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ABSTRACT 

Epilepsy is one of the major neurological disorders that affects more than 50 million 
people around the world; it is characterized by unpredictable seizures due to an abnormal 
electrical activity in the brain. 

In this thesis nocturnal epilepsy has been investigated. In particular, Nocturnal Frontal 
Lobe Epilepsy (NFLE), that is a form of epilepsy in which seizures occur predominantly 
during sleep with symptoms including nocturnal awakenings, dystonic and tonic postures 
and clonic limb convulsions.  

The electroencephalographic (EEG) signals, which record the electrical activity of the 
brain, are used by neurologists to diagnose epilepsy. However, in almost 50% of NFLE cases, 
the EEG does not show abnormality during seizures, making the neurologists work to 
identify the epileptic events very difficult, thereby requiring the support of video recording 
to verify the epileptic events, with a subsequent time-consuming procedure. 

In literature few scientific contributions address the classification of nocturnal epileptic 
seizures. In this thesis, the automatic systems, both customized for single patient and 
generalized have been developed to find the best nocturnal epileptic seizure detection 
system from EEG signals. The combination of feature extraction and selection methods, 
associated to classification models based on Self Organizing Map (SOM), have been 
investigated following the classical machine learning approach.  

The ability of SOM to represent data from a high-dimensional space in a low-dimensional 
space, preserving the topological properties of the original space, has been exploited to 
identify nocturnal epileptic seizures and track the temporal projection of the EEG signals on 
the map. The proposed methods allow the definition of maps capable of presenting 
meaningful information on the actual brain state, revealing the mapping potential of 
clustering data coming from seizure and non-seizure states.  

The results obtained show that the patient-specific system achieves better performance 
than a patient-independent system. Moreover, comparing the performances with those of a 
binary classifier, widely used in epileptic seizure detection problems, the Support Vector 
Machine (SVM), the SOM model achieves good and, for some patients, higher 
performances.  

In particular, the patient-customized system using SOM model, reaches an average value 
of sensitivity and specificity equal to 82.85% and 89.92%, respectively; whereas the SVM 
classifier achieved an average sensitivity and specificity equal to 82.11% and 82.85%, 
respectively, suggesting the use of SOM model as a good alternative for nocturnal epileptic 
seizure detection.  
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The discriminating power of SOM and the possibility to follow the temporal sequence of 
the EEG recordings on the map can provide information on an imminent epileptic seizure, 
highlighting the possibility to promote therapies aimed at rapid and targeted disarming the 
seizures. 
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1  INTRODUCTION 
An epileptic seizure describes a variety of neurological symptoms due to an abnormal, 

synchronized and prolonged electrical discharge in the brain. It affects approximately 1% of 
the world's population, without substantial differences of race or nationality. The 
identification of epileptic seizures is of decisive importance for the improvement of the 
quality of life and for the socio-psychological development of the patients.  

The Nocturnal Frontal Lobe Epilepsy (NFLE) is a form of epilepsy in which seizures occur 
predominantly during sleep. The disease usually begins during childhood or adolescence, 
and then extends into adult life. Patients present different symptoms that include sudden 
nocturnal awakenings, placement of the arms or legs in bizarre postures, dystonic and tonic 
postures and clonic limb convulsions, leading to chronically disrupted sleep and daytime 
sleepiness.  

The most powerful cure for NFLE is the assumption of carbamazepine. Nonetheless, not 
all patients have a successful response to the therapy. For this poor reaction to the therapy, 
several studies have been conducted on refractory epilepsy during these decades. The 
ability to early and accurately detect seizures can promote therapies aimed at rapid and 
targeted treatment of them. 

Among the diagnostic measurements used by doctors to recognize the epilepsy, the 
electroencephalographic (EEG) recordings are widely used in machine learning techniques 
to identify the epileptic seizures. To date, several algorithms have been proposed with the 
aim to automatically detect different kinds of epileptic seizures. The combination of feature 
extraction and selection methods associated to classification models were studied with 
good results. Nonetheless, very few contributions are proposed to detect nocturnal 
epileptic seizures.  

In the present thesis, different systems based on the Self Organizing Map (SOM) have 
been investigated for detection of nocturnal epileptic seizures using EEG signals. The goal is 
to define a patient-dependent system capable of early detecting nocturnal seizures of the 
subjects affected by nocturnal epilepsy with the aim to support the neurologists with 
seizures identification usually done manually by means of video and EEG recordings. 
Moreover, the early detection system would also be able to prevent accidents and minimize 
the occurrence of injuries [1]. 

The mapping method allows us to project multi-dimensional data into a 2D-dimensional 
space, maintaining the topological properties of the original space. This advantage has been 
used to display and identify the seizure (SZ) and no-seizure (NS) regions. 

Additionally, the analysis of the trajectory has provided information on an eventual 
impending of the seizure events.  
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1.1 Outline of the thesis 

The thesis is organized as follows: 
• Chapter 2 reports an overview of the brain function and a classification of 

seizure types, focusing on the description of the Nocturnal Frontal Lobe Epilepsy. 
• Chapter 3 describes the methodologies used by doctors to diagnose the epilepsy 

disease. In particular, the electroencephalography (EEG), electromyography 
(EMG), electrooculography (EOG), electrocardiography (ECG) and 
magnetoencephalography (MEG) are presented. 

• Chapter 4 reports the sleep structure and the rules for scoring the different 
stages of the sleep, for both sleep macrostructure and sleep microstructure. 

• In Chapter 5 an overview of the machine learning methods typically used in 
epileptic seizure detection systems are described based on the steps of the 
machine learning process. 

• In Chapter 6 a summary of the Machine Learning approaches reported in 
literature for the detection of epileptic seizures, are described. 

• Chapter 7 presents the patient-specific systems proposed for the detection of 
nocturnal epileptic seizures.  

• Chapter 8 reports the patient--independent systems developed for the detection 
of Nocturnal Frontal Lobe Epileptic seizures. 

• In Chapter 9 the conclusions are drawn. 
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2  EPILEPSY 
Epilepsy is one of the major neurological disorders and, according to the World Health 

Organization (WHO), it affects more than 50 million people around the world. 
Epilepsy is defined by the International League Against Epilepsy (ILAE) and the 

International Bureau for Epilepsy (IBE) as the occurring of a sporadic epileptic seizure 
associated to an enduring disturbance of the brain sufficient to cause other seizures, where, 
the epileptic seizure is described as a transient occurrence of signs and/or symptoms due to 
abnormal excessive or synchronous neuronal activity in the brain [2]. 

In 2014, the ILAE extended the definition of epilepsy in an Official Report [3], establishing 
a practical guideline for clinical diagnosis. The disease is indicated as epilepsy if one of the 
following conditions is verified: 

1. at least two unprovoked (or reflex) seizures occurring, separated by more than 
24 h; 

2. one unprovoked (or reflex) seizure and a probability of further seizures similar to 
the general recurrence risk (at least 60%) after two unprovoked seizures, 
occurring over the next 10 years; 

3. diagnosis of an epilepsy syndrome. 

Additionally, the medical diagnosis of epilepsy can be considered as concluded for 
individuals who had an age-dependent epilepsy syndrome but are now past the applicable 
age or those who have remained seizure-free for the last 10 years, with no seizure medicines 
for the last 5 years [3]. 
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2.1  Brain and Communication 

 
Fig. 2-1 Representation of the neuron [4]. 

A typical healthy human brain contains around 100 billion of neurons, more precisely, 
from a study carried out by Brazilian Universities [5], they are on average 86 billion. Each 
neuron may be connected to up to 10,000 other neurons, passing signals to each other via 
as many as 1,000 trillion synaptic connections. 

The fundamental functional unit of the nervous system is devoted to receive and 
transmit information. Its morphological structure, described in Fig. 2-1, is made up of a 
cellular body, called also soma, from which dendrites and a single axon are branched. 

Dendrites are characterized by an arborized structure capable to receive the nerve pulse, 
whereas the axon, which is a long cellular filament, conveys information away from the cell 
body. 

Axons can be coated by a lipid substance, the myelin, which plays the role to protect and 
electrically isolate from their environment, increasing the velocity of information 
transmission. 

Every neuron at rest is polarized, due to a difference concentration of ions across its 
membrane. The presence of a lower positive ions concentration, mostly given by potassium 
ions (K+), inside the membrane, compared to the extracellular positive ions concentration, 
given in the majority part by sodium ions (Na+), leads to a trans-membrane electrical 
potential, typically around -60 mV. 

An alteration of the permeability membrane determines a perturbation of the electrical 
balance, permitting the temporary flux of ions inside the membrane and a consequent 
variation of trans-membrane electric potential. If the variation is higher enough to 
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overcome the threshold, an action potential, also called nerve pulse, is generated and 
transmitted along the axon. 

The communication between the nerve cells takes place via synapses. Depending on the 
connection between the pre-synaptic and post-synaptic terminals, synapses can be defined 
as chemical or electrical. 

In the case of chemical synapses, the action potential of pre-synaptic cell causes the 
release of a neurotransmitter, which spreads into the extracellular space (normally the 
distance is around 0.03 µm) by altering the cellular potential of the postsynaptic cell; 
dendrites receive the neurotransmitters and converts them back into an electrical signal. 

The signal then travels through the neuron, to be converted back into a chemical signal, 
when it gets to neighboring neurons [6]. 

Turning to the electric synapses, the information is instead directly transmitted to the 
post-synaptic cell by direct contact, without the need of a chemical mediator. Cells are 
joined by ionic channels with very low resistance, so as to allow the passage of the ionic 
currents induced by the action potential. 

During this communication, the changes of postsynaptic conductance vary the likelihood 
that an action potential will be produced in the postsynaptic cell. The postsynaptic potential 
(PSP) is called excitatory (EPSP) if it increases the probability that a PSP happens; whereas, it 
is called inhibitory (IPSP) if the probability decreases. 

The mechanism that determines the excitement or inhibition of a postsynaptic cell 
depends on the type of channel that is coupled to the receptor, and on the concentration of 
permeant ions inside and outside the cell. In fact, the only factor that distinguishes 
postsynaptic excitation from inhibition is the reversal potential of the PSP in relation to the 
threshold voltage for generating action potentials in the postsynaptic cell [7]. 

In Fig. 2-2 an example of excitation and inhibition post-synaptic potentials is shown. In 
the first window (see Fig. 2-2 A), the case of EPSP is reported, a neurotransmitter and the 
receptor represented by the glutamate and the acetylcholine (ACh) respectively, determines 
the opening of ion channels and the subsequently flux of Na+ and K+ across the postsynaptic 
membrane, inducing a depolarization of the post-synaptic membrane potential 
surmounting the action potential threshold (in this example equal to -40 mV) and the 
reversal potential (Erev), i.e., the potential at which the action of a given neurotransmitter 
causes no net current flow.  

In Fig. 2-2 B and C, examples of IPSPs are illustrated. The synaptic activation of GABA-
dependent ion channels, that are selectively permeable to anion Cl-, establishes a variation 
of the post-synaptic potential. Fig. 2-2 B represents the case of Erev -70 mV, assuming that 
the post-synaptic neuron has a resting potential of -60 mV, a flow of anions is generated, 
determining a hyperpolarization of the cell. In Fig. 2-2 C, instead, the case of Erev equal to -
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50mV is considered, determining a flow of Cl- out of the cell and a consequent 
depolarization. In both cases the cell's membrane potential is more negative than the action 
potential threshold, reducing the probability that the post-synaptic cell will fire an action 
potential.  

Fig. 2-2-D resumes the rule for the inhibition and excitation of the post-synaptic 
potential: the EPSP assumes a reversal potential higher than the action potential threshold, 
whereas, the IPSP has a reversal potential more negative than threshold. 

  

 
Fig. 2-2 Excitation and inhibition of postsynaptic potential [7]. 

2.2 Classification of Seizure Types 

Neurons receive inputs from both excitatory and inhibitory synapses, whose resulting 
effect could be excitatory or inhibiting, preventing in the latter case the forwarding of 
information. 

The balance between the two mechanisms determines the regular neuronal 
communication. Disrupting these behaviors that inhibit firing or promoting the excitation 
process can lead to seizures. The epileptic seizure is given by a hyper-excitability, due to a 
synchronism of depolarization of the neurons that generates a propagation of the discharge 
and the consequent behavioral changes. Generally, while a normal depolarization lasts from 
10 to 16 ms, in a seizure the range increases between 100–200 ms [8]. 

This hyper-polarization depends on a malfunction of ionic channels that establishes a 
prolonged depolarization current. The hindrance to the repolarization potential causes the 
tonic phase behavior. In this phase, all the muscles stiffen, air being forced past the vocal 
cords causes a cry or groan and the person loses consciousness. 

The consecutive phase, the clonic phase, expects large inhibitory potentials with the 
alternating of the depolarization potentials. In this stage, it happens that arms and usually 
legs begin to jerk rapidly and rhythmically bending and relaxing at the elbows, hips and 
knees with a duration of few minutes. 
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According to ILAE classification [9], that drew up the updated classification rules to 
identify the different kinds of seizures, seizures are distinguished in subcategories. This 
classification originates from the need to conform seizures and help doctors in diagnosis 
and the choice of therapies.  

The basic classification, described in Fig. 2-3, is a simple version of the major categories 
of the seizures, distinguished on the basis of their origin in the brain. The seizures are 
divided into those that start focally, meaning involving circuits (networks) in one 
hemisphere of the brain, and those that engage networks in both sides of the brain at the 
onset. In case the onset may be missed or obscured, the seizure is of unknown onset 
category. 

The type of seizure onset is important because it affects choice of seizure medication, 
possibilities for epilepsy surgery, outlook, and possible causes. 

The updated classification distinguishes the focal seizures based on the level of 
awareness and the motor, and other symptoms may occur. 

The level of awareness is of practical importance, as it is one of the main factors 
affecting a person’s safety during a seizure. A focal aware seizure is when the person is 
aware of self and of environment during the seizure, even if immobile; whereas, the focal 
impaired awareness seizure is when the awareness is compromised at any time during the 
seizure. Furthermore, the focal seizures are categorized based on the involvement of 
movements.  

The generalized onset seizures can be motor or non-motor (absence): the generalized 
tonic-clonic seizure category, describes seizures with stiffening (tonic) and jerking (clonic), 
whereas the category of generalized absence seizures involves brief changes in awareness, 
staring, and in some cases automatic or repeated movements like lipsmacking. 
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Fig. 2-3 Basic classification of seizure types, according to ILAE 2017 [9]. 

In order to provide more information about the seizures types for each category 
previously described, ILAE reported an extended version of the classification of seizure 
types. The expanded version, as shown in Fig. 2-4, keeps the framework of the basic 
classification, but adds more seizure types. 

As an example, the focal motor onset seizure types include automatisms, atonic, clonic, 
epileptic spasm, hyperkinetic, myoclonic and tonic seizures, whereas the focal non-motor 
onset seizures include autonomic, behavior arrest, cognitive, emotional, and sensory 
seizures. 

An example of focal impaired awareness cognitive seizure is a seizure that happens with 
sudden inability to understand language followed by impaired awareness and clonic left 
arm jerks [9]. 
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Fig. 2-4 Expanded version of seizure classification types, according to ILAE 2017 [9]. 
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2.3 NFLE 

In this thesis, the Nocturnal Frontal Lobe Epilepsy (NFLE) has been investigated. This type 
of epilepsy belongs to the focal seizure class, it is a form of focal epilepsy with predominant 
motor expressions, which originates from deep frontal regions (more specifically, from the 
orbitofrontal or mesial frontal regions [10]), and involves heterogeneous crises 
predominantly during the Non-Rapid Eye Movement (NREM) phase of sleep.  

This form of epilepsy was originally considered as a sleep disorder, because of the 
similarity to parasomnias and the absence of the typical epileptic distinctive traits on the 
electroencephalogram (EEG). However, the short duration, the stereotypic features of the 
episodes and the response to antiepileptic drugs, sometimes at low dosages, suggested an 
epileptic origin of this syndrome [11]. 

The study reported in [11] examined the manifestations of 100 patients affected by this 
form of epilepsy, pointing out three major characteristics: Paroxysmal Arousal (PA), 
Nocturnal Paroxysmal Dystonia (NPD) and Episodic Nocturnal Wanderings (ENW). 

Paroxysmal Arousal is identified by abrupt recurrent arousals from NREM sleep, 
associated with a stereotypic motor pattern, usually lasting <20 s. In Fig. 2-5 an example of a 
typical PA and the associated polysomnography is shown. The polysomnography is the set 
of biosignals of a subject when he is sleeping, among them EEG and electrocardiogram 
recordings. It will be explain in detail in chapter 4 (§ 4.1 ). In Fig. 2-5, the episode lasts 19 s, 
the patient opens his eyes and raises his head, trunk and limbs. 

 
Fig. 2-5 Example of a typical paroxysmal arousal (PA) and the associated polysomnography [11]. 
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Nocturnal Paroxysmal Dystonia is characterized by repeated motor attacks with 
dystonic-dyskinetic behaviors during the NREM sleep, which last less than 2 min. An 
example is reported in Fig. 2-6 with the associated polysomnography, where the patient 
violently rocks her legs, and the seizure lasts 40 s. 

 
 

 
Fig. 2-6 Example of Nocturnal Paroxysmal Dystonia (NPD) and the associated polysomnography [11]. 

Lastly, Episodic Nocturnal Wanderings, that could include both episodes mentioned 
before, last up to 3min, present stereotypic paroxysmal ambulation during sleep, 
accompanied by screaming and bizarre movements, as shown in Fig. 2-7. 
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Fig. 2-7 Example of Episodic Nocturnal Wanderings (ENW) and the associated polysomnography [11]. 

NFLE can also originate from genetic mutations; in that case it is named Autosomal 
Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE). The onset typically occurs in childhood 
with a mean age of 11 years (a median of 8), characterized by hyperkinetic attack, with a 
short breakouts and sometimes a nonspecific aura of quiver and fear [12]. 

In 1995, a study on ADNFLE identified one of the gene responsible of idiopathic 
epilepsies, i.e., epilepsy with no identifiable causes [13]. Successively, other mutations have 
been found linked to the neuronal nicotinic Acetylcholine Receptor subunits (nAChRs), a 
ligand-gated channel. 

Precisely, the genes identified as responsible for this form of epilepsy are: CHRNA4 
(cholinergic receptor, neuronal nicotinic, alpha polypeptide 4); CHRNB2 (cholinergic 
receptor, neuronal nicotinic, beta polypeptide 2); CHRNA2 (cholinergic receptor, neuronal 
nicotinic, alpha polypeptide 2). The association of the activation of all these cholinergic 
receptors to the provenance of NFLE beginning is longer supported given that the cortico-
subcortical networks regulate arousal from sleep [14]. 

The peculiarity of this type of epilepsy is that, excluding the possible artifacts due to 
body movements, in almost 50% of NFLE cases, the scalp EEG does not show abnormality 
during the seizures [15], which makes the neurologists work to recognize the epileptic 
events, only by using EEG very difficult. 

Moreover, whilst the most powerful cure for NFLE (ADNFLE) is the assumption of 
carbamazepine, not all patients have a successful response to the therapy. In fact, as 
reported in [11], only in 20% of patients, seizures were totally extinguished; whereas, in 
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48% of cases, a reduction of seizures were partially obtained. This means that, in about one 
third of cases, epilepsy was resistant to antiepileptic drug treatments. 

One of the therapy for refractory epilepsy is an implantable device [16], which provides a 
electrical stimulation that could be scheduled, as the vagus nerve stimulation therapy [17], 
or triggered upon detection of a seizure [18], as the system proposed by Osorio et al. [19]. 

The advantages of the latter approach, are the lower number of treatments applied and 
the modulation or modification of the therapy in response to physiological changes that 
may provide more effective and efficient therapy [20], compared to the first approach. 
However, it requires the identification of the epileptogenic area and a very accurate seizure 
detection system. 

In this thesis the development of an automatic seizure detection system is investigated 
to support neurologists in nocturnal epileptic seizures identification, and contribute in brain 
stimulation therapies aimed at rapid and targeted treatment of seizures. 
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3  DIAGNOSTIC METHODS 
The brain activity has been studied since the beginning of the twentieth century, with 

the aim to detect possible abnormalities. The combination of multiple tests associated to a 
careful assessment of symptoms and clinical history of the patient allows the doctors to 
identify the type of epilepsy. 

The diagnosis of epilepsy includes the analysis of several physiological signals. The 
examination of the electrical activity of the brain, i.e., the electroencephalography, is an 
important test used to highlight patterns of normal or abnormal brain activities. 
Furthermore, it shows the specific area of the brain where the seizures occur in case of focal 
epilepsy. 

The recordings of muscles activities, i.e., the electromyography, contribute to better 
understand and recognize tonic-clonic epileptic seizures. In addition to the previous 
electrophysiological measures, the recording of the electric potential difference between 
cornea and retina, the electrooculography, is used by neurologists in sleep disorders and 
nocturnal epilepsy investigations, for staging human sleep. 

Electrocardiography is another important tool in diagnosing epilepsy, which reveals the 
electrical activity of the heart. It provides valuable information about cardiac rhythm 
helping to identify possible abnormalities due to epileptic events. 

Furthermore, the representation of magnetic fields produced by neurons, i.e., 
magnetoencephalography, is a non invasive neuroimaging technique mostly used by 
doctors in the pre-surgical evaluation of patients with epilepsy, which allows them to 
localize the epileptic focus. 

In this chapter, the above techniques, principally used in the diagnosis of epilepsy, with a 
particular focus on the electroencephalography, are presented.  

3.1 Electroencephalography 

The principal instrument used to analyze the electrical activity of the brain is the 
Electroencephalography (EEG).  

The excitations of neurons establish an electrical potential that is measured by 
electrodes placed on the scalp or directly on the cortical surface. In the first case, the typical 
amplitude is around 100 µV, whereas for intracranial EEG the amplitude is about 1-2 mV 
[21]. 

The analysis of the cortical pyramidal neurons from the scalp, provides important 
information regarding the characteristics and location of seizures, contributes to the 
definition of the type of crisis and seizure syndrome. 
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The rhythmic activity of the brain is characterized by typical frequencies, as reported in 
Table 3-1. 

• Delta rhythm has frequencies lower than 4 Hz. It tends to be the highest one in 
amplitude and the slowest waves. It is normal as the dominant rhythm in infants up 
to one year and in stages 3 of NREM sleep. Although delta waves are generally 
prominent during sleep, there are cases when they are recorded from awake 
individuals. Delta waves may increase during difficult mental activities requiring 
concentration and other continuous-attention tasks. 

• Theta rhythm is in the range from 4 to 8Hz. It is classified as "slow" activity. Theta 
rhythm is involved in memory and emotional regulation; it has been found to 
temporarily increase when a person is actively trying to repress a behavioral 
response. It is perfectly normal in children up to 13 years and in sleep, but it is 
abnormal in awake adults that could highlight a manifestation of focal subcortical 
lesions. 

• Alpha rhythm, usually seen in the occipital regions of the head, has frequencies 
between 8 and 15 Hz. It appears when closing the eyes and relaxing, and disappears 
when opening the eyes or alerting by any mechanism (thinking, calculating). It is the 
major rhythm seen in normal relaxed adults. It is present during most of life 
especially after the thirteenth year. Alpha rhythms are correlated with inhibitory 
processes in the brain. Reduced alpha wave occurrence and amplitude, associated 
to delta-theta activity, determines reduced inhibitory control over behavior. 

• Beta rhythm is in the range from 15 to 30 Hz. It is the "fast" activity. It is generally 
regarded as a normal rhythm; it is the dominant rhythm in subjects who are alert, 
attentive to external stimuli, or anxious or have their eyes open. It may be absent or 
reduced in areas of cortical damage. Beta rhythms also occur during rapid eye 
movement (REM) sleep. In this situation, the typical alpha rhythm is suppressed and 
supplanted by beta waves. This replacement of alpha rhythm is called 
desynchronization, because it represents a change in the synchronized activity of 
neural systems in the brain. It is thought that beta waves represents arousal of the 
cortex to a higher state of alertness and may also be associated with memory 
retrieval. 

Lastly, all frequencies higher than 30 Hz belong to the gamma band. Gamma waves are 
present during mixed sensory processing, such as perceptual tasks that combine hearing 
and seeing. Gamma waves are also evident during short-term memory matching of 
recognized sights, sounds or sensations. A reduction in gamma wave activity might be 
associated with cognitive decline, especially when compared to theta wave activity levels. 



17 
 

Table 3-1 EEG rhythms 

Rhythms Frequencies [Hz] 

Delta <4 

Theta 4 − 8 

Alpha 8 − 15 

Beta 15 − 30 

Gamma >30 

 

3.1.1 Brain Function 

EEG records the electrical activity of the cerebral cortex, originates especially from 
cortical neurons. 

Cortical neurons can be classified into two principal categories: pyramidal and non-
pyramidal cells. The pyramidal neurons constitute the predominant part of the cerebral 
cortex and play a fundamental role in EEG generation. In particular, the arrangement of 
pyramidal neurons is oriented perpendicular to the surface, they are composed by a conic 
shaped soma, a long dendrite (named apical dendrite) emerges from the soma and crosses 
the various cortical layers toward the cortical surface and branches into different 
terminations. Hence, the pyramidal cells are oriented vertically in the cortex, with their 
apical dendrites arranged parallel to each other. The measured potentials are originated 
from averages in the space of dendritic electric fields in the superficial cortical layers. 

Conversely, the short axons of non-pyramidal neurons remain into the cortex, ending up 
on nearby neurons. The orientation between them and in relation to the cortex surface is 
not well defined, leading a minimal contribute to the measure of surface potential. 

Head model 

The brain is composed of excitable neural tissues that not only are the location of 
electric sources but also constitutes part of the volume conductor which includes also the 
skull and scalp. 

The EEG measured on the scalp surface has the great advantage of being a non invasive 
procedure; however, between electrode and neuronal layers the current goes through 
different tissues, whose thickness and inhomogeneities influence the scalp surface 
potentials [22]. 
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Several studies investigated different models of the human head [23]–[25] to estimate 
the resistivity of the head layers. One of the simplest, that has been successfully considered, 
is represented by a series of three concentric regions: scalp, skull and brain.  

As shown in Fig. 3-1, the model, studied in [26], presents a different average value of the 
radium and a different resistivity for each layer. The brain has an average radium of 8 cm 
with a resistivity of 2.22 Ωm; whereas the skull is thick 0.5 cm and has a resistivity around 
177 Ωm; this value is obtained multiplying by a factor of 80 the brain (or scalp) resistivity. 
Finally, the outer layer, the scalp, is considered with an average radium of 9.2 cm and a 
resistivity equal to the brain, i.e., 2.2 Ωm.  

 

 
Fig. 3-1 Concentric spherical head model [21] 

Despite the simplified model does not consider the anisotropies and inhomogeneities, 
the results are found to be in accordance with the practical analysis; in [27] the authors 
obtained a mean resistivity of the cortical bone around 157 Ωm  and 215 Ωm  for 
circumferential and radial directions, respectively. 

The resistivity of skull tissue strongly influences the scalp EEG; hence, a more realistic 
model considers the skull constituted by three bone layers, i.e., the inner and the outer 
tables (cortical bones) and the spongy layer (diploe or cancellous bone), located in the 
middle, as depicted in Fig. 3-2. 

The local resistance of the human skull flaps in this case, considering the direction 
normal to its local surface, is: 

 
𝑅 =

𝜂1𝑑1 + 𝜂2𝑑2 + 𝜂3𝑑3
𝐴

 
(3.1) 

Where 𝜇 and 𝑑 are the resistivity and the thickness respectively, and A is the cross-sectional 
area. 
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The three indexes (1, 2, and 3) are referred to the inner, spongy and outer layers, 
respectively. The inhomogeneities of these three layers are studied in [28], that achieved 
conductivities ranging from 0.76 ± 0.14 to 11.5 ± 1.8 mS/m. 

 
Fig. 3-2 Three layer human skull [27]. 

3.1.2 EEG electrodes  

The measurement of the brain electric activity derives by a proper placement of 
electrodes. The electrodes, as mentioned above, can be placed on the scalp or on the brain 
tissue. 

The requirements are the stability of the devices and the low susceptibility to external 
interferences, in order to allow the correct recording of the signals. The non-polarized 
electrodes are in gold-plated silver, gold, or sintered metal. However, the most commonly 
used material for EEG electrodes is silver, precisely Ag/AgCl, which has to be chlorinated to 
prevent the polarization that causes signal distortion. This type of electrodes quickly 
establishes and maintains consistent and stable electrochemical potentials against 
biological tissues. Furthermore, they are free from potential allergenic compounds and have 
excellent long-term electrical stability [29]. 

Electrodes can be held in a cap, a possible design is Ag/AgCl electrodes fitted with 
cellulose sponges, and, after the cap is placed on the head, a small amount of a special 
electrolyte solution is injected into each electrode in order to wet the sponge and allow 
long recordings (of up to 3 hours). 

Electrodes can be also attached to the skin by adhesive and conductive paste, the 
preparation of the scalp to the EEG measurements being an important step to obtain good 
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results and few artifacts. According to the guideline [30], the skin-electrode impedance 
should be less than 5 kΩ, to reduce the noise, artefacts, and other interference. 

Other types of electrodes are the needle electrodes, very useful in coma patients, i.e. in 
subjects with minimal or absent response to the pain. They are easy to apply and do not 
require fixing systems; on the other hand, they smooth the slower frequencies and need 
precautions regarding the possibility of infections transmission. 

Routine recordings also often use prebuilt cap, in which the disk electrodes are 
positioned in a textile shell. It is a quick and comfortable electrodes application system for 
the patient, but scarcely editable and often a source of artifacts. 

3.1.3 EEG placement 

The positioning of the EEG electrodes is defined by the International Standard System 
10-20, introduced by Dr. Jasper that presented some guidelines in 1949 during the Second 
International EEG Congress. In the guidelines, recommendations on the position, coverage 
and designations of electrodes are expressed. 

The placement is based on specific ratio of 10% and 20% of the skull perimeters 
measured in the median and transverse planes. The evaluation is performed taking four 
reference points: the nasion, the inion, the left and right preauricular, as shown in Fig. 3-3. 
The nasion is the point located at the top of the nose, at the level with the eyes, whereas 
the inion is located at the base of the skull. The preauricular points (A1 and A2 in Fig. 3-3B) 
are felt as depressions at the root of the zygoma, just anterior to the prominence in front of 
the external opening of the ear (tragus). The measure of the imaginary line between nasion 
and inion, in the median plane, is used to define 5 separated regions, as depicted in Fig. 
3-3A. The first area is placed at 10% of the total line and labeled Fp, representing the fronto-
polar region. The other sections are located with intervals of 20% of the total measurement 
and labeled F, C, P, and O, indicating the frontal, central, parietal and occipital areas, 
respectively. Therefore, the occipital region is located at 10% of the measurement above 
the inion. 

As reported in Fig. 3-3B, the line of the central coronal plane, from left to the right 
preauricular points intersecting the C vertex in the median line, defines other marks: at 10% 
of this perimeter measure, over the preauricolar points, the temporal regions, named T, are 
defined; whereas, at intervals of 20%, starting from the temporal marks other locations are 
pinpointed, named with odd and even numbers according to the left and right hemisphere 
respectively. 
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Fig. 3-3 The International 10-20 System seen from (A) left and (B) above the head [21] 

The International Standard System 10-20 provides measures of 19 of the 21 electrodes; 
the remaining two electrodes are placed on the ear lobes and labeled auricular electrodes 
A1 and A2. 

As can be seen from the Fig. 3-3, the electrode positions are named matching the 
anatomical terms of the cortical area (with the exception of the C, that is referred to 
locations over the central sulcus), with the numbering system based on the hemisphere, 
that have been added to differentiate between left and right homologous regions. While on 
the left hemisphere Fp1, F3, F7, C3, T3, P3, T5 and O1 are designated; on right hemisphere, 
the same symmetrical points are described with even numbers: Fp2, F4, F8, C4, T4, P4, T6, 
and O2. The electrodes placed in the coronal plane, originally matched with the zero 
number, are instead named with z letter, becoming Fz, Cz and Pz [31]. 

Additionally, the American Clinical Neurophysiology Society (ACNS), in the Guideline 1 
[32], provided a new system to reveal the areas containing normal and abnormal EEG 
patterns. 

The 10-10 System considers the possibility to add the number of scalp electrodes in 
order to decrease the likelihood of interpretative errors, particularly true for transient 
activity [32]. Fig. 3-4 reports the 10-10 System; four electrodes, drawn black with white text, 
are renamed: the T3, T4, T5 and T6 electrodes of the 10-20 System to T7, T8, P7, and P8, 
respectively. 

The new system allows the identification of 75 positions on the scalp for as many 
electrodes placed along 11 sagittal and 9 coronal planes.  
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Fig. 3-4 The 10-10 System [21]. 

The EEG recordings can be acquired based using the unipolar or bipolar derivation. The 
unipolar derivation is based on a reference potential that could be the A1 or A2 electrodes, 
placed on the earlobes of the left and right hemispheres, respectively, or to the average 
potential coming from all electrodes. In the bipolar derivation, instead, both electrodes are 
placed on active sites in the area of interest and the detected signal corresponds to the 
difference that emerges between the activities of the two sites.  

3.1.4 EEG machine 

In addition to the electrode, the EEG recording system is equipped with differential 
amplifiers, filters, A/D converter and data storage. 

In order to be compatible with the other components, EEG signals need to be amplified. 
The requirement for the amplifiers is that the measure should not be distorted and should 
not influence the physiological process. The amplifier should provide the best possible 
separation of signals and interferences.[33] 

Differential amplifiers are sensitive to potential difference between electrode pairs and 
insensitive to the (generally much larger) spatially constant potentials over the scalp 
(common modes). Modern EEG systems record simultaneously from about 32 to 131 scalp 
locations. 

According to the guideline [32], which establishes the instruction for the EEG 
measurements, the typical gain setting of the differential amplifiers with common mode 
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rejection is 7 μV/mm leading to deflections of 3–20 mm for input voltages of 20–140 μV. In 
digital systems, instead, as computer monitor sizes may vary, a reference marker should 
always be available in the display area. 

Additionally, since scalp EEG signal frequency lies between 1 to 70 Hz, the bandwidth of 
the recording channels should correspond to this frequency range. The low frequency filter 
should not be higher than 1 Hz and the high frequency filter should be 70 Hz. If a narrower 
bandwidth is used, information will be lost and, with a wider bandwidth, noise in the 
recorded data will contain irrelevant information. High pass analogue EEG filter typically 
remove substantial power below about 0.5 Hz, depending on application and filter roll-off 
characteristics. A notch filter is used to remove the power line frequencies (50 Hz or 60 Hz). 

Then, A/D conversion involves two processes: the sampling and the quantization. In the 
sampling process, the analogue signals are sampled at regular time intervals obtaining 
discrete signals. The number of samples per second defines the sampling rate. The 
minimum acceptable sampling rate, required to accurately reconstruct the analog signals, 
according to the sampling theorem, is 2 times greater than the highest frequency of 
interest. However, most digital EEG systems sample at 256 Hz. Quantization is a process 
aimed at reducing to a finite number each sample value measured during the sampling 
process. In a digital system, the resolution of the converter is equal to the minimum 
difference of amplitude that yields a change in the measure. This is obtained by dividing the 
voltage range of the A/D converter by 2 raised to the power of the number of bits of the 
A/D converter. 

Currently, on the market, the number of bits used for quantization is typically 16 (with a 
recommended minimum of 12 bits, discerning 2^12=4,096 value levels) on a signal 
maximum input EEG of at least 1 mV. Ability to resolve 0.5 μV is recommended. 

The guideline provides also information about the time base of the recordings in both 
cases of analogue and digital printings. The paper speed should be 15 or 30 mm/s with the 
option of 60 mm/s, considering that, the lower is useful to detect slow-wave abnormalities, 
whereas the higher, the asynchronicity in bilateral discharges. 
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3.2 Electromyography 

Electromyography (EMG) is a diagnostic procedure to assess the health of muscles and 
the nerve cells that control them (motor neurons). Motor neurons, activated by the central 
nervous system, transmit electrical signals that cause muscles to contract. EMG measures 
this muscle electrical activity that occurs during muscle contraction and relaxation cycles.  

Depending on the pathology, the conditions of the muscle can be analyzed in case of 
rest, during a voluntary contraction, or if necessary, subjecting it to artificial stimulation. 
The results can reveal nerve dysfunction, muscle dysfunction or problems with nerve-to-
muscle signal transmission. 

EMG can be considered as a non invasive (surface EMG), or an invasive (intramuscular 
EMG), method.  

In the surface EMG, the electrodes, placed on the skin, are used to measure the speed 
and strength of signals travelling between two or more points. These surface electrodes are 
usually made of silver/silver chloride (Ag/AgCl), silver chloride (AgCl), silver (Ag) or gold 
(Au); however, as well as the scalp EEG, the electrodes made of Ag/AgCl are preferred over 
the others, since they are almost non-polarizable electrodes [34].  

In the intramuscular EMG, needle or fine-wire electrodes are inserted directly into a 
specific muscle to record its electrical activity. 

3.3 Electrooculography 

The electrooculography (EOG) is the method used to record the eye movements. 
Through the electrodes located around the eyes, the voltage caused by the motion of the 
ocular globes is detected.  

Specifically, EOG registration reveals the electric potential difference between cornea 
and retina. Since the eye can be described as a fix dipole where the positive pole is the 
cornea and the negative is the retina, the eye movements establish a rotation of the dipole, 
thereby causing a recordable signal from the surface. 

The advantages of the EOG are related to the non invasive application of surface 
electrodes, that does not create discomfort for the patient or limit his field of view. 
Additionally, it is possible to record eye movements with eyes closed. 

However, the disadvantages are associated with the amplitude of the corneo-retinal 
potential, that changes with the amount of ambient light; this means that illumination has 
to be kept constant as much as possible [35]. 
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3.4 Electrocardiography 

The electrocardiography (ECG) is a simple, painless procedure that detects and records 
the heart electrical activity.  

The electrical activity is associated to the development of electrical potentials generated 
by cell groups (pacemakers) placed in well defined areas of the myocardium. The electrical 
signals originated in the sinoatrial (SA) node, propagate along the heart muscle through 
particular fibers (bundle of His) determining the rhythmic contraction. 

Under normal conditions, the contraction (systole phase) and the consequent relaxation 
(diastole phase) of the cardiac muscles are repeated over time, defining the characteristic 
ECG rhythm reported in Fig. 3-5. The ECG is recorded by surface electrodes placed on 
prefixed position of limbs and torax in order to have a particular orientation in space. The 
standard application is the 12-lead ECG, obtained using the wrist and ankle placements. 

The first deflection is the P wave associated with right and left atrial depolarization: from 
the SA node, the signal travels through the right and left atria, causing their contraction of 
the atria, which moves blood into the ventricles. Normal P lasts less than 120 ms. 

The second wave is the QRS complex. Typically, this complex has a series of 3 deflections 
that reflect the current associated with right and left ventricular depolarization. By 
convention, the first deflection in the complex, if it is negative, is called a Q wave, the first 
positive deflection in the complex is called R wave and a negative deflection after an R wave 
is called S wave. Normally, it lasts less than 120 ms. 

The flat line between the end of the P wave and the beginning of the Q wave 
corresponds to the signal propagation along the atria and the ventricles through a group of 
cells called the atrioventricular (AV) node. The signal slows down as it passes through the 
AV node, allowing the ventricles enough time to finish filling with blood.  

Finally, the T wave represents the ventricles repolarization, the muscle stops contracting 
to allow the heart to refill with blood. 

The PR interval measures the time from the initial depolarization of the atria to the initial 
depolarization of the ventricles and reflects a physiological delay in AV conduction imposed 
by the AV node; the normal range is 120 – 200 ms. Furthermore, the QT interval represents 
the time in which the ventricles depolarize and repolarize. QT values are heart-rate 
dependent and can vary from 270 ms at a heart rate of 150 beats/min to 500 ms at a heart 
rate of 40 beats/min. 
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Fig. 3-5 Typical ECG rhythm. 

3.5 Magnetoencephalography 

The bioelectric activity originating from the brain generates not only electric fields but, 
of course, also magnetic fields associated with them. The technique, that indirectly analyzes 
brain activity through the measurement of biomagnetic fields, is the 
magnetoencephalography (MEG). MEG is a direct measure of brain function with good 
temporal and spatial resolution; it is usually combined with a Magnetic Resonance Imaging 
(MRI), which is a scanning technique for creating detailed images at high resolution using 
magnetic fields and radio wave frequencies, to get a good structural perspective. This 
combination of MEG and MRI is called Magnetic Source Imaging (MSI).  

The usual amplitude of magnetic fields created by the brain are extremely small, around 
0.1 pT, the recording requires superconducting sensors, as the Superconducting Quantum 
Interference Device (SQUID), and shielded room to attenuate the external magnetic noise. 
The SQUID sensors are bathed in a large liquid helium cooling unit at approximately -269°C; 
due to low impedance at this temperature, the SQUID device can detect and amplify 
magnetic fields generated by neurons a few centimeters away from the sensors. 

Since the decay of magnetic fields as a function of distance is more pronounced than for 
electric fields, MEG is more sensitive to superficial cortical activity, which should be useful 
for the study of neocortical epilepsy. In the surgical treatment of epilepsy, the most critical 



27 
 

piece of information is the location of the seizure focus and MEG can substantially 
contribute to this localization, identifying the eloquent cortex and helping to determine the 
area to remove during epilepsy surgery [36]. 

Comparing MEG to scalp EEG, MEG does not require a contact with the head of the 
patient and detects the magnetic fields induced by intracellular currents without being 
subjective by anisotropic inhomogeneities of the tissues. On the other hand, MEG is an 
expensive technique that, normally, has to be paired with an MRI. 
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4  SLEEP STRUCTURE 
The NFLE, investigated in this thesis, is a form of epilepsy that principally occurs during 

sleep; in particular, most of the crises take place during the NREM phase of sleep. 
In this chapter, the sleep structure and the techniques used by neurologists to detect 

and diagnose the nocturnal epileptic seizures are presented. 
Sleep and wake can be considered as two states, continuous among themselves, 

integrated within a single rhythm: sleep-wake rhythm. 
The alternation between sleep and wake is governed by various mechanisms including a 

homeostatic process that tracks the need for sleep in proportion to the duration of the 
previous wake state, and a circadian process that oversees the temporal distribution of 
wakefulness and sleep, with the determination of permissive windows of greater propensity 
to one or the other state. 

In mammals, including man, the center of the circadian control is located in a cerebral 
structure defined as the suprachiasmatic nucleus (SNC) of the hypothalamus, which acts as 
a pacemaker, regulating sleep and other biological rhythms.  

Under normal conditions, the activity of this nucleus is influenced by the light 
stimulation from the retina (during the day) and melatonin hypophysar secretion (during 
the dark period), making the internal biological clock in tune with light/dark cycle of the 
external environment. Thus, the endogenous circadian component, estimated for the 
human beings at around 25 hours, adapts to the exogenous circadian component which is 
instead, around 24 hours. 

The circadian rhythm problems originate from a synchronization request between the 
endogenous component and the exogenous component, to which the pacemaker, 
represented by the SNC of the hypothalamus, cannot cope. An example is given by the jet 
lag, whose shift in time and light signals force the body to alter its normal pattern, causing 
frequent nocturnal awakenings and daily sleepiness; travelers show more difficulty in 
thinking and doing well. Furthermore, these symptoms can also occur in everyday life, when 
the circadian rhythm is disrupted by irregular sleep schedule, which could be due to shift 
work type, that is, when the work programme takes place during normal sleep period. 

The analysis of sleep structure allows the neurologists to evaluate and differentiate 
nocturnal seizures from sleep disorders. In fact, by analyzing sleep macrostructure and 
microstructure, patients affected by NFLE present an increase of sleep instability 
parameters and a percentage of the first stages of NREM sleep with a decrease of REM 
sleep duration. 
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4.1 Polysomnography 

To discover and diagnose sleep disorders, but, mostly, the NFLE/ADNFLE, the 
polysomnography (PSG), supported by video, is the efficient test used by doctors in sleep 
medicine. In the video-polysomnography (VPSG), the PSG and the monitoring with a closed 
circuit camera, help the doctors to identify the starting time of the motor events, which 
cannot be only detected with the PSG. 

The analysis is usually carried out at a Sleep Center, recordings take place in a "sleeping 
room", where the patient is connected to the equipment and monitored during the night. 
Additionally, the measurements could also be taken at home by means of a portable device 
(Holter); the patient, previously prepared by doctors with the application of the sensors, can 
sleep at home and return the day after for removing the electrodes and consigning the 
recordings that will be analyzed. 

PSG involves a set of analysis that evaluate the bioparameters of a subject when is 
sleeping. It consists of scalp EEG, the electrooculography, the electromyogram of the 
submentalis muscle, EMG of the right and left tibialis anterior muscle, the 
electrocardiography, sensors placed at nares and mouth to evaluate the airflow parameters 
and sensors to measure the oxygen saturation. 

The movements measured by the EMG assist the doctors in the case of motor events, 
whereas EOG contribute to distinguish the sleep stages, from REM to NREM stages.  

An EOG waveform analyzed to distinguish the sleep stages is the Slow Eye Movements 
(SEM). SEM waveforms do not manifest abrupt movements, they are smooth sinusoidal eye 
movements with amplitudes of 100 μV or more, and 10 s or less in duration.  

The evaluation of the electrical functions of the heart, by means of the ECG, has been 
revealed useful in the detection of epilepsy and sleep microstructure [37]. In [38], a study in 
patients with focal epilepsies evaluated the arising of tachycardia for the 86% of all seizures. 

The EEG recordings are used to reveal the sleep patterns, as well as highlighting the 
characteristic EEG rhythms.  

The following sleep patterns are explained: 

• Vertex sharp wave is a sharp waveform distinguished from background activities at 
or near Cz (C3, C4), with an amplitude of 75 μV or greater, and with a frequency of 
at least 5 Hz but no more than 14 Hz. 

• K complex is a sharp, negative EEG wave followed by a high-voltage slow wave. The 
complex duration is at least 0.5 seconds, its peak-to-peak amplitude must be 
greater than 200 μV. 

• Sleep spindles are defined as trains of 12–16 Hz waves of 10 μV or greater 
amplitude, composed of at least six consecutive waves, or a train duration longer 
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than 0.5 s. The spindle shape is not a requirement for identification as a sleep 
spindle; however, the mean frequency of a single train of waves can be used as a 
single descriptor for labeling as sleep spindles.  

• Delta burst is a sleep pattern represented by a sequence of at least two waves in 
the frequency bandwidth ranging from 0.5 to 4 Hz and with an amplitude 1/3 
higher, or more, than the background activity. 

• Vertex sharp transients are EEG potentials of 50–200 ms duration and variable 
amplitude (up to 250 mV) expressed maximally on derivations at the central vertex 
areas. Sequences of vertex sharp transients composed of two or more repetitive 
potentials lasting 2 s or more, often appear at the transition from stage 1 to stage 2 
of the NREM sleep.  

• Polyphasic bursts are clusters of high-voltage delta waves, intermixed with theta, 
alpha or beta rhythms.  

• K-alpha is composed of a K-complex followed immediately by an alpha burst. It has 
an overall duration of 2 s or more. 

• EEG arousals are sudden frequency shifts toward faster rhythms, that shortly 
interrupt sleep continuity for interval greater than or equal to 3 s. 

  



31 
 

4.2 Sleep Macrostructure 

According to Rechtschaffen and Kales (R&K) [39] and the supplements proposed by the 
American Academy of Sleep Medicine [40], it is possible to recognize a macrostructure of 
the sleep, consisting of two general stages: Rapid Eye Movement (REM) and Non-Rapid Eye 
Movement (NREM). NREM is, in turn, subdivided into three stages. Each stage is 
characterized by particular brain activities and EEG frequency content.  

Sleep Stage 1 (S1) includes the presence of alpha waves, vertex sharp wave (V-wave) and 
Slow Eye Movements (SEM). It is characterized by a marked decrease in alpha activity, 
typical of the physiological wake activity (W), and appearance of theta activity. 

The theta activity must exceed 50% of a recording period (usually 20-30 seconds), so as 
that period be named S1. The first stage of sleep is also characterized by an even higher 
electromyogram, albeit lower than that of wakefulness, from the absence of rapid ocular 
movements and the presence of slow ocular movements, especially in the first transition 
phase from wakefulness to S1.  

Sleep Stage 2 (S2) is characterized by K-complex and sleep spindles, with a relatively low 
amplitude of EEG path and a prevalence of theta rhythms. EMG is further reduced and eye 
movements are absent. The K complex may be preceded by polyphasic negative-positive 
waves that must be visually distinguished from background EEG activities. 

An example of S2 is shown in Fig. 4-1. The sleep spindles are followed by the K-complex 
waveform.  
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Fig. 4-1 Example of sleep spindle and K-complex [41] 

Sleep Stages 3 and 4, defined as Slow Waves Sleep (SWS) are characterized by a further 
net slowing of the EEG path, which exhibits delta dominant rhythms of high amplitude. An 
EEG epoch, usually a window of 15 s or 30 s, belongs to sleep stage 3 (S3) if slow waves with 
frequencies below 2 Hz and amplitudes greater than 75 μV occupy between 20 and 50% of 
the entire epoch, whereas if the percentage is higher than 50%, the epoch is judged 
belonging to Sleep Stage 4 (S4). 

In S3, the EMG looks decreased with lack of eye movements. In S4 the recording shows 
intense synchronization, a further slowdown and a higher voltage. EMG activity is even 
smaller, and no eye movements appear. Generally, the spindles are absent, which, though 
rarely, may appear in S3. The vegetative functions (breath, heart rate) appear very regular 
during synchronous sleep phases. 

The REM stage usually appears after about 90 minutes of NREM sleep, and it is 
characterized by a complete flattening of the EMG, intense EEG desynchronization, rapid 
eye movements, cardiac arrhythmias and respiratory changes. 

To recognize this stage, the REM waveform must appear as a saccadic movement (i.e., a 
quick movement of the eyes by which the gaze is transferred from one fixation point to 
another), with rapid changes in angular velocity at the onset and termination of eye 
movement. Since small eye movements often appear during the transitions to and from 
REM sleep, a low amplitude criterion of 40 μV or greater is recommended. In recordings at 
15 mm/s (or the equivalent digital display), REM activity should be identifiable as a 45° or 
greater angular departure from the baseline. 

In general, REM episodes are 4 or 5 during 7-8 hours of night sleep, they tend to become 
longer in the early hours of the morning.  

sleep
spindle

K complex
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In Fig. 4-2, an example of the hypnogram, the chart used by doctors to represent the 
different stages of the sleep macrostructure during the night, is shown. In this case, seven 
episodes of REM stages are observed. 

 
Fig. 4-2  Example of a hypnogram between midnight and 6.30 am [42] 
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4.3  Sleep Microstructure 

Within the sleep macrostructure, a periodic pattern can be identified in the different 
stages of NREM sleep. The microstructure is defined by the presence of a periodic EEG 
activity, called Cyclic Alternating Pattern (CAP). 

CAP is characterized by sequences of transient electrocortical events that are distinct 
from background EEG activity and recur at up to 1 min intervals [43]. 

CAP can appear spontaneously in NREM sleep, but it can occur also in association with 
identifiable sleep pathophysiologies (e.g. sleep-disordered breathing and periodic leg 
movement activity). It is characterized by cyclic sequences of cerebral activation (phase A) 
followed by periods of deactivation (phase B), both range between 2 and 60 s. Each phase B 
separates two successive phase A periods with an interval less than one minute. At least 
two CAP cycles (phase A + phase B) are required to form a CAP sequence [44]. 

CAP sequence onset must be preceded by non-CAP (NCAP), which is a continuous NREM 
sleep EEG pattern with duration greater than 60 s.  

This consideration on the time period is not valid in these following cases: 

• before the first CAP sequence arising in NREM sleep; 
• after a wake to sleep transition; 
• after a REM to NREM sleep transition. 

An example of hypnogram and CAP sequence is shown in Fig. 4-3. At the top of the figure 
is reported the hypnogram, representing the sleep macrostructure; whereas at the bottom 
of the figure, the CAP sequence constituted by a series of CAP cycles is depicted. Each CAP 
cycle includes a phase A and a phase B. 
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Fig. 4-3 Example of CAP sequence. At the top of the figure, the hypnogram are represented. At the bottom, the 

CAP sequence [45]. 

 
Each phase A is characterized by frequency/amplitude components related to different 

transient cerebral activation. 
In [44], the rules for the scoring of CAP are established. Phase A activities can be 

classified into three subtypes, based on the reciprocal proportion of high-voltage slow 
waves (EEG synchrony) and low-amplitude fast rhythms (EEG desynchrony) throughout the 
entire phase A duration. In Fig. 4-4 the three subtypes of the A phase are reported. 

• Subtype A1 is characterized by strong delta waves. EEG desynchrony occupies less 
than 20% of the entire phase A duration. It includes delta bursts, K-complex 
sequences, vertex sharp transients, polyphasic bursts with less than 20% of EEG 
desynchrony. Events are synchronized with low impact on autonomic and 
somatomotor activities. 

• Subtype A2 is characterized by a mixture of slow and fast rhythms with 20–50% of A 
phase occupied by EEG desynchrony. Subtype A2 specimens include polyphasic 
bursts with more than 20% but less than 50% of EEG desynchrony. An intermediate 
influence on the autonomic and somatomotor activities is present. 

• Subtype A3 is predominantly identified by rapid low-voltage rhythms with EEG 
activity greater than 50% of the entire phase A occupied by EEG desynchrony. 
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Subtype A3 specimens include K-alpha, EEG arousals, and polyphasic bursts with 
greater than 50% of EEG desynchrony. A movement artifact within a CAP sequence 
is also classified as subtype A3. The desynchronized EEG events present heavy 
effects on the autonomic and somatomotor activities. 

 

 
Fig. 4-4 Three Subtypes of the phase A of CAP. The dotted spots indicate the fast low-amplitude portion of the 

phase A [44]. 

Despite being a physiological phenomenon, CAP is also a marker of sleep instability and 
can be correlated with several sleep-related pathologies. In fact, the phase A of CAP has 
been interpreted as a kind of gate through which pathological events more easily occur [46]. 
Furthermore, in [37]. A rise in heart rate has been observed 4s after the starting of the 
phase A, for subjects both healthy and affected by NFLE. 

In particular, increased amounts of CAP sequences are often observed in epileptic 
diseases such as NFLE\ADNFLE [47] [48]. It was noted that, the majority of nocturnal partial 
motor seizures and temporal lobe seizures occur during NREM sleep, especially in the phase 
A of CAP with a predominance of the subtype A3, given that it is associated to an increase of 
fast rhythms with voltage attenuation and strong autonomic activation. 

Fig. 4-5 shows an example of sleep structure of a patient affected by ADNFLE. The data 
have been provided by the Sleep Center of Cagliari. The black signal describes the REM 
stage, whereas the remainder is the NREM signal and its microstructure, according to the 
neurologists. The cyan and green signals illustrate the A and B phases of the CAP cycle, 
respectively; in blue the NCAP phases. 
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Fig. 4-5 Sleep macrostructure and sleep microstructure of an EEG signal. 
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5  MACHINE LEARNING 
The pioneer of machine learning was Arthur Samuel, who, in 1959, in his study on 

machine learning applied to the checkers game, investigated on the capability of a 
computer, that, programmed with incomplete variables, was able to play a better game 
than the person who wrote the program [49]. The definition of learning was given later in a 
wider vision by Tom Mitchell, in 1997, in which [50]: 

A computer program is said to learn from experience E with respect to 
some class of tasks T and performance measure P, if its performance at 
tasks in T, as measured by P, improves with experience E. 

Consequently, a well-defined learning problem requires a well-specified task, 
performance metric, and source of training experience. 

In general, the machine learning process, as reported in Fig. 5-1, can be described into 
five main steps: 

• PREPROCESSING 
• FEATURE EXTRACTION 
• FEATURE SELECTION 
• MODEL BUILDING 
• PERFORMANCE EVALUATION  

 
Fig. 5-1 Workflow of the machine learning process. 

In the preprocessing step, the raw signals are filtered and cleaned from events that do 
not contain significant information, thereby reducing data to process. Successively, the 
variables, named features, that characterize the original dataset are extracted, and a 
feature subset can be selected with the aim to avoid redundant or not relevant information. 

After these steps, the information can be provided to learning algorithms to solve the 
desired task. In the learning phase, a training set is used to tune the parameters of an 
adaptive model. Once the model is trained, new data, called test set, can be identified. The 
ability to correctly identify new examples that differ from those used for training phase is 

DATA PRE-
PROCESSING 

FEATURE 
EXTRACTION 

FEATURE 
SELECTION 

MODEL 
BUILDING PERFORMANCE 
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called generalization. Two main categories of learning algorithms can be distinguished: 
supervised and unsupervised. 

In supervised learning, input vectors together with their corresponding desired output 
vectors are fed into the model. The outputs of the model are compared with the desired 
outputs and the parameters of the model are changed according to their difference. This 
error measure is used to guide the learning process. 

Examples of supervised learning algorithms include Support Vector Machine (SVM) [51], 
Decision Tree (DT) [52], Artificial Neural Network (ANN) [53] and K-Nearest Neighbor (KNN) 
[54]. 

On the other hand, unsupervised learning, also known as clustering, can identify 
differences between the input patterns based solely on characteristics of such patterns. The 
learning system forms groups, cluster, of similar examples within the data, detecting or 
categorizing persistent features without any feedback from the environment [55]. The 
fundamental difference from the supervised learning algorithm is that it is not necessary to 
know the form of the output and therefore, no effective, correct, output is needed. It is 
useful in cases where the challenge is to discover implicit relationships in a dataset not pre-
assigned with labels; its applications can be found in clustering, feature extraction and data 
reduction purposes [56].  

Self Organizing Map (SOM) [57], Principal Component Analysis (PCA) [58], Linear 
Discriminant Analysis (LDA) [59] and Gaussian Mixture Model (GMM) [60] are some popular 
examples of the Unsupervised Machine Learning Methods.  

Finally, the last step of the machine learning process is the evaluation of the 
performance. New examples are tested on the trained model and its generalization 
performance is estimated. 

The application of machine learning techniques ranges in several research fields Over the 
past decades, its employment in seizures classification and prediction, that are extensively 
presented in reviews [1], [61], [62], demonstrated interesting results. 

In the following paragraphs, an overview of the principal techniques and algorithms 
applied in epileptic seizures detection and prediction are described for each machine 
learning step. 
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5.1 Preprocessing 

To ensure accurate, efficient and meaningful analysis, data are prepared by means of 
preprocessing techniques.  

General information is collected and, successively, the signals are explored and cleaned 
by the presence of noise, outliers and artifacts that compromise the success of the results. 

5.1.1 Smoothing and Filtering Data 

Smoothing is the process of removing noise from data. The simpler technique for 
smoothing signals consists of a moving average filter, that is a type of Finite Impulse 
Response (FIR) filter [63], frequently used for time series analysis. It replaces each data 
point with the average of the neighboring samples included in a considered span. 

Let us consider a vector 𝒙 ∈ ℝ, each 𝑖-th smoothed sample 𝑥𝑖𝑠𝑚𝑜𝑜𝑡ℎ is defined by (5.1): 

𝑥𝑖𝑠𝑚𝑜𝑜𝑡ℎ =
1
𝐻

� 𝑥𝑖+𝑗

𝐻−1
2

𝑗=− 𝐻−12

 (5.1)  

where 𝐻 indicates the number of samples within the span [64]. This technique contributes 
to eliminate insignificant variations from a point to the next.  

At the same time, the moving average filter shows good performance in time domain, 
but poor in frequency domain, since it is not able to separate one band of frequencies from 
another. Thus, a digital filter is designed to extract only the interesting range of frequencies. 
FIR and Infinite-duration Impulse Response (IIR) filters [63] are the mostly applied; the first 
is preferred when a linear phase is desired, whereas the second requires a lower filter order 
to achieve the same given level of performance, with a consequent lower number of 
operations and computational time. 

The selection of the frequency range must take account of the sampling frequency 𝑓𝑠 of 
the signal; in particular, to satisfy the Nyquist criterion (1932): 

The sampling frequency should be at least twice the highest frequency contained in the 
signal. 

𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥 

For example, the scalp EEG signals are generally sampled at 256 Hz, and filtered with a 
low-pass filter at 0-120 Hz; additionally, a notch filter is applied to remove the power line 
interference, in order to avoid artifacts that may distort original signals. 
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5.1.2 Outliers Detection and Normalization Approach 

The presence of outliers in the original data can significantly alter the output 
performance of the model. The process of removing these contributions is performed by 
grouping or binning methods that identify relationships among the data variables. In the 
first case, data are clustered and outliers are automatically or manually detected and 
removed; in the second case, data are sorted and partitioned into bins and successively, 
smoothed by bin means or bin median. 

Subsequently to the steps previously described, data are usually normalized. The 
normalization can be performed based on the minimum-maximum, scaling the attributes in 
a range [0-1], or through mean and standard deviation carrying them to a normal 
distribution, as reported in the equations (5.2) and (5.3), respectively, for a random vector 
𝒙 ∈ ℝ:  

 𝑥𝑖𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑚𝑖𝑛(𝒙)
𝑚𝑎𝑥(𝒙)

, (5.2)  

 𝑥𝑖𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝒙)

𝑠𝑡𝑑(𝒙) , (5.3)   

where 𝑥𝑖𝑛𝑜𝑟𝑚 represents the normalized 𝑖-th sample of the vector 𝒙. 

5.2  Feature Extraction 

In order to choose the best features that can detect epileptic seizures, several 
approaches have been proposed in literature [65]–[68]. In the following paragraphs, the 
most used methods in the frequency and time-frequency domains and some features from 
nonlinear analysis are introduced. 

5.2.1  Fourier Transform  

The Fourier transform is a useful mathematical instrument for the signal spectral 
analysis. It is generally applied, with excellent results, on periodic signals as the 
decomposition is into sinusoidal basis at different frequencies. 

The definition of the Fourier transform  ℱ of a continuous function 𝑦(𝑡) ∈ ℒ2(ℝ) is 
given by (5.4): 

 
ℱ(𝑦(𝑡)) = 𝑦�(𝜔) = � 𝑦(𝑡)

∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡 (5.4)  



42 
 

The main problem of the Fourier transform is that, while sinusoidal and cosine functions 
are perfectly located in frequency, they lose information about the timing localization of a 
given frequency. 

For a periodic signal, the transform is a set of discrete values, i.e. a discrete spectrum. 
The lowest frequency of the sinusoid, representing the signal, is called fundamental 
harmonic and it is of greater importance for the signal reconstruction; the other frequencies 
are multiple of the fundamental one and are often called secondary harmonics.  

However, for transient signals it is more efficient to represent them by localized finite 
energy bases. The deficiency of the time localization, determines the necessity to apply the 
Short Time Fourier Transform (STFT). It consists of segmenting the signal into time-
localization windows and evaluating the spectrum for each of them. One of the choices, 
even if it is not the only one, is to have a rectangular function 𝑔, and translated it in time 
through a parameter 𝑏. The STFT is defined as: 

𝑆𝑇𝐹𝑇(𝑏,𝜔) = � 𝑦(𝑡)𝑔(𝑡 − 𝑏)
∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡 

5.2.2 Wavelet Transform 

The wavelet transform provides information from a transient signal in both time and 
frequency domains, simultaneously. It overcomes the issue of the Fourier analysis of losing 
temporal localization of the events, through a linear combination of a scaled and translated 
version of the wavelet basis. 

A wavelet basis defines a sparse representation of piecewise regular signals, which may 
include transients and singularities.  

By means of the wavelet basis, the signal is represented by the amplitude of coefficients 
and the wavelet structure leading to a fast computational algorithm. Wavelets, also called 
as small waves, are finite-energy functions that are suitable for analyzing and processing 
signals. 

The wavelet transforms provide information on both time and frequency of a signal, 
time-frequency localization capacity and being easily accomplished through a filter banks, 
makes them an excellent instrument to extract information. 

The propriety of the wavelet  𝜓(𝑡) is that, the area under the graph is zero: 

 ∫ 𝜓(𝑡) = 0∞
−∞ ,  

this means that the spectrum of the wavelet has a value of zero at ω = 0. 
This spectral-domain behavior makes the wavelet a band-pass filter.  
The localization properties are based on the concentration of the wavelet energy in a 

certain region of both the t- and ω- axes. High resolution and low coefficients in the 
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representation of the signal in the time-frequency (or time-scale) plane indicate that the 
energy of the wavelet is concentrated in a small region and a wavelet is localized. 

For a given wavelet 𝜓(𝑡), a scaled and translated version is formulated in 

 
𝜓𝑏𝑎(𝑡) =

1
√𝑎

𝜓 �
𝑡 − 𝑏
𝑎

�  

Where 𝑎 ∈ ℝ+ and 𝑏 ∈ ℝ are the scaling and the translation parameters, respectively. The 
first one captures the local frequency content, whereas the latter, localizes the wavelet 
basis function around time 𝑡 = 𝑏. 

The factor 1
√𝑎

 is used to normalize the energy so that it stays at the same level for 

different values of 𝑎 and 𝑏 [69]. 
For 𝑎 = 1 and 𝑏 = 0, the wavelet results:𝜓01(𝑡) = 𝜓(𝑡); this is called basic wavelet or 

mother wavelet. Despite varying the translation and scaling parameters, the shape of the 
wavelet remains the same.  

High frequency wavelets correspond to 𝑎 < 1 or narrow width, while low frequency 
wavelets have 𝑎 > 1 or wider width, as shown in Fig. 5-2. 

 
Fig. 5-2 Examples of wavelet at varying the scaling parameter. 

A set of orthonormal wavelets 𝜓𝑏𝑎(𝑡), with the proper choice of the two parameters, 
constitutes a basis in the ℒ2(ℝ) space [70]. 

While in the Fourier analysis the basis functions are sinusoids, in the wavelet transforms 
different families of basis functions are employed, from Haar to Morlet wavelets [69]. The 
most appropriate for the analysis of epileptic EEG data was found to be the Daubechies 
order 4 (db4) wavelet. This family of wavelets is really appreciated for its orthogonal 
property and efficient filter implementation [69]. Some examples of Daubechies mother 
wavelets are shown in Fig. 5-3. 
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Fig. 5-3 Daubechies scaling and wavelet function at different order. 

 
From the mother wavelet, it is possible to define the Continuous Wavelet Transform 

(CWT) of the signal 𝑦(𝑡): 

 𝐶𝑊𝑇(𝑏,𝑎) = 1
√𝑎
∫ 𝑦(𝑡)𝜓∗ �𝑡−𝑏

𝑎
�∞

−∞ 𝑑𝑡 = ⟨𝑦(𝑡),𝜓𝑏𝑎(𝑡)⟩,  (5.5)  

where the star (*) denotes its complex conjugate operator. 
The linear transform defined by (5.5), computes, via the inner product formula, the 

wavelet coefficient of 𝑦(𝑡) associated with the wavelet 𝜓𝑏𝑎(𝑡). This coefficient indicates 
the correlation of the function 𝑦(𝑡) to the family of wavelet 𝜓𝑏𝑎(𝑡). The higher the 
correlation, the larger the coefficient. 

In the CWT, the window widths can be only governed by the scale parameter 𝑎, 
nonetheless, the evaluation of all characteristic of the signal involves a heavy computational 
load with a consequent generation of redundant information for the signal reconstruction. 

The problem of redundancy and the need to apply the wavelet transform to discrete 
signals led to the application that restrict the scaling and the translation parameters to 
powers of 2, that is,  𝑎 = 2−𝑗and 𝑏 = 𝑘2−𝑗, where the integer values 𝑗 and 𝑘 are the level 
of resolution and the translation location, respectively. 

The multi-resolution analysis (MRA) resolves the function space ℒ2(ℝ) into a sequence 
of subspaces 𝑉(𝑗), each of which includes all the subspaces related to the levels lower than 
j. 
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Assuming 𝑐𝑛
(𝑗)  the approximation of a sequence 𝑦𝑛,   𝑛 = 1, … ,𝑁 at level 𝑗 , the 

difference 𝑑𝑛
(𝑗)  between the two approximations 𝑐𝑛

(𝑗+1)  and 𝑐𝑛
(𝑗)  of 𝑦𝑛 , is an additional 

information, called detail of yn. 

𝑑𝑛
(𝑗) = 𝑐𝑛

(𝑗+1) − 𝑐𝑛
(𝑗),     𝑛 = 1, … ,𝑁 

Thus, the subspaces 𝑉(𝑗+1)  can be resolved as follows: 

𝑉(𝑗+1) = 𝑉(𝑗) ⊕𝑊(𝑗), 

where the space 𝑊(𝑗), orthogonal to 𝑉(𝑗), is called detail space and ⊕ is the orthogonal 
sum operator. It means that, the subspace 𝑊(𝑗) is the orthogonal complementary subspace 
of 𝑉(𝑗) in the subspace 𝑉(𝑗+1) . 

At the limit for 𝑗 → ∞, 𝑉(𝑗) should include all the functions of the domain of interest, 
that is: 

V(∞) = {ℒ2(ℝ)}. 

For each subspaces 𝑉(𝑗), the bases 𝜙𝑘
(𝑗) are generated by a scaling function 𝜙, also called 

father function: 

𝜙𝑘
(𝑗)(𝑛) = 2

𝑗
2𝜙�2𝑗𝑛 − 𝑘�. 

Similarly, by means of the mother wavelet 𝜓, the bases 𝜓𝑘
(𝑗) are generated for each 

subspace 𝑊(𝑗). 

𝜓𝑘
(𝑗)(𝑛) = 2

𝑗
2𝜓�2𝑗𝑛 − 𝑘�. 

Hence, a signal 𝑦𝑛 can be written as: 

𝑦𝑛 = �𝑐𝑘
(𝑗0)𝜙𝑘

(𝑗0)(𝑛)
𝑘

+ ��𝑑𝑘
(𝑗)𝜓𝑘

(𝑗)(𝑛)
𝑘𝑗

= 𝑐𝑛
(𝑗𝑜) + �𝑑𝑛

(𝑗)

𝑗

 

where 𝑗0 is the level of decomposition, 𝑐𝑘
(𝑗0) are the approximation coefficients at resolution 

𝑗0, 𝑑𝑘
(𝑗) are the detail coefficients at level 𝑗. 

The Discrete Wavelet Transform (DWT) is based on the relations between subspaces 
previously described. The algorithm uses two digital filters, a high-pass filter ℎ𝑛 and a low-
pass filter 𝑔𝑛, which give rise to a bank of filters able to decompose the signal into 
components, by means of undersampling operations by a factor of two, as shown in Fig. 5-4. 
The high frequency coefficients information is drawn out from the analysis and the scaling 
function components can be further decomposed into two components at resolution j-1. 
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This process may be repeated until there is no more information left in the signal. The 
equations of the process expressed in terms of the digital filters 𝑔𝑛 and ℎ𝑛 for approximate 
and detail components are reported in (5.6) and (5.7), respectively.  

 𝑐𝑛
(𝑗−1) = �𝑔2𝑛−𝑘𝑐𝑘

(𝑗)

𝑘

 (5.6)  

 𝑑𝑛
(𝑗−1) = �ℎ2𝑛−𝑘

𝑘

𝑐𝑘
(𝑗) (5.7)  

The signal reconstruction is achieved by inverting the decomposition procedure, as 
reported in Fig. 5-5. The approximation and the detail at each level are oversampled by a 
factor of two, then filtered by a high-pass filter and a low-pass filter respectively, and finally 
summed, to give the approximation at higher level. 

 
Fig. 5-4 Example of wavelet decomposition. 

 
Fig. 5-5 Example of wavelet reconstruction. 

The filtering of both approximate and detail components are applied by the Wavelet 
Packet Transform (WPT) [71]. The wavelet packet coefficients are obtained with a filter 
bank of conjugate mirror filters that splits the frequency axis in several frequency intervals. 
Different frequency segmentations correspond to different wavelet packet bases. 

cn
(j)

 

gn ↓2 cn
(j-1) 

gn ↓2 cn
(j-2) 

hn ↓2 dn
(j-2) 

hn ↓2 dn
(j-1) 

cn
(j)

 ⊕ 

gn ↑2 cn
(j-1) ⊕ 

gn ↑2 cn
(j-2) 

hn ↑2 dn
(j-2) 

hn ↑2 dn
(j-1) 
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5.2.3 Non Linear Analysis 

Entropy 

Entropy represents the degree of information that a random variable can provide. The 
more the variable is unpredictable, the higher is the entropy. 

Let us consider a set 𝒙, which contains 𝑁 events, i.e., 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑁}, three typical 
formulas of entropy, used in literature, are defined below: 

• The Shannon Entropy, whose concept of information entropy was firstly introduced 
in information theory, is defined in (5.8) for the set 𝒙 = {𝑥1, … , 𝑥𝑁} : 

 
𝑆(𝒙) = −�𝑝(𝑥𝑖)

𝑁

𝑖=1

log 𝑝(𝑥𝑖) (5.8)  

 where 𝑝(𝑥𝑖) is the probability of occurrence of the event 𝑥𝑖. 
• The Spectral Entropy, is obtained by substituting the probability defined in (5.8) 

with the normalized components of the power spectrum of a signal to describe the 
variability within the signal [68]. 

• The Approximate Entropy (ApEn), proposed by Pincus [72] is a measure of data 
regularity, and evaluates the predictability of the current amplitude data, based on 
the previous amplitude. It is the likelihood that proximal data trends tend to be 
close together in the next pattern.  

Considering a sequence of 𝒙 , 𝒙𝑖
(𝑚) , with length  𝑚 , such that 𝒙𝑖

(𝑚) =
[𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑚−1], for 1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1. 

Let {𝒙𝑗
(𝑚)} represent a set of sub-sequences obtained from 𝒙𝑗

(𝑚) for 1 ≤ 𝑗 ≤ 𝑁 −𝑚 + 1; 

each sequence 𝒙𝑗
(𝑚) in the set {𝒙𝑗

(𝑚)} is compared with 𝒙𝑖
(𝑚) and the evaluation of similarity 

is assessed. The two patterns are similar if the difference between any pair of 
corresponding samples in the patterns is less than a parameter 𝑟, which defines the 
criterion of similarity.  

The fraction of similar patterns is calculated by the parameter 𝐶𝑖
(𝑚), defined as follows:  

𝐶𝑖
(𝑚)(𝑟) =

𝜏𝑖
(𝑚)

𝑁 −𝑚 + 1
 

where 𝜏𝑖
(𝑚) is the number of similar patterns. 

Then, the approximate entropy is computed by using 𝐶𝑖
(𝑚) and 𝐶𝑖

(𝑚+1) as described in 
(5.9). 
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𝐴𝑝𝐸𝑛(𝒙,𝑚, 𝑟) =
1

𝑁 −𝑚 + 1
� log𝐶𝑖

(𝑚)(𝑟) 
𝑁−𝑚+1

𝑖=1

−
1

𝑁 −𝑚
� log𝐶𝑖

(𝑚+1)(𝑟) 
𝑁−𝑚

𝑖=1

 (5.9)  

Higher Order Spectra  

The Higher Order Spectra (HOS) analysis can detect nonlinearity, deviations from 
Gaussianity and phase relationships between harmonic components of the signal. 

It is the spectral representation of statistics of third and higher order. It can also be 
defined for deterministic sampled signals as the Fast Fourier Transform (FFT) of the third 
order correlation of a signal: 

 𝐵(𝑓1, 𝑓2) = 𝐸[𝑦�(𝑓1)𝑦�(𝑓2)𝑦�(𝑓1 + 𝑓2)] (5.10)  

where 𝐸[∙] is the expectation operator, 𝑦�(𝑓) is the FFT of the signal 𝑦(𝑛𝑇), 𝑛 is an integer 
index, 𝑇 is the sampling interval. 

The triple product, showed in (5.10) of the two frequencies and their sum, determines 
the bispectrum, which provides information of cross correlation between frequency 
components in a two-dimensional frequency plot. 
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5.3 Feature Reduction 

After the extraction of the features, the huge dimension of the data set becomes a very 
important issue for the classification goal. The large volume and complexity of data lead to a 
high computational time, which could be avoided selecting the attributes that allow us to 
clearly define a problem. 

Hence, feature reduction methods solve the multidimensionality problem retaining only 
the features with the most informative contents, in order to avoid redundancy instances 
and classification mistakes during the training phase of the model. 

Two feature reduction methods are generally applied in machine learning, the Principal 
Component Analysis (PCA) and the minimum Redundancy Maximum Relevance (mRMR) 
method. In this paragraph, an overview of the principal feature reduction techniques used, 
are presented. 

5.3.1 Principal Component Analysis 

The Principal Component Analysis (PCA) [58] is a statistical technique. It aims to reduce 
the dimensionality of a data set consisting of a large number of interrelated variables p, 
while retaining as much as possible of the variation present in the data set. In particular, it is 
performed by transforming the original variables to a new set of variables, the principal 
components (PCs), which are uncorrelated, and sorted in decreasing order so that the first 
PCs retain most of the variation present in all the original variables. 

The PCA can also be considered as a rotation of the axes of the original variable 
coordinate system to new orthogonal axes, such that the new axes coincide with directions 
of maximum variation of the original observations [73]. 

Let us define a [𝑛 × 𝑝] matrix 𝐗�, that has 𝑛 independent observations on the 𝑝 variables. 
The aim is to obtain a new matrix 𝒁 composed of uncorrelated variables and that are linear 
combination of the original data.  

Assuming that each of the original variable is subtracted from their average, leading to a 
data set whose mean is zero, let 𝑿 be a matrix whose elements are defined as: 

 xi,j = x�i,j − x�j for 𝑖 = 1, 2, … ,𝑛; 

𝑗 = 1, 2, … ,𝑝  
 

where x�i,j is the (i, j)-th element of the matrix 𝐗� and the average x�j is calculated for each 
variable 𝑗 as: 

 
�̅�𝑗 =

1
𝑛
�𝑥�𝑖,𝑗

𝑛

𝑖=1
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The matrix 𝒁 of PC scores writes: 

 𝒁 = 𝑿𝑨 (5.11)  

where 𝑨 is the orthogonal matrix [𝑝 × 𝑝] whose 𝑘-th column 𝒂𝑘is the 𝑘-th eigenvector of 
the covariance matrix 𝑺. 

The resulting 𝒁 matrix in (5.11) has dimension [𝑛 × 𝑝], each element 𝑧𝑖,k is the score of 
the 𝑖-th observation on the 𝑘-th PC 

The covariance matrix 𝑺 can be described as: 
 

 𝑺 =
1

𝑛 − 1
𝑿′𝑿   

The eigenvectors of 𝑺 are perpendicular to each other and provide the information 
about the patterns in the data. At each eigenvector an eigenvalue 𝑙  is associated 
corresponding to the variance of the associated PC. After the evaluation of the 
eigenvectors, the components are ordered based on their eigenvalues 𝑙𝑘, from the highest 
to the lowest, that gives the order of significance. The eigenvector with the largest 
eigenvalue is the first PC of the data set.  

If the original variables were partially correlated, some eigenvalues would have a 
negligible value. 

This means that the corresponding eigenvectors can be neglected and it is possible to 
limit the representation only to eigenvectors with the greatest eigenvalues. 

Additionally, the covariance matrix on the PCs basis is diagonal, it means that the total 
variance is the sum of the variances of each PC. 

Components selection 

To decide how many PCs should be used in order to account for most of the variation of 
𝑿, different rules are developed.  

The most commonly applied empirical methods are three: the cumulative percentage of 
total variation, the size of variance of PCs and the scree graph and the log-eigenvalue 
diagram. 

In the cumulative percentage of total variation method, the first m-components of 𝒁 
whose contribution is around 70% - 90% are considered. 

Since, as stated earlier, the variance of the 𝑘-th PC is represented by the eigenvalue 𝑙𝑘, 
the evaluation of the percentage variation, accounted for the first 𝑚 PCs, is: 

 
𝜌𝑚 = 100

∑ 𝑙𝑘
𝑚
𝑘=1

∑ 𝑙𝑘
𝑝
𝑘=1
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The best choice for a cut-off value ρ∗, to retain the 𝑚 PCs, where 𝑚 is the smallest 
integer for which 𝜌𝑚 > 𝜌∗, is in the range 70% to 90% [58]. However, it can sometimes be 
higher or lower depending on the practical details of a particular data set. A value greater 
than 90% is indicated when one or two PCs represent very dominant sources of variation. 
Conversely, when 𝑝 is very large, the selection of 𝑚 PCs corresponding to 70% might still be 
higher for the further analyses. One solution is to decrease the threshold. 

The method of the size of variance of PCs, consists in choosing only the 𝑚 PCs with 
𝑙𝑘 > 1, according to the Kaiser's rule [74], in which any PC with variance less than 1 contains 
less information than one of the original variables, and so it is not worth retaining. 

This rule is specifically constructed for use with the correlation matrix to evaluate the 
PCs, in view of the fact that, if all elements of 𝑿 are independent, the PCs are the same as 
the original variables and will have unit variances. However, the method could be adapted 
in case of covariance matrix application.  

Despite the unit threshold, cut-off values 𝑙∗ < 1 have been explored. According to 
simulation studies, in [75] a value of 0.7 was considered appropriate. 

The scree graph and the log-eigenvalue diagram are based on choosing the components 
by graphical representation of 𝑙𝑘 against 𝑘. 

The scree graph, named because of the similarity of the typical shape to that of the 
accumulation of scree, at the foot of a mountain slope, consists in selecting the 𝑘 value 
based on the slope alteration of the curve. The k in which is present an 'elbow', a changing 
of steepness, defines the 𝑚 PCs that should be kept.  

The alternative to this graph is the log-eigenvalue diagram, where the y-axis is 
represented by the logarithm of the eigenvalues. However, this procedure is not indicated 
when the slope gradually becomes less steep, with no clear elbow. 

In Fig. 5-6 two examples of scree graphs are depicted, Fig. 5-6a shows a sharp slope of 
the curve, meaning that the first three PCs give significant information, whereas the 
components on the shallow slope may add little contribution to the solution. Conversely, in 
Fig. 5-6b no clear elbows can be observed, meaning that, the method is not suitable for PCs 
selection. 
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a. b. 

Fig. 5-6  Example of scree graphs: a) represents sharp slope variations [76], b) represents gradual slope 
variations [58]. 

5.3.2 Independent Component Analysis 

While PCA identifies the new dimensional space by finding the major axis of variation, 
the Independent Component Analysis (ICA) identifies the new dimensional space by finding 
the components that are independent from each other. The main computational difference 
between PCA and ICA is that, while PCA uses variance which is a second order statistic, ICA 
uses higher order statistics for computation of independent variables [77]. 

ICA assumes that each observed variable is a linear combination of the independent 
components or sources. The requirements to identify the sources are that the independent 
components are statistically independent and have non-gaussian distributions. 

An approach for ICA estimation, inspired by information theory, is the minimization of 
mutual information [78] of the components, that is a measure of the dependence between 
random variables, and it is null and not negative only when each variable is independent 
from the other. 

5.3.3 Linear Discriminant Analysis 

The Linear Discriminant Analysis (LDA), proposed in 1936 by Fisher [79], used both in 
feature extraction and building classification model, provides a dimensional reduction 
through linear combinations of the observed variables, so as to separate two or more 
classes without altering the location of the initial data. It is obtained by maximizing the 
difference between the predefined groups with respect to the new variable. 
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Let us define a set X of p-dimensional vectors 𝒙 with 𝑛 data points belonging to 𝑀 
classes, in which 𝒙𝑗(ς) is defined as the 𝑗-th vector belonging to the 𝜍-th class.  

To perform dimensionality reduction, each sample vector is mapped into a lower q-
dimensional space by a linear transformation: 

𝒚𝑗(𝜍) = 𝑾𝑇𝒙𝑗(𝜍) 

𝑾 is determined in order to reduce data variation in the same class and increase the 
separation between classes. 

Considering the mean for each cluster as 𝝁𝜍 and for the entire data set as 𝝁, the aim of 
the Fisher-LDA is the maximization of the objective function expressed as: 

 
𝐽(𝒘) =

𝒘𝑻𝑆𝐵𝒘
𝒘𝑇𝑆𝑤𝒘

 (5.12)  

where 𝒘 is the transformation vector; whereas 𝐒B, defined in (5.13) and 𝐒W, defined in 
(5.14), are the between-class and within-class scatter matrices, respectively. 

 
𝑺𝐵 =

1
𝑛
�𝑛𝜍�𝝁𝜍 − 𝝁��𝝁𝜍 − 𝝁�𝑇
𝑀

𝜍=1

 (5.13)  

where 𝑛𝜍 represents the number of data point belonging to the 𝜍-th class.  

 
𝑺𝑊 =

1
𝑛
�𝑆𝜍

𝑀

𝜍=1

 

where 𝑆𝜍 = ∑ �𝒙𝑗
(𝜍) − 𝝁𝜍� �𝒙𝑗

(𝜍) − 𝝁𝜍�
𝑇

𝑗  

(5.14)  

The objective function in (5.12) can be optimized by evaluating eigenvectors and 
eigenvalues, whose equation to establish the transformation vector 𝒘 is reported in (5.15). 

 𝑆𝐵𝒘 = 𝑙𝑆𝑊𝒘 (5.15)  

Generally, the 𝑞 generalized eigenvectors 𝒘1, . . . ,𝒘𝑞, associated with the first 𝑞 largest 
eigenvalues 𝑙 , compose the column vectors of the transformation matrix 𝑾 . These 
generalized eigenvectors form the projection vectors of LDA [59]. 

5.3.4 Minimum Redundancy Maximum Relevance 

The minimum Redundancy Maximum Relevance (mRMR) approach, developed by Ding 
and Peng [80], extracts a set of feature that has the minimal redundancy among them and 
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that are more representative for the classification. To evaluate the redundancy and 
relevance, for discrete variables, the mutual information can be applied. 

Mutual information, a measure widely used in communication systems [81], represents 
the amount of information that a variable X contains about another variable Y: 

𝐼(𝒙,𝒚) = �𝑝(𝑥𝑖 ,𝑦𝑗) log
𝑝(𝑥𝑖 ,𝑦𝑗)
𝑝(𝑥𝑖)𝑝(𝑦𝑗)

𝑖,𝑗

 

where 𝑝(𝑥𝑖 ,𝑦𝑗) is the joint probability density for the two variables and 𝑝(𝑥𝑖), 𝑝�𝑦𝑗� are the 
individual probabilities. The minimal redundancy, calculated for a subset 𝑆, is defined by the 
equation (5.16): 

min𝑊𝐼 𝑊𝐼 =
1

|𝑆|2 � 𝐼(𝑥𝑖 , 𝑥𝑗)
𝑥𝑖,𝑥𝑗∈𝑆

 (5.16)  

where 𝑥𝑖 , 𝑥𝑗  are two features belonging to a subset 𝑆. 
The aim is to choose the set of features 𝑆, that best characterizes the whole data 

information. On the other hand, the relevance takes into account the information between 
features and their different target classes ℎ; the maximization of their mutual information, 
reported in the equation (5.17) determines the extraction of the features with high 
discriminant power. 

max  𝑉𝐼 , 𝑉𝐼 =
1

|𝑆|�𝐼(ℎ, 𝑥𝑖)
𝑖∈𝑆

 (5.17)  

The combination of the two quantities can be evaluated maximizing their difference 
(5.18) or their quotient (5.19). The last one is considered as the best choice when applied to 
discrete variables [80]. 

 max (𝑉𝐼 −𝑊𝐼) (5.18)  

 max  (𝑉𝐼 /𝑊𝐼) (5.19)   
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5.4  Building Model 

5.4.1 Artificial Neural Network 

An Artificial Neural Network (ANN) is a computing system made up of a number of 
simple, highly interconnected processing elements, which process information by their 
dynamic state response to external inputs [82]. 

Its inspiration comes from the biological nervous system, where the activation or 
inhibition of the neurons depends on the sum of input signals and the threshold potential.  

In the artificial neuron, represented in Fig. 5-7, the inputs are multiplied by the 
connection weights, summed, and subsequently passed through an activation function to 
produce the output. The weighed sum of the neuron inputs 𝑥, including a bias, usually 
represented by 𝑏 is defined as 𝑣: 

𝑣 = �𝑤𝑖𝑥𝑖 + 𝑏
𝑛

𝑖=1

 

The activation function 𝜑 associates the sum 𝑣 to the output value 𝑦. 

𝑦 = 𝜑(𝑣) 

 

 

Fig. 5-7 Representation of the artificial neuron. 

The most commonly used activation function φ is the sigmoid function [83]:  

𝜑(𝑣) =
1

1 + exp(−𝑣) 

Other activation functions are described in Table 5-1. 

x1

x2

xn

•
•
•

w1

w2

wn

Σxiwi ϕ(⋅)

b

y



56 
 

Table 5-1 Activation functions 

Threshold 𝜑(𝑣) = �0, 𝑣 < 0
1, 𝑣 ≥ 0

� 

Hyperbolic tangent 𝜑(𝑣) = tanh(𝑣) 

Linear 𝜑(𝑣) = 𝑣 

The artificial neural networks are typically organized into layers; they can be classified in 
two main categories based on their topologies: feed-forward and recurrent networks.  

In feed-forward neural networks, the neurons in a layer get input from the previous layer 
and feed their output to the next layer, not permitting connections to the neurons of the 
same or previous layers and not keeping a record of the previous output values. The feed-
forward networks can be further subdivided in static or dynamic networks. In the static 
network, the output of the network at a given moment depends only on the input at the 
same time instant, whereas in dynamic network, the output depends on the initial and past 
states of the neurons. 

In Fig. 5-8, an example of feed-forward network is represented. The network is 
composed by an input, an output layer, and a certain number of layers between them, 
named hidden layers. A network constituted by an input layer and an output layer of 
neurons define the single layer neural network; whereas the presence of one or more 
hidden layers describes the multilayer networks. A classical example of a feed-forward 
network is the Multi-Layer Perceptron, firstly described by Rosenblatt in 1961 [84]. 
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Fig. 5-8 Architecture of a feed-forward neural network. 

In the Recurrent Neural Networks (RNNs), represented in Fig. 5-9, the network contains, 
instead, at least one feed-back connection, the activations can therefore flow round in a 
loop, enabling the networks to do temporal processing and learn sequences. These 
networks are dynamics, the composite input at time 𝑡 has some historical information 
about the happenings at time 𝑇 <  𝑡. An example of recurrent network is the Elman 
Networks (EN) [85]. 

 

 
Fig. 5-9 Architecture of a recurrent network. 
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Perceptron 

The perceptron, proposed by Rosenblatt in 1956, is the simplest form of feed-forward 
neural network. It consists of a single neuron with adjustable synaptic weight and bias as 
depicted in Fig. 5-7. Normally, the output is evaluated based on the Heaviside function. 
Perceptron, represented by a single layer of process nodes, can be used to classify linearly 
separable patterns that lie on opposite sides of a hyperplane. 

Multi-Layer Perceptrons 

Perceptrons with at least three layers, i.e., a minimum of one hidden layer, and non-
linear activation functions, are named Multi-Layer Perceptrons (MLP). Each node in the 
network, with the exception of the input layer nodes, can perform computing and 
transformation operations. Each of these nodes calculates a weighing aggregate function of 
the confluent signals to the node itself, and an activation function processes the input to 
output signal. 

In Fig. 5-10, a MLP with a single hidden layer is shown. It presents a structure with d 
inputs 𝑥, 𝑛𝐻 neurons in the hidden layer and s neurons in the output layer. 

 

 
Fig. 5-10 Example of a Multi Layer Perceptron neural network. 

The total number of parameters (weights) results: 𝑑 × 𝑛𝐻 + 𝑛𝐻 × 𝑠 + 𝑛𝐻 + 𝑠, where 
the last two are the weights of the biases.  

The outputs 𝐳 of the network are given by transforming with the activation function 𝜑 
the weighted sum of the outputs of the prior hidden layer and the bias. The evaluation of 
the 𝑘-th output 𝑧, is given by: 
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𝑧𝑘 = 𝜑��𝑤𝑗,𝑘

(1)𝑦𝑗 + 𝑏𝑘
(1)

𝑛𝐻

𝑗=1

� 
(5.20)  

 

where 𝑤𝑗,𝑘
(1)denotes the weight in the single hidden layer, of the connection from the j-th 

unit of the hidden layer to the k-th output unit, whereas 𝑦𝑗  and 𝑏𝑘
(1) represent the activation 

of the hidden unit j, reported in (5.21), and the bias for the output unit k, respectively.  
The output 𝑦𝑗  of the j-th hidden unit is calculated by the nonlinear transformation of the 

weighted sum of the inputs and the bias, as described in the following equation: 

Hence, the equation (5.20) can be written as: 

Note that, the equation (5.22) can be extended to the case of more than one hidden 
layer with the same iterative process. 

To evaluate the contribution of each weight, different learning algorithms can be 
applied. Basically, they estimate the local error at each neuron and systematically update 
the network weights. The combination of weights which minimizes the error function is 
considered to be a solution of the learning problem. Some of the algorithms currently used 
to minimize the error functions are the steep gradient descent that is a method of the first 
order, and the Newton's method, a second order method. Additionally, another method 
applied to minimize a non linear function, is the Levenberg-Marquardt algorithm that 
converges to the solution faster than the steep gradient descent algorithm [86]. 

Probabilistic Neural Network  

The probabilistic neural network (PNN), based on statistical Bayesian decision rule, is a 
feed-forward neural network with two hidden layers, named pattern and summation layers.  

Each pattern neuron performs a dot product of the input pattern vector with a weight 
vector and then, employs the Radial Basis Function (RBF) as activation function, instead of 
the sigmoid function, commonly used for back-propagation. Then, each neuron of the 

 
𝑦𝑗 = 𝜑��𝑤𝑖,𝑗𝑥𝑖 + 𝑏𝑗

𝑑

𝑖=1

� (5.21)  

 
𝑧𝑘 = 𝜑��𝑤𝑗,𝑘

(1)𝜑��𝑤𝑖,𝑗𝑥𝑖 + 𝑏𝑗

𝑑

𝑖=1

� + 𝑏𝑗
(1)

𝑛𝐻

𝑗=1

� (5.22)   
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summation layer, that represents an output class, computes the sum of the contribution 
only from the pattern neurons associated with the output class.  

The PNN is commonly used in classification purposes; it offers a speed advantage for 
problems in which the incremental adaptation time of back propagation is a significant 
fraction of the total computation time. One of the advantages is the capability to operate 
completely in parallel without a need for feedback from the individual neurons to the 
inputs. In addition, the toleration of the erroneous samples and the possibility to choose the 
parameter of RBF based on the complexity of the system, make the PNN an advantageous 
classification model [87]. 

5.4.2 K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) classifier is a supervised learning model that classifies 
new points based on a similarity measure.  

Assuming a 𝑝-dimensional training feature space and an unseen 𝑝-dimensional instance 
𝒙, let us consider a positive integer 𝐾. The KNN classifier evaluates the distances between 𝑥 
and each training observations; after that, the 𝐾 points in the training data closest to 𝑥 are 
selected. Finally, 𝑥 gets assigned to the class with the largest conditional probability, that is 
the fraction of points of a given class that are in the subspace defined by the 𝐾 value. An 
example of KNN classification for 𝐾 = 5 is shown in Fig. 5-11. The instance 𝑥 will belong to 
the negative class. 

The distance between two instances can be measured in many possible ways. The most 
employed metric is the Euclidean distance. Given two data points in 𝑝-dimensional feature 
space: 𝒙1  =  (𝑥11, … , 𝑥1𝑝) and 𝒙2  =  (𝑥21, … , 𝑥2𝑝), the Euclidean distance between these 
points is given by: 

𝑑(𝒙1,𝒙2) = ���𝑥1𝑗 − 𝑥2𝑗�
2

𝑝

𝑗=1

 

Other distances, that can be used, are: 

• Manhattan distance    𝑑(𝑥1, 𝑥2) = ∑ �𝑥1𝑗 − 𝑥2𝑗�
𝑝
𝑗=1 . 

• Minkowski distance    𝑑(𝑥1, 𝑥2) = �∑ �𝑥1𝑗 − 𝑥2𝑗�
𝜉𝑝

𝑗=1 �
1/𝜉

,  

where 𝜉  denotes the order of the norm. For 𝜉 = 1 or 𝜉 = 2 the Minkowski distances 
correspond to the Manhattan and the Euclidean distances, respectively. 

The KNN classifier is easy to implement and interpret, the classification is based solely on 
local information. However, KNN classification is time consuming and storage intensive [88], 
additionally, it is sensitive to the correct choice of K: a small value of K gives less stability, 
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whereas, a large value of 𝐾 causes lower precision. An empirical rule-of-thumb is choosing K 
equal to the square root of the number of instances [89]. 

 
Fig. 5-11 Example of KNN classification for K=5. 

5.4.3 Decision Trees 

A decision tree (DT) is a tree-like structural supervised model. It is designed with leaves, 
which represent classifications or decisions, and branches, which represent the 
conjunctions of features that lead to those classifications. 

The classification of a particular pattern begins at the root node and ends at leaf nodes. 
Each leaf specifies a test of some attribute of the input instance and each branch 
descending from that node corresponds to one of the possible values for this attribute, as 
shown in Fig. 5-12. The example, reported by Mitchell [50], illustrates the classification of 
Saturday mornings according to whether or not they are suitable for playing tennis. 

DT learning is generally best suited to problems whose instances are describable by 
attribute–value pairs and target function has discrete output values [50], as in Fig. 5-12 with 
the Boolean classification (i.e., yes or no) to each example. 

A variety of DT algorithms can be applied to solve the problem, three popular algorithms 
are: CART (Classification and Regression Tree), ID3 (third in a series of identification, “ID”, 
procedures) and C4.5, the classification successor algorithm of ID3. 

The C4.5 algorithm is the most popular in classification tree methods. It constructs the 
tree, employing a top-down, greedy search through the space of possible branches using 
entropy and the information gain. The information gain is defined as the expected 
reduction in entropy caused by partitioning the examples according to this attribute.  

Assuming 𝑆 as the training set and 𝐴 as the attribute, the information gain is: 
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𝐺𝑎𝑖𝑛(𝑆,𝐴) ≡ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − �
|𝑆𝑣|
|𝑆| 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

 

where 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) is the set of all possible values for attribute 𝐴, and 𝑆𝑣 is the subset of 𝑆 
for which attribute A has value 𝑣. For example, in the case depicted in Fig. 5-12, the 
attribute Wind, can have the values Weak or Strong. 

After the construction of the tree, the algorithm uses a heuristics formula for the pruning 
phase, where some pairs of neighboring leaf nodes are removed in order to have leaf nodes 
with minimum impurity (i.e., heterogeneity of composition). 

This simple and interpretable structure allows decision trees to solve multi-type attribute 
problems and manage missing values or noise data. The method is robust to errors, both 
errors in classifications of the training examples and errors in the attribute values. However, 
the method presents difficulties of interpretation when trees have large dimension and 
sometimes, it cannot guarantee the optimal accuracy compared to other machine learning 
methods [88]. 

 

 
Fig. 5-12 A decision tree for the concept Play Tennis. 

5.4.4 Gaussian Mixture Model 

The Gaussian Mixture Model (GMM) is an unsupervised machine learning technique 
based on the expectation maximization (EM) method. It assumes that all the data points are 
generated from a mixture of a finite number of Gaussian distributions with unknown 
parameters. It is used as clustering method, where clusters are considered as Gaussian 
distributions centered on their barycenters. 

No                       Yes No Yes

Outlook

Sunny Overcast Rain

Humidity Yes Wind

Strong WeakHigh Normal
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Given an observed set ℑ = {𝒙1, . . . ,𝒙𝑛} , where 𝒙𝑖  is a 𝑑 -dimensional vector, the 
multivariate Gaussian density, for each of the 𝑘 Gaussian components, is defined with the 
parameters: mean 𝝁j and covariance Σj. 

 𝑝j�𝐱i�𝜃j� = 1

�(2π)𝑑�Σj�
exp[−1

2
�𝐱i − 𝛍j�

TΣj−1(𝐱i − 𝛍j)],  1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘 

where θj = �𝛍j, Σj� 
Let us define𝑝(𝒙𝒊) as a finite mixture model with 𝑘 components: 

𝑝(𝐱i|Θ) = �𝛼𝑗  𝑝𝑗(𝐱i|zj,𝜃j)
k

𝑗=1

 

where: 
𝑝𝑗(𝐱i|zj,𝜃j) are mixture components, 1 ≤ 𝑗 ≤ 𝑘. Each is a density or distribution defined 

over 𝑝(𝒙𝑖), with parameters 𝜃𝑗. 
𝒛 = (𝑧1, … 𝑧𝑘) is a vector of 𝑘 binary indicator variables that are mutually exclusive and 

exhaustive, it represents the identity of the mixture component that generated 𝒙𝑖. 
𝑎𝑗 = 𝑝(𝑧𝑗)  are the mixture weights, representing the probability that a randomly 

selected 𝒙𝑖 was generated by component 𝑘, where∑ 𝛼𝑗𝑘
𝑗=1 = 1 

𝛩 = {𝛼1, … ,𝛼𝑘 ,𝜃1, … ,𝜃𝑘} is the complete set of parameters for a mixture model with 𝑘 
components. 

The EM method consists of the expectation (E) and the maximization (M) steps 
performed iteratively. The first step computes the expectation of the log likelihood with 
respect to the current estimate of the distribution, evaluating the responsibilities (or 
membership weights) using the current parameter values: 

𝜔𝑖𝑗 =  𝑝(𝑧𝑖𝑗 = 1|𝒙𝑖 ,Θ(t)) =
𝑝𝑗�𝒙𝑖�𝑧𝑗,Θ(t)�𝛼𝑗

∑ 𝑝𝑚(𝒙𝑖|𝑧𝑚,Θ(t)𝑘
𝑚=1 )αm

, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘 

The second step computes the updated parameters 𝜽(𝑡+1) that maximize the expected 
log likelihood. 

𝜇𝑗
(𝑡+1) = 1

𝑛𝑗
∑ 𝜔𝑖𝑗𝒙𝑖𝑛
𝑖=1    1 ≤ 𝑗 ≤ 𝑘 

Σ𝑗
(𝑡+1) =

1
𝑛𝑗
�𝜔𝑖𝑗(𝒙𝑖 − 𝝁𝑗

(𝑡+1)
𝑛

𝑖=1

)(𝒙𝑖 − 𝝁𝑗
(𝑡+1))

𝑇
, 1 ≤ 𝑗 ≤ 𝑘 

𝑎𝑗
(𝑡+1)  =

𝑛𝑗
𝑛
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where 𝑛𝑗 = ∑ 𝜔𝑖𝑗
𝑛
𝑖=1 , it is the effective number of data points assigned to component 𝑗, and 

𝑇 denotes the transpose operation. 
The entire iterative process repeats until the algorithm converges. The main advantages 

of this model are the flexibility in choosing the components distribution and in obtaining a 
density estimation for each cluster. However, it fails with problems having a large 
dimension of data.  

5.4.5  Support Vector Machine  

The Support Vector Machine (SVM) is one of the most used supervised machine learning 
method for binary classification [51]. The geometrical interpretation of Support Vector 
machine Classification (SVC) is that the algorithm projects the points to be classified into a 
larger space, called feature space, where the classes are linearly separable from each other. 
In this space, a separating hyperplane is determined, maximizing the margin between the 
classes, defined as the distance between the hyperplane and the points of the two classes 
closest to it. 

Let us first consider the problem of separating two linearly separable sets. Let 𝑛 training 
vectors belonging to two separate classes defined in 𝑦: 

{(𝒙𝑖 ,𝑦𝑖)}𝑖=1𝑛 , 𝒙𝑖 ∈ ℛ𝑝,𝑦𝑖 ∈ {−1, 1}, 

Let a linear hyperplane that divides the negative from positive training samples, and that 
is defined by the following equation: 

 
𝒘 ∙ 𝒙 + 𝑏 = 0 (5.23)  

where 𝒘 is the weight vector normal to the hyperplane and b is the bias. 𝑏
‖𝒘‖

 is the 

perpendicular distance from the hyperplane to the origin, and ‖∙‖ is the Euclidean norm.  
The margin is obtained by the sum of the minimum distances evaluated from the 

separating hyperplane to both the closest positive and negative samples, as depicted in Fig. 
5-13. The points are called support vectors, and are illustrated in the Fig. 5-13 with extra 
circle. The parallel hyperplanes, where the support vectors lie, are indicated as in (5.24) and, 
(5.25) for the positive and negative samples, respectively:  

   𝒙𝒊 ∙ 𝒘 + 𝑏 = 1 for 𝑦𝑖 = 1 (5.24)  

  𝒙𝒊 ∙ 𝒘 + 𝑏 = −1 for yi = −1 (5.25)  

Considering all the vectors, the constraints for the training samples can be written by the 
inequality (5.26): 
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 𝑦𝑖( 𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 ≥ 0,       ∀𝑖 (5.26)  

The aim of the SVM is to maximize the margin in order to achieve the optimal separation 
from the two categories. Since the distance is inversely proportional to ‖𝒘‖, the problem is 
solved minimizing ‖𝒘‖2, under the constraint (5.26), applying the Lagrangian formulation. 
Thus, the problem can be indifferent solved in two ways, due to the particular dual 
expression of the problem. One solution is reported in (5.27), under the constrains 𝛼𝑖 ≥
0, where 𝛼𝑖are Lagrange multipliers. 

 
Fig. 5-13 Example of the hyperplanes positioning in the case of separable vectors [51]. 

Considering that, in most cases, training data cannot be separable, a feasible solution is 
to introduce a slack variable 𝜉𝑖 in (5.23), which takes into account the training error. Thus, 
the minimization problem becomes the (5.28), subject to the constraint reported in (5.29): 

where, C>0 is the regularization parameter, that bounds the training error. 

max
α

��𝛼𝑖

𝑛

𝑖=1

−
1
2
� 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 < 𝒙𝑖 ,𝒙𝑗 >
𝑛

𝑖,𝑗=1

� , 

𝛼𝑖 ≥ 0, 𝑖 = 1, … ,𝑛 

(5.27)               

 
min

(𝐰,b,ξ)
�

1
2
𝒘𝑇𝒘 + 𝐶�𝜉𝑖

𝑛

𝑖=1

� , 𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑛 (5.28)               

 𝑦𝑖(𝒘
𝑇𝜙(𝒙𝒊) + 𝑏) ≥ 1 − 𝜉𝑖,  𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑛 (5.29)  
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The optimization problem in (5.28) has two objectives: the maximization of the margin 
between the input data classes and the minimization of the number of misclassifications. 
The parameter C controls the trade-off between these two goals. 

To generalize the problem, training data can be classified by means of non linear 
separation surfaces. The non-linear SVM maps the input vectors 𝒙 into a higher dimensional 
space using a non-linear mapping function 𝜙 in order to find a better separation of the 
classes. While in the linear SVM the optimization problem depends on the dot product of 
the training data 𝒙𝑖 ∙ 𝒙𝑗, in non linear SVM, a kernel function 𝒦�𝒙𝑖 ,𝒙𝑗� = 𝜙(𝒙𝑖) ∙ 𝜙�𝒙𝑗� is 
introduced [90]. 

Among the kernel functions, whose expressions are reported in Table 5-2, the most 
applied in non linear SVM, is the Radial Basis Function (RBF): 

 𝒦�𝒙𝑖 ,𝒙𝑗� = exp (−𝛾�𝒙𝑖 − 𝒙𝑗�
2) (5.30)  

where γ can be seen as the inverse of the radius of influence of samples selected by the 
model as support vectors. 

Hence, the optimal separating hyperplane (5.23) and the optimization problem (5.27) 
become the (5.31) and the (5.32), respectively. 

 𝒘 ∙ 𝜙(𝒙) + 𝑏 = 0 (5.31)  

 max𝛼 �∑ 𝛼𝑖 −
1
2
∙ ∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝒦�𝒙𝑖 ,𝒙𝑗�𝑛

𝑗=1
𝑛
𝑖=1

𝑛
𝑖=1 �, (5.32)  

subjected to ∑ 𝑦𝑖𝛼𝑖 = 0𝑛
𝑖=1 ,  0 ≤ 𝛼𝑖 ≤ 𝐶,  𝑖 = 1, … ,𝑛. 

 

Table 5-2 Some of the kernel functions most used in SVM. 

Linear 𝒦�𝒙𝑖 ,𝒙𝑗� = 𝒙𝑖𝑇𝒙𝑗 

Radial Basis Function 𝒦�𝒙𝑖 ,𝒙𝑗� = exp (−𝛾�𝒙𝑖 − 𝒙𝑗�
2) 

Polynomial 
𝒦�𝒙𝑖 ,𝒙𝑗�=�𝒙𝑖𝑇𝒙𝑗 + 1�𝜈 ,  

𝜈 is the degree of polynomial kernel 

Sigmoid 
𝒦�𝒙𝑖 ,𝒙𝑗� = tanh�𝜂𝒙𝑖𝑇𝒙𝑗 + 𝑟�, 
𝜂 and 𝑟 are kernel parameters 
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5.4.6 Self Organizing Map 

A Self Organizing Map (SOM) [57] is an unsupervised neural network, developed by 
Kohonen, that demonstrated very useful to convert complex nonlinear relationships 
between data items into a low-dimensional space, preserving the topological properties of 
the input space. 

Its applications range from the speech recognition to image analysis. 
The SOM defines a mapping from a p-dimensional input space onto a regular (usually 

two-dimensional) array of neurons, where, each neuron is represented by a p-dimensional 
weight vector 𝒘. 

The SOM applies a competitive learning algorithm adapting and updating, in each 
training step, the weights vectors of the SOM, in order to obtain the minimum distance with 
the input vectors. 

Let us consider a vector 𝒙 ∈ ℝ𝑝 randomly chosen from the training set 𝑁, and 𝒘𝑖(𝑡) as 
the weight vector of the i-th neuron, at time 𝑡, that was first initialized. The neuron, whose 
weight is closest to the input vector, is called the Best Match Unit (BMU). 

 ‖𝒙 − 𝒘𝑐‖ = min
𝑖
‖𝒙 − 𝒘𝑖(𝑡)‖ (5.33)  

Where 𝒘𝑐  represents the weight vector of the BMU. In (5.33) the Euclidean distance is 
considered. 

According to the competitive Learning Rule, the weight vectors are subsequently 
updated,  

 𝒘𝑖(𝑡 + 1) = 𝒘𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝒙(𝑡) −𝒘𝑖(𝑡)]  

Where: 
• ℎ𝑐𝑖(𝑡) is a decreasing neighborhood function of time, it is centered around the 

neuron c, with a radius 𝜎; 
• 𝛼(𝑡) is the learning rate at time 𝑡 whose value can be 0 ≤ 𝛼(𝑡) ≤ 1;  
• 𝒙(𝑡) is the vector, randomly chosen, at time t. 

The learning step includes the weight vectors update of all neurons around the neuron c, 
that are contained within a time-variable radius. The procedure normally consists of taking 
a wide radius and a large initial learning rate at the beginning, and shrinking with time. 

The neighborhood function determines how strongly the neurons are connected to each 
other, influencing the training result of SOM procedure. Four examples of neighborhood 
function commonly applied in the SOM algorithm are shown in Fig. 5-14 are displayed [91]: 

• Bubble function is a constant function expressed by: 



68 
 

 ℎ𝑐𝑖(𝑡) = 𝟏(𝜎𝑡 − 𝑑𝑐𝑖)   

Where 𝜎𝑡  is the neighborhood radius at time t; 𝑑𝑐𝑖 = ‖𝑟𝑐 − 𝑟𝑖‖ is the distance between 
the neuron c and i on the map grid and 𝟏(𝜌) is the unit step function, that is 𝟏(𝜌) = 0 if 𝜌 
<0 and 𝟏(𝜌) = 1 if 𝜌 ≥ 0. 

• Gaussian function is expressed by: 

ℎ𝑐𝑖(𝑡) = 𝑒𝑥𝑝(−𝑑𝑐𝑖2 /2𝜎𝑡2) 

• Cut-Gaussian function, is obtained multiplying Gaussian function by the bubble 
function, expressed by: 

ℎ𝑐𝑖(𝑡) = 𝑒𝑥𝑝(−𝑑𝑐𝑖2 /2𝜎𝑡2) 𝟏(𝜎𝑡 − 𝑑𝑐𝑖) 

• Epanechnikov function is a piecewise polynomial function defined as: 

ℎ𝑐𝑖(𝑡) = max {0, 1 − (𝜎𝑡 − 𝑑𝑐𝑖)2} 

 
Fig. 5-14 Representation of neighbourhood functions. From the left: Bubble function, Gaussian function, Cut-

Gaussian function and Epanechnikov function [91]. 

The map size 𝐾, that is the number of neurons constituent the map, and the map shape, 
are two of the training parameters that influence the system output. 𝐾 is correlated to the 
size of the training set; a high dimensional map causes greater flexibility, allowing a better 
cluster separation, but elevated computational time. In [91], the hexagonal shape grid and 
the empirical value of 𝐾 are suggested. The calculation of the map size is reported in the 
equation (5.34), in which  𝑁 is the number of the training set samples. 

  

 𝐾 = 5 ∙ 𝑁0.54321  (5.34)  
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5.5 Performance 

To quantify the performance quality of a classification, or prediction, system, different 
metrics can be evaluated.  

Given a binary classification (prediction) problem, and calling positive points, or samples, 
those associate to the positive label in the training set, and negative samples those 
associated to a negative one, the output of the classifier can be represented by the 
confusion matrix, a table that presents the following four categories: 

• True positive (TP): number of positive samples correctly classified (predicted) as 
positive by the model. 

• False negative (FN): number of positive samples wrongly classified (predicted) as 
negative by the model. 

• True negative (TN): number of negative samples correctly classified (predicted) 
as negative by the model. 

• False positive (FP): number of negative samples wrongly classified (predicted) as 
positive by the model. 

Based on these definitions, the statistical performance indexes, typically used in epileptic 
seizure detection and prediction, are described below: 

• Sensitivity (SS) or Recall: is the ratio between the positive samples correctly 
classified (predicted) by the model and the sum of all positive samples, it defines 
how good a test detects (or predicts) the positive class. 

𝑆𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

• Specificity (SP): is the ratio of negative samples correctly classified (predicted) by 
the model and the sum of all negative samples, it defines how good a test 
detects (predicts) the negative class: 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
.  

• Accuracy (ACC): is the ratio between the samples correctly classified (predicted) 
and all the samples, it defines the closeness of the test to known values. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

• Precision (PR) or Positive Predicted Value: is the ratio between the positive 
samples correctly classified (predicted) by the model and the samples classified 
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(predicted) as positive, it defines how many of the positively classified 
(predicted) are relevant. 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• False Positive Rate (FPR): is the ratio between the negative samples wrongly 
classified (predicted) and the total negative samples. It defines the rate of 
incorrect results of the negative class. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

• False Negative Rate (FNR): is the ratio between the positive samples wrongly 
classified (predicted) and the total positive samples. It defines the rate of 
incorrect results of the positive class. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
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6  MACHINE LEARNING IN EPILEPSY 
In order to automatically detect and predict epileptic seizures all the previously 

described steps of the machine learning approach must be followed. First of all, the 
selection of the more suitable diagnostic signals has to be performed from, e.g., scalp and 
intracranial EEG, electrocardiography, accelerometer and motion sensors, electrodermal 
activity, and audio/video captures. Then, feature extraction techniques and subsequent 
classification models have to be tested in order to maximize the performance in detecting 
and/or predicting epileptic seizures.  

6.1 Epilepsy Detection using EEG 

Several methods have been proposed in literature where the scalp or intracranial EEG 
recordings is largely used to automatically detect several kinds of epileptic seizures with 
good results. In particular, different features extraction and selection methods associated 
with as many classification models have been investigated with the aim to find the best 
performance. Table 6-1 reports a selected collection of seizure detection methods proposed 
in the recent literature referring to the feature extraction methods and the classification 
models proposed. Moreover, for the sake of comparison, the declared performance in 
terms of sensitivity, specificity, and accuracy have been reported in the same table, when 
available.  

Polat and Gunes [92] proposed the classification between normal and epileptic classes 
applying the Welch FFT as feature extraction method. In their study the decision tree was 
used as classification model, reaching an accuracy of 98.72%. However, the same authors, 
by means of PCA as feature reduction method, and a hybrid model based on Artificial 
Immune Recognition System (AIRS) [93] with fuzzy resource allocation as classification 
model, reported an accuracy about 100% [94]. 

To take into account the information given by the EEG signals, that are typically non-
stationary time series, the feature extraction method in the time-frequency domain has 
been widely applied in [95] [96] [97] [98]. 

Berdakh and Don in [99], used the Continuous Wavelet Transform to detect pre-ictal and 
ictal epochs. Four different wavelet functions (Biorthogonal 1.3, Biorthogonal 1.5, db2, db5) 
were used to find the best performance in terms of sensitivity, specificity and accuracy 
obtaining an average of 95.49%, 93.8% and 94.69% respectively.  

The application of wavelet packet transform, associated with a combined seizure index 
(CSI), in order to detect seizures in patients affected in the majority (11 of 14 patients) by 
temporal lobe epilepsy, was instead proposed by Zandi et al. [67]. The distinction between 
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seizure and non-seizure states by the patient-specific algorithm reached a mean value of 
sensitivity of 90.5%.  

A greater value of sensitivity was reached by Gabor et al [100] with a method based on 
DWT, who proposed a combination of DWT and SOM to identify 181 seizures from 65 
patients, achieving a sensitivity of 92.8% with 1.35 ± 1.35 false positive errors per hour. 
The SOM has been also applied in combination to a fuzzy logic, with the aim to incorporate 
spatial contextual information in the spike detection problem, by James et al. [101]. The 
authors obtained a low value of sensitivity, equal to 55.3%, with a selectivity of 88%, 
because of the inclusion of questionable events in the data set that contributed to incorrect 
estimation. 

Orhan et al [102] combined the DWT with the multilayer perceptron neural network 
(MLP) to classify healthy segments from epileptic seizure-free segments and epileptic 
seizure segments extracted by the database described in [103]. The algorithm achieved a 
100% of accuracy in the distinction from healthy to epileptic seizures, higher than the 
results obtained by Subasi et al [96] in which a modular neural network named as Mixture 
of Experts (ME) and MLP reached accuracies of 94.5% and 93.2%, respectively. Also Kocyigit 
et al. [104] classified healthy segments and epileptic seizure segments with MLP model, 
extracting features from EEG raw data by means of fast independent component analysis 
(ICA). The authors were able to achieve interesting values of sensitivity and specificity, equal 
to 98% and 90.5%, respectively. 

The same database were investigated by Lima et al. [97], associating the DWT through a 
variant of the Support Vector Machine (SVM), the least square SVM (LS-SVM), obtaining the 
performance of sensitivity, specificity and accuracy around 100%, both for RBF (Radial Basis 
Function) and ERBF (exponential RBF) kernels configuration model. Moreover, the 
comparison with the SVM revealed that the sensitivity profiles were qualitatively similar to 
LS-SVM. 

Mahajan et al. [105] classified between healthy segments and segments from patients 
affected by absence seizures, comparing two feature reduction methods: the PCA and ICA. 
The authors, after the decomposition of the EEG signals through the DWT, evaluated the 
performance in terms of sensitivity, specificity and accuracy for both the SVM and ANN 
models investigated. Overall, the SVM associated with the ICA method, showed better 
accuracy (99.50%) than applying the PCA method (96.15%) or combining ANN with both the 
feature reduction methods, that resulted 62.93% and 96.75% for PCA and ICA methods, 
respectively. However, Subasi and Gursoy [106], investigated on the comparison between 
three different feature reduction methods: PCA, ICA and Linear Discriminant Analysis (LDA) 
combined with the SVM, reaching values of sensitivity, specificity and accuracy around the 
100% for both ICA and LDA methods. 
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Given the higher accuracies, the application of time-frequency techniques, such as DWT, 
and SVM appears to be promising methods for diagnosis systems. 

However, nonlinear feature extraction methods proved to be very useful for the 
detection of epilepsy. Acharya et al. [107] extracted the nonlinear features: Higher Order 
Spectra (HOS), approximation entropy and sample entropy from the EEG segments, and 
different classifiers were then used to evaluate the classification performance among 
normal, inter-ictal and ictal EEG signals, reaching an accuracy of 98.5%. The same 
classification was investigated by Chua et al. [108], comparing two different classification 
models: the Gaussian Mixture Model (GMM) and the SVM, using the features derived from 
HOS and from the power spectrum. HOS showed better performance than the power 
spectral feature. The application of HOS as features, reached an average accuracy of 
93.11%, in the case of the GMM model, where 92.00%, 89.00% and 97.67% were the 
accuracies obtained for normal, pre-ictal and epileptic EEG phases, respectively. Conversely, 
for the case of the SVM classifier with HOS based features, the average classification 
accuracy was 92.56%, achieving accuracies of 96.67%, 83.67% and 97.33% for normal, pre-
ictal and epileptic EEG phases, respectively. 

The use of the Approximate Entropy (ApEn) associated with two types of neural 
networks (ANNs) as detection models, was proposed by Srinivasan et al. [109]. The authors 
employed the Elman Network (EN) and the Probabilistic Neural Network (PNN) to 
distinguish between healthy segments, measured with the scalp EEG, and epileptic 
segments, measured with intracranial EEG, achieving high values of overall accuracies 
around 100%. The application of entropy as features can be also observed in Acharya et al. 
[110], in which the authors evaluated the detection performance using four types of 
entropy: ApEn, Sample Entropy (SampEn), and two phase entropies. The features were fed 
into seven classifiers: Fuzzy [111] , SVM, K-Nearest Neighbor (KNN), PNN, Decision Tree 
(DT), GMM and Naive Bayes Classifier (NBC) [112], in order to identify normal, pre-ictal and 
ictal EEG segments. 

As can be noted in Table 6-1, Fuzzy classifier achieved the higher performance, with a 
sensitivity of 99.4%, specificity of 100% and accuracy of 98.1%. 

The combination of features extracted in multi-domain was presented by different 
authors [68] [113] [114] [115] [116]. 

Temko et al. [113] proposed a seizure detection system using scalp EEG signals, 
demonstrating the capability of the SVM to discriminate data using the entire dataset 
coming from 17 newborns affected by Hypoxic Ischemic Encephalopathy. The extraction of 
55 features in time and frequency domains and in information theory, associated with a 
smart post-processing approach, due to the presence of unbalance data, reached good 
performance. The percentage of seizure events detected were around 89%, with a cost of 1 
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FD (False Detection)/h up to 100% of seizure detected with a cost of 4 FD/h. Additionally, 
some improvement reported in [117], suggested how to tune a parameter in the post 
processing, achieving, in this way, a considerably decrease of FD/h from 0.45 to 0.25. 

As well as detection problems, the multi-domain and non linear analysis associated with 
SVM or ANN models, reached good performance in the prediction of epileptic seizures using 
EEG signals [118] [119][120] [121]. 

Rasekhi et al. [122] combined 22 multiple univariate features, extracted from scalp EEG, 
to predict refractory epilepsy. Ten patients were studied, varying the pre-ictal time, using 
the SVM, obtaining 48 different models for each patient. The 73.9% of epileptic seizures 
were predicted, with a False Prediction Rate (FPR) of 0.15 per hour. 

In addition, the prediction of epileptic seizures of 21 patients affected by intractable 
focal epilepsy, using intracranial EEG (iEEG) signals, was investigated by Park et al. [123]. 
Spectral power, calculated in several band frequencies, were used as features to train an 
SVM model, performing a sensitivity equal to 97.5%, false alarm rate of 0.27 per hour and 
total false prediction times of 13.0%.  
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Table 6-1 Selected seizure detection systems using EEG signals. 

Reference 
Feature 

Extraction 
method 

Model Sensitivity  Specificity Accuracy 

Gabor (1998) 
[100] 

DWT SOM 92.8%   

Khan and 
Gotman. 
(2003) [124] 

DWT Heuristic rules 87.7%   

Kannhatal et 
al. (2005) 
[125] 

Entropy 
Adaptive Neuro-
Fuzzy Inference 

System (ANFIS) [93] 
  92.22% 

Subasi and 
Erçelebi 
(2005) [126] 

DWT MLP 92.8% 92.3%  

Wilson (2005) 
[127] 

FFT PNN 89%   

Hopfengärtner 
et al. (2007) 
[128] 

FFT 
Thresholding 

technique 
90.9%   

Polat and 
Gunes (2007) 
[92] 

FFT Decision tree   98.72% 

Srinivasan et 
al. 
(2007) [109] 

ApEn ANN (EN, PNN)   

99.35-100% 
(EN) 

98%-100% 
(PNN) 

Subasi 
(2007) [96] 

DWT 
ME 

ANN 
  

94.5% 
93.2% 

Ghosh-
Dastidar et al. 
(2008) [129] 

Mixed-band 
feature space 

Radial Basis 
Function Neural 

Network (RBFNN) 
[130] 

  96.60% 

Kocyigit et al. 
(2008) [104] 

Fast ICA MLP 98% 90.5%  

Guo et 
al.(2009) [131] 

DWT ANN   95.20% 

Ocak (2009) 
[95] 

DWT + ApEn ANN 96% 96.00% 96.00% 

Guo et al. 
(2010) [132] 

ApEn 
+Wavelet 

ANN   99.85% 

Lima et al. 
(2010) [97] 

DWT SVM 100% 100% 100% 
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Minasyan et 
al. (2010) 
[133] 

Multi-domain 
features 

RNN 
100% (Post-

onset) 
  

Subasi and 
Gursoy (2010) 
[106] 

DWT SVM 
99%(PCA) 98.5%(PCA) 99%(PCA) 

100% (ICA) 99% (ICA) 100%(ICA) 
100% (LDA) 100% (LDA) 100%(LDA) 

Zandi et al. 
(2010) [67] 

WPT 
Combined Seizure 

Index (CSI) 
90.5%   

Acharya et al. 
(2011) [107] 

HOS+ 
Entropy 

SVM   98.5% 

Chua et al. 
(2011) [108] 

HOS 
GMM 
SVM 

  
93.11% 
92.56% 

Orhan et al 
[102] 

DWT MLP   100% 

Shen et al. 
(2011) [134] 

Entropy SVM   98.91% 

Temko et al. 
(2011) [113] 

55 features in 
different 
domains 

SVM 
100% 

(4FD/h) 
  

Wang et al. 
(2011) [135] 

DWT KNN   100% 

Uzzaman Khan 
et al. (2012) 
[136] 

DWT LDA 83.6% 100% 91.8% 

Acharya et al. 
(2012) [110] 

Entropies 

Fuzzy [111] 99.4 % 100% 98.1% 
SVM 97.2% 100% 95.9% 
KNN 97.8% 97.8% 93% 
PNN 97.8% 97.8% 93% 
DT 98.3% 91.1% 88.5% 

GMM 98.3% 95.6% 95.9% 
NBC [112] 94.4% 97.8% 88.1% 

Mahajan et al. 
[105] 

DWT 

ANN 
62.93%(PCA) 
96.75%(ICA) 

98.83%(PCA) 
96.75%(ICA) 

93.63%(PCA) 
96.75%(ICA) 

SVM 
96.15%(PCA) 
99.50%(ICA) 

99.48%(PCA) 
97.05% (ICA) 

97.75%(PCA) 
99.50%(ICA) 

Parvez et al. 
(2014) [137] 

DWT+ 
Empirical 

Mode 
Decomposition 

(EMD) 

LS-SVM 91.36%   
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Shoaib et al. 
(2014) [138] 

DWT SVM 91% -96%   

Fergus et al. 
(2015) [115] 

PSD, Entropy 
and other 
statistical 
features 

KNN 93% 94%  

Kavitha et al. 
(2016) [139] 

DWT SVM 64%-83% 88%-92% 81%-89% 

Alsharabi et al 
[114] 
(2016) 

DWT+ 
Entropy 

ANN 100% 100% 100% 

Chen et al. 
(2017) [65] 

DWT SVM 97% 100% 99.33% 

Liu et al. 
(2017) [140] 

Increment 
entropy 

SVM   97.32% 

Wang et al. 
(2017) [68] 

Entropy + 
wavelet 

SVM 97.98% 99.56% 99.25% 
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6.2 Epilepsy Detection using ECG 

It has to be highlighted that, some studies proposed the ECG recordings to detect 
epileptic seizures revealing interesting results.  

Leutmezer et al. in [38] found that, in 85% of 58 patients, tachycardia occurred during 
the seizures. Übeyli, in [141], used the DWT as feature extraction method and SVM as 
classification model to identify the ECG beats between normal and partial epilepsy, 
evaluating the post ictal oscillations and obtaining an accuracy of 99.44%.  

Furthermore, Malarvili et al. [142] proposed an automatic seizure detection system for 
newborns affected by epilepsy, using the heart rate variability to classify seizures from non-
seizure events. The algorithm, tested on eight newborns, achieved a sensitivity of 85.7% and 
a specificity of 84.6%. 

6.3 Nocturnal Epilepsy Detection 

Despite the good results published in these last decades, very few contributions are 
available to detect nocturnal epileptic seizures. 

A detection system based on accelerometers (ACM) in order to detect motor seizures, 
was proposed by Nijsen et al. [143] with a percentage of seizure detected around the 48%. 
ACM assesses the acceleration along the three orthogonal direction axes, giving optimal 
information about the emergence of motor events. Another system based on ACM attached 
to the proximal limbs of seven pediatric patients affected by NFLE, was investigated by Van 
de Vel et al. in [144]. The authors reached a good percentage of seizure detection equal to 
95.7%, but a low percentage of positive predictive value (57.8%), given by a high number of 
false positive outputs.  

Although the use of the accelerometers can give a significant contribution in the motor 
events detection, it is subjected to false alarms, due to movements that are not always 
associated to epilepsy and cannot be readily distinguished from convulsions. 

From the review previously reported, EEG signals provided interesting performances in 
seizure detection systems using wavelet transform, because of the non-stationary nature of 
the signals. Among the presented models, SVM achieved good results in seizure and no-
seizure identification. 

However, the advantage to visualize and analyze complex multidimensional data in a 2-
dimensional map, preserving the topology of the input patterns has been investigated in the 
present thesis. 
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Two systems [145], [146], based on the scalp EEG signals, for detection of nocturnal 
frontal lobe epileptic seizures, have been proposed. The approaches, applying the Self 
Organizing Map (SOM), revealed the mapping potential to recognize the nocturnal epileptic 
seizures obtaining good performances. The results have been then compared with the SVM 
system, showing similar, and, in some patients, higher performances than those obtained 
with the SVM model. 

The proposed systems are described in detail in the rest of the thesis.  
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7  PATIENT-CUSTOMIZED SYSTEM FOR 
NOCTURNAL EPILEPTIC SEIZURE DETECTION 

As every patient possesses different physiological characteristics [11], in this thesis a 
detection system for nocturnal epileptic seizures is firstly proposed, customized for the 
specific patient. 

The diagnostic data comes from the European Epilepsy Database (http://epilepsy-
database.eu) and a specific detection system has been developed for each patient, using 
the EEG signals. The Self Organizing Maps (SOM) have been used as classification model to 
identify the seizures; that networks are able to investigate over not straightforward 
relations in the complex input space. 

This chapter is organized in three sections: the first one describes the European Epilepsy 
Database; in the second section, following the steps of the machine learning procedure, a 
system to automatically detect the Nocturnal Frontal Lobe Epilepsy seizures is proposed. 
Finally, in the third section, the use of the SOM has been extended to identify seizures from 
patients affected by frontal and/or temporal nocturnal epileptic seizures. In order to 
evaluate the suitability of the proposed approach, the obtained results have been compared 
to another classification model, which has been developed using SVM technique, widely 
used, in literature, as seizure detection classifier. 

7.1 European Epilepsy Database 

Data, for developing nocturnal epileptic seizure detection models, have been extracted 
by the European Epilepsy Database, that is a product of the EU-funded project EPILEPSIAE 
[147]. 

The database includes high-quality, long-term continuous EEG data of 300 epilepsy 
patients, enriched with clinical metadata; recorded by three different epileptic units: 
Unidade de Monitorização em Epilepsia e Sono, Centro Hospitalar e Universitário de 
Coimbra, Portugal, Unitéd’Épilepsie of the Pitié-là-Salpêtrière Hospital, Paris, France and 
Epilepsy Center, and Epilepsiezentrum, Universität-sklinikum Freiburg, Germany. The data 
have been collected with the approval of the ethics boards of the respective Institutions, 
and the informed consent of all the patients. 

The EEG signals were obtained with scalp and intracranial electrodes. Recordings with a 
continuous duration of at least 96 hours (4 days) per patient, with a minimum of three 
clinically manifest seizures, are available. Depending on the patient, the dataset contains 

http://epilepsy-database.eu/
http://epilepsy-database.eu/
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from 22 to 37 scalp EEG channels; electrodes that were placed according to the 10-20 
International System, with sampling rate of 256 Hz, 512 Hz, 400 Hz or 1024 Hz [148].  

In the present thesis, Unipolar EEG derivations have been considered, where the EEG has 
been monitored with a common reference electrode for all the channels.  

The database provides the information about the sleep macrostructure, and start and 
end timestamps. The macrostructure scoring, provided only for the seizures duration, was 
performed by sleep experts based on the R&K rules [39]. 

In this thesis, only the sleep state, that includes the NREM and REM stages, are 
considered. From the European Epilepsy Database, 22 patients (14 males and 8 females) 
affected by nocturnal frontal and/or temporal epilepsy with two or more epileptic seizures 
have been selected. 

For each patient, the information in terms of localization of seizures, onset age of the 
epilepsy, the gender, the number of nocturnal seizures and the hospital where the data has 
been recorded, is reported in detail in Table 7-1. Five nocturnal epileptic seizures have been 
averagely occurred per patient. 
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Table 7-1 Selected patients from European Epilepsy Database. 

Patient Localization 
of seizures Onset age Gender 

Number of 
nocturnal 
seizures 

Hospital 

Pat 1 Frontal 31 M 5 Coimbra 

Pat 2 Frontal 4 F 7 Paris 

Pat 3 Frontal 3 F 3 Paris 

Pat 4 Frontal 23 M 9 Paris 

Pat 5 Frontal 30 M 5 Coimbra 

Pat 6 Frontal 22 F 8 Freiburg 

Pat 7 Frontal 7 F 2 Paris 

Pat 8 Frontal 10 F 2 Paris 

Pat 9 Frontal 18 M 15 Freiburg 

Pat 10 Frontal and 
Temporal 1 F 3 Freiburg 

Pat 11 Frontal and 
Temporal 13 F 2 Freiburg 

Pat 12 Frontal and 
Temporal 35 M 3 Coimbra 

Pat 13 Frontal and 
Temporal 3 M 3 Coimbra 

Pat 14 Frontal and 
Temporal 20 M 8 Freiburg 

Pat 15 Frontal and 
Temporal 0 M 4 Freiburg 

Pat 16 Frontal and 
Temporal 5 M 6 Freiburg 

Pat 17 Frontal and 
Temporal 8 M 6 Freiburg 

Pat 18 Frontal and 
Temporal 8 M 13 Freiburg 

Pat 19 Frontal and 
Temporal 28 M 5 Freiburg 

Pat 20 Frontal and 
Temporal 47 M 5 Freiburg 

Pat 21 Frontal and 
Temporal 4 F 4 Freiburg 

Pat 22 Temporal 33 M 5 Paris 
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7.2 NFLE Seizure Detection System 

The aim of the first proposed detection system is to early detect sleep seizures of the 
specific patient affected by NFLE, in order to prevent accidents and minimize the probability 
of injuries [1]. The detection problem has been formalized as a two-class classification 
problem where the two classes correspond to seizure (SZ) or non-seizure (NS) states during 
the sleep.  

Note that, in the available database, the scoring of the sleep macrostructure has been 
provided only for the seizure periods. Hence, in order to characterize the NFLE seizure state, 
only the recordings referring to seizures during the sleep have been considered. However, 
for non-seizure recordings, no information is available if the patient is sleeping or awake. In 
order to characterize the NS state, in this thesis, a hypothesis has been made that the 
patient is sleeping during the ten minutes preceding a seizure in his sleep. Therefore, only 
the recordings referring to ten minutes preceding the seizures in the sleep have been 
considered to characterize the non-seizure state. 

Several patients affected by NFLE have been considered (the first nine in Table 7.1) and a 
detection system has been optimized for each of them to investigate the robustness of the 
proposed approach. 

The recordings from eleven EEG channels have been selected for each patient: three 
central channels (C3, C4, Cz); two frontal channels (F3, F4); two fronto-polar channels (Fp1, 
Fp2); two parietal channels (P3, P4), and two occipital channels (O1, O2). As inputs to the 
detection system, two different sets of EEG channels have been considered: the first seven 
channels, which record the brain activity in the frontal region, and all eleven channels in 
order to take into account the possibility of the propagation of the seizures in the parietal 
and occipital regions. 

Preprocessing and Feature Extraction 

Firstly, the EEG signals have been preprocessed. The 50 Hz power line noise have been 
filtered and then EPILAB [149] has been used to extract features from the filtered EEG 
signals.  

EPILAB is an extensive software application, efficient and user-friendly, in Matlab® 
environment, freely downloadable from http://epilepsiae.eu/DownloadEpilab, to support 
research in epilepsy, namely seizure prediction and detection, features extraction, etc., on 
long-term EEG/ECG recordings. It is a product of the European project EPILEPSIAE. 

Sleep staging is usually scored by doctors using 30-second epochs, in [15] changing the 
window to 10 s is suggested to identify clinical interictal activities and paroxysmal changes 

http://epilepsiae.eu/DownloadEpilab
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in EEG tracings. As NFLE seizures can last around 5s [150], in this study features have been 
extracted on a non-overlapping 5s-sliding window. 

Note that, in this thesis, each 5-s sliding window is named as Epoch, as usually ascribed 
in clinical EEG analysis. 

For each epoch, the relative band power (RP) in the following frequency sub-bands has 
been computed:  

• delta [0.1-4 Hz]; 
• theta [4-8 Hz]; 
• alpha [8-15 Hz];  
• beta [15-30 Hz]; 
• gamma [30-Nyquist frequency Hz].  

The relative band power has been calculated using an autoregressive model to evaluate 
the power spectral density, as suggested by the EPILAB software.  

Moreover, the energy of wavelet coefficients (WE) of six decomposition levels has been 
calculated, using the db4 as basis wavelet function. 

As previously reported in chapter 6 (§6.1 ), the wavelet transform is widely used in 
seizure detection systems, given the non-stationary nature of the EEG signals.  

In this thesis the WEs have been firstly used to construct 2 different training input 
matrices, depending on the number of channels (7 or 11), whose number of rows is the 
total number of selected SZ and NS epochs. Then, the RPs and their combination with WEs 
have been considered as features, with the aim to improve the results. 

The training epochs have been selected from about half of the seizures and from the 
preceding 10 minutes. In order to train the classification model with correct NSs 
information and avoid possible misclassification due to the non-overlapping 5s sliding 
window, the five seconds before the seizure onset has been assumed to be part of the 
seizures. The number of columns is the product of the number of feature and the number of 
selected channels.  

In Table 7-2, the numbers of training and test nocturnal epileptic seizures and the 
number of corresponding epochs have been reported for each patient. 
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Table 7-2 Training and Test set 

 Patient Number training 
seizures 

Number training 
Epochs 

Number test 
seizures 

Number of test 
Epochs 

 Pat 1 2 279 3 391 

 Pat 2 3 383 4 507 

 Pat 3 1 129 2 264 

 Pat 4 4 511 5 635 

 Pat 5 2 256 3 385 

 Pat 6 4 576 4 537 

 Pat 7 1 129 1 126 

 Pat 8 1 141 1 131 

 Pat 9 7 980 8 1086 

Feature Reduction 

In order to find the most important features, the Principal Component Analysis (PCA) 
[58] has been applied to the input matrix as feature reduction method. The choice of the 
components has been assessed considering a cut-off value 𝑙∗ < 1, as suggested in [75]. In 
this study two values, 𝑙∗ = 0.8 and 𝑙∗ = 0.5 have been empirically considered. 

Each feature vector has been normalized in the interval [0 − 1]. 

Building Model 

A SOM has been used as classification model. The SOM Toolbox 2.0 for Matlab [91] has 
been used to train the SOM classification models, and the Euclidean distance has been 
selected.  

The neighborhood function determines how strongly the neurons are connected to each 
other, influencing the training result of SOM procedure. The considered four different 
neighborhood functions are: Bubble, Gaussian, Cut-Gaussian, and Epanechnikov functions, 
as described in the chapter 5 (§5.4.6 ). 

The map dimensions (𝐾) have been chosen according to the number of training epochs; 
the four map dimensions considered are: 

• 𝐾 = 5 ∙ 𝑁0.54321, as suggested in the toolbox, where 𝑁 is the number of training 
epochs. 

• 𝐾 = 80; 
• 𝐾 = 100; 
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• 𝐾 = 225. 
As previously described, each SOM has been trained with the epochs coming from the 

first half of the seizures and the associated 10 minutes of NS epochs before the seizure 
onset, as reported in Table 7-2. The remaining seizures and the related NS epochs have 
been used as test cases. 

The seizure (SZ) or non-seizure (NS) label associated to each epoch can be used to 
identify four main categories of neurons in the SOM, depending on their composition:  

• No seizure neurons: which contain only the NS epochs. These neurons have been 
colored in blue;  

• Seizure neurons: which contain only seizure (SZ) epochs, which have been 
colored in red; 

• Mixed neurons: which contain both NS and SZ epochs. They have been colored 
in grey; 

• Empty neurons: which do not contain any epoch, have been colored in white. 

Then, a post-processing approach has been applied, with the aim to count also for 
neurons that contained a significant number of epochs of the same class, recoloring the 
mixed neurons. In particular, the neurons that contain more than 80% of epochs of the 
same class (NS or SZ) have been reassigned to that class.  

As an example, one of the SOM maps of the Patient 4, is reported in Fig. 7-1. 

 
Fig. 7-1 SOM output of patient 4: a) the map colored on the basis of the clusters type (blue NS, red SZ epochs, 

grey mixed, white empty neurons); b) map composition in terms of epochs into the clusters, colored on the 
basis of the clusters type (blue NS, red SZ epochs, grey mixed). 
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The 2-D SOM in Fig. 7-1a clearly highlights the presence of a large blue region with an 
associated low risk of seizure, a red region, with a high risk of seizure, well separated from 
the blue region, a unique mixed cluster, and few empty clusters all over the map. The SOM 
composition is reported in Fig. 7-1b in terms of epochs into the neurons. As it can be seen, 
non-seizure blue neurons contain the 93.54% of the total epochs, the seizure region 
contains the 5.87% of the total epochs. Only 0.42% of NS epochs and 3.23% of SZ epochs 
belong to the mixed neuron. 

Results and Performance 

For each patient, 96 SOM networks have been initially evaluated, which differ for the 
number of EEG channels (7 or 11) from which the WE features have been extracted, the PCA 
pre-processing method, with the two cut-off values (it can be either not considered), the 
four neighborhood functions, and the four map dimensions. 

The potentiality of the available toolbox for the SOM suggests the possibility to track the 
temporal sequence of the 5s sliding windows (i.e., epochs) on the map, depicting the 
movement of the operating point during the time. Following the trajectory in the SOM, it 
will be possible to eventually recognize the proximity to an operational region where the 
risk of an imminent seizure is high. In Fig. 7-2, the trajectories of an EEG test record on one 
the SOM map of Patient 1 is reported as a bold line. The neurons framed in black and yellow 
indicate where the starting and the ending operating points are projected, respectively. As 
it can be noted, the recording starts in a NS (blue) neuron, crosses a mixed neuron, and 
arrives in a SZ (red) neuron. Hence, using the SOM to display the operational states of the 
EEG records, it is possible to discriminate among different brain activities. 

To better understand the temporal evolution of the trajectory onto the map, a bar graph 
is depicted at the bottom of the Fig. 7-3. For each epoch, the bar indicates the neuron 
where the operating point is projected. A blue bar corresponds to a NS neuron, a red bar to 
a SZ neuron, a white bar corresponds to an empty neuron. If the operating point is 
projected onto a grey mixed neuron, the corresponding bar is colored in proportion to the 
epochs (NS and SZ epochs) contained into such neuron.  

Similarly, in the upper bar diagram in Fig. 7-3, the real evolution of the EEG is reported: 
each bar is colored on the basis of the label manually assigned by the neurologists: a blue 
bar represents a NS epoch, whereas a red bar characterizes a SZ epoch.  

By comparing the bars corresponding to the same time window a very good 
correspondence is found. Moreover, few red bars before the real seizure onset are present 
suggesting the presence of seizure precursors before the neurologists reporting. 
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Fig. 7-2 SOM map of patient 1, coloured on the basis of the neurons type (blue NS, red SZ epochs, grey mixed, 
white empty neurons). The bold line is the trajectory of an EEG test record, the neurons framed in black and 

yellow indicate where the starting and the ending operating points are projected, respectively. 

 

 
Fig. 7-3 Top of the figure - the real test containing the first 10 minutes of NS (blue) and then the SZ (red). 
Bottom of the figure: Bar graph (with the same colour code of the SOM in Fig. 7-2) corresponding to the 

clusters on which the operating point is progressively projected. 
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In order to evaluate the suitability of the method to detect seizures, for each patient, all 
the test records have been projected onto the 96 SOMs. During the signal evolution, an 
epoch is considered correctly classified if the color in the corresponding bars (real and 
predicted) is the same. 

To select the better SOM for each patient and balancing the values of sensitivity (SS) and 
specificity (SP), a global performance index has been considered [151], which is the 
geometric mean of SS and SP (𝐺𝑚𝑒𝑎𝑛): 

 𝐺𝑚𝑒𝑎𝑛 = √𝑆𝑆 ∙ 𝑆𝑃 

Where SS is the ratio between the SZ epochs correctly classified by the SOM and the sum 
of all SZ epochs, whereas the SP is the ratio between the NS epochs correctly classified by 
the SOM and the sum of all NS epochs. The maximum value of 𝐺𝑚𝑒𝑎𝑛 was used to select 
the best SOMs. 

The best networks, selected for each patient, in terms of the associated value of the 
maximum 𝐺𝑚𝑒𝑎𝑛, sensitivity and specificity values, using seven and eleven channels are 
reported in Table 7-3, respectively. The inclusion of four EEG channels localized in the 
posterior hemisphere increased the average value of 𝐺𝑚𝑒𝑎𝑛, evaluated for all patients, 
from 77.39% to 78.40%. 

It can be noted that, by comparing the performances obtained involving 7 and 11 EEG 
channels, Patient 1, Patient 3 and Patient 5 reach higher performance in terms of 𝐺𝑚𝑒𝑎𝑛 
and specificity values using 11 channels.  

Additionally, the best networks of Patient 2, Patient 6 and Patient 9 show good 
performance of 𝐺𝑚𝑒𝑎𝑛 and sensitivity but lower values of specificity compared to those 
obtained using 7 EEG channels. 

Despite the good results are achieved with eleven EEG channels, Patient 4 reaches better 
performances of sensitivity and specificity using the seven EEG channels located in the 
anterior hemisphere. 
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Table 7-3 Best network per patient using the energy of wavelet coefficients 

Patient 
7 EEG channels 11 EEG channels 

Best Gmean SS SP 
Best 

Gmean 
SS SP 

Pat 1 87,85% 93,55% 82,50% 89,75% 93,55% 86,11% 

Pat 2 80,41% 70,37% 91,88% 81,37% 74,07% 89,38% 

Pat 3 77,46% 66,67% 90,00% 79,41% 66,67% 94,58% 

Pat 4 83,59% 71,43% 97,83% 79,91% 65,71% 97,17% 

Pat 5 66,53% 48,00% 92,22% 72,19% 56,00% 93,06% 

Pat 6 85,58% 75,44% 97,08% 90,57% 85,96% 95,42% 

Pat 7 81,65% 66,67% 100,00% 81,31% 66,67% 99,17% 

Pat 8 62,89% 54,55% 72,50% 60,30% 45,45% 80,00% 

Pat 9 70,58% 52,38% 95,10% 70,81% 60,32% 83,13% 

However, the performances obtained for some patients do not show a good balance 
between sensitivity and specificity values. As an example, the best network of Patient 5, 
using 11 EEG channels, achieves a sensitivity and specificity equal to 56.00% and 93.06%, 
respectively.  

In order to increase and balance the performances, both the RP and WE features have 
been considered, together with the combination of these two. 

Summarizing, eighteen different simulation scenarios have been considered, which differ 
for the extracted features (WE, RP, and WE & RP together), for the number of the input EEG 
channels (eleven or seven), and for the feature reduction method (no-one, and PCA with 
the two cut-off values). In Table 7-4, the eighteen considered scenarios are summarizes. 

Hence, for each patient, 288 SOM networks have been built, i.e., for each of the 18 
scenarios, four different neighborhood functions, and four different map dimensions were 
calculated. 

Table 7-5 shows the best SOM selected for each patient, in terms of the associated value 
of 𝐺𝑚𝑒𝑎𝑛, the scenario number according to Table 7-4, the sensitivity and the specificity 
values.  

For the same best SOMs, the related neighborhood function and map dimension, are 
reported in Table 7-6. From these tables it can be noted that the best networks are 
obtained with a large variety of scenarios and neighborhood functions, whereas the map 
dimension equal to 100 is predominant among them. 
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Table 7-4 Investigated scenarios 

 Features Number of channels Pre-processing 

1.  WE 11 channels  

2.  WE 11 channels PCA (l*=0.8) 

3.  WE 11 channels PCA (l*=0.5) 

4.  WE 7 channels  

5.  WE 7 channels PCA (l*=0.8) 

6.  WE 7 channels PCA (l*=0.5) 

7.  RP 11 channels  

8.  RP 11 channels PCA (l*=0.8) 

9.  RP 11 channels PCA (l*=0.5) 

10.  RP 7 channels  

11.  RP 7 channels PCA (l*=0.8) 

12.  RP 7 channels PCA (l*=0.5) 

13.  WE & RP 11 channels  

14.  WE & RP 11 channels PCA (l*=0.8) 

15.  WE & RP 11 channels PCA (l*=0.5) 

16.  WE & RP 7 channels  

17.  WE & RP 7 channels PCA (l*=0.8) 

18.  WE & RP 7 channels PCA (l*=0.5) 
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Table 7-5  Best network per patient; Scenario from Table 7-4 

Patient Best Gmean Scenario SS SP 

Pat 1 89,75% 1 93,55% 86,11% 

Pat 2 81,37% 2 74,07% 89,38% 

Pat 3 84,41% 16 79,17% 90,00% 

Pat 4 85,24% 4 71,43% 97,83% 

Pat 5 79,71% 7 76,00% 83,61% 

Pat 6 90,57% 2 85,96% 95,42% 

Pat 7 95,31% 15 100,00% 90,83% 

Pat 8 67,76% 9 54,55% 84,17% 

Pat 9 70,81% 1 60,32% 83,13% 

 

Table 7-6 Neighbourhood function and map size for each best network 

Patient Neighborhood Function Map Size 

Pat 1 Cut-Gaussian 100 

Pat 2 Epanechnikov 100 

Pat 3 Gaussian 100 

Pat 4 Cut-Gaussian 108 

Pat 5 Gaussian 100 

Pat 6 Bubble 100 

Pat 7 Cut-Gaussian 54 

Pat 8 Epanechnikov 63 

Pat 9 Bubble 225 

 
However, by considering the first best five networks with the associated neighborhood 

functions and map dimensions, the Epanechnikov function and the empirical formula of the 
map dimension suggested by the toolbox prove to be the common parameters, with a 
percentage of 53.3% and 44.4%, respectively, as reported in Fig. 7-4. 
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a. b. 

Fig. 7-4 a) Percentage of the neighbourhood function used in the first five best SOMs; b) Percentage of the 
map dimensions used in the first five best SOMs. 

As an example, the best SOM, reported in Table 7-5, of Patient 1 achieves a maximum 
𝐺𝑚𝑒𝑎𝑛 value equal to 89.75%, obtained training the map with the energy of wavelet 
coefficients of 11 channels, applying the Cut-Gaussian as neighborhood function, and a map 
dimension of 100 neurons. The testing performances of 93.55% and 86.11% for SS and SP 
respectively, were obtained training the map with two seizures and using three seizures as 
test. 

An SS equal to 77.23% and an SP equal to 88.94% are obtained as average values for all 
patients. The average value of SS sharply increases of the 16.03% and 13.12%, compared to 
those achieved using WEs considering 7 and 11 channels, respectively; whereas, the 
average value of SP slightly decreases of 2.28% and 2.14%, respectively. Note that, for all 
the patients but two, the use of eleven channels gathered the best results proving the 
beneficial contribution of the signals coming from parietal and occipital channels in the 
detection of nocturnal frontal lobe epilepsy. 

Test projections of Pat 4 on the SOM are displayed in Fig. 7-5 and Fig. 7-6, in the form of 
bar graphs. Both NS epochs and SZ epochs are identified with great success: in Fig. 7-5, NS 
epochs are detected without misclassification, whereas a very limited number of 
misclassified bars are depicted in Fig. 7-6. The red bars before the seizure onset, suggest a 
variation of the temporal evolution of the signal, showing an early detection, with a few 
seconds of prediction. 
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Fig. 7-5 Example of the test seizure 1 of patient 4: top of the figure - the real test containing the first 10 

minutes of NS (blue) and then the SZ (red), bottom of the figure - prediction of the SOM map corresponding to 
neurons on which the operating point is progressively projected. 

 

 
Fig. 7-6 Example of the test seizure 4 of patient 4: top of the figure - the real test containing the first 10 

minutes of NS (blue) and then the SZ (red), bottom of the figure - prediction of the SOM map corresponding to 
neurons on which the operating point is progressively projected. 
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Conclusions 

The results presented in this section demonstrated the suitability of the proposed 
approach to develop a patient customized NFLE Seizure Detection Systems. Several 
simulations were performed in order to find the best combination of features to be 
extracted from EEG signals and map parameters.  

The investigation among 288 scenarios for each of the nine patients, determined a 
classification system capable to detect with good accuracy the nocturnal frontal lobe 
seizures, obtaining a mean value of 77.23% (between 54.55% and 100%) and 88.94% 
(between 83.13% and 97.83%) of sensitivity and specificity, respectively.  

The best networks show a different scenario for each patient, except in the case of the 
number of channels, where 7 out of 9 patients achieve good performance training the 
network with 11 EEG channels, whereas the choice of features can improve the results. 
Hence, each patient presents a proper combination of features and network parameters to 
achieve the best metrics, confirming the choice to develop a patient-customized system.  

Moreover, the temporal evolution of the projection of the test operating points onto the 
map demonstrated the possibility to early detect the seizures, underlining the possibility to 
use the combination of selected features as precursor of the seizures.  
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7.3 Nocturnal Epileptic Seizure Detection System 

In order to further validate the machine learning approach proposed in the previous 
section, all the 22 patients affected by nocturnal epilepsy, recorded in the European 
Epilepsy Database, have been considered. As previously cited, they are affected by epilepsy 
with different focal position (as reported in Table 7-1). Additionally, the performances of 
the patient-customized SOM-based systems have been compared with those of other 
detection systems, which use a SVM as classification model. The features and model 
parameters involved in the systems have been optimized, thereby comparing the best 
performances for each patient. 

As the patients are affected by frontal and/or temporal nocturnal epilepsy, for each 
patient nine EEG channels have been selected from those available in the database 
according to the information given by neurologists about the location of the seizures. In the 
previous section, good performances have been reached using 11 EEG channels. In this 
section, a reduced number of customized signals are investigated, with the aim to minimize 
discomfort to patients due to avoidable electrodes. In fact, for each patient, the seizures 
may be located in different positions; hence, a different set of channel could maximize the 
performance of the detection system with a lower number of EEG channels than the 
previous approach. In Table 7-7 the selected EEG channels for each patient are reported. 
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Table 7-7 Selected channels for each patient. 

Patient EEG channels 

Pat 1 C3 F3 F4 C4 T7 T8 P8 FT7 FT8 

Pat 2 C4 F4 FZ F8 FP2 FPZ F7 CZ FP1 

Pat 3 FT10 F7 F8 C3 C4 P3 P4 FT9 F4 

Pat 4 TP9 F7 T5 FT9 PZ T9 TP10 F3 C3 

Pat 5 C4 P4 F8 FT8 T8 P8 TP8 CZ AF8 

Pat 6 C3 C4 CP1 CP2 P4 F4 PZ PO2 PO1 

Pat 7 F8 F4 C4 TP10 CZ FT10 P4 T10 FP2 

Pat 8 F7 F3 FP2 F4 FT9 C3 FZ TP10 T9 

Pat 9 F4 F7 C3 P3 O1 F8 P4 F3 FP2 

Pat 10 C3 F7 T5 FZ F3 SP1 CZ C4 T6 

Pat 11 F7 F8 FP2 C4 F4 FP1 C3 F3 CZ 

Pat 12 FP1 F7 T7 P7 F3 C3 P3 O1 FT7 

Pat 13 T8 O2 FT8 F8 T10 AF8 P4 P8 C4 

Pat 14 C4 F8 SP2 T6 FZ FP2 O2 P4 F4 

Pat 15 F7 CP1 CP5 F3 C3 FZ PZ TP7 T5 

Pat 16 FP1 F3 F7 T5 T3 SP1 O1 C3 P3 

Pat 17 F3 C3 FZ CZ FP1 FP2 PZ O2 F7 

Pat 18 C3 C4 T5 T6 PZ FP1 FP2 F4 FZ 

Pat 19 F4 F8 C4 FZ CZ T6 FP2 C3 O2 

Pat 20 FZ CZ PZ T5 F8 T6 P4 C4 F7 

Pat 21 F7 T5 SP1 CP5 C3 FC5 CP1 FC1 FZ 

Pat 22 F8 T6 FT10 T10 T4 C4 O2 FZ CZ 
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Preprocessing and Feature Extraction 

EEG signals have been preprocessed with a notch filter to remove the 50 Hz power line 
interference. 

As in the previous case study, two types of features, the relative band power (RP) and 
the energy of the wavelet coefficients (WE), have been extracted from a 5s sliding window 
without overlapping, using the EPILAB software [149]. 

The RPs have been calculated for the delta [0.1-4 Hz], theta [4-8 Hz], alpha [8-15 Hz], 
beta [15-30 Hz] and gamma [30-Nyquist frequency [Hz] sub-bands; whereas, the WEs have 
been calculated using the db4 as wavelet function at the six level of decomposition. 

Then, EEG recordings have been divided into four stages: 
• inter-ictal: considered as the "normal" brain state, free from seizures; 
• pre-ictal: the period before the occurring of the seizure; 
• ictal: the seizure period; 
• post-ictal: the interval after the seizure and before the inter-ictal. 

In this study, the pre-ictal and post-ictal stages are both assumed to last 10 minutes, 
whereas the ictal stages is considered including the 5s window before the seizure onset, in 
order to avoid possible misclassifications due to the non-overlapping window. 

In order to find significant differences between seizure regions, the cross information is 
evaluated. Each new feature is evaluated as the ratio of the features between two different 
frequency sub-bands belonging to the same or different EEG channel. This feature, also 
applied for predicting epileptic seizures [121], gives the cross information not just between 
two channels but also between two frequency sub-bands. 

The new features have been evaluated for both the extracted features (RP and WE). The 
new approach leads to an increase of the number of features that depends on the 
combination of the considered EEG channels and frequency sub-bands. Assuming 𝑣 as the 
product of the 𝑚 EEG channels and 𝑛 frequency sub-bands, the dimension of the new 
feature set is: 

𝑁 =
𝑣!

2! (𝑣 − 2)!
 

As an example, the RPs are evaluated in 5 frequency sub-bands from 9 EEG channels, the 
set is composed by 990 new features. 
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Feature Preprocessing and Feature Reduction 

In order to limit the effects from noise and interfering sources [121], each feature has 
been smoothed with the moving average, using a window of 12 epochs, i.e., one minute 
length. 

Successively, the inter-ictal and post-ictal epochs have been removed, retaining the pre-
ictal (named as NS) and ictal (named as SZ) epochs for this study. Hence, each feature has 
been normalized with zero mean and unity standard deviation. 

To reduce the high number of the new features, in this second approach, a different 
feature reduction method has been adopted, employing the minimum Redundancy 
maximum Relevance (mRMR) approach [80]. The mRMR is suitable to extract a subset of 
features that have the minimal redundancy among them and that are more representative 
for the classification. To evaluate the redundancy and relevance, for discrete variable, the 
mutual information has been applied, and the maximization of the ratio between relevance 
and redundancy has been chosen in this work, as suggested by [80] for the case of discrete 
variables. 

The mRMR software packages (home.penglab.com/proj/mRMR), implemented in 
Matlab®, have been used to discretize and select the subset of features. Eight different 
subsets have been considered, changing the number of the selected features from 5 to 40, 
with a step of 5, with the goal to find the appropriate subset that achieves the best 
performance, reducing up to 99% the dataset dimension for both the extracted features (RP 
and WE). 

Building Models 

The SVM and SOM classifiers have been developed in order to distinguish between NS 
and SZ epochs. Each classifier has been trained with the first half of the SZ and the related 
NS epochs.  

The SVM classifier has been used to distinguish between the two classes of NS and SZ 
epochs and the regularization parameter has been optimized to obtain good classification 
performances. 

For each patient, 16 classification models have been calculated, i.e., for both the 
extracted features (RPs and WEs), 8 subsets have been evaluated. Hence, the best 
combination of number and type of features has been selected based on the maximum 
value of 𝐺𝑚𝑒𝑎𝑛. 

The SOM has been calculated with the SOM Toolbox 2.0 for Matlab®, using the Euclidean 
distance. In the previous approach, the Epanechnikov function, as neighborhood function, 
and the empirical formula of the map dimension suggested by the SOM toolbox, proved to 
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be suitable training network parameters, in this second approach, these network 
parameters have been fixed to train the SOMs 

Then, the post-processing method has been performed, as well as the previous case 
study: the neurons containing more than 80% of epochs of the same class (NS or SZ), have 
been reassigned to that class. 

In this work, the SVM has been trained using the LibSVM library package [149], 
implemented in Matlab®, that enables the selection of different SVM parameterizations 
such as the kernel type (linear, polynomial, radial basis function or sigmoid) and the value of 
the regularization parameter (cost). The Radial Basis Function (RBF) kernel has been used in 
this application. 

The tuning of the free parameters of the SVM, i.e., C (the cost) and γ (the parameter of 
the RBF) has been performed using a grid search; C was varied in the range [2−3 −  28] with 
a step of 22, γ in the range [2−4 − 23] with a step of 20.5. 

To validate the model and to choose the best parameters, the 10-fold cross-validation 
[152] has been employed. The k-fold cross validation consists of separating the training 
dataset into k random partitions, equally distributed in size and class proportion. Then, 
among the 𝑘 subsets, one is retained as the validation data for testing the model, and the 
remaining 𝑘-1 subsets are used in the training phase. This process is repeated k times and 
the resulting performance in terms of accuracy is the average of the k performances. 

The best two parameters, which maximize the average accuracy, have been adopted to 
build the model with the entire training set  

Results and Performance 

For each classifier and for each patient, the test epochs have been performed on the 
sixteen networks. As well as the training set, the features have been extracted from a 5s 
non-overlapping sliding window and the cross-information has been calculated. 
Consequently, the selected features have been tested to the SOM and SVM classifiers. 

Finally, the performances are evaluated in terms of sensitivity and specificity in order to 
evaluate the 𝐺𝑚𝑒𝑎𝑛 value, and obtain the best combination of features that achieves good 
performances. 

In Table 7-8 and Table 7-9 the best networks for each patient, selected on the base of 
the maximum value of 𝐺𝑚𝑒𝑎𝑛 , are reported for the SOM and the SVM models, 
respectively. 

For each best network, the tables show the associated best features, number of features 
and training parameters of each model, as well as the sensitivity and specificity values 
obtained.  
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Table 7-8 Best SOM network per patient. 

Patient Best 
Gmean Features Number of 

features 
Map 

dimension SS SP 

Pat 1 87,55% RP 10 80 93,55% 81,94% 

Pat 2 81,04% WE 5 98 70,37% 93,33% 

Pat 3 78,35% RP 40 56 70,83% 86,67% 

Pat 4 80,78% WE 25 108 68,57% 95,17% 

Pat 5 86,02% RP 10 80 80,00% 92,50% 

Pat 6 82,03% WE 15 120 71,93% 93,54% 

Pat 7 98,32% WE 10 57 100,00% 96,67% 

Pat 8 67,53% WE 40 66 63,64% 71,67% 

Pat 9 82,92% WE 20 160 85,71% 80,21% 

Pat 10 79,28% WE 30 56 85,71% 73,33% 

Pat 11 94,47% WE 15 56 90,00% 99,17% 

Pat 12 81,98% WE 15 63 72,00% 93,33% 

Pat 13 88,83% WE 15 64 89,74% 87,92% 

Pat 14 77,65% RP 35 119 64,62% 93,31% 

Pat 15 93,72% RP 30 84 92,86% 94,58% 

Pat 16 87,72% WE 15 102 77,59% 99,17% 

Pat 17 84,10% WE 35 84 76,92% 91,94% 

Pat 18 90,98% RP 30 144 88,35% 93,69% 

Pat 19 95,85% WE 40 80 96,15% 95,56% 

Pat 20 93,39% RP 10 80 94,29% 92,50% 

Pat 21 82,56% WE 15 80 81,40% 83,75% 

Pat 22 90,56% WE 10 80 95,24% 86,11% 

 
  



102 
 

Table 7-9 Best SVM network per patient. 

Patient Best 
Gmean Features Number of 

features SS SP 

Pat 1 90,56% WE 15 87,10% 94,17% 

Pat 2 92,02% WE 40 92,59% 91,46% 

Pat 3 77,06% RP 5 83,33% 71,25% 

Pat 4 87,19% RP 15 88,57% 85,83% 

Pat 5 87,05% WE 15 88,00% 86,11% 

Pat 6 89,84% WE 35 89,47% 90,21% 

Pat 7 97,47% WE 5 100,00% 95,00% 

Pat 8 70,06% WE 10 81,82% 60,00% 

Pat 9 82,13% WE 5 88,10% 76,56% 

Pat 10 62,30% WE 5 57,14% 67,92% 

Pat 11 73,48% RP 10 80,00% 67,50% 

Pat 12 84,14% RP 5 72,00% 98,33% 

Pat 13 65,83% WE 10 100,00% 43,33% 

Pat 14 83,01% WE 40 73,85% 93,31% 

Pat 15 92,30% WE 40 89,29% 95,42% 

Pat 16 83,53% RP 10 81,03% 86,11% 

Pat 17 0,00% WE 5 0,00% 99,17% 

Pat 18 82,80% WE 10 85,44% 80,24% 

Pat 19 95,85% WE 5 96,15% 95,56% 

Pat 20 94,92% WE 20 94,29% 95,56% 

Pat 21 82,97% RP 5 81,40% 84,58% 

Pat 22 79,33% WE 10 96,83% 65,00% 
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As mentioned before, the sensitivity is evaluated as the ratio of SZ epochs correctly 
classified and the sum of all SZ epochs, whereas, the specificity is the ratio of NS epochs 
correctly classified and the amount of the NS epochs considered. 

It can be noted that, the energy of wavelet coefficients is the predominant feature to 
achieve the best network for both classifiers. Furthermore, for each classifier, two subsets 
of features prevail: 10 and 15, and 5 and 10 are the common number of features used to 
achieve the best SOM and SVM network, respectively. 

As reported in the tables, for both SOM and SVM networks, the maximum value of 
𝐺𝑚𝑒𝑎𝑛  is reached from Patient 7, achieving values equal to 98.32% and 97.47%, 
respectively. The best networks have been trained with the energy of the wavelet 
coefficients, using 10 and 5 features for SOM and SVM models, respectively. 

To better visualize the output of the models, for each patient, the best 𝐺𝑚𝑒𝑎𝑛 obtained 
in the previous approach, whose line is colored in black, and the best 𝐺𝑚𝑒𝑎𝑛 of SOM 
(colored in orange) and SVM (colored in cyan) networks, achieved in the present approach, 
are depicted in Fig. 7-7. 

 

 
Fig. 7-7 Comparison between the performances, corresponding to the best Gmean per patient, of the first 

approach (black) and the second approach using SOM (orange) and SVM (cyan) models. 

Comparing the results of the first nine patients, affected by NFLE, with the previous 
system, as shown in Fig. 7-7, the performances of the SOM networks are equal or higher 
than the first system except for three patients (Patient 3, Patient 4 and Patient 6), that can 
be due to the choice of the selected EEG channels combined with the parameters of the 
SOM models. On the other hand, the SVM networks present higher performance than the 
first system except for Patient 3.  

It is noticeable that, the best SVM network for Patient 17 reaches the lowest value, not 
recognizing any seizure epochs and obtaining a SS equal to 0%, as reported in Table 7-9. 
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Conversely, a 𝐺𝑚𝑒𝑎𝑛 value of 84.10% has been reached by the SOM model, with a SS of 
76.92%, confirming its good discriminating capability. 

Patient 17 presents a majority of nocturnal seizures during REM stage compared to the 
other patients. In particular, the first 4 (out of 6) nocturnal epileptic seizures occur during 
REM stages. The different frequency range of REM stage compared to NREM stage can lead 
to misclassification and a lack of generalization of the problem using the SVM model, 
preferring, in this case, the SOM model. 

In the present approach, an SS equal to 82.25% and an SP equal to 89.92% have been 
reached as average values for all patients, using the SOM networks; whereas by applying 
the SVM model, the average of SS and SP, equal to 82.11% and 82.85%, have been 
obtained. For both the performance metrics, the SOM manages to accomplish higher values 
than those of the SVM model, revealing the good ability of the SOM to detect different 
brain states. 

In Fig. 7-8 and in Fig. 7-9 the signal evolution of a test record of Pat 11 for the best SOM 
and SVM networks, are respectively shown. The top of the figures represents the expected 
output, whereas the bottom of the figures reports the predicted output of the models. As 
reported in Fig. 7-8, both NS (in blue) and SZ (in red) epochs are well detected by the SOM 
classifier; on the other hand, the predicted SVM output, (see the bottom of Fig. 7-9) 
presents a high number of misclassified epochs.  

 
Fig. 7-8 Example of the test seizure of patient 11: top of the figure - the real test containing the first 10 

minutes of NS (blue) and then the SZ (red), bottom of the figure - prediction of the SOM map corresponding to 
neurons on which the operating point is progressively projected. 
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Fig. 7-9 SVM Example of the test seizure of patient 11: top of the figure - the real test containing the first 10 

minutes of NS (blue) and then the SZ (red), bottom of the figure - prediction of the SVM classifier. 
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Conclusions 

In this section, the proposed patient-specific approach highlights the good capability of 
the SOM model, compared to the SVM model, to detect nocturnal epileptic seizures. The 
SOM and the SVM have been trained and several features and EEG channels have been 
selected in order to find the best combination for each patient. 

For each classifier, sixteen combinations of parameters and features have been 
examined for each of the 22 patients affected by frontal and/or temporal nocturnal 
epilepsy. 

The balance performances, i.e., the geometric mean between the sensitivity and 
specificity, have been considered to select the best networks, achieving an average of 
sensitivity equal to 82.11% (between 0% and 100%) and 82.85% (between 63.64% and 
100%) for SVM and SOM classifiers, respectively. Additionally the average of specificity of 
82.85% (between 43.33% and 99.17%) and 89.92% (between 71.67% and 99.17%) have 
been reached for SVM and SOM models, respectively. 

The SOM networks show comparable performance than the SVM networks, widely used 
in epileptic seizure detection. As can be shown in Fig. 7-7, the SOM-based systems 
demonstrate better performance than the SVM networks for some patients, such as for 
Patient 11, Patient 13 and Patient 17 whose performances increase by 21%, 23% and 84%, 
respectively.  

Moreover, from the proposed patient-specific systems, the energy of wavelet 
coefficients is the predominant feature that achieves satisfying performances, confirming 
the wavelet transform as a suitable feature extraction technique for EEG signals. However, a 
good combination of features and selected channels is required to obtain good results for 
each patient. This confirms the proposed approach as a valid patient-customized system for 
detection of nocturnal epileptic seizures. 

Moreover, these results highlight the good performance of the SOM to correctly map the 
seizure and no seizure epochs. 

 
  



107 
 

8  PATIENT-INDEPENDENT SYSTEM FOR NFLE 
SEIZURE DETECTION 

The previous chapter highlighted the good capability of the SOM to detect both frontal 
and temporal nocturnal epileptic seizures. These very high performances have been 
obtained by customizing the detection system for each patient. 

In this chapter, an investigation is done in order to evaluate the suitability of the 
approach to develop a patient-independent system.  

Since in literature [46]–[48] studies on the sleep microstructure reported that 
NFLE\ADNFLE typically happens during the phases A3 of the Cyclic Alternating Pattern 
(CAP), only the A3 phases of the scalp EEG signals provided by the Sleep Centers of Cagliari 
and Parma, have been considered.  

Three sections are presented in this chapter: the first describes the database provided by 
the Sleep Centers of Cagliari and Parma, the second presents a patient independent 
classification system to automatically discriminate the nocturnal seizures of patients 
affected by NFLE, whereas in the third section an improvement of the model has been 
performed. 

8.1 Database - Cagliari & Parma 

Data for developing ADNFLE and NFLE seizure detection models and for testing their 
performances has been provided by the Sleep Centers of Cagliari and Parma. 

The database consists of 15 polysomnographic recordings, that include scalp EEG (19 
channels, electrodes placed according to the 10–20 International System), electrooculogram 
(EOG), electromyogram (EMG) of the submentalis muscle, EMG of the right and left tibialis 
anterior muscle and electrocardiogram (ECG). All subjects underwent one overnight 
polysomnographic recording, after one adaptation night. 

Only the EEG signals were extracted and considered in the present study. All EEG signals 
were sampled at 256 Hz, a notch filter to remove the 50 Hz power line interference and a 
low-pass filter at 0-120 Hz to retain the significant frequency components, were applied. 

The investigated dataset is composed by the EEG signals of 7 healthy subjects from the 
Sleep Center of Parma and 8 patients affected by NFLE and ADNFLE from the Sleep Center 
of Cagliari. It has been divided in two subsets: the control group, represented by the healthy 
subjects, which comprises 4 females and 3 males ranging in an age from 24 to 52 years, and 
the patient group, composed by 5 females and 3 males ranging in age from 25 to 34 years. 
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Three patients are affected by ADNFLE, which is a genetically heterogeneous disorder in 
which family members can manifest the epileptic events; these patients are indeed 
relatives: two of them are sisters and the third one is daughter of one of the two. 

The information on sleep macrostructure and sleep microstructure were provided by 
neurologists, according to the sleep macrostructure and microstructure rules defined by 
R&K [39] and Terzano et al [44], respectively. Additionally, doctors provided information 
about NFLE/ADNFLE seizures that distinguished in: 

• Major Attacks (MA), that represent stereotyped movements such as asymmetric 
tonic or dystonic postures, or other bizarre behaviors lasting about 20-30 s; 

• Paroxysmal Arousals (PA) whose short attacks lasting about 5 10 s; they are 
characterized by sudden awakenings, often with dystonic-dyskinetic features; 

• Minor Motor Events (MME), that include short and stereotyped movements (2 − 
4 s), involving the limbs, axial muscle and/or the head. 

As mentioned before, some studies have observed an increased amount of the Cyclic 
Alternating Pattern (CAP) sequences, associated to an epileptic disease [46]–[48]. Hence, 
the A phases of the CAP, have been extracted and investigated to detect and discriminate 
epileptic seizures. The A phases were distinguished in the three different subtypes A1, A2, 
A3. For each subject the composition of the three phases for the control and patient groups 
are reported in Table 8-1 and Table 8-2, respectively.  

In Table 8-3 the amount of all phases, evaluated for the control and the patient groups, 
is shown. It can be noted that, the A3 phases of the patient group are more than twice the 
A3 phases of the control group confirming the studies in literature [46]–[48], that 
ADNFLE/NFLE typically happens in phases A3 of CAP, due to the fact that contain the 
predominance of EEG desynchronization. The amount of phases A1 and A2 do not exhibit 
considerably differences from the control and the patient groups; conversely, a focalization 
on phases A3 and their relation to the crisis, is necessary. 
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Table 8-1 Phases A of CAP of the control group. 

Control group 

Subject A1 A2 A3 

Subj 1 200 101 42 

Subj 2 275 76 71 

Subj 3 186 55 84 

Subj 4 254 117 60 

Subj 5 323 122 78 

Subj 6 186 111 79 

Subj 7 217 69 20 
 

Table 8-2 Phases A of CAP of the patient group. 

Patient group 

Patient A1 A2 A3 

Pat 1 207 96 210 

Pat 2 252 83 135 

Pat 3 423 105 115 

Pat 4 206 9 111 

Pat 5 283 65 37 

Pat 6 59 125 128 

Pat 7 269 160 149 

Pat 8 136 80 87 

 

Table 8-3 Comparison of the three subtypes A from control and patient groups. 

 A1 A2 A3  

Control group 1641 651 434 2726 

Patient group 1835 723 972 3530 
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As the neurologists marked only the start time of major attacks, paroxysmal arousals and 
minor motor events, and do not provide the duration of the seizures, the A3 phases of the 
patient group have been classified in three classes, labelled as MPA, which contains Major 
Attacks (seizures) and\or Paroxysmal Arousal; MME, which contains Minor Motor Events, 
and NS (No Seizures), which does not contain any of the above events. In Fig. 8-1 an 
example of the A3 phase of a patient, containing both a MA and MME seizures, is reported. 

In Table 8-4 the classification of the A3 phases of the patient group, subdivided in NS, 
MME and MPA labels, are reported. Pat 5 and Pat 7 do not present crisis in phases A3, 
whereas Pat 6 and Pat 8 present only MME seizures.  

Table 8-4 Phases A3 of the group of patients, subdivided in NS, MME and MPA classes. 

Patient NS MME MPA 

Pat 1 193 14 3 

Pat 2 121 12 2 

Pat 3 102 4 5 

Pat 4 108 1 2 

Pat 5 37 0 0 

Pat 6 116 12 0 

Pat 7 149 0 0 

Pat 8 86 1 0 

 
Fig. 8-1 Signal from C4/A1 EEG channel for a patient. A major attack is present, which starts at 9,566 s. 

Moreover, in the same A3 epoch also a Minor Motor Event appears which starts at 23,316 s. 
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8.2 NFLE Seizure Detection System 

An automatic patient-independent classification system based on the application of the 
SOM has been developed. 

Three patients affected by Autosomal Dominant Nocturnal Frontal Lobe Epilepsy 
(ADNFLE) from the database Cagliari&Parma have been chosen and analyzed with the aim 
to detect nocturnal seizures in A3 phases. 

Preprocessing 

In order to verify the suitability of selecting only the A3 phases to characterize ADNFLE, 
the spectral analyses of the subtypes A1, A2 and A3 are carried out and compared with 
those of the control group (H). 

Only the A phases lasting more or equal than 4s have been considered in order to have a 
reliable comparison between the A phases, as suggested in [153]. This establishes a 
reduction of the data set of about 4%, not involving any removal of MME phases, whose 
durations are greater than 4s. 

In order to verify the suitability of selecting only the A3 phases to characterize ADNFLE, 
the spectral analyses of the subtypes A1, A2 and A3 are carried out. 

For each phase, the C4-A1 EEG channel, which is one of the monopolar derivations 
currently used for the conventional sleep staging and arousal scoring [44], was chosen to 
evaluate the average Power Spectral Density estimate (PSD). The PSD has been evaluated in 
the typical EEG frequency range [0÷32] Hz, as suggested in [153], using the Welch's non-
overlapped windows of 0.5 s.  

In Fig. 8-2 and Fig. 8-3 the PSDs of the A1 and A2 phases are shown, respectively. For 
both of them, the blue curves, representing the A phases without seizures (NS) of the three 
patients, are within the standard deviation of the PSD evaluated for the control group (H), 
depicted in black dotted line. The spectral analysis shows a prominent peak in the low delta 
range between 0 and 2.5 Hz for A1 subtype for both healthy subjects and patients, not 
highlighting substantial differences, whereas, the average amplitudes of the spectral 
components in delta and theta bands in A2 subtypes for the patients are slightly greater 
than those of healthy subjects.  

Conversely, as can be shown in Fig. 8-4, spectra of A3 subtypes show a visible pick in the 
alpha band, approximately between 7 and 12 Hz, both for control group and patients. The 
behavior of the PSDs evaluated for NS (blue), MME (green) and MPA (red) phases are 
outside the range given by the standard deviation of H. This reveals an increase of the 
energy content compared to the control group, endorsing the choice to retain only the 
subtype A3 to characterize the ADNFLE EEG behavior. At the same time, in the highest 
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frequencies [14 − 25 Hz], the PSDs of NS and MME phases exhibit a behavior similar to the 
PSD of H, explaining the complexity of this form of epilepsy and the problem to 
automatically deduce a detection model from sample data. 

 

 
Fig. 8-2.The average of PSDs calculated for each A1 subtype group: Healthy group H (black bold line) and 

standard deviation of H dev (black dot line), No Seizures group NS (blue line). 
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Fig. 8-3.The average of PSDs calculated for each A2 subtype: Healthy group H (black bold line) and standard 

deviation of H dev (black dot line), No Seizures group NS (blue line). 

 
 

 
Fig. 8-4 The average of PSDs calculated for each A3 subtype group: Healthy group H (black bold line) and 

standard deviation of H dev (black dot line), No Seizures group NS (blue line), Major Attacks and\or 
Paroxysmal Arousal MPA (red line), and Minor Motor Events MME (green line). 
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Hence, in Table 8-5, the number of A3 phases for the three examined patients, 
subdivided in NS, MME and MPA phases is reported. 

Table 8-5 A3 phases, lasting more than 4s, of the three patients 

Patient NS MME MPA 

Pat 1 187 14 3 

Pat 2 114 12 2 

Pat 3 102 4 5 

 403 30 9 

Feature Extraction 

In order to extract suitable features from the A3 phases to be used as input to the 
subsequent classification stage, the Wavelet Packet Transform has been carried out to 
decompose the EEG signals.  

The 4th order Daubechies wavelet (db4), considered the best suitable wavelet basis 
function for the analysis of epileptic EEG data [69], was applied in the present study, at the 
third level of decomposition, thereby considering a minimum number of samples equal to 
128 (0.5s) for each of the eight packets.  

Subsequently, for each packet, the standard deviation of the coefficients has been 
calculated to gather the information on the spectral distribution of the coefficients at 
different frequency sub-bands. In this way, a unique value for each packet is retained, and 
an input matrix of dimension [𝑁 × 8] is obtained, where 𝑁 is the number of A3 phases.  

The matrix is the training input applied to build the classification model. To each row of 
the matrix a label has been associated as the output of the classification, according to the 
information given by neurologists (NS, MME, MPA and H). 

Data Reduction 

Being the number of the NS phases much larger than the MME and MPA phases, in this 
study, a data reduction method has been applied with the aim to balance these numbers. 

Data reduction has been performed as proposed in [154]. In particular, for each patient, 
a SOM has been trained using, as features, the normalized spectral power of the following 
seven frequency bands: low Delta(<0.5 Hz), high Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 
Hz), Sigma (12-16 Hz), Beta (16-30 Hz), and Gamma (30-32 Hz). The Sigma frequency band 
has been considered in order to take into account the contribution of particular sleep 
patterns as the sleep spindles, which have frequency range from 12 to16 Hz. 
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Data reduction procedure consists in selecting, for every neuron, the single epoch closest 
to the SOM centroid, allowing to automatically select a limited and representative number 
of epochs in the NS set for the subsequent classification. In this case, only 37% of the NS 
phases of the three patients have been retained, reducing the number from 403 to 148. The 
number of the NS reduced phases for each patient is reported in detail in Table 8-6. 

Table 8-6 Data reduction of NS phases for each patient. 

 NS (before 
data reduction) 

NS (after 
data reduction) 

Pat 1 187 65 

Pat 2 114 47 

Pat 3 102 36 

 403 148 

Building Model 

As in the previous applications, the SOM has been used to identify some aggregation or 
properties of the input patterns. As described in the previous chapter 5 (§5.4.6 ) the SOM 
defines a map that preserves the topological properties of the input. This means that points 
close to each other in the input space are mapped on the same or neighbouring neurons in 
the output space. 

The SOM Toolbox 2.0 for Matlab [91] has been used in this thesis to train the SOM. 
During the SOM training, the map dimension, i.e., the number of neurons K, has been fixed 
as the heuristic formula K = 5 ∙ N0.54321 suggested by the toolbox,  where N is the number 
of the A3 phases. 

The resulting map has eight inputs and 12×6 neurons, as shown in Fig. 8-5. Each color in 
the map is representative of a particular composition of the neuron in terms of MME, MPA 
and NS phases.  

In particular: 

• NS neurons (blue) contain only A3 phases with no seizures,  
• MME neurons (green) contain only A3 phases with minor motor events,  
• MPA neurons (red) contain only A3 phases with major attacks and\or 

paroxysmal arousal,  
• MME+MPA neurons (magenta) contain both MME and MPA phases,  
• MIX neurons (grey), contain both NS and MME phases, or NS and MPA phases, 

or all the three (NS, MME, and MPA phases).  
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• EMPTY neurons (white), do not contain any phase. 
The lower the number of the MIX neurons, the greater is the discrimination capability of 

the SOM. In Fig. 8-5, two different representations of SOM are reported: in Fig. 8-5a, the 
SOM is colored on the basis of the neurons type whereas in Fig. 8-5 b, it is colored on the 
base of the density of the different classes in the neuron.  

The map clearly highlights some macro-regions: a large cluster of blue neurons in the top 
of the map and smaller clusters of red, green and magenta neurons. Moreover, a mixed 
grey region, where NS and the other classes coexist, appears between the latter two 
regions. The SOM exhibits a good generalization capability. 
 

 
Fig. 8-5. 2-D SOM map colored on the basis of: a) the neurons type (blue NS, green MME, red MPA, magenta 
MME+MPA, grey mixed, white empty neurons); b) the classes type (blue NS, red MPA, green MME) and their 

density. 

Analyzing the map composition, it results that, the 85.8% of NS classes belongs to NS 
neurons, 53.3% of MME classes belongs to MME or MME+MPA neurons, and 66.7% of MPA 
classes belongs to MPA or MPA+MME neurons. The composition of NS, MME and MPA 
classes in the different clusters of the map are represented in percentage in Fig. 8-6, Fig. 8-7 
and Fig. 8-8, respectively.  

As reported in Fig. 8-6, the 0.7% of NS classes is contained in neurons that include the 
MPA classes, the 12.8% of NS classes are included in neurons with MME classes, and the 
0.7% of NS classes is enclosed in neurons where both MME and MPA classes are present. 
Considering the percentage of misclassified MME classes, the 40% of them is included in 
neurons with NS classes, and the 6.7% is contained in MIX neurons, as shown in Fig. 8-7. 
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Additionally, as reported in Fig. 8-8, one-third of MPA classes, i.e., 3 MPA classes, belong 
to mixed clusters, one is contained in MIX neuron and two in the neuron with NS classes, 
which is marked in black in Fig. 8-5b. 

The framed mixed neuron contains one NS class of the Pat 1 and two MPA classes of the 
Pat 3; in Fig. 8-9 the signals recorded by C4-A1 EEG channel for the NS class (blue) and the 
two A3 phases manually labelled as MPA, colored in red and black respectively, are 
depicted. For the latest ones, the starting time of major attacks and paroxysmal arousals 
have been pointed out. As it can be noted, the NS class presents a slip signature close to 
those of the crisis. Then, the “errors” of the SOM map can be justified.  

 
Fig. 8-6 Distribution of NS phases in SOM. 

 
Fig. 8-7 Distribution of MME phases in SOM. 
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Fig. 8-8 Distribution of MPA phases in SOM. 

 

 
Fig. 8-9. Signals from the C4-A1 EEG channel of a NS class of Pat.1, and two phases of Pat 3 containing both 

major attacks and paroxysmal arousals. The starting time of MAs and PAs are pointed out. 
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Results and Performance 

The SOM has been used to analyze the temporal evolution of the EEG signals in order to 
discriminate among different brain activities. To this purpose, 4s sliding windows with an 
overlapping of 3s have been considered. The length of the moving windows has been 
chosen by taking into account the minimum length of the events in the A3 signals. For each 
window, wavelet packet decomposition with the 4th order Daubechies wavelet and the 
standard deviation of the coefficients have been computed. In this way each sliding window 
in the signal has been associated to an 8-D point that can be projected onto the SOM, and 
the time evolution of the EEG signal can be displayed as a trajectory on the map. 

The A3 phase, represented in Fig. 8-1, has been retained in order to test the SOM. At the 
top of the Fig. 8-10, the temporal evolution of the C4-A1 EEG signal is reported. The start 
times of the two critical events (a major attack and a minor motor event) are indicated. The 
bottom of the figure shows the SOM output represented by a bar graph (with the same 
color code of the SOM in Fig. 8-5a), corresponding to neurons on which the operating point 
is progressively projected. Every bar corresponds to a 4s sliding window. The first bar 
(labelled with 0) refers to the time window [0-4]s whereas the last bar (labelled with 53) 
refers to the time window [53-57]s. Note that, as the signal lasts 57s, the subsequent 
windows would contain a number of samples less than 4 and have not been considered.  

Following the trajectory on the SOM, it is possible to clearly recognize the major attack, 
which begins to show its signatures starting from second 9. Also the MME is clearly 
identified by the SOM. As can be seen, the start time of that event is 23.316s and the signal 
trajectory on the map enters a MPA red neuron at the 24th s, then it passes through MME 
green neurons. Finally, it remains in NS neurons (blue) almost until the end.  

The observed behaviour suggests that an MPA starts at 9s and lasts for about 6s. Then, 
the SOM recognizes some crisis precursors and clearly identifies a MME, which starts at 24s 
and lasts for about other 6s. Finally, the EEG record no longer contains any crisis signatures. 

In Fig. 8-11, the output of the SOM corresponding to a NS phase of one of the three 
patients, is shown. As can be seen, the trajectory on the SOM crosses only NS (blue) 
neurons.  
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Fig. 8-10. SOM predictor output corresponding to the test signal: top of the figure - the test signal containing 

both major attack and minor motor event, for which the corresponding starting times are pointed out; bottom 
of the figure - bars (with the same colour code of the SOM in Fig. 8-5a) corresponding to neurons on which the 

operating point is progressively projected. 

 

 

Fig. 8-11 SOM predictor output corresponding to an NS epoch of patient n.1: top of the figure - the test signal; 
bottom of the figure - bars (with the same colour code of the SOM in Fig. 8-5a) corresponding to neurons on 

which the operating point is progressively projected. 
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To further test the detection capability of the SOM, the specificity (SP), i.e., the 
percentage ratio between true negatives and the sum of true negatives and false positives, 
has been calculated. The evaluation of the metrics has been assessed applying the majority 
method: each A3 phase whose number of 4s sliding windows (i.e., bars) projected in NS 
neurons is greater than the half of the sum of all bars, is defined as true negative, 
otherwise, it is considered as a false positive. 

The specificity, calculated on the 255 NS phases not contained in the training set, 
reached an average value of 90.20% where for the three patients was 93.44%, 89.55% e 
84.85%, respectively. Furthermore, the SOM has been tested using also the 5 patients of the 
database, the test mapping achieved a performance of specificity equal to 63.40%, whereas, 
the evaluation of sensitivity has not assessed due to the limited number of seizures. 

With the aim to test whether the brain activity of healthy subjects during A3 sleep 
phases is different from that of patients during NS phases, the SOM has been tested using 
the control group. In the majority of the tested epochs the trajectory evolves within regions 
containing NS or mixed neurons reaching a value of specificity of 84.19%. No MPA, MME or 
MPA+MME neurons were crossed.  

Conclusions 

A patient-independent system to automatically classify and label epileptic seizures from 
patients affected by ADNFLE is proposed.  

The features extracted by the decomposition of the C4-A1 EEG channel by means of the 
wavelet packet transform have been used to train the SOM. The SOM has been 
subsequently tested using the remaining data of the same three patients affected by 
ADNFLE and other five patients affected by NFLE. 

For the case of the three patients affected by ADNFLE, the obtained results show the 
suitability of the SOM mapping to detect different brain electrical activities, achieving an 
average specificity equal to 90.20%. Conversely, the performance decreases considerably 
when the model is tested on the other five patients, reaching a specificity of 63.40%. 
Furthermore, the SOM has been tested on the control group reaching an interesting value 
of specificity corresponding to 84.19%. 

These results, despite the acceptable performances, suggest that the development of a 
patient-specific NFLE Seizure Detection System can ensure an improvement of the metrics. 
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8.3 NFLE Seizures Characterization System 

In order to improve the potential of the SOM to discriminate MPA and MME classes from 
NS classes, a second approach has been developed using data from the database 
Cagliari&Parma, including different features.  

The A3 phases from two EEG channels, the C4-A1 and the F4-A1 have been investigated. 
The choice of the F4-A1 EEG channel is given by the fact that it records the electrical activity 
of the frontal region of the brain. Only the A3 phases lasting more than 4s have been 
considered. 

Since the information, given by neurologists, is only related to the starting time of the 
seizure, the A3 phases have been preprocessed. The samples before the starting time of the 
seizures have been removed, for both MME and MPA phases. 

Feature Extraction and Data Visualization 

The db4 has been used as wavelet function to decompose the EEG signals in the most 
relevant frequency sub-bands: 

• Low delta: 0 − 2 Hz. 
• High delta: 2 − 4 Hz. 
• Theta: 4 − 8 Hz. 
• Alpha: 8 − 16 Hz. 
• Beta: 16 − 32 Hz.  

In this second approach, the mean and the standard deviation of the wavelet coefficients 
have been calculated for each frequency sub-bands. 

In order to know the discriminant capability of these features, for each frequency sub-
band and for each EEG channel, the standard deviations of the NS, MME and MPA phases 
used in the training set have been represented in function of their means. In Fig. 8-12 and in 
Fig. 8-13, the scatter plots for F4-A1 and C4-A1 EEG channels are depicted, respectively. It 
can be noted that the NS phases, symbolized with blue circles, are separated from the MME 
and MPA phases, described with green stars and red crosses, respectively. More precisely, a 
good separation can be shown in the high delta frequency band of both EEG channels; in 
addition, NS phases are well distinguished from MME and MPA phases in the beta and alpha 
frequency bands of F4-A1 and C4-A1 EEG channels, respectively. This suggests a good 
aptitude of these features to discriminate NS from MME and MPA phases and their 
suitability to classify seizures. Thus, mean and standard deviation of the wavelet coefficients 
have been used in this study as features to train the model. 
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Fig. 8-12 Representation of the standard deviation in function of the mean for all frequency bands considered 

in F4 channel. 

 
Fig. 8-13 Representation of the standard deviation in function of the mean for all frequency bands considered 

in C4 channel. 
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Building model  

The SOM has been trained with the data of three patients affected by ADNFLE (442 A3 
phases), whereas, the remaining 487 A3 phases of the five patients were used as tests. The 
heuristic formula of the map dimension, suggested by the SOM toolbox, has been 
considered. The resulting map, shown in Fig. 8-14a, has twenty inputs and 5×22 neurons. 
Each color in the map is representative of a particular composition of the neuron in terms of 
MME (green), MPA (red) and NS (blue) classes, applying the same color code used in the 
previous presented system (§8.2 ). 

The map clearly highlights a large cluster of blue neurons and smaller clusters of red, 
green and magenta neurons, showing a good discriminant propensity. 

The map is composed by 86.9% of NS classes that belong to NS neurons, by 60% of MME 
classes belonging to MME or MME+MPA neurons, and by 44.4% of MPA classes included in 
MPA or MPA+MME neurons, the density of the classes for each neuron is represented in 
Fig. 8-14b. 

  

a                                                                   b 
Fig. 8-14 SOM map colored on the basis of: a) the neurons type (blue NS, green MME, red MPA, magenta 

MME+MPA, grey mixed, white empty neurons); b) the classes type (blue NS, red MPA, green MME) and their 
density. 
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Results and Performance 

To evaluate the output of the SOM model, the A3 phases of the control group and of the 
five patients (not included in the SOM training) have been tested. The features extracted 
from a 4s sliding window (with an overlapping of 3s) have been projected on the map in 
order to analyze the temporal evolution of the EEG signals. 

An example of the SOM output for A3 phase that include a MPA seizure is reported in 
Fig. 8-15. At the top of the figure the temporal evolution of the F4-A1 EEG channel is shown. 
The vertical red line identifies the starting time of the seizure, manually identified by 
neurologists. At the bottom of the figure the trajectory on the map is described by the bar 
graph. The first 4s window is projected on a MME neuron and then, at the beginning of the 
seizure, the operating points move to the MME+MPA neurons, highlighting a change of the 
signal towards a major attack. 

The outputs of the system for two examples of NS and H phases are shown at the 
bottom of the Fig. 8-16 and Fig. 8-17, respectively. It can be noted that, both the examples 
are correctly identified in NS neurons. 

 
Fig. 8-15 Representation of SOM output: top of the figure – Signal of F4–A1 EEG channel of MPA phase; 

bottom - bars (with the same colour code of the SOM), corresponding to neurons on which the operating point 
is progressively projected. 
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Fig. 8-16 Representation of SOM output: top of the figure – Signal of F4–A1 EEG channel of a NS phase; bottom 
of the figure- bars (with the same colour code of the SOM), corresponding to neurons on which the operating 

point is progressively projected. 

 
Fig. 8-17 Representation of SOM output: top of the figure – Signal of F4–A1 EEG channel of an H phase from 

the control group; bottom of the figure - bars (with the same colour code of the SOM), corresponding to 
neurons on which the operating point is progressively projected. 

Because of the poor number of the MME and MPA phases, only the specificity has been 
evaluated. The evaluation of the metrics has been assessed evaluating the majority classes 
for each bar and, consequently, for the entire phases: each A3 phase whose number of NS 
bars, defined as the 4s-sliding windows projected in neurons with the majority of NS classes, 
is greater than the half of the sum of all bars, is defined as true negative; otherwise, it is 
considered as a false positive. 
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The specificity, evaluated for the 5 patients affected by NFLE not used in the training 
phase, reached an average value of 70%, whereas the test using the control group achieved 
a value of 81.5%.  

Conclusions 

In this study a patient-independent system to detect Nocturnal Frontal Lobe Epilepsy has 
been presented. In order to improve the performance of a patient-independent system that 
uses only one channel, two EEG channels have been used to train a SOM. 

The A3 phases of three patients affected by ADNFLE, previously cleaned from the 
samples before the beginning of the seizures, were used to train the SOM. The proposed 
method, tested on five patients and the control group, reached the values of specificity 
equal to 70% and 81.5%, respectively. The model is capable to recognize the changing of the 
brain state during the seizures, identifying the correct cluster. 

Comparing the specificity evaluated on the 5 NFLE patients with the previous approach, 
this proposed system achieves a slightly higher value; however, the specificity calculated 
testing the control group decreases slightly. 

Both the proposed patient-independent models showed good performances in the 
identification of phases without seizures. However, the patient-specific models 
demonstrated higher performances due to the customization of the parameters, thus 
confirming the choice of using a personalized approach for each patient.  
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9  CONCLUSION 
This thesis presents a machine learning multi-feature approach for detection of 

nocturnal frontal lobe epileptic seizures using EEG signals. 
Despite the intense study carried out during the last decades in order to find a best 

epileptic seizure detection system, few contributions are reported to detect nocturnal 
epilepsy.  

Among the available methods, a system based on SOM mapping has been developed. 
The capability of the SOM to convert complex nonlinear relationships between high 
dimensional data into a low-dimensional space preserving the topological properties of the 
original space has been chosen to identify the nocturnal frontal lobe seizures. Additionally, 
the SOM allow us to visualize and follow the projection of the temporal sequence of the 
EEG recordings on the map and analyze the dynamics of the brain state. 

Firstly, a patient-subjected system has been developed to detect nocturnal seizures in 
patients affected by NFLE. For each of the nine patients of the European Epilepsy Database, 
different simulation scenarios have been performed in order to find the best combination of 
features, number of EEG channels and training parameters. 

As the focus of this type of epilepsy is in the frontal regions, the study has been carried 
out using seven EEG channels from the anterior cerebral hemisphere. Furthermore, the 
increase of four recordings from the posterior hemisphere has been considered, taking into 
account the possibility of seizure propagation to the occipital and parietal regions. 

Data have been labelled, according to the information provided by neurologists, as no-
seizure (NS) and seizure (SZ) epochs and the SOM has been trained with the first half of SZ 
epochs and the associated previously 10 minutes of NS epochs. 

The remaining data have been subsequently mapped onto the 2-D SOM and the 
performances of sensitivity and specificity have been evaluated.  

The system reached interesting mean values of 77.23% (between 54.55% and 100%) and 
88.94% (between 83.13% and 97.83%) of sensitivity and specificity, respectively, with 
networks predominantly trained using eleven EEG channels. Additionally, by means of the 
SOM visualization capabilities, it was possible to identify SZ and NS regions and follow the 
temporal evolution of the projection of the test operating points onto the map.  

In order to improve the performance and validate the capability of the SOM mapping in 
nocturnal epileptic seizures, multiple scenarios have been trained using data of patients 
affected by frontal and/or temporal nocturnal epileptic seizures of the European Epilepsy 
Database. 

For each of the 22 patients, nine EEG channels have been considered according to the 
information provided by neurologists about the location of the focal seizures. The reduced 
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number of EEG channels has been chosen with a view to minimizing patient discomfort in 
the amount of electrodes placed on the head. Several features have been extracted and 
sixteen combinations of parameters and features have been examined in order to achieve 
the best SOM for each patient. 

The results highlighted an increase of the performance, the system reached an average 
sensitivity of 82.85% (between 63.64% and 100%) and specificity of 89.92% (between 
71.67% and 99.17%). 

The proposed method has been compared training an SVM classifier, widely used in 
epileptic seizure detection systems. For each patient, the best SVM network has been 
chosen and the performances have been analyzed. The SVM networks achieved an average 
sensitivity equal to 82.11% (between 0% and 100%) and a mean specificity of 82.85% 
(between 43.33% and 99.17%). 

It can be argued that the lowest value of sensitivity using SVM model can be attributed 
to the sleep stage where the nocturnal seizures occur. In fact, in this case, the majority of 
the epileptic seizures arise during the REM stage which contains high frequency that may be 
misclassified with normal REM sleep by the SVM model. However, SOM model manages to 
detect both SZ and NS epochs. 

It can be noted that, the SOM achieved comparable and, in some patients, higher 
performance than the SVM, indicating the SOM mapping method as a good alternative to 
detect nocturnal epileptic seizures. 

A sleep stage detector can be incorporate to the nocturnal epileptic seizure detection 
system to improve the performance. 

In order to generalize the approach, a patient-independent system has been developed 
using the scalp EEG signals from the Sleep Centers of Cagliari and Parma. The information 
on sleep microstructure, provided in the database, has been used to extract only the 
significant phases in nocturnal frontal lobe epilepsy according to the studies in literature 
[47] [48]. Thus, the features extracted from the A3 phases of the Cyclic Alternating Pattern 
have been used to train the SOM using selected data from the C4-A1 EEG channel of three 
patients affected by ADNFLE. The remaining data have been used to test the model, as well 
as the five patients not included in the training phase. 

The performance, evaluated in term of specificity, achieved an average value of 90.20% 
for the remaining data of the three ADNFLE patients, whereas, the test using the five 
patients revealed a specificity of 63.40%. Due to lack information about the final signature 
of the seizures and the poor number of seizures, the sensitivity cannot be assessed. 
However, following the trajectory into the SOM map, it has been observed that the model 
recognizes the variation of the signal at the imminence of the epileptic seizures. 
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Furthermore, the SOM has been tested on healthy subjects in order to establish if the A3 
phases were different from those of patients. The mean specificity reached a value of 
84.19%; proving a good resemblance between the A3 phases without seizures of the 
patients and those of the healthy subjects. 

It can be noted that, the model shows good performance for the same patients used in 
the training phase, whereas a low performance is reached when other NFLE patients are 
tested. With the aim to improve this performance, a system, including a frontal EEG 
channel, has been developed. The A3 phases of three patients affected by ADNFLE have 
been previously cleaned from the samples before the starting of the seizures, and then the 
mean and the standard deviation of the wavelet coefficients have been used as features to 
train the SOM. 

The testing of the model on five NFLE patients, reached a mean specificity of 70%, 
slightly greater than the previous model. Additionally, testing the control group, the 
specificity decreases slightly, reaching values of 81.5%. 

Different methodologies have been investigated both for patient-dependent and 
patient-independent systems, the performances of the proposed methods, highlight the 
potential of the patient-specific system to detect nocturnal epileptic seizures, with a 
customized combination of number of EEG channels and features per patient. 

Furthermore, the capability of SOM mapping to distinguish seizure from non-seizure 
events has proved to be a suitable alternative to other detection models. 

According to the existing literature, the use of accelerometers reaches good 
performance in nocturnal epileptic seizure detection, but, it is subjected to a high number 
of artefacts and false positive outputs. 

The use of scalp EEG signals and wavelet transform, as feature extraction technique, 
proposed in this thesis, have shown interesting results of sensitivity and specificity values, 
despite the difficulty in nocturnal epileptic seizure detection; where, in almost 50% of cases, 
scalp EEGs do not show abnormalities. 

However, from the results presented in this thesis, further investigations on prediction 
time are needed to evaluate the possibility of a clinical use, and to allow the development 
of an epileptic seizure detection system that can be integrated with implantable stimulation 
devices. 
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