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ABSTRACT 

 

Objectives. At the light of properties and limits of cisplatin (CDDP) as an anticancer agent, 

and in view of the potential clinical relevance of the synergic effect of CDDP with the Cu(II)-

phen complexes previously reported against T-leukemia cells (Pivetta et al.,Talanta, 2013), my 

research project was aimed at (1) extending the studies of CDDP-Cu(II)-phen combinations as 

such, as well as with the addition of a third drug component; (2) determining the potential degree 

of selectivity of the most synergic drug combinations. 

Methods. Most studies were focused on the most potent Cu(II)Phen compound (C0), lead of 

the cupper-phen complex series. Wild type and CDDP-resistant human T-leukemia CEM cells,  

wild type and CDDP-resistant human ovarian carcinoma A2780 cells, and ex vivo cultures of 

human peripheral blood lymphocytes from healthy donors, were used as cell models to 

characterize the cytotoxic activity of both binary and ternary drug combinations. Experimental 

Design (ED) and Artificial Neural Network (ANN) were used for setting experiments and for 

evaluation of data.   

Results. Binary and ternary drug combinations showed statistically significant synergisms 

either against the CDDP-sensitive and the CDDP-resistant cancer cell models. The three-drug 

cocktail was the most potent with a markedly higher cytotoxicity against leukemic lymphocytes 

than against ex vivo healthy proliferating lymphocytes. An ESI-MS study of CDDP-C0 mixed 

combination showed the formation of copper-platinum adducts which, leading to the release of 

a phenantroline moiety, may -at least in part- explain the synergism observed in the cell models. 

In addition, the analysis of phospholipid profiles showed lipid alterations in the CDDP-resistant 

CEM and A2780 cells with respect to their parental counterparts.  

Conclusions. Besides of the need of further studies to unveil the molecular target(s) of the 

triple-drug cocktail, based on the promising selectivity index (SI = 5) for cancer cells, 

investigations on its effectiveness in a xenograft mice models of human susceptible and CDDP-

resistant ovarian carcinoma are on the way. 
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1. INTRODUCTION 

 

 

1.1 Cancer 

The transformation of a normal cell into a cancer cell involves the progressive accumulation 

of genetic, functional and morphological abnormalities. 

It is a slow process that, in most cases, is successfully fought by mechanisms of repair and by 

the immune system. When these control mechanisms fail, the abnormal cells multiply and differ 

further, from the viewpoint of the differentiation and function from the origin cells. Greater are 

the genetic abnormalities accumulated, more the cancer cells deviate from the original and the 

malignancy will be undifferentiated and invasive leading to uncontrolled proliferation to the 

detriment of body tissues. 

Cellular masses and aggregates can thus generate and interfere with the physiology of the 

organ in which they develop, possibly migrating to distant organs, i.e. metastatic cancer, thus 

threatening the life of the subject. As a synonym of the cancer, in the sense of malignant 

proliferation, the term neoplasia is also used.   

The benign cancer is characterized by an expanding type of growth and it is separated from 

the healthy tissue by a capsule, which is not due to the proliferation of the connective tissue, but 

to the fact that the cancer mass, while growing compress the surrounding connective; however, 

unlike the malignant cancer, it does not spread and if surgically removed it does not relapse.  

It is well known now that the causes of cancer are a combination of several internal and 

external factors. Internal factors are inherent to the body's cells themselves, as gene mutations, 

hormones, misfunction of the immune system and, generally, they cannot be changed. External 

factors, instead, are related both to the living and working environment (infectious agents, 

chemicals, ionizing and non-ionizing radiations, etc.) and the subject’s lifestyle (diet, physical 

activity, smoking). These can be modified through specific prevention interventions whose 

effectiveness are amply demonstrated (AIRTUM Associazione italiana dei registri tumori)  

As mentioned above, cancer cell often results from mutations of oncogenes or of cancer 

suppressor genes and/or alterations of signalling pathways. Among many gene products, p53 

plays a key role in the prevention of cancer growth. In fact, it does not function or it works 

incorrectly in most human cancers. p53 network in normal, non-activated conditions is not 
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functional, but it is activated in the cell in response to various signals that occur in the process of 

carcinogenesis (Vogelstein et al., Nature, 2000). The main function of p53 is the inhibition of 

abnormal cell growth (Sionov & Haupt, Oncogene, 1999) and the triggering of programmed cell 

death (Heinrichs & Deppert, Oncogene, 2003). Because these processes ensure genomic 

integrity, or destroy the damaged cell, p53 has been called the “guardian of the genome” (Lane, 

Nature, 1992). Later on, other important functions, such as DNA repair (Albrechtsen, Oncogene, 

1999) and inhibition of angiogenesis (Vogelstein et al., Nature, 2000), were demonstrated.  

 

 

 

 

Figure 1. Cancer progression 
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Cancer metastasis is a multistage process, during which the malignant cells detach from the 

original tissue and spread via the hematic or lymphatic systems to other organs where they 

reproduce and generate new cancers. Metastasis is a sequence of interconnected steps, each of 

them can be limiting because the failure of any stage may stop the process. The result of the 

process depends on the intrinsic properties of cancer cells and of the host response. For the 

metastasis development, it is needed the generation of a vascular network and the escaping to the 

immune response.  

Moreover, organ-specific factors can influence the metastasis growth. The entry of cancer 

cells into the circulation is common but they are rapidly eliminated. The development of 

metastasis is a rare event and it does not exceed 0.01%. Only a few cells in a primary cancer are 

able to give metastasis. Therefore, the formation of clinically relevant metastases represents the 

survival and growth of selected subpopulations of cells that preexist in primary tumours 

(Talmadge and Fidler, Cancer Res., 2010). 

 

 

 

Figure 2. The process of cancer metastasis 
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1.2 Cancers Classification  

The international classification system of the stage of a cancer (staging) is based on the criteria 

stated by American Joint Committe on Cancer (AJCC) which considers the following three 

parameters: 

 size of the primary cancer (T) 

 involvement of regional lymphnodes adjacent to the cancer (N) 

 metastases (M) 

Each category, in turn, is divided into subgroups, depending on the progressively growing size 

of the cancer, the number of involved lymph nodes, and the presence or absence of distant 

metastases. 

Depending on the size stand five degrees, from T0 to T4. 

As regards the lymph nodes, N0 is defined a condition where the regional lymph nodes are 

not affected, and with an acronym growing N1 to N3 the progressive involvement of a greater 

number of nodal stations. The presence of metastasis is characterized by an indication M1, while 

M0 indicates their absence. 

Cancer staging is crucial to determine the most effective treatment plan. The main categories 

of cancer are: 

- Carcinoma: cancer that begins in the skin or in tissues that line or cover internal organs. 

- Sarcoma: cancer that begins in 'bone, cartilage, fat, muscle, blood vessels, or other 

connective or supportive tissue 

- Leukemia: cancer that originates in hematopoietic tissues, such as bone marrow 

- Lymphoma and Myeloma: cancers that arise from cells of the immune system. 

- Cancers of the central nervous system: cancers that originate in the CNS. 
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1.3 Cancer Treatments 

Cancer is one of the most important health problems in different countries of the world. 

The data of the National Institute of Statistics (ISTAT), report about 175,000 deaths due to 

cancer out of about 580,000 deaths that occurred in Italy in 2011. Cancer is the second leading 

cause of death (30% of all deaths), following those due to cardio-circulatory diseases (38%). 

As a general rule, aim of cancer treatments is to destroy cancer cells causing the least possible 

damage to normal tissues. The type of the clinical intervention depends on different individual 

factors, i.e. cancer localization, health status of the patient, characteristics and properties of the 

cancer cells (Luqmani, Med Princ Pract, 2005).  

In the last decades, great advances in the field of cancer therapy have produced a marked 

improvement in the successful control of many types of cancer. Surgical excision, radiotherapy 

and cytotoxic drugs administration are the tools available for the treatment of cancer. Often 

surgery is the main option in the majority of solid cancers and it may be a decisive cure when 

there is early diagnosis. Radiotherapy uses radiations to destroy the cancerous cells. Over the 

past century, radiotherapy has been the main intervention for the treatment of malignant cancers. 

It can be used prior to surgery to reduce the size of a solid cancer or during surgery, intraoperating 

radiation therapy, or sometimes as the only therapy if the cancer is very sensitive to radiations. 

.Technological developments in physics, computing capabilities, and imaging have improved 

greatly the use of this type of therapy (Ahamad and Jhingran, Int. J.Gynecol Cancer, 2004). 

Drug therapy is based on the administration of four categories of drugs: cytotoxic drugs 

(chemotherapy), hormones and antihormones (endocrine therapy), immunotherapeutic agents 

(immunotherapy) and molecular target agents (targeted therapy). 

Chemotherapy employs a wide group of drugs that have cytotoxic effects and preferentially, 

but not exclusively, target the rapidly dividing cancer cells. Endocrinetherapy is a more specific 

form of treatment, used for example in breast cancer, prostate cancer and endometrial cancer. It 

prevents the proliferation of cancer cells that overexpress the receptor for the hormone that 

stimulates proliferation. For example, in breast cancer, the drug controls growth in cells 

overexpressing the oestrogen receptor. This can be effective in 60-70% of breast cancer patients.  

Immunotherapy acts on the immune system with immunotherapeutic agents capable of 

stimulating and amplifying the specific immune response and activating it to attack and fight 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ahamad%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15304149
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jhingran%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15304149
http://www.ncbi.nlm.nih.gov/pubmed/15304149
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cancer cells. Targeted therapies have been employed exploiting the overexpression of protein in 

many cancer cells. 

Metabolic inhibitors intervene on specific proteins and pathways involved especially in cancer 

cell growth and associated with cell cycle regulation. However, these drugs are at an experimental 

stage of development, but represent a very promising approach for future strategies (Luqmani, 

Med Princ.Pract., 2005). 

 

1.3.1 Anticancer Chemotherapy 

Chemotherapy is a procedure that consists in the administration of cytotoxic drugs in order to 

destroy the cancer cells. It is the therapeutic modality more used to cure cancer. The treatment 

includes the administration of several drugs selected from a range of about 50 commercially 

available products. The decision as to which is the best treatment depends on many factors, such 

as the type and stage of the cancer and the clinical conditions of the patient. Chemotherapy may 

be implemented after surgery or radiotherapy in order to destroy any remaining cancer cells, 

grouped in masses too small to be detected by the diagnostic tools and so it can reduce the chances 

of recurrence or, in certain types of cancer, can lead to healing. 

Unfortunately, a relevant problem in cancer chemotherapy is the low selectivity of the 

antineoplastic drugs. Often, toxic effects are superimposed to the therapeutic effects, as drugs 

also affect healthy cells. The action of the common anticancer agents is not, in fact, determined 

by specific biological differences between normal cells and cancer cells, but rather only by the 

speed at which the later multiply. The conventional chemotherapy is mostly based on the 

evidence that proliferating cells are more sensitive to anticancer agents than non-dividing cells. 

This is the main reason why these compounds are not cancer specific and their selectivity is 

generally in favour of rapidly growing cells (haematopoietic or intestine. i.e.) rather than 

discriminating against any fundamental biological difference between normal and cancer cells 

(Marchini et al., Curr. Med. Chem. Anticancer Agents, 2004).The sensitivity of the healthy 

organs to the various chemotherapy drugs causes the appearance of a multitude of side effects 

that vary in part depending on the type of drugs used. The toxicity of chemotherapy occurs mainly 

in tissues with high proliferative index: bone marrow (leucopenia, thrombocytopenia, anemia, 

immunosuppression, infections), gastrointestinal mucosa (stomatitis, enteritis, mucus-

http://www.ncbi.nlm.nih.gov/pubmed/16103712
http://www.ncbi.nlm.nih.gov/pubmed/?term=Marchini%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15134503
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membranous colitis, diarrhea), skin and skin appendages (hair loss), gonads (amenorrhea, 

azoospermia) 

Moreover, the real effectiveness of anticancer drugs is hampered by the mechanism(s) of 

chemoresistance that emerges in the population of cancer cells during chemocycles. To 

overcome drug resistance, the best therapeutic strategy is to associate more drugs with different 

mechanisms of action in multidrug cocktails. Actually, combinatory chemotherapy 

(polychemotherapy) is successfully used in the clinical practice as, by combining different drugs 

simultaneously addressing different cell targets, the frequency of drug-resistant mutants is 

strongly reduced. 

Many anticancer agents are natural compounds extracted from plants, while others are of 

synthetic origin. On the basis of mode and site of action, they can be divided into three major 

groups: antimetabolites, genotoxic agents and mitotic spindle inhibitors. 

Antimetabolites are drugs capable of interfering with the synthesis or use of a cellular 

metabolite. Examples are folate, pyrimidine and purine antagonists. 

Folate Antagonists or Antifolates are inhibitors of dihydrofolate reductase (DHFR). Among 

Folate Antagonists there is Methotrexate that is used for the treatment of a variety of cancer 

including acute lymphocytic leukaemia, large cell lymphoma, high grade lymphoma, 

choriocarcinoma and cancer of the breast, bladder, head and neck and bone as well as many 

inflammatory diseases. Pyrimidine Antagonists may block pyrimidine nucleotide formation or 

may be incorporated into newly synthesized DNA, causing  its premature termination. Among 

Pyrimidine Antagonists there is 5-FU. .It is used in the treatment of breast, colon, stomach, 

rectum and pancreas cancers. 

Purine Antagonists inhibit synthesis of adenine and guanine. The main examples are 

Acyclovir, 6-Mercaptopurine and 6-Thioguanine. They are used to cure acute lymphocytic or 

myelocytic leukaemia, lymphoblastic leukaemia and acute myelogenous and myelomonocytic 

leukaemia. 

Genotoxic Agents bind to DNA or blocking the enzymes involved in replication, leading the 

cell to apoptosis. This class of drugs can be divided into several groups.  

1) alkylating agents that modify the bases of DNA, interfering with replication and 

transcription. Examples include Cyclophosphamide, Melphalan, Mitomycin C and 

Temozolomide. 2) Intercalating Agents that bind in the grooves of the DNA, interfering with the 
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activity of the polymerase during replication / transcription. Examples include Cisplatin, 

Epirubicin and Doxorubicin. 3) Enzyme Inhibitors that block replication by inhibiting enzymes 

such as topoisomerase. The mutagenic properties of these drugs make them carcinogenic, and so 

their use involves additional risk of secondary cancers, such as leukemia. Examples of these are 

Etoposide, Topotecan and Irinotecan. 

Mitotic Spindle Inhibitors interrupt mitosis by preventing the polymerization of tubulin 

monomers, indispensable for the formation of the microtubules that form the spindle needed for 

chromosome alignment. Examples are the alkaloids of vegetable and synthetic origin paclitaxel 

and docetaxel (Luqmani, Med. Princ. Pract., 2005). 

 

 

 

 

 

Figure 3. Sites of action of cytotoxic agents. 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Luqmani%20YA%5BAuthor%5D&cauthor=true&cauthor_uid=16103712
http://www.ncbi.nlm.nih.gov/pubmed/16103712
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2. RATIONAL OF THE RESEARCH PROJECT 

 

 

2.1 Cisplatin (CDDP) as anticancer agent 

 

 

 

 

 

 

 

 

 

CDDP, [Pt(NH3)2Cl2]cis-diammineplatinum(II) dichloride, is a small planar molecule with 

a central platinum ion surrounded by four ligands,  two chloride ions and two molecules of 

ammonia arranged in the cis position (Goodsell, Stem Cells, 2006). In 1845, it was synthetized 

for the first time and in 1893 Alfred Werner deduced its structure (Desoize and Madoulet, Crit. 

Rev. Oncol. Hematol. 2002). Later Rosenberg tested the effects of several platinum complexes 

on rat sarcomas (Rosenberg, B., Spiro, T.G., Ed., Wiley & Sons, Inc., NY, USA, 1980). 

In 1971, for the first time, was administered to a cancer patient (Lebwohl and Canetta, Eur. 

J. Cancer, 1998). In 1978, it became available for clinical practice as Platinol® (Bristol-Myers 

Squibb). 

The discovery of CDDP as an anti-cancer drug gave away to new era in cancer treatment. In 

fact, it is widely used in clinical therapy of several solid cancers as ovarian, testicular, breast, 

head and neck and small cell lung cancer (Kelland, Nat. Rev. Cancer, 2007). 

 

2.1.1 Mechanism(s) of action of cisplatin 

Cisplatin enters the cells via passive diffusion and with protein-mediated transport systems 

such as human organic cation transporter hOCT2 and copper transporter Ctr1(Ishida et al., Proc. 

Natl. Acad. Sci. USA, 2002; Song, et al., Mol. Cancer Ther.,  2004; Burger  et al., Br. J. 

Pharmacol., 2010). 
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Cisplatin applies its biological activity, through hydrolysis, by interaction with DNA. When 

it is inside the cell, one of the chloride ligand of the complex is displaced by a water molecule to 

form the aqua-complex [Pt(NH3)2(H2O)Cl]+.This species binds DNA, losing the water 

molecule, and forming the mono-functional adduct [PtCl(DNA)(NH3)2]+. Then the second 

chloride of this species is displaced by a water molecule, forming another aqua-complex 

[Pt(H2O)(DNA)(NH3)2]2+. This species interacts with DNA to form the bi-functional adduct 

[Pt(DNA)(NH3)2]2+ (Alderden et al., J. Chem. Educ., 2006; Trzaska, Chem. Eng. News, 2005; 

Jamieson and Lippard, Chem. Rev., 1999; Toddand Lippard, Metallomics, 2009). 

The damage caused by the binding of CDDP to gDNA can interfere with the normal 

mechanism of replication and transcription of DNA and it can lead to death of the cancer cell. It 

is also known that CDDP form a high amount of adducts in mitochondrial DNA (mtDNA) 

(Jamieson and Lippard, Chem. Rev., 1999) and furthermore, the mitochondria are unable to carry 

out the nucleotide excision repair (NER), an important route for the removal CDDP-DNA 

adducts (Perez, Eur. J. Cancer, 1998), it can be an important pharmacological target of cisplatin. 

The most accessible and reactive nucleophilic sites for platinum binding to DNA are the N7 

atoms of the imidazole rings of guanine and adenine located in the major groove of the double 

helix (Yang and Wang, Pharm. and Therap.,1999). The CDDP forms with the DNA various types 

of adducts. At first monofunctional adducts are formed but most of them further react to produce 

inter-strand or intra-strand cross-links, which block replication and prevent transcription (Payet 

et al., Nucleic Acid Res., 1993). 

The principal bifunctional adduct with DNA is the 1,2-intra-strand cross-linking with two 

adjacent guanines, which is supposed to be responsible for the cytotoxic activity of the drug 

(Toddand Lippard, Metallomics, 2009). 

If the cell is not able to repair CDDP-induced DNA damage, apoptosis is triggered. In some 

cell lines CDDP causes necrosis, which is considered a mode of cell death due to general cell 

machinery failure. In the same population of CDDP-treated cells necrotic and apoptotic cell death 

may take place together. It is also known that in the cell only 5-10% of cisplatin is bound to 

DNA, while 75-85% of the drug binds to proteins through the sulphur atoms of cysteine and / or 

methionine residues and to the nitrogen atoms of istidina residues. The consequence is that the 

toxicity of the CDDP is also due to functional protein damage. 

In addition, before CDDP accumulates in the cell, it may bind to phospholipids and 

phosphotidylserine of the cell membrane. In the cytoplasm many cellular constituents that have 
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soft nucleophilic sites such as cytoskeletal microfilaments, thiol-containing peptides, proteins 

and RNA react with CDDP. (Fuertes et al., Chemical Review, 2003) 

CDDP also induces reactive oxygen species (ROS) that can break normal biological functions 

and carry out cell death. The formation of ROS depends on the duration of exposure to CDDP 

and its concentration (Brozovic et al., Crit. Rev. Toxicol., 2010). 

 

 

 

 

Figure 4.  Main adducts formed in the interaction of cisplatin with DNA 
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2.1.2 CDDP side effects 

CDDP shows a high toxicity for normal tissues and this is a restriction for  the dose which can 

be administered. Side effects are nausea and vomiting, decreased blood cell and platelet 

production in bone marrow (myelosuppresion) and decreased response to infection 

(immunosuppression). More specific side effects include damage to the kidney (nephrotoxicity), 

damage of neurons (neurotoxicity) and hearing loss.  (Desoize and Madoulet, Crit. Rev. Oncol. 

Hematol., 2002; Tsang et al., Drug Saf., 2009). 

Management and strategies are renoprotection and enhance elimination of the drug by 

intravenous hydration with the possibility of using an osmotic diuretic. 

Earing loss occurs mainly at high frequencies and is more pronounced when cisplatin is given 

once every second week (Rademaker-Lakhai, J. Clin. Oncol., 2006). It is necessary to use 

otoprotective agents to avoid compromising cancer treatment (Drottar et al., Laryngoscope 

2006). Cardio toxicity has also been associated to CDDP treatment. 

 

2.1.3 Mechanisms of CDDP resistance  

The effectiveness of CDDP is limited by the emergence of drug resistant cells in the 

population of susceptible cancer cells.  As said, drug resistance acquired in the course of therapy 

is a major obstacle in the successful treatment of many cancers. A promising initial response of 

the cancer to chemotherapy by shrinking of the cancer volume is frequently observed, followed 

by appearance of chemoresistance, so that cancer cells do not respond to treatment with the drug 

(Duhem et al., The Oncologist, 1996). 

 

CDDP-resistant cells often show several resistance mechanisms acting simultaneously 

(Eckstein N., Journal of Experimental and Clinical Cancer Research 2011), which include: 

 increased drug efflux / diminished drug accumulation 

 reduced uptake 

 increased drug inactivation 

 increased DNA repair / elevated DNA damage tolerance 

 inhibition of apoptosis 

 inactivation of the p53 pathway 

 

http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib6
http://www.ncbi.nlm.nih.gov/pubmed/?term=Eckstein%20N%5BAuthor%5D&cauthor=true&cauthor_uid=21967738


16 

 

One of the best studied mechanisms of chemoresistance is the increased drug efflux. The drug 

efflux reduces intracellular drug concentration and it is partially mediated by cell surface 

glycoproteins, which belong to the family of ATP-binding cassette (ABC) of multidrug 

transporters (Gottesman, Annu. Rev. Med., 2002). ABC transporters – such as MDR1 and 

MRP1– are highly expressed in many human cancers (Haber et al., European Journal of Cancer, 

1997; Norris et al., Pharm. Res., 1997; Blanc  et al., American Journal of Pathology, 2003; 

Munoz et al., IUBMB Life, 2007), and they are associated with the resistance of these cancers to 

chemotherapeutic drugs (Haber et al., 1997; Norris et al., Pharm. Res.1997; Gottesman et al., 

Annu. Rev. Med., 2002). 

Alternatively, CDDP-resistance emerges in mutant cells with an increased ability to repair or 

tolerate damaged DNA (Andrews et al., Cancer Cells 2, 1990; et al., Anticancer Res., 1989 ) or 

in cancer cells able to increase the intracellular levels of GSH (reduced glutathione) (Florea et 

al., Cancers, 2011), which binds to and inactivate CDDP. Altered sensitivity to CDDP may also 

be due to modified expression of regulatory proteins involved in signal transduction pathways 

that controls the apoptotic pathways and alterations in the expression of oncogenes (such as c-

fos, c-myc, H-ras, c-jun, and c-abl) and cancer suppressor genes (such as p53) have also been 

implicated in the cellular resistance to CDDP (Kartalou  et al., Mutat. Res., 2001). 

It also has been suggested that Copper transporter 1 (CTR1)   can play an important role in 

CDDP uptake and resistance. High expression of CTR1 in patients with ovarian carcinoma was 

associated with good therapeutic response, while low levels of the protein lead to poor therapeutic 

outcome so the transporter appears to be clinically relevant (Lee Y.Y. et al., Gynecol. Oncol. 

2011). Deletion of CTR1 was reported to decrease cisplatin accumulation and to increase 

resistance in vitro and in vivo (Ishida et al., Proc. Natl. Acad. Sci. U.S.A. 2002; Lin et al., Mol. 

Pharmacol., 2002). 

Whatever is the underlying mechanism of resistance, and despite of CDDP is part of several 

effective polychemotherapeutic protocols for the treatment of various types of cancer, its real 

effectiveness is yet limited by the emergence of drug resistant cell populations. Efforts to 

overcome the CDDP resistance have long been made (DeVita et al., Cancer, 1975); for example,  

CDDP has been tested in combination with other antineoplastic drugs, such as Fluvastatin 

(Taylor-Harding et al., Gynecol. Oncol., 2012), 5-Fluorouracil, Vincristine (Tang et al.,W. J. of 

Gastroent., 1998) and Taxol (Huang et al., Jpn J. Clin. Oncol., 2004) leading to promising results. 

Although some of these drug combinations have further progressed to Phase I and II in vivo trials, 

http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib12
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib14
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib14
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib33
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blanc%20E%5BAuthor%5D&cauthor=true&cauthor_uid=12819037
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib31
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib14
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib33
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib12
http://www.nature.com/onc/journal/v28/n23/full/onc200980a.html#bib12
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due to inefficacy or intolerable toxicity, none of them reached a standard use in the clinic 

(Rodriguez-Enriquez  et al., Mol. Nutr. Food Res., 2009) 

 

2.2 Glutathione and its involvement in CDDP-resistance 

 

 

 

 

GSH is a thiol-containing tri-peptide (Glu-Cys-Gly), constituting 1-10mM in mammalian 

cells. De novo biosynthesis of GSH is controlled by the rate-limiting enzyme, glutamate-cysteine 

ligase (GCL, also known as γ-glutamylcysteinesynthetase, γ-GCS) which consists of a catalytic 

(heavy) (γ-GCSh) and a regulatory (light) subunit (γ-GCSl).  

γ-GCS carries out the initial ligating reaction of glutamine (Glu) and cysteine (Cys).  

Production of GSH is accomplished by the subsequent reaction involving glycine (Gly) by GSH 

synthetase.GSH has different physiological functions, first of all the protection of the cell against 

oxidative damage. It can reduce metal ions and oxidant species such as reactive oxygen species 

(ROS). The oxidized form of glutathione (GSSG) is formed by two glutathione molecules bound 

with a disulfide bridge between the cysteine residuals.  GSH is oxidized to GSSG by GSH 

peroxidase, whereas GSSG can be reduced back to GSH by GSSG reductase using NADPH as a 

cofactor.In physiological conditions the intracellular concentration of GSSG is 1/10 of that of 

GSH. When the normal ratio GSH / GSSG decreases, glutathione depletion derives.  

This problem is correlated with pathologic conditions including cancer. In fact, it has been 

shown that the level of GSH in cancer cells is lower with respect to that in normal ones (Chen 

and Kuo, Metal-Based Drugs, 2010) and increased cellular GSH levels have been correlated with 

resistance to CDDP (Godwin et al., PNAS, 1992). 

To explain the role of glutathione (GSH) in regulation of cisplatin resistance several 

mechanisms have been proposed: (1) GSH may serve as a cofactor of multidrug resistance 
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protein 2 (MRP2) that mediates CDDP efflux in mammalian cells; (2) GSH can serve as a 

cytoprotective through detoxification, based on the observations that many CDDP-resistant cells 

overexpress γ- glutamylcysteine (γ-GCS), the rate-limiting enzyme for GSH biosynthesis (Chen 

and Kuo, Metal-Based Drugs, 2010); (3) Platinum (II) shows high affinity versus the thiolic 

group. Indeed Pt(II) is a soft ion and it has more affinity towards a soft donor such as the sulfur 

atom of GSH than toward a hard one such as nitrogen of DNA bases. If CDDP reacts and forms 

adducts with GSH, is no longer able to interact with DNA, resulting deactivated as a drug 

(Kasherman et al., J. Med. Chem., 2009). Actually, the formation of this kind of adduct is 

controversial in literature. In fact, according to some authors there is the displacement of both 

the amine ligands of CDDP to form with GSH the bis-(glutathionato)-platinum [Pt(GS)2]. 

(Ishikawaand  Ali-OsmanJ. Biol Chem.,1993). Other authors propose that direct binding of 

CDDP with GSH is not the most important cellular interaction that leads to the inactivation of 

the cellular cisplatin (Kasherman et al., J. Med. Chem., 2009). Since the increasing of GSH 

concentration is not associated to a decreasing in Pt(II)-DNA adducts in the tumor cell, it has 

been supposed that GSH plays a role in apoptotic regulatory pathways (Siddik, Oncogene, 2003).  

GSH may also function as a copper (Cu) chelator. Elevated GSH expression depletes the 

cellular bioavailable Cu pool, resulting in upregulation of the high-affinity Cu transporter 

(hCtr1), which is also a CDDP transporter. Copper transporter 1 (CTR1) is the major plasma-

membrane transporter involved in intracellular Cu homeostasis, and it has been found to play a 

substantial role in the active transport of the CDDP. According to some authors, the increase of 

the GSH levels inside the cells could enhance the sensibility of cancer cells to CDDP by 

increasing the number of copper transporter and thus the drug uptake within the cell (Chen et al., 

Mol. Pharm., 2008). 

 

2.3 Copper physiology and copper complexes as novel anticancer agents 

Copper is a ubiquitous essential metal ion and it is a catalytic enzymatic co-factor in several 

biological pathways, as energy metabolism, respiration and DNA synthesis (Marzano et al., Anti-

Cancer Agents in Med. Chem., 2011).Copper produces reactive oxygen species (ROS) and so, 

in large quantities, it is toxic to organisms (Halliwelland Gutteridge, Methods Enzymol., 1990) 

To control copper levels there is a fine mechanism of homeostasis, based on proteins that 

contain cysteine, methionine or histidine-rich domains, that bind free copper (Marzano  et al., 

Anti-Cancer Agents in Med. Chem., 2011). In human serum, copper is bound to ceruloplasmin, 
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an enzyme containing six copper atoms that are present both as Cu(I) and as Cu(II), or to albumin 

or amino acids (Laussac and Sarker, Biochemistry, 1984 ). 

The Cu(II) can reach the cell where it is reduced to Cu(I) by a hypothetical membrane bound 

metalloreductase and absorbed by membrane transporters, basically CTR1 (Marzano  et al.,  

Anti-Cancer Agents in Med. Chem., 2011).  Inside the cell the copper is complexed by a large 

variety of ligands, preventing the interaction of free copper with DNA and keeping its 

concentration lower than 10-18 M, (Safaei et al., J. Inorg. Biochem., 2004). The cytoplasmatic 

copper(I) is complexed mainly by GSH (Freedman et al., J. Biol. Chem., 1989) that can provide 

the metal ion to different intracellular proteins, such as metallothioneins and copper chaperones 

(Ferreira et al., Biochem., J. 1993). Being copper an essential element, Cu-complexes might be 

less toxic than those of non-essential metal ions, like platinum. As a consequence, in the last 

years many copper complexes have been prepared and tested as potential antitumoral agents. 

Copper(II) complexes are supposed to act against cancer cells in different ways with respect to 

cisplatin (Santini et al., Chem. Rev., 2014). In most studies, cell apoptosis and enzyme inhibition 

(proteasome, topoisomerase I and II, tyrosin protein kinase) were involved (Tripathi et al., Indian 

J. Cancer 2007; Nelson and Cox, Lehninger Principles of Biochemistry, 5th ed., 2008), whereas 

DNA appears to be the target of copper complexes containing nitrogen chelators, such as phen 

(Sigman et al., J. Biol. Chem., 1979). 

Copper-phen complexes possess antiproliferative activity towards several tumor cell lines, 

since they are able to act as chemical nucleases, cleaving DNA and leading the cancer cells to 

death (Chakravarty et al., Proc.Indian Acad. Sci., 2002); some of them have shown anticancer 

effects in vitro and in vivo studies (Carvallo-Chaigneau et al.,  Biometals, 2008). 

In a previous work made in my lab, an interesting in vitro antiproliferative activity towards 

several tumor cell lines, i.e. murine neuroblastoma , human prostate and lung carcinoma cell 

lines, T and B leukemia derived cells, has been shown by a novel class of copper complexes(II) 

with1,10-phenantroline (phen) (Pivetta et al., J. Inorg. Biochem., 2011 and 2012). In a further 

study, it was also shown that three Cu(II)-phen complexes of the series, i.e. Cu(phen)(OH2)2 

(OClO3)2 [1], [Cu(phen)2(OH2)](ClO4)2 C0 and [Cu(phen)2(imidazolidine-2-thione)](ClO4)2 

[C1], synergistically interact with CDDP in cells derived from a human T-lymphoblastic 

leukemia, CCRF-CEM (Pivetta T. et al., Talanta, 2013). 

The cytotoxic effects of CDDP in combination with the above Cu(II)-phen complexes were 

evaluated by using the Experimental Design (ED) - Artificial Neural Network (ANN), a new and 
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more reliable methodological approach to determine types of effect and extent of multiple drug 

treatments 

 

 

Figure 5 (A-C). Chemical structure of the compounds [1], C1and.C0 

 

3.THE RESEARCH PROJECT 

2.4 The research project 

In the light of the large amount of information available in the literature on the properties and 

limits of CDDP as anticancer agent, including mechanisms of drug-resistance  and in view of the 

potential clinical relevance of the synergic effect of CDDP with the Cu(II)-phen complexes, 

previously reported in T-leukemia cells (Pivetta et al., Talanta, 2013), my research project was 

aimed at extending the studies on the efficacy of CDDP - Cu(II)Phens combinations in: 

a) cells derived from a human type of carcinoma usually treated with CDDP (i.e ovarian 

cancer); 

b) CCDP-resistant cancer cell populations of hematologic and carcinoma origin; 

c) human peripheral blood lymphocytes from healthy donors, in order to assess the 

potential degree of selectivity of the most synergic drug combinations. 

Most studies were focused on the most potent compound C0 (fig.5B), the lead of our new 

Cu(II)-phen series. As experimental cell models, CDDP-resistant CEM cells (CEMres) selected 

from the parental T-leukemia CEM cells (CEMwt; reference cell line), and human ovarian 
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carcinoma A2780 cells, either wild type (A2780wt) and CDDP-resistant (A2780res), were used. 

The CEMres subline was purposely selected by myself in order to verify whether the synergistic 

effect of C0 and CDDP in CEM cells was maintained in a CDDP-resistant counterpart. The 

A2780 cells were chosen because they are derived from ovarian cancer for which CDDP yet 

remains one of the drugs of choice, and because this type of carcinoma is very sensitive to 

cisplatin at first, but it becomes resistant to the drug during the chemotherapy cycles, or in 

recurrences (Eckstein N., J. Exp. Clin. Cancer Res, 2011). 

In regard to the role of GSH in the CDDP-resistance (Florea and Busselberg, Cancers 2011), 

worth mentioning is that GSH can reduce free Cu(II) to Cu(I), with the subsequent oxidation of 

GSH to GSSG, but not Cu(II) to Cu(I) in the C0 complex, due to the stabilization effect of phen 

ligand towards the bivalent form of the metal ion. Recent data from my lab showed in fact the 

formation of two complexes, with one or two molecules of GSH per metal ion (Pivetta et al., J. 

Inorg. Biochem., 2012). 

Finally, based on the notion that neoplastic cells generally display altered lipid composition 

and distribution (Lladó  et al., Biochim.  Biophys. Acta, 2014; Szachowicz-Petelska et al., J. 

Environ. Biol., 2010; Riboni et al., Glia, 2002), the phospholipid profiles of CDDP-resistant vs. 

those of wild type leukemia and carcinoma cell lines were also investigated. 

All studies implying drug combinations were performed using the Experimental Design (ED), 

for the choice of the mixtures, and the Artificial Neural Network (ANN), for the evaluation of 

experimental results in terms of type and degree of drugs’ interactions. 
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3.  RESULTS AND DISCUSSION 

 

3.1 Selection of CDDP-resistant CEM cells  

As said above, a synergic cytotoxic effect was previously observed (Pivetta et al.,Talanta, 

2013) in T-leukemia CEM cells by combinatory cell treatments of CDDP with the Cu(II)-phen 

complexes [1], [C1], and, especially,C0, by using the Experimental Design (ED) - Artificial 

Neural Network (ANN), the novel methodological approach that allows to determine type and 

extent of drug interactions in multiple drug treatments.  

Given the potential relevance of this finding for the clinic of cancer, it was of primary 

importance to investigate the effect of such drug combinations in sub-populations of the same 

cell line that showed a phenotype of resistance to CDDP (CEMres). To this end, a parallel culture 

of CEM cells was serially passaged in the presence of increasing concentrations of CDDP. The 

selection of a CEM subline with a stable phenotype of CDDP resistance was a long procedure 

that took about 7 months as cell cultivation in the presence of increasing drug doses had to be 

alternate with several passages at a constant concentration in order to avoid total cell death.  

At first, cells were grown in the presence of a concentration of CDDP equal to 1/2 of the CC50, 

i.e. 0.5 μM.  This CDDP concentration was initially increased by 0.25 μM doses at each passage, 

but once the concentration of1.50 μM was reached, it was necessary to dwell for five consecutive 

passages at the same concentration. If further increased, in fact, the cells started growing with 

difficulty, the percentage of viability dropped, and the few viable cells showed the tendency to 

form clusters, an unusual feature for this type of cells. After that, the CDDP concentration could 

be increased to1.75μM for 2 passages, to 2 μM for 12 passages, then to 2.50 μM for 14 passages, 

and finally to 5 μM, the maximum drug concentration at which cells seemed able to multiply; in 

my hands, in fact, CEM cells were not able to adapt to CDDP concentrations higher than 5 μM. 

The latter cell population was stabilized at 5 μM CDDP by further 15 passages, then amplified, 

grown for one passage in the absence of the drug. Aliquots were stored in liquid nitrogen for 

experimental use. 

At different times during the selection procedure, the sensitivity of cells to CDDP was 

determined and compared to that of the wild type-CEM cells by the MTT method. As can be 

seen (Table 1A, B, C), only after 52 passages in the presence of CDDP it was possible to obtain 

a stable CEM-CDDPres subline showing a Resistance Index (RI) of about 6 (Table 1C).  
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It is worth mentioning that cell populations growing in the presence of CDDP, as well as the 

final one resistant to CDDP, never showed at any extent cross-resistance to the Cu(II)Phen 

complex C0, indicating a different mechanism(s) of resistance of the two drugs, and thus also 

different molecular targets and modes of action. No modification in the cell sensitivity to the 

reference compound doxorubicin was ever observed (Table 1 A-C). 

 

Table 1 (A-C). Citotoxicity of CDDPand C0 against CEMwtand CEMres 

 

A 

 CDDP C0 Doxorubicin 

CEMwt 1.12 µM 1 µM 0.02 µM 

CEMres 2.6 µM 0.8 µM 0.02 µM 

R.I.= 2.32 (14th passage) 

 

B 

 CDDP C0 Doxorubicin 

CEMwt 1.12 µM 1.1 µM 0.02 µM 

CEMres 2.52 µM 0.8 µM 0.02 µM 

R.I.= 2.25 (26th passage) 

 

C 

 CDDP C0 Doxorubicin 

CEMwt 1.12 µM 1 µM 0.02 µM 

CEMres 6.98 µM 0.74 µM 0.02 µM 

R.I.= 6.23 (52th passage) 

 

Because cell resistance to CDDP has been reported to be multifactorial, i.e. reduced drug 

accumulation, increased drug inactivation, enhanced DNA-repair and increased DNA-damage 

tolerance, we deemed appropriate to obtain mechanistically homogenous cell clones from the 

mixed CDDP-resistant cell population in order to study them separately. However, despite of the 

several efforts made to grow cell clones by single-cell dilutions, an otherwise successful 

procedure to obtain cloned cell populations, in no case single-celI cultures were able to survive 

and multiply. Failed the separation of CDDP-resistant cells into different cloned populations, all 

studies implying CDDP-resistant CEM cells had to be performed on the cell subline stabilized at 

5 µM CDDP (Table 1C). 
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3.2 Cytotoxic effects of drug combinations against leukemia CEM cells 

 

3.2.1 Set up of the ED 

For the study of drug combinations, the concentrations of the drugs should be chosen in the 

range within 0 and twice the CC50 (concentration of compound that reduce the viable cell by 50% 

with respect to untreated cells). Then the knowledge of a simple estimation of CC50 is needed. 

To model the dose response curve of each drug and the cytotoxicity response surface an adequate 

number of experiments is required. A non-symmetrical experimental design has been used.  

The C0 and CDDP compounds were studied in the range of concentration of 0-2 µM while 

GSH in the interval 0-1000 µM.  

We prepared for CEMwt i) 6 combinations of GSH and C0; ii) 6 combinations of GSH and 

CDDP; iii) 7 combinations of C0 and CDDP; iv) 52 combinations of GSH, C0 and CDDP; v) 10 

solutions of CDDP alone, vi) 9 solutions of GSH alone and vii) 11 solutions of C0 alone; for 

CEM-res i) 9 combinations of GSH and C0; ii) 9 combinations of GSH and CDDP; iii) 9 

combinations of C0 and CDDP; iv) 27 combinations of GSH, C0 and CDDP; v) 3 solutions of 

CDDP alone, vi) 3 solutions of GSH alone and vii) 3 solutions of C0 alone. 

Following the Experimental Design reported in Figures 6-7, solutions as i), vi) and vii) were 

used to study the binary system GSH-C0 (Figures 6A,7A); solutions as ii), v) and vi) were used 

to study the binary system GSH-CDDP (Figures 6B, 7B); solutions as iii), v) and vii) were used 

to study the binary system CDDP-C0 (Figures 6C, 7C); solutions as iv), v), vi) and vii) were used 

to study the ternary system CDDP-GSH-C0 (Figures 6D, 7D). 
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Figure 6. Concentration of combinations of (A) GSH and C0, (B) GSH and CDDP, (C) CDDP and C0, (D) GSH, 

C0 and CDDP for CEMwt cell line. 

 
 

 

 

 

Figure 7. Concentration of combinations of (A) GSH and C0, (B) GSH and CDDP, (C) CDDP and C0, (D) GSH, 

C0 and CDDP for CEMres cell line. 

 

 

 



26 

 

 

3.2.2 Determination of the cytotoxicity of the drugs 

The experiments were carried out in three replicates. The vitality (% of living cells) after the 

treatment with the drugs was measured for each solution with respect to the control (untreated 

cells) and converted, for calculation purpose, into mortality (as 100% minus vitality). 

 

3.2.3 Training and verification of the artificial neural network 

The concentrations of drugs and the related mortality values were used to form the data matrix. 

Concentrations of drugs were used as input data and the experimental mortality as output ones. 

The standard back-propagation was used as training algorithm. The optimal neural network 

architecture was searched for using the criteria of lowest RMSE and it was found that a three 

layers structure with 4 (binary systems) and 5 (ternary system) neurons in the hidden layer was 

sufficient. The architecture of the network for the ternary system is shown in Figure 8. 

 

 

 

    Figure 8. Architecture of the network used for the study of C0-CDDP-GSH ternary system. 

 

The network was trained and verified using the training and validation sets. All points lying 

on the borders of the experimental design were included in the training set. Validation points 

were chosen randomly on the working space. Among the prepared 101 solutions for CEMwt, 80 

were used as training set, 9 as validation set and 12 as test set, among the prepared 63 solutions 

for CEMres, 40 were used as training set, 11 as validation set and 12 as test set. 

The generalization ability of the network was used to predict the cytotoxicity on the whole 

working space according to a bi-dimensional grid with 40 points per side for the binary systems 

and according to a cube with 20 points per side for the ternary system. At first, the data of binary 
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systems were processed individually. Then, data of binary and ternary systems were processed 

together. The results for the binary systems obtained in the two processes were strictly 

comparable, proving the robustness and the reliability of the method. The agreement between 

calculated and experimental values for all the data for CEMwt cell line is shown in Figure 9 as 

example. 

 

Figure 9. Comparison between experimental and calculated mortality values (■  training set, ☆ validation set) for 

the ternary systems C0-CDDP-GSH for CEMwt cell line (linear fitting parameters for the equation y = mx+q are m 

= 0.9951, q = 0.007 with r = 0.9974 for training set,  m = 0.9536, q = 0.0038 with r = 0.9947 for validation set, m = 

0.9912, q = 0.0092 with r = 0.9974 for all the data). 

 

3.2.4 Prediction of the response (cytotoxicity surfaces) for CEMwt cell line 

The cytotoxicity of the mixtures and that of the drugs alone for the whole working space, were 

calculated by using the network. The dose-response curves for each compound and the 

cytotoxicity surface were then obtained.  

The calculated dose-response curves together with the experimental points for CDDP, GSH 

and C0 for CEMwt cell line are reported in Figure 10 A,B,C, respectively.  

 

 

Figure 10. Calculated dose-response curve (-•-) and experimental points (■) for (A) CDDP, (B) GSH and (C) C0, 

for CEMwt cell line. 
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The different trends of the curves may suggest a different action mechanism inside the cells. 

The threshold doses (the minimum dose at which the drug presents an effect) for the three 

compounds are: 0.25 µM for CDDP, 150 µM for GSH and 0.5 µM for C0. The CC50 values are 

in the order CDDP (0.78 µM) <C0(1.05 µM) << GSH (332.1 µM).  

The cytotoxicity of C0 and CDDP are comparable. Also GSH presents a cytotoxic activity 

towards cancer cells. 

 

Binary mixtures 

The response surfaces calculated by the network (together with the experimental points) and 

the related contour plots for C0-CDDP, CDDP-GSH, and C0-GSH systems are shown in Figure 

11 A,B,C. The calculated values are in good agreement with the experimental ones. The mortality 

increases with the concentrations of the two drugs, having similar trend to that one of the dose-

response curve. 

 

 
 

Figure11. Calculated response surface and contour plot of cytotoxicity iso-values for the systems (A) C0-CDDP, 

(B) CDDP-GSH and (C) C0-GSH for CEMwt cell line; experimental points (■) are superimposed. 
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The areas of cytotoxicity iso-values of the contour plot for the binary mixtures can be explored 

to discover the combination with desired cytotoxicity and the related dose of both drugs. For 

example, if a toxicity of 50% is searched for, instead of choosing C0 alone at a concentration of 

0.99 μM or CDDP alone at a concentration of 0.77 μM or GSH alone at a concentration of 

403 μM, selected combination may be choosen, as: 

 C0 at 0.26 μM and CDDP at 0.40 μM (Figure 11A); 

 CDDP at 0.32 μM and GSH at 200 μM (Figure 11B); 

 C0 at 0.42 μM and GSH at 200 μM (Figure 11C). 

For a toxicity of 70%, instead of choosing C0 alone at a concentration of 1.20 μM or CDDP 

alone at a concentration of 1.13 μM or GSH alone at a concentration of 769 μM, selected 

combination may be choosen, as: 

 C0 at 0.32 μM and CDDP at 0.40 μM (Figure 11A); 

 CDDP at 0.63 μM and GSH at 240 μM (Figure 11B); 

 C0 at 0.47 μM and GSH at 200 μM (Figure 11C). 

The possibility to reach the same effect but with lower doses of the drugs gives the chance to 

minimize the side effects related to the doses.  

 

Ternary mixtures 

The mortality surfaces calculated by the network for the ternary system CDDP-GSH-C0 is 

shown in Figure 12 A (colour is proportional to the cytotoxic activity of the mixtures). To 

simplify the interpretation of the graph and to appreciate the trend of the cytotoxicity also in the 

core of the cube, only seven planes along the z axis have been reported in Figure 12 B.  

As can be seen from the graph, a low value of cytotoxicity appears for low concentrations of 

all the compounds, while for concentration higher than 1 µM for C0 or CDDP the activity reaches 

quickly the highest value of 100%. Several combinations with a cytotoxic activity of 50% or 70% 

may be chosen, as for example: 

 C0 at 0.11 µM, CDDP at 0.21 µM and GSH at 250 µM (mortality values of 50%) 

 C0 at 0.32 µM, CDDP at 0.11 µM and GSH at 200 µM (mortality values of 50%) 

 C0 at 0.11 µM, CDDP at 0.63 µM and GSH at 200 µM (mortality values of 70%) 

 C0 at 0.11 µM, CDDP at 0.11 µM and GSH at 650 µM (mortality values of 70%) 

 C0 at 0.11 µM, CDDP at 0.42 µM and GSH at 400 µM (mortality values of 70%) 
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Figure 12. Full calculated response surface for the ternary systems CDDP-GSH-C0 for CCRF-CEMwt cell line (A), 

some selected planes are reported for clarity (B); the colour of the point is proportional to the cytotoxic activity. 

 

 

 

 

 

 

3.2.5  Calculation of the non-additive effect and of the net multidrug effect index in 

CEMwt cell line 

The non-algebraic additive effect (NAEE) of the combined drugs was calculated according to 

the equation already presented (Pivetta et al. Talanta, 2013). The synergistic/antagonistic effect 

was evaluated calculating the net multi drug effect index (NMDEI) (Pivetta et al. Talanta, 2013) 

for all the points of the used grid. The calculated surfaces show (Figure 13 for the binary systems 

and Figure 14 for the ternary system) the possible interactions occurring between two or among 

three drugs, allowing to determine if there is a synergistic or an antagonistic effect.  

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pivetta%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24054565
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pivetta%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24054565
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Figure 13. Synergistic surfaces for the binary systems of (A) CDDP and GSH, (B) C0 and GSH, (C) C0 and CDDP 

for CEMwt cell line. 

 

 

 

 

Figure 14. Synergistic surfaces for the ternary systems CDDP-GSH-C0 for CEMwt cell line (A), some selected 

planes are reported for clarity (B); the color of the points is proportional to the synergistic effect. 
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Binary mixtures of CDDP and GSH  

 

In the plot of the NMDEI as a function of CDDP and GSH concentrations (Figure 12A) a 

maximum (value is 42.0) is present for a concentration of CDDP 0.39 µM and of GSH 247 µM. 

At these concentrations both the two drugs, taken individually, present a mortality value of 10%, 

while their combination present a mortality value of 53.9% (Figure 11B). A synergistic effect is 

evident. 

In the plot there is a wide area of negative values, in particular in the region where 0.76 µM ≤ 

CDDP ≤ 1.48 µM and 384 µM ≤ GSH ≤ 684 µM, with a minimum (value is -12.4) at CDDP 1.14 

µM and GSH 533 µM. This combination presents a cytotoxicity value of 75.7% (Figure 11B), 

while the two drugs alone show at the same concentrations, a cytotoxicity of 69.6% and 65.0%, 

respectively. In this case an antagonistic effect is present. 

 

Binary mixtures of C0 and CDDP 

In Figure 13C is showed the plot of NMDEI as a function of the concentration of C0 and 

CDDP. There is a wide positive area that indicates a synergistic effect between the two drugs. A 

maximum of NMDEI (value is 91.9) appears for CDDP 0.34 µM and C0 0.54 µM. This 

combination shows a cytotoxicity of 96.7% (Figure 11A) while the two compounds alone show 

at the same concentration of the combination, a cytotoxicity values of 3% and 6%, respectively. 

The synergistic effect between C0 and CDDP is in agreement with previous findings (Pivetta T. 

et al., Talanta, 2013)  

 

Binary mixtures of C0 and GSH  

In Figure 13B is reported the plot of the NMDEI as a function of C0 and GSH concentrations. 

A maximum (value is 89.2) is present for C0 at 0.60 µM and GSH at 220 µM. At these 

concentrations the two drugs, taken individually, present a mortality value of 8% and 6% 

respectively, while their combination present a mortality value of 95.7% (Figure 11C). A clear 

synergistic effect is evident. 

 

Ternary mixtures of CDDP, GSH and C0 

For the evaluation of the three-drug system, cubic surface has been build up, representing the 

NMDEI value with the colour of the points (Figure 14A). For clarity, only 6 planes were 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pivetta%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24054565
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represented in Figure 14B. It shows the influence of the concentration of C0 to the cytotoxicity 

of the mixtures. In absence of C0 (first plane from the bottom), for high concentrations of GSH, 

there is antagonism between CDDP and GSH. In presence of concentrations of C0 higher than 

0.5 µM the antagonism between CDDP and GSH disappears. There is synergism between C0 

and CDDP only at low concentration of GSH (for [C0]=[CDDP]= about 0.75 µM) (this could be 

explained by the formation of an adduct Pt-C0 and high concentration of GSH interfere with this 

reaction).  

Summarizing it is possible to see that: 

- at low concentrations of C0, there is antagonism between GSH and CDDP; 

- at low concentrations of GSH, there is a good synergy between C0 and CDDP, for a 

combination in molar ration of about 1:1. 

 

3.2.6 Calculation of the non-additive effect and of the net multidrug effect index in CEMres 

cell line 

The cytotoxicity of mixtures and drugs alone, together with the response surfaces, were 

calculated by using the network, for the case CEM-res, following the same procedure adopted 

for the CEM-wt. The calculated surfaces for the binary systems and that for the ternary system 

are reported in Figure 15 and Figure 16, respectively. 
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Figure 15. Synergistic surfaces for the binary systems of (A) CDDP and GSH, (B) C0 and GSH, (C) C0 and CDDP 

for CEM-res cell line. 

 

Figure 16. Synergistic surfaces for the ternary system CDDP-GSH-C0 for CEM-res cell line (A), some selected 

planes are reported for clarity (B); the color of the points is proportional to the synergistic effect. 

 

Binary mixtures 

In the plot of the NMDEI as a function of CDDP and GSH concentrations (Figure 15A), there 

is a wide negative area that indicates an antagonistic effect between the two drugs. A minimum 

of NMDEI (value is -53.8) appears for CDDP 15 µM and GSH 950 µM. This combination shows 

a cytotoxicity of 42 %, while the two drugs alone show at the same concentrations, a cytotoxicity 

of 94.4 % and 24.9 %, respectively. In the plot, there is a limited positive area, in particular in 
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the region where 0.79 µM <CDDP< 3.95 µM and 50 µM < GSH < 300 µM, with a maximum of 

4.1.  

In Figure 15B, is reported the plot of NMDEI as a function of the concentration of C0 and 

GSH. In all the studied region, a synergistic effect is evident. Two maximums (values are 70.9 

and 65.4) appear for C0 0.42 µM and GSH 900 µM, and for C0 0.53 µM and GSH 350 µM. The 

second combination presents a cytotoxicity value of 95.6 %, while the two drugs alone show at 

the same concentrations, a cytotoxicity of 10.8 % and 21.8 %, respectively.  

In Figure 15C, is showed the plot of the NMDEI as a function of C0 and CDDP concentrations. 

The wide positive area indicates a synergistic effect between the two drugs. A maximum of 

NMDEI (value is 28.3) appears for C0 0.74 µM and CDDP 4.74 µM. This combination shows a 

cytotoxicity of 87.8 %, while the two compounds alone show at the same concentrations of the 

combination, a cytotoxicity values of 45.5 % and 25.7 %, respectively. In the plot there is a 

limited negative area, in particular in the region where 0.11 µM <C0< 0.52 µM and 0.78 µM 

<CDDP< 8.68 µM, with a minimum of -2.9. 

 

Ternary mixtures of CDDP, GSH and C0 

In Figure 16, the plots show the influence of the concentration of C0 to the cytotoxicity of the 

mixtures CDDP-GSH. As for CEMwt, in absence of C0 there is antagonism between CDDP and 

GSH. In presence of concentrations of C0 higher than 0.4 µM the antagonism between CDDP 

and GSH disappears.  

 

3.2.7 Test points 

The most relevant combinations of drugs were chosen as test point and the mixture were 

prepared and the corresponding cytotoxicity measured, to compare the experimental values with 

the ones calculated by the network. The mortality values calculated with the network are in good 

agreement with the experimental ones, confirming the predicting abilities of the network. 

 

3.3 Cytotoxic effects of drug combinations against ovarian carcinoma A2780 cells 

It was interesting to investigate if the drugs in binary and ternary combinations one with 

another were also active against human ovarian carcinoma cell lines, wild type (A2780wt) and 

CDDP-resistant (A2780res). As said above, in fact, CDDP yet remains one of the drugs of choice 
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in the treatment of ovarian cancer. This type of carcinoma is very sensitive to cisplatin at first, 

but it becomes resistant to the drug during the chemotherapy cycles or in recurrences. 

 

3.3.1 Cytotoxic effects of drug combinations against A2780wt 

Cytotoxicity of C0, CDDP and GSH, alone, in binary, and ternary combinations was evaluated 

against A2780wt cells after 96 hours of treatment. The numbers of viable cells, as determined by 

trypan blue exclusion method, were reported as percentage of untreated controls and converted 

in percentage of mortality. Dose-response curves for each compound were determined (not 

shown); CC50 values were 0,11µM for C0 and 0,22µM for CDDP. GSH displayed a biphasic 

curve, but the mortality of GSH-treated cells was below 50% at any concentration (range 1mM-

300µM) tested. With the ED/ANN experimental approach, we prepared for A2780wt cells: i) 9 

combinations of GSH and C0;ii) 9 combinations of GSH and CDDP; iii) 9 combinations of 

CDDP and C0;iv) 27 combinations of CDDP, GSH and C0; v) 3 solutions of CDDP alone; vi) 3 

solutions of GSH alone; vii) 3 solutions of C0 alone. 

The non-algebraic addictive effect (NAEE) of the combined drugs was calculated according 

to the equation already reported (Pivetta et al., Talanta, 2013). 

The synergistic/antagonistic effect was determined by calculating the net multidrug effect 

index (NMDEI) (Pivetta et al., Talanta, 2013) for all the combinations.  

In tables 2 and 3 are reported some of the results with the binary and ternary combinations. In 

A2780wt cells, single drug treatment with 0,5 µM, 1 µM and 1,5 µM CDDP showed a cell 

mortality values of 66,5%, 68,52 % and 73,91%, respectively. In agreement with the detoxifying 

role of GSH into the cells (Godwin et al., Proc. Nat. Ac. Sc. U.S.A., 1992), when CDDP was in 

binary combinations with 333 µM, 666 µM and 1000 µM GSH, the mortality was reduced to 

only 8%, clearly indicating an antagonistic effect in these range of GSH concentrations. On the 

contrary, when CDDP was tested in binary combinations with C0, a strong synergism was 

obtained with a percentage of cell mortality of 93%. A synergistic effect was also observed with 

the combinations of C0 - GSH: the highest index of synergism (SI ≥ 26) was obtained with 

0,075µM C0 and 1000µM GSH.  

As already seen in T-leukemia (CEM) cells, also in the A2780wt, when C0 was added to the 

antagonistic combinations of CDDP+GSH , mortality values reached 100%, thus clearly showing 

that C0 was not only able to annul the antagonism of GSH on the cytotoxicity of CDDP, but even 

to increase further the anti-cellular effect of CDDP-C0 combinations. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pivetta%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24054565
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pivetta%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24054565
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Table 2. Antiproliferative activity (%) against A2780wt of C0, CDDP, GSH, alone and in binary 

combinations 

 

                  

 

 

 
Table 3. .Antiproliferative activity (%) against A2780wt of C0, CDDP, GSH, alone and in ternary 

combinations.  
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3.3.2  Cytotoxic effects of drug combinations against A2780res 

Cytotoxicity of C0, CDDP and GSH, alone, in binary and ternary combinations was also 

evaluated against A2780res cells under the same experimental conditions. Dose-response curves 

for each compound were determined (not shown). CC50 values were 0,38 µM for C0 and 5.7µM 

for CDDP. Again, GSH displayed a biphasic curve, but in the A2780res it did not show any 

cytotoxicity at any of the concentrations used (i.e. 1mM-300 µM).  

We then prepared: i) 9 combinations of GSH and C0;ii)  9 combinations of GSH and CDDP; 

iii) 9 combinations of CDDP and C0; iv) 27 combinations of CDDP, GSH and C0; v) 3 solutions 

of CDDP alone; vi) 3 solutions of GSH alone; vii) 3 solutions of C0 alone (Figure 17). The non-

algebraic addictive effect (NAEE) and the synergistic/antagonistic effect was calculated as 

above.  

In tables 4 and 5 are reported some of the results with binary and ternary combinations. Similar 

effects to those showed in wild type cell line, were observed in the resistant cells. Single drug 

treatment with 4 µM, 8 µM and 13µM CCDP showed a cell mortality values of respectively 38%, 

70% and 87%. When CDDP was in binary combinations with 333 µM, 666 µM and 1000 µM 

GSH, its toxic effect decreased, while using the highest GSH concentration it became no toxic 

demonstrating a strong antagonism effect. When CDDP was tested in binary combinations with 

C0 a synergic effect was detected, and the percentage of mortality increased until 94% with a 

index of synergy of 7%. A synergistic effect was also observed when cells were treated with the 

combinations of C0 and GSH; 0,2 µM C0 with GSH 333µM showing the highest index of 

synergy of 87% (table 4).  

When C0 was added to binary combinations of CDDP+GSH, the antagonism disappeared and 

all the ternary combinations resulted synergistic. CCDP 4 µM in single-drug treatment had a 

cytotoxic effect (38% of cell mortality) whereas with GSH and 0,2 µM C0 cytotoxicity increased 

leading to up to a 98% of cell mortality  with a index of synergy of 60 % (table 5). The calculated 

surfaces (Figure 18) show the possible interactions occurring between the three drugs. 
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Table 4. Antiproliferative activity (%) against A2780res of C0, CDDP, GSH, alone and in binary    

combinations. 
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Table 5.  Antiproliferative activity (%) against A2780res of C0, CDDP, GSH, alone and in ternary   

combinations. 
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Figure 17. Concentrations of combinations of (A) CDDP and C0, (B) GSH and CDDP,  (C)GSH and C0 (D) GSH, 

C0 and CDDP for A2780res cell line. 

 

 
Figure 18. Some selected planes of the synergistic surfaces for the ternary system CDDP-GSH-C0 for A2780res 

cells; the color of the points is proportional to the synergistic effect. 
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3.4   Copper-Platinum complexes as a mechanism to explain the synergism of 

combinations of CDDP with Cu(II)complexes  

The results of the effects of the some binary combinations CDDP+C0  against CEMres and 

A2780res have altready been published in the Journal of Inorganic biochemistryin 2015 (see 

below). 

The combinations showed a synergistic cytotoxic effect in both resistant cell lines, and have 

proved able to suppress the drug-resistance This synergistic effect could be due to the 

simultaneous involvement of the same or different targets (DNA, proteins, enzymes, 

biomolecules), or by the formation of adducts, containing copper and platinum. To verify the 

presence of these adducts, mass spectra of solutions containing CDDP and Cu(II)-phen 

complexes, have been measured, using the atmospheric pressure Electrospray Ionisation at 

atmospheric pressure Mass Spectroscopy (ESI-MS). This method was more useful than others, 

because the processes of fragmentation are greatly reduced, allowing the detection of even weak 

complexes, which cannot be put in evidence with the other systems of ionization stronger which 

detected only the signals of the individual complexes. The stoichiometry of the complex observed 

with this method was then evaluated based on the models and the results of isotopic 

fragmentation spectroscopy tandem MS-MS. Although the same method was used to verify the 

presence of adducts between CDDP and the other two complexes of Cu (II)phen,[1] and C1, but 

they have not been tested in the resistant cell lines. In all cases, regardless of the copper complex 

used, the formation of a mixed complex was detected. In the adducts the copper and platinum 

ions were connected by a bridge of two chlorine atoms, with stoichiometry [CuPt(1,10-

phenathroline)(NH3)(H2O)Cl]+. In reactions of C0, or C1, with CDDP it is also released a 

phenanthroline, that being itself cytotoxic, could explain the higher antiproliferative activity 

shown by the mixtures containing these two complexes, rather than the one containing C1. The 

formation of the mixed compound detected with this method, may be a possible mechanism of 

the synergistic effect observed. Since the synergistic effect was  observed against CDDP-resistant 

cell lines, it could also be involved in one or more of the mechanisms that lead to the CDDP 

resistance. Worth mentioning, in the published article, complex C0 was named [2], while 

throughout my thesis the term C0 was preferred. 

Link at the published article: http://dx.doi.org/10.1016/j.jinorgbio.2015.05.004  

http://dx.doi.org/10.1016/j.jinorgbio.2015.05.004
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3.5 Analysis of the phospholipid profiles of CDDP-resistant vs. wild type leukemia and 

carcinoma cell extracts 

In neoplastic cells changes in lipid distribution and composition of cellular membranes have been 

reported  In particular, increased levels of glycerophosphoinositol(PI), glycerophosphoserine 

(PS), glycerophosphoethanolamine (PE)  and glycerophosphocholine (PC), as well as of 

esterified cholesterol have been found. (Kojima, K.. Nagoya J Med Sci 1993,  

Lladó et al., Biochim. Biophys. Acta - Biomembr., 2014; Szachowicz-Petelsk, et al., J. Environ. 

Biol., 2010). Considering that the mechanisms of transport through the plasma membrane 

depends on its structure, particularly on its rigidity and permeability, and that these characteristics 

are determined by the composition of the membrane constituents, an alteration of the 

physiological membrane condition could readily be directly or indirectly related to the 

undesirable phenomena of drug-resistance, including cisplatin resistance. On the basis of these 

considerations, the qualitative PL profile in our leukemia and carcinoma cell models were 

determined.  

          The results of this study were recently submitted to the journal PLoS One in the manuscript 

attached below. 
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3.6 Study of the selectivity of the ternary drug combination: cytotoxic effect  in CEM versus 

PBLs  

On the basis of the strong cytotoxic synergism shown by the CDDP-C0-GSH combination in 

CEMwt and CEMres tumour cell lines, either drug-sensitive and CDDP-resistant, it was of 

critical importance to investigate their toxic effect on normal cells so as to have an estimate of 

the selectivity of action of these cocktails of drugs. 

To this end, human peripheral blood lymphocytes (PBLs) freshly isolated from blood samples 

of healthy donors were seeded at the same cell density as such (i.e. resting PBLs), in the presence 

of the mitogen PHA (i.e. PHA-activated PBLs), or in the presence of both PHA and the growth 

factor Interleukin-2 (i.e. PHA/IL2-stimulated PBLs). Each of these cultures were then incubated 

in the presence of the most synergic three-drug combination in CCRF-CEM-wt cells and in the 

presence of the single drugs, each of them at the same concentrations present in the combination; 

i.e. 0.5 µM CDDP, 0.5 µM C0, and 300 µM GSH. The numbers of viable cells were determined 

by the trypan blue exclusion method and reported as percentage of untreated controls after 24 h 

(Figure 19A-C), 48 h (Figure 20A-C) and 72 h (Figure 21A-C) of incubation in comparison to 

those of CEM cells incubated in parallel under the same drug conditions (Figures 19D, 20D, 

21D). It has to be mentioned that the PBL values in Figures 19, 20, 21 are the mean data of 

independent experiments with PBLs isolated from three different donors, whereas in Figure 22 

PBL growth curves and viable cell counts of untreated vs. drug combination treated PBLs 

isolated from one single donor are shown. 
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Figure 19. Cytotoxic activity of C0, CDDP, and GSH, alone and in ternary combinations, in freshly isolated human 

PBLs and in CCRF-CEMwt cells after 24 h of treatment. (A) resting PBLs, (B) PHA-stimulated PBLs, (C) PHA+ 

IL2- stimulated PBLs, (D)CEM. Values obtained in drug-treated samples were expressed as percentages of their 

respective controls. 

Results are the mean ± SD from three determinations from three different subjects compared with the corresponding 

control and . Ternary combination is also  compared with each compounds. 

 *p‹ 0,05;   **p‹0,001; ***p‹0,001; ****p‹0,0001 (Anova). 

  



84 

 

 

 

 

Figure 20. Cytotoxic activity of C0, CDDP and GSH, alone and in ternary combinations, in freshly isolated human 

PBLs and in CCRF-CEM cells after 48 hours of treatment. (A) resting PBLs, (B) PHA-stimulated PBLs, (C) PHA+ 

IL2- stimulated PBLs, (D) CCRF-CEM-wt. Values obtained in drug-treated samples were expressed as percentages 

of their respective controls. 

Results are the mean ± SD from three determinations from three different subjects compared with the corresponding 

control. Ternary combination is also compared with each compounds. 

 *p‹ 0,05;   **p‹0,001; ***p‹0,001; ****p‹0,0001 (Anova). 
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Figure 21. Cytotoxic activity of C0, CDDP and GSH,  alone and in ternary combinations, in freshly isolated human 

PBLs and in CCRF-CEM-wt cells after 72 h of treatment. (A) Resting PBLs, (B) PHA-stimulated PBLs, (C) PHA+ 

IL2- stimulated PBLs, (D) CCRF-CEM-wt. Values obtained in drug-treated samples were expressed as percentages 

of their respective controls. 

Results are the mean ± SD from three determinations from three different subjects compared with the corresponding 

control . Ternary combination is also  compared with each compounds. 

 *p‹ 0,05;   **p‹0,001; ***p‹0,001; ****p‹0,0001 (Anova). 
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Figure 22. Growth curves and cell numbers of untreated vs. ternary combination-treated CEM  and  PBL cells. (A) 

Growth curves of CCRF-CEM-wt and PBLs. Viable cell numbers in untreated vs. ternary combination-treated 

CCRF-CEM-wt and PBLs after 24 h (B), 48 h (C), 72 h (D). 

Results are the mean ± SD from three determinations from three different subjects compared with the corresponding 

control. Ternary combination is also compared with each compounds. 

 *p‹ 0,05;   **p‹0,001; ***p‹0,001; ****p‹0,0001 (Anova). 

 

 

Single-drug treatments with 0.5 µM CDDP showed a cytotoxic effect increasing over time 

only against active/proliferating cell cultures, i.e. against both PHA-activated and PHA/IL2-

stimulated PBLs, and against CCRF-CEM cells, while, as expected, it had only negligible effects 

against non-activated/non-proliferating cells (i.e. resting-PBLs). After 72 h of incubation, the 

degree of cytotoxicity of CDDP was comparable in PBLs and CEM cells, with an average of 

60%-70% cell viability with respect to their respective untreated controls. In the PBL cultures, 

however, the CDDP effect was more precocious (i.e. in PHA/IL2-stimulated at 24 h; in PHA-

activated at 48 h) than in the CCRF-CEM cultures; viable CCRF-CEM cells being still over 80% 

of controls at 24 h, and over 70% of controls at 48 h. 
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The cytotoxic effect in PBLs of 0.5 µM C0 appeared to better correlate with the activation 

stage of the cells; the viability of PHA/IL2-stimolated PBLs was reduced by 30% already after 

24 h, while that of the PHA-activated PBLs by 35% only after 72h. Differently from CDDP, C0 

seemed to affect the viability also of the resting PBLs as a slight toxic effect, i.e. around 20% 

mortality was observed in each PBL preparation of the three different donors. In CCRF-CEM 

cells, the cytotoxicity of C0 appeared to be even lower, if any, than in the resting PBLs: the 

viability of treated CCRF-CEM cells being over 90% of controls at all time points considered. 

Treatments with 300µM GSH were instead more toxic in CEM cells than in PBLs, and among 

the latter, the PHA/IL2-stimulated were affected the most followed by the PHA-activated, 

whereas resting PBLs were not affected at all. Although GSH cytotoxicity was greater against 

the CEM cells (60%-70% mortality) than against PHA/IL2-stimulated PBLs (50% mortality), in 

both types of cell cultures the maximum effect was reached after 48 h of exposure to GSH. 

Compared to the single-drug treatments, in CEM cells the drug cocktail confirmed the 

synergic effect showing a very strong toxic activity already in the first 24 h (over 80% mortality) 

which further increased at 48 h and 72 h with a mortality of 87% and 92%, respectively.   

For the PBLs, the PHA/IL2-stimulated were the most sensitive of all PBL cultures to the toxic 

effect of the drug combination that was, however, both less potent and more delayed with respect 

to that exerted in the CEM cells, i.e. a 50% and 40% mortality after 48 h and 72h respectively, 

The toxic effect against the PHA-activated PBLs was even slower than that shown in the 

PHA/IL2-stimulated, 20%- 30% mortality at the first two time points, and comparable only after 

72 h. The drug cocktail was totally devoid of cytotoxicity on the resting PBLs at any time points 

considered (see Figures 23 and 24).  

Moreover, if we consider the effects of the ternary combination vs. the single-drug treatments 

in the PBLs, the drug cocktail always showed a degree of cytotoxicity comparable to that of the 

CDDP alone, whereas in the CEM cells the toxic effect of the combination was 7 fold greater 

than that of CDDP alone. 

Taken together, these findings are very promising given that the ternary combination showed 

a selective cytotoxic effect for T-leukemia CEM cells with respect to proliferating normal T-

cells. Beside of being more potent against the leukemic CEM cells (8% viability after 72 h) than 

against PHA/IL2-stimulated PBLs (50% viability at 72 h), the effect of the ternary combination 

against CEM cells appeared to be also very precocious, i.e. only 17% viability left at 24 h, 

compared to 80% in the proliferating PBLs at the same time point. 
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Figure 23. CEM and PBLs after 24 hours of incubation in the absence and in the presence of ternary combination : 

A: CEM control, B: CEM + ternary combination, C: resting PBLs control, 

D: resting PBLs + ternary combination, E: PBLs +PHA control, F: PBLs + PHA + ternary combination, G: PBLs + 

PHA+ IL2,  PBLs+PHA+IL2+ ternary combination 
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Figure 24. CEM and PBLs after 72hours of incubation in the absence and in the presence of ternary combination : 

A: CEM control, B: CEM + ternary combination, C: resting PBLs control, D: resting PBLs + ternary combination, 

E: PBLs +PHA control, F: PBLs + PHA + ternary combination, G: PBLs + PHA+ IL2, H: PBLs+PHA+IL2+ ternary 

combination 
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4. GENERAL CONCLUSIONS 

 

The work of my PhD thesis further investigated the in vitro anticancer effect against wild type 

and CDDP-resistant (i.e. CEM and A2780) cancer cells, of binary combinations of CDDP with 

C0, as well as of a ternary combination that included GSH as a third component of the drug 

cocktail,. 

The data obtained demonstrated that, although the three-drug cocktail was markedly more 

potent than the two-drug combination, both types of drug associations showed statistically 

significant synergisms against either the CDDP-sensitive and the CDDP-resistant cancer cells. 

Contrarily to most if not all anticancer agents, the cytotoxicity of the most potent cocktail was 

markedly higher against leukemic lymphocytes (CEM cells) than against normal proliferating 

lymphocytes (i.e. 90% mortality vs. 50%mortality, respectively). Worth mentioning is that resting 

PBLs were the least susceptible to the toxic effect of the cocktail (i.e. up to max 15% mortality 

at 72 hours).  

Analyses of the phospholipid profiles in leukemia and carcinoma cell extracts from CDDP-

resistant vs. wild type, highlighted specific modifications in the overall cellular lipids, i.e. 

glycerophosphocholines were strongly lower represented in the CDDP-resistant CEM cells, 

while some sphingomyelins were up-represented in the CDDP-resistant A2780 cells. Presently, 

however, we do not know if these changes in membrane lipids are or not related to the drug-

resistant status of the cells. 

Besides of further studies to unveil the molecular targets of the triple-drug cocktail, and based 

on the promising selectivity (SI 5) showed against cancer cells in vitro, investigations on its 

effectiveness in a xenograft mice models of human susceptible and CDDP-resistant ovarian 

carcinoma are on the way. 
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5. MATERIALS AND METHODS 

 

5.1 Reagents 

[Cu(phen)2(OH2)](ClO4)2 (compound C0 ) was synthesized as previously described (Pivetta   

J InorgBiochem 2011). Cis-diammineplatinum (II) dichloride (CDDP), dimethyl sulphoxyde 

(DMSO), Glutathione (GSH), Trypan blue, Doxorubicin were purchased from Sigma-Aldrich, 

Interleukin-2-human (hIL-2) from  Roche; Kanamycin Sulphate,  Phytohemagglutinin (PHA) 

and Foetal bovine serum (FBS) were purchased by Gibco; RPMI 1640 medium with stable L-

glutamine was purchased by EuroClone.  

Stock solutions of compound C0 and  CDDP were prepared in DMSO, at 1000× of the highest 

concentration to be used on the cell culture and stored at 4 °C in the dark. CDDP stock solution, 

being stable only for few hours and showing a decreasing of the cytotoxic potency during the 

time, was prepared fresh each time immediately before the experiments. GSH stock solution was 

prepared in RPMI medium and filtered before use. 

 

5.2 Cell lines 

CCRF-CEM, human acute T-lymphoblastic leukaemia cells, with their respective cisplatin-

resistant subline were used in the study.  CCRF-CEMwt and CCRF-CEMres cell line was 

maintained in culture between 1 × 105 cells/ml and 1 × 106 cells/ml in RPMI medium 

supplemented with10% foetal bovine serum (FBS) and 1% kanamycin (growth medium). To the 

growth medium for CEMres cell cultures, we also added CDDP (5μM). A2780wt and A2780res 

cells were grown in RPMI medium with 2 mM glutamine and 10% FBS. Cell monolayers were 

sub-cultivated when they reached 70% confluency (every 3–4 days) by a 1:3 ratio. A2780res 

cells were a generous gift by Dr. Eva Fischer (Tumor Biology Laboratory, The Ion Chiricuta 

Oncology Institute, Cluj-Napoca, Romania) and in order to keep the cisplatin resistance, 

A2780res were cultured in the presence of 1 μM of cisplatin every two or three passages .The 

cells were periodically checked for micoplasma contamination. For the experiments, the cell lines 

were replaced every 3 months with freshly-thawed cells from the cell stores in liquid nitrogen. 

 

5.3 Selection of the cisplatin-resistant CCRF-CEM subline 

A CEM subline able to grow at the same extent in the absence and in the presence of 5 μM 

cisplatin (CCRF-CEM-res) was obtained by serial passages of wild-type cells in the presence of 
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increasing cisplatin concentrations, starting from a sub-inhibitory concentration (0.5 μM).At each 

cell passage (every 3–4 days), the number of viable cells of cisplatin-treated cultures was 

compared to that of duplicate untreated cultures. Initially the CDDP concentration was increased 

by 0.25 μM at each cell passage up to 1.50 μM; from then on, cisplatin-treated cultures grew 

poorly and much slower than their untreated counterparts and had to be kept (5 consecutive 

passages) at the same CDDP concentration until the cell population had regained original growth 

timing and viability. After that the CDDP concentration was gradually increased. Given that cell 

cultures never survived at concentrations over 5μM, the cell population was stabilised by 15 

further passages at 5 μM CDDP. The number of viable cells was determined at each cell passage 

by the trypan blue exclusion method. At intervals during the selection process, the level of CDDP 

resistance was checked by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide 

(MTT) method in cells that had grown without the drug for one passage; Doxorubicin was used 

as a reference compound to evaluate the cisplatin-resistance specificity. 

 

5.4 Cytotoxic assays 

The biological stability of stocks solutions checked verifying the cytotoxic activity measured 

by using the same solutions over more than 6 months. The tested compounds maintained the 

same CC50 (concentration of compound that reduce the viable cell by 50% with respect to 

untreated cells) in all the performed experiments. Dilutions of the drug stocks for biologic 

investigations were made in RPMI medium at 2x the final concentration for single drug 

evaluations, or at 4x the final concentration for evaluation of binary and ternary drug 

combinations. The concentration of DMSO in the cells was never higher than 0.1%. The effects 

of the drugs and drug combination were evaluated in cultures of exponentially growing cells; for 

experiments in cisplatin-resistant cell cultures, both CEMres and A2780res cells were allowed to 

grow in the absence of the drug for one passage. Initially in the experiments with the binary 

combinations of CDDP and [2],  CEMwt and CEMres were seeded at a density of 1 × 105 

cells/well of growth medium in flat-bottomed 96-well plates and simultaneously exposed to the 

drugs or drug combinations. A2780wt and A2780res cells were seeded  at a density of 5 × 103 

cells/well of flat-bottomed 96-well plates and allowed to adhere overnight before of the addition 

of the drugs or the drug combinations. Cell growth in the absence and presence of drugs was 

determined after 96 hrs of incubation at 37 °C and 5% CO2 (corresponding to three to four 

duplication rounds of untreated cells), through the MTT method (Pauwels et al., Virol. Methods, 

1988). Afterwards, for  the binary  combinations of CDDP+GSH, C0+GSH, CDDP+C0  and for 
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the ternary combinations, CEMwt and CEMres cells were seeded at a density of 1 × 105 cells/well 

of grow the medium in flat-bottomed 24-well plates and simultaneously exposed to the drugs or 

drug combinations. A2780wt  and A2780res cells were seeded  at a density of 1 × 105 cells/well 

of flat-bottomed 24-well plates and allowed to adhere overnight before of the addition of the 

drugs or the drug combinations. Cell growth in the absence and presence of drugs was determined 

after 96 hrs of incubation at 37 °C and 5% CO2, through Trypan Blue Exclusion Test of Cell 

Viability (Strober W., Curr. Protoc. Immunol.John Wiley & Sons, Inc., 2001).This method was 

used because coloured GSH solution interfered with the MTT method. Values obtained in drug-

treated samples were expressed as percentages of those of their respective controls. All 

experiments were repeated three times. Dose-response curves for each drug were determined and 

the CC50 of single drug and drug combinations were calculated with OriginPro8.  To evaluate the 

cytotoxic effects of CDDP  in combination with  C0 and GSH  the ED-ANNs method was used. 

 

5.5 Peripheral blood Lymphocytes (PBLs) separation and Cytotoxic assays 

Peripheral blood Lymphocytes from healthy donors were obtained by method of gradient 

separation Lympholyte-H (Cedarlane). After extensive washing, cells were resuspended (1 

x106/ml) in RPMI-1640 with 10% FBS and incubated overnight.  For evalutations in resting 

PBLs, 1 x 105 cells/well were incubated in RPMI-1640 with 10% FBS in the absence or presence 

of the compounds at the indicate concentration in 24-well plat, at 37° C and 5% CO2 , for 24h, 

48h, 72h. 

For experiments with proliferating PBLs, 1 x 105 cells/well were incubated in RPMI-1640 

with 10% FBS supplemented with PHA (2.5 µg/ml) or with PHA (2.5 µg/ml) and IL-2  (5 U/mL) 

in the absence or presence of the compounds at the indicate concentration in flat-bottomed 24-

well plates, at 37° C and 5% CO2. 

Cell growth in the absence and presence of drugs was determined after 24h, 48h and 72h of 

incubation at 37 °C and 5% CO2 as described above. All experiments were repeated three times 

using PBLs from three different healthy donors. 
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