
Università degli Studi di Cagliari

Dipartimento di Matematica e Informatica
Dottorato di Ricerca in Matematica e Informatica

Ciclo XXX

Ph.D. Thesis

Analysing blockchains and smart
contracts: tools and techniques

S.S.D. INF/01

Candidate

Livio Pompianu

Supervisor PhD Coordinator

Prof. Maurizio Atzori,
Prof. Massimo Bartoletti Prof. Giuseppe Rodriguez

March 2018
Final examination academic year 2016/2017

Abstract

Modern cryptocurrencies exploit decentralised blockchains to record a public and
unalterable history of transactions. Besides transactions, further metadata is stored
for different, and often undisclosed, purposes. Metadata is mostly generated by
protocols and smart contracts, i.e. programs whose correct execution is automatically
enforced without relying on a trusted authority. This work investigates tools and
techniques for analysing blockchains, their metadata, and smart contracts, focussing
on Bitcoin and Ethereum. The main contributions are:

• a survey of the techniques for embedding metadata in the Bitcoin blockchain,
comparing them, pointing out pros and cons;

• a study of the protocols embedding metadata in Bitcoin, classifying them by
their application domain;

• an analysis of the metadata stored in the Bitcoin blockchain over the years,
measuring its evolution in time, the space consumption, and the distribution
of metadata by type, by embedding technique, and by application domain;

• an analysis of the smart contracts deployed in Ethereum, quantifying their
usage in relation to their application domain, and identifying the most common
programming patterns;

• a comparison of several platforms for executing smart contracts;

• a development and evaluation of a general-purpose framework, seamlessly sup-
porting data analytics on both Bitcoin and Ethereum, allowing users to inte-
grate relevant blockchain data with information from other sources.

4

Acknowledgments

This work is partially supported by Aut. Reg. of Sardinia P.I.A. 2013 “NOMAD”,
and EU COST Action IC1406 cHiPSET.

6

Contents

List of Figures 9

List of Tables 11

1 Introduction and Motivations 13
1.1 Contributions . 16
1.2 Structure of the work . 18

2 Background on Bitcoin and Ethereum 19
2.1 Bitcoin . 19

2.1.1 Scripts . 21
2.2 Ethereum . 23

3 A journey into Bitcoin metadata 25
3.1 Embedding metadata in the blockchain 26

3.1.1 Value field . 26
3.1.2 Input sequence . 26
3.1.3 Pay-to public key and Pay-to-public key hash 27
3.1.4 Pay-to-script hash . 27
3.1.5 OP RETURN . 28
3.1.6 Vanity address . 29
3.1.7 Coinbase transaction . 29
3.1.8 Distributing metadata . 29
3.1.9 Comparison and statistics . 32

3.2 Collection and analysis of Bitcoin metadata 35
3.2.1 Collecting metadata . 35
3.2.2 Classifying metadata . 39
3.2.3 Statistics . 41

3.3 Analysis of Bitcoin-based protocols 43
3.3.1 Classifying protocols . 43
3.3.2 Statistics . 44

3.4 Overall statistics . 48
3.4.1 Transaction peaks . 48

8 CHAPTER 0. CONTENTS

3.4.2 Space consumption . 49
3.5 Related work . 50

4 An empirical analysis of smart contracts 53
4.1 Platforms for smart contracts . 53

4.1.1 Methodology . 54
4.1.2 Analysis of platforms . 54

4.2 Analysing the usage of smart contracts 58
4.2.1 Methodology . 58
4.2.2 A taxonomy of smart contracts 59
4.2.3 Quantifying the usage of smart contracts by category 60

4.3 Design patterns for Ethereum smart contracts 61
4.3.1 Design patterns . 62
4.3.2 Quantifying the usage of design patterns by category 64

4.4 Related work . 66

5 A general framework for blockchain analytics 67
5.1 Creating blockchain analytics . 68

5.1.1 A basic view of the Bitcoin blockchain 69
5.1.2 Analysing OP RETURN metadata 71
5.1.3 Exchange rates . 73
5.1.4 Transaction fees . 74
5.1.5 Address tags . 76

5.2 Implementation and validation . 77
5.3 Comparison with related tools . 78

6 Conclusions 81
6.1 Summary of the main results . 81
6.2 Future work . 84

Bibliography 87

A Identifiers 99

List of Figures

1.1 Projects related to crypto-Currencies and smart contracts. 14

2.1 A Bitcoin transaction. 21
2.2 A simple wallet contract. 24

3.1 Distribution of elements by category. 45
3.2 Usage and size of OP RETURN transactions. 47

4.1 Distribution of transactions by category. 61

5.1 A basic view of the blockchain. 70
5.2 A query to estimate the average number of inputs and outputs by date. 71
5.3 Average number of inputs (red line) and outputs (blue line) by date. . 71
5.4 Exposing OP RETURN metadata. 72
5.5 Number of transactions per protocol. 73
5.6 Exposing exchange rates. 73
5.7 Average value of outputs (in B) by exchange rate. 74
5.8 Exposing transaction fees. 75
5.9 The five biggest whale transactions. 75
5.10 Associating transaction outputs with tags (SQL version). 76
5.11 Number of daily transactions to addresses tagged with SatoshiDICE*. 77

10 LIST OF FIGURES

List of Tables

3.1 Statistics about embedding methods. 34
3.2 Statistics about metadata. 42
3.3 Statistics about protocols. 46

4.1 General statistics of platforms for smart contracts. 57
4.2 Transactions by category. 60
4.3 Relations between design patterns and contract categories. 64

5.1 Data gathered by various blockchain analyses. 68
5.2 Performance evaluation of our framework. 78
5.3 General-purpose blockchain analytics frameworks. 79

A.1 Protocols identifiers. 100

12 LIST OF TABLES

Chapter 1

Introduction and Motivations

The last few years have witnessed an increasing interest in Bitcoin [109], and

blockchains. Bitcoin is a cryptocurrency leaning on the blockchain technology. Al-

though the original and most widespread application of blockchain technologies are

cryptocurrencies, recently further use cases have been proposed [72]. In this thesis

we explore modern blockchain applications with a focus on metadata and smart

contracts.

A blockchain is an immutable and continuously growing list of records, called

blocks, which are linked and secured using cryptography. Modern cryptocurrencies

store the full list of money transfers in a blockchain. In such a system, when a user

wants to make a payment, she produces a transaction with the required data (e.g.

the amount of currency to send and the receiver) and publish it. Subsequently, the

transaction is included in a new block that will be appended to the blockchain. While

a single entity is in charge of collecting transactions and updating the blockchain

of centralised currencies, decentralised cryptocurrencies are typically managed by a

peer-to-peer network collectively adhering to a protocol for validating new blocks. In

this way the system eliminates the risks that come with centrally hold data. Bitcoin

is the first and most widespread decentralised cryptocurrency. The Ethereum [75]

platform instead is attracting attention for its native support to the execution of

smart contracts, i.e. programs executed in a decentralised fashion.

The rising of blockchain platforms. Besides Bitcoin and Ethereum, a remark-

able number of alternative platforms have flourished over the last few years, either

implementing cryptocurrencies or some forms of smart contracts [77, 98, 40, 12, 31].

14 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

0
5
.2

0
1
3

1
2
.2

0
1
3

0
6
.2

0
1
4

0
1
.2

0
1
5

0
7
.2

0
1
5

0
1
.2

0
1
6

0
7
.2

0
1
6

0
1
.2

0
1
7

0
7
.2

0
1
7

0
1
.2

0
1
8

0

500

1,000

Time interval

N
u
m

b
er

of
cu

rr
en

ci
es

Crypto-Currencies

0
1
.2

0
1
2

0
7
.2

0
1
2

0
1
.2

0
1
3

0
7
.2

0
1
3

0
1
.2

0
1
4

0
7
.2

0
1
4

0
1
.2

0
1
5

0
7
.2

0
1
5

0
1
.2

0
1
6

0
7
.2

0
1
6

0
1
.2

0
1
7

0
7
.2

0
1
7

0
1
.2

0
1
8

0

500

1,000

1,500

Time interval

N
u
m

b
er

of
p
ro

je
ct

s

Blockchain

Smart Contract

Figure 1.1: Projects related to crypto-Currencies and smart contracts.

For instance, we measure that the number of crypto-currencies hosted on coinmar-

ketcap.com has increased from 0 to more than 1300 since 2012 (see Figure 1.1, left

chart); the number of github projects related to blockchains and smart contracts

has reached, respectively, 2, 715 and 445 units (see Figure 1.1, right chart). Deloitte

measures [25] over 86,000 blockchain initiatives. Their report also inspects the geo-

graphical areas in which blockchain projects have been developed. The major area

is San Francisco (1,279 users and 101 organizations), followed by London, and New

York. In the meanwhile, ICT companies, banks (e.g. European Central Bank [82]),

and several national governments (e.g. UK [125], Japan [110], EU [83]) have started

dealing with these topics, also with significant investments. Finally, several scien-

tific communities (e.g. ITU-T, ISITC Europe, W3C Blockchain Community Group),

started studying these topics.

Blockchains beyond currency: metadata and smart contracts. Although

the main goal of Bitcoin is to transfer digital currency, the immutability and open-

ness of its blockchain have inspired the development of new protocols, which “piggy-

back” metadata on transactions in order to implement a variety of applications

beyond cryptocurrency. For instance, some protocols allow to certify the existence

of a document (e.g., [43, 26, 37]), while some others allow to track the ownership

of a digital or a physical asset (e.g., [34, 17, 33]). Furthermore, the public and

append-only ledger of transaction (the blockchain) and the decentralized consensus

protocol that Bitcoin nodes use to extend it, have revived Nick Szabo’s idea of smart

contracts. The archetypal implementation of smart contracts is Ethereum [75], a

platform where they are rendered in a Turing-complete language. The consensus

http://coinmarketcap.com/
http://coinmarketcap.com/
http://github.com
http://www.itu.int/en/
https://isitc-europe.com/
https://www.w3.org/community/blockchain/

15

protocol of Ethereum ensures that all and only the valid updates to the contract

states are recorded on the blockchain, so ensuring their correct execution.

Issues of metadata. Despite the growing hype on blockchains and smart con-

tracts, the understanding of the actual benefits of these technologies, and of their

trustworthiness and security, has still to be assessed. In the Bitcoin community, a

debate about scalability has been taking place over the last few years [1, 38, 39]. In

particular, users argue over whether the blockchain should allow for storing spurious

data, not inherent to currency transfers. Although many recent works analyse the

Bitcoin blockchain [104, 60, 117, 114, 97], as well as some services for embedding

metadata [4, 41, 35, 28], many relevant questions are still open. Since Bitcoin was

not designed for embedding metadata, what is the impact of these data in the Bit-

coin system? What is the size of metadata respect to the total size of the blockchain?

Which kinds of blockchain-based applications are exploiting metadata, and how?

Issues of smart contracts. In the Ethereum community, the developers often

release the source code of their smart contracts, in order to let users verify the

behaviour of the proposed contracts. However, this also exposes code vulnerabilities

to malicious users that repeatedly exploit them since the published sources are

immutable. The consequences can be fatal, as witnessed by the unfortunate epilogue

of the DAO contract [47], a crowdfunding service plundered of ∼ 50M USD because

of a programming error. Since then, many other vulnerabilities in smart contract

have been reported [56, 98, 46, 48, 128]. What are the most common types of

smart contracts developed? What are the design patterns used developing smart

contracts?

Understanding blockchains by applying analytics. Developing analytics on

metadata and smart contracts allows us to obtain several insights, answering the

above questions. Specifically, understanding what applications are embedding meta-

data in the Bitcoin blockchain, could help designers of blockchains to create systems

that explicitly support these applications. Understanding how smart contracts are

used and how they are implemented provides us valuable information for creating

new domain-specific languages (not necessarily Turing complete [74, 76, 84, 113]),

which by-design avoid vulnerabilities as the ones discussed above. Further, this

16 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

knowledge could help to improve analysis techniques for smart contracts (like e.g.

the ones in [70, 98]), by targeting contracts with specific programming patterns.

Issues of blockchain analytics. Although these studies often have several com-

mon traits, researchers so far tended to implement new ad-hoc tools, rather than

reusing standard libraries. Further, most of the few available tools have limitations.

The consequence is that the same functionalities have been implemented again and

again as new analytics have been developed. Therefore, in this context, we believe

that the introduction of an efficient, modular and general-purpose abstraction layer

to manage internal and external information is key for blockchain data analytics,

along the lines of the software engineering best practices of reuse.

1.1 Contributions

In this work we study tools and techniques for analysing blockchains and smart

contracts. Our main contributions can be summarised as follows:

• We survey the existing techniques for embedding metadata in the Bitcoin

blockchain, identifying 11 distinct ones. We compare these techniques, point-

ing out their side effects, and we compare their evolution over time, quantifying

the amount of metadata embedded through them.

• We search the blockchain for metadata, and we parse them to infer the in-

tended usage. To this purpose, we consider both metadata as single units of

information, and as aggregates of pieces scattered through the blockchain (e.g.,

images). Overall, we recognise 12 different types of metadata, which we group

into 5 categories according to their actual content. We quantify the amount

and size of metadata by type and category.

• We identify 45 distinct protocols which are used by applications to embed

metadata in the blockchain. We classify them according to their application

domain, and we measure the amount of metadata they produced. We analyse

the correlation between embedding techniques, metadata types and protocols.

• We compare the size of the extracted metadata with the overall size of the

blockchain, and we investigate peaks of metadata that occurred over the years.

1.1. CONTRIBUTIONS 17

We distribute the results of our analysis, together with the source code of our

tools for extracting and parsing metadata, under an open source license1.

• We examine the Web for news about smart contracts in the period from June

2013 to September 2016, collecting data about 12 platforms. We choose from

them a sample of 6 platforms which are amenable to analytical investigation.

We analyse and compare several aspects of the platforms in this sample, mainly

concerning their usage, and their support for programming smart contracts.

We propose a taxonomy of smart contracts, sorting them into categories which

reflect their application domain.

• We collect from the blockchains of Bitcoin and Ethereum a sample of 834

smart contracts, which we classify according to our taxonomy. We then study

the usage of smart contracts, measuring the distribution of their transactions

by category. This allows us to compare the different usage of Bitcoin and

Ethereum as platforms for smart contracts.

• We identify 9 common design patterns, and we quantify their usage in con-

tracts, also in relation to the associated category. Together with the previous

point, ours constitutes the first quantitative investigation on the usage and

programming of smart contract in Ethereum. We distribute the results of our

survey under an open source license2.

• We develop a framework to create general-purpose analytics on the blockchains

of Bitcoin and Ethereum. The design of our tool is based on an exhaustive

survey of the literature on the analysis of blockchains. Our tool supports the

most commonly used external data, e.g. exchange rates, address tags, protocol

identifiers, and can be easily extended by linking the relevant data sources.

• We evaluate the effectiveness of our framework by means of a set of paradig-

matic use cases, which we distribute, together with the source code of our

library, under an open source license3. We exploit our use cases to evalu-

ate the performance of SQL vs. NoSQL databases for storing and querying

blockchain views.

• We discuss some implementation details of our framework, and we will evaluate

its effectiveness, and the choice between SQL or NoSQL. We compare the

existing general-purpose blockchain parsers with ours.

18 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

We make available online the raw data we have extracted from the blockchains,

as well as the tools we have developed for our analyses1 2 3.

1.2 Structure of the work

• In Chapter 2 we give some background on Bitcoin and Ethereum.

• In Chapter 3 we present a methodical survey on Bitcoin metadata, based on

the analysis of the first 480,000 blocks (i.e. all the blocks published up to

August 2017).

Part of this material borrows from [65].

• In Chapter 4 we provide a survey on smart contracts, with a focus on Bitcoin

and Ethereum — the two most widespread platforms currently supporting

them.

Part of this material borrows from [66].

• In Chapter 5 we show a framework to create general-purpose analytics on the

blockchains of Bitcoin and Ethereum.

Part of this material borrows from [62].

• Chapter 6 contains a summarised view of our work, and proposes some direc-

tions for further work.

1 http://blockchain.unica.it/projects/metadata/
2 http://blockchain.unica.it/projects/contracts-survey/
3 http://blockchain.unica.it/projects/blockchain-analytics/

http://blockchain.unica.it/projects/metadata/
http://blockchain.unica.it/projects/contracts-survey/
http://blockchain.unica.it/projects/blockchain-analytics/

Chapter 2

Background on Bitcoin and

Ethereum

In Section 2.1 we present the main concepts related to Bitcoin. In Section 2.2 we

discuss Ethereum.

2.1 Bitcoin

Bitcoin [109] is a decentralized infrastructure to exchange virtual currency — the

bitcoins. Users interact with Bitcoin through addresses, by publishing transactions

to transfer bitcoins from one address to another. The log of all transactions is

recorded on the blockchain, a public and immutable data structure maintained by

the nodes of the Bitcoin network. A subset of these nodes, called miners, gather the

transactions broadcast by users, aggregate them in blocks, and try to append these

blocks to the blockchain. A consensus protocol based on moderately-hard “proof-

of-work” puzzles is used to resolve conflicts that may happen when different miners

concurrently try to extend the blockchain, or when some miner attempts to append

a block with invalid transactions. Ideally, the blockchain is globally agreed upon,

and free from invalid transactions, unless the adversary controls the majority of

the computational power of the network [58, 85, 93]. The security of the consensus

protocol relies on the assumption that honest miners are rational, i.e. that it is more

convenient for a miner to follow the protocol than to try to attack it. To make

this assumption hold, miners receive some economic incentives for performing the

(time-consuming) computations required by the protocol. Part of these incentives

20 CHAPTER 2. BACKGROUND ON BITCOIN AND ETHEREUM

is given by the fees paid by users upon each transaction.

To illustrate how transfers of bitcoins work, we consider two transactions T 0 and

T 1 of the following form:

T 0

previous transaction: · · ·
in-script: · · ·
value: v0

out-script(T , σ): verk(T , σ)

T 1

previous transaction: T 0

in-script: sigk(•)
value: v1

out-script: · · ·

The transaction T 0 contains a value of v0 bitcoins. One can redeem this amount

by publishing a transaction (e.g., T 1), whose previous transaction field contains the

identifier of T 0 (a hash of the transaction, displayed just as T 0 in the figure) and

whose in-script contains values making the out-script1 of T 0 evaluate to true. When

this happens, the value of T 0 is transferred to the new transaction T 1, and T 0

becomes unredeemable. A subsequent transaction can then redeem T 1 likewise.

In the transaction T 0 above, the out-script just checks the digital signature σ on

the redeeming transaction w.r.t. a given key k. We denote with verk(T , σ) the

signature verification, and with sigk(•) the signature of the enclosing transaction (T 1

in our example), including all the parts of the transaction but its in-script (obviously,

because it contains the signature itself).

Now, assume that T 0 is redeemable on the blockchain when someone tries to

append T 1. This is possible if v1 ≤ v0, and the out-script of T 0, applied to T 1

and to the signature sigk(•), evaluates true. The Unspent Transaction Output (in

short, UTXO) is the set of redeemable outputs of all transactions included in the

blockchain. To be valid, a transaction must only use elements of the UTXO as

inputs.

The previous example shows the simple case of transaction with only one input

and one output. In general, Bitcoin transactions have the form displayed in Fig-

ure 2.1. First, there can be multiple inputs and outputs (denoted with array notation

in the figure): in-counter specifies the number of inputs, and out-counter that of out-

puts. Each input (resp. output) has its own in-script (resp. out-script). The script

sizes are given (in-script length and out-script length) in order to simplify parsing

operations. Since each output value can be redeemed independently, previous trans-

1in-script/out-script are called scriptPubKey/scriptSig, respectively, in the Bitcoin wiki.

2.1. BITCOIN 21

T
version no: k
in-counter: n
previous transaction[0]: T 0

previous out-index[0]: 0
in-script length[0]: · · ·
in-script[0]: sigk(•)
sequence no[0]: · · ·

...
out-counter: m
value[0]: v0
out-script length[0]: · · ·
out-script: · · ·

...
lock time: s

Figure 2.1: A Bitcoin transaction.

action fields must specify which one they are redeeming (previous out-index in the

figure). A transaction with multiple inputs redeems all the (outputs of) transactions

in its previous transaction fields, providing a suitable in-script for each of them. The

sum of the values of all the inputs must be greater or equal to the sum of the values

of all outputs, otherwise, the transaction can not be appended to the blockchain.

Furthermore, none of the inputs must have been redeemed yet.

The lock time field specifies the earliest moment in time when the transaction

can appear on the blockchain. The version no field is currently set to 1. Trans-

action inputs contain also a 4-bytes field called sequence no. Normally its value

is 0xFFFFFFFF, and it is ignored unless the transaction lock time is greater than

0 [14].2

2.1.1 Scripts

In its general form, a script is a program in a non Turing-complete, stack-based

scripting language, which features a limited set of logic, arithmetic, and crypto-

graphic operators. Values are pushed onto the stack by using the PUSH DATA

instructions. The intended purpose of these instructions is to allow the transaction

2This mechanism was disabled in 2010, and more recently the code has been removed completely,
due to concerns over people using it to perform DoS attacks[12].

22 CHAPTER 2. BACKGROUND ON BITCOIN AND ETHEREUM

creator to specify arguments usually, addresses and address hashes for use by other

opcodes (such as cryptographic or conditional operators).

Below we illustrate the main Bitcoin scripts exploited for embedding metadata.

For each one, we show the in-script and the out-script.

pay-to-PubkeyHash [14]
input = <sig > <pubKey >

output = OP_DUP OP_HASH160 <pubKeyHash > OP_EQUALVERIFY OP_CHECKSIG

This method implements the signature verification verk seen above (actually, the

script does not contain the public key k, but its hash H(k)). To make the script

evaluate to true, the redeeming transaction T has to provide the signature σ and a

public key k such that H(k) = h and verk(T , σ).

pay-to-Pubkey [13]
input = <pubKey > OP_CHECKSIG

output = <sig >

The pay-to-Pubkey is quite similar to the previous script. The public key is required

in place of its hash.

pay-to-ScriptHash [14]
input = DATA

output = OP_HASH160 <scriptHash > OP_EQUAL

In a pay-to-ScriptHash, bitcoins are sent to a script hash instead of a public key

hash. Addresses starting with 1 are pay-to-PubkeyHash, and addresses starting

with 3 are pay-to-ScriptHash. In order to spend pay-to-ScriptHash bitcoins,

the recipient must provide a script matching the script hash and data which makes

the script evaluate to true.

op return [13]
output = OP_RETURN {zero or more ops}

An out-script containing the OP RETURN instruction always evaluates to false,

hence the output is provably unspendable, and its transaction can be safely removed

from the UTXO. Therefore, there is no correspondent in-script, and we only show

the out-script.

multi-signature [14]

2.2. ETHEREUM 23

input = 0 <sig1 > ... <script >

output = OP_m <pubKey1 > ... OP_n OP_CHECKMULTISIG

M of N Multisig is a pubkey script that provides N number of pubkeys and requires

the corresponding signature script to provide M minimum number signatures cor-

responding to the provided pubkeys.

2.2 Ethereum

Similarly to Bitcoin, Ethereum [75] is a blockchain-based platform providing a cryp-

tocurrency called ether. Furthermore, Ethereum is a decentralized computing plat-

form, which executes programs, called smart contracts. Contracts are composed

of functions, defined by sequences of bytecode instructions, and can transfer ether

to/from users and to other contracts. Ethereum executes contracts through the

Turing-complete EVM — the Ethereum Virtual Machine [129]. The blockchain

stores transactions, allowing user to: (i) create new contracts; (ii) invoke functions

of a contract; (iii) transfer ether to contracts or to other users. The sequence of

transactions on the blockchain determines the state of each contract, and the bal-

ance of each user. Both contracts and users are uniquely identified by addresses

which are sequences of 160 bits. As in Bitcoin, a network of miners, executes all

the transactions. Users pay execution fees to miners for performing the computa-

tions required by the protocol. Moreover, fees prevent from denial-of-service attacks

where users try to overwhelm the network with time-consuming computations.

Figure 2.2 illustrates an example of smart contract implemented in Solidity, a

Javascript-like programming language which compiles into EVM bytecode. Notably,

Solidity is the only high-level language currently supported by the Ethereum com-

munity. The contract implements a personal wallet that can receive ether from

users. The owner of the wallet can send ether to other users via the function pay.

The wallet has also an hashtable outflow. This structure tracks all the addresses

that received money from the wallet, and associates to each of them the total trans-

ferred amount. The total amount of ether available in the contract is recorded in

the balance, a variable which is automatically updated and cannot be modified by

the programmer.

Contracts are composed by fields (which updates are stored permanently in the

blockchain), and functions. Users invoke a function by sending a transaction to the

24 CHAPTER 2. BACKGROUND ON BITCOIN AND ETHEREUM

1 contract Wallet{

2 address owner;

3 mapping (address => uint) public outflow;

4

5 function Wallet (){ owner = msg.sender; }

6

7 function pay(uint amount , address recipient) returns (bool){

8 if (msg.sender != owner || msg.value != 0) throw;

9 if (amount > this.balance) return false;

10 outflow[recipient] += amount;

11 if (! recipient.send(amount)) throw;

12 return true;

13 }

14 }

Figure 2.2: A simple wallet contract.

network. Although each transaction must include the execution fee for the miners,

it does not necessarily transfer ether (e.g. it simply updated an internal field of a

contract). The Solidity language also provides exceptions. When an exception is

thrown, it cannot be caught: the execution stops, the fee is lost, and all the side

effects — including transfers of ether — are reverted.

The function Wallet at line 5 is a constructor, run only once when the contract is

created. The function pay sends amount wei (1 wei = 10−18ether) from the contract

to recipient. The function invocation carries some extra information: msg.value

is the amount of ether transferred to the contract, and msg.sender is the caller

address. At line 8 the contract throws an exception if the caller (msg.sender) is not

the owner, or if some ether (msg.value) is attached to the invocation and transferred

to the contract. Since exceptions revert side effects, this ether is returned to the

caller (who however loses the fee). At line 9, the call terminates if the required

amount of ether is unavailable; in this case, there is no need to revert the state

with an exception. At line 10, the contract updates the outflow registry, before

transferring the ether to the recipient (by using send at line 11).

Chapter 3

A journey into Bitcoin metadata

Bitcoin transactions do not contain a specific, dedicated field in which metadata

can be directly stored. Nevertheless, over the years Bitcoin users have devised

a variety of ways to embed metadata in the blockchain. In some cases, they have

disguised their metadata as legit data within transactions fields; in others, they have

exploited specific features of the scripting language to inject metadata within scripts.

Bitcoin nodes process transactions without the need (and, in many cases, without the

possibility) of detecting the metadata embedded. On the other hand, users relying

on these metadata usually know how to retrieve them from transaction fields, and

how to interpret them. Although the functional behaviour of the Bitcoin network is

not affected by metadata, the techniques used to embed them in transactions may

have several side effects on the non-functional behaviour of the network.

In Section 3.1 we discuss several techniques for embedding metadata. We also

compare them, quantifying the metadata embedded by using each method. In Sec-

tion 3.2 we show how to extract the bytes related to metadata, and we reconstruct

the elements originally embedded, quantifying and categorizing them. In Section 3.3

we classify the protocols producing metadata, associating each protocol to a cate-

gory that describes its intended application domain. In Section 3.4 we discuss overall

statistics about metadata, e.g. transaction peaks and space consumption. Finally,

in Section 3.5 we discuss other analyses and tools related to this work.

26 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

3.1 Embedding metadata in the blockchain

In Sections 3.1.1 to 3.1.7 we present and discuss various techniques to embed meta-

data in the blockchain. As far as we know, our collection includes all the techniques

that have been actually devised so far. In Section 3.1.8 we show how to split large

pieces of metadata into smaller pieces that can be distributed in sets of transac-

tions. Finally, in Section 3.1.9 we draw some conclusions on embedding techniques.

In particular, we (i) discuss how to commit to specific values without writing them

in the blockchain, (ii) classify the different techniques, (iii) describe the historical

evolution of them, (iv) compare the techniques, and present several statistics on

their usage.

3.1.1 Value field

Transaction outputs specify the amount of Satoshis to send through a field of 8 bytes

size. A first way to encode a message m in the blockchain is to build a transaction

with an output whose value is the number that represents m. Although users can

easily retrieve the moved funds (e.g. by specifying an own address as receiver) this

methodology requires to own at least the amount of Satoshis needed to represent m.

Moreover, it provides a very few space respect to that provided by other techniques.

The BitcoinTimestamp protocol (see Table 3.3) exploits this method for saving a

hash. The hash is first split into 16 pieces. Each one is then translated into a Bitcoin

amount. Finally, the protocol builds a transaction containing an output for each

amount1.

3.1.2 Input sequence

Users could exploit the sequence no field for appending their own metadata. De-

spite the fact that it offers only 4 bytes space, being the smallest one, if compared

to the other techniques we discovered, this methodology does not have particular

side effects on the Bitcoin system.

1For instance see transactions f6f89...3ec46 and 49a13...dd64f

https://github.com/fireduck64/BitcoinTimestamp
https://blockchain.info/tx/f6f89da0b22ca49233197e072a39554147b55755be0c7cdf139ad33cc973ec46
https://blockchain.info/tx/49a130ce4255fc91061c3d1170cbc256f51ed671256df837500d59183cfdd64f

3.1. EMBEDDING METADATA IN THE BLOCKCHAIN 27

3.1.3 Pay-to public key and Pay-to-public key hash

In a pay-to-Pubkey output (see Section 2.1.1) users specify the public key allowed

to spend the output (65 bytes, 33 when the key is compressed). In a similar fashion,

the pay-to-PubkeyHash output accepts a 20 byte string pubKeyHash representing

the hash of the public key. Technically, in both methods users can store an arbitrary

message m in place of the expected value. However, we found only protocols using

the pay-to-PubkeyHash script (see Table 3.3).

There is a cost to the network associated with this technique. Since computing

a value k such that H(k) = m (i.e., a preimage of m) and a signature σ such

that verk(T , σ) is a computationally hard operation, transaction outputs crafted

in this way are unspendable in practice. However, these outputs are not easily

distinguishable from the spendable ones. After all, a Bitcoin node has no way of

knowing whether or not a user exists who possesses such a preimage (nor does it

know that the data was never intended to represent an address in the first place).

As a result, the nodes of the Bitcoin network must keep these transactions in their

UTXO set [2] indefinitely. Since the UTXO set is usually stored in RAM for efficiency

concerns [36], the bloating of the set negatively affects the memory consumption of

nodes [60].

3.1.4 Pay-to-script hash

In a pay-to-ScriptHash metadata can be embedded in several ways, e.g.:

• in the output script, saving data in place of the hash.

• in the input script, using (possibly several) ignored PUSH DATA i.e. pushing

data into the stack with the PUSH DATA instruction and subsequently re-

moving it with a OP DROP.

The former method is quite similar to the idea discussed in Section 3.1.3. The

latter pushes data onto the stack. As long as the transaction script completes execu-

tion successfully and there is nonzero data remaining on the stack after completion,

the transaction is considered valid and can be mined into a block[13]. Both inputs

and outputs may contain PUSH DATA opcodes. There is no rule specifying that the

data accumulated on the stack during the script execution must be cleared. In fact,

it is necessary for a minimum of one nonzero item to remain in order for execution

28 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

to be considered successful. Stack items that are below the topmost item at the end

of execution are simply ignored. Consider e.g. a set of scripts such as the following:
input = OP_1

output = OP_15 OP_ADD OP_16 OP_EQUAL

The input and output are concatenated as follows:
OP_1 OP_15 OP_ADD OP_16 OP_EQUAL

The execution of this script will result in a stack containing a single value, true (or

0x1), which is the result of the final OP EQUAL opcode. If, on the other hand, we

prepend one or more PUSH DATA opcodes to the input script, we will obtain an

equally valid result. Consider the following scripts:
input = OP_PUSHDATA1 8 0xaabbccddeeff0011 OP_1

output = OP_15 OP_ADD OP_16 OP_EQUAL

These are concatenated as follows:
OP_PUSHDATA1 8 0xaabbccddeeff0011 OP_1 OP_15 OP_ADD OP_16 OP_EQUAL

At the end of the execution of this script, the top item on the stack is the

1 (or true) resulting from the OP EQUAL comparison. Underneath this value is

0xaabbccddeeff0011, which is ignored. The transaction is valid.

Note that transactions that make use of ignored PUSH DATA opcodes for em-

bedding data do not necessarily bloat the UTXO set: their outputs may be spent

by valid addresses because they do not need to overwrite the address fields in the

transaction scripts.

We found proposals for adopting pay-to-ScriptHash embedding techniques2.

Further details on pay-to-ScriptHash methods are given by Sward et al. [123].

3.1.5 OP RETURN

The OP RETURN instruction allows to save up to 80 bytes of metadata3. However,

unlike pay-to-PubkeyHash, an out-script containing OP RETURN always eval-

uates to false, hence the output is provably unspendable, and its transaction can be

safely removed from the UTXO. In this way, OP RETURN overcomes the UTXO

consumption issue highlighted in Section 3.1.3.

2e.g. https://counterpartytalk.org/t/cip-proposal-p2sh-data-encoding/2169
3e.g. transaction d84f8...3a68a

https://counterpartytalk.org/t/cip-proposal-p2sh-data-encoding/2169
https://blockchain.info/tx/d84f8cf06829c7202038731e5444411adc63a6d4cbf8d4361b86698abad3a68a

3.1. EMBEDDING METADATA IN THE BLOCKCHAIN 29

3.1.6 Vanity address

This technique allows to encode metadata in Bitcoin addresses. A personalized ad-

dress4 can be generated by brute forcing through keys. Given a pattern, vanity

addresses generators like Vanitygen generate a list of addresses and the related pri-

vate keys. This methodology is resource intensive: despite the maximum size of a

message corresponds to that of an address (20 bytes), this technique is impracti-

cal for messages bigger than few bytes. The Counterparty protocol uses a vanity

address5 for developing a consensus mechanism called Proof-of-burn. Since it is im-

practical that someone owns the private key of this address, users voluntary “burn”

their Bitcoins by sending them to it. Metadata can be also distributed in several

addresses. One such example is the transaction6 which inputs spell a sequence of

short, plain English words: “We’re fine, 8chan post fake”.

3.1.7 Coinbase transaction

Miners specify how to redeem the reward for the mined block (and the fees of the

appended transactions) through the first transaction of the block. This transaction

does not have an input script and it contains a field called coinbase, that miners

usually fill in with metadata. The coinbase data size is between 2 and 100 bytes.

Nevertheless, after block 227,835 the available space is reduced, since the Bitcoin

Improvement Proposal 34 (BIP0034) [51] requires the first bytes of the coinbase field

storing the block height index. Usually coinbase field is used by miners for storing

messages identifying the mining pool and voting BIPs (for instance they voted to

sopport either the BIP0016 or BIP0017[55]). However, the most famous message

appended by using this technique, is included in the genesis block: “The Times

03/Jan/ 2009 Chancellor on brink of second bailout for banks”.

3.1.8 Distributing metadata

The techniques discussed in Sections 3.1.1 to 3.1.7 involve storing metadata within

a single field. However, sometimes more space is required. Below we describe three

techniques used in order to split metadata on multiple fields. Particularly, the first

4For instance these Ponzi schemes addresses 1ponziUju...64q, and 12PoNZiEta...5nq
51CounterpartyXXXXXXXXXXXXXXXUWLpVr
6Hash: 72162...16807

https://en.bitcoin.it/wiki/Vanitygen
http://counterparty.io/
https://blockchain.info/address/1ponziUjuCVdB167ZmTWH48AURW1vE64q
https://blockchain.info/address/12PoNZiEtabwkCU4YFffshWNF1cRiAk5nq
https://blockchain.info/address/1CounterpartyXXXXXXXXXXXXXXXUWLpVr
https://blockchain.info/tx/72162e9224dbadefb84834046ee8b4706af77f57fa4e8fd5aaf3255abf516807

30 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

method uses multiple pay-to-PubkeyHash while the second one combines multiple

transaction inputs and outputs. Finally, the transaction chains technique distributes

data on different transactions.

Multi-signature scripts Another approach for saving metadata requires a 1 of N

Multisig where N−1 pubkeys host the metadata (as pay-to-PubkeyHash) and

the other signature is adopted for redeeming the transaction. This methodol-

ogy bloats the UTXO only until the transaction is redeemed.

Multiple transaction inputs or outputs There is a hard limit of 10,000 bytes

on the size of a single script [11]. However, there is no upper bound on the

number of inputs or outputs a transaction may contain. In the event that

a user wishes to encode more metadata than the 10,000 byte limit would

permit, he or she may break the data into chunks and distribute them among

many inputs or outputs within a single transaction. To ensure that the data

can be reconstructed from these fragments, it is necessary for the encoder

to decide upon an ordering criteria. The most straightforward scheme relies

upon a simple property of Bitcoins transaction format. Inputs and outputs are

recorded in two distinct arrays in the transaction data structure. Therefore,

they possess an inherent ordering. If the encoder breaks the data into N

chunks and stores those chunks sequentially in output0, output1, ... outputN ,

reconstructing the embedded data is as simple as concatenating each chunk in

the same order found in the transaction. There are embedding formats that

use other criteria for ordering. For example, in the case of the BIT-COMM

protocol, which chunks data into a series of transaction outputs, the amount

of Bitcoin transferred by each output is used to order the data7. Transactions

making use of this technique may or may not bloat the UTXO set that is

determined by the structure of the individual transaction outputs.

Transaction chains The previous techniques involve storing metadata within a

single transaction. However, there are cases in which this may not be ideal,

or even possible. For example:

• If the amount of data to be stored exceeds the maximum block size the

transaction containing the data will be rejected by the network.8

7e.g. see transaction 5970a...8ee41
8github.com/bitcoin/bitcoin/blob/e5f1f...b0a4c/src/main.cpp#L829

http://bit-comm.appspot.com
https://blockchain.info/tx/5970ae129d1141663bd5e441a1555c16fb1c0586dd05f40c1db3d3e81218ee41
https://github.com/bitcoin/bitcoin/blob/e5f1f5a26399c7d36fa8e2c29ec411eea49b0a4c/src/main.cpp#L829

3.1. EMBEDDING METADATA IN THE BLOCKCHAIN 31

• Large amounts of data will likely require the inclusion of a large transac-

tion fee. In theory, it is possible to send a transaction without any fee at

all. In practice, a transaction with no fee (or a too low fee) is unlikely to

be mined. Depending on current fee market dynamics, it may be more

cost-effective to split the data across multiple transactions.

• A single, large transaction might attract too much attention if the sender

wishes to conceal its significance.

• Transactions greater than a certain size are considered “non-standard”

and many nodes refuse to relay them. This limit has varied over time, and

is now replaced by the concept of “transaction weight” which is similar,

but accounts for Segregated Witness data in a different manner.9 10 11

• At the time of this writing, only one OP RETURN output is permitted

per transaction.12

Due to these considerations, it may be preferable to split data into a series

of transactions. Given a sufficient amount of time for transaction mining to

occur, and a sufficient quantity of Bitcoin to pay for transaction fees, a user

implementing this embedding scheme could theoretically encode an infinite

amount of data. While it is not necessary to do so, it can be practical to

connect transactions containing related data in a chain structure to ensure that

the full data set can be more easily recovered. Each transaction in such a chain

flows clearly into another transaction, providing a simple, knowable ordering.

This allows the user decoding the data to possess nothing more than a single

transaction hash or in some cases, nothing at all (see Section 3.2) to detect and

recover it. When building a transaction chain, one of the techniques from the

previous sections is selected for encoding data into each individual transaction

(address, script stack data, etc.). Then, a valid, spendable transaction output

is added to each transaction. This output is used as the input to the following

transaction in the chain. For this reason, the output must be spendable by an

address over which the user embedding the data has control (i.e., the private

9github.com/bitcoin/bitcoin/blob/e5f1f...b0a4c/src/main.h#L56
10github.com/bitcoin/bitcoin/blob/e5f1f...b0a4c/src/main.cpp#L644-L648
11github.com/bitcoin/bitcoin/blob/9022a...8590a/src/policy/policy.cpp#L111
12github.com/bitcoin/bitcoin/blob/9022a...8590a/src/policy/policy.cpp#L155

https://github.com/bitcoin/bitcoin/blob/e5f1f5a26399c7d36fa8e2c29ec411eea49b0a4c/src/main.h#L56
https://github.com/bitcoin/bitcoin/blob/e5f1f5a26399c7d36fa8e2c29ec411eea49b0a4c/src/main.cpp#L644-L648
https://github.com/bitcoin/bitcoin/blob/9022aa37226b6779e1b86b0c625806226898590a/src/policy/policy.cpp#L111
https://github.com/bitcoin/bitcoin/blob/9022aa37226b6779e1b86b0c625806226898590a/src/policy/policy.cpp#L155

32 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

key). When decoding data in these types of chains, it is necessary to ignore

any data in the spent output, as it is only used to provide the links the chain.

3.1.9 Comparison and statistics

Embedding vs committing metadata. One of the main blockchain use cases

is the notarization of some data, often represented by its hash (see Section 3.3). We

observe that several blockchain protocols (at least those that merely require a times-

tamped commitment) could simply commit to a hash without actually embedding

it into the blockchain. Specifically, the pay-to-contract (described by Gerhardt

et al.[86]) and the sign-to-contract technologies13 allow one to commit to data

in arbitrary transactions without requiring extra space beyond that the original

transaction would have taken.

We identified some implementations. Btproof uses the SHA-256 hash of the

metadata as input for RIPE160 and directly turns it into an address. In a similar

fashion Originstamp daily aggregates the hashes received into a seed which will

then be hashed into a Bitcoin private key, then public key and address are derived.

Both protocols pay a Satoshi to the generated address in order to publish it in

the blockchain. The ContractHashTool exploits basic EC math for building an in-

script which public keys are only spendable by the holder of the original private key

and that cryptographically commits to the contract hash specified. The UTXO is

bloated temporary since the transaction can be redeemed with the private key built.

Furthermore, this methodology saves space and is better for privacy (metadata is

not explicitly written in a field). However, this prevents us from recognizing and

quantifying metadata unless the protocol tracks its transactions14.

Classification of embedding methods. We classify the methods associating

each one to a category that describes how it manages chunks of metadata. The Single

category groups all the methods embedding the whole element into a single chunk.

The main difference between the methods belonging to this category is the field in

which they embed the chunk. The techniques of the Multi category divide an element

into multiple chunks and store all the pieces into a single transaction. Each chunk

is embedded by exploiting a Single technique. For instance, the multi-signature

13https://bitcointalk.org/index.php?topic=915828.msg10056796
14see for instance Originstamp https://app.originstamp.org/status

http://www.btproof.site/
https://app.originstamp.org
https://github.com/Blockstream/contracthashtool
https://bitcointalk.org/index.php?topic=915828.msg10056796
https://app.originstamp.org/status

3.1. EMBEDDING METADATA IN THE BLOCKCHAIN 33

technique splits an element in several chunks and saves each chunk into a different

out-script of a transaction by using the pay-to-PubkeyHash method. Finally, the

Chains category spreads pieces across multiple transactions. Therefore, transaction

chains exploit the Single techniques and, eventually, the Multi ones.

Historical perspective. The very first metadata was embedded in the genesis

block by Satoshi Nakamoto. Although he exploited the coinbase technique, we ob-

serve that miners started using frequently this method only around October 2011.

The input-sequence technique it is not widely adopted, we suppose because it pro-

vides few space respect to other techniques. The most straightforward method for

embedding arbitrary data in the first 3 years involved using pay-to-PubkeyHash. In

order to mitigate the UTXO bloating phenomenathe op return method was granted

from March 2014 [10]. Notably, the release notes of Bitcoin Core version 0.9.0

state that: “This change is not an endorsement of storing data in the blockchain.

The OP RETURN change creates a provably-prunable output, to avoid data storage

schemes [...] that were storing arbitrary data such as images as forever-unspendable

TX outputs, bloating bitcoins UTXO database.”. Technically the OP RETURN in-

struction has been part of the scripting language since the first releases of Bitcoin

but originally it was considered non-standard by nodes, so transactions containing

it were difficult to reliably get mined. In Bitcoin Core 0.9.0 the instruction became

standard, meaning that all nodes started to relay unconfirmed OP RETURN trans-

actions. The limit for storing data with op return technique was originally planned

to be 80 bytes, but the first official client supporting the instruction, i.e. the release

0.9.0 [10], allowed only 40 bytes. This animated a long debate [20, 5, 6, 18]. From

the release 0.10.0 [7] nodes could choose whether to accept or not OP RETURN

transactions, and set a maximum for their size. The release 0.11.0 [8] extended

the data limit to 80 bytes, and the release 0.12.0 [9] to a maximum of 83 bytes.

In Section 3.3 we discuss the main blockchain use cases (behind currency transfer)

and we identify several protocols built on top of Bitcoin. Since the space pro-

vided by the op return method is enough to support them, from March 2014 the

op return clearly became the most adopted technique. The pay-to-PubkeyHash

is now used for embedding large files (e.g. images) with also the support of the

multiple in/out, multi-signature, and transaction-chains techniques. Pro-

tocols like Counterparty migrated from pay-to-PubkeyHash to op return and we

34 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

rarely found protocols still using pay-to-PubkeyHash.

Comparison of embedding methods. We extract and measure the amount of

metadata embedded with each technique. Table 3.1 shows the results. In the first

two columns we list categories and techniques. The third one illustrates the size

of the field storing metadata. The next column shows where is located the field

exploited. The fifth column lists the techniques bloating the UTXO. In the last

four columns we illustrates the date in which first chunk of metadata appears (sixth

column), the number of times a method has been adopted (seventh column)15, and

total and average size of metadata embedded (last two columns).

Note that metadata of the Chains category are a subset of metadata shown in

the first two categories and Multi metadata are a subset of the Single metadata.

In order to correctly calculate the overall statistics (i.e. avoid to count the same

metadata multiple times), the row Total must sum only the values of the Single

techniques. We extract 4,582,661 chunks with a total size of ∼ 97MB, which is the

total amount of metadata embedded in the Bitcoin blockchain up to block number

480,000. Furthermore, this number of chunks is also a good indicator of the total

number of transactions containing metadata. Indeed, the number of transactions

containing more than one chunk (i.e. the elements produced by Multi techniques) is

negligible. We observe that 3
4

of the total metadata are stored using OP RETURN.

The average size of transactions chains is higher than other methods since this

technique is exploited for embedding large elements (e.g. images).

Type Method
Field

Hosted in
UTXO First Total Tot. Avg.

Size (B) Bloating Element Elements15 Size (B) Size (B)

Single

Value 8 Tx output No N/A N/A N/A N/A
Input sequence 4 Tx input No 2011/02/25 1,305,372 5,221,488 4
P2PK-P2PKH 20, 33, 65 Script Yes 2013/03/16 66,762 1,335,240 20

P2SH 520 Script Yes 2013/04/10 1,578 31,560 20
OP RETURN 80 Script No 2014/03/12 2,903,186 76,700,965 26.4
Vanity Address 20 Script No N/A N/A N/A N/A

Coinbase 2 – 100 Tx input No 2009/01/03 305,763 18,442,641 60.3

Total — — — — 2009/01/03 4,582,661 101,731,894 22.2

Multi
Multi-signature Variable Script Transient 2013/04/06 15,067 2,926,590 194.23
Multiple in/out Variable Variable Variable 2013/03/16 529 4,437,616 8,388.68

Chains Transaction chains Variable Variable Variable 2013/04/06 60 3,470,870 57,847.83

Table 3.1: Statistics about embedding methods.

15Specifically, elements of type Single are chunks; Multi elements are transactions; Chains ele-
ments are chains of transactions.

3.2. COLLECTION AND ANALYSIS OF BITCOIN METADATA 35

3.2 Collection and analysis of Bitcoin metadata

In this section we first show how we parse metadata and reconstruct the original

elements (e.g. texts, images, etc.) that users intended to represent (Section 3.2.1).

Then, in Section 3.2.2, we categorize the metadata extracted discussing the different

types of elements found. Finally, we quantify and compare the elements extracted

in Section 3.2.3.

3.2.1 Collecting metadata

Users exploit the embedding techniques of Section 3.1 for storing metadata as strings,

each one representing either a whole element or just a chunk. In this section we parse

the strings extracted and merge pieces in order to reconstruct the elements that users

originally stored. One of the most effective techniques for recognising portions of

elements involves searching strings for suspicious byte patterns. For example, long

strings of contiguous ASCII characters are extremely unlikely to occur in regular

transaction data. Similarly, the probability of finding specific bytestrings, like the

Gzip header 0x1f9d9070, is extremely low. Finding such a bytestring is a good

indication that further investigation is warranted. We employed several types of

these searches which we will discuss below.

Frequency analysis The GNU strings utility16 takes a data source as input and

yields all of the ASCII plaintext characters found in that source as output. It

provides a flag for filtering out strings of contiguous ASCII characters under

a given length. It is possible to run strings directly on Bitcoin Core’s .dat

files, but care must be taken when tuning the filter. Obviously, too low a

threshold will yield a huge number of false positives. On the other hand, due

to the way inputs and outputs are encoded in transaction data, too high a

threshold eliminates plaintext that has been split across multiple transactions

or transaction scripts.

While this approach is quite simple, some of the data that we discovered par-

ticularly, the conversations and code uploaded to the blockchain by Peter Todd

mention that they are specifically intended to be discovered and extracted via

this method (see the “Peter Todd plaintext uploader” entry in Section 3.2.2).

16man7.org/linux/man-pages/man1/strings.1.html

http://man7.org/linux/man-pages/man1/strings.1.html

36 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

Compared to the other extraction methods we employed, it offers the low-

est barrier-to-entry. Therefore, users encoding relatively large quantities of

plaintext data that are intended to be easily retrievable should make note of

encoding methods that lend well to retrieval via strings.

The ignored PUSH DATA technique (see Section 3.1.4), particularly when ap-

plied to input scripts, is quite effective to this end. It allows large amounts

of arbitrary data to be stored with minimal interruption by non-ASCII bytes,

while ensuring that the transaction is still considered valid by the network.

For example, if a large ASCII string is stored in a series of input scripts in a

single transaction, the only necessary interruptions will be the minimal set of

opcodes required to ensure that the transaction is valid (because input scripts

are stored contiguously in transaction data).

File signature Many file formats require the inclusion of specific bytestrings that

are common to all files of a given format. For example, many JPEG im-

ages begin with the bytestring 0xffd8ffe000104a464946000101. Similarly,

ASCII-armored PGP messages begin with -----BEGIN PGP MESSAGE-----.

These bytestrings often occur in the header or footer of the file, although

there are formats that place them elsewhere. The probability of finding such

bytestrings in Bitcoin blocks is exceedingly low, and as such, they provide a

useful indicator of embedded data.

We used several tools to detect file signatures present in Bitcoin transactions:

• binwalk [80] is a highly-extensible tool for discovering valid files embed-

ded into other data. It provides a powerful language for defining file

signatures, as well as a large database of pre-defined signatures for com-

mon file formats. It also has the ability to carve detected files out of the

surrounding binary data. One can produce a number of valid results sim-

ply by running binwalk on the Bitcoin Core .dat files. However, because

the tool is unaware of the Bitcoin block format, it is only suitable for

recovering files embedded into a single transaction script.

• binary-grep [67] searches a collection of input files for a single bytestring

specified by the user. It outputs the byte offsets of any matches, and

possesses a simple carving function.

3.2. COLLECTION AND ANALYSIS OF BITCOIN METADATA 37

• local-blockchain-parser [68] provides a “binary-grep” subcommand. Un-

like binwalk and the standalone binary-grep utility, this tool is aware

of the Bitcoin block format, and searches transactions directly, skipping

parts of the format that cannot contain embedded data. When matches

are found, it outputs the block hash, transaction hash, script type (input

or output), and byte offset of each match.

One of the more successful workflows we discovered for recovering binary files

based on file signatures was the following:

(i) We ran binwalk and/or binary-grep on a .dat file, making note of any

results that appeared to be true positives. (ii) If there were promising results,

we then ran the “binary-grep” subcommand of local-blockchain-parser on that

.dat file, which yielded the transaction IDs where those results were found.

(iii) For each resulting transaction ID, we manually inspected the transaction

graph around that transaction. If it appeared to be an isolated transaction, we

ran the tx-info subcommand of local-blockchain-parser. If it appeared to be a

part of a chain, we ran the “tx-chain” subcommand instead. (iv) We inspected

the binary output from the previous step, performing manual carving where

necessary, and attempted to ascertain the validity of the results by opening

them with applications appropriate to their file type.

Protocol Identifier Numerous protocols mark their metadata by writing a specific

string in the first few bytes of each chunk, but the exact number of bytes may

vary from protocol to protocol. In Section 3.3 we take advantage of this

for associating metadata to protocols. Furthermore, since protocols give a

detailed description of the format of the elements produced, in Section 3.2.2

we distinguish different types of metadata and classify them.

Hence, in order to associate metadata to protocols we:

(i) search the web for known associations between identifiers and protocols;

(ii) accordingly classify strings beginning with one of the identifiers obtained.

In more details, in the first step we query Google to obtain public identi-

fier/protocol bindings. For instance, since we discover that many protocols use

the OP RETURN technique, we execute the query “Bitcoin OP RETURN”,

that returns ∼26,500 results, and we manually inspect the first few pages of

them. Note that a protocol can be associated with more than one identifier

38 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

(e.g., Stampery, Blockstore [49]), or even do not have any identifier. In this

way we obtain 45 protocols associated to 39 identifiers; further, we find several

protocols that do not use any identifier (e.g., Diploma [22], Chainpoint [15]).

We also distinguish the main types of metadata produced by protocols (e.g.

Text, Hash and Record). The second step is performed by our tool: it asso-

ciates chunks of metadata to a protocol. The full list of protocols discovered

is shown in Table 3.3, identifiers are listed in Table A.1.

Transaction chains Given that all spent transaction outputs in the Bitcoin ledger

naturally form a chain structure, and given the variety of ways in which data

can be embedded into the transactions forming a chain, identifying chains

containing embedded data is not entirely straightforward.

A transaction may have certain “giveaway” characteristics that suggest the

presence of a chain containing data, such as:

1. One or more provably unspendable outputs (that is, OP RETURN out-

puts), plus a single spent output. The unspendable output(s) would con-

tain data, while the spent output would be used to continue the chain.

2. One or more unspent outputs (possibly indicative of a

pay-to-PubkeyHash embedding), plus a single spent output. The

unspent output(s) would contain data, while the spent output would be

used to continue the chain.

3. The unspent outputs, if any, contain very little Bitcoin value (such out-

puts are also known as dust outputs). Except in the case of the Bit-Comm

protocol, which uses output values to order the data in the output scripts,

the funds included into outputs that can never be spent are effectively

“burned,” and add no information to the embedded data. This disin-

centivizes the embedder from including any more value than is strictly

necessary to create a valid transaction.

4. The spent output contains a relatively large amount of Bitcoin, used to

fund further dust outputs in subsequent links in the chain.

5. Preceding or subsequent transactions share a similar structure with the

transaction in question. Many of the transaction chains we found ap-

peared to have been constructed with the help of software (e.g. the Python

3.2. COLLECTION AND ANALYSIS OF BITCOIN METADATA 39

source we extracted). The software we found tends to create strings of

transactions sharing a highly similar format. While it is altogether pos-

sible to embed data into chains of dissimilar transactions, they would be

difficult to find and complex to decode.

These are helpful clues, but not definitive criteria. In fact, there are many

other types of transactions which possess the characteristics described above.

For example, payouts from mining pools and Bitcoin casinos often send small

amounts of Bitcoin to many users at once. These payout transactions are

often constructed algorithmically (according to some set of “threshold” rules

intended to minimize the impact of the fee on the payout), meaning that

preceding and following transactions share a similar structure.

Therefore, it is generally necessary to have some understanding of the em-

bedded data in order to determine whether a given chain is of interest. If a

transaction contains a file signature for a file type that is unlikely to fit into

the data provided by that transaction, it warrants further investigation.

Extraction of data from interesting transaction chains is relatively easy when

using the local-blockchain-parser utility. This utility has a “tx-chain” subcom-

mand that takes a single transaction hash and crawls backwards and forwards

through the transaction graph, collecting data from the transaction scripts.

This data is filtered and permuted to account for the various ways in which

transaction chains are constructed. Finally, the data from each transaction are

concatenated in the order that they appear in the chain. This process yields

a collection of binary files corresponding to the different ways in which data

can be embedded into a chain.

3.2.2 Classifying metadata

Below we classify the elements we successfully reconstructed according to the type

of data they represent. We distinguish 12 types of metadata and 5 categories.

Plaintext

The first metadata embedded in the blockchain was a message by Satoshi Nakamoto.

Since then, users published a significant amount of uncensurable plaintexts. A not

exhaustive list of plaintexts includes:

40 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

• Text messages (e.g. birthday wishes, love statements, greetings). A message

belonging to this category is often an end in itself. Several protocols and tools

allow to store text messages and retrieve them.

• Academic articles We identify the Bitcoin whitepaper, and SHA-1 is dead!

PDFs demonstrating SHA-1 collisions. These PDFs are referenced in the orig-

inal paper [122].

• Other texts We collect several other texts that require extensive manual ver-

ification since their encoding is much less standardized than the binary results.

For instance, we identify developer conversations and magnet links (Bittorrent

links and metadata related to popular video games and movies). Moreover,

this category includes coinbase messages, produced by miners. They usually

publish text messages for Bitcoin-related purposes, as identify their blocks,

vote on proposals, announce what features they support. For instance, miners

publish the “P2SH” string for indicating that they accept pay-to-ScriptHash

scripts. However, we also found miners messages not related to mining (e.g.

prayers).

Hash

Document notarization is a widespread use case in the Bitcoin blockchain. Since

storing entire documents is expensive and not trivial (see Section 3.1), usually users

embed just a hash of the original document. Sometimes documents are aggregated in

order to timestamp multiple objects within a single hash. Therefore, this category

includes metadata generated by protocols embedding: (i) Hashes of documents,

(ii) Hashes of hashes, and (iii) Merkle trees.

Record

We discover protocols publishing strings composed of fields whose meaning can

be derived by applying a set of rules established by the originating protocol. We

distinguish two main types of record saved in the Bitcoin blockchain:

• Financial These records certify the ownership and exchange of digital and

physical goods. Goods are represented as digital tokens while users are iden-

tified by means of their Bitcoin addresses. Let consider a transaction T from

3.2. COLLECTION AND ANALYSIS OF BITCOIN METADATA 41

Alice to Bob whose attached metadata is a record exchanging N units of a

token G. T proves a change of ownership of N units of the good represented

by G.

• Copyright These records certify the ownership of digital arts such as photos

and videos. Copyright records are also produced by protocols acting as market

places in which artists publish and sell their files to other users. Digital arts

are not embedded in the blockchain.

Script

Numerous scripts have been embedded in the Bitcoin blockchain.

• Python scripts Satoshi uploader, Satoshi downloader, Cryptograffiti up-

loader, and the Peter Todd text uploader (occurs twice).

• Bash scripts Password script, and OpenSSL encoder.

• Video games LinPyro (gzipped), and Bong ball (HTML).

• Miscellaneous Lucifer (a burn-in stress testing utility, gzipped).

File

Finally, we reconstruct files by merging metadata spread across multiple transac-

tions. We distinguish the following subcategories:

• Images The most embedded files are PNG, JPEG, and GIF.

• Archives e.g. the WikiLeaks Cablegate archive (gzipped).

• Encrypted files Files usually encrypted with OpenSSL.

3.2.3 Statistics

Table 3.2 shows statistics about the elements we reconstructed. We aggregate results

based on the data type of each element (second column). Types are grouped by their

categories (first column), as discussed in Section 3.2.2. Third column indicates the

day in which the first element belonging to the correspondent type appears in the

blockchain. Next, we show the total number of elements found, followed by their

42 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

total size in bytes (fifth column), and their average size (last column). In the Hash

category we aggregate all its subcategories presented in Section 3.2.2.

The total size of metadata recognised is lower than the ∼ 97MB extracted in

Table 3.1, since we have unclassified metadata, i.e. bytes that we can not associate

to a specific element. For instance, consider an OP RETURN chunk containing

the hash of a document and no protocol identifier. Since the data following the

OP RETURN operator is not related to the Bitcoin protocol, the chunk must be

considered as metadata in Table 3.1. However, we are not able to categorize it in

Table 3.2. Indeed, although its size is compatible with the size of hashes returned

by common hashing algorithms, we are not able to prove that it is a hash and

not a different element (e.g. an encrypted message, part of a file, a number, etc.).

Scripts and Files have an average size higher than the maximum size of a script,

highlighting the correlation between these categories, and both Multi and Chains

techniques. Although the first Record appears in May 2014, Records are 3
4

of the

elements reconstructed, and they require the majority of the space.

Category Type First Element Tot. Elements Tot. Size Avg. Size

Plaintext

Text messages 2015/06/24 4,129 177,916 43.1
Academic articles 2013/04/06 2 190,772 95,386

Other texts 2009/01/03 305,763 18,442,641 60.3
Total 2009/01/03 309,894 18,811,329 60.7

Hash Total 2013/12/18 200,832 7,617,392 37.9

Record
Financial 2014/05/03 1,427,313 37,699,809 26.4

Copyrights 2014/12/19 116,406 3,503,170 30.1
Total 2014/05/03 1,543,719 41,202,979 26.7

Script

Python 2013/04/06 5 21,573 4,314.6
Bash 2013/07/12 2 597 298.5

Games 2013/04/10 2 84,379 42,189.5
Others 2013/04/10 1 31,600 31,600
Total 2013/04/06 10 138,149 13,814.9

File

Images 2013/03/17 108 1,523,529 14,106.75
Archives 2013/04/06 12 2,838,760 236,563.33

Encrypted files N/A N/A N/A N/A
Total 2013/03/17 120 4,362,289 36,352.4

TOTAL — 2009/01/03 2,054,575 72,132,138 35.1

Table 3.2: Statistics about metadata.

3.3. ANALYSIS OF BITCOIN-BASED PROTOCOLS 43

3.3 Analysis of Bitcoin-based protocols

In this section we study the protocols (introduced in Section 3.2.1) which embed

metadata in the Bitcoin blockchain. First, we classify these protocols according to

their application domain (Section 3.3.1). Then, in Section 3.3.2, we quantify and

compare them.

3.3.1 Classifying protocols

We now classify the protocols, associating each one to a category that describes its

intended application domain. To this purpose, we manually inspect the web pages

of each protocol.

Financial includes protocols that manage, gather, or distribute money as preem-

inent feature. Some protocols certify the ownership of a real-world asset,

endorse its value, and keep track of trades (e.g., Colu currently tracks over

50,000 assets). Metadata in these transactions are used to specify e.g. the

value of the asset, the amount of the asset transferred, the new owner. More-

over, Helperbit implements a donation service, gathering money from users in

order to fund humanitarian projects.

Notary includes protocols for certifying the ownership and timestamp of docu-

ments. They allow users to publish the hash of a document in a transaction,

thus proving its existence and integrity. Notably, since the transaction is signed

with his private key, users can also certify the document ownership.

Digital Rights Management includes protocols for declaring access rights and

copy rights on digital art files, like e.g. pictures or music.

Message groups protocols for storing short text messages on the blockchain.

Subchain gathers protocols which store sequences of transaction metadata forming

subchains [64] of the blockchain, used to embed tamper-proof execution traces

of third-party contracts.

Empty category is strictly related to the OP RETURN method. It includes trans-

actions that do not attach any data to OP RETURN.

https://www.colu.com/
https://www.helperbit.com/

44 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

We report our classification of protocols in the first two columns of Table 3.3. Due

to the OP RETURN space limit, long pieces of metadata require to be split in many

transactions, and higher fees. Hence, Financial protocols usually feature complex

rules, have space-efficient representations of data, and often propose off-chain so-

lutions [16]. We distinguish Notary protocols from DRM protocols for the following

reason. First, most Notary applications do not require users to send their docu-

ments (since the hash can be computed locally). Furthermore, their main purpose

(certifying ownership) can be fulfilled also when the application is no longer alive.

Conversely, DRM protocols usually need to gather user documents, and require in-

teractions with users (e.g. they often play the role of broker between producers and

consumers). While Notary, DRM and Message elements are unrelated to those pub-

lished before, Financial and Subchain elements must be consistent with respect to

some system state. For instance, nodes of Financial protocols keep internal coun-

ters to track the total amount of assets owned by each user, and reach consistency

by updating their counters whenever a new record appears in the blockchain. If an

attacker produces a record that claims to sell goods that she does not currently own,

nodes easily recognise the attack and discard the metadata. In a similar fashion,

Subchain protocols discard invalid updates. However, we distinguish Subchain pro-

tocols because they apply a generalization of the above approach. Indeed, they could

perform more complex computations (e.g. executing Turing-complete programs) in

order to decide if an update is correct.

3.3.2 Statistics

Table 3.3 shows some statistics about protocols. The first and the second columns in-

dicate, respectively, the protocol category (introduced in Section 3.3) and the name.

The next column shows the type of metadata embedded (presented in Section 3.2.2).

The fourth column lists the embedding techniques used by each protocol (described

in Section 3.1). Next column shows the date in which the protocol generated the

first element. Since transactions do not have a “date” field, we infer dates from the

timestamp of the block containing the transaction. The next two columns count the

total number of elements produced by each protocol, and the total size (in bytes)

of the stored data. To compute the size we only consider the metadata, i.e. we do

not count neither script instructions nor other fields of the transaction. The last

column shows the average size of the metadata. The full list of protocols identifiers

3.3. ANALYSIS OF BITCOIN-BASED PROTOCOLS 45

Financial Notary

DRM Message

Subchain Empty

63.4% 8.8%

9.3%

1%13.1%

5.2%

Figure 3.1: Distribution of elements by category.

is shown in Table A.1.

The following charts focus on OP RETURN transactions, since almost all meta-

data associated to protocols are published by using the OP RETURN method. Fig-

ure 3.1 displays how the metadata elements are distributed into the categories.

Figure 3.2a shows the number of elements published per week by each category (we

render Message and Subchain categories in a unique Other line for graphical rea-

sons). Figure 3.2b represents peaks of OP RETURN transactions. For each week,

it shows the number of (i) Empty transactions, (ii) OP RETURN transactions not

related to any protocol, and (iii) and total OP RETURN transactions. Figure 3.2c

shows the average length of the OP RETURN metadata of each week. Figure 3.2d

represents the number of transactions with a given metadata length.

Unclassified metadata. We associate ∼ 52.5MB of metadata to protocols. This

value is lower than the total metadata extracted (∼ 97MB) for the following reasons.

(i) Users often embed metadata not related to any protocol. Particularly, we believe

that several images and text messages fall in this case. Furthermore, we do not

consider miners metadata (coinbase metadata) as part of a protocol. (ii) Several

protocols do not use any identifier. Although we discover and classify several of these

protocols, we can not recognise their metadata. (iii) There may be other protocols

we are unaware of. If they publish OP RETURN transactions, we track all their

metadata in Table 3.1 but we are not able to recognise and categorise them.

46 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

Category Protocol Metadata Embedding Method First Element Tot. Elements Tot. Size Avg. Size

Financial

Colu Financial Record OP RETURN 2015/07/09 244,411 4,425,702 18.1
CoinSpark Financial Record OP RETURN 2014/07/02 28,120 960,664 34.2
OpenAssets Financial Record OP RETURN 2014/05/03 207,132 3,255,499 15.7

Omni Financial Record OP RETURN 2015/08/10 311,605 6,249,883 20
Openchain Hash OP RETURN 2015/10/21 2,758 115,283 41.8
Helperbit Financial Record OP RETURN 2015/09/18 33 1,251 37.9

Counterparty Financial Record
OP RETURN 2014/06/16 636,012 22,806,810 35.9

P2PKH N/A N/A N/A N/A
MULTISIG N/A N/A N/A N/A

Total — — 2014/06/16 1,430,071 37,815,092 26.4

Notary

Factom Merkle root OP RETURN 2014/04/11 105,188 4,207,262 40
Stampery[42] Merkle root, Hash OP RETURN 2015/03/09 74,887 2,648,102 35.4

Proof of Existence Hash OP RETURN 2014/04/21 5,464 218,513 40
Blocksign Hash OP RETURN 2014/08/04 1,477 55,676 37.7

CryptoCopyright Hash OP RETURN 2014/08/02 46 1,840 40
Stampd Hash OP RETURN 2015/01/03 562 22,427 39.9
BitProof Hash OP RETURN 2015/02/25 770 30,800 40
ProveBit Hash OP RETURN 2015/04/05 57 2,280 40
Remembr Hash OP RETURN 2015/08/25 28 1,128 40.3

OriginalMy Hash OP RETURN 2015/07/12 126 4,788 38
LaPreuve Hash OP RETURN 2014/12/07 68 2,663 39.1
Nicosia Hash of hashes OP RETURN 2014/09/12 24 840 35

SmartBit Merkle root OP RETURN 2015/11/24 8,472 304,992 36
Notary Hash OP RETURN 2017/04/11 21 798 38

Originstamp Hash of hashes COMMIT 2013/12/18 905 0 0
Btproof Hash COMMIT N/A N/A N/A N/A

BitcoinTimestamp Hash VALUE, MULTIPLE N/A N/A N/A N/A
Blocknotary Merkle root OP RETURN N/A N/A N/A N/A

Tangible Hash OP RETURN N/A N/A N/A N/A
Chainpoint Merkle root OP RETURN N/A N/A N/A N/A

Diploma Hash OP RETURN N/A N/A N/A N/A
Apertus Hash P2PKH N/A N/A N/A N/A

Chronobit Hash N/A N/A N/A N/A N/A
Seclytics Hash OP RETURN N/A N/A N/A N/A
Total — — 2013/12/18 198,095 7,502,109 37.9

DRM

Monegraph Copyright Record OP RETURN 2015/06/28 67,286 2,464,282 36.6
Blockai Copyright Record OP RETURN 2015/01/09 670 38,327 57.2
Ascribe Copyright Record OP RETURN 2014/12/19 48,450 1,000,561 20.7
Verisart Merkle root N/A N/A N/A N/A N/A
Total — — 2014/12/19 116,406 3,503,170 30.1

Message

Eternity Wall Text OP RETURN 2015/06/24 4,129 177,916 43.1
Cryptograffiti Text P2PKH, MULTIPLE N/A N/A N/A N/A
BIT-COMM Text P2PKH, MULTIPLE N/A N/A N/A N/A

Stone Text, File P2PKH, MULTIPLE N/A N/A N/A N/A
Key.run Magnet OP RETURN N/A N/A N/A N/A
BitAlias Secret number, Hash OP RETURN — 0 0 0
Total — — 2015/06/24 4,129 177,916 43.1

Subchain

Keybase Merkle root OP RETURN N/A N/A N/A N/A
Uniquebits PGP signed hash P2PKH, P2SH N/A N/A N/A N/A
Blockstore Key-Value OP RETURN 2014/12/10 209,422 6,068,584 29

Catena[124] Text OP RETURN, CHAIN N/A N/A N/A N/A
Total — — 2014/12/10 209,422 6,068,584 29

Empty Total — OP RETURN 2014/03/20 296,396 0 0

TOTAL — — — 2009/01/03 2,254,519 55,066,871 24.4

Table 3.3: Statistics about protocols.

https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
https://docs.openchain.org/
https://www.helperbit.com/
http://counterparty.io/
https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
https://www.smartbit.com.au/
https://notary.bitcoin.com
https://app.originstamp.org/
http://www.btproof.site/
https://github.com/fireduck64/BitcoinTimestamp
https://www.blocknotary.com/
http://tangible.io
http://www.chainpoint.org/
http://diploma.report/
http://apertus.io/
https://github.com/goblin/chronobit
https://www.seclytics.com/blog/2016/09/15/verifying-predictions-with-the-bitcoin-blockchain/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://www.verisart.com/
https://eternitywall.it/
http://cryptograffiti.info/
http://bit-comm.appspot.com
https://github.com/dasmithii/stone/
https://git.playgrub.com/toby/keyrun
https://bitalias.github.io/
https://keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain
https://github.com/petertodd/uniquebits
https://github.com/blockstack/blockchain-id/wiki/Blockstore
https://github.com/non-equivocation/catena-java

3.3. ANALYSIS OF BITCOIN-BASED PROTOCOLS 47

0
3
.2

0
1
4

0
9
.2

0
1
4

0
3
.2

0
1
5

0
9
.2

0
1
5

0
2
.2

0
1
6

0
9
.2

0
1
6

0
2
.2

0
1
7

0

1

2

3

4
·104

Time interval

N
u
m
b
er

o
f
tr
a
n
sa
ct
io
n
s

Financial

Notary

DRM

Others

(a) Categories per week

0
3
.2

0
1
4

0
9
.2

0
1
4

0
3
.2

0
1
5

0
9
.2

0
1
5

0
2
.2

0
1
6

0
9
.2

0
1
6

0
2
.2

0
1
7

0

0.5

1

1.5

·105

Time interval

N
u
m
b
er

o
f
tr
a
n
sa
ct
io
n
s

Empty

Unclassified

All

(b) Transactions peaks

0
3
.2

0
1
4

0
9
.2

0
1
4

0
3
.2

0
1
5

0
9
.2

0
1
5

0
2
.2

0
1
6

0
9
.2

0
1
6

0
2
.2

0
1
7

0

20

40

Time interval

A
v
er
a
g
e
n
u
m
b
er

o
f
b
y
te
s

Avg length

(c) Average data length

0 10 20 30 40 50 60 70 80
0

1

2

3
·105

Number of bytes

N
u
m
b
er

o
f
tr
a
n
sa
ct
io
n
s

Length

(d) Data length

Figure 3.2: Usage and size of OP RETURN transactions.

Distribution of protocols by category. Although Financial protocols pro-

duce the highest number of transactions, the most numerous category is Notary.

Figure 3.2a and the fifth column of Table 3.3 suggest that, originally, the proto-

cols embedding metadata were in the categories Financial and Notary, while the

other use cases were introduced subsequently (indeed, the others categories were not

inhabited before the end of 2014). We note a relevant component of Empty transac-

tions (296,396 transactions, ∼10% of the total OP RETURN transactions). Empty

transactions use OP RETURN without any data attached, so they are not associ-

ated to any protocol. We evaluate that ∼ 96% of these transactions are related to

the peaks discussed in Section 3.4.1. Since those peaks happened in the same period

of the stress tests and spam campaign discussed in [60], we conjecture that Empty

transactions are related to those events17. We identify 19 protocols that write data

without using any identifier. We also identify one protocol [29] that besides using

an identifier for saving document hashes, allows to save text messages without any

identifier.

17To verify this conjecture we would need to compare the transaction identifiers of our empty
transactions with the identifiers of [60], which are not available online.

48 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

3.4 Overall statistics

We detect 4,582,661 chunks of metadata, by scanning the blockchain until block

number 480,000. We observe that the majority of the metadata extracted was em-

bedded by using OP RETURN. Overall, we found 2,903,186 OP RETURN trans-

actions, that constitute ∼ 1, 18% of the total transactions in the blockchain, and

∼ 0.057% of the size of the blockchain. Furthermore, they constitute the ∼ 1, 37%

of the transactions and ∼ 0.065% of the size of the portion of the blockchain from

2014/03/12 (when the first OP RETURN transaction appeared). Although the for-

mer measurement considers 8 years of transactions while the latter only considers

the last 3 years, we note that the values are very close. We explain this fact by

observing that the daily number of transactions rapidly increased since July 2014.

3.4.1 Transaction peaks

Figures 3.2a and 3.2b display the number of OP RETURN transactions per week,

from 2014/03 (date of the first OP RETURN transaction) to 2017/02. In the graph

we note several peaks, that we explain as follows:

1. ∼100,000 transactions from 2015/07/08 to 2015/08/05. This peak is mainly

composed of two different peaks of Empty transactions: the july peak (∼36,900

transactions from 2015/07/08 to 2015/07/10) and the august peak (∼29,200

transactions from 2015-08-01 to 2015-08-03). Both peaks seem to be caused

by a spam campaign that resulted in a DoS attack on Bitcoin which happened

in the same period, as reported in [60].

2. ∼300,000 transactions from 2015/09/09 to 2015/09/23. This second peak

is the highest and longest-lasting one. As before, it is mainly caused by

Empty transactions (∼223,000), although here we also observe a component

of Unclassified and Blockstore transactions (∼35,000 each). The work [60]

detects a spike also in this period, precisely around 2015/09/13, where an

anonymous group performed a stress-test on the network with a money drop.

This involves a public release of private keys, with the aim to cause a big race

which would cause a large number of double-spend transactions.

3. ∼50,000 transactions from 2016/03/02 to 2016/03/09. The last peak is due to

the sum of two different peaks: Unclassified (about 18,000) and Stampery

https://github.com/blockstack/blockchain-id/wiki/Blockstore
https://stampery.com/

3.4. OVERALL STATISTICS 49

(about 23,000) transactions. We conjecture that this peak is caused by the

testing and bootstrap of protocols.

We observe that the Bitcoin blockchain has also other peaks, not related to

OP RETURN transactions. For instance, starting from the 2015/05/22 and for a

duration of 100 blocks, the Bitcoin network was targeted by a stress test [3], during

which the network was flooded with a huge number of transactions. Actually, the

usage of OP RETURN transactions in the period of this peak does not seem to

diverge from their normal usage.

3.4.2 Space consumption

A debated topic in the Bitcoin community is whether it is acceptable or not to

save arbitrary data in the blockchain. The seventh column in Table 3.3 shows, for

each protocol, the total size of metadata (i.e., not considering the bytes of script

instructions and other fields). The last row of Table 3.3 shows that the total size

of metadata is ∼ 97MB (in the same date, the size of the whole blockchain was

∼ 127, 974MB).

For the most widespread embedding method, the OP RETURN, Figure 3.2c

shows the average length of the metadata of each week. Generally, the average length

of metadata is less than 40 bytes, despite the extension to 80 bytes introduced on

2015/07/12. Peaks down on the same period are related to the Empty transactions

discussed in Section 3.4.1. Figure 3.2d represents the number of OP RETURN

transactions with a given data length: also this chart confirms a small number

of transactions that use more than the half of the available space. Note that the

discussed peak appears also in this chart, in correspondence of the 0 value. From

the last column of Table 3.3 we see that despite Blockai has the higher average size,

its value is much less than the 80 bytes available. Several Notary protocols take

40 bytes on average: this depends from their identifiers, composed of 16 bytes, and

from the size of the hash they save. Generally, Notary protocols carry longer data

than the other protocols.

We now evaluate the minimum space consumption of the OP RETURN trans-

actions on the whole blockchain. First, we observe that an Empty transaction with

one input and one output has a total size of 156 bytes. From Table 3.3 we see that

OP RETURN transaction carry ∼24.4 bytes of metadata, on average. Hence, we

approximate the average size of OP RETURN transaction as ∼180.4 bytes, and so

50 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

an approximation of the space consumption of all the OP RETURN transactions is

∼499 MB.

Finally, we estimate the ratio between the total size of metadata and the size

of all the transactions on the blockchain. The block header has size 97 bytes at

most. Hence, removing the size of the headers of our 480,000 extracted blocks

(∼ 44 MB) from the total size of the blockchain at 2017/08/10, we obtain ∼ 125

GB of transactions. From this we conclude that metadata consume ∼ 0.076% of the

total space on the blockchain.

3.5 Related work

There is a growing literature on the analysis of the Bitcoin blockchain [104, 60,

117, 114, 97], and also some online services which perform statistics on Bitcoin

metadata [4, 41, 35, 28]. Below, we group the related works into three categories.

The first one includes public tools and services showing metadata embedded in

the Bitcoin blockchain. For instance, blockchainarchaeology.com collects files hid-

den in the blockchain. These files are usually split into several parts, stored e.g. on

different output scripts in a transaction. Various techniques are used to detect how

the files were embedded (e.g. by binary grep on the PNG pattern), and to recon-

struct them. The Bitcoin wiki [4] lists a few protocols using OP RETURN, together

with their identifiers. Excluding the protocol identifiers that are no longer used at

time of writing, the collection in [4] is strictly included in ours. The website opre-

turn.org shows statistics about OP RETURN transactions, organised by protocol,

and statistics about their usage in a certain time frame. The website smartbit.com

recognises some OP RETURN identifiers and shows related statistics. Finally, the

website kaiko.com sells data about OP RETURN transactions.

The second category of related works contains analyses of the data insertion

techniques presented in Section 3.1. At the best of our knowledge, besides our work,

this category includes only [123, 116], which have been developed concurrently and

independently from ours. Despite the common goals, [123, 116] present several

differences from our work. In particular: (i) the methods using pay-to-ScriptHash

are detailed only in [123]; (ii) the transaction-chains methods and the techniques

for committing metadata are described only in our work; (iii) only our work and [116]

extract and quantify the embedded metadata. Further differences between our work

http://blockchainarchaeology.com
https://github.com/spooktheducks
http://opreturn.org/
http://opreturn.org/
https://www.smartbit.com.au/op-returns
https://www.kaiko.com/

3.5. RELATED WORK 51

and [116] are discussed below.

The third category of related works includes the analyses of the types of meta-

data, as that in Section 3.2. Also in this case, the work [116] is the closest to

ours: the main difference between the two works is that, while [116] is focussed on

discussing the benefits and risks related to metadata (e.g. privacy violations, ille-

gal and condemned contents), we develop a protocol-wise analysis, measuring how

much (and when) metadata is embedded by each protocol, and studying which use

cases they support. Further, we recognize a few types of metadata (hash, financial

records, and copyright records) which are not dealt with by [116].

52 CHAPTER 3. A JOURNEY INTO BITCOIN METADATA

Chapter 4

An empirical analysis of smart

contracts

Ethereum is currently the most prominent platform for executing smart contracts.

Contracts are also supported by Bitcoin and several new emerging platforms. In

this Chapter 4 we study the usage of smart contracts from various perspectives.

In Section 4.1 we examine and compare a sample of 6 platforms for smart con-

tracts. We study a sample of 834 contracts executed in the Bitcoin and Ethereum

platforms, categorizing each of them by its application domain, and measuring the

relevance of each of these categories (Section 4.2). In Section 4.3 we analyse the

most common design patterns adopted when writing smart contracts. Finally, in

Section 4.4 we discuss some related works.

4.1 Platforms for smart contracts

In this section we analyse various platforms for smart contracts. We start by pre-

senting the methodology we have followed to choose the candidate platforms (Sec-

tion 4.1.1). Then we describe the key features of each platform, pinpointing differ-

ences and similarities, and drawing some general statistics (Section 4.1.2).

54 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

4.1.1 Methodology

To choose the platforms subject of our study, we have drawn up a candidate list

by examining all the articles of coindesk.com in the “smart contracts” category1.

Starting from June 2013, when the first article appeared, up to the 15th of Septem-

ber 2016, 175 articles were published, describing projects, events, companies and

technologies related to smart contracts and blockchains. By manually inspecting all

these articles, we have found references to 12 platforms: Bitcoin, Codius, Counter-

party, DAML, Dogeparty, Ethereum, Lisk, Monax, Rootstock, Symbiont, Stellar,

and Tezos.

We have then excluded from our sample the platforms which, at the time of

writing, do not satisfy one of the following criteria: (i) have already been launched,

(ii) are running and supported from a community of developers, and (iii) are pub-

licly accessible. For the last point we mean that, e.g., it must be possible to write

a contract and test it, or to explore the blockchain through some tools, or to run

a node. We have inspected each of the candidate platforms, examining the related

resources available online (e.g., official websites, white-papers, forum discussions,

etc.) After this phase, we have removed 6 platforms from our list: Tezos and Root-

stock, as they do not satisfy condition (i); Codius and Dogeparty, which violate

condition (ii), DAML and Symbiont, which violate (iii). Summing up, we have a

sample of 6 platforms: Bitcoin, Ethereum, Counterparty, Stellar, Monax and Lisk,

which we discuss in the following.

4.1.2 Analysis of platforms

We now describe the general features of the collected platforms, focussing on:

(i) whether the platform has its own blockchain, or if it just piggy-backs on an

already existing one; (ii) for platforms with a public blockchain, their consensus

protocol, and whether the blockchain is public or private to a specific set of nodes;

(iii) the languages used to write smart contracts.

Bitcoin [109] is a platform for transferring digital currency, the bitcoins (BTC).

It has been the first decentralized cryptocurrency to be created, and now is the one

with the largest market capitalization. The platform relies on a public blockchain

1http://www.coindesk.com/category/technology/smart-contracts-news

http://www.coindesk.com
http://www.coindesk.com/category/technology/smart-contracts-news

4.1. PLATFORMS FOR SMART CONTRACTS 55

to record the complete history of currency transactions. The nodes of the Bitcoin

network use a consensus algorithm based moderately hard “proof-of-work” puzzles

to establish how to append a new block of transactions to the blockchain. Nodes

work in competition to generate the next block of the chain. The first node that

solves the puzzle earns a reward in BTC.

Although the main goal of Bitcoin is to transfer currency, the immutability and

openness of its blockchain have inspired the development of protocols that imple-

ment (limited forms of) smart contracts. Bitcoin features a non-Turing complete

scripting language, which allows to specify under which conditions a transaction can

be redeemed. The scripting language is quite limited, as it only features some basic

arithmetic, logical, and crypto operations (e.g., hashing and verification of digital

signatures). A further limitation to its expressiveness is the fact that only a small

fraction of the nodes of the Bitcoin network processes transactions whose script is

more complex than verifying a signature2.

Ethereum [75] is the second platform for market capitalization, after Bitcoin.

Similarly to Bitcoin, it relies on a public blockchain, with a consensus algorithm sim-

ilar to that of Bitcoin3. Ethereum has its own currency, called ether (ETH). Smart

contracts are written in a stack-based bytecode language [129], which is Turing-

complete, unlike Bitcoin’s. There also exist a few high level languages (the most

prominent being Solidity4), which compile into the bytecode language. Users cre-

ate contracts and invoke their functions by sending transactions to the blockchain,

whose effects are validated by the network. Both users and contracts can store

money and send/receive ETH to other contracts or users.

Counterparty [19] is a platform without its own blockchain; rather, it embeds

its data into Bitcoin transactions. While the nodes of the Bitcoin network ignore

the data embedded in these transactions, the nodes of Counterparty recognise and

interpret them. Smart contracts can be written in the same language used by

Ethereum. However, unlike Ethereum, no consensus protocol is used to validate

the results of computations[27]. Counterparty has its own currency, which can be

2As far as we know, currently only the Eligius mining pool accepts more general transactions
(called non-standard in the Bitcoin community). However, this pool only mines ∼ 1% of the total
mined blocks [59].

3The consensus mechanism of Ethereum is a variant of the GHOST protocol in [120].
4Solidity: http://solidity.readthedocs.io/en/develop/index.html

http://solidity.readthedocs.io/en/develop/index.html

56 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

transferred between users, and be spent for executing contracts. Unlike Ethereum,

nodes do not obtain fees for executing contracts; rather, the fees paid by clients are

destroyed. This mechanism is called proof-of-burn.

Stellar [44] features a public blockchain with its own cryptocurrency, governed by

a consensus algorithm inspired to federated Byzantine agreement [45]. Basically, a

node agrees on a transaction if the nodes in its neighbourhood (that are considered

more trusted than the others) agree as well. When the transaction has been accepted

by enough nodes of the network, it becomes infeasible for an attacker to roll it

back, and it is considered as confirmed. Compared to proof-of-work, this protocol

consumes far less computing power, since it does not involve solve cryptographic

puzzles. Unlike Ethereum, there is no specific language for smart contracts; still, it

is possible to gather together some transactions (possibly ordered in a chain) and

write them atomically in the blockchain. Since transactions in a chain can involve

different addresses, this feature can be used to implement basic smart contracts. For

instance, assume that a participant A wants to pay B only if B promises to pay C

after receiving the payment from A. This behaviour can be enforced by putting these

transactions in the same chain. While this specific example can be implemented on

Bitcoin as well, Stellar also allows to batch operations different from payments5, e.g.

creating new accounts. Similarly to Bitcoin, Stellar features special accounts, called

multisignature, which can be handled by several owners. To perform operations

on these accounts, a threshold of consensus must be reached among the owners.

Transaction chaining and multisignature accounts can be combined to create more

complex contracts.

Monax [32] supports the execution of Ethereum contracts, without having its

own currency. Monax allows users to create private blockchains, and to define

authorisation policies for accessing them. Its consensus protocol6 is organised in

rounds, where a participant proposes a new block of transactions, and the others

vote for it. When a block fails to be approved, the protocol moves to the next

round, where another participant will be in charge of proposing blocks. A block is

confirmed when it is approved by at least 2/3 of the total voting power.

5https://www.stellar.org/developers/guides/concepts/operations.html
6https://tendermint.com/

https://www.stellar.org/developers/guides/concepts/operations.html
https://tendermint.com/

4.1. PLATFORMS FOR SMART CONTRACTS 57

Platform
Blockchain

Contract Language Total Tx
Volume Marketcap

Type Size Block int. (K USD) (M USD)

Bitcoin
Public

96
GB

10 min.
Bitcoin scripts + signatures 184,045,240 83,178 15,482

Counterparty EVM bytecode 12,170,386 33 4

Ethereum Public 17-60 GB 12 sec. EVM bytecode 14,754,984 10,354 723

Stellar Public ? 3 sec. Transaction chains + signatures ? 35 17

Monax Private ? Custom EVM bytecode + permissions ? n/a n/a

Lisk Private ? Custom JavaScript ? 45 15

Table 4.1: General statistics of platforms for smart contracts.

Lisk [30] has its own currency, and a public blockchain with a delegated proof-

of-stake consensus mechanism7. More specifically, 101 active delegates, each one

elected by the stakeholders, have the authority to generate blocks. Stakeholders can

take part to the electoral process, by placing votes for delegates in their favour, or

by becoming candidates themselves. Lisk supports the execution of Turing-complete

smart contracts, written either in JavaScript or in Node.js. Unlike Ethereum, de-

terminism of executions is not ensured by the language: rather, programmers must

take care of it, e.g. by not using functions like Math.random. Although Lisk has

a main blockchain, each smart contract is executed on a separated one. Users can

deposit or withdraw currency from a contract to the main chain, while avoiding dou-

ble spending. Contract owners can customise their blockchain before deploying their

contracts, e.g. choosing which nodes can participate to the consensus mechanism.

Table 4.1 summarizes the main features of the analysed platforms. The question

mark in some of the cells indicates that we were unable to retrieve the information

(e.g., we have not been able to determine the size of Monax blockchains, since

they are private). The first three columns next to the platform name describe

features of the blockchain: whether it is public; its size; the average time between

two consecutive blocks. Note that Bitcoin and Counterparty share the same cell,

since the second platform uses the Bitcoin blockchain. Measuring the size of the

Ethereum blockchain depends on which client and which pruning mode is used.

For instance, using the Geth client, we obtain a measure of 17GB in “fast sync”

mode, and of 60GB in “archive” mode8. In platforms with private blockchains,

their block interval is custom. The fifth column describes the support for writing

contracts. The sixth column shows the total number of transactions9. The last two

7https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook
8https://redd.it/5om2lw
9Sources: https://blockchain.info/charts/n-transactions-total (for Bitcoin), https:

https://github.com/ethereum/go-ethereum/wiki/geth
https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook
https://redd.it/5om2lw
https://blockchain.info/charts/n-transactions-total
https://blockscan.com

58 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

columns show the daily volume of currency transfers, and the market capitalisation

of the currency (both in USD, rounded, respectively, to thousands and millions).

Market capitalisations from coinmarketcap.com. All values reported on Table 4.1

are updated to January 1st, 2017.

4.2 Analysing the usage of smart contracts

In this section we analyse the usage of smart contracts, proposing a classification

which reflects their application domain. Then, focussing on Bitcoin and Ethereum,

we quantify the usage of smart contracts in relation to their application domain. We

start by presenting the methodology we have followed to sample and classify Bitcoin

and Ethereum smart contracts (Section 4.2.1). Then, we introduce our classification

and our statistical analysis (Sections 4.2.2 and 4.2.3).

4.2.1 Methodology

We sample contracts from Bitcoin and Ethereum as follows:

• for Ethereum, we collect on January 1st, 2017 all the contracts marked as

“verified” on the blockchain explorer etherscan.io. This means that the

contract bytecode stored on the blockchain matches the source code (generally

written in a high level language, such as Solidity) submitted to the explorer.

In this way, we obtain a sample of 811 contracts.

• for Bitcoin, we start by observing that many smart contracts save their meta-

data on the blockchain through the OP RETURN instruction of the Bitcoin

scripting language [12, 31, 4, 65]. We then scan the Bitcoin blockchain on

January 1st 2017, searching for transactions that embed in an OP RETURN

some metadata attributable to a Bitcoin smart contract. To this purpose we

use an explorer10 which recognises 23 smart contracts, and extracts all the

transactions related to them.

//blockscan.com (Counterparty), and https://etherscan.io (Ethereum).
10https://github.com/BitcoinOpReturn/OpReturnTool

https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
http://coinmarketcap.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://etherscan.io/contractsVerified
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://blockscan.com
https://etherscan.io
https://github.com/BitcoinOpReturn/OpReturnTool

4.2. ANALYSING THE USAGE OF SMART CONTRACTS 59

4.2.2 A taxonomy of smart contracts

We propose a taxonomy of smart contracts into five categories, which describe their

intended application domain. We then classify the contracts in our sample according

to the taxonomy. To this purpose, for Ethereum contracts we manually inspect the

Solidity source code, while for Bitcoin contracts we search their web pages and

related discussion forums. After this manual investigation, we distribute all the

contracts into the five categories, that we present below.

Financial. Contracts in this category manage, gather, or distribute money as pre-

eminent feature. Some contracts certify the ownership of a real-world asset,

endorse its value, and keep track of trades (e.g., Colu currently tracks over

50,000 assets on Bitcoin). Other contracts implement crowdfunding services,

gathering money from investors in order to fund projects (the Ethereum DAO

project was the most representative one, until its collapse due to an attack in

June 2016). High-yield investment programs are a type of Ponzi schemes [63]

that collect money from users under the promise that they will receive back

their funds with interest if new investors join the scheme (e.g., Government,

KingOfTheEtherThrone). Some contracts provide an insurance on setbacks

which are digitally provable (e.g., Etherisc sells insurance policies for flights;

if a flight is delayed or cancelled, one obtains a refund). Other contracts pub-

lish advertisement messages (e.g., PixelMap is inspired to the Million Dollar

Homepage).

Notary. Contracts in this category exploit the immutability of the blockchain to

store some data persistently, and in some cases to certify their ownership and

provenance. Some contracts allow users to write the hash of a document on

the blockchain, so that they can prove document existence and integrity (e.g.,

Proof of Existence). Others allow to declare copyrights on digital arts files,

like photos or music (e.g., Monegraph). Some contracts (e.g., Eternity Wall)

just allow users to write down on the blockchain messages that everyone can

read. Other contracts associate users to addresses (often represented as public

keys), in order to certify their identity (e.g., Physical Address).

Game. This category gathers contracts which implement games of chance (e.g.,

LooneyLottery, Dice, Roulette, RockPaperScissors) and games of skill (e.g.,

http://coloredcoins.org/explorer/
https://forum.daohub.org/
http://governmental.github.io/GovernMental/
https://www.kingoftheether.com/
https://fdi.etherisc.com/
http://pixelmap.io/
https://en.wikipedia.org/wiki/The_Million_Dollar_Homepage
https://en.wikipedia.org/wiki/The_Million_Dollar_Homepage
https://proofofexistence.com/
https://monegraph.com/
https://eternitywall.it/
https://proofofphysicaladdress.com/
https://etherscan.io/address/0x2ef76694fBfD691141d83F921A5ba710525De9B0#code
https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x18a672e11d637fffadccc99b152f4895da069601#code
https://etherscan.io/address/0x1d77340D3819007BbfD7fdD37C22BD3b5c311350#code

60 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

Category Platform Contracts Transactions

Financial
Bitcoin 6 470,391

Ethereum 373 624,046

Notary
Bitcoin 17 443,269

Ethereum 79 35,253

Game
Bitcoin 0 0

Ethereum 158 58,257

Wallet
Bitcoin 0 0

Ethereum 17 1,342

Library
Bitcoin 0 0

Ethereum 29 37,034

Unclassified
Bitcoin 0 0

Ethereum 155 3,679

Total
Bitcoin 23 913,660

Ethereum 811 759,611
Overall 834 1,673,271

Table 4.2: Transactions by category.

Etherization), as well as some games which mix chance and skill (e.g., PRNG

challenge pays for the solution of a puzzle).

Wallet. The contracts in this category handle keys, send transactions, manage

money, deploy and watch contracts, in order to simplify the interaction with

the blockchain. Wallets can be managed by one or many owners, in the latter

case requiring multiple authorizations (like, e.g. in Multi-owned).

Library. These contracts implement general-purpose operations (like e.g., math

and string transformations), to be used by other contracts.

4.2.3 Quantifying the usage of smart contracts by category

We analyse all the transactions related to the 834 smart contracts in our sample. Ta-

ble 4.2 displays how the transactions are distributed in the categories of Section 4.2.2.

For both Bitcoin and Ethereum, we show the number of detected contracts (third

column), and the total number of transactions (fourth column).

Overall, we have 1,673,271 transactions. Notably, although Bitcoin contracts

are fewer than those running on Ethereum, they have a larger amount of transac-

tions each. A clear example of this is witnessed by the financial category, where

6 Bitcoin contracts11 totalize two thirds of the transactions published by the 373

Ethereum contracts in the same category. While both Bitcoin and Ethereum are

11Bitcoin financial contracts: Colu, CoinSpark, OpenAssets, Omni, SmartBit, BitPos.

http://www.bspend.com/etherization
https://etherscan.io/address/0x4ed65e408439a7f6459b5cfbd364f373bd6ed5f7#comments
https://etherscan.io/address/0x4ed65e408439a7f6459b5cfbd364f373bd6ed5f7#comments
https://etherscan.io/address/0xA2D4035389aae620E36Bd828144b2015564C2702#code
https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
https://www.smartbit.com.au/
https://bitpos.me/

4.3. DESIGN PATTERNS FOR ETHEREUM SMART CONTRACTS 61

Financial Notary Wallet Game LibraryUnclassified

0

20

40

60

80 Bitcoin Ethereum Overall

Figure 4.1: Distribution of transactions by category.

mainly focussed on financial contracts, we observe major differences about the other

categories. For instance, the Bitcoin contracts in the Notary category12 have an

amount of transactions similar to that of the Financial category, unlike in Ethereum.

The second most used category in Ethereum is Game. Although some games (e.g.,

lotteries [53, 54, 57, 69] and poker [94]) which run on Bitcoin have been proposed

in the last few years, the interest on them is still mainly academic, and we have no

experimental evidence that these contracts are used in practice. Instead, the greater

flexibility of the Ethereum programming language simplifies the development of this

kind of contracts (although with some quirks [79] and limitations13). Note that in

some cases there are not enough elements to categorise a contract. This happens

e.g., when the contract does not link to the project webpage, and there are neither

comments in online forums nor in the contract sources.

4.3 Design patterns for Ethereum smart con-

tracts

In this section we study design patterns for Ethereum smart contracts. To this

purpose, we consider the sample of 811 contracts collected through the methodology

12Bitcoin notary contracts: Factom, Stampery, Proof of Existence, Blocksign, CryptoCopyright,
Stampd, BitProof, ProveBit, Remembr, OriginalMy, LaPreuve, Nicosia, Chainpoint, Diploma,
Monegraph, Blockai, Ascribe, Eternity Wall, Blockstore.

13Although the Ethereum virtual machine is designed to be Turing-complete, in practice the
limitations on the amount of gas which can be used to invoke contracts also limit the set of
computable functions (e.g., verifying checkmate exceeds the current gas limits of a transaction [89]).

https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
http://www.chainpoint.org/
http://diploma.report/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://eternitywall.it/
https://github.com/blockstack/blockchain-id/wiki/Blockstore

62 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

described in Section 4.2. By manually inspecting the Solidity source code of each of

these contracts, we identify some common design patterns. We start in Section 4.3.1

by describing these patterns. Then, in Section 4.3.2 we measure the usage of the

patterns in the various categories of contracts identified in Section 4.2.

4.3.1 Design patterns

Token. This pattern is used to distribute some fungible goods (represented by to-

kens) to users. Tokens can represent a wide variety of goods, like e.g. coins,

shares, outcomes or tickets, or everything else which is transferable and count-

able. The implications of owning a token depend on the protocol and the

use case for which the token has been issued. Tokens can be used to track

the ownership of physical properties (e.g., gold [21]), or digital ones (e.g.,

cryptocurrency). Some crowdfunding systems issue tokens in exchange for do-

nations (e.g., the Congress contract). Tokens are also used to regulate user

authorizations and identities. For instance, the DVIP contract specifies rights

and term of services for owners of its tokens. To vote on the poll ETCSurvey,

users must possess a suitable token. Given the popularity of this pattern, its

standardisation has been proposed [24]. Notably, the majority of analysed

Ethereum contracts which issue tokens already adhere to it.

Authorization. This pattern is used to restrict the execution of code according

to the caller address. Majority of the analysed contracts check if the caller

address is that of the contract owner, before performing critical operations

(e.g., sending ether, invoking suicide or selfdestruct). For instance, the owner

of Doubler is authorized to move all funds to a new address at any time

(this may raise some concerns about the trustworthiness of the contract, as

a dishonest owner can easily steal money). Corporation checks addresses to

ensure that every user can vote only once per poll. CharlyLifeLog uses a

white-list of addresses to decide who can withdraw funds.

Oracle. Some contracts may need to acquire data from outside the blockchain, e.g.

from a website, to determine the winner of a bet. The Ethereum language

does not allow contracts to query external sites: otherwise, the determinism

of computations would be broken, as different nodes could receive different

results for the same query. Oracles are the interface between contracts and

https://etherscan.io/address/0xe0b7927c4af23765cb51314a0e0521a9645f0e2a#code
https://etherscan.io/address/0x815a46107e5ee2291a76274dc879ce947a3f0850#code
https://etherscan.io/address/0xfb6916095ca1df60bb79ce92ce3ea74c37c5d359#code
https://etherscan.io/address/0xadc46ff5434910bd17b24ffb429e585223287d7f#code
https://etherscan.io/address/0xdb6d68e1d8c3f69d32e2d83065492e502b4c67ba#code
https://etherscan.io/address/0x3fccb426c33b1ae067115390354b968592348d05#code
https://etherscan.io/address/0x8b4aa759d83ec43efba755fc27923e4a581bccc1#code
https://etherscan.io/address/0xdc84953D7C6448e498Eb3C33ab0F815da5D13999#code
https://etherscan.io/address/0x684282178b1d61164febcf9609ca195bef9a33b5#code
https://etherscan.io/address/0x5A5eFF38DA95b0D58b6C616f2699168B480953C9#code

4.3. DESIGN PATTERNS FOR ETHEREUM SMART CONTRACTS 63

the outside. Technically, they are just contracts, and as such their state can

be updated by sending them transactions. In practice, instead of querying an

external service, a contract queries an oracle; and when the external service

needs to update its data, it sends a suitable transaction to the oracle. Since the

oracle is a contract, it can be queried from other contracts without consistency

issues. One of the most common oracles is Oraclize14: in our sample, it is used

by almost all the contracts which resort to oracles.

Randomness. Dealing with randomness is not a trivial task in Ethereum. Since

contract execution must be deterministic, all the nodes must obtain the same

value when asking for a random number: this struggles with the randomness

requirements wished. To address this issue, several contracts (e.g., Slot) query

oracles that generate these values off-chain. Others (e.g., Lottery) try to gen-

erate the numbers locally, by using values not predictable a priori, as the

hash of a block not yet created. However, these techniques are not generally

considered secure [56].

Poll. Polls allows users to vote on some question. Often this is a side feature in a

more complex scenario. For instance, in the Dice game, when a certain state

is reached, the owner issues a poll to decide whether an emergency withdrawal

is needed. To determine who can vote and to keep track of the votes, polls

can use tokens, or they can check the voters’ addresses.

Time constraint. Many contracts implement time constraints, e.g. to specify when

an action is permitted. For instance, BirthdayGift allows users to collect funds,

which will be redeemable only after their birthday. In notary contracts, time

constraints are used to prove that a document is owned from a certain date.

In game contracts, e.g. Lottery, time constraints mark the stages of the game.

Termination. Since the blockchain is immutable, a contract cannot be deleted

when its use has come to an end. Hence, developers must forethink a way

to disable it, so that it is still present but unresponsive. This can be done

manually, by inserting ad-hoc code in the contract, or automatically, calling

selfdestruct or suicide. Usually, only the contract owner is authorized to

terminate a contract (e.g., as in SimpleCoinFlipGame).

14http://www.oraclize.it/

https://etherscan.io/address/0x76bc9e61a1904b82cbf70d1fd9c0f8a120483bbb#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x9828f591b21ee4ad4fd803fc7339588cb83a6b84#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
https://etherscan.io/address/0xe941e5d4a66123dc74886699544fbbb942f1887a#code
http://www.oraclize.it/

64 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

Token Auth. Oracle Random. Poll Time Termin. Fork Math None

Financial 24-51 51-39 2-15 1-2 5-29 23-31 14-30 8-69 4-47 29-66
Notary 13-6 52-9 1-2 0-0 8-9 20-6 29-13 0-0 1-3 30-15
Game 3-3 84-27 25-74 72-93 25-57 73-43 21-19 1-3 2-9 1-1
Wallet 18-2 100-3 0-0 0-0 0-0 94-6 100-10 0-0 12-6 0-0
Library 0-0 31-2 0-0 14-3 0-0 24-3 24-4 34-24 21-19 17-3

Unclassified 43-39 66-21 3-9 1-1 3-6 18-10 28-25 28-25 1-5 15-15
Total 21-100 61-100 7-100 15-100 9-100 33-100 22-100 5-100 4-100 20-100

Table 4.3: Relations between design patterns and contract categories.

Math. Contracts using this pattern encode the logic which guards the execution

of some critical operations. For instance, Badge implements a method named

subtractSafely to avoid subtracting a value from a balance when there are

not enough funds in an account.

Fork check. The Ethereum blockchain has been forked four times, starting from

July 20th, 2016, when a fork was performed to contrast the effect of the DAO

attack [23]. To know whether or not the fork took place, some contracts

inspect the final balance of the DAO. Other contracts use this check to detect

whether they are running on the main chain or on the fork, performing different

actions in the two cases. AmIOnTheFork is a library contract that can be used

to distinguish the main chain from the forked one.

4.3.2 Quantifying the usage of design patterns by category

We now study how the design patterns identified in Section 4.3.1 are used in smart

contracts. Out of the 811 analysed contracts, 648 use at least one of the 9 patterns

presented, for a grand total of 1427 occurrences of usage.

Table 4.3 shows the correlation between the usage of design patterns and contract

categories, as defined in Section 4.2. A cell at row i and column j shows a pair of

values: the first value is the percentage of contracts of category i that use the

pattern of column j; the second one is the percentage of contracts with pattern j

which belongs to category i. So, for instance, 24% of the contracts in the financial

category use the token pattern, and 51% of all the contracts with the token pattern

are financial ones.

We observe that token, authorization, time constraint, and termination are gen-

erally the most used patterns. Some patterns are spread across several categories

https://etherscan.io/address/0x54bda709fed875224eae569bb6817d96ef7ed9ad#code
https://etherscan.io/address/0x2bd2326c993dfaef84f696526064ff22eba5b362#code

4.3. DESIGN PATTERNS FOR ETHEREUM SMART CONTRACTS 65

(e.g., termination and time constraint), while others are mainly adopted only in one.

For instance, oracle and randomness patterns are peculiar of game contracts, while

the token pattern is mostly used in financial contracts. Although math is the less

used, it appears in each category. Some contracts do not use any pattern (29% of

financial and 30% of notary); almost all the contracts in game and wallet categories

uses at least one. Further, only 15% of all the unclassified contracts do no use any

pattern at all.

The most frequent patterns in financial contracts are token (24%), authorization

(51%), and time constraint (23%). Due to the presence of contracts which implement

assets and crowdfunding services, we have that half of contracts using token and

math patterns belong to the financial category. For instance, these services use token

for representing goods or developing polls. Moreover, a great 69% of contracts that

use the fork check pattern is financial. This is caused by the necessity of knowing

the branch of the fork before deciding to move funds. Finally, several financial

applications (29%) perform simple operations (e.g. sending a payment) without using

any of our described patterns.

The authorization pattern is used in many notary contracts to ensure that only

the owner of a document can add or modify its data, in order to avoid tampering.

Most gambling games involve players who pay fees to join the game, and rewards

that can be collected by the winner. Authorization pattern is used to let the owner

to be the only one able to redeem participants’ fees or to perform administrative

operations, and to let the winner withdraw his reward. The time constraint pattern

is used to distinguish the different phases of the game. For instance, within a specific

time interval players can join the game and/or bet; then, bets are over, and the game

determines a winner. To choose the winner, some gambling games resort to random

numbers, which are often generated through an oracle. Indeed, 25% of games use

the oracle pattern, and the pattern itself is used 74% of cases by a game contract.

Since all game contracts invoking an oracle (25%) ask for random values, and since

72% of contracts use the random pattern, we can deduce that 47% of them generate

random numbers without resorting to oracles.

Notably, 100% of wallet contracts adopt both authorization and termination

design patterns. A high 94% also uses time constraint. On the contrary, oracle, poll,

and randomness patterns are of little use when developing a wallet, while math is

sometimes used for securing operations on the balance.

66 CHAPTER 4. AN EMPIRICAL ANALYSIS OF SMART CONTRACTS

4.4 Related work

Due to the mixed flavour of our analysis, which compares different platforms and

studies how smart contracts are interpreted on each them, our work relates to var-

ious topics. The work [100] proposes design patterns for altering and undoing of

smart contracts; so far, our analysis in Section 4.3.2 has not still found instances of

these patterns in Ethereum. Among the works which study blockchain technologies,

[50] compares four blockchains, with a special focus on the Ethereum one; [119]

examines a larger set of blockchains, including also some which does not fit the cri-

teria we have used in our methodology (e.g., RootStock and Tezos). Many works on

Bitcoin perform empirical analyses of its blockchain. For instance, [114, 117] study

users deanonymization, [104] measures transactions fees, and [60] analyses Denial-

of-Service attacks on Bitcoin. The work [88] investigates whether Bitcoin users are

interested more on digital currencies as asset or as currency, with the aim of de-

tecting the most popular use cases of Bitcoin contracts, similarly to what we have

done in Section 4.2.3. Our classification of Bitcoin protocols based on OP RETURN

transactions is inspired from [65], which also measures the space consumption and

temporal trend of OP RETURN transactions.

https://www.rsk.co/
https://www.tezos.com/

Chapter 5

A general framework for

blockchain analytics

The last few years have witnessed a growing interest in the analytic studies of

blockchains, from their theoretical foundations — both cryptographic [72, 85]

and economic [99, 118] — to their security and privacy [52, 73, 87, 92, 103].

Among the research topics emerging from blockchain technologies, we focus on

the analysis of the data stored in blockchains. Many works on data analytics

have been recently published, addressing anonymity issues, e.g. by de-anonymising

users [102, 103, 111, 115], clustering transactions [90, 121], or evaluating anonymis-

ing services [106]. Other analyses have addressed criminal activities, e.g. by study-

ing denial-of-service attacks [61, 127], ransomware [96], and various financial frauds

[107, 108, 126]. Many statistics on Bitcoin and Ethereum exist, measuring e.g. eco-

nomic indicators [97, 117], transaction fees [105], the usage of metadata [65], etc. A

common trait of these works is that they create views of the blockchain which con-

tain all the data needed for the goals of the analysis. In many cases, this requires to

combine data within the blockchain with data from the outside. These data are re-

trieved from a variety of sources, e.g. blockchain explorers, wikis, discussion forums,

and dedicated sites (see Table 5.1 for a brief survey).

Although the analytics studies shown in Table 5.1 share several common opera-

tions, e.g., scanning all the blocks and the transactions in the blockchain, converting

the value of a transaction from bitcoins to USD , etc., researchers so far tended to

implement ad-hoc tools for their analyses, rather than reusing standard libraries.

Further, most of the few available tools have limitations, e.g. they feature a fixed set

68 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

Analysis goal Gathered data Sources

Anonymity

Transactions graph
OP RETURN metadata
IP addresses
address tags
address tags

bitcoind [102, 103, 106, 115, 121], forum.bitcoin.org [115]
bitcoind [106]
bitcoin faucet [115], blockchain.info [106]
blockchain.info [102, 103, 121], bitcointalk.org [102, 103, 121]
bitcoin-otc.com [121], bitfunder.org [121]

Market
analytics

Transactions graph
IP addresses
address tags
trade data

bitcoind [97], blockexplorer.com [117]
blockchain.info, ipinfo.io [97]
blockchain.info [97]
bitcoincharts.com [97]

Cyber-crime

Transactions graph
mempool
unconfirmed transactions
no longer online services
list of DDoS attacks
mining pools
trades on assets/services
list of fraudulent services
address tags
exchange rate

bitcoind [61, 126, 127], blockchain.info [96, 107], Bitcore [71]
bitcoind [61]
bitcoind [61]
archive.org [126, 127]
bitcointalk.org [127]
blockchain.info, bitcoin wiki [127]
bitcoin wiki [127]
bitcointalk.org [96, 126], badbitcoin.org [126], cryptohyips.com [126]
blockchain.info [126]
bitcoincharts.com [96, 126], quandl.com [96]

Metadata
OP RETURN transactions
OP RETURN identifiers

bitcoind [65]
kaiko.com, opreturn.org, bitcoin wiki [65]

Transaction
fees

Transactions graph
exchange rate
mining pools

bitcoind [105]
coindesk.com [105]
blockchain.info [105]

Table 5.1: Data gathered by various blockchain analyses.

of analytics, or they do not allow to combine blockchain data with external data, or

they are not amenable to be updated. The consequence is that the same functional-

ities have been implemented again and again as new analytics have been developed,

as witnessed by Table 5.1.

We propose a framework for developing general-purpose analytics on the

blockchains of Bitcoin and Ethereum. Its main component is a Scala library which

can be used to construct views of the blockchain, possibly integrating blockchain

data with data retrieved from external sources. Blockchain views can be stored as

SQL or NoSQL databases, and can be analysed by using their query languages.

In Section 5.1 we present our tool through a series of case studies. Then, in Sec-

tion 5.2 we evaluate the performance of our tool. Finally, in Section 5.3 we compare

other general-purpose blockchain analysis tools with ours.

5.1 Creating blockchain analytics

We illustrate our framework through some case studies, which, for uniformity, have

been developed for the Bitcoin case. We refer to our project page3 for some Ethereum

examples. Our library APIs provide the following Scala classes to represent the

https://en.bitcoin.it/wiki/Category:Pool_Operators
https://en.bitcoin.it/wiki/Trade
https://en.bitcoin.it/w/index.php?title=OP_RETURN&oldid=61694

5.1. CREATING BLOCKCHAIN ANALYTICS 69

primitive entities of the blockchain:

• BlockchainLib: main library class. It provides the getBlockchain method,

to iterate over Block objects.

• Block: contains a list of transactions, and some block-related attributes (e.g.,

block hash and creation time).

• Transaction: contains various related attributes (e.g., transaction hash and

size).

The library constructs the above-mentioned Scala objects by scanning a local

copy of the blockchain. It uses the client, either Bitcoin Core or Parity, to have

a direct access to the blocks, exploiting the provided indices. For Bitcoin, it uses

the BitcoinJ library as a basis to represent the various kinds of objects, while for

Ethereum it uses suitable Scala representations. The APIs allow constructed ob-

jects to be exported as MongoDB documents or MySQL records. In MongoDB (a

widespread non-relational DBMS) a database is a set of collections, each of them

containing documents. Documents are lists of pairs (k,v), where k is a string (called

field name), and v is either a value or a MongoDB document. Conversely, MySQL

implements the relational model, and represents an objects as a record in a table.

In Sections 5.1.1 to 5.1.5 we develop a series of analytics on Bitcoin. Full Scala code

which builds the needed blockchain views, queries, and analysis results can be found

in the project page3.

5.1.1 A basic view of the Bitcoin blockchain

Since all the analyses shown in Table 5.1 explore the transaction graph (e.g. they

investigate output values, timestamps, metadata, etc.), our first case study focusses

on a basic view of the Bitcoin blockchain containing no external data. The docu-

ments in the resulting collection represent transactions, and they include: (i) the

transaction hash; (ii) the hash of the enclosing block; (iii) the date in which the block

was appended to the blockchain; (iv) the list of transaction inputs and outputs.

We show in Figure 5.1 how to use our APIs to construct this collection. Lines 1-2

are standard Scala instructions to define the main function. The object blockchain

constructed at line 4 is a handle to the Bitcoin blockchain. At line 5 we setup the

connection to Bitcoin Core, by providing the needed parameters (user, password,

https://bitcoin.org/en/bitcoin-core/
https://parity.io/
https://bitcoinj.github.io/
https://www.mongodb.com
https://www.mysql.com/

70 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

1 object MyBlockchain {

2 def main(args: Array[String]): Unit = {

3

4 val blockchain = BlockchainLib.getBitcoinBlockchain(

5 new BitcoinSettings("user", "password", "8332", MainNet))

6 val mongo = new DatabaseSettings("myDatabase", MongoDB , "user", "password")

7 val myBlockchain = new Collection("myBlockchain", mongo)

8

9 blockchain.end (473100).foreach(block => {

10 block.bitcoinTxs.foreach(tx => {

11 myBlockchain.append(List(

12 ("txHash", tx.hash),

13 ("blockHash", block.hash),

14 ("date", block.date),

15 ("inputs", tx.inputs),

16 ("outputs", tx.outputs)

17))

18 })

19 })

20 }

21 }

Figure 5.1: A basic view of the blockchain.

and port), and by indicating that we want to use the main network (alternatively,

the parameter TestNet allows to use the test network). At line 6 we setup the

connection to MongoDB (alternatively, the parameter MySQL allows to use MySQL).

Since lines 1-6 are similar for all our case studies, for the sake of brevity we will omit

them in the subsequent listings. We declare the target collection myBlockchain at

line 7. At this point, we start navigating the blockchain (from the origin block up

to block number 473100) to populate the collection. To do that we iterate over

the blocks (line 9) (note that b => {...} is an anonymous function, where b is a

parameter, and {...} is its body), and for each block we iterate over its transactions

(at line 10). For each transaction we append a new document to myBlockchain

(lines 11-16). This document is a set of fields of the form (k,v), where k is the field

name, and v is the associated value. For instance, at line 12 we stipulate that the

field txHash will contain the hash of the transaction, represented by tx.hash. This

value is obtained by the API BitcoinTransaction.

Running this piece of code results in a view, which we can process to obtain

several standard statistics, like e.g. the number of daily transactions, their average

value, the largest recent transactions, etc.1 Hereafter we consider another kind of

analysis, i.e. the evolution over the years of the number of transaction inputs and

outputs. To this purpose, we run the MongoDB query shown in Figure 5.2. The

1Note that one could also perform these queries during the construction of the view. However,
this would not be convenient in general, since — as we will see also in the following case studies
— many relevant queries can be performed on the same view.

https://blockchain.info/charts/n-transactions
https://bitinfocharts.com/comparison/bitcoin-transactionvalue.html
https://bitinfocharts.com/comparison/bitcoin-transactionvalue.html
https://blockchain.info/largest-recent-transactions

5.1. CREATING BLOCKCHAIN ANALYTICS 71

db.myBlockchain.aggregate ([

{ $group : {

_id: {

year : { $year : "$date" },

month : { $month : "$date" },

day : { $dayOfMonth : "$date" },

},

avgIn: { $avg: {$size : "$inputs"} },

avgOut: { $avg: {$size : "$outputs"} }

}},

{ $sort : { _id : 1}}

]);

Figure 5.2: A query to estimate the average number of inputs and outputs by date.

query first groups the documents with the same date. Then, for each group, it

computes the average number of inputs and outputs. Finally, the results are sorted

in ascending order. The results of the query are graphically rendered in Figure 5.3,

which shows the average number of inputs/outputs by date. We see that, after an

initial phase, the average number of inputs and outputs has stabilised between 2

and 3. This is mainly due to the fact that most transactions are published through

standard wallets, which try to minimise the number of inputs; a typical transaction

has two outputs, one to perform the payment and the other for the change. We

also observe a few peaks in the number of inputs and outputs, which are probably

related to experimentation of new services, like e.g. CoinJoin.

Figure 5.3: Average number of inputs (red line) and outputs (blue line) by date.

5.1.2 Analysing OP RETURN metadata

Besides being used as a cryptocurrency, Bitcoin allows for appending a few

bytes of metadata to transaction outputs. This is done preeminently through

the OP RETURN operator. Several protocols exploit this feature to implement

blockchain-based applications, like e.g. digital assets and notarization services [65].

https://en.bitcoin.it/wiki/CoinJoin
https://en.bitcoin.it/wiki/OP_RETURN

72 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

1 val opReturnOutputs = new Collection("opReturn", mongo)

2

3 blockchain.start (290000).end (473100).foreach(block => {

4 block.bitcoinTxs.foreach(tx => {

5 tx.outputs.foreach(out => {

6 if(out.isOpreturn ()) {

7 opReturnOutputs.append(List(

8 ("txHash", tx.hash),

9 ("date", block.date),

10 ("protocol", OpReturn.getApplication(out.outScript.toString)),

11 ("metadata", out.getMetadata ())

12))

13 }

14 })

15 })

16 })

Figure 5.4: Exposing OP RETURN metadata.

We now construct a view of the blockchain which exposes the protocol meta-

data. More specifically, the entries of the view represent transaction outputs, and

are composed of: (i) the hash of the transaction containing the output; (ii) the

date in which the transaction has been appended to the blockchain; (iii) the name

of the protocol that produced the transaction; (iv) the metadata contained in the

OP RETURN script. Figure 5.4 shows the Scala code to construct this collection (we

omit the declaration of the main method, already shown in Figure 5.1). At line 3

we scan the blockchain, starting from block 290,000 since OP RETURN transac-

tions were only relayed as standard transactions after the release 0.9.0 of Bitcoin

Core. We then iterate through transactions at line 4, and through their outputs

at line 5. We append a new document to our collection (lines 7-11) whenever the

output of the corresponding transaction is an OP RETURN (line 6). The method

OpReturn.getApplication of our APIs takes as input a piece of metadata, and

returns the name of the associated protocol. This is inferred by the results of the

analysis in [65].

The obtained view can be used to perform various analyses. For instance, we

show in Figure 5.5 the number of transactions associated with the most used pro-

tocols (only those with at least 1000 transactions). The protocol with the highest

number of transactions is Colu, which is used to certify and transfer the ownership

of physical assets. The second most used protocol is Omni, followed by Blockstore,

a key-value store upon which other protocols are based.

https://bitcoin.org/en/release/v0.9.0
https://bitcoin.org/en/release/v0.9.0
https://www.colu.com/
http://www.omnilayer.org/
https://github.com/blockstack/blockchain-id/wiki/Blockstore

5.1. CREATING BLOCKCHAIN ANALYTICS 73

co
lu

co
in
sp
ar
k

op
en
as
se
ts

om
ni

fa
ct
om

st
am

pe
ry

pr
oo
fo
fe
xi
st
en
ce

bl
oc
ks
ig
n

m
on
eg
ra
ph

as
cr
ib
e

et
er
ni
ty
w
al
l

bl
oc
ks
to
re

sm
ar
tb
it

50,000

100,000

150,000

200,000

250,000

N
u
m
b
er

o
f
tr
a
n
sa
ct
io
n
s

Figure 5.5: Number of transactions per protocol.

1 val txWithRates = new Collection("txWithRates", mongo)

2

3 blockchain.end (473100).foreach(block => {

4 block.bitcoinTxs.foreach(tx => {

5 txWithRates.append(List(

6 ("txHash", tx.hash),

7 ("date", block.date),

8 ("outputSum", tx.getOutputsSum ()),

9 ("rate", Exchange.getRate(block.date))

10))

11 })

12 })

Figure 5.6: Exposing exchange rates.

5.1.3 Exchange rates

Several analyses in Table 5.1 use exchange rates for quantifying the economic impact

of various phenomena (e.g. cyber-crime attacks, transaction fees, business activities).

In this section we analyse how the value transferred in transactions is affected by

the exchange rate between USD and Bover the years. Since exchange rates are not

stored in the Bitcoin blockchain, we need to obtain these data from an external

source, e.g. the Coindesk APIs. Using these data, we construct a blockchain view

where each transaction is associated with the exchange rate at the time it has been

appended to the blockchain. More specifically, we construct a MongoDB collection

whose documents represent transactions containing: (i) the transaction hash; (ii) the

date in which the transaction has been appended to the blockchain; (iii) the sum of

its output values (in B); (iv) the exchange rate between Band USD in such date.

Figure 5.6 shows the Scala code which builds this collection, using our APIs.

At line 1 we declare the collection that we are going to build, txWithRates. At

lines 3-4 we iterate over all the transactions in the Bitcoin blockchain. For each one,

at lines 5-9 we add a new document to txWithRates. The total amount of Bsent by

http://www.coindesk.com/price/bitcoin-price-index/

74 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

the current transaction is stored in the field outputSum (line 8). The exchange rate

is obtained by invoking the method Exchange of our APIs (line 9). This method

takes a date and retrieves from Coindesk the exchange rate B/USD in that date.

We can analyse the obtained collection in many ways, in order to study how

exchange rates are related to the movements of currency in Bitcoin. For instance,

one can obtain statistics about the daily transaction volume in USD , the market

capitalization, the list of richest addresses, etc. Hereafter, we measure the average

value of outputs (in B) of the transactions in intervals of exchange rates. The

diagram in Figure 5.7 shows the results of this analysis, where we have split exchange

rates in 7 intervals of equal size. In the first five intervals we observe the expected

behaviour, i.e. the value of outputs decreases as the exchange rate increases. Perhaps

surprisingly, the last two intervals show an increase in the value of outputs when the

value Bhas surpassed 1500 USD . This may be explained by speculative operations

on Bitcoin.

0-300 300-600 600-900 900-1200 1200-1500 1500-1800 1800-2100

10

20

30

B

Figure 5.7: Average value of outputs (in B) by exchange rate.

5.1.4 Transaction fees

In this section we study transaction fees, which are earned by miners when they

append a new block to the blockchain. Each transaction in the block pays a fee,

which in Bitcoin is defined as the difference between its input and output values.

While the values of outputs are stored explicitly in the transaction, those of inputs

are not: to obtain them, one must retrieve from a past block the transaction that

is redeemed by the input. This can be obtained through a “deep” scan of the

blockchain, which is featured by our library. We show in Figure 5.8 how to construct

a collection which contains, for each transaction: (i) the hash of the enclosing block;

(ii) the transaction hash; (iii) the fee; (iv) the date in which the transaction was

appended to the blockchain; (v) the exchange rate between Band USD in such date.

https://blockchain.info/charts/estimated-transaction-volume-usd
http://blockchain.info/charts/market-cap
http://blockchain.info/charts/market-cap
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html

5.1. CREATING BLOCKCHAIN ANALYTICS 75

1 val blockchain = BlockchainLib.getBitcoinBlockchain(new BitcoinSettings("user","password","

8332",MainNet ,true))

2 val mongo = new DatabaseSettings("myDatabase", MongoDB , "user", "password")

3 val txWithFees = new Collection("txWithFees", mongo)

4

5 blockchain.end (473100).foreach(block => {

6 block.bitcoinTxs.foreach(tx => {

7 txWithFees.append(List(

8 ("blockHash", block.hash),

9 ("txHash", tx.hash),

10 ("fee", tx.getInputsSum () - tx.getOutputsSum ()),

11 ("date", block.date),

12 ("rate", Exchange.getRate(block.date))

13))

14 })

15 })

Figure 5.8: Exposing transaction fees.

The extra parameter true in the BitcoinSettings constructor (missing in

the previous example), triggers the “deep” scan. When scanning the blockchain

in this way, the library maintains a map which associates transaction outputs to

their values, and inspects this map to obtain the value of inputs2. The methods

getInputsSum (resp., getOutputsSum) at line 10 returns the sum of the values of

the inputs (resp., the outputs) of a transaction.

The obtained collection can be used to perform several standard statistics, e.g.

the daily total transaction fees, the average fee, the percentage earned by miners

from transaction fees, etc. Here we analyse the so-called whale transactions [95],

which pay a unusually high fee to miners. To obtain the whale transactions, we first

compute the average x̄ and standard deviation σ of the fees in all transactions: in

USD , we have x̄ = 0.41, σ = 12.09. Then, we define whale transactions as those

which pay a fee greater than x̄+ 2σ = 24.58 USD . Overall we collect 242, 839 whale

transactions; those with biggest fee are displayed in Figure 5.9.

Fee (USD) Date Transaction hash
136243.37 2016-04-26 14:15:22 cc455ae816e6cdafdb58d54e35d4f46d860047458eacf1c7405dc634631c570d
56493.50 2017-01-04 20:01:28 d38bd67153d774a7dab80a055cb52571aa85f6cac8f35f936c4349ca308e6380
39502.15 2017-05-31 14:28:51 cb95ab3aef378c14bc59d0db682d96202b981c1f8fad7d66e23e0be06f2a00c4
25095.71 2017-05-31 14:28:51 8e12a1aba87e4657f5fabec1121ed57f706805ad6d4ffe88c6fce78596bd9b75
23518.00 2013-08-28 10:45:17 4ed20e0768124bc67dc684d57941be1482ccdaa45dadb64be12afba8c8554537

Figure 5.9: The five biggest whale transactions.

2Since inputs can only redeemed transactions on past blocks, the map always contains the
required output. Although coinbase inputs do not have a value in the map, we calculate their
value using the total fees of the current block and the block height (reward is halved each 210,000
blocks).

https://blockchain.info/charts/transaction-fees
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

76 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

1 val mySQL = new DatabaseSettings("outwithtags", MySQL , "user", "password")

2 val tags=new Tag("src/main/scala/tcs/custom/input.txt")

3 val outTable = new Table(sql"""

4 create table if not exists tagsoutputs(

5 id serial not null primary key ,

6 transactionHash varchar (256) not null ,

7 txdate TIMESTAMP not null ,

8 outvalue bigint unsigned ,

9 address varchar (256) ,

10 tag varchar (256)

11)""", mySQL)

12

13 blockchain.end (473100).foreach(block => {

14 block.bitcoinTxs.foreach(tx => {

15 tx.outputs.foreach(out => {

16 out.getAddress(MainNet) match {

17 case Some(add) =>

18 tags.getValue(add) match {

19 case Some(tag) => {

20 outTable.insert(sql"insert into tagsoutputs (transactionHash , txdate ,

outvalue , address , tag) values (${tx.hash.toString}, ${block.

date}, ${out.value}, ${add.toString}, ${tags.getValue(add)})")}

21 case None => }

22 case None =>

23 }

24 })

25 })

26 })

Figure 5.10: Associating transaction outputs with tags (SQL version).

5.1.5 Address tags

The webpage blockchain.info/tags hosts a list of associations between Bitcoin

addresses and tags which briefly describe their usage3. Table 5.1 shows that address

tags are widely adopted, e.g. analytics for cyber-crime usually retrieve addresses

tagged as scam or ransomware on forums; market analyses exploit tags for recog-

nising addresses of business services; anonymity studies tag the addresses that seem

to belong to the same entity. In this section we construct a blockchain view where

outputs are associated with the tags of the address which can redeem them (we

discard the outputs with untagged addresses). More specifically, we construct an

SQL table whose columns represent transaction outputs containing: (i) hash of the

enclosing transaction; (ii) the date in which the transaction has been appended to

the blockchain; (iii) the output value (in B); (iv) the address receiving the payment;

(v) the tag associated to the address.

Figure 5.10 shows the Scala script which builds this table. At line 1, we con-

nect to the MySQL database. We retrieve tags from an external source, the

3For instance, address 1PQCrkzWweCw4huVLcDXttAZbSrrLbJ92L is associated to tag Linux
Mint Donations http://www.linuxmint.com/donors.php

https://blockchain.info/tags
https://blockchain.info/address/1PQCrkzWweCw4huVLcDXttAZbSrrLbJ92L
http://www.linuxmint.com/donors.php

5.2. IMPLEMENTATION AND VALIDATION 77

blockchain.info website. While in the previous case studies we have retrieved

external data by querying the source (e.g. the Coindesk APIs), in this case we query

a local file in which we have stored the data fetched from blockchain.info. At

line 2, given the file containing tags, the Tag class builds a Map which associate each

address to the correspondent tag. At lines 4-11 we create a new table. At lines 13-15

we iterate over all the transaction outputs. At line 16 we try to extract the address

which can redeem the current output. If we find it (line 17), then we search the map

for the associated tag (line 18); if a tag is found (line 19) we insert a new row into

the tagsoutputs table (line 20).

Using the obtained view, one can aggregate transactions on different business

levels [97] to obtain statistics about the total number of transactions, the amount

of Bexchanged, the geographical distributions of tagged service, etc. In particular,

we aggregate all addresses whose tag starts with SatoshiDICE, and then we mea-

sure the number of daily transactions which send Bto one of these addresses. The

diagram in Figure 5.11 shows the results of this analysis. The fall in the number of

transactions at the start of 2015 may be due to the fact that SatoshiDICE is using

untagged addresses.

10
.2
01

2

01
.2
01

3

04
.2
01

3

07
.2
01

3

11
.2
01

3

02
.2
01

4

05
.2
01

4

09
.2
01

4

12
.2
01

4

03
.2
01

5

06
.2
01

5

10
.2
01

5

01
.2
01

6

0

1,000

2,000

3,000

N
u
m
b
er

o
f
tr
a
n
sa
ct
io
n
s

Figure 5.11: Number of daily transactions to addresses tagged with SatoshiDICE*.

5.2 Implementation and validation

We implement the Ethereum-side of our library by exploiting Parity, queried by

means of the web3j library. Bitcoin data is provided by both BitcoinJ and the RPC

interface of Bitcoin Core. While BitcoinJ APIs only allow the programmer to retrieve

a block by its hash, Bitcoin Core’s interface exposes calls to do so by its height on

the chain. Furthermore, BitcoinJ’s “block objects” do not carry information about

block height and the hash of the next block (they only have backward pointers, as

https://github.com/web3j/web3j

78 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

Case study
MongoDB MySQL

Create Query Size Create Query Size

Basic view 9 h 2860 s 300 GB 9 h 3.5 h 266 GB
OP RETURN metadata 2 h 0.5 s 0.5 GB 1.4 h 2.5 s 0.5 GB

Exchange rates 5 h 477 s 34 GB 4.5 h 243 s 27 GB
Transaction fees 9 h 448 s 51 GB 8.5 h 614 s 43.5 GB

Address tags 4 h 1.8 s 0.8 GB 2.3 h 2.7 s 0.6 GB

Table 5.2: Performance evaluation of our framework.

defined in the blockchain), which can be fetched by using Bitcoin Core. Our APIs

allow to navigate blockchains. Particularly, in the Bitcoin case, we do this by iterat-

ing over these steps: (i) get the hash h of the block of height i, by using Bitcoin Core;

(ii) get the block with hash h, by using BitcoinJ; (iii) increment i. By default, the

loop starts from 0 and stops at the last block. The methods blockchain.start(i),

and blockchain.end(j) allow to scan an interval of blockchains, as shown in Sec-

tion 5.1.2. We write the SQL queries exploiting ScalikeJDBC, a SQL-based DB

access library for Scala. ScalikeJDBC provides also a DSL for writing SQL queries.

We carry out our experiments using consumer hardware, i.e. a PC with a quad-

core Intel Core i5-4440 CPU @ 3.10GHz, equipped with 32GB of RAM and 2TB

of hard disk storage. All the experiments scan the Bitcoin blockchain from the

origin block up to block number 473100 (added on 2017/06/27). Table 5.2 displays

a comparison of the size of each view, and the time required to create and query it.

Note that the size of the blockchain view constructed in Basic (Section 5.1.1) is

more than twice than the current Bitcoin blockchain. This is because, while Bitcoin

stores scripts in binary format, our library writes them as strings, so to allow for

constructing indices and performing queries on scripts. Moreover, the SQL query in

Basic is particularly slow because of the join operations it performs. Note instead

that the query times in SQL and MongoDB are quite similar in all the other cases,

where no join operation is required.

5.3 Comparison with related tools

We now compare other general-purpose blockchain analysis tools with ours. Ta-

ble 5.3 summarises the comparison, focussing on the target blockchain, the DBMS

used, the support for creating a custom schema, and for embedding external data.

http://scalikejdbc.org/

5.3. COMPARISON WITH RELATED TOOLS 79

Tool Blockchain Database Schema Ext. data Updated

blockparser BTC RAM-only Custom Custom 2015-12
rusty-blockparser BTC SQL, CSV Fixed Custom 2017-09
blockchainsql.io BTC SQL Fixed None N/A

BlockSci BTC RAM-only Custom Custom 2017-09
python-parser BTC None None Custom 2017-05

Our framework BTC, ETH MySQL, MongoDB Custom Custom 2017-09

Table 5.3: General-purpose blockchain analytics frameworks.

The rightmost column indicates the date of the most recent commit in the repos-

itory. Note that all the tools which support Bitcoin also work on Bitcoin-based

altcoins.

The projects blockparser and rusty-blockparser allow one to perform full

scans of the blockchain, and to define custom listeners which are called each time

a new block or transaction is read. Unlike our library, these tools offer lim-

ited built-in support for combining blockchain and external data. The website

blockchainsql.io has a GUI through which one can write and execute SQL queries

on the Bitcoin blockchain. This is the only tool, among those mentioned in Table 5.3,

that does not need to store a local copy of the blockchain. A drawback is that

the database schema is fixed, hence it is not possible to use it for analytics which

require external data. While the other tools store results on secondary memory,

blockparser and BlockSci keep all the data in RAM. Although this speeds up the

execution, it demands for “big memory servers”, since the size of the blockchains

of both Bitcoin and Ethereum has largely surpassed the amount of RAM avail-

able on consumer hardware. Note instead that the disk-based tools also work on

consumer hardware. Some low-level optimizations, combined with an in-memory

DBMS, help [91] to overwhelm the performance of the disk-based tools. Unlike the

other tools, [91] provides also data about transactions broadcast on the peer-to-peer

network.

Remarkably, as far as we know none of the analyses mentioned in Table 5.1 uses

the general-purpose tools in Table 5.3. Instead, several of them acquire blockchain

raw data by using Bitcoin Core4 (the reference Bitcoin client), and encapsulate

them into Java objects with the BitcoinJ APIs before processing. However, neither

Bitcoin Core nor BitcoinJ are natural tools to analyse the blockchain: the intended

4https://bitcoin.org/en/bitcoin-core. Another popular tool for accessing the blockchain
was Bitcointools (https://github.com/gavinandresen/bitcointools), but it seems no longer
available.

https://github.com/znort987/blockparser
https://github.com/mikispag/rusty-blockparser
https://bitcoinj.github.io
https://bitcoin.org/en/bitcoin-core
https://github.com/gavinandresen/bitcointools

80 CHAPTER 5. A GENERAL FRAMEWORK FOR BLOCKCHAIN ANALYTICS

use of BitcoinJ is to support the development of wallets, and so it only gives direct

access to blocks and transactions from their hash, but it does not allow to perform

forward scans of the blockchain. On the other hand, Bitcoin Core would provide

the means to scan the blockchain, but this requires expertise on its low-level RPC

interface, and even doing so would result in raw pieces of JSON data, without any

abstraction layer.

A precise comparison of the performance of these tools against ours is beyond

the goals of this thesis. The performance analysis in Table 5.2 is a first step towards

the definition of a suite of benchmarks for evaluating blockchain parsers.

Chapter 6

Conclusions

In this thesis we have shown tools and techniques for analysing blockchains and

smart contracts. We have analysed and compared six different blockchains. Fo-

cusing on Bitcoin and Ethereum, we have studied the embedded metadata and the

operating smart contracts. Furthermore, we have proposed a general framework

for analysing blockchains. The results of our studies have revealed several insights,

which are reported below in Section 6.1. In Section 6.2 we propose some directions

for further work.

6.1 Summary of the main results

Comparison of the techniques for embedding metadata. Although Bitcoin

does not explicitly provide a way to embed metadata into transactions, over the

years users have devised various techniques that reach such purpose. We have il-

lustrated and compared these techniques, and we have extracted all the metadata

embedded up to 2017/08/10 (first 480,000 blocks), measuring the amount of bytes

stored by each technique. We have shown that the most used technique during

the first years was the pay-to-PubkeyHash. However, since March 2014, when

OP RETURN transactions became standard, this embedding method rapidly has

overcome the others. Indeed, ∼ 75% of metadata in our collection have been embed-

ded by using OP RETURN. While in the first year of existence of OP RETURN

transactions only a few hundreds were appended per week, their usage has been

steadily increasing since March 2015. In the last weeks of our experiments we

counted ∼ 40, 000 new OP RETURN transactions per week. We have shown that

82 CHAPTER 6. CONCLUSIONS

pay-to-Pubkey, pay-to-PubkeyHash, and pay-to-ScriptHash produce outputs

unspendable in practice, contributing to the UTXO bloating phenomena that neg-

atively affects miners performance. We have measured that at least 68,340 outputs

belonging to the UTXO set are unspendable in practice because they actually are

chunks of metadata. Conversely, OP RETURN outputs do not bloat the UTXO,

however they still affect the total size of the blockchain.

Analysis of the embedded elements. We have parsed the bytes extracted from

metadata in order to reconstruct the original contents. We have recognised 2,054,575

items, with a total size of ∼ 69MB (out of ∼ 97MB totally embedded). We have

classified the items found, distinguishing 12 types of metadata which we grouped into

5 categories. The majority of the items are record produced by financial protocols

(1,427,313). We have shown that financial records have a small size (26.4 bytes on

average), and they do not bloat the UTXO since they are usually embedded with

OP RETURN. Conversely, files are often saved using pay-to-PubkeyHash. We have

reconstructed 120 files (108 of them are images), for a total size of ∼ 4MB.

Study of the protocols built on top of Bitcoin. We have discovered 45 distinct

protocols embedding metadata in the Bitcoin blockchain, and we have associated

each one to a category (5 categories overall) based on its application domain. Fur-

thermore, we have identified which types of metadata each protocol produces, and

which embedding techniques it uses. We have measured that 2,254,519 transac-

tions belong to the protocols discovered, with a total size of ∼ 52.5MB. We have

shown that although the majority of the protocols belong to the Notary category,

Financial ones produce ∼ 75% of transactions. Protocols usually produce one type

of metadata (that depends on the protocol category) and embed information using

one technique (almost always OP RETURN).

Comparison of blockchain data and embedded metadata. The total

amount of metadata embedded is ∼ 97MB, distributed in 4,582,661 transactions.

Overall, we have estimated that metadata transactions constitute ∼ 1, 9% of the

transactions in the blockchain, and use ∼ 0.076% of its space. Although the official

Bitcoin documentation discourages the use of the blockchain to store arbitrary data,

the trend seems to be a growth in the number of blockchain-based applications that

embed their metadata in OP RETURN transactions. We suppose that the perceived

6.1. SUMMARY OF THE MAIN RESULTS 83

sense of security and persistence of the Bitcoin blockchain is the main motivation to

avoid using cheaper and more efficient storage. If this trend will be confirmed, the

specific needs of these applications could affect the future evolution of the Bitcoin

protocol.

Survey of smart contracts platforms. We have analysed the usage of smart

contracts from various perspectives. In Section 4.1 we have examined a sample of 6

platforms for smart contracts, pinpointing some crucial technical differences between

them.

Comparison of Bitcoin and Ethereum smart contracts. For the two most

prominent platforms — Bitcoin and Ethereum — we have studied a sample of 834

contracts, we have categorized each one according to its application domain and

finally, we have measured the relevance of each category (Section 4.2).

Analysis of design patterns of Ethereum smart contracts. The availability

of source code for Ethereum contracts has allowed us to analyse the most common

design patterns adopted in writing smart contracts (Section 4.3). We believe that

this survey may provide valuable information to developers about new, domain-

specific languages for smart contracts. In particular, studying the most common use

cases allows to understand which domains deserve more investments. Furthermore,

our study of the correlation between design patterns and application domains can be

exploited to drive the correct choice of programming primitives of domain-specific

languages for smart contracts.

Development of a general framework for blockchain analytics. We have

presented a framework for developing general-purpose analytics on the Bitcoin and

Ethereum blockchains. Its main component is a Scala library which can be used to

construct views of the blockchain, possibly integrating blockchain data with data

retrieved from external sources. Blockchain views can be stored as SQL or NoSQL

databases, and can be analysed by using their query languages.

Framework validation. Our experiments confirmed the effectiveness and gen-

erality of our approach, which uniformly comprises several use cases addressed by

84 CHAPTER 6. CONCLUSIONS

various ad-hoc approaches in literature in a single framework. Indeed, the expressive-

ness of our framework overcomes that of the closer proposals in the built-in support

for external data, and the support of different kinds of databases and blockchains.

Importantly, coming in the form of an open source library for a mainstream lan-

guage, our framework is amenable of being validated and extended by a community

effort, following reuse best practices.

Comparison of SQL vs NoSQL. On the comparison of SQL vs NoSQL, our

experiments did not highlight significant differences in the complexity of writing and

executing queries in the two languages. Instead, we observed that the schema-less

nature of NoSQL databases simplifies the Scala scripts. From Table 5.2 we see that

both creation and query time are comparable as order of magnitude. As already

discussed in Section 5.2, the difference in the execution time of queries is due to join

operations in SQL. A more accurate analysis, carried over a larger benchmark, is

scope for future work. Anyway, it is worth recalling that the goal of our proposal is

provide to the final user the flexibility to choose the preferred database, rather than

ascertain an idea of best-fit-for-all in the choice.

6.2 Future work

We discuss some possible developments of our framework and the analysis presented.

Scaling Ethereum smart contract analysis. We have manually inspected all

the contract sources published up to January 1st, 2017. Specifically, we have anal-

ysed 811 smart contracts, in order to determine their application domain and in-

spect the design patterns adopted. However, the amount of published sources has

increased in the last months. The total number of sources available on Etherescan in

November 2017 is ∼ 7000. In this context, it is particularly important to automate

the sources analysis, in order to easily extend our studies to new codes. Although it

is difficult to understand the application domain of a contract without manually in-

specting comments and related forums, we believe that the design patterns analysis

could be automated.

Investigating vulnerabilities and attacks on smart contracts. Recently,

some authors have started to analyse the security of Ethereum smart contracts:

https://etherscan.io/contractsVerified/

6.2. FUTURE WORK 85

among these, [56] surveys vulnerabilities and attacks, while [98] and [70] propose

analysis techniques to detect them. Our study on design patterns for Ethereum

smart contracts could help to improve these techniques, by targeting contracts with

specific programming patterns.

Extending our framework for blockchain analytics. Although our frame-

work is general enough to cover most of the analyses in Table 5.1, it has some lim-

itations that can be overcome with future extensions. In particular, some analyses

addressing e.g. information propagation, forks and attacks [78, 81, 101, 112] require

to gather data from the underlying peer-to-peer network. To support this kind of

analyses one has to run a customized node (either of Bitcoin or Ethereum). Such

an extension would also be helpful to obtain on-the-fly updates of the analyses.

86 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Bicoin scalability. https://en.bitcoin.it/wiki/Scalability_FAQ. Last

accessed 2018/01/01.

[2] Bitcoin core dev update 5 transaction fees em-

bedded data. http://www.coindesk.com/

bitcoin-core-dev-update-5-transaction-fees-embedded-data/. Last

accessed 2018/01/01.

[3] Bitcoin network survives surprise stress test. http://www.coindesk.com/

bitcoin-network-survives-stress-test/. Last accessed 2018/01/01.

[4] Bitcoin OP RETURN wiki page. https://en.bitcoin.it/wiki/OP_RETURN.

Last accessed 2018/01/01.

[5] Bitcoin pull request 5075. https://github.com/bitcoin/bitcoin/pull/

5075. Last accessed 2018/01/01.

[6] Bitcoin pull request 5286. https://github.com/bitcoin/bitcoin/pull/

5286. Last accessed 2018/01/01.

[7] Bitcoin release 0.10.0. https://bitcoin.org/en/release/v0.10.0. Last ac-

cessed 2018/01/01.

[8] Bitcoin release 0.11.0. https://bitcoin.org/en/release/v0.11.0. Last ac-

cessed 2018/01/01.

[9] Bitcoin release 0.12.0. https://bitcoin.org/en/release/v0.12.0. Last ac-

cessed 2018/01/01.

[10] Bitcoin release 0.9.0. https://bitcoin.org/en/release/v0.9.0. Last ac-

cessed 2018/01/01.

https://en.bitcoin.it/wiki/Scalability_FAQ
http://www.coindesk.com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/
http://www.coindesk.com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/
http://www.coindesk.com/bitcoin-network-survives-stress-test/
http://www.coindesk.com/bitcoin-network-survives-stress-test/
https://en.bitcoin.it/wiki/OP_RETURN
https://github.com/bitcoin/bitcoin/pull/5075
https://github.com/bitcoin/bitcoin/pull/5075
https://github.com/bitcoin/bitcoin/pull/5286
https://github.com/bitcoin/bitcoin/pull/5286
https://bitcoin.org/en/release/v0.10.0
https://bitcoin.org/en/release/v0.11.0
https://bitcoin.org/en/release/v0.12.0
https://bitcoin.org/en/release/v0.9.0

88 BIBLIOGRAPHY

[11] Bitcoin script interpreter. https://github.com/bitcoin/bitcoin/blob/

fcf646c9b08e7f846d6c99314f937ace50809d7a/src/script/interpreter.

cpp#L256. Last accessed 2018/01/01.

[12] Bitcoin wiki contract. https://en.bitcoin.it/wiki/Contract. Last ac-

cessed 2018/01/01.

[13] Bitcoin wiki script. https://en.bitcoin.it/wiki/Script. Last accessed

2018/01/01.

[14] Bitcoin wiki transaction. https://en.bitcoin.it/wiki/Transaction. Last

accessed 2018/01/01.

[15] Chainpoint website. http://www.chainpoint.org/. Last accessed

2018/01/01.

[16] Colu protocol, torrents. https://github.com/Colored-Coins/

Colored-Coins-Protocol-Specification/wiki/Metadata#torrents.

Last accessed 2018/01/01.

[17] Colu website. https://www.colu.com/. Last accessed 2018/01/01.

[18] Counterparty open letter and plea to the Bitcoin core

development team. http://counterparty.io/news/

an-open-letter-and-plea-to-the-bitcoin-core-development-team/.

Last accessed 2018/01/01.

[19] Counterparty: Protocol specification. http://counterparty.io/docs/

protocol_specification/. Last accessed 2018/01/01.

[20] Developers battle over bitcoin block chain. http://www.coindesk.com/

developers-battle-bitcoin-block-chain/. Last accessed 2018/01/01.

[21] Dgx website. https://www.dgx.io/. Last accessed 2018/01/01.

[22] Diploma website. http://diploma.report/. Last accessed 2018/01/01.

[23] Ethereum hard fork 20 july 2016. https://blog.ethereum.org/2016/07/

20/hard-fork-completed/. Last accessed 2018/01/01.

https://github.com/bitcoin/bitcoin/blob/fcf646c9b08e7f846d6c99314f937ace50809d7a/src/script/interpreter.cpp#L256
https://github.com/bitcoin/bitcoin/blob/fcf646c9b08e7f846d6c99314f937ace50809d7a/src/script/interpreter.cpp#L256
https://github.com/bitcoin/bitcoin/blob/fcf646c9b08e7f846d6c99314f937ace50809d7a/src/script/interpreter.cpp#L256
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Transaction
http://www.chainpoint.org/
https://github.com/Colored-Coins/Colored-Coins-Protocol-Specification/wiki/Metadata#torrents
https://github.com/Colored-Coins/Colored-Coins-Protocol-Specification/wiki/Metadata#torrents
https://www.colu.com/
http://counterparty.io/news/an-open-letter-and-plea-to-the-bitcoin-core-development-team/
http://counterparty.io/news/an-open-letter-and-plea-to-the-bitcoin-core-development-team/
http://counterparty.io/docs/protocol_specification/
http://counterparty.io/docs/protocol_specification/
http://www.coindesk.com/developers-battle-bitcoin-block-chain/
http://www.coindesk.com/developers-battle-bitcoin-block-chain/
https://www.dgx.io/
http://diploma.report/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/

BIBLIOGRAPHY 89

[24] Ethereum request for comment 20. https://github.com/ethereum/wiki/

wiki/Standardized_Contract_APIs. Last accessed 2018/01/01.

[25] Evolution of blockchain technology: Insights from the github plat-

form. https://dupress.deloitte.com/dup-us-en/industry/

financial-services/evolution-of-blockchain-github-platform.html.

Last accessed 2018/01/01.

[26] Factom website. https://www.factom.com/. Last accessed 2018/01/01.

[27] Faq: How do smart contracts form a consensus on counter-

party? http://counterparty.io/docs/faq-smartcontracts/

#how-do-smart-contracts-form-a-consensus-on-counterparty. Last

accessed 2018/01/01.

[28] Kaiko data store. https://www.kaiko.com/. Last accessed 2018/01/01.

[29] La preuve website. http://lapreuve.eu/explication.html. Last accessed

2016/12/15.

[30] Lisk. https://lisk.io/. Last accessed 2018/01/01.

[31] Making sense of blockchain smart contracts. http://www.coindesk.com/

making-sense-smart-contracts/. Last accessed 2018/01/01.

[32] Monax. https://monax.io/. Last accessed 2018/01/01.

[33] Omni website. http://www.omnilayer.org/. Last accessed 2018/01/01.

[34] Open assets website. https://github.com/OpenAssets/. Last accessed

2018/01/01.

[35] opreturn.org. http://opreturn.org/. Last accessed 2018/01/01.

[36] Peter Todd delayed txo commitments. https://petertodd.org/2016/

delayed-txo-commitments. Last accessed 2018/01/01.

[37] Proof of existence website. https://proofofexistence.com/. Last accessed

2018/01/01.

https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://dupress.deloitte.com/dup-us-en/industry/financial-services/evolution-of-blockchain-github-platform.html
https://dupress.deloitte.com/dup-us-en/industry/financial-services/evolution-of-blockchain-github-platform.html
https://www.factom.com/
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counterparty
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counterparty
https://www.kaiko.com/
http://lapreuve.eu/explication.html
https://lisk.io/
http://www.coindesk.com/making-sense-smart-contracts/
http://www.coindesk.com/making-sense-smart-contracts/
https://monax.io/
http://www.omnilayer.org/
https://github.com/OpenAssets/
http://opreturn.org/
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://proofofexistence.com/

90 BIBLIOGRAPHY

[38] Scalability debate ever end. https://www.cryptocoinsnews.com/

will-bitcoin-scalability-debate-ever-end/. Last accessed 2018/01/01.

[39] Scaling debate in Reddit. http://www.coindesk.com/

viabtc-ceo-sparks-bitcoin-scaling-debate-reddit-ama/. Last ac-

cessed 2018/01/01.

[40] Smart contracts: The good, the bad and the lazy. http://www.

multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/. Last

accessed 2018/01/01.

[41] Smartbit OP RETURN statistics. https://www.smartbit.com.au/

op-returns. Last accessed 2018/01/01.

[42] Stampery blockchain timestamping architecture. https://s3.amazonaws.

com/stampery-cdn/docs/Stampery-BTA-v6-whitepaper.pdf. Last accessed

2018/01/01.

[43] Stampery website. https://stampery.com/. Last accessed 2018/01/01.

[44] Stellar. https://www.stellar.org/. Last accessed 2018/01/01.

[45] The Stellar consensus protocol. https://www.stellar.org/papers/

stellar-consensus-protocol.pdf. Last accessed 2018/01/01.

[46] Thinking about smart contract security. https://blog.ethereum.org/2016/

06/19/thinking-smart-contract-security/. Last accessed 2018/01/01.

[47] Understanding the DAO attack. http://www.coindesk.com/

understanding-dao-hack-journalists/. Last accessed 2018/01/01.

[48] Another bug in the ens, you can win with an unlimited high bid with-

out paying for it, 2017. https://www.reddit.com/r/ethereum/comments/

5zctus/another_bug_in_the_ens_you_can_win_with_an/. Last accessed

2018/01/01.

[49] M. Ali, J. Nelson, R. Shea, and M. J. Freedman. Blockstack: A global naming

and storage system secured by blockchains. In USENIX Annual Technical

Conference, 2016.

https://www.cryptocoinsnews.com/will-bitcoin-scalability-debate-ever-end/
https://www.cryptocoinsnews.com/will-bitcoin-scalability-debate-ever-end/
http://www.coindesk.com/viabtc-ceo-sparks-bitcoin-scaling-debate-reddit-ama/
http://www.coindesk.com/viabtc-ceo-sparks-bitcoin-scaling-debate-reddit-ama/
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/
https://www.smartbit.com.au/op-returns
https://www.smartbit.com.au/op-returns
https://s3.amazonaws.com/stampery-cdn/docs/Stampery-BTA-v6-whitepaper.pdf
https://s3.amazonaws.com/stampery-cdn/docs/Stampery-BTA-v6-whitepaper.pdf
https://stampery.com/
https://www.stellar.org/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://www.reddit.com/r/ethereum/comments/5zctus/another_bug_in_the_ens_you_can_win_with_an/
https://www.reddit.com/r/ethereum/comments/5zctus/another_bug_in_the_ens_you_can_win_with_an/

BIBLIOGRAPHY 91

[50] L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber. New kids on

the block: an analysis of modern blockchains. CoRR, abs/1606.06530, 2016.

[51] G. Andresen. Block v2, height in coinbase. BIP 034, https:

//github.com/bitcoin/bips/blob/master/bip-0034.mediawiki. Last ac-

cessed 2018/01/01.

[52] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Eval-

uating user privacy in Bitcoin. In Financial Cryptography and Data Security,

volume 7859 of LNCS, pages 34–51. Springer, 2013.

[53] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure

multiparty computations on Bitcoin. In IEEE S & P, pages 443–458, 2014.

[54] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure

multiparty computations on Bitcoin. Commun. ACM, 59(4):76–84, 2016.

[55] A. M. Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies. ”

O’Reilly Media, Inc.”, 2014.

[56] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum

smart contracts (SoK). In Principles of Security and Trust (POST), volume

10204 of LNCS, pages 164–186. Springer, 2017.

[57] A. Back and I. Bentov. Note on fair coin toss via Bitcoin. http://www.cs.

technion.ac.il/~idddo/cointossBitcoin.pdf. Last accessed 2018/01/01,

2013.

[58] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction

ledger: A composable treatment. In CRYPTO, pages 324–356, 2017.

[59] W. Banasik, S. Dziembowski, and D. Malinowski. Efficient zero-knowledge

contingent payments in cryptocurrencies without scripts. In ESORICS, pages

261–280, 2016.

[60] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver. Stressing out: Bitcoin

“stress testing”. In Bitcoin Workshop, pages 3–18, 2016.

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf

92 BIBLIOGRAPHY

[61] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver. Stressing out: Bitcoin

“stress testing”. In Financial Cryptography Workshops, volume 9604 of LNCS,

pages 3–18. Springer, 2016.

[62] M. Bartoletti, A. Bracciali, S. Lande, and L. Pompianu. A general framework

for bitcoin analytics. CoRR, abs/1707.01021, 2017.

[63] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia. Dissecting Ponzi schemes on

Ethereum: identification, analysis, and impact. CoRR, abs/1703.03779, 2017.

[64] M. Bartoletti, S. Lande, and A. S. Podda. A proof-of-stake protocol for con-

sensus on bitcoin subchains. In Workshop on Trusted Smart Contracts, 2017.

[65] M. Bartoletti and L. Pompianu. An analysis of Bitcoin OP RETURN meta-

data. In Financial Cryptography Workshops, volume 10323 of LNCS. Springer,

2017.

[66] M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts:

platforms, applications, and design patterns. In Workshop on Trusted Smart

Contracts, 2017. Also available as arXiv preprint 1703.06322.

[67] B. Bellomy. binary-grep. https://github.com/spooktheducks/

binary-grep. Last accessed 2018/01/01.

[68] B. Bellomy. local-blockchain-parser. https://github.com/spooktheducks/

local-blockchain-parser. Last accessed 2018/01/01.

[69] I. Bentov and R. Kumaresan. How to use Bitcoin to design fair protocols. In

CRYPTO, pages 421–439, 2014.

[70] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,

N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-Beguelin.

Formal verification of smart contracts. In PLAS, 2016.

[71] S. Bistarelli and F. Santini. Go with the -Bitcoin- flow, with visual analytics.

In ARES, pages 38:1–38:6, 2017.

[72] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten.

SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies.

In IEEE S & P, pages 104–121, 2015.

https://github.com/spooktheducks/binary-grep
https://github.com/spooktheducks/binary-grep
https://github.com/spooktheducks/local-blockchain-parser
https://github.com/spooktheducks/local-blockchain-parser

BIBLIOGRAPHY 93

[73] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten.

Mixcoin: Anonymity for Bitcoin with accountable mixes. In Financial Cryp-

tography and Data Security, volume 8437 of LNCS, pages 486–504. Springer,

2014.

[74] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: An introduc-

tion. http://r3cev.com/s/corda-introductory-whitepaper-final.pdf.

Last accessed 2018/01/01, 2016.

[75] V. Buterin. Ethereum: a next generation smart contract and decentralized

application platform, 2013. https://github.com/ethereum/wiki/wiki/

White-Paper. Last accessed 2018/01/01.

[76] A. Churyumov. Byteball: a decentralized system for transfer of value. https:

//byteball.org/Byteball.pdf. Last accessed 2018/01/01, 2016.

[77] C. D. Clack, V. A. Bakshi, and L. Braine. Smart contract templates: foun-

dations, design landscape and research directions. CoRR, abs/1608.00771,

2016.

[78] C. Decker and R. Wattenhofer. Information propagation in the Bitcoin net-

work. In P2P, pages 1–10. IEEE, 2013.

[79] K. Delmolino, M. Arnett, A. Miller, A. Kosba, and E. Shi. Step by step towards

creating a safe smart contract: Lessons and insights from a cryptocurrency lab.

In Bitcoin Workshop, 2016.

[80] devttys0. binwalk. https://github.com/devttys0/binwalk. Last accessed

2018/01/01.

[81] J. A. D. Donet, C. Pérez-Solà, and J. Herrera-Joancomart́ı. The Bitcoin P2P

network. In Financial Cryptography Workshops, volume 8438 of LNCS, pages

87–102. Springer, 2014.

[82] European Central Bank. Terms of reference task force on distributed ledger

technologies. https://www.ecb.europa.eu/paym/initiatives/shared/

docs/dlt_task_force_mandate.pdf. Last accessed 2018/01/01.

http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://byteball.org/Byteball.pdf
https://byteball.org/Byteball.pdf
https://github.com/devttys0/binwalk
https://www.ecb.europa.eu/paym/initiatives/shared/docs/dlt_task_force_mandate.pdf
https://www.ecb.europa.eu/paym/initiatives/shared/docs/dlt_task_force_mandate.pdf

94 BIBLIOGRAPHY

[83] European Parliamentary Research Service. How blockchain technology could

change our lives. http://www.europarl.europa.eu/RegData/etudes/IDAN/

2017/581948/EPRS_IDA(2017)581948_EN.pdf. Last accessed 2018/01/01.

[84] C. K. Frantz and M. Nowostawski. From institutions to code: towards auto-

mated generation of smart contracts. In Workshop on Engineering Collective

Adaptive Systems (eCAS), 2016.

[85] J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin backbone protocol:

Analysis and applications. In EUROCRYPT, volume 9057 of LNCS, pages

281–310. Springer, 2015.

[86] I. Gerhardt and T. Hanke. Homomorphic payment addresses and the pay-to-

contract protocol. arXiv preprint arXiv:1212.3257, 2012.

[87] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Cap-

kun. On the security and performance of proof of work blockchains. In ACM

SIGSAC Conference on Computer and Communications Security, pages 3–16.

ACM, 2016.

[88] F. Glaser, K. Zimmermann, M. Haferkorn, and M. C. Weber. Bitcoin - asset

or currency? revealing users’ hidden intentions. In European Conference on

Information Systems (ECIS), 2014.

[89] P. Grau. Lessons learned from making a chess game

for Ethereum, 2016. https://medium.com/@graycoding/

lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#

.fwtdwly6e. Last accessed 2018/01/01.

[90] M. Harrigan and C. Fretter. The unreasonable effectiveness of address clus-

tering. In UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, pages 368–373.

IEEE, 2016.

[91] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan. Blocksci:

Design and applications of a blockchain analysis platform. arXiv preprint

arXiv:1709.02489, 2017.

http://www.europarl.europa.eu/RegData/etudes/IDAN/2017/581948/EPRS_IDA(2017)581948_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/IDAN/2017/581948/EPRS_IDA(2017)581948_EN.pdf
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e

BIBLIOGRAPHY 95

[92] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun.

Misbehavior in Bitcoin: A study of double-spending and accountability. ACM

Trans. Inf. Syst. Secur., 18(1):2, 2015.

[93] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The

blockchain model of cryptography and privacy-preserving smart contracts. In

IEEE Symp. on Security and Privacy, pages 839–858, 2016.

[94] R. Kumaresan, T. Moran, and I. Bentov. How to use Bitcoin to play decen-

tralized poker. In ACM CCS, pages 195–206, 2015.

[95] K. Liao and J. Katz. Incentivizing blockchain forks via whale transactions. In

Financial Cryptography Workshops, volume 10323 of LNCS. Springer, 2017.

[96] K. Liao, Z. Zhao, A. Doupé, and G. Ahn. Behind closed doors: measure-

ment and analysis of CryptoLocker ransoms in Bitcoin. In APWG Symp. on

Electronic Crime Research (eCrime), pages 1–13. IEEE, 2016.

[97] M. Lischke and B. Fabian. Analyzing the Bitcoin network: The first four

years. Future Internet, 8(1):7, 2016.

[98] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart

contracts smarter. In ACM CCS, 2016. http://eprint.iacr.org/2016/633.

Last accessed 2018/01/01.

[99] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor. On power

splitting games in distributed computation: The case of Bitcoin pooled mining.

In IEEE Computer Security Foundations Symposium, pages 397–411. IEEE,

2015.

[100] B. Marino and A. Juels. Setting standards for altering and undoing smart

contracts. In RuleML, pages 151–166, 2016.

[101] P. McCorry, S. F. Shahandashti, and F. Hao. Refund attacks on Bitcoin’s

payment protocol. In Financial Cryptography and Data Security, volume 9603

of LNCS, pages 581–599. Springer, 2016.

[102] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.

Voelker, and S. Savage. A fistful of bitcoins: characterizing payments among

http://eprint.iacr.org/2016/633

96 BIBLIOGRAPHY

men with no names. In Internet Measurement Conference, pages 127–140.

ACM, 2013.

[103] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.

Voelker, and S. Savage. A fistful of Bitcoins: characterizing payments among

men with no names. Commun. ACM, 59(4):86–93, 2016.

[104] M. Möser and R. Böhme. Trends, tips, tolls: A longitudinal study of bitcoin

transaction fees. In International Conference on Financial Cryptography and

Data Security, pages 19–33. Springer, 2015.

[105] M. Möser and R. Böhme. Trends, tips, tolls: A longitudinal study of Bitcoin

transaction fees. In Financial Cryptography Workshops, volume 8976 of LNCS,

pages 19–33. Springer, 2015.

[106] M. Möser and R. Böhme. Anonymous alone? measuring bitcoin’s second-

generation anonymization techniques. In EuroS&P Workshops, pages 32–41,

2017.

[107] M. Möser, R. Böhme, and D. Breuker. An inquiry into money laundering tools

in the Bitcoin ecosystem. In APWG Symp. on Electronic Crime Research

(eCrime), pages 1–14. IEEE, 2013.

[108] M. Möser, R. Böhme, and D. Breuker. Towards risk scoring of Bitcoin trans-

actions. In Financial Cryptography Workshops, volume 8438 of LNCS, pages

16–32. Springer, 2014.

[109] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf. Last accessed 2018/01/01, 2008.

[110] Nomura Research Institute. Survey on blockchain technologies and related ser-

vices. http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf.

Last accessed 2018/01/01.

[111] M. Ober, S. Katzenbeisser, and K. Hamacher. Structure and anonymity of

the Bitcoin transaction graph. Future Internet, 5(2):237–250, 2013.

[112] G. Pappalardo, T. di Matteo, G. Caldarelli, and T. Aste. Blockchain ineffi-

ciency in the Bitcoin peers network. CoRR, abs/1704.01414, 2017.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf

BIBLIOGRAPHY 97

[113] S. Popejoy. The Pact smart contract language, 2016. http://kadena.io/

pact. Last accessed 2018/01/01.

[114] F. Reid and M. Harrigan. An analysis of anonymity in the Bitcoin system. In

Security and privacy in social networks, pages 197–223. Springer, 2013.

[115] F. Reid and M. Harrigan. An analysis of anonymity in the Bitcoin system. In

Security and privacy in social networks, pages 197–223. Springer, 2013.

[116] M. H. J. H. Z. D. M. O. H. Roman Matzutt, Jens Hiller and K. Wehrle. A

quantitative analysis of the impact of arbitrary blockchain content on bitcoin.

2018.

[117] D. Ron and A. Shamir. Quantitative analysis of the full Bitcoin transaction

graph. In Financial Cryptography and Data Security, volume 7859 of LNCS,

pages 6–24. Springer, 2013.

[118] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive com-

patibility of Bitcoin mining pool reward functions. In Financial Cryptography

and Data Security, volume 9603 of LNCS, pages 477–498. Springer, 2016.

[119] P. L. Seijas, S. Thompson, and D. McAdams. Scripting smart contracts for

distributed ledger technology. Cryptology ePrint Archive, Report 2016/1156,

2016. http://eprint.iacr.org/2016/1156. Last accessed 2018/01/01.

[120] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in

bitcoin. In Financial Cryptography and Data Security, pages 507–527, 2015.

[121] M. Spagnuolo, F. Maggi, and S. Zanero. Bitiodine: Extracting intelligence

from the Bitcoin network. In Financial Cryptography and Data Security, vol-

ume 8437 of LNCS, pages 457–468. Springer, 2014.

[122] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The

first collision for full sha-1. https://shattered.io/static/shattered.pdf.

Last accessed 2018/01/01.

[123] A. Sward, V. OP 0, and F. Stonedahl. Data insertion in bitcoin’s blockchain.

2017.

http://kadena.io/pact
http://kadena.io/pact
http://eprint.iacr.org/2016/1156
https://shattered.io/static/shattered.pdf

98 BIBLIOGRAPHY

[124] A. Tomescu and S. Devadas. Catena: Efficient non-equivocation via bitcoin.

In IEEE Symp. on Security and Privacy, 2017.

[125] UK Government Chief Scientific Adviser. Distributed ledger

technology: beyond block chain. https://www.gov.uk/

government/uploads/system/uploads/attachment_data/file/492972/

gs-16-1-distributed-ledger-technology.pdf. Last accessed 2018/01/01.

[126] M. Vasek and T. Moore. There’s no free lunch, even using Bitcoin: Tracking

the popularity and profits of virtual currency scams. In Financial Cryptography

and Data Security, volume 8975 of LNCS, pages 44–61. Springer, 2015.

[127] M. Vasek, M. Thornton, and T. Moore. Empirical analysis of Denial-of-Service

attacks in the Bitcoin ecosystem. In Financial Cryptography Workshops, vol-

ume 8438 of LNCS, pages 57–71. Springer, 2014.

[128] weekinethereum. Week in ethereum news - november 8, 2017. http://www.

weekinethereum.com/post/167279242888/november-8-2017. Last accessed

2018/01/01.

[129] G. Wood. Ethereum: a secure decentralised generalised transaction ledger,

2014. http://gavwood.com/paper.pdf. Last accessed 2018/01/01.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
http://www.weekinethereum.com/post/167279242888/november-8-2017
http://www.weekinethereum.com/post/167279242888/november-8-2017
http://gavwood.com/paper.pdf

Appendix A

Identifiers

Table A.1 shows the list of identifiers that our tool exploits for associating metadata

to protocols. We obtained this list by manually inspecting each protocol website.

Note that Counterparty metadata must be first deobfuscated with ARC4 encryp-

tion using the transaction identifier (TXID) of the first unspent transaction out-

put (UTXO) as the encryption key https://counterparty.io/docs/protocol_

specification/

https://counterparty.io/docs/protocol_specification/
https://counterparty.io/docs/protocol_specification/

100 APPENDIX A. IDENTIFIERS

Category Protocol Identifiers

Colu CC
CoinSpark SPK
OpenAssets OA

Omni omni
Financial Openchain OC

Helperbit HB
Counterparty CNTRPRTY

Factom Factom!!, FACTOM00, Fa, FA
Stampery[42] S1, S2, S3, S4, S5, S6

Proof of Existence DOCPROOF
Blocksign BS

CryptoCopyright CryptoTests-, CryptoProof-
Stampd STAMPD##
BitProof BITPROOF
ProveBit ProveBit
Remembr RMBd, RMBe

OriginalMy ORIGMY
LaPreuve LaPreuve
Nicosia UNicDC

Notary SmartBit SB.D
Notary Notary

BitcoinTimestamp N/A
Blocknotary N/A

Tangible N/A
Chainpoint N/A

Diploma N/A
Apertus N/A

Chronobit N/A
Seclytics N/A

Monegraph MG
Blockai 0x1f00

Arts Ascribe ASCRIBE
Verisart N/A

Eternity Wall EW
Cryptograffiti N/A

Messages BIT-COMM N/A
Stone N/A

Key.run N/A
BitAlias BALI

Keybase N/A
Uniquebits N/A

Subchains Blockstore id, 0x5888, 0x5808
Catena[124] N/A

Table A.1: Protocols identifiers.

https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
https://docs.openchain.org/
https://www.helperbit.com/
http://counterparty.io/
https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
https://www.smartbit.com.au/
https://notary.bitcoin.com
https://github.com/fireduck64/BitcoinTimestamp
https://www.blocknotary.com/
http://tangible.io
http://www.chainpoint.org/
http://diploma.report/
http://apertus.io/
https://github.com/goblin/chronobit
https://www.seclytics.com/blog/2016/09/15/verifying-predictions-with-the-bitcoin-blockchain/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://www.verisart.com/
https://eternitywall.it/
http://cryptograffiti.info/
http://bit-comm.appspot.com
https://github.com/dasmithii/stone/
https://git.playgrub.com/toby/keyrun
https://bitalias.github.io/
https://keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain
https://github.com/petertodd/uniquebits
https://github.com/blockstack/blockchain-id/wiki/Blockstore
https://github.com/non-equivocation/catena-java

	List of Figures
	List of Tables
	Introduction and Motivations
	Contributions
	Structure of the work

	Background on Bitcoin and Ethereum
	Bitcoin
	Scripts

	Ethereum

	A journey into Bitcoin metadata
	Embedding metadata in the blockchain
	Value field
	Input sequence
	Pay-to public key and Pay-to-public key hash
	Pay-to-script hash
	OP_RETURN
	Vanity address
	Coinbase transaction
	Distributing metadata
	Comparison and statistics

	Collection and analysis of Bitcoin metadata
	Collecting metadata
	Classifying metadata
	Statistics

	Analysis of Bitcoin-based protocols
	Classifying protocols
	Statistics

	Overall statistics
	Transaction peaks
	Space consumption

	Related work

	An empirical analysis of smart contracts
	Platforms for smart contracts
	Methodology
	Analysis of platforms

	Analysing the usage of smart contracts
	Methodology
	A taxonomy of smart contracts
	Quantifying the usage of smart contracts by category

	Design patterns for Ethereum smart contracts
	Design patterns
	Quantifying the usage of design patterns by category

	Related work

	A general framework for blockchain analytics
	Creating blockchain analytics
	A basic view of the Bitcoin blockchain
	Analysing OP_RETURN metadata
	Exchange rates
	Transaction fees
	Address tags

	Implementation and validation
	Comparison with related tools

	Conclusions
	Summary of the main results
	Future work

	Bibliography
	Identifiers

