operation starts, 
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involving the ITUs stored in the yard zone having the train destination that are stored in the 

corresponding yard zone. Finally, the train leaves the terminal according to its timetable.  

Figure 3-24 (b) shows the FOHPN model of the railway access line. When P1D is marked, no 

train is in the railway access of the terminal. The firing of timed transition T2D models the arrival of a 

train. Its time delay is equal to the number of hours in which no train is in the terminal access. When 

P2D is marked, one train is in the terminal access and remains there for a number of hours that is equal to 

the time delay of transition T1D. Continuous places P1C and P2C represent the number of ITUs allocated 

to different destinations. Such quantities coincide with the weights (X and Y) of the input arcs to places 

P1C and P2C. It is obviously possible to increase or decrease the number of destinations varying the 

number of continuous places. Continuous transitions T1C and T2C model the ITUs unloading operations 

that reduce the amount of fluid in P1C and P2C, and simultaneously increase the content of place P3C. The 

unloading operation terminates when the train is empty. To impose that the loading operation starts only 

when the unloading operation is completely finished, two immediate transitions T3D and T4D and a 

discrete place P3D are introduced in the model. Transition T3D moves a token to place P3D as soon as the 

content of P3C increases of one unit. Transition T4D fires as soon as the content of P3D is equal to X+Y, 

i.e., the unloading operation is finished. The marking of place P4C immediately becomes equal to X+Y 

and transition T3C is enabled. Its firing models the partitioning of the available space in the train devoted 

to full (H) and empty (K) ITUs. Clearly, it is H+K=X+Y. At this point, the loading operation, 

corresponding to the firing of transitions T4C and T5C, may start. Obviously, this may happen provided 

that the train is in the terminal access, namely place P2D is marked. Moreover, the enabling condition of 

T4C and T5C also depends on the availability of ITUs in the yard storage area that is not modelled in this 

subnet. Finally, immediate transitions T5D and T6D model an important constraint. The departure time of 

the train is fixed and, as explained above, is related to the firing of transition T1D. It may happen, when 

the train is expected to leave, that it is not full at its maximum capacity. If such is the case, it is 

important to reset the current partitioning of the free capacity in full and empty ITUs, namely to reset to 

zero the content of places P5C and P6C in order to avoid affecting future operations. 

C. Yard Storage Area 

The yard storage area subnet represents the area dedicated to ITUs temporary storage. The 

subnet in Figure 3-24 (c) models the partitioning of the storage yard in n sub-areas where ITUs are 

stored depending on their destination. The content of places P1C to PnC models the number of ITUs in 

each subarea, while P measures the free yard capacity (W when the area is empty). Transitions T1C to 

T2nC represent the entrance/exit of ITUs to/from the areas. The net structure guarantees that the sum of 

tokens in continuous places is always equal to W. Therefore, the marking in Figure 3-24 (c) represents a 

situation where the yard is empty. 
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Figure 3-24. (a) Access road subnet. (b) Railway access subnet. (c) Yard storage area subnet. (d) Opening/closing “for hours” subnet. (e) 

Opening/closing “for days” subnet. 

 
 

Figure 3-25.  Logical scheme of the GTS IFTT 
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D. Opening/Closing Subsystems 

The cyclical opening/closing of the previously described activities can be managed considering 

appropriate subnets that allow controlling hours or days of activity/inactivity. 

Two different cases are here considered. Figure 3-24 (d) depicts the model that describes how 

activities vary during the different hours of a day. Place P1D (P2D) indicates when the subsystem is 

active (idle), and transition T1D (T2D) models the activity (idling) time. Figure 3-24 (e) shows the model 

that describes how activities vary during the different days of a week. As soon as r tokens arrive in P1D, 

transition T1D immediately fires adding one token in P2D. A time delay of one day is associated with 

T2D, and, provided that P2D remains marked, T2D fires after that a time interval corresponding to one day 

has elapsed. Therefore the content of P3D is a measure of the number of days that have elapsed since the 

last firing of T1D. As soon as the marking of P3D becomes equal to y, transition T3D fires empting places 

P2D and P3D, and thus resetting the count of the number of days since the last occurrence of T1D. In the 

IFTT model, such a subnet is used to regulate weekly opening/closing phases. It is to notice that such a 

net can be clearly simplified if no counter of days is used and all time delays are measured in hours. 

However, in this work it is kept as in Figure 3-24(e) because it provides a more intuitive interpretation 

of the behavior in real systems, as the case study in the next section. 

 The Case Study and the Management Problem 3.3.2

The real case application is on the rail-road terminal of the Italian company, “GTS - General 

Transport Service S.p.A.,” located in Bari (Southern Italy). Although the IFTT has been already 

introduced and described in Section 3.2, here a more detailed description of its features is provided, so 

as to properly contextualize the management problem. In particular, in the terminal many operations are 

combined so as to offer an efficient shipping service. Semi-trailer trucks and trains may circulate in the 

IFTT, where the former enter/exit the terminal through the access roads, while the latter use dedicated 

railway lines that link Bari to Bologna and Piacenza. During the week, the terminal can accommodate 

trucks from 6.30 a.m. to 6.30 p.m., while on Sunday the terminal is closed. Instead, the arrivals and 

departures on the railway lines follow a fixed timetable, and the rail traffic is classified into: trains 

from/to Piacenza, with capacity CPT=34 ITUs, and trains from/to Bologna, with capacity CBT=20 ITUs. 

Trains from/to Bologna circulate from Monday to Saturday and arrive to the terminal three days a week; 

they arrive in Bari at 7.30 a.m. and stay until 5.30 p.m. (the trains return to the terminal after 38 hours). 

Trains from/to Piacenza, instead, arrive every day at 7.30 a.m. and stay till 5.30 p.m., while there are no 

arrivals on Sunday. Each cargo of the trains from Bologna/Piacenza to Bari, contains ITUs divided in: 

full for the final customer (TB2=13 ITUs delivered from Bologna, TP2=24 ITUs delivered from 

Piacenza), empty (TB1=4 ITUs delivered from Bologna, TP1=0 ITUs delivered from Piacenza), and 
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full/empty directed to the port (TB3=3 ITUs delivered from Bologna, TP3=10 ITUs delivered from 

Piacenza). Otherwise, the trains departing from Bari on the Bologna line have EB=14 empty ITUs and 

FB=6 full ITUs, the trains departing from Bari on the Piacenza line have EP=7 empty ITUs and FP=27 

full ITUs. Once arrived at the terminal (both with semitrailers or trains) the ITUs can be stored in a 

dedicated yard storage area with a maximum capacity CYS=250 ITUs. In this model, differently from 

the previous section, the yard is divided in sub-areas, such as: full ITUs for Bari/Bologna trains, full 

ITUs for Bari/Piacenza trains, full ITUs for the final customer, ITUs for the port, and empty ITUs for all 

destinations. The transferring of ITUs from one transportation mean to another is managed by two 

cranes that work in parallel all the working day long.  

The IFTT logical scheme is represented in Figure 3-25, where arrows symbolize the flow of 

ITUs and transportation means in the terminal from one subsystem to another. Specifically, the IFTT 

subsystems are: daily/weekly opening/closing, access roads, yard storage areas, and railway accesses. 

The arrival/exit of the ITUs in/from the terminal, as already reported, is possible in two ways: the access 

roads and the railway access. In the former case, the ITUs are carried by semitrailer trucks that enter the 

terminal and unload ITUs in the yard. Subsequently, the semitrailers become immediately available to 

load a new cargo. In the latter case, trains arriving at the terminal can unload the cargo on the yard and 

are reloaded with the available ITUs. 

A. The FOHPN Model of the Terminal 

This section describes the FOHPN model of the GTS IFTT, represented in Figure 3-26 and 

obtained as the modular composition of the subnets described in the previous subsection. 

The meaning and the delay time (the range mfs - MFS) associated with discrete (continuous) 

transitions are summarized in Table 3-8, Table 3-9, and Table 3-10. Note that in Figure 3-26 all places 

have initial marking equal to zero, except for 
1DPm = 1, which represents the situation of open terminal, 

1 and  1, representing the absence of trains in the terminal, and  250, indicating the 

maximum free available capacity in the yard.  

6 DPm =
9 DPm =

9CPm =
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Figure 3-26.  The GTS IFTT model in the FOHPN framework 

 
Table 3-8.  Time Delay of the Discrete (non-Immediate) Transitions in Figure 3-26 

Transition Description Time delay [h] 

T1D Hours of activity of the terminal 12.00 

T2D Hours of closure of the terminal 12.00 

T4D Sunday closure 12.00 

T6D Absence time of the train Bari-Bologna  38.00 

T7D Dwell time of the train Bari-Bologna  10.00 

T12D Absence time of the train Bari-Piacenza 14.00 

T13D Dwell time of the train Bari-Piacenza 10.00 

T19D Weekly stop for the Bari-Piacenza train 24.00 

T22D Weekly stop for the Bari-Bologna train 24.00 
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Table 3-9  mfs-MFS of the Continuous Transitions in Figure 3-26. 

Transition  Description Time delay [h] 

T1C Average arrival rate of semitrailers with full ITUs to Bologna 0.25 – 0.25 

T2C Average arrival rate of semitrailers with empty ITUs to Bologna and Piacenza 1.16 – 1.16 

T3C Average arrival rate of semitrailers with full ITUs to Bologna 1.92 – 1.92 

T4C, T5C, T6C, T7C, 

T8C, T9C, T10C, 

T11C, T12C, T13C, 

T14C, T15C, T17C, 

T18C, T20C,   T21C 

Average ITUs’ transfer rate 12.5 –14.7 

T16C, T19C 
Availability rate of free capacity in the Bologna/Piacenza train after unloading  100 – 300 

T22C Average exit rate of semitrailers with empty ITUs to customer 0 – 2 

T23C Average exit rate of full semitrailers with full ITUs to customer 0 – 6 

T24C Average exit rate of semitrailers with ITUs to port 0 – 2 

 

 
Table 3-10  mfs-MFS of Continuous Transitions Characterizing the Scenarios. 

 mfs – MFS of a subset of continuous transitions [ITUs/h] 

Scenario T1C T2C T3C T22C T23C T24C 

1 0.25–0.25 1.16–1.16 1.92–1.92 0–2.00 0–6.00 0–2.00 

2 0.37–0.37 1.74–1.74 2.88–2.88 0–3.00 0–9.00 0–3.00 

 

Note that in Table 3-10 two sets of possible ranges are reported. As discussed in the section devoted to 

numerical simulations, such values depend on the considered operating scenario. These values have 

been argued based on the information on the system behavior and on a series of historical data relative 

to year 2014 provided by GTS.  

B. The Terminal Management 

In this sub-section two IFTT management strategies are presented based on FOHPNs and using 

two different objective functions.  

On one hand, the aim is to maximize the outflows of the terminal using the following objective 

function: 

1

1       
,

 0      , 
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⋅


= = 


  (Eq. 3-5) 

v  is the IFS vector, and the exogenous transitions are those associated with the transferring of ITUs 

from/to the storage area of the terminal and the endogenous transitions are the remaining ones. 
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On the other hand, the aim is the minimization of the residual fluid in the storage area by 

objective function [177]: 
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and PYard is the set of places modeling the yard storage area. 

C. Numerical Results 

In this section the results of two series of simulations are reported. The outcomes are obtained by 

in the MATLAB environment using the HYPENS tool [170]. 

The first one aims at validating the model, namely showing that the proposed FOHPN model, 

when no control action is applied, actually reproduces the behavior of the real system, so that it can be 

used as a reference model to derive efficient control actions. The second series of simulations aims at 

showing the effectiveness of the proposed control laws both in standard operating conditions and in 

critical cases, when congestions in the yard may potentially occur.  

To show that the model mimics the behavior of the terminal when no control action is applied it 

is considered the AS-IS scenario, called Scenario 1. It corresponds to the operating conditions (in terms 

of flows of ITUs, semitrailers, timetable of trains, and so on) in which the system actually works. To 

simulate it, it is assumed that all transitions that could be controlled, as described in the previous 

section, fire at a random speed. In more detail, the values of the instantaneous firing speeds, rather than 

being the result of an optimization problem, are taken randomly, according to a uniform distribution in 

their admissible ranges (reported in the first row of Table 3-10). To make the situation more realistic, 

the PN in Figure 3-26 is integrated with a discrete place with a deterministic transition in self-loop, 

completely disjoint from the rest of the net. The time delay of such a transition is taken equal to 0.25 

hours, so that it fires with a frequency of 4/hour. This imposes that macro-events occur at least at a 

frequency equal to such a value, thus new values of continuous transitions are randomly selected with a 

sufficiently high frequency.  

The duration of the simulations is considered to be of 8760 hours, corresponding to one year of 

activity and the initial marking corresponding to the empty terminal as represented in Figure 3-26. The 

single mean test is applied, taking into account 100 replications with a 95% confidence. Validation is 
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carried out considering three performance indices: 1) the average free capacity of the yard (AYS); 2-3) 

the number of entering (INYS) and exiting (OUTYS) ITUs in/from the yard. These parameters values are 

computed via simulation and are compared with those provided by the company, denoted as: AYSReal, 

INYSReal, and OUTYSReal. The obtained results are summarized in the upper part of Table 3-11, where 1-

OS (1-OR) denotes the scenario in open-loop via simulation (real terminal). It is to notice that the half 

width confidence interval of the indices values obtained via simulation is equal to 1%. Hence, it is 

possible to conclude that the FOHPN model mimics the real system behavior. 

D. The Controlled System 

The effectiveness of the proposed control laws is here shown by considering two different 

scenarios. Scenario 1 is the AS-IS scenario, already discussed in the previous subsection. In Scenario 2 

it is supposed that the commercial flow of incoming ITUs is increased of 50%, to evaluate the 

effectiveness of the proposed management policies in a potentially congested situation. In particular, as 

summarized in Table 3-10 (second row) the firing speeds of transitions modeling the semitrailers 

entrance are increased of an amount equal to 50% with respect to Scenario 1, as well as the MFSs of 

transitions modeling the semitrailers exit.  

Note that in Scenario 2 also the number of (empty and full) ITUs in the trains is increased of a 

50% amount, so, with reference to Figure 3-26, it holds TB1=6, TB2=19, TB3=5, TP1=0, TP2=36, 

TP3=15, EB=21, FB=9, EP=11, FP=40. 

 

Table 3-11.  Performance Indices in Open-Loop. 

Scenarios Performance indices 

1-OS (Open-loop via simulation) 

AYS [ITUs] 232.16 

INYS [ITUs] 5.79∙10
4 

OUTYS [ITUs] 5.79∙10
4
 

1-OR (Open-loop, real system) 

AYS [ITUs] 230 

INYS [ITUs] 5.77∙10
4 

OUTYS [ITUs] 5.77∙10
4
 

2-OS (Open-loop via simulation)  

AYS [ITUs] 10.6 

INYS [ITUs] 1.256 

OUTYS [ITUs] 1.246 
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Table 3-12 summarizes the performance indices used to validate the effectiveness of the control 

in the two closed-loop scenarios (1-CS and 2-CS). Note that here, together with the three indices used in 

the previous subsection, a fourth index is considered: the minimum value of the free capacity of the 

yard storage area (min(
9CPm )). The last two columns in Table 3-12 report, respectively, the performances 

indices values obtained by optimizing the outflow of the terminal (J1) and the residual fluid in the 

storage area (J2). The following considerations can be drawn. 

In Scenario 1 under control (Scenario 1-CS in Table 3-12) the IFTT appears to be well organized 

and can well face the requests of the customers, having a yard storage area that never congests. In 

particular, it is possible to observe that AYS, i.e., the average free capacity available in the yard, is equal 

to 236.71 ITUs in the case of maximization of the outflows (J1) and is equal to 238.89 ITUs in the case 

of minimization of the ITUs in the yard (J2), not too far from the maximum value equal to 250 ITUs. As 

expected, better results in terms of AYS are obtained when minimizing J2, even if differences are quite 

negligible in the two cases. 

The value of the performance index min(
9CPm ), shows that in both cases the system never 

congests. Finally, the number of entering ITUs (INYS) is equal to 4.33∙10
5
 when considering J1, and is 

equal to 2.95∙10
5
 when considering J2, so as the number of exiting ITUs (OUTYS) is equal to 4.33∙10

5
 

when dealing with J1 and is equal to 2.95∙10
5
 when dealing with J2. Such values reflect the expected 

results because in case of outflows maximization the goal is to transfer as many ITUs as possible, while 

in the second case the objective is to maximally reduce the number of ITUs waiting in the yard 

It is also possible to compare such values of performance indices with those obtained when the 

system evolves in open-loop (1-OS and 1-OR in Table 3-11). In particular, it is possible to notice that 

basically the same values of free capacity in the yard are obtained in the open-loop and in the closed-

loop case. However, in the closed-loop case, such values correspond to much higher values of flows 

(almost in the ratio 5 to 1). 

In Scenario 2 (2-CS in Table 3-12) it is possible to observe a decrease in AYS with respect to 

Scenario 1 both in the case of J1 and in the case of J2, even if differences are quite negligible. More 

significant differences occur in the values of min(
9CPm ) with respect to the previous scenario. Obviously, 

also under this scenario a better performance with respect to such parameters is obtained by minimizing 

J2. Conclusions similar to those in the previous scenario can be drawn looking at the other performance 

indices. As a result, it is possible to claim that both the considered management strategies allow coping 

with the higher traffic commercial flows, preventing congested situations and supporting the offline 

decision maker planning. To further validate the effectiveness of the control policies in such a critical 

scenario, the open-loop system has been simulated as described in the previous section with the only 
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difference that the ranges of continuous transitions in Table 3-10 are taken from the second row of the 

table rather the first one. The resulting values of the performance indices are summarized in the last part 

of Table 3-11 (2-OS). As it can be seen the yard storage immediately reaches a congested state (its free 

capacity is almost null) so the flow of ITUs is negligible during most of the simulation time. 

This section is concluded with some important remarks concerning the use of the model in real 

time. In particular, it is remarkable that the simulation time, i.e., the time needed to perform a simulation 

for the considered observation time window of one year, is only about 10 min for the system shown in 

Figure 3-26 on a PC equipped by an Intel Core 2 Duo-2.80 GHz processor and 4 GB RAM. Moreover, 

in order to assess the usability of the model in an online control, it is evaluated the optimization time, 

i.e., the average time needed by this technique to optimize the firing speeds to be associated with each 

continuous transition at each macro-event. The optimization time results equal to 0.0001 seconds which 

validates the applicability of the method in real time. Of course, the application of one of the two 

control policies to the system in real time should take into account that the system state should be 

monitored and (short) regular time intervals would need to be considered to allow simulating the 

terminal and calculating the optimal speeds for the closed-loop policy application in real time. For 

instance, the simulations relative to a time window of one week require about 21 seconds on the same 

machine. Hence, all the recalled indices show the applicability of the model both to take decisions 

offline and in real time applications. 

 

Table 3-12.  Performance Indices in Closed-Loop. 

Scenarios Performance indices J1 J2 

1-CS (Closed-loop, via simulation) 

AYS [ITUs] 236.71 238.89 

min(mP9c) [ITUs] 223.94 208.79 

INYS [ITUs] 4.33∙10
5 

2.95∙10
5
  

OUTYS [ITUs] 4.33∙10
5 

2.95∙10
5
 

2-CS (Closed-loop, via simulation) 

AYS [ITUs] 232.6 235.19 

min(mP9c) [ITUs] 119.35 119.97 

INYS [ITUs] 4.55∙10
5 

3.64∙10
5
 

OUTYS [ITUs] 4.55∙10
5 

3.64∙10
5
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 Intermodal terminal planning by TPNs and 3.4

Data Envelopment Analysis 

This section presents an innovative planning technique for IFTTs which is based on the 

integration of the TPNs modelling framework with the cross-efficiency Data Envelopment Analysis 

multi-criteria optimization technique. The proposed procedure allows solving some resource planning 

problems typically occurring in IFTTs. In effect, in the last decades, the use of decision making 

procedures utilizing Multi-Criteria Decision Making (MCDM) methods, as the DEA technique, has 

seen an increasing use in different application areas (see the review in [178]). Several MCDM 

approaches are available, each with its own advantages and disadvantages [178]. Most MCDM 

techniques are usually applied prior to decision making or project execution, while DEA is more often 

utilized for the evaluation of schemes already implemented [179], as is the case of resource planning in 

IFTTs. Furthermore, DEA acknowledges between its advantages, its ease of use and ability to quantify 

results, thus simplifying the analysis. The main advantages of exploiting the TPN modelling power 

joined with the cross-efficiency DEA technique is the ability to evaluate the efficiency of different 

possible alternatives in the resource planning when a variation in the commercial flows is foreseen. In 

particular, the focus here is on how to properly dimension the number of resources required to transfer 

ITUs, and the capacity and frequency of the transportation means, to address the nominal freight flows, 

as well as their eventual foreseen increments. In this section is evaluated the effectiveness of the 

alternatives based on how they influence some suitably chosen indices of the terminal performance, 

e.g., throughput, emissions, cost, etc. As a result, the presented technique allows decision makers to 

perform what-if analyses as well as to provide quick and effective information on how to address the 

typical problems related to the resource planning and management of intermodal terminals. 

Simulations are conducted on the rail-road terminal of the GTS (already presented in the 

previous sections) using data provided by the company. Differently from the previous sections, here it is 

presented an extended model that drops some simplifying assumptions considered for the preceding 

applications (i.e., unlimited number of resources available to transfer ITUs, which is not the case of a 

real terminal, and a unique yard storage area which is also uncommon in a real terminal that typically 

exhibits a storage area partitioned into sub-areas devoted to the storage of ITUs with different 

destinations) and at the same time allows performing a realistic description of the ITUs transfer 

operations, without demanding a particularly high computational effort. More in detail, through Monte 

Carlo simulations, the terminal TPN model is evaluated by simulating multiple different scenarios: (1) 

the current situation based on real data provided by the GTS company, (2) some potentially critical 

situations (obtained by assuming an increase in the freight flows), and (3) other scenarios in which 

specific actions are to be implemented in order to cope with critical circumstances. On the basis of such 
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simulations, conclusions can be automatically drawn on critical topics of the network, possible 

bottlenecks, under-utilized resources or resources to be supplemented using the DEA MCDM approach. 

It is important to remark that, although the GTS is still testing the proposed integrated methodology, 

some promising improvements in terms of usefulness in the resource planning decision making process 

are being observed. 

 Basics of Data Envelopment Analysis and 3.4.1

cross-efficiency DEA 

Thanks to its robustness and simplicity of application, the Data Envelopment Analysis approach 

[180] is a commonly adopted technique to compare a set of alternatives with considerably different and 

heterogeneous operating characteristics under multiple and conflicting criteria. In simple words, DEA is 

a technique aimed at determining the efficiency of each alternative in order to define a ranking among 

them.  

In more detail, a set of F alternatives is to be evaluated on the basis of n conflicting criteria, 

quantified via appropriate performance indices divided into a subset of K criteria to be maximized and 

H criteria to be minimized, being K+H=n. Now, focusing on the i-th alternative (i.e., scenario in the 

next secions) (i=1,..., F), let yk,i  be the value of the k-th performance index to be maximized (k=1,…,K) 

and xh,i be the value of the h-th performance index to be minimized (h=1,2,…,H). In particular, these 

values can be computed based on the knowledge of the system behavior in the i-th scenario, which 

could result from the observation of the real system or from numerical simulations carried out on a 

mathematical model of the system. Then, let uk,i and vh,i be the weighting coefficients associated, 

respectively, with the k-th performance index to be maximized and the h-th performance index to be 

minimized. Such weights, as explained in the following, are used to evaluate the efficiency of the i-th 

alternative. 

The efficiency of the i-th alternative is typically defined as the ratio between the weighted sum 

of the values of the performance indices to be maximized and the weighted sum of the values of the 

performance indices to be minimized [180]: 
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 (Eq. 3-7)

where the non-negative weighting coefficients result from the solution of the following optimization 

problem: 
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subject to (s.t.): 
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Note that constraint (Eq. 3-9) imposes that the efficiency cannot be greater than one. In particular, an 

alternative is considered efficient if and only if Ei=1, otherwise it is not efficient. Due to the 

nonlinearity of the above optimization problem, determining the weighting coefficients, and 

consequently evaluating the efficiency of the current scenario, is computationally demanding in the case 

of several criteria. A solution to overcome such a limitation consists in the so-called output-oriented 

method [180]. According to this method, the weighting coefficients are computed solving the following 

linear optimization problem: 
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, ,
, 0, 1, 2,..., , 1, 2,..., .

k i h i
u v    k K   h H≥ = =  (Eq. 3-14)

Note that, due to constraint (Eq. 3-13), the optimal value of the above optimization problem still 

coincides with the value of the efficiency defined in (Eq. 3-7). 

The limitation of the traditional DEA method is that it places no constraints, other than 

positivity, on weights, thus allowing the assessment of an alternative’s efficiency using the set of 

weights that is most favorable to that alternative. For this reason, the classical DEA approach is often 

used only in a pre-evaluation phase [181], while authors proposed several procedures to better 

discriminate among alternatives [182]. The most common is the so-called cross-evaluation approach 

[183], which includes both a self- and a peer-evaluation of the alternatives, each of which is not only 

assessed by its own weights but also by those of all other alternatives. In more detail, the coefficients 
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resulting from maximizing the efficiency of each alternative are also used to determine the efficiency of 

all the others. Thus, each alternative is measured via F relative efficiency values (each with respect to 

one of the others, including itself) and the resulting cross-efficiency is the mean value of them. 

Formalizing, a cross-efficiency matrix CE={Ef,i} ( )FxF+∈ ℜ  is determined, whose value Ef,i represents the 

efficiency of the f-th alternative calculated with the most favorable weights of the i-th competing 

alternative (obtained from optimization problem (Eq. 3-11)-(Eq. 3-14)): 
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 (Eq. 3-15)

and the cross efficiency of the i-th alternative is obtained as: 
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CE E
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=   (Eq. 3-16)

The above approach still contains a limitation, indeed the solution of the linear optimization 

problem (Eq. 3-11)-(Eq. 3-14) is not unique in general. This clearly does not affect the values of Ei,i but 

has an impact on the values of Ef,i, f i≠ . To solve this issue, Doyle and Green [184] propose a second-

level optimization procedure that should be executed for all the i-th alternatives after solving the 

problem (Eq. 3-11)-(Eq. 3-14). It consists in the solution of a second optimization problem for each 

alternative i (i=1,...F), which enables to compute a new set of weighting coefficients uk,i, vh,i, k=1,...,K, 

h=1,...,H, to be used in eq. (Eq. 3-15) to redefine the cross-efficiency matrix: 
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, ,
, 0, 1, 2,..., , 1, 2,..., .

k i h i
u v    k K   h H≥ = =  (Eq. 3-21)

Note that this second optimization only leads to an update of the off-diagonal terms of the cross 

efficiency matrix. On the contrary, the diagonal elements do not change as a consequence of constraint 

(Eq. 3-21) which imposes that, for each i-th alternative, Ei is equal to the optimal efficiency resulting 

from the previous optimization problem (Eq. 3-11)-(Eq. 3-14). 
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Depending on the decision maker’s preferences, it is possible to solve the problem under 

additional constraints on the evaluating criteria. This can be done by using the so-called assurance 

regions constraints [185], which apply additional constraints on the relative magnitude of the weighting 

coefficients to emphasize the importance of some criteria on the others. 

Summing up, the main steps of the cross-efficiency DEA technique may be described as follows: 

1. determine F scenarios or alternatives to compare. Collect data on them either by an 

experimental campaign on the real system or by a simulation campaign on a system model. 

Compute the performance index values 
,k i

y  and 
,h i

x  with i=1,…,F, k=1,…,K and h=1,…,H. 

2. for each scenario i=1,…,F solve the linear optimization problem (Eq. 3-11)-(Eq. 3-14) and 

compute the efficiencies Ei based on the resulting weighting coefficients and eq. (Eq. 3-7). 

3. for each scenario i=1,…,F solve the second-level optimization problem (Eq. 3-17)-(Eq. 

3-21) and compute the cross-efficiencies CEi based on (Eq. 3-15) and (Eq. 3-16). 

4. order the F scenarios in a decreasing order of cross-efficiency values: the most (less) 

efficient one is the one with the greatest (lowest) cross-efficiency value. 

 State of the Art  3.4.2

This section addresses the IFTT resource planning. In particular, the complexity of IFTTs and 

the large number of sub-activities that compose their workflows lead to the definition of sub-models to 

be composed and controlled to provide an efficient and effective freight transport service.  

The literature review of the above Sections 2.1.8 and 3.2 highlights various advantages in the 

use of TPN formalisms when tackling IFTTs decision problems (basics on TPNs are reported in Section 

2.1.1). In more detail, TPNs can be effectively used to simply represent workflows of container 

terminals, evaluate the IFTTs performance via simulations and what-if analysis, and control the 

behavior of the system. The employment of TPNs for resource planning problems is then useful for the 

evaluation of resolution actions in case of critical situations. However, such a formalism should be 

integrated with techniques able to identify the most appropriate action among the multiple ones 

available. The requirement of such an integration is exactly the motivation of this part of the research. 

Indeed, the proposed procedure integrates a cross-efficiency Data Envelopment Analysis technique to 

the TPN modelling technique in order to evaluate and rank different possible alternatives to be taken in 

the resource planning in the case of an estimated increase in the commercial flows. The alternatives are 

compared with each other and ranked according to their impact on some suitably chosen indices on the 

terminal performance, e.g., throughput, emissions, cost, etc. Therefore, the presented technique allows 

decision makers to evaluate the IFTT performance, as well as performing what-if analysis and providing 
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useful information on how to address the typical problems related to resource planning and 

management. 

 The Real Case Study 3.4.3

The considered real case study consists in the already presented rail-road terminal of the “GTS - 

General Transport Service S.p.A” (for details see Section 3.2.4.B). Figure 3-27 graphically describes the 

logical scheme of the GTS terminal, showing the flows of both ITUs and transportation means in the 

IFTT from one subsystem to another. Specifically, the following subsystems are depicted: daily/weekly 

opening/closing, access roads, yard storage areas, and railways. Semitrailer trucks can arrive at the 

terminal via the access roads, and the transported ITUs can be unloaded in the yard or directly on the 

corresponding train, whereupon the trucks become immediately free to load a new cargo and then they 

leave the terminal. Similarly, trains arriving at the terminal can unload the cargo on the storage area or 

on an available semitrailer truck. After the discharge, trains can be loaded with ITUs picked-up from the 

yard or from trucks. The current management of the terminal relies on knowledge-based decisions. 

Skilled personnel of the company organize and optimize flows of ITUs and the use of the available 

resources. Until now, no standard procedure or decision support system has been implemented to 

improve the system behavior. Therefore, TPNs are used to evaluate the performance of the terminal 

resources under different operating scenarios and, combined with the cross-efficiency DEA technique, 

to suggest the most appropriate resolution in case of criticalities. First it is considered the nominal 

terminal behavior, that is the scenario based on data provided by the GTS.  

 

Figure 3-27.  The logical scheme of the IFTT case study. 
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As specified in the introduction of this section, this case study has been already presented under 

some simplifying assumptions that are here removed to make the model much more realistic. More in 

detail, while Section 3.2 the number of cranes available to transfer ITUs is supposed to be infinite, here 

it is assumed finite, in addition the yard storage area is modelled as a whole, whereas in this section it is 

more realistically divided into sub-areas devoted to stock ITUs having different delivery destinations (as 

in Section 3.3). Finally, in Sections 3.2 and 3.3 it is assumed that, whenever ITUs are discharged from 

semitrailers, they are first stored in the yard, and then moved to the train, and vice-versa. On the 

contrary, it is more accurately modelled the fact that, when ITUs reach the terminal via a semitrailer, if 

the corresponding train is already available, no intermediate storage in the yard occurs, and ITUs are 

directly loaded on that train. The same happens for ITUs arriving via a train and to be loaded on a 

semitrailer.  

After modelling the terminal in its current configuration and workflows (Scenario AS-IS), it is 

assumed that a 100% increase in the terminal commercial flows by road is expected for a duration of 90 

days, due for instance to a new fruitful contract. The first goal is to evaluate if the actual resource 

planning is able to cope with such a critical situation, otherwise the amount of available resources 

should be properly modified. The possible actions consist in increasing the number of cranes used to 

transfer ITUs, the frequency of trains or the number of wagons for each train during the week, or a 

suitable combination of such actions. Note that, since the duration of the flows increase is assumed to be 

limited, no structural operation oriented at modifying the terminal infrastructure is taken into account. 

As a result, a number of possible alternative solutions able to cope with the planned increased flows are 

obtained. Furthermore, in order to evaluate the most suitable one among them, the cross-efficiency DEA 

technique is applied, thus providing the decision maker with a ranking of the feasible solutions in terms 

of the terminal performance and cost of the identified action.  

 The Timed Petri Net Model of the Case Study 3.4.4

Figure 3-28 shows the TPN model of the IFTT. It keeps the structure and colours of the logical 

scheme in Figure 3-27, while the subsystem blocks are replaced by the corresponding TPN subnets, 

which will be described in the following. It is to remark here that for sake of brevity some explanations 

on the system functioning are reported directly while describing the TPN model.  

The basic operations performed in the terminal are the cyclical opening/closing necessary to 

control the activity/inactivity of the system for hours or for days. Figure 3-28 includes one 

opening/closing (hours) subnet: it is composed by 2 places (p1, p2) and 2 deterministic transitions (t1, t2). 

When p1 (p2) is marked, the terminal is opened (closed). The time of activity (inactivity) is represented 

by the time delay associated with t1 (t2) and is equal to 12 hours (in both cases). Three subnets for 
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opening/closing (days) activities are also present in Figure 3-28. The first one is connected to the 

opening/closing (hours) subnet. The other two are connected to the Bologna and the Piacenza railway 

access. For sake of brevity, it is given a detailed description of the first one, which holds also for the 

second one, with an appropriate change of nomenclature. The presence of 6 tokens (modelling the 6 

working days) in p3 allows the immediate firing of transition t3 and leads to the addition of one token in 

p4. A time delay of one day (modelling the Sunday closure) is associated with t4. Consequently, the 

firing of t4 corresponds to the beginning of a new working week. It should be noticed that in the subnet 

connected to the Bologna railway access, the weight of the arc from place p24 to transition t27 is equal to 

3, rather than 6. This depends on the fact that trains arrive at alternate days, consequently a new token in 

p24 means that 2 days are elapsed, rather than one day as in the Piacenza case. Therefore, 6 working 

days are represented by 3 tokens in p24. 

The yard storage area is modelled in Figure 3-28 by a subnet composed by the following seven 

places: p10, p11, p12, p13, p14, p15. The first six places model the six subareas of the yard, while the last 

one models the total residual capacity. Hence, at any time instant it holds: M (p10) + M(p11) + M(p12) + 

M(p13) + M(p14) + M(p15) = CYS=250. In Figure 3-28 the initial marking of these places is as follows: 

M(p10)=6; M(p11)=21; M(p12)=27; M(p13)=0; M(p14)=0; M(p15)=196, which means that at the beginning 

of the activities the terminal is not completely empty. 

The connection of the terminal with the road side is represented by two subnets in Figure 3-28. 

More in detail, two access roads are modelled, which correspond to the entrance and the exit of the 

semitrailers. The subnet modelling the access road for the entrance of semitrailers is composed of the 

following five places: p5, p6, p7, p8, p9, and six transitions: t6, t7, t8, t9, t10, t11. The presence of a token in 

p5 represents the consensus to a semitrailer to enter the terminal during its opening periods. Stochastic 

transitions t6, t7, and t8 model the arrival of semitrailers containing ITUs directed to different 

destinations: Bologna (full ITU), any destination (empty ITU), and Piacenza (full ITU). Such ITUs may 

either be stored in the yard (Case 1), or loaded in the corresponding train without waiting in the yard 

(Case 2). More in detail, the two alternatives are as follows: (Case 1) the unload of the ITUs in the 

different storage areas is modelled by transitions t9 t10, and t11, which represent the entrance of empty 

tractors in a waiting area (p9); (Case 2) transitions t22, t24, t39, and t41, belonging to the subnets modelling 

the railway access, fire when the train and its cargo (empty and full ITUs) are ready to be loaded.  
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Figure 3-28.  The TPN model of the IFTT case study in Figure 3-27. 

Their firings remove tokens corresponding to semitrailers from places p6, p7, and p8 and increase the 

content of p9 corresponding to free tractors. The subnet modelling the access road for the exit of 

semitrailers is composed by the following six places: p36, p37, p38, p39, p40, p41, six stochastic transitions: 

t46, t47, t49, t50, t52, t53, and three immediate transitions: t48, t51, t54. When the terminal is open, 

semitrailers exit from the terminal (t47, t48, t50, t51, t53, t54) only after ITUs and tractors are assembled (t46, 

t49, t52). In more detail, transitions t47, t50, and t53 model the assembly of tracks using ITUs that are 

picked up from the yard (analogous to previous Case 1) while transitions t48, t51, and t54 model the 

assembly of tracks using ITUs that are picked up directly from the train (analogous to previous Case 2). 

In each of the above cases (1 and 2) three transitions are used to model three possible situations for the 
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exiting semitrailers: the destination is the port and ITUs are full, the destination is the final costumer 

and ITUs are either full or empty. A remark should be made concerning place p9 modelling the tractors’ 

waiting area. No upper bound is imposed on the marking of this place although the capacity of the 

waiting area of tractors is obviously finite. The hypothesis holds, since time spent by tractors in such 

area is negligible and no accumulation may occur. The connection of the terminal with the railway side 

is represented by two subnets in Figure 3-28, one connecting the terminal to Bologna and the other one 

to Piacenza. For sake of brevity, in the following it is given a detailed description of the Bologna 

railway access, which holds also for the Piacenza railway access, with an appropriate change of 

nomenclature. Two places (p16 and p17) and two transitions (t12 and t13) are used to model the presence 

(p17) or absence (p16) of the train in the terminal. As soon as transition t12 (modelling the arrival of the 

train) fires, WB1, WB2 and WB3 tokens enter, respectively, places p18, p19, and p20. Such quantities are 

equal to the number of ITUs (empty or full) addressed to different destinations. Places p18, p19, and p20 

have two output transitions each. In particular, as in the case of the access roads, ITUs may be 

temporarily stored in the yard, or may immediately leave the terminal via a semitrailer. Every time one 

of the transitions t14, t15, t16, t17, t18, and t19 fires, a new token is added to place p21. As soon as the 

marking of p21 becomes equal to 20, which means that the train is now empty, the immediate transition 

t20 fires increasing the marking of places p22 and p23 of an amount respectively equal to EB and FB. This 

represents the fact that the empty train can accommodate EB empty ITUs, and FB full ITUs. Transitions 

t21, t22, t23, and t24 model the loading of ITUs on the train. Finally, transitions t25 and t26 are used to reset 

to zero the free available capacity of the train in the case that the train has to leave the terminal without 

being full load.  

Table 3-13.  Time delay / average time delay of transitions in Figure 3-28. 

Transition Description 
Time/average 

time delay [h] 

t1 Hours of activity of the terminal 12.00 

t2 Hours of closure of the terminal 12.00 

t4 Sunday closure 12.00 

t6 Average arrival time of semitrailers with full ITUs to Bologna 4.00 

t7 Average arrival time of full semitrailers with empty ITUs 1.7 

t8 
Average arrival time of semitrailers with full ITUs to 

Piacenza 
1.00 

t9, t10, t11, t14, t15, t16, t17, 

t18, t19, t21, t22, t23, t24, t31, 

t32, t33, t35, t36, t38, t39, t40, 

t41, t46, t49, t52 

Average time needed by a crane to transfer an ITU 0.17 

t13 Dwell time of the train Bari-Bologna 10.00 

t12 Absence time of the train Bari-Bologna 38.00 

t30 Dwell time of the train Bari-Piacenza 10.00 

t29 Absence time of the train Bari-Piacenza 14.00 

t28 Weekly stop for the Bari-Bologna train 24.00 

t45 Weekly stop for the Bari-Piacenza train 24.00 
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This situation should be taken into account when modeling the system since trains time scheduling 

imposes mandatory constrains. Consequently, if such an undesirable case occurs, it is important to reset 

the capacity of the train in order to avoid affecting the next loading. 

It is worth noting that in the net of Figure 3-28 is represented a grey colored place p42. It 

symbolizes the number of cranes in the terminal for the ITUs transferring operations. Note that such a 

place is replicated only for the sake of clarity. Finally, Table 3-13 summarizes the (average) time delays 

of transitions in Figure 3-28 and describes their physical meaning. 

 Performance Evaluation and Resource 3.4.5

Planning of the Case Study 

The described TPN model is now used to simulate and analyze the behavior of the GTS IFTT. 

Firstly, the model is validated by using a Monte Carlo approach and the single mean test ([155]), then it 

is shown how, combined with the cross-efficiency DEA, it can be used for addressing the IFTT resource 

planning by evaluating different possible alternative scenarios. 

A. The TPN model simulation in nominal conditions 

In order to evaluate the terminal behavior, a series of performance indices are considered ([99]), 

which are listed and described in Table 3-14. In order to validate the presented TPN model, the values 

obtained via simulation (over 100 replications) for the performance indices listed in Table 3-14 are 

compared with the corresponding historical data over one year of activity provided by the company 

(that is, the Scenario AS-IS, as described in the following).  

Table 3-14.  The performance indices. 

Index name Index meaning 

OYB Average occupation of the yard sub-area dedicated to ITUs with destination Bologna 

OYP Average occupation of the yard sub-area dedicated to ITUs with destination Piacenza 

OYFC Average occupation of the yard sub-area dedicated to ITUs with destination Final Customer 

OYPO Average occupation of the yard sub-area dedicated to ITUs with destination Port 

OYE Average occupation of the yard sub-area dedicated to empty ITUs 

FYS Average free available space in the yard storage area (i.e., average number of ITUs that can be still 

accommodated in the yard) 

min FYS Minimum value of free available space in the yard storage area 

UC Average value of free cranes (i.e., a measure of the cranes utilization) 

TH Sum of the average throughput related to the railway outflows 

TM Time (in hours) before the occurrence of a congestion in the terminal 
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More in detail, denoting by PI the generic performance index provided by the simulation, by RPI 

the corresponding historical index, and ρ the relative half width of the confidence interval, for each 

considered performance index it is verified that it holds PI RPI PIρ ρ− ≤ ≤ + , where ρ is equal to 

0.1% of PI in the worst case, which demonstrates that the model well mimics the actual system. It is 

worth noting that the input variables for the TPN model (i.e., the time delay of each stochastically timed 

transition) is determined by means of statistical evaluations on the historical data about one year of 

activity provided by the company. 

It is to recall here that each simulation covers one year of evolution of the IFTT. In particular, it 

is assumed that each time unit of the simulation corresponds to one hour of evolution of the system. All 

simulations are obtained using MATLAB HYPENS ([170]). On average, the computation time of each 

replication equals 80 seconds in the worst case on a PC with an Intel Core 2 Duo-2.80 GHz processor 

and 4 Gb RAM. 

The main parameters characterizing the IFTT system and its inputs in nominal operating 

conditions (Scenario AS-IS) are summarized in Table 3-15 (second column). In particular: 

- t6, t7, and t8, model, respectively, the arrival of semitrailers with ITUs directed to the 

Bologna line, the arrival of semitrailers with empty ITUs, and the arrival of semitrailers with 

ITUs directed to the Piacenza line; 

- t47, t50, and t53, model, respectively, the exit of semitrailers with ITUs directed to the final 

customer, the exit of semitrailers with empty ITUs, and the exit of semitrailers with ITUs 

directed to the port;  

- t12 and t13, model, respectively, trains absence and permanence times; 

- t28 models the weekly stop for the Bari-Bologna train; 

- WB1, WB2, WB3, EB, FB, WP1, WP2, WP3, EP, and FP model the capacities of the trains. 

More in detail, WB1 (WP1) and WB2 (WP2) represent the number of empty and full ITUs 

from Bologna (Piacenza) for the final customer, while WB3 (WP3) represents the total 

number of both empty and full ITUs from Bologna (Piacenza) to the port, EB (EP) and FB 

(FP) represent respectively the number of empty and full ITUs directed to Bologna 

(Piacenza); 

- C models the number of available cranes; 

- BTB models the frequency of trains per week arriving from (to) Bologna to (from) Bari. 
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Table 3-15.  Characteristic parameters of the TPN defining the considered scenarios. 

Scenario 

Parameter 
AS-IS S100 S100-C5 

S100-C3-

BL4 

S100-C3-

BW25 

S100-C3-

PW40 

t6[h] 4.0 2.0 2.0 2.0 2.0 2.0 

t7[h] 1.7 
0.8

5 
0.85 0.85 0.85 0.85 

t8[h] 1.0 0.5 0.5 0.5 0.5 0.5 

t12 [h] 38.0 
38.

0 
38.0 14.0 38.0 38.0 

t13 [h] 10.0 
10.

0 
10.0 10.0 10.0 10.0 

t47[h] 6.0 6.0 6.0 6.0 6.0 6.0 

t50[h] 0.5 0.5 0.5 0.5 0.5 0.5 

t53[h] 1.1 1.1 1.1 1.1 1.1 1.1 

t28 [h] 24.0 
24.

0 
24.0 72.0 24.0 24.0 

WB1 [ITUs] 4.0 4.0 4.0 4.0 4.0 4.0 

WB2 [ITUs] 13.0 
13.

0 
13.0 13.0 13.0 13.0 

WB3 [ITUs] 3.0 3.0 3.0 3.0 3.0 3.0 

EB [ITUs] 14.0 
14.

0 
14.0 14.0 17.0 14.0 

FB [ITUs] 6.0 6.0 6.0 6.0 8.0 6.0 

WP1 [ITUs] 0.0 0.0 0.0 0.0 0.0 0.0 

WP2 [ITUs] 24.0 
24.

0 
24.0 24.0 24.0 24.0 

WP3 [ITUs] 10.0 
10.

0 
10.0 10.0 10.0 10.0 

EP [ITUs] 7.0 7.0 7.0 7.0 7.0 8.0 

FP [ITUs] 27.0 
27.

0 
27.0 27.0 27.0 32.0 

C [cranes] 2.0 2.0 5.0 3.0 3.0 3.0 

BTB 

[days/week] 
3.0 3.0 3.0 4.0 3.0 3.0 

 

Table 3-16.  Performance indices values under scenarios AS-IS and S100. 

Scenario 
OYB 

[ITUs] 

OYP 

[ITUs] 

OYE 

[ITUs] 

OYFC 

[ITUs] 

OYPO 

[ITUs] 

FYS 

[ITUs] 

min FYS 

[ITUs] 

UC 

[ITUs] 

TH 

[ITUs/h] 

TM 

[h] 

AS-IS 20.85 3.91 1.33 1.28 0.93 221.70 179.64 1.15 0.18 8,760 

S100 64.68 183.81 0.53 0.02 0.01 0.95 0.00 1.99 0.18 460 

 

 

 

 

Figure 3-29.  Yard free capacity M(p15) in scenario AS-IS. 
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Figure 3-30.  Yard free capacity M(p15) in scenario S100. 

 

Table 3-15 (second row) summarizes the values of the obtained performance indices in nominal 

operating conditions (Scenario AS-IS). By analyzing such values, it is possible to conclude that the 

IFTT is well organized: the yard storage area never congests and the two cranes are sufficient to transfer 

the ITUs. In particular, it is possible to observe that FYS, i.e., the average free capacity in the yard, is 

equal to 221.70 ITUs that is reasonable considering that its maximum value is CYS=250 ITUs and is in 

accordance with Figure 3-29, which shows the evolution of the corresponding marking M(p15). Note 

that, in Figure 3-30 it is reported the marking evolution for 90 days of the terminal functioning to allow 

a visual comparison with the scenarios described in the next section. 

Moreover, the last column in Table 3-16  reports the time elapsed (in hours) before a congestion 

occurs (TM), which in Scenario AS-IS equals 8,760 hours (or 365 days, which is the maximum value 

for the performed simulation), thus confirming that the terminal is well structured and organized for its 

actual flows. 

B. The scenarios for the IFTT resource planning 

As already stated, after modelling the terminal in its current configuration and workflows 

(Scenario AS-IS), it is assumed that a 100% increase in the commercial flows by road is expected for a 

duration of 90 days, due for instance to new contracts. It is to specify here that such an evaluation is 

performed with the specific purpose of analyzing the terminal behavior under heavy conditions and has 

been shared with the GTS board according to their estimates. In order to evaluate whether the actual 

resource planning in the IFTT is able to cope with such an increase in the flows it is analyzed the so-

called Scenario S100 (i.e., the scenario with a 100% increase of means input flows by road). The 

characteristic parameters of Scenario S100 are reported in the third column of Table 3-15 (where the 

occurred changes with respect to the AS-IS scenario are highlighted in bold), while the obtained 

performance indices are in the third row of Table 3-16, showing that in this case the average free 

capacity of the yard is quite low. This is in agreement with Figure 3-30 reporting the evolution of the 
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yard free capacity. Clearly, such a capacity drastically decreases, because of the significant increment in 

input flows via the street, reaching zero after 460 hours (about 19 days). In particular, it is possible to 

conclude that the most critical sub-areas are those corresponding to Bologna and Piacenza destinations, 

as it can be observed comparing indices OYB and OYP, in the third row of Table 3-16 with the original 

values in the second row. It is also possible to conclude that, since in S100 congestion is reached in less 

than 90 days, the current resource configuration and planning is unable to cope with the new estimated 

flows. Hence, additional resources are required in the IFTT, and the decision maker is required to 

analyze the impact of possible actions and to identify the most proper one, taking into account a cost-

benefit analysis. 

In the evaluated case study the possible actions consist in increasing either the number of cranes 

used to transfer ITUs, or the frequency of trains, or the number of wagons for each train during the 

week, or in carrying out a suitable combination of such actions. Among all these resolution actions, 

those which cause a congestion in the IFTT in less than 90 days are clearly useless in coping with the 

planned flows increase, while some others are unfeasible (for instance, in the case study there are 

already 6 trains a week for Piacenza, hence this value cannot be further increased). Hence, all these 

solutions are discarded and four different alternative scenarios to the AS-IS case are considered as 

summarized in Table 3-15 (columns 4 to 7). 

In more detail, for each scenario in Table 3-15 the peculiarities of the analyzed case are pointed 

out using a representative nomenclature. In particular, letters C, BL, BW, and PW respectively stand for 

Cranes, Bologna Line, Bologna Wagons, and Piacenza Wagons; while the numbers that follow the 

above letters indicate the corresponding number of resources. Hence, the additional four scenarios are 

detailed as follows: 

- S100-C5 denotes the scenario S100 (i.e., with a 100% increase of means input flows by road) in 

which the number of available cranes is equal to 5 (rather than 2); 

- S100-C3-BL4 denotes the scenario S100 in which the number of available cranes is equal to 3 

(rather than 2) and the Bologna trains frequency per week is equal to 4 (rather than 3), 

assuming, without loss of generality, that such journeys are the first four days of each week; 

- S100-C3-BW25 denotes the scenario S100 in which the number of available cranes is equal to 3 

(rather than 2) and the number of wagons of each train from/to Bologna is 25 (rather than 

20); 

- S100-C3-PW40 denotes the scenario S100 in which the number of available cranes is equal to 3 

(rather than 2) and the number of wagons of each train from/to Piacenza is 40 (rather than 

34). 
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Among these scenarios, it is necessary to identify the best actions preventing the avoidance of 

the blocking situation caused by the 100% increase of the commercial flows. This evaluation could be 

carried out by comparing the marking evolution of the most critical resources of the terminal. However, 

as it emerges looking at figures from Figure 3-31to Figure 3-34, it would be non-trivial. More in detail, 

in such graphs it is reported the evolution of the resources that mostly suffer from the increase of the 

commercial flows. For each considered scenario, the evolution of M(p10), M(p12), M(p15), M(p42) are 

represented for 90 days of functioning of the terminal. As previously reported, M(p10) represents the 

occupation of the yard devoted to ITUs with destination Bologna, M(p12) represents the occupation of 

the yard devoted to ITUs with destination Piacenza, M(p15) the free available space in the yard storage 

area and M(p42) the cranes utilization. The values of such markings have different order of magnitude, 

hence, in the graphs the respective normalized trends are reported to allow an effective comparison of 

the scenarios. Furthermore, only four variables are considered to simplify the interpretation of the 

scenarios providing readable trends. Despite the adoption of these simplifying measures, an effective 

comparison of the scenarios appears still particularly difficult. In effect, in each graph the slopes and the 

trends of each variable are almost superimposable and do not give information decisive for a ranking of 

the alternatives. 

 
Figure 3-31.  M(p10), M(p12), M(p15), M(p42) in scenario S100-C5. 

 

 
Figure 3-32.  M(p10), M(p12), M(p15), M(p42) in scenario S100-C3-BW25. 

 

 
Figure 3-33.  M(p10), M(p12), M(p15), M(p42) in scenario S100-C3-BL4. 

 

 
Figure 3-34.  M(p10), M(p12), M(p15), M(p42) in scenario S100-C3-PW40. 
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C. Using DEA for selecting the optimal IFTT planning 

The cross-efficiency DEA technique is applied to choose among the possible alternatives. In 

particular, this multi-criteria decision making approach is here used to select one among the four 

scenarios discussed in the previous section, whose characteristic parameters are reported in Table 3-15 

(columns 4 to 7). First, the TPN model is used to simulate the behavior of the IFTT and compute the 

performances indices reported in Table 3-17. Note that, with respect to Table 3-14 and Table 3-16, two 

additional indices are now considered, which clearly affect the evaluation of the best resource planning: 

- Cost: the additional cost arising from the investment in the new resources with respect to the 

AS-IS scenario. These estimates are obtained considering, for the period of 90 days, the average 

rental cost for cranes and the salary of an expert operator in case of increase in the number of 

cranes, as well as the general conditions of contract for carriage of goods by rail provided by the 

Italian operator [Trenitalia] in case of increase in the number of trains per week or wagons per 

trains; 

- CO2: the increase in the release of greenhouse gases into the atmosphere due to the additional 

resources with respect to the AS-IS scenario. These values are estimated according to the 

procedure in [Ecotransit]. 

By analyzing the obtained performance indices values in the four scenarios (Table 3-17), it 

appears evident that the different scenarios cannot be easily compared. Furthermore, it is to observe 

that, while some of such indices should be minimized (OYB, OYP, OYE, OYFC, OYPO, Cost, CO2), others 

should be maximized (FYS, min FYS, UC, TH, TM). Figure 3-35 reports the value of each performance 

index in the different scenarios normalized with respect to its maximum value. It is to remark that each 

of the considered scenarios is optimal by at least one performance index, while it is the worst one by 

other indices and is midway between other scenarios when further indices are considered. As a 

consequence, identifying the most efficient scenario is quite complex. Therefore, the need for the 

application of an automatic method such as the cross-efficiency DEA arises, especially when a variety 

of alternatives are available (not reported here for the sake of brevity).  

Table 3-17.  Performance indices values for the TPN under alternative resource planning. 

Scenario Nr 

Performance indices to be minimized Performance indices to be maximized 

OYB 

[ITUs] 
OYP 

[ITUs] 
OYE 

[ITUs] 
OYFC 

[ITUs] 
OYPO 

[ITUs] 

Cost      [€] CO2       

[t-

CO2eq] 

FYS 

[ITUs] 

min FYS 

[ITUs] 
UC 

[ITUs] 

TH 

[ITUs/h] 
TM 

[h] 

xh=1,i xh=2,i xh=3,i xh=4,i xh=5,i xh=6,i xh=7,i yk=1,i yk=2,i yk=3,i yk=4,i yk=5,i 

S100-C5 i=1 118.71 4.56 3.65 1.13 0.46 150,659.06 8.64 121.48 10.00 3.01 1.37 2,510 

S100-C3-BL4 i=2 100.00 6.15 4.17 0.64 0.40 108,269.69 31.80 138.62 18.00 1.29 1.42 3,432 

S100-C3-BW25 i=3 61.75 9.77 4.30 0.71 0.37 116,396.69 25.92 173.10 113.00 1.29 1.46 3,270 

S100-C3-PW40 i=4 110.66 5.11 3.82 0.67 0.14 244,749.29 59.76 129.40 5.00 1.31 1.39 2,222 
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Figure 3-35.  Graphical comparison of the obtained performance index values in the evaluated scenarios. 

 

Using the notation in Section 3.4.1, the number of alternatives is F=4 and, for each of them, H=7 

performance indices should be minimized (i.e., xh,i with h=1,…,7 and i=1,…,4, columns 3 to 9 in Table 

3-17) and K=5 performance indices should be maximized (i.e., yk,i with k=1,…,7 and i=1,…,4, columns 

10 to 14 in Table 3-17). In the evaluated case study, the decision maker imposes that the cost is to be 

considered as the most important among all the criteria. This simply requires the addition of some 

constraint in the cross-efficiency DEA formulation. In particular, for each scenario i, it is imposed the 

weighting coefficient v6,i of the cost index to be higher than or equal to twice the value of all other 

weights vh,i with h=1,…,7 and h≠6, and uk,i, with k=1,…,5. To this aim, the cross-efficiency DEA 

optimization problems (Eq. 3-11)-(Eq. 3-14) and (Eq. 3-17)-(Eq. 3-21) detailed in Section 3.4.1 are 

solved subject to: 

6, ,

6, ,

/ 2   for 1,2,3,4,5,7.

/ 2   for 1,2,3,4,5.

i h i

i k i

v v h

v u k

≥ =
 ≥ =

 

(Eq. 3-22) 

Accordingly, are obtained the results in Table 3-18. The most efficient resource planning results 

to be the one performed in Scenario S100-C3-BW25, which consists in increasing the number of cranes to 

3 (rather than 2) and, at the same time, the number of wagons of each train from/to Bologna to 25 

(rather than 20). Looking at Table 3-17, it is possible to conclude that the resource planning guarantees 

the correct functioning of the IFTT for at least 90 days more (last column). It also provides, with respect 

to the other scenarios, the highest value of FYS, i.e., the highest average free available space in the yard 

storage area for ITUs arrangement, as well as the highest value of the min FYS index. Hence, under such 

a scenario the yard storage area is never saturated and the number of ITUs managed in such an area 

varies in the range [113÷250] ITUs. Furthermore, it is possible notice that Scenario S100-C3-BW25 

presents the second lowest values for the Cost and CO2 parameters (Table 3-17, seventh and eighth 

OYB OYP OYE OYFC OYPO Cost      [€] CO2 FYS min FYS UC TH TM

S100-C5

S100-C3-BL4

S100-C3-BW25

S100-C3-PW40

max value of each index to be maximized

max value of each index to be minimized
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column). These results highlight the effectiveness of the cross-efficiency DEA technique in identifying 

the most efficient resource planning alternative when the choice is neither trivial nor obvious.  

Summing up, the proposed approach, by combining TPNs and the cross-efficiency DEA, allows 

decision makers to model the terminal’s behaviour as well as to perform what-if analysis in order to 

rapidly obtain the evaluation and comparison of resolution actions to critical situations. Therefore, the 

presented technique represents a useful tool to properly address the typical problems related to resource 

planning and management of intermodal terminals.  

Future developments will consider high-level Petri Nets to further refine the model and to allow 

solving more specific optimization problems. For instance, on the one hand the colored Petri Nets allow 

to associate features to tokens and to distinguish between different types of containers, as well as to 

optimize the processing time related to specific workflows, on the other hand the fuzzy Petri Nets are 

useful to describe imprecise information to implement knowledge based control strategies.  

It will be also investigate how uncertainty on some parameters can be properly taken into 

account in the evaluation phase, e.g., by applying the stochastic or fuzzy cross-efficiency Data 

Envelopment Analysis techniques 

Table 3-18.  Cross-efficiency values for the different resource plannings in Table 3-17. 

Scenario Nr CEi (10
2
) rank 

S100-C5 i=1 0.49 3 

S100-C3-BL4 i=2 0.52 2 

S100-C3-BW25 i=3 0.83 1 

S100-C3-PW40 i=4 0.26 4 

 

 

.  



 

96 

 

Chapter 4

 

4 Modeling and control of railway traffic  

The focus in this chapter is on the railway traffic rescheduling problem, whose proper resolution 

is fundamental for the improvement of the railway service performances in the context of a smart city. 

Indeed, in many countries increasing the market share of public transport, and especially railway 

transport, is considered as one of the solutions for mobility problems. Moreover, railway transport is a 

sustainable transportation mode. Thus, increasing the market share of railway transport is one of the top 

priorities of many governments. Basically, train rescheduling consists in retiming the offline scheduled 

traffic (i.e., the nominal timetable) to minimize undesired effects on the railway service when 

unpredictable events occur in the network (e.g., train delays, customer discomfort, energy consumption) 

[186], [187], [188], [189], [190]. Typically, unpredictable events are distinguished into disturbances 

(i.e., relatively small perturbations such as signal malfunctions or no-show of staff) and disruptions 

(i.e., large and particularly damaging external accidents such as trains or infrastructure breakdowns) 

[114], [190], [191]. Both cause the nominal timetable to become invalid because at least one train 

deviates from its original schedule. Generally, Train Dispatchers (TDs) manage disturbances mostly 

manually based on their experience and knowledge [114]. However, this highly time-consuming 

approach normally leads to suboptimal timetables. Such a manual procedure can be refined and speeded 

up by using automated real-time rescheduling procedures that may support TDs in determining in real-

time suitable control actions and updating timetables while optimizing some traffic performance 

indices.  

This chapter resumes the results of the research conducted during these three years of PhD 

course and published in [192] and in [193]. The contributions propose advanced techniques to support 

Train Dispatchers (TD) in the rescheduling process both in case of disturbances and disruptions. In 

particular, the purpose is to achieve a smart railway transportation system by combining the traditional 

management techniques with innovative mathematical models and control techniques. The first part of 

the chapter presents two automated procedures for real-time rescheduling in case of disturbance. The 

second part presents a novel methodology for real-time rescheduling in case of disruptions.  
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 A Decision Support System for Real-Time 4.1

Rescheduling of Railways 

 

In this section a Decision Support System (DSS) for real-time management of railway networks 

is presented. The DSS employs a mathematical programming approach addressing traffic rescheduling 

under unexpected disturbances in a mixed- (single- and double-) tracked network. The DSS simulates 

the network behavior with the mathematical programming model based on the railway topology and 

constraints, rescheduling the timetable in real-time, detecting and solving conflicts in the network. The 

technique is applied to a real data set related to a large portion of a regional network in Southern Italy. 

This contribution is motivated by the emerging need for railway management systems to determine 

conflict-free timetables on-line and limit travelers’ discomfort under disturbances. Decision Support 

Systems (DSS) [159] are needed to quantify the management effects and allow frequent, fast, and 

effective changes to the timetable under disturbances, while monitoring the timetable ability to absorb 

delays. 

Railway (re)scheduling models may be of two types: cyclic (i.e., periodic within the day), or 

non-cyclic (i.e., aperiodic during the day). If trains in the network share similar characteristics and 

similar time planning, a cyclic timetable is preferred. However, this approach requires large 

computational efforts, so it is typically adopted for off-line scheduling. In rescheduling, instead, it is 

more appropriate to adopt aperiodic models to describe a limited dispatching area in which trains are to 

be rescheduled in a very short time. A key point of aperiodic models is the correct choice of the time 

horizon in order to provide the TD with feasible solutions in a short computation time [130]. If the time 

horizon is too small, only few trains are rescheduled and few conflicts can be detected and solved, 

whereas a too long time horizon leads to a larger number of trains running in the system, hence to more 

conflicts, higher complexity and larger computation times. Another strategic choice is between fixed- 

and variable-speed models [119]. The former assume that trains operate at their maximum speed, 

wherever possible, while the latter update train speed profiles to include the consequences of conflicts 

due to constraints imposed by the signaling system. In the related literature the majority of models are 

based on the simpler fixed speed method [119]. Some DSS have been developed to help TD quickly and 

effectively reschedule trains (see [194] for a discussion), but the accepted policy still consists in 

scheduling trains following their nominal order or according to some dispatching rules, such as a first 

come first served rules. Some works present an optimization framework to reschedule trains with 

different priorities, which can be computed statically or dynamically to include the needs of different 

stakeholders [195]. It is also possible to use a greedy algorithm, which performs a depth first search 

using an evaluation function to prioritize conflicts and perform the branch according to a set of criteria 
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to obtain good rescheduling [140]. However, most of the models in the literature are not able to absorb a 

long delay on the network in a feasible time, so that railway timetables are typically poorly robust to 

long delays or tracks blocking [196], although more recent publications prove the feasibility of real-time 

rescheduling by means of “alternative graphs” in heavily disturbed large networks (see [195] and 

[194]). 

In this this section it is presented a novel DSS for train rescheduling based on a fixed speed 

profile method. Here, the rerouting problem is disregarded since it requires a complete knowledge of the 

railway infrastructure that is seldom available. The DSS is based on a mathematical programming 

approach for traffic rescheduling of an n-tracked network [130], where n is an arbitrary number of 

parallel tracks. The method may be used for modeling aperiodic timetables, where rescheduling is made 

in a finite time horizon after which the model loses validity. The model allows the rescheduling of the 

railway traffic treating one disturbance at a time, hence it is not needed to establish any hierarchy 

between the occurring disturbances. The approach in [130], is here reformulated and adapted to the case 

of rescheduling in mixed- (both single- and double-) tracked network. Moreover, the approach is 

enhanced by proposing a DSS for railway real-time rescheduling that is able to improve the robustness 

of the planned rescheduled timetable by adopting an analytical method based on an allocating buffer 

time technique [197]. The DSS uses a three level rescheduling method: in the first level trains 

rescheduling is executed in the chosen time horizon; in the second one the rescheduled timetable is used 

to identify and solve the current trains conflict and all those that may subsequently occur. At this second 

level a meta-heuristic algorithm is applied, whose complexity depends on the number of trains in the 

network and on the railway infrastructure. The basic idea is to consider each train as a two dimensional 

array, in which one dimension is used to define the progressive station distances and the second one 

relates to the progressive arrival/departure times planned in each station according to the nominal 

timetable. The third level allows verifying the timetable robustness by means of a Monte Carlo 

approach and choosing the rescheduled timetable among the proposed alternatives. As a result, the 

hierarchical rescheduling allows obtaining in a short computation time a conflict-free and robust 

schedule. 

The DSS is applied to a railway network in Southern Italy, constituted by single tracks with few 

double track segments, and such that in some stations only a train can stop or pass through. It is 

considered a real disturbance occurring in a weekday in the morning at rush hour and compare the DSS 

operation with the timetable determined using the model in [130], demonstrating the DSS effectiveness 

and efficiency. 
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 The DSS Architecture 4.1.1

A railway is composed of stations and block sections separated by safety signals, to control 

traffic while imposing the planned train circulation [113]. Usually, buffer times are pre-allocated to 

absorb small disturbances, e.g., sudden decelerations or too long stops in stations. However, during the 

actual operation, some disturbances may occur and cause traffic disruption and changes of schedules 

from the nominal case. The proposed DSS is devoted to reschedule trains while respecting the existing 

restrictions without penalizing the overall traffic performance. A fixed speed aperiodic profile is 

assumed for each train [194]. The feasibility of the different speed profiles is later checked for each 

train. 

The structure of a railway rescheduling DSS includes three sub-systems [194]: 1) Conflict 

Detection (CD): given the infrastructure status, timetable, rolling stock information, position and speed 

of each train, potentially conflicting train routes in a given period of traffic prediction are determined 

[195]; 2) Conflict Resolution (CR): given the actual train delays and predicted conflicts, a suitable and 

robust timetable is proposed [195], [194]; 3) Train Speed Coordination (TSC): starting form trains 

sequences and routes, the updated speed profiles are computed, respecting traffic regulations and 

minimizing delays and energy consumption, and transmitted to drivers [194]. With the fixed speed 

model, the DSS joins in one the CD and CR sub-systems, whose output is used by the TSC sub-system 

to automatically obtain the new speed profiles, showing them in a time chart [194]. In this way, the TD 

can communicate to drivers the traffic state, stopping trains to improve the safety level. 

The proposed DSS structure is shown in Figure 4-1, and its composing sub-systems are detailed 

as follows: 

- TD-DSS Interface: it is a user friendly Graphical User Interface (GUI) that allows to control in 

real-time the monitored dispatching area with a space-time graphical representation of trains. 

The GUI provides the TD with tools to launch the underlying DSS mathematical model, 

identifies the robustness timetable, and solves all possible network conflicts; 

- Rescheduling Mathematical Model: this is the DSS underlying framework that allows modeling 

the network topology with capacity and safety constraints. The model is the MILP problem 

presented in [130] and revisited as detailed in the subsequent section. It is executed to determine 

the Rescheduled Timetable in the desired time horizon when a disturbance occurs; 

- Validation Model: it is a reproduction of the DSS mathematical model aiming at improving the 

rescheduled timetable robustness. The sub-system simulates several instances of the nominal 

timetable perturbing it with a small buffer time in each station in the network [197].  
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Figure 4-1  The architecture of the proposed DSS. 

Therefore, at each instance a new timetable is determined. In this way, the validation model 

improves the timetable robustness without overly penalizing the quality of the final solution that 

depends on the maximum buffer time that may be associated to the nominal stop. The obtained 

timetable is the Robustness Rescheduled Timetable; 

- Conflicts Detection & Resolution. To identify and solve all the possible conflicts due to the 

disturbance it is used an ad hoc heuristic procedure, which mimics a job shop scheduling 

problem aiming at minimizing the average knock-on delays [122], whose complexity depends 

on the number of trains and tracks in the network. The TD uses the obtained Current Timetable 

to reschedule trains. 

- System Interface: it is a low-level interface independent from the TD-DSS Interface which 

allows upgrading the single sub-systems. It is for use only by expert users, e.g., the DSS 

designer or specialized programmers. 

The DSS architecture is characterized by the independence of the validation model from the 

mathematical model, allowing some flexibility. In fact, the TD can choose not to launch the Validation 

Model, using the Rescheduled Timetable to identify the next conflict located at the end of the time 

horizon. This decreases the computational time and guarantees obtaining a conflict-free timetable in a 

short time. Therefore, the Validation Model may be used both off-line, after saving the output 

robustness timetable, or in real time, to solve conflicts. 
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 The Revisited Rescheduling Model 4.1.2

The DSS employs a MILP rescheduling model revisiting an approach for n-tracked networks 

[130], whose notation is reported in Table 4-1. The model uses two main pieces of information on the 

network: its capacity and the number of tracks in each segment. The framework in [130] is revisited as 

regards the objective function, constraints, and time window solution. Rather than considering a fixed 

time window that must be very large to contain all possible conflicts arising after the disturbances 

(resulting in a large computation time), it is considered a short finite time. The model application is 

followed by a heuristic algorithm that allows calculating near-optimal solutions, so that the TD can 

choose and communicate the new status to drivers as soon as possible. 

Table 4-1.  The Model Notation 

Name Meaning 

T Set of trains to be rescheduled 

i Generic train in the network 

train

ig  Generic train length 
train

ig  

B Set of segments with a start and an end point 

j Generic segment in the network 

Ns Number of segments in the railway network 

E Set of events of all trains 

k Generic event in the network 

kd  Generic event duration 

,  initial initial

k kb e  Start and end times of event k in nominal timetable 

,  static static

k kb e  Start and end times of event k that has already 

started when the disturbance occurs 

ko  Event point of origin, to investigate whether trains 

of k and (k+1) events on j are in the same direction 

kh  Binary variable indicating whether there is a 

scheduled stop at a station during event k 

connectionE  Set of all connected events or couples ( , )k k  

,

connection

k k
g  Connection time of connected events ( , )k k  

iK E⊆  Sorted set of events of each train i∈T 

in  Last event in 
iK  

jL E⊆  Sorted set of events of each segment j 

jm  Last event in 
jL  

js  Binary variable indicating type of a segment j 

jδ  Buffer time added to nominal stop at j 

M∆  Maximum buffer time added to nominal stop at j 

jP  Set of tracks in each segment j 

t Generic track in jP  

track

jtg  Generic track size 

M

j∆  Time units between two trains in opposite directions 

F

j∆  Time units between two trains in the same direction 

penality

ic  
Fixed penalty associated to train i with a total delay 

greater than a threshold 
iw  

low

ic  Cost associated to each unit delay 
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Each train in the network can occupy only one track, so its occupation is exclusive. This 

restriction is implemented with a time shifting technique that reschedules the timetable of the penalized 

train with a buffer time, so that a train can be slowed or stopped to improve the traffic safety. 

The model is based on the concept of event, which is a train request to use a track, with a start 

time, end time, and duration. If the rescheduled duration is larger than its nominal value, the difference 

is the delay associated to the event. If not, a recovery time in the rescheduled timetable is allowed to 

improve the nominal duration. 

A. Problem decision variables and revisited model 

The MILP formulation contains eight decision variables, divided into integer and binary and 

listed in the sequel. Integer variables , end

k
x , 

k
z  are the actual starting and ending times and the delay of 

event . Binary variable 
kt

q  indicates whether event k uses track t in segment j (
kt

q =1) , with

, ,
j j

k L t P j B∈ ∈ ∈ . Binary variable ˆkk
γ  indicates whether event k occurs before k̂  ( ˆkk

γ =1), with 

ˆ ˆ, , ,jk k L j B k k∈ ∈ < . Binary variable ˆkk
λ  indicates whether event k is rescheduled with earlier start 

time than k̂  ( ˆkk
λ =1), with ˆ ˆ, , ,jk k L j B k k∈ ∈ < . Binary variable 

i
ε  indicates whether train i T∈  has a 

delay lower than its threshold iw  (
i

ε =1). Binary variable 
k

ε  indicates whether k E∈  ends with a delay 

larger than threshold kw  (
k

ε =1). 

The revisited mathematical model adopts the following novel objective functions with respect to 

[130]: 

( )low

k k

k E

Min c z
∈

⋅  (Eq. 4-1) 

k

k E

Min z
∈
  (Eq. 4-2) 

 

The cost of the total delay for all events in the horizon is minimized in (Eq. 4-1). Alternatively, 

(Eq. 4-2) considers a delay. 

The objective functions are subject to train constraints: 

{ }1 , ,end begin

k k i ix x    k K n  i T+= ∀ ∈ − ∈
 

(Eq. 4-3) 

,end begin

k k k
x x d    k E≥ + ∀ ∈  (Eq. 4-4) 
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ε δ
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(Eq. 4-5) 

 

,k k kd    k Eε δ> ∀ ∈  
(Eq. 4-6) 

, ; 1begin initial

k k k
x b    k E  h≥ ∀ ∈ =  

(Eq. 4-7) 

, ; 0begin static static

k k k
x b    k E  b= ∀ ∈ >  

(Eq. 4-8) 

, ; 0end static static

k k k
x e    k E  e= ∀ ∈ >  

(Eq. 4-9) 

,end initial

k k k
x e z    k E− ≤ ∀ ∈  

(Eq. 4-10) 

Constraint (Eq. 4-3) specifies that each train event is succeeded by the next in the train ordered set 

of events. Constraint (Eq. 4-4) means that each event must use the assigned track at least for the time 

specified by the minimum parameter . Constraint (Eq. 4-5) is an alternative that is proposed to (Eq. 4-4), 

meaning that a train can decrease its planned running/stop time by kδ  time units if it is greater than the 

minimum reschedulable running ( tripkd )/stop ( stopkd ) time. Therefore, kδ  is a recovery time in the 

timetable. Particularly, (Eq. 4-5) is applicable if constraint (Eq. 4-6) is verified, imposing that duration kd  

must be greater than kδ . This is necessary because if the duration of a rescheduled event is too short, 

then the updated timetable cannot ensure the initial stop and running times (e.g., 0kd =  and 1kh =  the 

planned stop is deleted and travelers do not have time to get off the train). Constraint (Eq. 4-7) enforces 

the restrictions related to planned stops and the consequential earliest possible start time. Constraints 

(Eq. 4-8) and (Eq. 4-9) ensure that events that have started but not yet ended before the disturbance will 

end as planned. Constraint (7) records the magnitude of the delay of events. 

Technical constraints are also considered as follows: 

1, ,
j

kt j

t P

q    k L j B
∈

= ∀ ∈ ∈  (Eq. 4-11) 

 

ˆ ˆ ˆ
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(Eq. 4-13) 
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(Eq. 4-14) 
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(Eq. 4-15) 
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begin end F

k jk kk kk
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(Eq. 4-16) 

ˆ ˆ
ˆ ˆ1 , , ;jkk kk

   k k L j B k kλ γ+ ≤ ∀ ∈ ∈ <  (Eq. 4-17) 

( ), , ,train track

i kt jt i j jg q g    k K L t P j B i T≤ ∀ ∈ ∩ ∈ ∈ ∈  (Eq. 4-18) 
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Constraint (Eq. 4-11) enforces that each event uses one track per segment, otherwise (Eq. 4-12) 

imposes that if two events are using the same track within a segment, then one of them must end and a 

required separation time must elapse until the next event starts on the same segment, so that either ((Eq. 

4-13)-(Eq. 4-14)) or ((Eq. 4-15)-(Eq. 4-16)) hold. If trains meet, the minimum separation time is M

j∆ , being 

M a large positive constant depending on the largest time horizon, otherwise if trains follow each other, 

the time is . Constraint (Eq. 4-17) enforces that ˆkk
γ  and ˆkk

λ  cannot be both 1, (Eq. 4-18) ensures that the 

track used at k is sufficiently long to accommodate the train. 

The objective functions are subject to operator constraints. 

in i iz w M    i Tε− ≤ ∀ ∈  (Eq. 4-19) 

k k k
z w M    k Eε− ≤ ∀ ∈  (Eq. 4-20) 

ˆ ˆ
ˆ ˆ, ; ( , )begin end connection connection

kk kk
x x g    k k E k k E− ≥ ∀ ∈ ∈  (Eq. 4-21) 

, , 0begin end

k k k
x x z    k E≥ ∀ ∈  (Eq. 4-22) 

{ }ˆ ˆ
ˆ ˆ, 0,1 , , ;jkk kk

   k k L j B k kγ λ ∈ ∀ ∈ ∈ <  (Eq. 4-23) 

{ }0,1 , ,kt j jq    k L t P j B∈ ∀ ∈ ∈ ∈  (Eq. 4-24) 

{ }0,1i    i Tε ∈ ∀ ∈  (Eq. 4-25) 

{ }0,1k    k Eε ∈ ∀ ∈  (Eq. 4-26) 

 

Constraint (Eq. 4-19) enforces a fixed penalty cost if a certain delay is exceeded and it becomes 

relevant only adopting an objective function that minimizes the sum of total delays 
inz  associated to the 

last event in  of each train i. It is used the alternative (Eq. 4-20): if an event k has a delay kz  greater than 

threshold kw , then 1kε = . Thus k kε δ  in (Eq. 4-5) is nonzero, so that is possible to recover kδ  time units 

during a trip or a stop. Constraint (Eq. 4-21) synchronizes connecting trains, (Eq. 4-22) imposes begin

kx , end

k
x , 

k
z  are positive, (Eq. 4-23)-(Eq. 4-26) impose ˆkk

γ , ˆkk
λ , 

kt
q , 

i
ε , 

kε  are binary. 

B. Validation model: Performance analysis 

The rescheduling model is used to improve the timetable robustness to disturbances, using the 

following robustness index of the generic timetable x [197]: 

1 1

( )
( ) , 1

iKT

i

k k k k k

i k i

K k
R x Buff Flow TT NSucT  h

K= =

−
= ⋅ ⋅ ⋅ ⋅ = �  (Eq. 4-27) 

In Eq. 4.27, Buffk is the buffer time associated to the stop events k of train i, Flowk is the average 

percentage of travelers that get on train i at the station of event k. Further, NSucTk is the number of 

trains that could be perturbed in the time horizon, TTk is the percentage of tightness of track between 

stations j and j+1. Thus, given a timetable with m tracks, the tightest track has TTk=1, the second 
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tightest track has TTk=(m-1)/m, and so on [197]. The value of R(x) does not return a direct measure of 

robustness for a timetable, but rather a value proportional to it. Therefore, it is useful to compare two 

timetables in order to evaluate which is more robust, having a higher R(x) [197]. 

To improve the timetable robustness a Monte Carlo approach is adopted. In each simulation the 

procedure relaxes the nominal timetable with a pseudo-random buffer time that is added to each 

nominal stop time. This relaxation is considered in two different ways: 1) by a constant buffering, 

where Buffk is independent by the event duration (i.e., it is a random time); 2) by a proportional 

buffering, where Buffk is the 50% of the nominal event duration. When a simulation ends, the DSS 

launches the revisited mathematical model, determines the scheduled timetable x, calculates and stores 

in a database its robustness R(x). Once all simulations are completed, the timetable with the maximum 

R(x) is the most robust one. In case of multiple timetables with the highest R(x) value, the system selects 

the first one. 

C. Conflicts identification and resolution 

The DSS includes a sub-system that identifies and solves conflicts after the chosen time horizon. 

It is based on a heuristics, and ensures each train arrives at its destination without crossings or 

coincidences, even if its final stop is after the end of the time horizon. Figure 2 shows the basic 

algorithm. Starting from the rescheduled timetable, the first crosses in the line are detected. First, single 

and double coincidences in stations are removed: all values in the time vector associated with each train 

are checked and, if a coinciding value between two trains is found, a time change is assigned to the train 

with the lowest index (that is, the train that has been for the longest time in the line). Hence, the first 

intersection in the line or station with a unit capacity is found, and the traveling time of two conflicting 

trains is calculated as the sum of all durations of runs and stops occurred up to the station before the 

crossing. If the time horizon is not extended, then priority is given to the train with the highest traveling 

time, shifting the time of the other train starting from the stop in the station located before the crossing. 

In case of new coincidences at the station, they are solved in the next step of the procedure. The model 

always gives priority to direct trains, to maximize the service quality. The computational time required 

by this procedure is linearly increasing with the number of trains in the time horizon and the number of 

stations with unit capacity. 

 The Case Study 4.1.3

The DSS is applied to a regional railway network in Apulia, Southern Italy, described in Table 

4-2. The network has a low capacity so it is hard to manage traffic efficiently. Three different time 

horizons are considered (30, 40, and 50 minutes) for a real disturbance with a duration of 30 minutes 

occurring on a weekday at 7:50 a.m., a rush hour with many trains, affecting five trains in the maximum 
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time horizon (50 min). Table 4-3 compares the rescheduling results obtained by the DSS with those by 

[130].  

 

(a) 

 

Figure 4-3.  Planned (a) and rescheduled timetable (b) with 50 min time horizon. 
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Figure 4-2.  Heuristic procedure flow-chart. 

 
Table 4-2.  Infrastructure Data of the Considered Network. 

 
 

The table shows, for each time horizon, results for the total delay minimization (Eq. 4-2) and for the cost 

alternative (Eq. 4-1) with two cases, with different sets of low

kc  coefficients: the first one calculates the 

average travelers cost and the second one the average corporate cost (i.e., the penalty cost associated to 

the total delay made by trains). In all cases the DSS improves the timetabling obtained by [130]. Table 

4-4 shows the large problem dimensions and short computational time to compute the rescheduling. 

Moreover, Table 4-5 shows the value of the parameters adopted to evaluate the scheduling robustness. 

Results demonstrate that with a constant buffering, the timetable is more robust than with a proportional 

one, although in the latter case the total delay is lower.  
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Segment Description Type sj Pj

j 1 Mungivacca-Triggiano Single track 1 {t1}

j 2 Triggiano Station 0 {t1,t2}

j 3 Triggiano-Capurso Single track 1 {t1}

j 4 Capurso Station 0 {t1,t2}

j 5 Capurso-Noicattaro Single track 1 {t1}

j 6 Noicattaro Station 0 {t1,t2}

j 7 Noicattaro-Rutigliano Double track 1 {t1,t2}

j 8 Rutigliano Station 0 {t1,t2}

j 9 Rutigliano-Conversano Single track 1 {t1}

j 10 Conversano Station 0 {t1,t2}

j 11 Conversano-Castellana Single track 1 {t1}

j 12 Castellana Station 0 {t1,t2}

j 13 Castellana-Grotte di Castellana Single track 1 {t1}

j 14 Grotte di Castellana Stop 0 {t1}

j 15 Grotte di Castellana-Putignano Single track 1 {t1}
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Table 4-3.  Original Model and DSS Rescheduling Comparison 

 

 

Table 4-4.  Problem Computational Time and Dimensions 

 

 

Table 4-5.  Robustness Analysis (100 Simulations) 

  

 

Table 4-6.  Performance of Heuristic Procedure 

 

 

Hence, the buffering method choice depends on a compromise between operator preferences (i.e., 

robustness, with a constant buffering) and level of efficiency required by travelers (i.e., total delay, with 

a proportional buffering). Table 4-6 shows the detected conflicts and the computational time (by a 3.40 

GHz processor and 8 GB RAM PC) needed to calculate the solution in each time horizon. Figure 4-3a 

and 4-3b show the planned and the rescheduled timetable in the 50 minutes horizon with a maximum 

number of 10 trains, where the first five ii with i=1,…,5 are in the time horizon. 

Time horizon 

[min]

Original 

model

Revisited 

model

Original 

model

Revisited 

model

Original 

model

Revisited 

model

30 472 450 428.54 416.16 34.41 33.14

40 643 615 506.06 488.39 42.62 41.18

50 691 659 524.93 507.55 44.22 42.65

Objective function

Total delay         

[min]

Average traveler 

cost [€]

Average corporate 

cost [€]

Time horizon 

[min]
Model

Constr. 

matrix

Total 

delay

Average 

travelers 

cost

Average 

corporate 

cost

Original 116x99 1.06 1.07 1.05

Revisited 135x118 1.10 1.10 1.13

Original 192x155 1.34 1.33 1.34

Revisited 220x183 1.43 1.43 1.44

Original 289x222 1.68 1.68 1.69

Revisited 326x259 1.81 1.89 1.83

Computational time [s] for 

each objective function

30

40

50

Constant 

buffering

Proportional 

buffering

Constant 

buffering

Proportional 

buffering

Constant 

buffering

Proportional 

buffering

Total delay [min] 518 504 731 689 808 756

Comp. time [s] 135.28 136.72 178.19 180.41 229.46 240.10

Efficiency loss [%] 15.11% 12.00% 18.86% 12.03% 22.61% 14.71%

30 min 40 min 50 min

R(x) [/] 9.10 7.65 14.12 11.72 18.61 15.63

Time horizon [min] Nr. of conflicts Computational time [s]

30 8 34.50

40 10 42.28

50 15 61.21
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(a) 

 
Figure 4-3.  Planned (a) and rescheduled timetable (b) with 50 min time horizon. 

 

 A Decision Making Procedure for Robust Train 4.2

Rescheduling based on Mixed Integer Linear 

Programming and Data Envelopment Analysis 

This section presents a self-learning decision making procedure for robust real-time train 

rescheduling in case of disturbances. The procedure is applicable to aperiodic timetables of mixed-

tracked networks and it consists of three steps. The first two are executed in real-time and provide the 

rescheduled timetable, while the third one is executed offline and guarantees the self-learning part of the 

method. In particular, in the first step, a robust timetable is determined, which is valid for a finite time 

horizon. This robust timetable is obtained solving a Mixed Integer Linear Programming problem aimed 

at finding the optimal compromise between two objectives: the minimization of the delays of the trains 

and the maximization of the robustness of the timetable. In the second step, a merging procedure is first 

used to join the obtained timetable with the nominal one. Then, a heuristics is applied to identify and 
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solve all conflicts eventually arising after the merging procedure. Finally, in the third step an offline 

cross-efficiency fuzzy Data Envelopment Analysis technique is applied to evaluate the efficiency of the 

rescheduled timetable in terms of delay minimization and robustness maximization when different 

relevance weights (defining the compromise between the two optimization objectives) are used in the 

first step. The procedure is thus able to determine appropriate relevance weights to employ when 

disturbances of the same type affect again the network. The railway service provider can take advantage 

of this procedure to automate, optimize, and expedite the rescheduling process. Moreover, thanks to the 

self-learning capability of the procedure, the quality of the rescheduling is improved at each 

reapplication of the method. The technique is applied to a real data set related to a regional railway 

network in Southern Italy to test its effectiveness. 

As already introduced in the introductive part of this chapter, the efficient management of 

railway traffic is crucial for rail companies to provide their customers with a quality service [198]. In 

particular, both companies and customers are interested in an on-time service. The first can avoid 

sanctions applied if the accumulated delay overcomes the maximum imposed by contract, while the 

latter can benefit from a reliable service without loss of money and time. Moreover, an efficient service 

can improve customers’ loyalty to the company and this produces, as a secondary effect, a reduction of 

road traffic in favor of a more sustainable railway transport. 

Automated real-time rescheduling emerges as a promising technique to manage railway traffic in 

a smart and technologically advanced way when unexpected events affect the normal behaviour of the 

network. This technique refers, as the one of the previous Section 4.1, to disturbances and allows to 

refine the results of the manual rescheduling performed by Train Dispatchers. In particular, the 

proposed automated real-time procedures may support TDs in determining in real-time suitable control 

actions and updating timetables while optimizing some traffic performance indices [2], [7], [10]. 

Furthermore, in order to improve the quality of the automated rescheduling, it is important to evaluate 

the corresponding outputs, predict the consequences of different control actions, and keep trace of the 

most favorable one. In this work, this aim is achieved by including into a suitable decision making 

procedure both an automated real-time rescheduling process and an offline self-learning technique. 

Such a train rescheduling procedure can on the one hand reduce the workload of the TD, by 

automatically and autonomously performing a real-time rescheduling, and on the other hand improve 

the effectiveness of the rescheduling at each reapplication of the method. 

More in detail, the presented decision making procedure is valid for railway systems using 

aperiodic timetables and presenting mixed (single- and double-) tracked networks. It is not considered 

any limitation on the dimension and the topology of the system. The procedure consists of three steps: 

in the first one, an optimal timetable over an appropriate Time Horizon (TH) is obtained by solving a 
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Mixed Integer Linear Programming (MILP) problem aimed at finding the best compromise between the 

minimization of delays of trains and the maximization of the robustness of the timetable. In the second 

step, a merging procedure is first used to join the optimal timetable over the chosen TH with the 

nominal one in the remaining time window of the timetable. Then, all possible conflicts arising after TH 

are iteratively solved by means of a heuristic procedure, which calculates a near-optimal rescheduling 

solution. Finally, the third step consists in an offline self-learning procedure aimed at predicting the 

results and effectiveness of alternative control actions and updating an external database with the most 

appropriate solution to use in the event that a disturbance of the same type occurs in the future. To this 

aim, a cross-efficiency fuzzy Data Envelopment Analysis method proposed for the performance 

evaluation of healthcare systems in [199] is applied to determine the efficiency of the rescheduled 

timetable (in terms of reduction of delays and maximization of robustness) and to rank alternatives 

according to their efficiency values.  

The proposed decision making procedure is tested on a real case study that is a portion of a 

regional railway network where a set of trains is affected by a disturbance at a rush hour in a weekday. 

The railway network is located in Southern Italy and is constituted mostly by single tracks with few 

double track segments, and such that in some stations only a train can stop or pass through.  

To confirm the effectiveness of the proposed procedure the outcomes of the technique are 

compared with those obtained with the traditional TD manual procedure. Moreover, the effects of the 

robustness maximization are accurately validated by statistically evaluating two indices: the number of 

conflicts of trains and the time delay caused by the occurrence of an additional disturbance both for the 

robust rescheduled timetable and for a rescheduled timetable obtained by only minimizing delays. 

Summarizing, the main contributions of this section consist in:  

(1) presenting an automatic decision making procedure for robust real-time train rescheduling 

in case of disturbances;  

(2) stating and solving a MILP problem for mixed-tracked railway systems that simultaneously 

addresses the minimization of the delays caused by a disturbance and the maximization of the 

robustness of the timetable; 

(3) integrating the resolution of the MILP problem with a heuristic procedure to speed-up the 

real-time rescheduling procedure; 

(4) proposing an offline DEA-based self-learning procedure, which predicts and evaluates the 

consequences of alternative control actions to improve the effectiveness of the method at each 

reapplication. 
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A. Positioning of the approach with respect to the state of the art 

and managerial implications 

In the related literature, only few studies have been developed in the context of decision making 

procedures for real-time train rescheduling (see for instance the discussions in [137] and [135]). These 

contributions mainly focus on automating the rescheduling procedure, while there is still a lack of self-

learning approaches that can strongly improve the performance of the decision making and quickly 

predict the results of changes in control actions. As a matter of fact, nowadays railway companies are 

still seeking for automatic solutions to improve traffic management in order to enhance timeliness and 

reliability of railway services.  

Exhaustive discussions on automated real-time rescheduling can be found in [190], [200], [118], 

and [201], showing that, in the relevant literature, three main classes of computer-based rescheduling 

approaches can be broadly identified: simulation models, heuristic procedures, and mathematical 

optimization models, or a combination of them. The most common framework to reschedule railway 

traffic is MILP [198], [201], [202]. 

Traditionally, in the related literature, rescheduling optimization models consider a single-

objective function. However, the nature of train rescheduling problem is intrinsically multi-objective 

due to multiple conflicting interests of the involved stakeholders and to social and environmental issues. 

Hence, multi-objective approaches generally produce better rescheduling alternatives. To actually 

provide a significant support to the TD, rescheduling approaches in railway networks should at least 

possess two features, namely, timeliness and robustness [118]. The former consists in the minimization 

of delays caused by the occurrence of a disturbance, while the latter is the ability of the timetable to 

absorb such disturbances, to tolerate a certain degree of uncertainty, and/or to cope with unexpected 

troubles without significant modifications [203], [204], [205].  

When disturbances arise, they cause primary delays to the directly affected train that typically 

propagate to other trains as secondary delays. Consequently, one of the major requirements of an 

effective rescheduling is to limit the spread over the network of secondary delays, which in turn requires 

that: (1) primary delays can be absorbed, (2) few primary delays result in small secondary delays, and 

(3) secondary delays can quickly disappear thanks to simple dispatching operations, without spreading 

over the network [205], [206]. 

Usually, robustness is achieved by adding some time reserves in the timetable to allow for 

flexibility when rescheduling traffic to prevent delays’ further spreading. Such time reserves can be 

classified into recovery times and buffer times. The former are time reserves computed offline by 

increasing the travel time with respect to the minimum one (i.e., traveling at the maximum speed), while 
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the latter are time reserves over the minimum separation time between consecutive train paths [190], 

[207]. In other words, recovery times are introduced mainly to reduce primary delays, while buffer 

times are defined to limit the propagation of secondary delays. Most studies ensure the robustness of 

timetables to small disturbances in the offline scheduling process by perturbing the nominal timetable 

with observed or simulated disturbances (see for instance [204], [208], [197], [209], [210], [211], and 

[212]). On the contrary, as reported in [204], few contributions aim at increasing the timetable 

robustness in the real-time rescheduling process, although it can be more effective than the offline 

process, which is an open-loop control process. Such a lack is mainly due to the high combinatorial 

complexity of multi-objective MILP problems that often make computation times too high for the real-

time requirements. In order to overcome such a limitation, a good compromise can be achieved by 

combining the optimal rescheduling by MILP techniques with a heuristics that simplifies and speeds up 

the rescheduling procedure [200]. 

Another important aspect to take into account is that of iteratively evaluating and improving the 

effectiveness of the real-time rescheduling. To this aim, due to the recalled multi-objective nature of the 

problem and thanks to the large amount of available data, Multi-Criteria Decision Making (MCDM) 

techniques can represent an efficient tool. In fact, in the last decades, the use of MCDM methods has 

extensively increased in different application areas (see the review in [178]). Several MCDM 

approaches are available, each with its own advantages and disadvantages [178]. Most MCDM 

techniques are usually applied prior to decision making or project execution, while DEA is more often 

utilized for the evaluation of schemes already implemented [179]. The ease of use of the DEA and its 

ability to quantify results make this technique an efficient tool for simplifying data analysis. Moreover, 

thanks to the possibility of combining DEA with the fuzzy set theory (see [199]), the TD may take into 

account uncertainties affecting the rescheduling process.  

In the above context, this work presents a three-steps decision making procedure, which is 

characterized by three main novelties that are able to significantly alleviate the TD real-time work: (1) a 

rescheduling technique consisting in solving a bi-objective MILP optimization problem with the 

twofold aim of minimizing delays and maximizing the robustness of the timetable, (2) a heuristics to 

speed up the rescheduling process so as to cope with the real-time requirements, (3) an offline self-

learning procedure based on the fuzzy DEA technique to evaluate and rank the effectiveness of 

alternative rescheduling actions.  

The MILP approach in the first step of the decision making procedure is formulated on the basis 

of the techniques of the previous Section 4.1. In particular, the railway traffic is still considered as a 

sequence of events that can be assigned when trains, technical, and operator constraints are fulfilled. 

However, here it is presented a bi-objective formulation that, as already stated, aims at minimizing 
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delays at each station and maximizing the overall robustness of the timetable. With respect to other 

existing contributions (see also [186], [114], [200], [118], [117]), here the focus is on preventively 

reducing the impact of additional disturbances by incorporating the robustness maximization directly in 

the rescheduling problem statement, rather than providing a rescheduling procedure coping with 

disturbances after their occurrence. Furthermore, here it is combined the simplicity of heuristics -to 

reduce the computational complexity- with the precision of MILP.  

In addition, this decision making procedure provides the offline self-learning procedure to allow 

a performance evaluation of the obtained solution. Moreover, the DEA technique has been used in the 

railway scheduling context only in [213], and in a setting very different from the present one. In fact, 

contrarily to [213], the DEA technique is here considered in a fuzzy setting to cope with data 

imprecision and uncertainty and the focus is on the robustness concept, which is disregarded in [213].  

Summing up, the procedure is useful for railway companies (to provide their customers with on-

time services, reduce sanctions or penalties, and avoid possible errors caused by a manual rescheduling) 

and for passengers (to reduce waiting times and delays or to limit travel discomforts). 

 Basics on the fuzzy cross-efficiency DEA 4.2.1

technique 

The fuzzy cross-efficiency DEA is an evolution of the cross-efficiency DEA already presented in 

Section 3.4.1. Whereas the cross DEA technique allows obtaining a ranking of the deterministic or 

crisp cross-efficiencies of a set of F alternatives, the fuzzy cross DEA allows to take into account some 

uncertainties that typically affect the performance indices of the alternatives. Hence, by modeling 

uncertain performance index values by triangular fuzzy numbers [214], a generalization to the previous 

approach has been introduced in [199], leading to the so-called fuzzy cross-efficiency DEA. In the 

sequel are briefly described the main steps of such an approach.  

Consider a set of F alternatives, whose cross-efficiency has to be evaluated with respect to n conflicting 

criteria divided into a subset of W criteria to be maximized and a subset of H criteria to be minimized. 

Criteria are quantified via appropriate performance indices. Now, let yw,f be the value of the w-th 

performance index to be maximized (w=1,…,W) and xh,f be the value of the h-th performance index to 

be minimized (h=1,…,H), both evaluated when the f-th alternative is active (f=1,...,F). Then, let uw,f and 

vh,f be the weighting coefficients associated, respectively, with the w-th performance index to be 

maximized and the h-th performance index to be minimized. First, the focus is on the performance 

indices to be minimized. Instead of using a single deterministic value xh,f associated with the generic h-

th criterion and the generic f-th alternative, a triple , , , ,( , , )
o m p

h f h f h f h fx x x x=ɶ ∈ℜ3
 -i.e., a triangular fuzzy 

number- is defined, whose entries are, respectively, the most optimistic, the modal, and the most 
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pessimistic estimate of the f-th alternative performance index under the h-th criterion. Analogously, the 

triple , , , ,( , , )p m o

w f w f w f w fy y y y=ɶ ∈ℜ3
 is defined, whose entries are, respectively, the most optimistic, the 

modal, and the most pessimistic estimate of the f-th alternative under the w-th criterion to be 

maximized. Both triples represent triangular fuzzy numbers, i.e., they can assume different real values 

with a degree of possibility in [0,1], according to suitable triangular membership functions defined in 

[199]. Hence, for each f-th alternative it is required to determine a cross-efficiency 
f

CEɶ  which is now a 

fuzzy variable represented by the triple ( , , )p m o

f f fCE CE CE . In particular, following [199], the triple 

defining 
f

CEɶ  is computed using an approach that is based on three main goals: (1) the maximization of 

the modal value 
m

f
CEɶ , (2) the minimization of the distance of the pessimistic value 

p

f
CEɶ  from the 

modal value 
m

f
CEɶ , and (3) the maximization of the distance of the optimistic value 

o

f
CEɶ  from the modal 

value
m

f
CEɶ . In more detail, for each alternative f, a Positive Ideal Solution (PIS) is defined as the ideal 

solution with cross-efficiency triple 1, 2, 3,( , , )PIS PIS PIS

f f fCE CE CE  that simultaneously satisfies goals (1)-(3), 

i.e., such that: 

1, 2, 3,max ,   min[ ],   max[ ]PIS m PIS m p PIS o m

f f f f f f f fF CE F CE CE F CE CE= = − = −
 

(Eq. 4-28) 

so that the PIS cross-efficiencies are obtained as: 

1, 1, 2,

2, 1,

3, 1, 3,

PIS PIS PIS

f f f

PIS PIS

f f

PIS PIS PIS

f f f

CE F F

CE F

CE F F

 = −
 =
 = +  

(Eq. 4-29)

The PIS is determined solving three problems similar to (Eq. 3-17)-(Eq. 3-21), where the objective 

functions are in turn the three equations in (Eq. 4-28), and constraints are obtained by appropriately 

modifying (Eq. 3-18)-(Eq. 3-21) to cope with the fuzzy character of the performance indices (not report 

here for the sake of brevity but refer to [199] for details). Since in practice such a maximally efficient 

alternative as the PIS can never be obtained, as goals (1)-(3) can never be reached simultaneously by the 

same weight set, from the PIS of the f-th alternative a compromise fuzzy cross-efficiency value 

( , , )p m o

f f fCE CE CE  is determined. The corresponding weight set is determined solving a fuzzy multi-

objective linear programming problem by introducing an auxiliary variable and by using a procedure 

proposed in [215] for a generic fuzzy multi-objective programming problem and adapted to the fuzzy 

cross-efficiency DEA case in [199].  

Finally, the crisp cross efficiencies DCEf for each alternative f=1,…,F are determined by defuzzifying 

the obtained triple using the well-known center of the area method [214]: 
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.
3

p m o

f f f

f

CE CE CE
DCE

+ +
=

 

(Eq. 4-30)

The resulting crisp values obtained for each alternative may then be used to define a ranking among 

them. 

 

 The Proposed Decision Making Procedure 4.2.2

The proposed decision making procedure is schematically illustrated in the flowchart in Figure 

4-4 and consists of three main steps. 

Once a disturbance occurs, the TD queries the database that contains the following information: 

1) The Time Horizon (TH) in which the optimization procedure (Step 1) has to be performed. 

This value depends on the current disturbance and on the network complexity and infrastructure.  

2) The nominal timetable in TH, namely the timetable originally scheduled offline over the 

time horizon. 

 

Figure 4-4.  A flow-chart representation of the decision making procedure. 
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3) An estimate of the duration of the disturbance calculated using statistical methods, as 

usually happens in railway networks [117], or other more sophisticated techniques (see for instance 

[216]). 

4) The most suitable relevance weights to be used in the objective function of the optimization 

procedure in Step 1. Again, these values are provided by the self-learning procedure in Step 3. 

After the database querying, the real-time optimization procedure in Step 1 is executed (see 

Subsection 4.2.2A for more details), obtaining the optimal timetable in TH as the best compromise 

between two objectives (suitably weighted by the relevance weights): the minimization of delays of 

trains and the maximization of the robustness of the timetable. The resulting timetable is guaranteed to 

be adherent to the nominal timetable, conflict-free (i.e., without unfeasible train coincidences in stations 

or crossings at single-track lines) within TH, and robust with respect to additional small disturbances.  

The real-time merging procedure in Step 2.1 (see Subsection 4.2.2B) provides an extended 

timetable in the whole scheduling Time Window (TW). This is done combining the optimal timetable in 

TH with the nominal one in the remaining time horizon of length TW-TH (also obtained by the database 

queering). Note that the time interval TW is the overall time window for which the aperiodic 

rescheduling has to be performed, so it is at most one day. Obviously, the absence of conflicts is only 

guaranteed in TH, which cannot be too large in order to ensure an optimal rescheduling in real-time. 

Therefore, an analysis of conflicts eventually arising in the remaining interval of length TW-TH is 

performed. This is done at Step 2.2 via the real-time heuristic procedure detailed in Subsection 4.2.2C, 

which allows obtaining in real-time a conflict-free rescheduled timetable in TW. 

Finally, Step 3 is applied. It consists in an offline self-learning procedure aimed at updating the 

database in order to better select the relevance weights in the case of future applications of the technique 

for disturbances of the same type. Indeed, since the decision making procedure is based on estimates of 

the duration of the disturbance, it is important to assess the effectiveness of the adopted solution, so as 

to obtain a more accurate rescheduling in the event that a disturbance of the same type occurs again. To 

this aim, Step 3 of the presented technique applies a cross-efficiency fuzzy Data Envelopment Analysis 

to evaluate the efficiency of the obtained solution (in terms of delay at each station and robustness of 

the timetable) compared to that of other possible solutions obtained by varying the relevance weights in 

the objective function of the optimization procedure (see Subsection 4.2.2D for more details on this 

step). As output of Step 3, the most suitable relevance weights along with the type and duration of the 

real disturbance are provided and stored in the database. 

An important remark should be made. The real-time rescheduling is based on real-time 

information about the railway network state. The TD is continuously updated about the evolution of the 
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system. Therefore, if the duration of the real disturbance is overestimated, then the rescheduled 

timetable is still valid. On the contrary, if the disturbance is underestimated, then, thanks to the short 

computation times of the whole technique, the TD can restart the procedure with updated information 

about the duration of the disturbance and the state of the network, thus obtaining a more appropriate 

rescheduling. 

A. Step 1: The real-time optimization procedure 

Step 1 aims at finding, in the given time horizon TH, the optimal compromise between the 

minimization of delays in the railway network, due to the occurrence of a generic disturbance, and the 

maximization of the robustness of the resulting timetable to secondary delays and to the occurrence of 

additional disturbances. This is achieved by stating and solving a MILP problem. Before introducing the 

mathematical formulation of the problem, it is briefly recalled some background on railway networks 

and provided the basic notation used in the rest of the work (see also Table 4-7).  

Railway networks are usually divided into connected segments, which can be of two types (see 

Figure 4-5): line segments and station segments [186], [201]. The former include tracks linking stations, 

the latter include tracks in stations. Each segment can be composed by single or parallel tracks, and each 

track can be occupied by at most one train at a time.  

As an example, Figure 4-5 provides the representation of a generic infrastructure: station A 

(segment jA) comprises two tracks (tc1 and tc2), station C (jC) three tracks (tc1, tc2, tc3), and they are 

connected by a line segment (i.e., a rail connection) jB, which is constituted by a single track.  

The optimization procedure in Step 1 is based on the notion of event, which is a train request to 

occupy a track for a well-defined time interval. The occurrence of a disturbance deviates the involved 

train from its nominal behaviour. This implies that the end of the affected event has to be necessarily 

shifted according to the duration of the occurred disturbance before the application of Step 1. 

 

 

Figure 4-5  An example of a generic railway line (adapted from [186]). 
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Table 4-7.  Summary of the notation. 

Parameters Physical meaning 

T Set of trains to be rescheduled in TH 

i Generic train in T 
train

i
g

 
Length of train i∈T 

B Set of segments of the network 

j Generic segment in B 

Pj Set of tracks composing segment j 

tc Generic track in Pj 

,

track

j tcg
 

Length of generic track tc of segment j 

E Set of events related to all trains in TH 

k Generic event in E 

i
K E⊆

 
Ordered set of events of the generic train i∈T (according to the nominal timetable) 

ni Last event in Ki 

jL E⊆
 Ordered set of events of the generic segment j∈B (according to the nominal timetable) 

connectionE E E⊆ ×  
Set of couples ( , )k k

∧
formed by connected events (i.e., k

∧
 must not start until k has 

ended) 

ˆ,

connection

k k
g

 
Minimum exchange time between connected events  

hk Binary variable indicating whether event k corresponds to a ‘stop in station’ or not 

Ri,k Robustness index of train i within TH with respect to event k 

(α,β) Relevance weights 

Flowk Average percentage of passengers getting on train involved at a ‘stop in station’ event k 

TTk Percentage of tightness of track at event k 

NSucTk Number of trains that can be perturbed by the delayed train after the event k in TH 

dk Nominal duration of event k 

,  trip stop

k k
d d

 
Minimum nominal duration for trip and stop times of event k 

δk Recovery time for event k in the nominal timetable 
min min,no al no al

k k
b e

 
Start and end times of event k in the nominal timetable 

,static static

k k
b e

 
Start and end times of event k that has already begun when the disturbance occurs 

ok 
Point of origin of event k, indicating whether trains associated with events k and k+1 

are traveling or not in the same direction 
M

j∆
 

Safety time between two trains travelling in opposite directions at segment j 

F

j∆
 

Safety time between two trains travelling in the same direction at segment j 

M Large positive constant (i.e., the length of the largest possible TH) 

wk Fixed threshold to activate the binary variable εk 

max
Buff

 Upper bound of variable Buffk, k∈E 

Decision variab. Physical meaning 

zk Real variable indicating the delay of the generic event k  

Buffk 
Real variable indicating the buffer time associated with the generic ‘stop in station’ 

event k 
begin

k
x  Real variable indicating the start time of event k 

end

k
x

 
Real variable indicating the end time of event k 

qk,j,tc Binary variable indicating whether event k uses track tc of segment j or not 

ˆ,k k
λ

 
Binary variable indicating whether event k is rescheduled to occur after k

∧
 

ˆ,k k
γ

 
Binary variable indicating whether event k occurs before k

∧
 as in the nominal timetable 

εk 
Binary variable indicating if train i reaches (or not) the stop in station event k with a 

delay larger than wk time units 

 

As already specified, the primary delay causes secondary delays on the other trains in the 

timetable. In this work, it is called delay of the generic event k (and denote it zk) the difference between 
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the end of the event after its rescheduling (due to the occurrence of a disturbance) and its nominal end. 

Furthermore, it is called Buffk the buffer time added to event k, i.e., an extra time suitably added to the 

estimated duration of event k corresponding to stop in station. 

By an analogy with traditional risk management procedures [217], the primary aim of 

introducing buffer times in the timetable is to increase the flexibility and achieve a specific goal, i.e., to 

let the network absorb secondary delays and possible additional disturbances. However, the introduction 

of buffer times can further increase the delay of events associated with a stop in station and ultimately 

the delay propagation in the whole network. For this reason, in order to provide a better service for 

passengers, the first goal of the optimization procedure is to minimize what here is called cumulative 

delay, which is defined as the sum on the whole network of the extended delays. The extended delay of 

an event is calculated as the sum of the delay associated with the event and the corresponding buffer 

time, when the event is a stop in station, otherwise it corresponds to the delay of the event. The second 

goal is to minimize the effect of possible additional disturbances, which is realized as explained before, 

by adding proper buffer times to the events corresponding to stop in station. Their effect on the 

robustness of the obtained timetable can be quantified by a suitable index R, which has to be maximized 

[204], [197]. 

Summarizing, given the set of trains T (whose generic element is indexed by i), the set of events 

E (whose generic element is indexed by k), and being iK E⊆  the ordered set of events associated with 

train i, the objective function aims at minimizing the cumulative delay of the network while maximizing 

its robustness: 

 [ ( ) ].k k k

k E

Min z Buff h Rα β
∈

⋅ + ⋅ − ⋅
 

(Eq. 4-31) 

In (Eq. 4-31) α and β represent the relevance weights assigned to normalize and balance the two terms 

of the objective function, and these two parameters are chosen based on the TD preferences stored in 

the database or according to the suggestions resulting from Step 3. Furthermore, the binary parameter hk 

specifies whether the event k is associated with a station segment (hk =1) or with a line segment (hk =0). 

In fact, the buffer time Buffk can be added to the delay zk only in case of a stop in station event. 

Therefore, (zk + Buffk ∙ hk) represents the extended delay. The robustness of the network is quantified in 

(Eq. 4-31) by index R defined as follows [197]: 

1 1

,

,

, 

( )
where , for 1,..., .

iT K

i k

k

i k

i

i k k k k k i

i

R

h

R

K k
R Buff Flow TT NSucT k K

K

= =

=

−
= ⋅ ⋅ ⋅ ⋅ ⋅ =


 (Eq. 4-32)
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In eq. (Eq. 4-32) Flowk is the average percentage of travelers getting on the i-th train at event k. Note that, 

given an event k according to the considered notation, it is univocally determined which is the train 

involved in it. According to [197], parameter ( ( 1)) /k i iTT K k K= − −  is the percentage of tightness of 

tracks between stations, where the tightest track is defined as the longest distance track, i.e., given iK  

events for the i-th train, the tightest track has  1 1TT = , the second tightest track has 2 ( 1) /i iTT K K= − , 

the third one has 3 ( 2) /i iTT K K= − , and so on. The parameter NSucTk is the number of trains in the 

time horizon that could be perturbed by the delayed train i after the event k. 

The minimization of (Eq. 4-31) is performed under the following constraints:  

Train constraints:  

{ }1 ,    ,  end begin

k k i ix x k K n i T+= ∀ ∈ − ∈  (Eq. 4-33)

 ,  if ,    

0 if ( , 0) ( , 1) 1  if   
  where:  and 

0 if ( , 0) ( , 1) 0  otherwise

trip stop

trip stop

end begin

k k k k k k k k k k

k k k k k k k k k k k

k k k k k k k k

x x Buff h d d k E

d d h d d h z Buff w

d d h d d h

ε δ ε δ
δ ε
δ ε

− − ⋅ ≥ − > ∀ ∈
= < = ∨ < = = + >

 > ≥ = ∨ ≥ = =

 

(Eq. 4-34)

nominal,    :  1begin

k k kx b k E h≥ ∀ ∈ =  (Eq. 4-35)

,    :  0begin static static

k k kx b k E b= ∀ ∈ >  (Eq. 4-36)

,    :  0end static static

k k kx e k E e= ∀ ∈ >  (Eq. 4-37)

nominal ,    end

k k k k kx Buff h e z k E− ⋅ − ≤ ∀ ∈  (Eq. 4-38)

Technical constraints: 

, , 1,    ,
j

k j tc j

tc P

q k L j B
∈

= ∀ ∈ ∈  (Eq. 4-39)

ˆ ˆ ˆ, , , , , ,

ˆ ˆ1 ,    , , , ;k j tc j jk j tc k k k k
q q k k L tc P j B k kλ γ+ − ≤ + ∀ ∈ ∈ ∈ <

 

ˆ ˆ ˆ ˆ, ,

ˆ ˆ(1 ),    , , ; ,begin end M

k j j kk k k k k k
x x M k k L j B k k o oγ γ− ≥ ∆ − − ∀ ∈ ∈ < ≠  

(Eq. 4-40)

ˆ ˆ ˆ ˆ, ,

ˆ ˆ(1 ),    , , ; ,begin end F

k j j kk k k k k k
x x M k k L j B k k o oγ γ− ≥ ∆ − − ∀ ∈ ∈ < =  

(Eq. 4-41)

ˆ ˆ ˆ ˆ, ,

ˆ ˆ(1 ),    , , ; ,begin end M

k j j kk k k k k k
x x M k k L j B k k o oλ λ− ≥ ∆ − − ∀ ∈ ∈ < ≠  

(Eq. 4-42)

ˆ ˆ ˆ ˆ, ,

ˆ ˆ(1 ),    , , ; ,begin end F

k j j kk k k k k k
x x M k k L j B k k o oλ λ− ≥ ∆ − − ∀ ∈ ∈ < =  

(Eq. 4-43)

ˆ ˆ, ,

ˆ ˆ1   , , ;jk k k k
k k L j B k kλ γ+ ≤ ∀ ∈ ∈ <  (Eq. 4-44)

, , ,    ( ), , ,train track

i k j tc j tc i j jg q g k K L tc P j B i T≤ ∀ ∈ ∩ ∈ ∈ ∈  (Eq. 4-45)
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Operator preferences: 

   k k k k kz Buff h w M k E+ ⋅ − ≤ ∀ ∈ε   (Eq. 4-46)

ˆ ˆ,

ˆ ˆ   , ; ,begin end connection connection

kk k k
x x g k k E k k E− ≥ ∀ ∈ ∈  (Eq. 4-47)

Variables constraints: 

, , 0   begin end

k k kx x z k E≥ ∀ ∈  (Eq. 4-48)

{ }ˆ ˆ, ,

ˆ ˆ, 0,1    , , ;jk k k k
k k L j B k kγ λ ∈ ∀ ∈ ∈ <  (Eq. 4-49)

{ }, , 0,1    , ,k j tc j jq k L tc P j B∈ ∀ ∈ ∈ ∈  (Eq. 4-50)

{ }0,1    k k Eε ∈ ∀ ∈  (Eq. 4-51)

[ ]max0,    kBuff Buff k E∈ ∀ ∈  (Eq. 4-52)

 

 Train constraints: 

- Given the ordered set of events Ki associated with train i, whose last element is ni, constraint (Eq. 

4-33) forces event (k+1) to begin as soon as event k ends.  

- Constraint (Eq. 4-34) states that the duration of the rescheduled event k, increased of the 

corresponding buffer time Buffk, has to be higher than, or equal to, the offline scheduled duration dk 

(both for trips, i.e., when hk=0, and stops, i.e., for hk=1) when it is lower than the minimum offline 

scheduled duration (i.e., 
tripk

d  for trips or 
stopk

d  for stops). However, when the offline scheduled duration 

is equal to, or higher than, the minimum offline scheduled duration, it is decreased by a factor εk·δk 

(where the binary variable εk is equal to 1 if the extended delay of the considered event k is higher than 

a fixed threshold wk, or 0 otherwise). The constant δk is a recovery time established in the nominal 

timetable.  

- Constraint (Eq. 4-35) imposes that the beginning of the rescheduled event k has to be higher than or 

equal to the beginning chosen offline in the nominal timetable (i.e., nominal

kb ), when the event is a stop in 

station event (i.e., if hk=1).  

- Constraint (Eq. 4-36) states that the beginning of event k has to be equal to its static value ( static

kb ) if the 

static value is higher than zero, that is, when event k has started before the occurrence of the 

disturbance. Similarly, constraint (Eq. 4-37) states that the end of event k has to be equal to its static 

value ( static

ke  ) if the static value is higher than zero, that is, when event k has started before the 

occurrence of the disturbance.  
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- Constraint (Eq. 4-38) imposes that the difference between the end of the rescheduled event k delayed 

of the corresponding buffer time Buffk and its offline scheduled end (as established in the nominal 

timetable, i.e., nominal

ke ) has to be lower than or equal to the corresponding delay zk.  

 Technical constraints: 

- Constraint (Eq. 4-39) imposes that a single track cannot be occupied by more than one train at the 

same time.  

- In constraint (Eq. 4-40), given two events k and k
∧

 related to a track tc, when k occurs before k
∧

 (as in 

the offline scheduling) track tc must be reserved to event k, while when k occurs after k
∧

 (as may happen 

in case of rescheduling), track tc must be reserved to event k
∧

 (that is, either ˆ,k k
γ  is equal to 1 or ˆ,k k

λ  is 

equal to 1).  

- In constraint (Eq. 4-41), in case of trains travelling in opposite direction (i.e., when ˆ kk
o o≠  ), any 

event k
∧

 subsequent to event k and requiring the same track used by k, has to start when a 
M

j∆  time 

interval has elapsed after the end of event k. Similarly, in constraint (Eq. 4-42), in case of subsequent 

trains (i.e., if ˆ kk
o o= ), any event k

∧
 subsequent to k and requiring the same track used by k has to start 

only when a 
F

j∆  time interval has elapsed after the end of k.  

- In constraint (Eq. 4-42), in case of trains travelling in opposite direction (i.e., ˆ kk
o o≠  ) any event k 

subsequent to k
∧

 and requiring the same track used by k
∧

 has to start when a 
M

j∆  time interval has 

elapsed after the end of k
∧

. Similarly, in constraint (Eq. 4-43), in case of subsequent trains (i.e., ˆ kk
o o=

), any event k subsequent to k
∧

 and requiring the same track used by k
∧

 has to start when a 
F

j∆   time 

interval has elapsed after the end of k
∧

.  

- Constraint (Eq. 4-44) imposes that an event k can either occur after or before a generic event k
∧

.  

- Constraint (Eq. 4-45) imposes that the length of a generic train i should not exceed the length of the 

track it occupies.  

 Operator preferences: 

- Constraint (Eq. 4-46) imposes that, when an event k is rescheduled, the sum of its buffer time Buffk 

and of its delay zk (i.e., the extended delay of the event k) minus a threshold wk is lower than or equal to 

a large positive constant M.  

- According to constraint (Eq. 4-47), event k
∧

 cannot start if k is not ended and a constant time of 

connection ˆ,

connection

k k
g  between the two events has not elapsed.  
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 Variables constraints: 

- Constraint (Eq. 4-48) states that the beginning and the end of a generic event k, as well as the 

corresponding delay zk, are non-negative variables.  

- Constraint (Eq. 4-49) imposes that ˆ,k k
γ , i.e., the variable used to specify if event k occurs before k

∧
 

(value 1) or not (value 0), and ˆ,k k
λ  , i.e. the variable used to specify if k is rescheduled to occur after k

∧
 

(value 1) or not (value 0), are binary variables.  

- Constraint (Eq. 4-50) imposes that 
, ,k j tcq  , i.e., the variable used to specify if the event k uses track tc 

of segment j (value 1) or not (value 0), is a binary variable.  

- Constraint (Eq. 4-51) imposes that εk, i.e., the variable used to specify if the delay of event k is higher 

than a fixed threshold wk (value 1) or not (value 0), is a binary variable.  

- Constraint (Eq. 4-52) states that Buffk can assume real values ranging between 0 and Buffmax minutes, 

where the upper bound is suitably chosen depending on the average duration of the stop in station 

events. 

The above optimization problem has at most 8varn E= ⋅  variables and 

2

9 2 4 connection

const i j j i j j j jn K T E L B L B K L P B T E L P B= ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ∩ ⋅ ⋅ ⋅ + + ⋅ ⋅
constraints. 

It is to remark that the above problem statement, although inspired by [130], has several 

important differences: first of all, in the first part of the objective function it is considered the term 

(zk+Buffk∙hk), i.e., the extended delay in case of stop in station events, rather than the single delay zk; 

second, it is considered an additional term in the objective function that measures the robustness of the 

timetable to further disturbances; third, all the necessary constraints are included to model robustness. 

The above real-time optimization procedure returns the optimal timetable in TH and guarantees 

that no conflict occurs in TH. However, given the dimension of the problem, the requirement to obtain a 

rescheduled timetable in a short computation time imposes the time horizon TH to be limited and in 

general shorter than the time window TW in which the overall timetable has to be defined (which may 

typically last up to 24 hours). Therefore, the following Step 2.1 is applied to extend the rescheduling to 

the whole time window.  

B. Step 2.1: The real-time merging procedure 

The merging procedure can be easily described as follows: all the events not included in TH but 

present in the nominal timetable and necessary for each rescheduled train to reach its final destination 

are shifted according to the optimal timetable in TH. All remaining events keep their nominal 



 

125 

 

scheduling. The extended timetable in TW ends when the last train trip affected by the initial 

disturbance has reached its final destination. As previously discussed, the optimal timetable in TH is 

conflict-free within the time horizon. On the contrary, the merging procedure can lead to new conflicts 

arising after TH because of the presence of shifted events. The heuristic procedure in Step 2.2 allows 

identifying and solving such possible new conflicts. 

C. Step 2.2: The real-time heuristic procedure 

The real-time heuristic procedure is summarized in Figure 4-6. This heuristics mimics a job-

shop scheduling problem [130], which aims at minimizing secondary delays while identifying and 

solving conflicts. In simple words, given the extended timetable in TW, the procedure detects the first 

conflict eventually arising after the time horizon, solves it, and goes on iteratively identifying and 

solving all conflicts until the last perturbed train has reached its final destination. More in detail, first, 

unfeasible coincidences in stations are removed (PHASE1). To this aim, all time values associated with 

each train (i.e., its arrival and departure time at each station) are checked: if a coinciding value between 

two trains is found, a waiting time is assigned to the train with a lower priority in order to maximize the 

service quality. Priority is given to direct trains or to trains with the highest traveling time. Note that 

different priorities may also be adopted according to the railway company policy, for instance favoring 

trains that on average transport more passengers. The waiting time in case of coincidences is assigned 

according to the following rule: to avoid simultaneous arrivals (in case of trains travelling in the same 

direction) and/or arrival-departure (in case of trains travelling in opposite directions) of two trains in a 

station, the train with lower priority has to wait in its previous station for the minimum waiting time 

(that is, the time required to allow passengers to get on and off from the other train, as established by 

the nominal timetable). Subsequently, both trains are allowed to depart, and, in case they are traveling 

in opposite directions and a crossing on a single-track line is thus generated, this will be solved in the 

next phase of the heuristics. 

Once all unfeasible coincidences are solved, the first eventual crossing in a single-track line 

segment is identified (PHASE2). In this case the train with lower priority has to wait in the station 

located before the crossing point until the arrival of the highest priority train plus a safety time (as 

established by norms). The proposed heuristics is iterative, so that, in case of new unfeasible 

coincidences, they are solved going back to PHASE1. The procedure ends when the last perturbed train 

has reached its final destination and all conflicts are solved. Therefore, at the end of Step 2.2, the TD 

obtains the rescheduled timetable in TW and can restore the proper functioning of the network. 
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Algorithm: Heuristic procedure in Step 2.2 

    Input:  ET = Extended Timetable in TW; 

1  Set RT = Rescheduled Timetable in TW = ET; 

2  run PHASE1 

3  for (all couples of Trains (ia, ib) in RT) 

4                 while (unfeasible coincidence) == true 

5                                     if (Travelling Time(ia) > Travelling Time(ib) OR ia is direct) 

6                                                        stop ib in the previous station; 

7                                                        departure(ib) = departure(ib) + waiting time; 

8                                     else 

9                                                        stop ia in the previous station; 

10                                                      departure(ia) = departure(ia) + waiting time; 

               

             

            

11  run PHASE2 

12  for (all couples of Trains (ia, ib) in RT) 

13             while (crossing at a single-track line) = true 

14                                  if (Travelling Time(ia) > Travelling Time(ib) OR ia is direct) 

15                                                      stop ib in the previous station; 

16                                                      departure(ib) = arrival(ia) + safety time; 

17                                  else 

18                                                      stop ia in the station; 

19                                                      departure(ia) = arrival(ib) + safety time; 

                

  

  

20  for (all couples of Trains (ia, ib) in RT) 

21                                  if (unfeasible coincidence) = true 

22                                                      go back to PHASE1 

23                                  else 

24                                                      update RT 

  

  

      Output RT. 

Figure 4-6.  The pseudo-code summarizing the heuristic procedure in Step 2.2. 

 

D. Step 3: The offline self-learning procedure 

The proposed decision making procedure requires as input of Step 1 the relevance weights (α,β) 

to be used in (Eq. 4-31) that are stored in the database. The goal of Step 3 is that of identifying offline 

the most suitable weights, according to some conflicting criteria and based on the real duration of the 

disturbance. In such a way, the new weights are stored in the database and fruitfully used if disturbances 

of the same type occur in the future. 

The proposed procedure is based on the concept of fuzzy cross-efficiency Data Envelopment 

Analysis [199]. It consists in a generalization of the traditional DEA, whose employment for train 

rescheduling has been proposed up to now only in [213] but in a deterministic setting. Since the 

decision making procedure is based on statistical evaluations and data affected by imprecisions and 

uncertainty, the fuzzy DEA approach is here chosen which is more appropriate in such context. In 

particular, it allows effectively representing by means of fuzzy numbers the uncertainty affecting 
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performance indices. In the sequel it is shown how the fuzzy cross-efficiency DEA technique is used to 

define the offline self-learning procedure. 

A series of F couples of relevance weights (α,β) is generated. For each of them, the optimization 

procedure of Step 1 is executed considering the real duration of the occurred disturbance. Thus, 

different timetables are provided, and their effectiveness is evaluated on the basis of some conflicting 

criteria: the delay at each station (to be minimized) and some robustness indices (to be maximized). The 

fuzzy cross-efficiency DEA allows us to select the most efficient couple of weights according to such 

conflicting criteria, as described in Section 4.2.1.  

The first robustness index to be maximized is R defined in (Eq. 4-32) and is a measure of the 

robustness of the overall timetable. The other robustness indices are the Weighted Average Distance 

(WAD) calculated for each train i∈T [208]: 
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(Eq. 4-53)

where 
st

iN  is the number of stations encountered by the i-th train along its trip within the time horizon. 

In simple words, index WADi describes the buffer time distribution along the trip for the i-th train and 

can assume values between 0 and 1. For example, a value of WADi = 0.5 corresponds to the fact that on 

average an equal amount of buffer times is allocated in the first half and in the second one of the train 

trip, while values smaller (bigger) than 0.5 relate to a shift in the buffer times distribution towards the 

beginning (end) of the train trip. Usually, it is preferable to have time reserves concentrated early on the 

line (i.e., a small WADi value) [209]. However, if disturbances occur later on the line, the time reserves 

located previously to the occurrence may be of no use. Hence, authors in [196] state that the average 

amount of time reserves should be allocated on the middle part of a line, with a slight shift to the 

beginning. 

Using the fuzzy cross-efficiency DEA technique, a Defuzzified Cross-Efficiency (DCEf) value is 

computed for each couple of weights considered (f=1,…,F). Based on such values, the F alternatives 

are ranked and the most appropriate couple of relevance weights is determined.  

Problems in Step 3 (see Section 4.2.1) have a number of variables equal to 3∙(W+H)∙F and a 

number of constraints equal to 3∙(2∙F+W+H). 

After performing Step 3, the database of the decision making procedure is updated with the 

relevance weights related to the most efficient alternative and with the type and duration of the occurred 
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disturbance, so that, the next time a disturbance of the same type affects the railway traffic, Step 1 of the 

procedure receives in input more appropriate weights.  

 A Real Case Study 4.2.3

Before introducing the case study, it is to point out that for sake of clarity in this section it is 

adopted a notation that slightly differs from the one in Section 4.2.2A. In more detail, as regards trains, 

segments, and tracks, the respective identifying number is used as subscript of the corresponding 

symbol, instead of reporting the number assignment. For example, when referring to the first train, it is 

written i1 instead of i=1, similarly the first segment is identified as j1, and so on. 

A. The considered railway network 

In this section it is illustrated and tested the proposed approach on the real case study presented 

in Section 4.2.3. The choice of this network is not casual, it is voluntarily considered for its simple 

topology, namely a corridor, even if the approach can be applied to any other network, so as to allow 

replications of the test. Furthermore, such topology characterized by the presence of single tracks, 

allows evaluating the effectiveness of the procedure in case of strict constraints. Indeed, in many 

stations only a train at a time can stop or pass through. As a result, the efficient management of the 

railway traffic flow in the considered case study requires special attention. 

Hence it is considered a portion of a regional railway network, namely “Ferrovie del Sud Est” 

(hereinafter FSE), located in Apulia (Southern Italy). The interested reader can refer to Table 4-2 fo 

more details. It includes the stations between the sites of Mungivacca (i.e., segment j0) and Putignano 

(i.e., segment j16), and its traffic is currently managed by a TD using a CTC (Centralized Traffic 

Control) system, which provides a centralized control for signals and switches within a limited territory, 

using a single control console. The operative system is installed in j0 that is an independent station, not 

controlled by the CTC, as is j16, whereby these stations are not studied here. The line is single-tracked 

except for segment j7, which is double-tracked. Moreover, segment j14 is a unitary capacity station. 

Railway directions are described as even and odd, respectively corresponding to trains going 

north and south through the network; in the considered network each day there are 24 even trains and 22 

odd trains. A safety time 3M

j∆ =  minutes is assumed for two trains traveling in opposite directions of 

the same j-th segment, and a safety time 1F

j∆ =  minute for trains in the same direction of the segment. 

Due to the average duration of the stop in station events, the Buffmax parameter is here set to 4 minutes.  

Data on several months have been exploited, showing that the proposed methodology 

outperforms the current technique used by FSE, which is largely based on the manual rescheduling 
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approach (that is, based on the TD’s personal experience and considering the existing physical and 

safety constraints). In the next subsection it is detailed the application of the proposed decision making 

procedure to a typical scenario among the available data sets. To confirm the effectiveness of the 

proposed procedure, the approach results are validated firstly by comparing them with those obtained by 

solving the same case study manually (i.e., by the TD), and then by evaluating the robustness of the 

solution when a random additional disturbance on the same line is observed. 

A real data set is considered referring to a train going from j16 to j0 that stops along the line at segment 

j11 for the occurring of a disturbance, which consists in a track unavailability (e.g., for the presence of 

an obstacle on the line) and occurring at 7:50 am, a rush hour with high level of traffic. Based on 

historical data, the estimated duration of such a disturbance is 15 minutes, and, according to the network 

topology, the most suitable time horizon is TH=50 minutes, as confirmed by some preliminary 

assessments that have been carried out (not reported here for the sake of brevity). Therefore, the 

considered disturbance affects five trains in TH.  

Finally, based on the estimated order of magnitude of the two terms in (Eq. 4-31), the relevance weights 

assumed for the real-time optimization procedure are initialized at: α=1 and β=100. 

The MILP problem is solved by the GLPK tool in the MATLAB environment since they are largely 

used for the resolution of such problems; clearly, other optimizers (such as, for instance, CPLEX) can 

be successfully used to this aim. The results obtained by applying Step 1 of the proposed procedure are 

reported in Table 4-8 , showing the cumulative delay of the network (i.e., the first term in (Eq. 4-31)), 

the average delay at stations, and the overall robustness (i.e., the second term in (Eq. 4-31)) in the 

chosen time horizon. By applying the real-time merging procedure in Step 2.1, the extended timetable 

in TW is obtained, as shown in Figure 4-7 by means of a Cartesian graph that represents the railway 

schedule in time and space. This diagram shows stop and running events for all the considered trains, 

reporting the corresponding duration and direction. In particular, the time line is plotted on the x-axis, 

while the railway line (i.e., the space) is plotted on the y-axis. 

 

Table 4-8.  Results from the real-time optimization procedure (Step 1). 

Index Value 

Cumulative delay [min] 242.00 

Average delay at stations 

[min] 
7.14 

Robustness index R 2.08 
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Figure 4-7.  Extended timetable in TW (after Step 2.1). 

 

Figure 4-8.  Rescheduled timetable in TW (after Step 2.2). 

The station segments (reported on the left margin of Figure 4-7) are represented by lines parallel 

to the x-axis, while line segments (reported on the right margin of Figure 4-7) are the portion of the 

graph comprised between two consecutive stations. Stop events are represented as segments on station 

lines, whose length corresponds to the duration of the event. Running events are represented by oblique 

lines whose orientation indicates the train direction and whose slope represents the corresponding 

speed. For instance, the running events are oriented from bottom to up for even trains that travel from 

South to North (i.e., to the station on the upper end of the y-axis, that is, segment j0). By analyzing 

Figure 4-7, it is worth noting that the application of the optimization procedure allows obtaining a 

conflict-free timetable within the chosen TH. However, applying the merging procedure in Step 2.1, 

train conflicts may happen at time instants exceeding the considered time horizon. In fact, Figure 4-7 

shows that trains i3 and i4 would cross at segment j5, i4 and i5 at j9, i4 and i7 at j15. All these crossings 

are at single-track lines, and hence they are unfeasible. Therefore, in order to identify and solve all 
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conflicts arising after the chosen time horizon (up until a total of 24 hours), the heuristic procedure in 

Step 2.2 is applied, calculating a near-optimal solution, so that the TD can choose and communicate the 

new status to drivers as soon as possible. The corresponding rescheduled timetable in TW obtained after 

the heuristic procedure is graphically reported in  

Figure 4-8. It is to remark that all conflicts on single tracks are solved. It is also to highlight that, 

at the end of Step 2.2, the TD can restore the proper functioning of the network by applying the 

rescheduled timetable in TW. In the evaluated case study this is possible in about 1 minute from the 

disturbance occurrence. 

Table 4-9.  Data for Step 3 of the decision making procedure: parameters to be minimized (a) and maximized (b). 

Altern.# 

(α;β) 

 Parameters to be minimized 

z2 

[min] 

z4 

[min] 

z6 

[min] 

z8 

[min] 

z10 

[min] 

z13 

[min] 

z15 

[min] 

z22 

[min] 

z24 

[min] 

z26 

[min] 

z28 

[min] 

1 

(1;1) 

o 

m 

p 

11.70 

13.00 

14.95 

14.40 

16.00 

18.40 

13.50 

15.00 

17.25 

13.50 

15.00 

17.25 

12.60 

14.00 

16.10 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

9.00 

10.00 

11.50 

9.00 

10.00 

11.50 

9.00 

10.00 

11.50 

8.10 

9.00 

10.35 

2 

(1;100) 

o 

m 

p 

11.70 

13.00 

14.95 

14.40 

16.00 

18.40 

13.50 

15.00 

17.25 

13.50 

15.00 

17.25 

12.60 

14.00 

16.10 

9.90 

11.00 

12.65 

13.50 

15.00 

17.25 

0.90 

1.00 

1.15 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

3 

(1;500) 

o 

m 

p 

11.70 

13.00 

14.95 

18.00 

20.00 

23.00 

21.60 

24.00 

27.60 

21.60 

24.00 

27.60 

20.70 

23.00 

26.45 

9.90 

11.00 

12.65 

13.50 

15.00 

17.25 

0.90 

1.00 

1.15 

3.60 

4.00 

4.60 

3.60 

4.00 

4.60 

2.70 

3.00 

3.45 

4 

(1;1000) 

o 

m 

p 

11.70 

13.00 

14.95 

18.00 

20.00 

23.00 

21.60 

24.00 

27.60 

25.20 

28.00 

32.20 

24.30 

27.00 

31.05 

12.60 

14.00 

16.10 

13.50 

15.00 

17.25 

3.60 

4.00 

4.60 

6.30 

7.00 

8.05 

6.30 

7.00 

8.05 

5.40 

6.00 

6.90 

5 

(1;2000) 

o 

m 

p 

11.70 

13.00 

14.95 

18.00 

20.00 

23.00 

21.60 

24.00 

27.60 

25.20 

28.00 

32.20 

24.30 

27.00 

31.05 

12.60 

14.00 

16.10 

13.50 

15.00 

17.25 

3.60 

4.00 

4.60 

6.30 

7.00 

8.05 

7.20 

8.00 

9.20 

6.30 

7.00 

8.05 

6 

(1;3000) 

o 

m 

p 

11.70 

13.00 

14.95 

18.00 

20.00 

23.00 

21.60 

24.00 

27.60 

25.20 

28.00 

32.20 

24.30 

27.00 

31.05 

12.60 

14.00 

16.10 

13.50 

15.00 

17.25 

3.60 

4.00 

4.60 

6.30 

7.00 

8.05 

9.90 

11.00 

12.65 

9.00 

10.00 

11.50 
 

(a) 

Altern.# 

(α;β) 

 Parameters to be maximized 

WAD1 

[%] 

WAD2 

[%] 

WAD3 

[%] 
R 

1 

(1;1) 

o 

m 

p 

0.12 

0.10 

0.09 

0.00 

0.00 

0.00 

0.14 

0.13 

0.11 

1.65 

1.44 

1.30 

2 

(1;100) 

o 

m 

p 

0.12 

0.10 

0.09 

0.29 

0.25 

0.23 

0.14 

0.13 

0.11 

2.41 

2.09 

1.88 

3 

(1;500) 

o 

m 

p 

0.35 

0.30 

0.27 

0.29 

0.25 

0.23 

0.37 

0.33 

0.29 

2.80 

2.44 

2.19 

4 

(1;1000) 

o 

m 

p 

0.46 

0.40 

0.36 

0.29 

0.25 

0.23 

0.29 

0.25 

0.23 

2.87 

2.49 

2.24 

5 

(1;2000) 

o 

m 

p 

0.46 

0.40 

0.36 

0.29 

0.25 

0.23 

0.29 

0.25 

0.23 

2.87 

2.49 

2.24 

6 

(1;3000) 

o 

m 

p 

0.46 

0.40 

0.36 

0.29 

0.25 

0.23 

0.43 

0.38 

0.34 

2.87 

2.50 

2.25 
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(b) 

The offline self-learning procedure in Step 3 is applied to allow a performance evaluation of the 

obtained solution so as to properly update the database in the case that a similar disturbance occurs in 

the future. Table 4-9 reports the considered fuzzy inputs for Step 3. In particular, Table 4-9.a shows the 

parameters to be minimized (i.e., the delay at each station in TH), while Table 4-9.b reports those to be 

maximized (i.e., the index WADi for trains involved in TH and the overall robustness R). Such values 

are reported for different possible solutions obtained by varying the relevance weights in the objective 

function of the optimization procedure in Step 1 and taking into account the real duration of the 

occurred disturbance.  

According to the self-learning procedure presented in Section 4.2.2 and detailed in Section 4.2.1, 

each parameter reports the corresponding optimistic (o), modal (m), and pessimistic (p) value, where 

optimistic and pessimistic values are obtained from the modal one (resulting from Step 1) considering 

the standard deviation of real data and assuming that the pessimistic value is closer to the modal one 

with respect to the optimistic value (the reader is referred to Section 4.2.1 for details on the fuzzy 

triples). 

Note that a WADi value is not assigned to trains i4 and i5. This is due to the two conflicting goals 

of the optimization procedure. In fact, on the one hand, the robustness index WADi for trains i4 and i5 is 

equal to zero, since, in the considered time horizon, there are no subsequent trains that can be perturbed 

(i.e., the NSucTk parameter in (Eq. 4-32) is equal to zero). On the other hand, the delays minimization 

leads the MILP problem to set buffer times equal to zero (i.e., their lower bound). Hence, WADi cannot 

be determined for i=4,5. Also note that in Table 4-9 only six different alternatives are considered. This 

is due to the fact that, for small variations of the relevance weights, there are few relevant changes in the 

examined parameters. Hence, for the sake of brevity, in Table 4-9 are reported only few rescheduling 

alternatives, choosing among those that are significantly different from each other. 

Table 4-10 shows the percentage value of the obtained defuzzified cross-efficiencies DCEf and 

the final ranking for the considered alternative solutions. By analyzing Table 4-10 it is important to note 

that the self-learning procedure confirms that the considered relevance weights (that is, the alternative 

numbered as #2) represent the best compromise between the two conflicting objectives in Step 1 (i.e., 

the minimization of all delays and the increase in the robustness). In fact, alternative #2 has the highest 

efficiency value. It is also worth noting that the obtained results are consistent with the order of 

magnitude of the two terms in (Eq. 4-31) (see Table 4-8). By increasing the ratio between the two 

relevance weights, it can be observed that the efficiency value decreases; in fact, although the 

robustness value increases, at the same time there is a greater rise in delays at the stations, thus leading 

to lower efficiency values. On the contrary, alternative #1 (i.e., with α=1 and β=1) has the worst 
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efficiency; in fact, with such values of the relevance weights the first term of the objective function (Eq. 

4-31) is too predominant over the second one, and thus the obtained timetable robustness is very 

limited. 

Finally, Table 4-11 summarizes the computation times of the different phases of the decision 

making procedure when using a 3.40 GHz processor and 8 GB RAM PC. As it can be seen, the most 

burdensome part is Step 2.2 that requires almost 60 seconds. This is definitely consistent with an 

application in real time. 

B. Validation of the proposed robust real-time rescheduling 

By analyzing the data in Table 4-9.a, it can be observed that the initial delay is absorbed without 

spreading over the network (especially in alternative #2), thus providing a first confirmation of the fact 

that the obtained timetable is robust according to the robustness characteristic features provided in [218] 

and [206], despite the actual values of the relevance weights. 

 

Table 4-10.  Results of Step 3 of the proposed decision making procedure. 

Alternative # 

(α;β) 
DCEf [%] Ranking 

1 

(1;1) 
6.65% 6 

2 

(1;100) 
68.01% 1 

3 

(1;500) 
49.57% 2 

4 

(1;1000) 
37.94% 3 

5 

(1;2000) 
33.23% 4 

6 

(1;3000) 
24.21% 5 

 

Table 4-11.  Problems dimensions and computation times. 

Step Problem dimension Computation time [s] 

Step 1 
296x326 

(variables x constraints) 
1.90 

Step 2.2 14 (solved conflicts)  59.80 

Step 3 
198x81 

(variables x constraints) 
11.90 
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In the following, to further validate the presented decision making procedure and to evaluate its 

impact on the company’s performance, the obtained results are firstly compared with those obtained by 

manually solving the same case study already considered. Although there are no specific compulsory 

rules, usually TDs evaluate if, as a consequence of the occurred disturbance, any crossing or unfeasible 

coincidences arise, and, if so, they solve them one at a time, by applying almost the same logic already 

described in the heuristic procedure of Step 2.2. Hence, the results obtained by applying the proposed 

robust real-time rescheduling (i.e., Step 1 + Step 2.1 + Step 2.2) are compared with those obtained by a 

manual rescheduling, (i.e., applying the heuristics in Step 2.2 to the whole time window TW). Table 

4-12 reports the cumulative delay (first row) and the average delay at stations (second row) resulting 

from the application of the decision making technique (column 2) and from the application of the 

manual rescheduling (column 3).  

It is worth noting that by applying the proposed procedure the cumulative delay is equal to 242 

minutes, while with the manual rescheduling it results equal to 1,284 minutes. Consequently, the 

presented rescheduling technique ensures a reduction of the cumulative delay for the case study higher 

than 80%. Moreover, when comparing the average delay at stations, the resulting reduction equals about 

50%. It is also to be noticed that, by performing a manual rescheduling, errors or larger delays may 

arise, and the effectiveness of the adopted control actions can not be properly evaluated. 

Furthermore, in order to validate the robustness of the obtained solution, the optimal timetable in 

TH (that is, the timetable obtained by applying Step 1 of the proposed decision making procedure) is 

compared with that obtained by only minimizing the cumulative delay (Section 4.2). To this aim, it is 

assumed that an additional small disturbance (e.g., a lamp failure on a colour light signal) occurs in the 

network after the initial primary disturbance has been coped with. To test the robustness of the 

rescheduled timetable under different scenarios, different characteristics are considered of the additional 

disturbance in terms of duration, affected train, and occurrence time. In particular, 100 replications are 

performed by randomly generating different duration values of the additional disturbance (in the range 

[1,Buffmax]=[1,4] minutes), a different train directly affected by such a disturbance, and a different time 

of occurrence. Therefore, for the above rescheduled timetables are determined the average delay at 

stations and the number of arising conflicts that are solved by the subsequent heuristics. Table 4-13 

reports for different durations of the additional disturbance the obtained results in terms of percentage of 

conflict-free timetables and average delay at stations within TH, as well as the corresponding percentage 

savings. By analyzing Table 4-13 it can be noticed that, when the duration of the additional disturbance 

is limited (i.e., below 2 minutes), keeping into account the robustness maximization allows obtaining 

remarkable savings both in terms of the percentage of conflict-free timetables and of the average delay 

at stations. On the contrary, when the duration of the new disturbance is greater than 2 minutes, the 
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obtained results show no savings (or even a worsening) in terms of percentage of timetables without 

conflicts. Nonetheless, in such cases it is worth noting that the average delay at station is still 

substantially improved when the rescheduling is devoted to taking into account both the delays 

minimization and the robustness maximization.  

This section is concluded by remarking that both railway companies and their passengers can 

take advantages from the presented decision making procedure. Indeed, in case of disturbances, rail 

companies need to provide their customers with a quality service, reducing delays or limiting travellers’ 

discomfort. The proposed procedure trades off between two conflicting objectives. From the one hand it 

takes into account the minimization of the delay associated with each intermediate event, instead of the 

overall delay accumulated by the single train at the end of its route, thus providing lower intermediate 

passengers’ waiting times, while limiting the waiting time over the entire journey. On the other hand, 

thanks to its ability to provide in real-time a robust rescheduled timetable, the method also allows 

reducing the spreading over the network of secondary delays and eventual additional primary delays. 

Moreover, the TD is provided with an automatic support tool that allows to rapidly restore the proper 

functioning of the network. 

 

Table 4-12.  Comparison of the decision making procedure with a manual rescheduling. 

Index Step 1 + Step 2    Manual Rescheduling  Reduction [%] 

Cumulative delay [min] 242.00 1,284.00 81.20% 

Average delay at stations [min] 7.14 14.00 49.00% 

 

Table 4-13.  Robustness validation with an additional stochastic disturbance in TH=50’. 

Duration of 

additional 

disturbance 

[min] 

Percentage of conflict-free timetables  

                        [%] 

Average delay at stations within TH 

                         [min] 

Delays min. 

+ 

robustness 

max. 

Delays 

minim. 

Saving 

   [%] 

Delays min. 

+ 

robustness 

max.  

Delays 

minim. 

Saving 

   [%] 

1.0 77.00% 31.00% 148.40% 0.04 0.19 79.00% 

1.5 100.00% 50.00% 100.00% 0.00 0.14 100.00% 

2.0 73.00% 27.00% 170.40% 0.03 0.25 88.00% 

2.5 46.15% 53.84% -14.30% 0.14 0.20 30.00% 

3.0 18.18% 18.18% 0.00% 0.41 0.72 43.10% 

3.5 46.15% 46.15% 0.00% 0.55 0.82 32.90% 

4.0 15.38% 46.00% -66.60% 0.88 0.89 1.10% 
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Finally, thanks to the self-learning procedure, the quality of the rescheduling is improved at each 

reapplication of the method. This way, companies can avoid sanctions (i.e., ticket refunds or penalties 

established by contract for late running), and customers can benefit from a reliable service without loss 

of money and time. Moreover, an efficient service can produce, as a secondary effect, a substantial shift 

of passengers (and freight) from other transportation modes to rail, thus helping reducing road traffic 

congestion and environmental impact. 
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 A Bi-level Solving Algorithm for the Real-time 4.3

Rescheduling Problem in Case of Disruption 

The introductive section of this chapter highlighted the importance of introducing advanced 

technologies to support train dispatchers in minimizing losses and waste due to the occurrence of 

expected events affecting the nominal behavior of the railway traffic. As already explained, unexpected 

events can be classified into disturbances and disruptions, which can cause undesired effects both to the 

company and customers. Differently from Section 4.1 and 4.2, this section focuses on disruptions, e.g., 

partial or full track blockade at a track section, which can lead to a large decrease in network capacity 

and require the application of severe actions, such as the cancelation and turning of trains, to avoid large 

delays spreading throughout the network. Actually, as already recalled, the approach used by train 

dispatchers is based on experience and if the traffic deviates from the nominal timetable TDs intervene 

by reordering, turning, cancelling ad rerouting trains minimizing passengers discomforts. This process 

becomes more complex in case of disruptions because these require the rescheduling of resource duties. 

In these cases they use contingency plans and emergency timetables to manage the traffic. This manual 

management is largely time-consuming and often leads to suboptimal outcomes as only a limited 

number of solutions can be reviewed for a rapid decision-making process.  

The research on real-time train rescheduling is then focusing on the development of automated 

decision-support systems that can quickly model specific situations, calculate optimal solutions, and 

suggest the most appropriate decision to be implemented in a real-time context. Due to the scale, the 

complexity, and the short resolution time constraint, these problems remain challenging.  

This section proposes a bi-level algorithm for the resolution of the real-time rescheduling 

problem in case of full-blockade. The railway traffic is modeled as a discrete event system and the 

rescheduling problem is set in a mixed integer linear programming fashion. The constraint model allows 

the representation of the essential characteristics of a disruption and permits the calculation of new 

feasible control actions to restore the nominal traffic conditions. More in detail, two constrained models 

of the disrupted area are presented, i.e., a macroscopic and a mesoscopic model. The first considers a 

high-level representation of the system, while the second one includes also specific control actions in 

the disrupted stations (i.e., platform assignment and train ordering at stations). The application of this 

algorithm, which considers both the macroscopic and mesoscopic models of the rescheduling problem, 

leads to a twofold advantage. On one hand it strongly reduces the required computation time with 

respect to the resolution of the full mesoscopically described problem. On the other hand, it allows the 

inclusion of the station scheduling model, which encounters the capacity limitations in the disrupted 

stations, that otherwise are neglected in the macroscopic formulation of the problem. Obviously, the 
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amount of available platforms in station poses a limitation to the number of short-turns that can be 

performed and increases the number of cancelled train runs. Nevertheless, the obtained results are more 

realistic, and the limitations of the macroscopic description of the problem are overcome.  

In the literature on rescheduling of railway traffic, depending on the research purposes, railway 

networks can be modeled on different scales and with different level of detail. A classification of the 

most frequently used models can be done according to the considered level of detail as: 

- Macroscopic models: a high-level representation in which stations are nodes and the connecting 

tracks are links between the nodes. No details are provided on block sections and signaling, as 

well as on actions in stations. The results of such modeling technique can be departures and 

arrival times, and possible routes. Then, further refinements are required before the application 

of the dispatching results. 

- Microscopic models: a low-level representation of the railway system, which includes at least 

block sections and switch locations in the network. Due to the complexity of the model 

computational complexity quickly increases and becomes an issue for large-scale systems. 

- Mesoscopic models: a middle-level representation of the railway system, which includes 

elements from both the macroscopic and the microscopic modeling techniques. Certain parts of 

the network, like stations can be detailed whereas other parts are macroscopically modeled, such 

as links between stations. Then, mesoscopic models allow to obtain more detailed results with 

respect to macroscopic models, but risk to suffer from a high-computational complexity if the 

solving algorithms are not properly tailored to the specific issue. 

One more classification regards the type of disruption affecting the railway traffic. In particular, two 

main types of disruption can be considered: 

- Partial blockade: not all tracks included in a certain track section are blocked. It means that on 

the considered track section trains can circulate, but the capacity of the track section is 

decreased. 

- Full blockade: all tracks of a certain track section are blocked. Consequently, no traffic is 

allowed on the track section affected by disruption.  

In literature, both macroscopic and microscopic models are used for either full or partial 

blockades. In [152] a conflict detection and resolution algorithm is developed for a single track line 

layout with bi-directional traffic. A macroscopic model is applied defining stations as nodes where 

trains can overtake and line in between as single track where no overtake can take place. Disruptions are 

defined as time slots in which a track between two stations cannot be used. The rescheduling actions 

that can be performed are the retiming and the reordering of trains. The objective function to be 
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minimized is the weighted sum of the difference between the actual arrival time at the destination and 

the scheduled arrival time at the destination for all trains. The MILP is solved for four different 

disruptions for a system of 6 trains and 5 stations using the GLPK solver. All instances could be solved 

to optimality within a second. 

More advanced approaches to control disruptions have not been part of research until very 

recently in [219] and [220]. In the first contribution a constraint optimization problem is developed 

directed to partial and full track blockades. Since every disruption is unique, the emergency timetables 

currently in use will most likely not be optimal in every situation. The underlying idea in the research is 

therefore to adjust the nominal timetable to provide an optimal train service during the disruption. The 

adjusted timetable must deviate as little as possible from the nominal one to minimize passengers 

inconvenience. The research focuses on finding a stable cyclic timetable during a disruption that utilizes 

the available infrastructure optimally. Only the phase in which the disruption persists is considered and 

transitional effects into and after the disruption are neglected. For a partial and full blockade two 

separate integer problems are formulated based on alternative graphs similar to the ones used by 

D’Ariano [207]. The objective function aims at minimizing the number of cancelled trains and delays as 

well as balancing the number of trains in both directions and in time. The algorithms are applied on two 

real-world cases of the Dutch railways. The timetables from the optimization are compared to the 

emergency timetable of the NS. With an allowable delay of zero minutes, the same timetable as the 

emergency timetable is found. However, when allowing a delay of five minutes for all trains major 

differences start to occur as less trains need to be cancelled and the frequencies of the train lines 

increase. 

 A Macro and a Mesoscopic MILP model of the 4.3.1

rescheduling problem 

The railway traffic and network are here considered as a discrete-event system with a limited 

number of resources. In particular, a railway network can be described as a directed graph where nodes 

are the states of the system, directed arcs are its state evolution due to the occurrence of an event. Each 

node represents the presence (absence) of one or more trains in a station, depending on the capacity 

limits of the considered station, i.e., the number of available tracks (limited resources) where trains can 

dwell or be shunted. Two consecutive nodes can be connected by one or two arcs, standing for uni- or 

bi-directional train traffic; the weight on the arcs represents the number of tracks devoted to the 

corresponding traffic direction. The transition between two consecutive nodes via an arc represents the 

occurrence of a train run (i.e., the event). The paths in the graph, connecting origin nodes to destination 

nodes via a sequence of arcs and intermediate nodes represent the railway lines. Trains provide the 
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transportation service for each line and are the entities moving in the system; the respective departures 

and arrivals are constrained by safety rules as well as performance requirements The movement of a 

train between two consecutive stations, i.e., the train run, is defined by a specific running time, while its 

stay in a station, that can be both a stop or a shunting action, is respectively defined by a dwell time, or 

a shunting time. In the nominal functioning of the network, each arrival and departure of the trains 

circulating in the system follows an offline scheduled timetable, i.e., the nominal timetable. In case of 

unexpected events, nominal timetables become useless and have to be properly rescheduled ensuring 

passengers a safe and fast transportation service.  

Considered the above, the railway management can be represented as a constrained optimization 

problem, and the railway network as an event-driven system, whose evolution is determined by the 

occurrence of train runs. More in detail, here two MILP models based on the work in [221] are 

considered to represent the rescheduling problem in case of full blockade between two consecutive 

stations. Both of the MILP models can be used to represent the nominal and the disrupted functioning of 

the network, but one provides a macroscopic description of the system while the other a mesoscopic 

one. The models include recovery actions to reschedule the disrupted traffic; the macroscopic model 

allows cancelation of train runs, short-turnings, and shunting actions; while the mesoscopic model 

allows in addition the representation of capacity limits for disrupted stations (i.e., number of available 

platforms and respective assignment of trains) and ordering of trains on platforms. As already reported, 

a full blockade consists in the complete block of the railway traffic between two consecutive stations in 

both directions. It causes the interruption of all the lines passing through the blocked tracks. 

Consequently, the trains of the interrupted lines can travel up to one of the two stations involved in the 

blockade and then have to be short-turned on their way back. More in detail, during the disruption, 

trains enter the two stations only in one direction, then are short-turned and used to perform outgoing 

train runs on the opposite direction that otherwise have to be canceled. Hence, short-turning is used to 

give continuity to the transportation service in the stations involved by the disruption. Differently, 

shunting actions consist in moving trains to/from shunting yards when they cannot be used for short-

turning.  

The objective of both the proposed optimization models is to minimize the number of 

cancelations of train runs and the offset from the nominal timetable in order to provide an effective 

service also during the disruption. The concept of train run is at the basis of the models. A train run is 

represented as a pair departure-arrival ( ),i id a  with i T∈ , where T is the set containing the indices of 

all train runs. The railway network can be divided into two main regions, one includes the area around 

the blocked tracks where traffic is directly affected by the blockade, and the other one includes the rest 

of the network. Then, set T is divided into two subsets: TND and TD. Set TND consists of all indices of 
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train runs that are not influenced by the disruption and can be performed as nominally scheduled or 

eventually might suffer from short secondary delays. Set TD consists of all indices of train runs that are 

directly affected by the disruption and can be canceled, or can be used for short-turning or shunting 

actions. The tracks of the network are represented by etr , with e E∈ , where E is the set containing the 

indices of all tracks. Each train run is associated to a track, the set of the indices of all train runs not 

affected by the disruption and associated to the same track is represented by e NDT T⊂ , with e E∈ , 

while the set of all train runs affected by the disruption and associated to the same track is represented 

by e DT T⊂ , with e E∈ . 

The dynamics of the system is described by constraints that synchronize the departures and 

arrivals. The constraints are divided in the following sets: 

- Timetable constrains  
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    (Eq. 4-54) 

where 
d

ir and 
a

ir are the nominal departure and arrival times of the i-th train run, as scheduled offline, 

while id  and ia are the departure and the arrival times if the i-th train run, belonging to lines that can be 

rescheduled. 

- Running time constraints 
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 (Eq. 4-55) 

where 
rt
iτ is the minimal nominal train run duration of the i-th train run. The running time constraint 

has two different formulations depending on the considered train run. If the train run belongs to NDT  

(first inequality) then the arrival time has to be larger than or equal to the sum of the corresponding 

departure time and minimal nominal running time. Otherwise, if the train run belongs to 
DT , then a 

binary cancelation variable ic will be associated to the train run along with a large negative constant β . 

If the variable ic  assumes value 1, there is no longer coupling between 
ia  and id , and the train run is 

canceled. Note that, the difference between the nominal departure and arrival times of a train run is 

often larger than the pure running time 
rtτ  

a d rt
i i ir r τ− ≥     (Eq. 4-56) 
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Equation 4.56 includes in this manner a recovery time in the run, which allows a train to sustain small 

delays.   

- Continuity constraints 
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  (Eq. 4-57) 

where ( , 1)
dw
i iτ +  is the dwell time of the train in the station connecting train run i to train run i+1. More in 

detail, the departure of the (i+1)-th train run has to be larger than or equal to the sum of the arrival of 

the i-th train run and the ( , 1)  
dw

i iτ +  dwell time in station, when both train runs belong to set NDT . 

Otherwise, if one or both train runs belong to DT a cancelation variable is included in the constraints 

along with a large negative constant β . When the cancelation variable has value 1, there is no longer 

coupling between 
ia  and 1id + . Note that, the dwell times in the timetable are the absolute minimum 

wait times at stations and the difference  

1 ( , 1)
d a dw

i i i ir r τ+ +− ≥     (Eq. 4-58) 

can be larger than the dwell time providing a buffer for short delays. 

- Headway time constraints 
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where ( , )
h
k lτ  is the headway time between two departures (arrivals) of two generic train runs, 

respectively k and l, that run on the same track; while ( , )k lu  is the binary headway ordering variable. As 

in the previous constraints, two different formulations are presented depending on the type of train run. 

If the train runs belong to e NDT T⊂  no cancellation variable is present in the formulation and two 

alternatives are considered: (1) if ( , )k lu  assumes value 1, then the departure (arrival) of train run k has to 

be higher than or equal to the sum of the departure (arrival) of train run l and the headway time ( , )
h
k lτ , 

otherwise (2) if ( , )k lu  assumes value 0 the departure of train run l has to be higher than or equal to the 

sum of the departure of train run k and the headway time ( , )
h
k lτ . In simple words, it holds that in case 

(1), the k-th train run departs (arrives) after than the l-th departure (arrival) with a corresponding time 

delay of at least the headway time ( , )

h

k lτ ; while in case (2) it holds the reverse. If one or both of the train 

runs belong to e DT T⊂ , a cancelation variable ci is included in the constraints along with a large 

negative constant β . When the cancelation variable has value 1, there is no longer coupling between 
kd  

( ka ) and ld  ( la ). 

- Short-turn constraints 

Consider a station
STs S∈ , where 

STS is the set of stations where trains can be short-turned during the 

full blockade, and two train runs i and j with the respective proceeding train run q(i) and preceding train 

run p(j). If q(i) and p(j) are canceled ( ( ) 1q ic = and ( ) 1p jc = ), the arrival ia  with si I∈  (where is sI  the 

set of incoming train runs in station s during the full blockade) can be combined in station s with the 

departure jd  with sj O∈  (where sO is the set of outgoing train runs from s during the full blockade) so 

that continuity is ensured to the transportation service (Figure 4-9 (b)).  
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The short-turn is then modeled with the following constraint: 
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   (Eq. 4-61) 

where ( , )
turn
i jτ is the short-turn time, i.e., the time necessary for the short-turn, and ( , )i jb  is the binary 

short-turn variable. The inequality constraint (Eq. 4-60) imposes that train run j and i can be connected 

only if both are not canceled and if the short-turn variable ( , )i jb  is equal to one, then the departure 
j

d  

can take place only after the arrival ia  is occurred and ( , )
turn
i jτ  is elapsed. Furthermore, the equality 

constraints (Eq. 4-61) impose that each arrival should be assigned to a unique departure and vice versa. 

It has to be noticed that when the station s is on the border of the disrupted region, then train run i and j 

belong to set TND and consequently ( )p jc  and ( )q ic   are equal to zero. 

 
(a) 

 

 

 

 

 

 

 

(b) 

Figure 4-9. (a) Nominal traffic in station s. (b) Short-turn in station s. 

 

- Shunting constraints 

As already stated, if the considered station has a shunting area for the rolling stock, then shunting 

actions can be used when trains are not available for short-turning and there is an unbalance between 

arrivals and departures. Note that short-turns are always preferable to shunting actions, because they 

require fewer resources, in terms of staff, time, and money. Consider a station ,ST Ss S∈  where 
,ST S

S is 

the set of stations where trains can be short-turned or shunted from/to the shunting yard. The following 

shunting variable is introduced: {0,1},in
i sy  i I∈ ∈  which is used to assign to a planned departure the 
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rolling stock in the shunting yard, and {0,1},out
j sy  j O∈ ∈  which is used for shunting the rolling stock of 

an arriving train, which will not continue its travel because of a cancelation. Then Eq. 4-62 holds: 
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  (Eq. 4-62) 

- Capacity constraints 

In the following constraints the capacity limit of the stations at each end of the disruption is taken into 

account. In particular, a short-turn on platform variable ,( , ) {0,1}p i jb ∈  is introduced, with si I∈ , 

sj O∈ , and sp P∈ , where 
sP  is the set of platforms for the considered station 

,ST S
s S∈ . Then the 

following capacity constraint holds: 

( , ) ,( , )i j p i j

p Ps

b b
∈

=  , with ,ST Ss S∈    (Eq. 4-63) 

which means that if an assignment ( , )i j  is set, it can be assigned to only one platform of the station s. 

- Ordering constraints  

If arrival i sa  with i I∈  is connected to departure  with j sd j O∈  and assigned to platform sp P∈  

( ,( , ) 1p i jb = ) and arrival  with k sa k I∈ is connected to departure  with l sd l O∈  and assigned also to 

platform 
sp P∈  ( ,( , ) 1p k lb = ), it is necessary to decide their order. Then, the ordering on platform 

variable ( , )x yω  is introduced, whose value is set to one when the arrival  with 
y s

a y I∈ , has to be 

scheduled after the departure x sd  with x O∈ .  

Hence, the ordering constraints are modeled as follows: 
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   (Eq. 4-65) 

where ( , )

ord

i lτ is the minimum ordering time imposed between arrival ia  and departure ld , the same holds 

for ( , )
ord
k jτ . The platform ordering constraint (Eq. 4-65) imposes that if both ( , )i j  and ( , )k l  short-turns 



 

146 

 

hold and are assigned to the same platform p, then only one of the corresponding ordering variables 

( , ) ( , )
 and 

l i j k
ω ω  can assume the value 1. 

Given the constraints of the railway system, both MILP rescheduling models can be written in the 

standard form as follows: 

minimize        

subject  to      

f =
≤

T
g x

Ax b
     (Eq. 4-66) 

 

with g a constant weight vector and x the decision variables vector. The elements of the weight vector g 

can assume different values depending on the purpose of the optimization. Here, it is considered the 

minimization of the delays spreading over the network as well as the minimization of the cancelations 

and, if included, of the shunting actions. The decision variables vector x can be composed by all or a 

subset of the previously described decision variables (i.e., departure, arrival, cancelation, headway, 

short-turn, shunting, and ordering variables) depending on the level of detail of the model (i.e., 

macroscopic or mesoscopic model).  

The mesoscopic model is written as follows: 

1 1 1

1 1 1

minimize        

subject  to      

f =
≤

T
g x

A x z
   (Eq. 4-67) 

 

where 1 =x [d a c u b y ω]  is the decision variables vector and includes the departure, arrival, 

cancellation, headway ordering, short-turn, short-turn on platform, and ordering on platform variables; 

and 1 =g [1 1 λ 0 0 γ 0]  is the constant vector with λ 0≫  in correspondence of the canceling 

variables, and γ 0≫ in correspondence of the shunting variables, so as to minimize cancellations and 

shunting actions. Note that each element of the vector g1 is still a vector and has the same dimension of 

the corresponding decision variable vector in x1.  

The objective function can be rewritten as: 

,

1 +  + ( + )

D ST S s s

in out
i i j k l

i T i T j T s S k I l O

f d a c y y
∈ ∈ ∈ ∈ ∈ ∈

= + ⋅ ⋅     λ γ
  

(Eq. 4-68) 

The constraints set includes equations from Eq. 4-54 to Eq. 4-65, i.e., the timetable, running time, 

continuity, headway time, short-turn, shunting, capacity, and ordering constraints. Consequently, the 
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coefficient matrix A and the constant vector z are obtained by rewriting the recalled constraints in the 

standard form. 

The macroscopic model is written as follows: 

2 2 2

2 2 2

minimize        

subject  to      

f =
≤

T
g x

A x z
    (Eq. 4-69) 

 

where 2 ]= 2x [d a c u b  is the decision variables vector and includes the departure, arrival, 

cancellation, headway ordering, short-turn, and ordering on platform variables; and 

1 =g [1 1 λ 0 0]  is the constant vector with 0λ ≫  in correspondence of the canceling variables. 

Note that the decision variables vector x2 includes a subset of the decision variables included in vector 

x1.  

The objective function can be rewritten as: 

2 +  

D

i i j

i T i T j T

f d a cλ
∈ ∈ ∈

= + ⋅  
   

(Eq. 4-70) 

The constraints set includes equations from Eq. 4-54 to Eq. 4-62, i.e., the timetable, running time, 

continuity, headway time, short-turn, and shunting constraints. Consequently, the number of constraints 

is reduced with respect to the problem in Eq. 4-67. Also in this case the coefficient matrix A and the 

constant vector z are obtained by rewriting the recalled constraints in the standard form. 

 The Bi-level Solving Algorithm for the Real-4.3.2

Time Rescheduling in case of Disruption 

The bi-level algorithm aims at finding a feasible timetable for the mesoscopic rescheduling 

problem in a short computation time, so that the resolution time can be suitable for a real-time control 

environment. The idea of finding an efficient solving algorithm, which can ensure a short computation 

time for the resolution of the recalled problem, derives from the result presented in [221]. In particular, 

in [221] the mesoscopic rescheduling problem is solved for a real case-study regarding a national 

railway network affected by a full blockade between two consecutive stations. In the presented work, 

the computation time required to find a feasible solution to the recalled problem largely overcome (i.e., 

more than 15 minutes) the time constraints required by a real-time control environment. 

The algorithm here proposed consists in two consecutive steps (i.e., Step 1 and Step 2) in which 

the two MILP problems presented in the previous section are solved and the reschedule timetable for 



 

148 

 

the mesoscopic problem is obtained. In particular, in Step 1 the macroscopic MILP problem in Eq. 4-69 

is solved and the optimal decision variables vector 2x  is obtained. Then, in Step 2 the mesoscopic 

MILP problem of Eq 4-67 is considered and the results of Step 1 (i.e., 2x ) are used to simplify its 

resolution, by reducing the respective search space. In particular, the mesoscopic model is modified by 

adding to the constraint set a number of n+m equality constraints that (1) assign value 1 to a subset n of 

the cancellation variables vector c of vector x1 and (2) assign value 0 to a subset m of the short-turn 

variables vector b of vector x1. The n variables of vector c in x1 that are set to 1, correspond to the n 

variables of vector c in x2 that assume value 1 in the result vector 2x , while the m variables of vector b 

in x1 that are set to 0, correspond to the m variables of vector b2 in x2 that assume value 0 in the result 

vector 2x . In other words, the cancellations of train runs assigned in Step 1 (i.e., cancellation variables 

set to 1) are kept in the optimization problem of Step 2 and the short-turns of train runs that have been 

excluded in Step 1 (i.e., short-turn variables set to 0) are kept unfeasible in the optimization problem of 

Step 2. 

 A Real Case Study 4.3.3

In this section is presented the case study that is used for the application of the rescheduling 

algorithm in case of disruption. In particular, it regards a disruption in the Dutch railway network on the 

track section between the stations Dordrecht and Lage-Zwaluwe, which is part of one of the three routes 

from the north to the south Netherlands. The trains that travel between these stations pass over the 

Mordijk bridge that is often affected by disruptions due to recurrent adverse weather conditions that 

block the normal railway traffic. Figure 4-10 represents the main lines of the Dutch railway network 

considered in the case study and the disruption is signaled with a red cross over the train section 

between stations Dordrecht (Dor) and Lage-Zwaluwe (Lzw). At station Dordrech trains of interregional 

and regional lines dwell whereas in station Lage-Zwaluwe only regional trains dwell. Directly south to 

Lage-Zwaluwe there is a junction for trains travelling to and from stations Roosendaal and Breda. The 

disruption at the bridge is a full blockade, meaning that both tracks are unavailable and trains from the 

south cannot travel further the station Lage-Zwaluwe. Although normally only regional trains stop at 

Lage-Zwaluwe, in the case of a full-blockade it will also be the end point of interregional trains as 

passengers will travel by bus from this station to Dordrecht during the disruption. The trains will be 

turned at Lage-Zwaluwe and return to their starting destination. Trains starting from the north will have 

Dordrecht as endpoint and will be turned here as passengers will continue their trip to Lage-Zwaluwe 

by bus. The turning of trains at stations Dordrecht and Lage-Zwaluwe will lead to local deviations from 

the nominal timetable that can cause secondary delays for the rest of the network. The case study aims 

at calculating the rescheduled timetable for the disruption period that is feasible for the entire network 
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and therefore for trains running in the network are taken into account. The timetable that is used is taken 

from part of the national timetable and consists of all train lines that run during the afternoon of a 

weekday. During rush hours in the morning and evening some lines run at higher frequencies and some 

extra lines are introduced to temporary increase the transport capacity of the network but these 

addictions are not taken into account here. 

 

 

Figure 4-10.  Main lines of the Dutch railway network.  The disrupted train section between Dordrecht and Lage-Zwaluwe is signaled 

with a red cross. Rot=Rotterdam, Dor=Dordrecht, Lzw= Lage Zwaluwe, Rsd=Rosendaal, Bre=Breda, Ehv=Eindhoven 
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Table 4-14.  Lines affected by the disruption. 

Line Origin Destination Times/hour Blocked 

IC1900 Den Haag Venlo 2 y 

IC2151 Amsterdam CS Vlissingen 2 y 

IC2249 Amsterdam CS Dordrecht 2 n 

SPR5000 Den Haag CS Breda 2 y 

SPR5100 Den Haag CS Roosendaal 2 y 

IC9240INT Roosendaal Amsterdam CS 1 y 

 

The train lines that are directly affected by the blockade at the defined location as well as the 

lines that have stations Dordrecht and Lage-Zwaluwe as final destination are listed in Table 4-14. All 

lines in Table 4-14 run twice every hour in both directions except for the international line IC9240 that 

runs from and to Brussels but has Roosendaal as its origin/destination in the Netherlands. This 

international line is not considered in this case study as it would not be turned around in case of a 

disruption but rerouted instead to reach its destination. 

Due to capacity limitations at the turning stations Dordrecht and Lage-Zwaluwe or because 

trains cannot be turned for a return trip, trains of affected lines might need to be cancelled before 

reaching their final destination. The current approach by manual dispatchers is often to partially cancel 

trains instead of cancelling them completely to minimize the inconvenience for passengers. In the case 

study the same approach will be used and in a certain area around the disruption trains of the affected 

lines will have the option of being cancelled. Further from the disruption, trains from these lines must 

keep running just as trains from all other lines. In Figure 4-10 the network is shown depicting in white 

the track sections where trains can be cancelled and in black the tracks on which cannot. Certain lines 

perform consecutive train runs on white track sections and if a train of these lines is cancelled then all 

these consecutive runs are cancelled together. 

A. Modelling definitions and assumptions 

The following assumptions and definitions are considered when modeling the system: 

1. The end time of the disruption is known in advance. In reality the end time of the disruption may 

be unknown until the cause has been found. In that case an infinite disruption time can be 

assumed and a feasible timetable must be calculated without an end time. When the end time is 

known, the timetable must be recalculated once more to transition the traffic back towards the 

nominal timetable. 
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2. All train runs taking place before the disruption are assumed to be on time. In reality delays might 

be presented in the network at the start of the disruption. 

3. The train runs that make up the lines from the timetable are all allocated to a certain track number. 

Although there are two or more tracks between all stations considered in this work is not possible 

for trains to change tracks. Train runs must always take place on the track they are scheduled to 

according to the timetable 

4. Rolling stock cannot be exchanged between trains from different lines but can be split o combined 

for specific train runs according to the timetable. 

5. Consecutive train runs of directly affected lines can be cancelled on the white tracks. Trains can 

therefore be cancelled at stations Rotterdam, Roosendaal, Breda, and Eindhoven. Train runs of 

these lines on other tracks cannot be cancelled and must always continue. 

6. Trains running on the same track must hold a safe distance to each other which is enforced by 

headway constraints. The standard headway time between two trains is three minutes. 

7. Trains that are turned at stations Dordrecht and Lage-Zwaluwe will have a minimum turning time 

of five minutes before their departure. 

8. Trains arriving at stations are able to reach every platform from every track. 

9. Rolling stock of all train lines can arrive at all platforms of the stations adjacent to the disruption. 

10. Although rerouting trains might be an option in some situations, it is not considered in this work 

and therefore the international train IC9240 is not taken into account in the problem. 

11. Train runs taking place at the blocked tracks at the start of the disruption continue their run as 

normal. Planned departures on these tracks after the start of the disruptions are cancelled. 

12. The objective of the optimization is the minimization of the sum of delays and number of 

canelled trains in the network, and the minimization of shunting actions if included. 

B. Results 

The bi-level solving algorithm is then applied to the considered case study. The application of 

this algorithm, which considers both the macroscopic and mesoscopic models of the rescheduling 

problem, leads to a twofold advantage. On one hand it strongly reduces the required computation time 

with respect to the resolution of the full mesoscopically described problem. On the other hand, it allows 

the inclusion of the station scheduling model, which encounters the capacity limitations in stations 

Dordrecht and Lage-Zwaluwe, that otherwise are neglected in the macroscopic formulation of the 

problem. Obviously, the amount of available platforms in station poses a limitation to the number of 

short-turns that can be performed and increases the number of cancelled train runs. Nevertheless, the 

obtained results are more realistic, and the limitations of the macroscopic description of the problem are 

overcome.  
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The algorithm is performed for a scenario having a time window of 300 minutes and a 

rescheduling horizon of 200 minutes, with a disruption starting at minute tds=100 and ending 120 

minutes later at minute tde=220. The dimensions of the two MILP problems is reported in Table 4-15. 

Table 4-15.  MILP problems dimensions. 

Macroscopic MILP model 

Nr. of constraints  29104 

Nr. of variables 9719 

Mesoscopic MILP model 

Nr. of constraints  53207 

Nr. of variables 12237 

 

 

 

 

Figure 4-11.  The rescheduled graphical timetable 
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Figure 4-11 shows a time-distance diagram of all tracks on the route from stations Den Haag CS to 

Venlo. All train lines that use tracks on this route are depicted in the figure, include all affected lines in 

the disruption region. Trains that overtake each other are allowed because their lines that are crossing 

are running on track sections that have four tracks between stations. Train runs that take place between 

minute 0 and 100 are shown in grey and lie in the past, they do not participate to the rescheduling 

process. Short-turnings and then assignments between arrival and departure events are shown in brown.  

Figure 4-12 and Figure 4-13 depict the platform schedules corresponding to the solution in Figure 4-11 

resulting from the bi-level resolution. Figure 4-12 shows the schedule for the six platforms of station 

Dordrecht and Figure 4-13 the schedule for the six platforms of station Lage-Zwaluwe. For both 

stations a feasible schedule is found with no overlapping between consecutive dwell periods. The 

minimum platform headway time of three minutes is respected between the train dwells at each 

platform. It should be noticed that the rescheduling process is not limited to the disruption but continues 

until the nominal timetable is again suitable. This is because a transition period after the disruption is 

considered during which train runs can still be cancelled and assigned. 

The final solution is found with the Gurobi solver in 90 s on average, on an Intel Quadcore 

2.4Ghz and 8 Gb Ram (still reducible avoiding output in the command window), which is strongly 

lower than the 18 minutes necessary for the resolution of the only mesoscopic MILP problem and 

acceptable for the real-time rescheduling purposes.  

 
Figure 4-12.  The platform assignment in station Dordrecht 
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Figure 4-13.  The platform assignment in station Lage Zwaluwe 
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Chapter 5

 

5 Conclusions and future works 

This PhD thesis presents the results of my PhD research on Information and Communication 

Technologies (ICTs) in the context of Smart Cities, with particular attention to the study, design, and 

the development of advanced models and control techniques for intermodal freight transport terminals 

and railway transport.  

In the first part of this work, the viability of discrete event methods for smart transportation 

systems is discussed. On one hand, it is provided a review of contributions on Petri nets for freight 

transportation systems. Papers are classified according to the addressed managerial problem, namely 

strategic/tactical or operational decision-making level problem, and the adopted PN formalism. It is also 

debated the approaches’ feasibility, discussing contributions and limitations, and identifying future 

research directions to enhance the successful application of PNs in freight logistics and transportation 

systems under a smart transportation system perspective. The conducted investigation clearly shows that 

Petri nets are a valuable mathematical instrument for the resolution of the main managerial problems of 

freight transportation systems, however in some cases the literature contributions are limited (e.g. in the 

case of air transport). Moreover, it emerges a lack of contributions regarding the employment of fuzzy, 

continuous and hybrid (discrete and continuous) PNs, as well as a potential in the integration with other 

tools, e.g., genetic algorithms and multi-agent systems. On the other hand, an overview on the discrete 

event MILP models for railway systems is provided, highlighting their practical relevance in solving the 

railway traffic rescheduling problem, which is one of the most frequently encountered problems at the 

operational decision-making level.  

In Chapter 3, it is demonstrated how the Petri net formalism can be used to model, simulate, 

analyze, and control intermodal freight transport terminal. First, a general, modular, and systematic 

modeling framework for IFTTs is proposed, to be used by decision makers in IFTT performance 

evaluation and optimization at operational level. Using a modular bottom-up approach, the subsystems 

constituting a generic intermodal terminal are identified. All subsystems are modeled by TPN modules 

and can be interconnected into a complete model by means of a systematic technique, allowing 
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representing the whole IFTT and investigating the overall system dynamics. The model effectiveness is 

shown by means of two case studies - one from the literature and a real case study - evaluating the 

terminal efficiency in terms of performance indices and bottlenecks identification in a short 

computation time. Hence, simulating the proposed model in a computer-based environment, it turns out 

to be a decision support tool to assess the overall terminal management strategy, e.g., to assess the 

feasibility of alternative options when a new potential market is considered. In the subsequent section, a 

modeling and management framework for IFTTS based on first-order hybrid Petri nets is presented. 

This allows evaluating the terminal performance in closed-loop, while optimizing the system dynamics 

by simply solving linear programming problems. The approach may be used by the terminal decision 

maker offline, to take decisions about the terminal resources, or online, to solve 

congestions/malfunctions. The effectiveness of the method is validated on a real case study under 

different scenarios. Finally, it is shown how TPNs can be integrated with the DEA multi-criteria 

optimization technique to support decision makers in solving some of the most common IFTTs resource 

planning problems. In particular, such techniques are combined to dimension the number of resources 

used to transfer the intermodal transport units and to dimension the capacity/frequency of the 

transportation means employed for the intermodal delivery service. The timed Petri net model of a rail-

road terminal is used to carry out Monte Carlo simulations considering various solving alternatives in 

case of critical scenarios and a cross-efficiency DEA technique is applied to rank the alternatives in 

terms of their impact on the terminal performance. Future developments can consider high-level Petri 

Nets to further refine the techniques and to allow solving more specific optimization problems. It will 

be also fundamental to investigate how uncertainty on some parameters can be properly taken into 

account, e.g., by applying the stochastic or fuzzy cross-efficiency Data Envelopment Analysis 

techniques. 

Chapter 4 presents innovative techniques for the railway traffic rescheduling. First, a DSS for 

real-time management of a mixed-tracked railway network is presented. The DSS employs a 

rescheduling MILP model combined with a heuristic procedure, which extends the schedule after the 

optimization time horizon to guarantee the absence of conflicts in a short computation time. In the 

subsequent section a self-learning decision making procedure is proposed for real-time rescheduling of 

railway traffic under disturbances in mixed-tracked railway networks with acyclic. The technique 

combines a MILP model and a heuristic procedure to provide in real-time a feasible rescheduled 

timetable. Then, an offline self-learning procedure based on a cross-efficiency fuzzy DEA allows a 

performance evaluation of the obtained solution in order to properly update the database of timetables to 

be used in case of future disturbances of the same type. The technique is useful for both railway 

companies (to provide their customers with on-time services, reduce sanctions or penalties, and avoid 

possible errors caused by a manual rescheduling) and passengers (to reduce waiting times and delays or 
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to limit travel discomforts). Future developments will consider the extension of the real-time 

rescheduling model to the case of multiple and overlapping disturbances occurrence. In the last section 

of Chapter 4, an innovative bi-level solving algorithm for real-time rescheduling of railway traffic in 

case of disruption is proposed. The rescheduling problem is modelled as a MILP model whose objective 

is to minimize delays, cancellation, and if allowed also shunting of trains in the network, respecting 

safety constraints in a short computation time. The innovative bi-level algorithm solves sequentially two 

optimization MILP problems. The first level optimization considers a macroscopic MILP model of the 

disrupted network in which it is ideally assumed that the stations involved by the disruption have 

infinite capacity and no platform constraint is necessary. The second level optimization considers a 

mesoscopic MILP model that includes the results of the first level optimization together with capacity 

constraints (i.e., including shunting-actions, short-turns with platform assignment, and ordering actions 

on platforms). The application of this algorithm, which considers both the macroscopic and mesoscopic 

models of the rescheduling problem, leads to a twofold advantage. On one hand it strongly reduces the 

required computation time with respect to the resolution of the full mesoscopically described problem. 

On the other hand, it allows the inclusion of the station scheduling model, which encounters the 

capacity limitations in disrupted stations, that otherwise are neglected in the macroscopic formulation of 

the problem. Obviously, the amount of available platforms in station poses a limitation to the number of 

short-turns that can be performed and increases the number of cancelled train runs. Nevertheless, the 

obtained results are more realistic, and the limitations of the macroscopic description of the problem are 

overcome. Further developments will consider the inclusion of the bi-level algorithm in a distributed 

optimization framework based on model predictive control, which shall solve the mesoscopic 

rescheduling problem in a distributed optimization perspective. 
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Appendix 

The aim of this section is to offer, to the interested reader, clear guidelines to autonomously 

perform the previously presented simulations and eventually to extend and improve the proposed 

research work on intermodal terminals, using the Petri net formalism. In particular, some more details 

are here provided to model, analyze, control, and manage intermodal terminals by using the already 

recalled HYPENS tool [170] in the Matlab environment.  

It has to be noticed that the adoption of the HYPENS tool for the simulation of the analyzed rail-

road terminal is motivated by its various advantageous features. First and foremost, HYPENS is an open 

source tool that allows to simulate timed discrete, continuous, and hybrid Petri nets; second, it has been 

developed in Matlab, hence it allows designers and users to take advantage of several functions and 

structures already defined in Matlab, such as optimization routines, stochastic functions, matrices and 

arrays; third, the tool can also be easily interfaced with other Matlab programs and be used for analysis 

and optimization via simulation; last but not least, the large set of plot functions available in Matlab 

allow one to represent the results of the simulation in a clear and intuitive way.  

The next subsections provide details on the procedures to be performed in Matlab and HYPENS 

in order to:  

1. modularly model a generic intermodal terminal using the TPNs or the FOHPNs formalism; 

2. evaluate the performance of the modeled intermodal terminal; 

3. control the behavior of the terminal under study using FOHPNs. 

In particular, the structure of the corresponding Matlab programs is provided together with a 

description of the newly defined and HYPENS functions. Subsection A focuses on the necessary 

procedure for modeling and performance evaluation of the GTS company rail-road terminal modelled 

via TPNs, whereas Subsection B focuses on modeling and control of the terminal via FOHPNs.  

A. TPN modeling and performance evaluation of IFTTS using Matlab 

and HYPENS. 

Section 3.2 presents a modular modeling technique based on the TPN formalism, which can be 

used to represent and analyze a generic IFTT. The approach considers IFTTs as discrete event systems 

composed by a set of interacting subsystems, each of which representable via TPNs. In particular, 

eleven basic subsystems are identified for the representation of a generic IFTT: (1) highway; (2) 

tollbooth; (3) railway; (4) maritime/river port or airport; (6) access road; (7) parking or yard storage 

area; (8) customs; (9) ITUs maintenance area, (10) opening/closing of an IFTT subsystem; (11) 
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checkpoint. For each of the above listed subsystems it is provided the corresponding TPN subnet. The 

TPN of the whole system is than obtainable as a bottom-up composition of the TPN models of the 

considered subsystems, connected via a standard interfacing net. The TPN model then can be used to 

perform simulation and analysis of the terminal under study. 

The case studies presented in Section 3.2 are both modeled and analyzed following this 

procedure. In particular, the modular bottom-up approach of the technique is applied also for the 

implementation of the corresponding Matlab program. In effect, the aim of the developed research is to 

propose a general modeling technique and consequently a program for simulations, which can be 

reusable without loss of effectiveness. Considering the real case-study, i.e., the rail-road terminal of the 

Italian GTS company, five types of subsystems are selected for the representation of the whole terminal: 

1. access road for semi-trailer trucks unloading ITUs, 2. access road for semi-trailer trucks loading 

ITUs, 3. yard storage area, 4. railway with separate ITUs load/unload; 5. opening/closing for 

days/hours. These basic subsystems, properly represented via TPNs and customized, are then connected 

to convert in a TPN model the logical scheme of the intermodal terminal reported in Figure Appendix 1. 

In the Matlab environment, the described modeling phase is implemented by defining specific functions 

for the definition of each of the required subnets in the TPN formalism. Then, the subnets obtained are 

connected into a unique network, which is used for the simulation and performance analysis of the 

behavior of the terminal using a Montecarlo approach. 

 

 

 

Figure Appendix 1. – Logical scheme of the GTS rail-road terminal. 
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Structure of the Matlab program 

The structure of the program used for the rail-road IFTTs modeling and simulation in Section 

3.2.2 is as follows: 

Evolution.m is the main script-file and it runs in sequence the following functions: 

1. OpenTerminal.m; 

2. OpenDaysTerminal.m; 

3. In_Semitrailers.m; 

4. Out_Semitrailers.m; 

5. Yard.m; 

6. Line_Bologna.m; 

7. Line_Piacenza.m; 

8. OpenDaysPiacenza.m; 

9. OpenDaysBologna.m; 

10. Terminal.m; 

11. Make_HPN.m 

12. Simulator_HPN.m 

Follows the explanation of the above listed functions. 

Note that, since the program is based on the use of the HYPENS tool that considers hybrid PNs, 

all the newly defined functions usually include empty variables related to the continuous and hybrid 

parts of the network that do not exist for the considered TPN model.  

OpenTerminal 
 

Purpose 

 

This function defines the opening/closing for hours subnet that enables the daily opening and 

closing of the IFTT.   

Synopsis 

 
Net_array_OpenTerminal=OpenTerminal(); 

Description 

 

Parameters defined in function OpenTerminal are loaded into the workspace. The function has 

no inputs but only outputs. More in detail:  
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Net_array_OpenTerminal= {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha}. 

where  

 

PreCC Preincidence matrix for continuous places and transitions (empty). 

PreCD Preincidence matrix for continuous places and discrete transitions (empty). 

PreDC Preincidence matrix for discrete places and continuous transitions (empty). 

Pre_DD Preincidence matrix for discrete places and discrete transitions. 

PostCC Postincidence matrix for continuous places and transitions (empty). 

PostCD Postincidence matrix for continuous places and discrete transitions (empty). 

PostDC Postincidence matrix for discrete places and continuous transitions (empty). 

Post_DD Postincidence matrix for discrete places and discrete transitions. 

M0C Initial marking of continuous places. 

M0D Initial marking of discrete places. 

vel Matrix of speed vectors associated to continuous transitions (empty). 

v Vector of discrete transitions type (1=deterministic, 2=stochastic exponential).  

D Matrix of the time parameter associated to transitions. 

s Vector of the number of servers associated to discrete transitions. 

alpha Vector of priorities associated to discrete transitions. 

 

Note that, in matrix D the time parameter associated to deterministic transitions is a constant 

value while the parameter characterizing the stochastic exponential transitions is the average value 

associated to the exponential distribution characterizing the transition. 

 

OpenDaysTerminal, OpenDaysBologna, OpenDaysPiacenza  
 

Purpose 

 

The function OpenDaysTerminal defines the opening/closing for days subnet that enables the 

weekly opening and closing of the IFTT.  Note that, in the same function, properly customized, is used 

for the opening/closing for days of the railway access from/to Bologna/Piacenza to the IFTT  (i.e., by 

properly setting the parameters of the subnet).  

Synopsis 

 
Net_array_OpenDaysTerminal=OpenDaysTerminal(); 

Description 

 

Parameters defined in function OpenDaysTerminal are loaded into the workspace. The function 

has no inputs but only outputs. More in detail:  

Net_array_OpenDaysTerminal= {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha} 

where it still holds the meaning of the previously described variables.  
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In_Semitrailers 
 

Purpose 

 

This function defines the subnet representing the flow of outgoing semitrailers in the IFTT.  

Note that, in the program this function is used as many times as is the number of subnets representing 

outgoing semitrailers. 

Synopsis 

 
Net_array_In_Semitrailers=In_Semitrailers(); 

Description 

 

Parameters defined in function In_Semitrailers are loaded into the workspace. The function has 

no inputs but only outputs. More in detail:  

Net_array_In_Semitrailers= {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha} 

where it still holds the meaning of the previously described variables.  

Out_Semitrailers 
 

Purpose 

 

This function defines the subnet representing the flow of incoming semitrailers in the IFTT.  

Note that, in the program this function is used as many times as is the number of subnets representing 

incoming semitrailers. 

Synopsis 

 
Net_array_In_Semitrailers=In_Semitrailers(); 

Description 

 

Parameters defined in function In_Semitrailers are loaded into the workspace. The function has 

no inputs but only outputs. More in detail:  

Net_array_In_Semitrailers= {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha} 

where it still holds the meaning of the previously described variables.  



 

163 

 

Yard 
 

Purpose 

 

This function defines the subnet representing the yard storage area of the IFTT.   

Synopsis 

 
Net_array_Yard=Yard(); 

Description 

 

Parameters defined in function Yard are loaded  into the workspace. The function has no inputs 

but only outputs. More in detail:  

Net_array_Yard= {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha} 

where it still holds the meaning of the previously described variables.  

Line_Bologna and Line_Piacenza 
 

Purpose 

 

The function Line_Bologna defines the subnet representing the flow of incoming/outgoing ITUs 

by railway in the IFTT from/to Bologna.  Note that, in the program the same function properly 

customized is used to define the subnet representing incoming/outgoing ITUs by railway in the IFTT 

from/to Piacenza (i.e., by properly setting the parameters of the subnet).  

Synopsis 

 
Net_array_In_Semitrailers=In_Semitrailers(); 

Description 

 

Parameters defined in function Line_Bologna are loaded into the workspace. The function has 

no inputs but only outputs. More in detail:  

Net_array_Line_Bologna = {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha} 

where it still holds the meaning of the previously described variables.  
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Terminal 
 

Purpose 

 

This function connects by the routing nets all the subnets of the considered IFTT.   

 

Synopsis 

 
Net_array_Terminal=Terminal(Net_array_OpenDaysTerminal, 

Net_array_OpenDaysTerminal, Net_array_InSemitrailers, Net_array_OutSemitrailers, 

Net_array_Yard,  Net_array_LineBologna, Net_array_LinePiacenza, 

Net_array_OpenDaysBologna, Net_array_OpenDaysPiacenza); 

Description 

 

Parameters defined in function Terminal are loaded into the workspace. The function has no 

inputs but only outputs. More in detail:  

Net_array_Terminal= {PreCC,PreCD,PreDC,Pre_DD,PostCC,PostCD, 

PostDC,Post_DD,M0C,M0D,vel,v,D,s,alpha} 

where it still holds the meaning of the previously described variables. 

Make_HPN 
 

Purpose 

 

This function of the tool HYPENS creates the TPN of the whole network.   

Synopsis 

 
[Pre,Post,M,vel,v,D,s,alpha]=make_HPN(net,1); 

Description 

 

Parameters defined in function make_HPN are loaded into the workspace. The function has in 

input the net vector, i.e., the net array of the whole network, and produces as output the matrices and 

vectors of the network where the continuous and discrete parts have been assembled. For more details 

on the function refer to the HYPENS manual [170]. 

Simulator_HPN 

 
Purpose 

 

This function of the tool HYPENS can simuate the dynamics of the TPN over a defined time 

interval.   
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Synopsis 

 
evol=simulator_HPN(Pre,Post,M,vel,v,D,s,alpha,time); 

Description 

 

Parameters defined in function simulator_HPN are loaded into the workspace. The function has 

in input the matrices and vectors of the network, and the simulation interval, then, it produces in output 

the cell array evol containing information over the system evolution. For more details on the function 

refer to the HYPENS manual [170]. 

The rail-road IFTTs performance evaluation in Section 3.2.2 is implemented by the function 

MonteCarlo 

 
Purpose 

 

This function iteratively performs the simulation of terminal behavior over a fixed number of 

replications.   

Synopsis 

 
Av_param=MonteCarlo(replications); 

Description 

 

The function has in input the number of replications to be performed using the evolution.m 

function. The results of each replication are then used to calculate the average value of the parameters 

necessary for the performance evaluation of the terminal. 

B. FOHPN modeling, performance evaluation, and control of IFTTS 

using Matlab and HYPENS. 

The structure of the Matlab program used for modeling, performance evaluation, and control of 

IFTTS via FOHPNs is similar to the one previously described in Subsection A. Also in this case a 

modular approach is considered for the definition of the whole network; each subnet is obtained by 

proper functions and then connected to the others in a whole so as to simulate the dynamic behavior of 

the system under analysis. The control of the system is obtained by properly defining the weights of the 

objective functions to be optimized at each macroevent of the network. This is obtained by using an 

overloaded version of the simulator_HPN function. 
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Simulator_HPN 
 

Synopsis 

 
evol=simulator_HPN(Pre,Post,M,vel,v,D,s,alpha,time,J) 

Description 

 

Parameters defined in function simulator_HPN are loaded into the workspace. The function has 

in input the matrices and vectors of the network, the simulation interval, and the weight vector of the 

optimization function J. Then, it produces in output the cell array evol containing information over the 

system evolution. For more details on the function refer to the HYPENS manual [170]. 
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