Erratum to: A general approach to equivariant biharmonic maps (Mediterr. J. Math. 10 (2013), 1127–1139)

S. Montaldo and A. Ratto

Abstract. In this erratum first we amend the stability study of some proper biharmonic maps $\varphi_{\alpha}: T^2 \to S^2$ (Theorem 3.2 of [1]). We also correct the proof of a claim in Example 3.5 of [1], showing that biharmonic maps do not satisfy the classical Sampson's maximum principle for harmonic maps.

Mathematics Subject Classification (2010). 58E20.

Keywords. Biharmonic maps, equivariant theory, maximum principle.

1. Equivariant biharmonic maps and applications

We use the notation of Example 3.1 of [1]. Theorem 3.2 of [1] is not correct and must be replaced by

Theorem 1.1. Let $\varphi_{\alpha}: T^2 \to S^2$ be a proper biharmonic map as in equation (3.8)(ii) of [1]. Then φ_{α} is an unstable critical point.

Proof. It suffices to prove that φ_{α} is unstable with respect to equivariant variations. To this purpose, we compute the second variation of the reduced

Work supported by P.R.I.N. 2015 Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis, Italy and by Fondazione di Sardegna and Regione Autonoma della Sardegna (Project GESTA).

bienergy functional (we denote by α^* the constant function $\alpha \equiv \pi/4$):

$$\begin{split} &\nabla^2 \, E_2^\varphi(\alpha^*) \, (V,V) = \frac{d^{\,2}}{dh^2} \, \big[E_2^\varphi(\alpha^* \, + \, h \, V) \big] \, |_{h=0} \\ &= \int_0^{2\pi} \, \frac{d^{\,2}}{dh^2} \, \bigg[(h \, \ddot{V})^2 + \frac{k^4}{4} \, \sin^2 \left(\frac{\pi}{2} + 2h \, V \right) - h \, \ddot{V} \, k^2 \, \sin \left(\frac{\pi}{2} + 2h \, V \right) \bigg] \, \Big|_{h=0} \, d\theta \\ &= \int_0^{2\pi} \, \frac{d^{\,2}}{dh^2} \, \bigg[h^2 \, \ddot{V}^2 + \frac{k^4}{4} \, \cos^2 \left(2h \, V \right) - h \, \ddot{V} \, k^2 \, \cos \left(2h \, V \right) \bigg] \, \Big|_{h=0} \, d\theta \\ &= \int_0^{2\pi} \, \left[2 \, \ddot{V}^2 - 2 \, V^2 \, k^4 \, \right] \, d\theta \, . \end{split}$$

By taking $V \equiv 1$, we conclude from the last equality that φ_{α^*} is unstable, as required to end the proof. The case $\alpha \equiv 3\pi/4$ is analogous.

As a consequence of Theorem 1.1, Remark 3.3 of [1] should be deleted.

Next, we use the notation of Example 3.5 of [1]. The claim of Example 3.5 of [1], stating that biharmonic maps do not verify Sampson's maximum principle for harmonic maps, is correct. However, in order to prove it, we use the function

$$\alpha(r) = r e^{-\sqrt{\lambda} r} , \qquad r \in \mathbb{R}$$
 (1.1)

instead of the one which appeared in (3.21) of [1]. Indeed, the function in (1.1) admits a strictly positive interior maximum point at $r_0 = (1/\sqrt{\lambda}) > 0$. Thus, the image through φ_{α} of an open set $S^m \times (r_0 - \varepsilon, r_0 + \varepsilon)$ is contained in the concave side of $S = \partial B_{\alpha(r_0)}(O)$ provided that $\varepsilon > 0$ is small.

Acknowledgements: The authors wish to thank Prof. C. Oniciuc for pointing out the two errors in [1] which have been the object of the present erratum.

References

- S. Montaldo, A. Ratto. A general approach to equivariant biharmonic maps. Med. J. Math. 10 (2013), 1127–1139.
- [2] J.H. Sampson. Some properties and applications of harmonic mappings. Ann. Sc. Éc. Norm. Sup. Série 4, 11 (1978), 211–228.

S. Montaldo

Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Via Ospedale 72 09124 Cagliari, Italia

e-mail: montaldo@unica.it

A. Ratto

Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Viale Merello 93 09123 Cagliari, Italia

e-mail: rattoa@unica.it